Evolution and trends of Machine Learning Techniques applied to Tax Inspection: A Bibliometric Analysis

Authors

DOI:

https://doi.org/10.22279/navus.v16.2037

Abstract

This paper proposes a bibliometric approach to analyze the evolution and trends concerning machine learning techniques applied to tax auditing. The study is based on a bibliographic review of scientific documents available in the Scopus database. The adopted methodology employs bibliometric analysis tools implemented by the Bibliometrix package to extract bibliographic metrics and descriptive statistics. Furthermore, VOSviewer was used for the visualization of the author keyword co-occurrence network, providing a deeper understanding of the relationships between various knowledge areas and published works. The Loglet Lab 4 tool was also utilized for the temporal analysis of publications, enabling the identification of growth patterns and saturation projections in academic interest on the topic over time. The results obtained reveal insights into the main focus areas, most influential contributions, collaborations among researchers, and the temporal dynamics of scientific production related to the application of Machine Learning techniques in Tax Auditing. This bibliometric approach not only highlights the current state of research in this field but also offers directions for future studies and more in-depth applications in the tax area.

Downloads

Download data is not yet available.

Author Biographies

Lucas Alvarenga, Universidade Católica de Brasília (UCB)

Bacharel em Engenharia Mecânica.

Eduardo Amadeu Dutra Moresi, Universidade Católica de Brasília (UCB)

Doutor em Ciência da Informação.

Edilson Ferneda, Universidade Católica de Brasília (UCB)

Doutor em Computação.

Fabricio Ziviani, Universidade Católica de Brasília (UCB)

Doutor em Ciência da Informação pela Escola de Ciência da Informação da Universidade Federal de Minas Gerais (2012). Mestre em Administração Públicapela Escola de Governo da Fundação João Pinheiro (2005) e graduado em Administração. Professor do Programa de Pós-Graduação em Sistemas de Informação e Gestão do Conhecimento da Universidade FUMEC. Professor Adjunto da Universidade do Estado de Minas Gerais – UEMG.

Matheus Silva de Paiva, Universidade Católica de Brasília (UCB)

Doutor em Economia.

Published

2025-04-01

Issue

Section

Articles