Analysis of economic satisfaction using machine learning models and explainable artificial intelligence

Autores

DOI:

https://doi.org/10.22279/navus.v15.2006

Resumo

The economic satisfaction of a nation can reflect citizens' perceptions of their government's performance, and machine learning models can help uncover non-trivial information from such data. In this context, this article aimed to analyze the satisfaction of Latin American citizens with their country's economy. To achieve this, six traditional classifier algorithms and four ensemble models were used, with a final application of an explainable method (SHapley Additive exPlanations, SHAP) to analyze the key factors contributing to economic satisfaction. The models were trained and tested on a dataset comprising data from the 2020 and 2023 Latinobarómetro surveys, totaling 27,600 instances in the final set. As a result, it was found that the Random Forest was the best individual model, while the stacking ensemble achieved the best performance in classifying between “satisfied” and “dissatisfied” citizens. The SHAP method revealed that “satisfaction with democracy” and “perception of the country's progress” are the main factors influencing economic satisfaction. This study offers insights for public managers on how to improve their citizens' economic satisfaction.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luiz Fernando Menegazzo Ferreyra, Universidade Tecnológica Federal do Paraná – Campus Londrina (UTFPR)

Estudante de Engenharia de Produção.

Yasser Bulaty Tauil, Universidade Tecnológica Federal do Paraná – Campus Londrina

Estudante de Engenharia de Produção.

Helton Messias Adigneri, Universidade Estadual de Maringá – Campus Maringá

Bacharel em Engenharia de Produção.

Bruno Samways dos Santos, Universidade Tecnológica Federal do Paraná – Campus Londrina

Doutor em Engenharia de Produção e Sistemas.

Rafael Lima, Universidade Tecnológica Federal do Paraná – Campus Londrina

Doutor em Engenharia de Produção.

Publicado

2024-12-19

Edição

Seção

Dossiê temático: A inteligência artificial e a gestão organizacional