The analysis of emotions for academic performance prediction

Authors

DOI:

https://doi.org/10.22279/navus.2022.v12.p01-15.1690

Keywords:

emotion analysis, educational data mining, academic performance.

Abstract

Identification of emotions, especially in Distance Learning (DL) courses, can be relevant for managers who seek for improving the student's academic performance. This study aims to propose a computational tool for the identification of relationships between predominant emotions in the learning environment and the academic performance of students in the context of distance learning. For this, textual interactions in virtual learning environments (VLE) between teachers and students were used. Natural language processing techniques were used to analyze emotions in a corpus extracted from the databases of a VLE, complemented by identification and performance data obtained from the academic management system. The initial corpus consisted of 1602 messages, with a level of sentence granularity, exchanged in the context of a discipline offered in 2019. From these, 1347 (84.03%) were selected, which could be classified according to the polarity of feelings (Positive, Negative or Neutral) and predominant emotions (Sadness, Joy, Fear, Aversion and Anger). The proposed tool was built over the APIs from IBM's Watson artificial intelligence environment. This tool has the potential to provide tutors and managers with useful information to make decisions to mitigate potential problems

Downloads

Download data is not yet available.

Author Biographies

William Marinho Santos, Mestre em Governança, Tecnologia e Inovação. Universidade Católica de Brasília (UCB)

Mestre em Governança, Tecnologia e Inovação MGTI

Helga Cristina Hedler, Universidade Católica de Brasília (UCB) Instituto de Educação Superior de Brasília (IESB)

UCB - MGTI

IESB - MGEO

Edilson Ferneda, Universidade Católica de Brasília (UCB)

UCB - MGTI

Hercules Antonio do Prado, Universidade Católica de Brasília (UCB)

UCB - MGTI

Breno Giovanni Adaid Castro, Instituto de Educação Superior de Brasília (IESB)

IESB - MGEO

References

ANDRÉS, María L. A.; STELZER, Florencia; JURIC, Lorena C.; INTROZZI, Isabel; RODRIGUEZ-CARVAJAL, Raquel; GUZMÁN, Jossé I. N. Regulación Emocional y Desempeño Académico: revision sistemática de sus relaciones empíricas. Psicologia em Estudo, v. 22, n. 3, p. 299-311, 2017. https://doi.org/10.4025/psicolestud.v22i3.34360

ARNOLD, Magda B. Emotion and personality. Vol. I. Psychological aspects. New York: Columbia University Press, 1960.

BOBÓ, Míria; CAMPOS, Fernanda; STRÖELE, Victor; BRAGA, Regina; DAVID, José M. N. Análise de Sentimento na Educação: Um Mapeamento Sistemático da Literatura. CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (CBIE), 30., SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (SBIE).Brasília. Anais [...]. SBC: Brasília, 2019. p. 249-258. https://doi.org/10.5753/cbie.sbie.2019.249

CIOS, Krzysztof J.; PEDRYCZ, Witold; SWINIARSKI, Roman W.; KURGAN, Lukasz A. Data mining: a knowledge discovery approach. Boston: Springer Science & Business Media, 2007, p. 9-24.

CUI, Q.; GOU, J. Review of Online Learning Behavior Analysis. INTERNATIONAL CONFERENCE ON ECONOMY, JUDICATURE, ADMINISTRATION AND HUMANITARIAN PROJECTS (JAHP 2019), 4., Proceedings [...]. Kaifeng, China: Atlantis Press, 2019. p. 2352-5428.

DOSCIATTI, Mariza M. Um método para a identificação de emoções básicas em textos em português do Brasil usando máquinas de vetores de suporte em solução multiclasse. 2015. 225 f. Tese (Doutorado) - Curso de Informática, Programa de Pós-Graduação em Informática, Pontifícia Universidade Católica do Paraná, Curitiba, 2015.

EKMAN, Paul. An argument for basic emotions. Cognition and Emotion, v. 6, n. 3-4, p. 169-200, 2008. https://doi.org/10.1080/02699939208411068

FENG, Shi; WANG, Yaqi; SONG, Kaisong; WANG, Daling; YU, Ge. Detecting Multiple Coexisting Emotions in Microblogs with Convolutional Neural Networks. Cognitive Computation, v. 10, n. 1, p. 136-155, 2017. http://dx.doi.org/10.1007/s12559-017-9521-1.

GHAZARIAN, Peter G.; KWON, Sung-Ho. The future of American education: Trends, strategies, & realities. Philosophy of Education, v. 56, p. 147-177, 2015.

GONÇALVES, Vinícius P.; COSTA, Eduardo P.; VALEJO, Alan; R. FILHO, Geraldo P.; JOHNSON, Thienne M.; PESSIN, Gustavo; UEYAMA, Jó. Enhancing intelligence in multimodal emotion assessments. Applied Intelligence, v. 46, n. 2, p. 470-486, 2016. http://dx.doi.org/10.1007/s10489-016-0842-7.

GRAY, Jeffrey A. The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Clarendon Press/Oxford University Press, 1982.

HADDI, Emma; LIU, Xiaohui; SHI, Yong. The Role of Text Pre-processing in Sentiment Analysis. Procedia Computer Science, v. 17, p. 26-32, 2013. http://dx.doi.org/10.1016/j.procs.2013.05.005

HECKMAN, James; KAUTZ, Tim. Fostering and Measuring Skills: interventions that improve character and cognition. National Bureau of Economic Research, v. 19656, n. 1, p. 1-122, 2013. http://dx.doi.org/10.3386/w19656.

IMANI, Maryam; MONTAZER, Gholam Ali. A survey of emotion recognition methods with emphasis on E-Learning environments. Journal of Network and Computer Applications, v. 147, p. 102423, 2019. http://dx.doi.org/10.1016/j.jnca.2019.102423

IZARD, Carroll E. The face of emotion. New York: Appleton-Century Crofts, 1971.

JAMES II, William. What is an Emotion? Mind, v. 9, n. 34, p. 188–205, 1884.

KAGAN, Jerome. Behavioral inhibition as a temperamental category. In: DAVIDSON, R. J.; SCHERER, K. R.; Goldsmith, H. H. (Eds.). Handbook of affective sciences. Series in Affective Science. New York: Oxford University Press. 2003, p. 320-331.

KAGKLIS, Vasileios; KARATRANTOU, Anthi; TANTOULA, Maria; PANAGIOTAKOPOULOS, Christos T.. A Learning Analytics Methodology for Detecting Sentiment in Student Fora: A Case Study in Distance Education. European Journal of Open, Distance and e-Learning, v. 18, n. 2, 2015.

LAZARUS, Richard S. Emotion and adaptation. New York: Oxford University Press, 1991.

LIBRALON, Giampaolo L. Modelagem computacional para reconhecimento de emoções baseada na análise facial. 2014. 196 f. Tese (Doutorado) – Programa de Pós-graduação em Ciências de Computação e Matemática Computacional, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2014. https://doi.org/10.11606/T.55.2014.tde-10042015-104538

LIPNEVICH, Anastasiya A.; ROBERTS, Richard D. Noncognitive skills in education: emerging research and applications in a variety of international contexts. Learning And Individual Differences, v. 22, n. 2, p. 173-177, 2012. Elsevier BV. http://dx.doi.org/10.1016/j.lindif.2011.11.016

LIU, Bing. Sentiment Analysis and Subjectivity. In: INDURKHYA, N.; DAMERAU, F. J. (eds.). Handbook of Natural Language Processing. 2. ed. CRC Press, 2010. p. 627-666.

LIU, Bing. Sentiment Analysis and Opinion Mining. Synthesis Lectures On Human Language Technologies, v. 5, n. 1, p. 1-167, 2012. http://dx.doi.org/10.2200/s00416ed1v01y201204hlt016.

LIU, Bing. Opinions, Sentiment and Emotion in Text: mining opinions, sentiments and emotions. New York: Cambridge University Press, 2015.

LO, Siaw Ling; CAMBRIA, Erik; CHIONG, Raymond; CORNFORTH, David. Multilingual sentiment analysis: from formal to informal and scarce resource languages. Artificial Intelligence Review, v. 48, n. 4, p. 499-527, 2016. http://dx.doi.org/10.1007/s10462-016-9508-4.

MARQUEZ, Carlos; ROMERO, Cristóbal; VENTURA, Sebastian. Predicting School Failure Using Data Mining. In INTERNATIONAL CONFERENCE ON EDUCATIONAL DATA MINING, 4. Proceedings... Eindhoven, The Netherlands, July 6-8, 2011, 2010.

McDOUGALL, William. An Introduction to Social Psychology. Boston: John W. Luce & Co., 1926.

MENDEZ, Ildefonso. The effect of the intergenerational transmission of noncognitive skills on student performance. Economics Of Education Review, v. 46, p. 78-97, 2015. http://dx.doi.org/10.1016/j.econedurev.2015.03.001

MIGUEL, Fabiano K. Psicologia das emoções: uma proposta integrativa para compreender a expressão emocional. Psico-USF, v. 20, n. 1, p. 153-162, 2015.

MORAIS, Felipe de, SILVA, Juarez da, REIS, Helena, ISOTANI, Seiji, JAQUES, Patricia. Computação Afetiva aplicada à Educação: uma revisão sistemática das pesquisas publicadas no Brasil. CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (CBIE) / SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO (SBIE), Anais...,. 2017. pp. 163-172. http://dx.doi.org/10.5753/cbie.sbie.2017.163

MOREIRA, Vanessa de S.; SIQUEIRA, Sean W.; ANDRADE, Leila; PIMENTEL, Mariano. Análise de Sentimentos: Comparando o uso de ferramentas e a análise humana. BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS, 12. Anais…, Florianópolis, maio 17-20, 2016.

MOWRER, O. Hobart. Learning theory and behavior. New York: Wiley, 1960.

PANKSEPP, Jaak. Affective neuroscience: The foundations of human and animal emotions. Series in affective science. Oxford University Press. 1998,

PLUTCHIK, Robert. A general psychoevolutionary theory of emotion. In: PLUTCHIK, R. Theories of emotion. Academic Press, 1980. p. 3-33.

RIBEIRO, Ralph B. S.; CARVALHO, Leandro S. G. de; OLIVEIRA, Elaine H. T. de; OLIVEIRA, David B. F. de; PESSOA, Marcela S. P. Investigação Empírica sobre os Efeitos da Gamificação de um Juiz Online em uma Disciplina de Introdução à Programação. Revista Brasileira de Informática na Educação, v. 28, p. 461-490, 2020. http://dx.doi.org/10.5753/rbie.2020.28.0.461

ROBBINS, Stephen P. Emoções e Sentimentos. In: ROBBINS, Stephen P. Comportamento Organizacional: teoria e prática no contexto brasileiro. 14. ed. São Paulo: Pearson Prentice Hall, 2010. Cap. 4. p. 91-124.

RODRIGUEZ, Pilar; ORTIGOSA, Alvaro; CARRO, Rosa M. Extracting Emotions from Texts in E-Learning Environments, INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS. 6. Proceedings…, 2012, pp. 887-892, http://dx.doi.org/10.1109/CISIS.2012.192

RUSSELL, James A. A circumplex model of affect. Journal Of Personality And Social Psychology, v. 39, n. 6, p. 1161-1178, 1980. http://dx.doi.org/10.1037/h0077714

SONG, Ge ; YE, Yunming; DU; Xiaolin; HUANG, Xiaohui. Short Text Classification: a survey. Journal Of Multimedia, v. 9, n. 5, p. 635-643, 2014. http://dx.doi.org/10.4304/jmm.9.5.635-643

SUERO-MONTERO, Calkin; SUHONEN, Jarkko. Emotion analysis meets learning analytics: online learner profiling beyond numerical data. In: KOLI CALLING INTERNATIONAL CONFERENCE ON COMPUTING EDUCATION RESEARCH. 14. Proceedings… 2014. p. 165-169.

TAO, Jie; FANG, Xing. Toward multi-label sentiment analysis: a transfer learning-based approach. Journal of Big Data, v. 7, n. 1, p. 1-26, 2020. http://dx.doi.org/10.1186/s40537-019-0278-0

WANG, Ling; HU, Gongliang; ZHOU, Tiehua. Semantic analysis of learners’ emotional tendencies on online MOOC education. Sustainability, v. 10, n. 6, 1921, 2018. http://dx.doi.org/10.3390/su10061921

WATSON, John B. Behaviorism. Chicago: University of Chicago Pres, 1930.

WEINER, Bernard; GRAHAM, Sandra. An attributional approach to emotional development. In: IZARD, C.; KAGAN, J.; ZAJONC, R. (Eds.), Emotion, cognition and behavior. Cambridge, MA: Cambridge University Press, 1984. pp. 167-191.

Published

2022-02-12

Issue

Section

Articles