Fuzzy inference system model based on probability and impact matrices to classify risks in projects

Authors

  • Domingos Marcio Rodrigues Napolitano Universidade Nove de Julho - Uninove
  • Renato José Sassi Universidade Nove de Julho - UNINOVE

DOI:

https://doi.org/10.22279/navus.2018.v8n4.p69-89.717

Keywords:

Probability Impact Matrices. Risk Matrices. Fuzzy Inference Systems. Project Risk Management. Decision-making.

Abstract

Projects are essential for organizations to implement their strategies and the success of the projects is crucial for organizations. However, in a context of uncertainties, it is necessary to address risks that threaten this success, allocating resources for its prevention. To decide how to prioritize them and allocate resources, Probability and Impact Matrices (MPIs)are used. MPIs are built with the employment of a human expert, usually the project manager. Although popular, MPIs may have shortcomings, for example, analyzing inaccurate information from the human expert's knowledge and the inability to rank characteristic risks when using discrete classes. Thus, the use of Fuzzy Inference Systems (SIF) in an MPI would allow to address these deficiencies by modeling human knowledge reducing its uncertainty. A general objective of this work was to develop a Fuzzy Inference System based on MPIs to classify risks in projects. In order to reach this objective, we conducted experiments in five stages: (I) Generation of the database containing probability, impact and risk values, varying the correlation between probability-impact, (II) Classification of MPI Conventional and MPI proposed by Cox (2008), (III) Implementation of SIF based on Phase II MPIs rules, (IV) Application of SIF and (V) Analysis of results. It was verified that the SIF model is advantageous, compared to the conventional MPI, allowing the classification of the risks in a continuous scale, which facilitates the prioritization and allocation of resources and the reduction of uncertainty allowing to classify risks in projects.

Downloads

Download data is not yet available.

Author Biographies

Domingos Marcio Rodrigues Napolitano, Universidade Nove de Julho - Uninove

Doutorando em Informática e Gestão do Conhecimento (PPGIGC- Uninove), Bolsista PROSUP da CAPES e Mestre em Administração pelo Programa de Mestrado Profissional em Gestão de Projetos (MPA-GP Uninove).

Renato José Sassi, Universidade Nove de Julho - UNINOVE

Doutor em Engenharia Elétrica pela Escola Politécnica da Universidade de São Paulo (EPUSP - 2006). Atualmente é pesquisador e docente permanente do Programa de Mestrado e Doutorado em Informática e Gestão do Conhecimento na Universidade Nove de Julho

References

ALE, B.; BURNAP, P.; SLATER, D.. On the origin of PCDS–(Probability consequence diagrams). Safety science, v. 72, p. 229-239, 2015.

BALL, D.; WATT, J. Further thoughts on the utility of risk matrices. Risk analysis, v. 33, n. 11, p. 2068-2078, 2013.

CARVALHO, M. M; RABECHINI JÚNIOR., R. Fundamentos em gestão de projetos: (3a ed.). São Paulo, SP, Brasil: Editora Atlas S.A. 2011.

COX, L. What's wrong with risk matrices? Risk analysis, v. 28, n. 2, p. 497-512, 2008.

DEL CANO, A.; LA CRUZ, M. Integrated methodology for project risk management. Journal of Construction Engineering and Management, v. 128, n. 6, p. 473-485, 2002.

DUIJM, N. Recommendations on the use and design of risk matrices. Safety science, v. 76, p. 21-31, 2015.

HILLSON, D. Managing risk in projects. Gower Publishing, Ltd. 2009.

HUBBARD, D.; EVANS, D. Problems with scoring methods and ordinal scales in risk assessment. IBM Journal of Research and Development, v. 54, n. 3, p. 2: 1-2: 10, 2010.

JANG, J.; SUN, C.; MIZUTANI, E. Neuro-fuzzy and soft computing, a computational approach to learning and machine intelligence. Prentice Hall. 1997.

KAHNEMAN, D.; TVERSKY, A. Prospect theory: An analysis of decision under risk. Econometrica: Journal of the econometric society, p. 263-291, 1979.

KERZNER, H. Gerenciamento de projetos - Uma abordagem sistemica para planejamento, programação e controle (10a. ed) São Paulo, São Paulo, Brasil: Edgard Blucher Ltda. 2011.

LEVINE, E. Improving risk matrices: the advantages of logarithmically scaled axes. Journal of Risk Research, v. 15, n. 2, p. 209-222, 2012.

MAMDANI, E.; ASSILIAN, S. An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies, v. 7, n. 1, p. 1-13, 1975.

MONTIBELLER, G.; WINTERFELDT, De. Cognitive and motivational biases in decision and risk analysis. Risk Analysis, v. 35, n. 7, p. 1230-1251, 2015.

PMI. Um Guia do Conhecimento no Gerenciamento de Projetos(PMBok) Quinta Edição em Português. Newton Square, PA, USA. Project Management Institute, Inc. 2013.

PMI. Pulse o Profession – Sucess Rates Rises. 9th Project Management Global Survey. Newton Square, PA, USA. Project Management Institute, Inc. 2017.

MARKOWSKI, A.; MANNAN, S. Fuzzy risk matrix. Journal of hazardous materials, v. 159, n. 1, p. 152-157, 2008.

NI, H.; CHEN, A.; CHEN, N. Some extensions on risk matrix approach. Safety Science, v. 48, n. 10, p. 1269-1278, 2010.

RAZ, T.; SHENHAR, A.; DVIR, D. Risk management, project success, and technological uncertainty. R&D Management, v. 32, n. 2, p. 101-109, 2002.

RABECHINI JUNIOR, R.; CARVALHO, M. M. Relacionamento entre gerenciamento de risco e sucesso de projetos. Prod., São Paulo , v. 23, n. 3, p. 570-581, Sept. 2013

SAMANTRA, C.; DATTA, S.; MAHAPATRA, S. S. Fuzzy Risk assessment module in cosmopolitan construction: An empirical study. Engineering Applications of Artificial Intelligence, 2017.

SHARMA, A.; GUPTA, A. Impact of organizational climate and demographics on project specific risks in context to Indian software industry. International Journal of Project Management, v. 30, n. 2, p. 176-187, 2012.

SHAW, I.; SIMÕES, M. Controle e modelagem fuzzy. Blucher: FAPESP, São Paulo. 2007.

SMITH, E.; SIEFERT, W.; DRAIN, D. Risk matrix input data biases. Systems Engineering, v. 12, n. 4, p. 344-360, 2009.

WIDEMAN, R. Project & Program Risk Management. Project Management Institute, Newton Square, PA. 1992.

ZADEH, L. Fuzzy sets. Information and control, v. 8, n. 3, p. 338-353, 1965.

ZADEH, L. Outline of a new approach to the analysis of complex sysems and decision processes. IEEE Trans. on Systems Man and Cybernetics, v. 3, p. 28-44, 1973.

ZWIKAEL, Ofer; AHN, Mark. The effectiveness of risk management: an analysis of project risk planning across industries and countries. Risk analysis, v. 31, n. 1, p. 25-37, 2011.

Published

2018-09-30

Issue

Section

Articles