MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DB4B0B.6541B4D0" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Analysis of economic satisfa= ction using machine learning models and explainable artificial intelligence<= /span>

 

Análise da satisfação com a economia a pa= rtir de modelos de aprendizado de máquina e inteligência artificial explicativa<= /a>

Luiz Fernando Menegazzo Ferrey= ra

https:= //orcid.org/0009-0008-9219-6560 <= /o:p>

= Estudante de Engenharia de Produção. Universidade Tecnológica Feder= al do Paraná – Campus Londrina (UTFPR) – Brasil. luizferreyr= a@alunos.utfpr.edu.br

Yasser Bulaty Tauil

http= s://orcid.org/0009-0001-4804-2416 <= /span>

Estudante de Engenharia de Produção. Universidade Tecnológica Federal do Paraná – Campus Londrina (UTFPR) – Brasil. yasser@alunos.utfpr.edu.br

Helton Messias Adigneri

http= s://orcid.org/0000-0002-2652-6508

Bacharel em Engenharia de Produção. Universidade Estadual de Maringá – Campus Maringá (UEM) – Brasil. = pg405633@uem.br

Bruno Samways dos Santos

http= s://orcid.org/0000-0001-7919-1724

Doutor em Engenharia de Produção e Sistemas. Universidade Tecnológica Federal do Paraná – Campus Londrina (UTFPR) – Brasil. = brunosantos@utfpr.edu.br

Rafael Lima

http= s://orcid.org/0000-0002-9098-3025

Doutor em Engenharia de Produção. Universidade Tecnológica Federal do Paraná – Campus Londrina (UTFPR) – Brasil. rafaelhlima@utfpr.edu.br

 

 

ABSTRACT

The economic satisfaction of a nation can reflect citizens' percepti= ons of their government's performance, and machine learning models can help unc= over non-trivial information from such data. In this context, this article aimed= to analyze the satisfaction of Latin American citizens with their country's economy. To achieve this, six traditional classifier algorithms and four ensemble models were used, with a final application of an explainable method (SHapley Additive exPlanations, SHAP) to analyze the key factors contributi= ng to economic satisfaction. The models were trained and tested on a dataset comprising data from the 2020 and 2023 Latinobarómetro surveys, totaling 27= ,600 instances in the final set. As a result, it was found that the Random Forest was the best individual model, while the stacking ensemble achieved the best performance in classifying between “satisfied” and “dissatisfied” citizens.= The SHAP method revealed that “satisfaction with democracy” and “perception of = the country's progress” are the main factors influencing economic satisfaction. This study offers insights for public managers on how to improve their citizens' economic satisfaction.

Keywords: Economic satisfaction. Machine learning. = Explainable Artificial Intelligence. Latin America.

 

RESUMO

A satisfação econômica de uma nação pode refletir a percepção dos cidadãos sobre o desempenho de seus respectivos governos, e modelos de aprendizado de máquina podem auxiliar na descoberta = de informações não triviais contidas em dados desta natureza. Neste sentido, o objetivo deste artigo foi analisar a satisfação dos cidadãos latino-america= nos sobre a economia do seu país. Para isso, foram utilizados seis algoritmos classificadores tradicionais e mais quatro modelos ensemble, com a aplicação final de um método explicativo (SHapley Additive exPlanations<= /i>, SHAP), analisando os principais fatores que contribuem para a satisfação econômica. Os modelos foram treinados e testados em um conjunto de dados composto pelos anos de 2020 e 2023 da pesquisa do Latinobarómetro, totaliza= ndo 27.600 instâncias no conjunto final. Como resultado, verificou-se que a Floresta Aleatória foi o melhor modelo individual, enquanto o stacking ensemble obteve o melhor desempenho para a classificação entre “satisfeitos” e “insatisfeitos”. O método SHAP mostrou que a “satisfação co= m a democracia” e a “percepção sobre o progresso do país” sãos os principais fatores que influenciam na satisfação econômica. Este trabalho oferece cami= nhos nos quais gestores públicos podem atuar para a melhoria da satisfação econô= mica de seus cidadãos.

= Palavras-chave: Satisfação econômica. Aprendizado de máquina. Inteligência Artificial Explicativa. América Latina.

 

 

Recebido em 31/08/2024.  Apr= ovado em 04/11/2024. Avaliado pelo sistema double blind peer review. Publicado conforme normas da APA.

= https://doi.org/10.22279/navus.v15.200= 6

1 INTRODUCTION

 

The advancement in understanding satisfaction involves recognizing t= he "object of satisfaction," as it is asserted that the satisfaction= a person feels with life as a whole is distinct from specific satisfaction wi= th work, marriage, or housing (= Veenhoven, 1996).= For instance, in the domain of consumption, satisfaction can be summarized as t= he attainment of expected quality in the purchase of products or the procureme= nt of services (= Martínez-Navalón et al., 2021). Consumer satisfaction is addressed in various fields of knowledge, and regarding total quality, economic globalization, and strategic management, = the concept permeates the entire organization (= Bortolotti et al., 2012).=

The analysis of satisfaction has been researched since 1989, beginni= ng with a study in Sweden to measure consumer satisfaction using the Swedish Customer Satisfaction Barometer (SCSB) (= Bortolotti et al., 2012).= Data on how to measure and understand consumer and citizen satisfaction is highly relevant for strategic business and governmental planning, as this metric c= an guide which factors or variables are crucial in changing satisfaction, ther= eby improving people's well-being and institutional efficiency.

Regarding the general population of a nation, surveys on satisfaction with services within a country are key in evaluating a government, revealing judgments about the quality of services offered to citizens thus far. Howev= er, general satisfaction is multifactorial and subjective, making this task more complex (= Van Ryzin, 2004). Therefore, machine learning (ML) methods can be useful in the objective and quantitative analysis of satisfaction data.

ML algorithms are being widely utilized in various fields to analyze satisfaction, including healthcare, products and services, economics, and e= ducation, among others. For example, authors such as A= bdelkader et al. (2022),= C= hamorro-Atalaya et al. (2022),= Langan and Harris (2024),= and Liang and Jia (2023) = applied ML in the context of education and teaching. In the field of products and services, Z= aghloul et al. (2024) = applied ML to evaluate e-commerce products, L= i et al. (2024) = and Noviantoro and Huang (2022) studied satisfaction in airline companies, and J= oolfoo et al. (2022) = in the telecommunications sector. Also, P= olce et al. (2021),= Z= hang et al. (2021),= Sabarmathi and Chinnaiyan (2019), and K= owalski (2017) = employed ML in satisfaction analysis within the healthcare area.

In Latin America, data from the Latinobarómetro survey evaluates pub= lic opinion in 18 countries concerning democracy, economy, and society. With th= is publicly available dataset, recent studies by P= ecorari and Cuesta (2023) = applied ML techniques to analyze citizen participation and political trust, = R= osa et al. (2023) classified democracy in Brazil, and T= auil et al. (2024) = focused on economic classification, also applying classification algorithms.

In this context, the present article seeks to analyze the applicatio= n of machine learning techniques to classify data concerning economic satisfacti= on in Latin American countries, including ensemble classifier models (bagging, boosting, voting, stacking) and the SHAP technique (SHapley Additive exPlan= ations) to evaluate predictor variables. In addition to the use of algorithms, the study also compares different years of questionnaire application in Latin America, aiming to identify potential variations in economic satisfaction across the continent.

Following this introductory section, the article comprises four main sections. Section 2 outlines concepts related to data mining, machine learn= ing, ensemble classifiers, and interpretive models. The third section details the research sequence, including the treatment of the datasets used and the analysis of base algorithm hyperparameters. The fourth section presents the results obtained by the classifiers, offering comparisons and interpretatio= ns of predictor variables through the SHAP model. Finally, the conclusion and suggestions for future research are provided in Section 5.

 

 

 

2 DATA MI= NING AND MACHINE LEARNING

&nbs= p;

According= to Yadav et al. (2022), data mining is essentially the process of discovering interesting patterns, models, and other types of knowledge in large datasets (Han et al., 2022). Mining is part of the Knowledge Discovery in Databases (KDD) proce= ss, which initially requires the selection, cleaning, and transformation of dat= a, before applying a mining task. On the other hand, ML models necessitate the application of an algorithm to learn from the data, with the main types bei= ng supervised learning, unsupervised learning, and reinforcement learning.

Kalita (2022)= notes that the datasets used for supervised learning are labeled, meaning each example in the dataset has an associated "outcome" or "summary" value that depends on the details of the example. This = is added to the attributes (or features) used to describe the details of the example.

Žižka et al. (2019) explain that unsupervised learning does not rely on a "teacher"; learners must learn on their own, and the available training samples do not have their appropriate class labels. As a result, i= t is not directly possible to reveal what is relevant to each class. Moreover, i= t is not known which (or how many) classes exist for a specific case. Thus, it is said that the algorithms seek to "naturally" find patterns among = the instances based on the available attributes (or variables).

In reinfo= rcement learning, an agent learns to perform a task within an environment. The reinforcement learning agent has a repertoire or set of basic actions it can execute, and at any given time, it is assumed to be "residing" in= a set of states. When the agent reaches the final state, the environment, a teacher, or the agent itself provides a reward. Thus, most actions are not rewarded, but rewards are given infrequently or "rarely" <= /span>(Kalita, 2022). For this article, the classification task was utilized, as a predefined label ("economic satisfaction") was used as a reference for training the machine learning algorithm.

 

2.1 Tradi= tional machine learning models

&nbs= p;

This arti= cle applied several ML algorithms for data classification: Decision Trees, Rand= om Forest, XGBoost, Naïve Bayes, Support Vector Machines (SVM), Logistic Regression, and a combination of these methods (also known as “ensembles”) using strategies such as voting, stacking, bagging, and boosting.

A classif= ier based on Decision Trees is structured as a tree-like algorithm similar to a flowchart, where each internal node (non-leaf node) represents a test on an attribute, each branch represents the outcome of the test, and each leaf no= de (or terminal node) contains a class label. The highest node in the tree is = the root node. The process of learning decision trees is performed using class-labeled training tuples (Han et al., 2022).

Žižka et al. (2019) state that Random Forest employs simultaneous voting by multiple ex= pert algorithms during training, with the outcome determined by the majority of votes (or by averaging for regression tasks). It randomly selects attributes for each split node in each sub-tree, in addition to randomly selecting sub= sets of training samples using the bagging technique (Breiman, 2001).

According= to Zou et al. (2022), XGBoost is based on gradient-boosted decision trees. It begins by creating several weak learners, primarily regression trees, to train these learners. After training, a weighted combination is performed to obtain the final regression model. During construction, new learners are added based on the residual error from the last iteration of the weak learner.<= /span>

Inspired = by Bayes' theorem and the calculation of conditional probabilities, the method estimates the label of a new record based on probability distributions previously calculated using labeled data (Da Silva et al., 202= 3). It receives labeled trainin= g data denoted by training and label, and produces a structured output labeled to receive test data (Brunton & Kutz, 2019).

According= to Han et al. (2022), Support Vector Machines (SVMs) are a method for classifying linear= and nonlinear data. A nonlinear mapping is applied to transform the original training data into a higher-dimensional space, where the algorithm seeks the optimal linear separating hyperplane (i.e., a "decision boundary" that separates tuples from one class from another). With an appropriate nonlinear mapping to a sufficiently high-dimensional space, the data from t= wo classes can always be separated by a hyperplane. Thus, the SVM finds this hyperplane using support vectors, which are the "essential" train= ing tuples, and margins (defined by the support vectors).

Yadav et al. (2022) explain that Logistic Regression (LR) is used to predict the probability of a target or dependent variable that is dichotomous in nature, meaning there are only two possible classes (either 0 or 1). The method performs mathematical modeling to predict the probability of an event occurring, based on the analysis of the relationship between the available variables (Ariza & Santos, 2023)= .

&nbs= p;

2.2 Ensemble me= thods

 

Han et al. (2022) mention = that an ensemble learning model combines a series of base classifiers (learning mod= els) to create a composite and enhanced classification model. This method return= s a class prediction based on the votes of the base classifiers. There are diff= erent types of ensemble classifiers, including bagging, boosting, voting, and stacking.

For the b= agging strategy, the term "bagging" stands for "bootstrap aggregating", where each training set is a sample with replacement, and the aggregated classifier counts the votes and assigns the class with the majority of votes to a new instance (Jafarzadeh et al., 2= 021). This model can also be applied to predict continuous values by calculating the average value of each prediction for a given test tuple.

A boosting classifier is designed to produce a prediction rule by combining flexible classifiers in sequence, generating a more powerful classifier based on the adjusted weights of previous classifiers' performance (Naem et al., 2018). The first classifier is trained with the training instances, and t= hose incorrectly classified have a higher probability of being selected for the second classifier, continuing until a stopping criterion is met (Kadkhodaei et al., 2= 020).

Commonly = used, the voting model is a process in which multiple learning techniques are applied, or the same technique is used multiple times to create the base classifiers, where each of these bases is trained with distinct data. This process makes classification predictions, where the highest vote or score assigned to a prediction is accepted (Géron, 2019; Tauil et al= ., 2024).<= span style=3D'mso-bookmark:_Hlk4746433'>

The ensem= ble stacking learning method consists of two phases: base classifier and meta-classifier= (Nipa et al., 2024). At the base classifier level, the training set is used to train mo= dels and make predictions. In contrast, in the meta-classifier, the metadata is = used for training, while the output of the base classifier is mapped to the actu= al classification label (Jiang et al., 2019)<= /w:Sdt>.

&nbs= p;

2.3 Expla= inable model

&nbs= p;

Dandolo et al. (2023)= cite that ML models have limitations in explaining their internal functioning, often referred to as "black box" models. Consequentl= y, there is a lack of understanding regarding which information the algorithm utilized to comprehend the relationship between input and output variables.= To overcome these limitations, the field of Explainable Artificial Intelligence (XAI) has emerged as a type of AI that allows ML models to provide explanat= ions focused on "why" the system reached a particular decision, explor= ing its logical paradigms (Vishwarupe et al., 2= 022). In this context, SHapley Additive exPlanations (SHAP) can reveal relevant information about the relative influence of input variables on the analyzed classes (Zheng et al., 2023)<= /w:Sdt>.

This model generates SHAP values that indicate the contribution of each attribute in a specific sample, and the predictive model returns a projected output for ea= ch separate sample (Amin et al., 2023). It leverages game theory to explore the reasons behind the formati= on of the machine learning model in a particular way, thereby providing a bett= er understanding of the model (Lan et al., 2024).

&nbs= p;

3. MATERI= ALS AND METHODS

&nbs= p;

The data = used in this study were obtained from surveys conducted in 2020 and 2023 by the Latinobarómetro Corporation, with both datasets undergoing preprocessing and splitting into training and testing sets. Variables were empirically select= ed based on their relevance to the problem, ensuring their mutual presence in = each dataset. Consequently, 19 attributes were selected from each year's dataset, with minimal differences between the years, such as accentuation of specific names and classifications, which were subsequently unified during preprocessing. The most significant challenge identified was that one varia= ble related to the respondent's country of origin lacked information for one of= the 18 countries present in the 2020 data. Therefore, it was necessary to exclu= de this country to maintain consistency in the results of future analyses, thus aligning the variables passed to the algorithms.

The selec= ted output variable was the respondent's assessment of their "general sati= sfaction with the economy" in their country, with all six different response options present. To transform the problem into a binary classification, the classes were grouped as 0 or 1 according to their correspondence, with 0 representing the "dissatisfied" group and 1 representing the "satisfied" group. The transformation of the classes is presented= in Table 1.

&nbs= p;

Table 1

= = Tr= eatment of responses for the class variable

Classes from the original output

New output

Very satisfie= d

Satisfied (1)=

Somewhat satisfied

Somewhat dissatisfied

Insatisfied (= 0)

Very dissatis= fied

Don’t know

No cases (excluded)

No response

 

To handle= missing data, no imputation methods were used, therefore, instances with incomplete data were removed from both datasets. This strategy was chosen to maintain greater reliability in the model training phase, while still retaining a substantial amount of information even after excluding the missing data. Additionally, attributes related to gender, country, race, and religion were binarized, and the data were subsequently standardized and normalized. The = data processing and cleaning resulted in a final dataset consisting of 27,600 instances and 57 columns, with 14,032 instances for training and 13,568 for testing.

Subsequen= tly, during the algorithm application, the preprocessed 2020 dataset was first u= sed as the training data, while the 2023 instances were used to test the models= ' effectiveness. This approach allowed for the assessment of compatibility between the datas= ets from different years, ensuring that evaluating both years with the algorithm would not affect the results, as the questions asked of the respondents remained the same over a short period. After this step, the class balancing= for the training set reached 11,760 “dissatisfied” (83.81%) and 2,272 “satisfie= d” (16.19%). 

For the classification task, the methods Random Forest (RF), Logistic Regression (R= EG), Bernoulli Naïve Bayes (BNB), Support Vector Machine (SVM), XGBoost (XGB), a= nd Neural Networks (Neural) were used. To enhance these classifiers, the Grid Search method was employed for hyperparameter tuning within a 5-fold cross-validation and using accuracy as the reference metric. Table 2 summar= izes the best hyperparameters after tuning.

&nbs= p;

Table 2

= The best parameters for each model after the Grid Search<= /span>

Algorithm

Chosen hyperparameters

RF(n_= estimators=3D100, max_depth=3D20, min_samples_split=3D10, min_samples_leaf=3D1, max_feature= s=3D'sqrt')

REG(pe= nalty=3D'l2', C=3D0.001, solver=3D'liblinear')

BNB(al= pha=3D1.0, binarize=3D1.0, fit_prior=3DTrue)

SVM(C= =3D1, kernel=3D'rbf', gamma=3D'scale', max_iter=3D1000, probability=3DTrue)

XGB(co= lsample_bytree=3D1.0, gamma=3D0.2, learning_rate=3D0.1, max_depth=3D3, n_estimators=3D100)

Neural(hi= dden_layer_sizes=3D(128, ), activations=3D'sigmoid', optimizer=3D'rmsprop')

&nbs= p;

After tra= ining each traditional ML algorithm, ensemble methods were adopted among the classifiers using the dataset that demonstrated the best accuracy. This efficiency was evaluated based on the metrics of accuracy, precision, recal= l, and f1-score. Figure 1 presents the overall flowchart of the entire data processing and model evaluation, implemented in Python programming language= and its libraries.

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

Figure 1

= Research workflow

 

Finally, = after evaluating the performance of the classifiers and ensemble methods with the= aid of graphs, the SHAP library was applied to the algorithms that demonstrated= the highest quality. For this step, the Kernel Explainer function from the SHAP library, with the algorithm being trained on the 2020 dataset and tested on= the 2023 dataset, following the same method as the classifiers.

In the en= d, this technique provides a means to understand the decision-making method of the classifier, elucidating the key factors of the highest-performing black-box model. This enabled the testing and formulation of hypotheses regarding the categories = that most significantly influence public satisfaction or dissatisfaction with the functioning of a country’s economy, cross-referencing these results with ar= ticles found in the literature.

&nbs= p;

4 RESULTS= AND DISCUSSION

&nbs= p;

The resul= ts obtained after applying the described methods were divided based on the different types of criteria analyzed: (1) classifier algorithm and (2) ense= mble methods. Additionally, preference was given to presenting only the results after applying the Grid Search method with all models already tuned to the hyperparameters that maximized accuracy. Visualizations were provided for better interpretations.

Initially= , using the prepared dataset as described in the previous section, all resulting instances were employed in the classifier algorithms. To effectively demonstrate the results achieved, all algorithms were tested with the same input data, with the accuracy output revealing the best results, which are analyzed in this section.

&nbs= p;

&nbs= p;

&nbs= p;

&nbs= p;

4.1 Perfo= rmance of the classifiers

&nbs= p;

Firstly, = Figure 2 illustrates the performance of the classifiers without any ensemble method applied, with the algorithm following the parameters and inputs previously described. Thus, the heatmap information reflects the metrics used to measu= re the accuracy of each algorithm, with darker colors representing better resu= lts, or closer to the value of 1, and lighter colors indicating poorer classifie= rs, with metrics closer to a null value.

&nbs= p;

Figure 2

= Classification results for individual algorithms

          =    

There was= a general difficulty among the algorithms in evaluating instances representing people “satisfied” with the economy. All metrics for the "satisfied&qu= ot; block showed lower values compared to the other block. This result can be explained by the imbalance in the training dataset, where instances of dissatisfied people were more prevalent than their counterparts. The Random Forest classifier had the best result in general, with a high f1-score for = the “dissatisfied” class, and 0.5 f1-score for “satisfied”.

Despite t= his, it is notable that among the instances, Logistic Regression presented the best evaluation metrics for satisfied people, being considered, for this researc= h, the best classifier among the others. This result stems from its better bal= ance between instances, represented by its high precision rate for the satisfied class while maintaining a higher f1-score and recall compared to the other classifiers.

On the ot= her hand, the XGBoost method obtained the worst results, clearly affected by the imbalance in the input instances, resulting in nearly null f1-score and rec= all figures for the minority class.

&nbs= p;

4.2 Perfo= rmance ensemble methods

&nbs= p;

From all = the classifiers previously used, while maintaining the same data input, the met= hods bagging, boosting, stacking, and voting (both in their hard and soft forms = for this last) were applied in search of an improvement in overall accuracy, especially in the minority target variable. This type of model has consider= able potential for forming an algorithm with greater effectiveness in achieving better results (Ogutu et al., 2022; Sagi & Rokach, 2018). Therefore, the average per= formance of the models is represented in Figure 3.

&nbs= p;

&nbs= p;

&nbs= p;

Figure 3

= Results for the ensemble algorithms

 

Evaluatin= g the average results of the ensemble algorithms in Figure 3, it is observed that= the models continued to perform better for the more favored class. For the "Satisfied" class, the method that best managed to balance the predictions was Stacking, with an f1-score of 56%. Regarding accuracies, although the stacking method did not have the highest value for the “dissatisfied” class, it demonstrated the best balance and is therefore classified by this research as the method with the best overall results. It= is important to note that the results for “None” are related to the simple ave= rage of the individual classifiers as shown in Figure 2.

&nbs= p;

4.3 Featu= re analysis through explainable model

&nb= sp;

Even after identifying a classifier algorithm with the best performance in the study, = the decision-making process indicating which factors most influenced the determination of whether an individual was satisfied or dissatisfied with t= he economic situation remained unclear. To clarify the prediction method used = by the algorithm, the SHAP method was applied, as it is specifically designed = to better visualize the decision-making process of black-box models like some = of those used in this research. Given that, the stacking ensemble achieved the best results, so SHAP was applied solely to this method to investigate the decis= ion factors.

The appli= cation of SHAP, following the parameters and procedures outlined in the previous section, resulted in the graph presented in Figure 4. This figure displays = the names of the features that most significantly influenced the stacking metho= d's decision-making process, along with the values classified as influential for determining satisfaction or dissatisfaction. Since not all instances exerte= d a strong influence on the decision-making process of this model, many of them resulted in SHAP graphs without a defined SHAP value trend according to the variable's value. These were therefore excluded from Figure 4, which includ= es only the six most important variables.

&nb= sp;

&nb= sp;

&nb= sp;

&nb= sp;

&nb= sp;

&nb= sp;

&nb= sp;

&nb= sp;

&nb= sp;

Figure 4

= SHAP results obtained from the staking ensemble

 

First, is noteworthy that much of the evaluation regarding economic performance is related to the perception of other relevant aspects of human life. Accordin= g to the SHAP analysis, “satisfaction with democracy” is the most significant factor, with individuals more content with their country's democracy tendin= g to also assess the economy more positively. This finding aligns with the historical context of the continent, where maintaining democracy in a natio= n is highly correlated with its economic situation (Bozzetto & Amador, 2022).

Following democracy, the assessment of the country's progress stands out, where individuals who perceive their country as more prosperous tend to evaluate = the economy more favorably. Generally, the evaluation of this progress is multifactorial, with studies confirming that indicators such as innovation = (Zhylinska et al., 20= 19), research and development (Khan, 2015)<= /span>, and education (Bah, 2023) are directly related to economic growth, which is closely linked to= a country's progress.

The third= most important characteristic according to the SHAP analysis is a specific result tied to just one nation. The graph in Figure 4 shows that Panamanian respondents are more likely to positively evaluate their country's economy, indicating that Panamanian citizens were more satisfied with their economy = than those in other Latin American countries. Although there are no direct studi= es on this relationship, the Inter-American Development Bank (IDB, 2008) has reported on the satisfaction ranking of Panamanian citizens regarding life, which is also an important variable for predicting economic satisfaction.

The fourt= h and sixth factors, respectively, are satisfaction with life and perception of personal financial improvement, highlighting a close relationship between personal life quality factors and national economic performance. A related study by Cahill et al. (2015)<= /w:Sdt> found that a worsening economic situation, leading to increased perceived risk of unemployment, causes greater job dissatisfaction, impacti= ng personal financial progression. Satisfaction with life in other regions of = the world is positively related to several factors that influence the economy, = such as income and wealth (D’Ambrosio et al., 2= 009), economic freedom (Graafland & Compen, 2012), and Gross Domestic Product (VeČerník & Mysíková, 2015).

The fifth characteristic identified by SHAP as important for the stacking model is the acceptance of authoritarian initiatives by the state if they solve societal problems. Individuals more favorable to this type of governance demonstrate= d a greater likelihood of being economically satisfied. Although this finding contrasts with the most significant factor (democracy), it was not consider= ed as confident as the other alternatives. The graph shows a large overlap of positive and negative values for both classes of the interest variable. Nevertheless, it suggests that the perception that an authoritarian regime = can solve societal problems remains strong in some Latin American countries due= to the historical instability of democratic regimes in the region.<= /span>

As seen f= rom their absence in both models, other characteristics of the respondents, suc= h as gender, age, religion, and race, did not significantly influence economic satisfaction according to the SHAP investigation. These absences may indica= te that, despite the clear cultural differences among individuals from various Latin American countries, economic satisfaction is defined by universal fac= tors that transcend community barriers. This conclusion is relevant as it sugges= ts that populations understand progress similarly, and sovereign states should follow a similar path to better serve their citizens with a more advanced economy.

Finally, = it was found that the stacking ensemble model achieved the best results among the models analyzed, especially when compared to the prediction made by individ= ual classifiers. This conclusion was based not only on the overall accuracy, wh= ich was lower than the other models but rather on the better balance between the classes of the variable of interest, thereby providing results more aligned with reality in assessing individuals satisfied and dissatisfied with their country's economic situation. This factor is crucial because, with only high accuracy, a model might favor instances of economic dissatisfaction simply because they are the majority of recorded cases on the continent.

Thus, the stacking model effectively combined classifiers with low accuracy for the minority variable, creating a new algorithm that better identified the actu= al satisfaction of individuals. On the other hand, the other ensemble models d= id not achieve satisfactory results, possibly due to data-related issues and t= he difficulty of predicting economic satisfaction when the proportion of outco= mes for the variable of interest indicates a significant rarity of such individ= uals in the surveyed population.

&nbs= p;

5 CONCLUS= ION

&nbs= p;

Based on = the results achieved by the interpretation model, this study identified several= key points relevant to the study of public perception of the economy. The strong association found between the evaluation of democracy and economic satisfac= tion is well-supported by existing literature, confirming the study’s success in reinforcing these findings, particularly in Latin America.

Furthermo= re, a significant distinction was observed between traditional classifiers and ensemble methods. Among the individual classifiers, Random Forest showed superior performance, providing high accuracy for the “satisfied” class with fewer samples, along with better balance among precision, and recall metric= s. This result is particularly relevant for future research involving classifi= ers for similar variables.

Regarding ensemble methods, the stacking model achieved the best results, surpassing = the Random Forest classifier in general. The observed outcome might be specific= to the dataset and variables analyzed, or due to characteristics of the chosen classifiers. Further studies on the efficiency of these algorithms are recommended to clarify these aspects. It is important to include data from = past years, seeking to have a higher training set, especially for the “satisfied” class.

In conclu= sion, this work met its objectives by comparing classifiers and addressing issues related to public satisfaction with the economy in Latin America. Its contributions are valuable for academics, professionals, policymakers, and others interested in public economic perception studies, providing a substantial resource for the field of computational intelligence.

 =

6 ACKNOWL= EDGMENTS

&nbs= p;

The autho= rs wish to thank the Universidade Tecnológica Federal do Paraná for the Scientific Initiation scholarship awarded to the second author of this work, through Edital 02/2023 PROPPG – PIBIC, Cycle 2023-2024.

REFERENCES

&nbs= p;

Abdelka= der, H. E., Gad, A. G., Abohany, A. A., & Sorour, S. E. (2022). An<= /o:p>

Efficie= nt Data Mining Technique for Assessing Satisfaction Level With

Online Learning for Higher Education Students During the COVID-19. IEEE

Access,= 10, 6286–6303. = https://doi.org/10.1109/ACCESS.2022.3143035

&n= bsp;

Amin, M. N= ., Ahmad, W., Khan, K., Nazar, S., Arab, A. M. A., & Deifalla, A.

F. (202= 3). Evaluating the relevance of eggshell and glass powder for

cement-= based materials using machine learning and SHapley Additive

exPlana= tions (SHAP) analysis. Case Studies in Construction Materials, 19,

e02278. https://doi.org/10.1016/j.cscm.2= 023.e02278

 

Ariza, V. M. P., & Santos, = B. S. dos. (2023). Classificação da percepção de

servidores públicos federais em relação a atos de corrupção utilizando

algorit= mos de aprendizado de máquina. Brazil= ian Journal of Production

Enginee= ring, 9(4), 166–178. https://doi.org/10.47456/bjpe.v9i4.42073<= /a>

&n= bsp;

Bozzetto, M., & Amador, R. (2022). Experiências Institucionais e Confiança

na Democracia: Correlações entre as Instabilidades na América Latina.

Congreso Latinoamericano y Caribeño de Ciencias Sociales. “Democracia,

Justicia e Igualdad,” 282–306.<= o:p>

 

Cahill,= K. E., McNamara, T. K., Pitt-Catsouphes, M., & Valcour, M. (2015).

Linking shifts in the national economy with changes in job satisfaction,

employee engagement and work–life balance. Journal of Behavioral and

Experim= ental Economics, 56, 40–54.

https://doi.org/10.1016/j.socec.2015.03.002

&n= bsp;

Chamorro-A= talaya, O., Arce-Santillan, D., Arévalo-Tuesta, J. A., Rodas

Camacho, L., Dávila-Laguna, R. F., Alejos-Ipanaque, R., & Moreno-Chinchay,=

L. R. (2022). Supervised learning using support vector machine applied to

sentime= nt analysis of teacher performance satisfaction. Indonesian Journal

of Electrical Engineering and Computer Science, 28(1), 516.=

https://doi.org/10.11591/ijeecs.v28.i1.pp516-524=

&n= bsp;

Da Silva, A. O., Raminelli, D. = G. de T. L., Dos Santos, B. S., & Lima, R.

H. P. (2023). Classificação = das percepções de stakeholders sobre o futuro

do Brasil utilizando aprendizad= o de máquina. AtoZ: Novas Práticas Em

Informação e Conhecimento, 12, = 1. https://doi.org/10.5380/atoz.v12i0.84075

&n= bsp;

D’Ambro= sio, C., Frick, J. R., & Jäntti, M. (2009). Satisfaction with Life<= /o:p>

and Economic Well-Being: Evidence from Germany. Schmollers Jahrbuch,

129(2), 283–295. https://doi.org/10.3790/schm.129.2.283

&n= bsp;

Géron, = A. (2019). Hands-on: Machine Learning with Scikit-Learn, Keras &

Tensorf= low (2nd ed.). O’Reilly Media.

&n= bsp;

Graafla= nd, J., & Compen, B. (2012). Economic Freedom and Life Satisfaction:

A Cross Country Analysis. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.2057751

 = ;

Han, J., P= ei, J., & Tong, H. (2022). Data Mining: Concep= ts and

Techniq= ues(4th ed., Vol. 1). Morgan Kaufmann.

&n= bsp;

Inter-A= merican Development Bank. (2008). Idb | faster economic growth hurts=

life satisfaction in latin america and the caribbean.

https://www.iadb.org/en/news/faster-economic-gro= wth-hurts lifesatisfactionlatin-america-and-caribbean

&n= bsp;

Jafarza= deh, H., Mahdianpari, M., Gill, E., Mohammadimanesh, F., &

Homayou= ni, S. (2021). Bagging and Boosting Ensemble Classifiers for=

Classif= ication of Multispectral, Hyperspectral and PolSAR Data:

Compara= tive Evaluation. Remote Sensing, 13(21), 4405.

https:/= /doi.org/10.3390/rs13214405

&n= bsp;

Jiang, W., Chen, Z., Xiang, Y., Shao, D., Ma, L., & Zhang, J. (2019). SSEM:

A Novel Self-Adaptive Stacking Ensemble Model for Classification. IEEE

Access,= 7, 120337–120349. https://doi.org/10.1109/ACCESS.2019.2933262

&n= bsp;

Joolfoo= , K. M. B. A., Jugurnauth, R. A., & Joolfoo, M. B. A. (2022).

Applica= tion of Machine Learning in Predicting Customer Satisfaction of

Telecom Service Providers. 2022 4= th International Conference on Emerging

Trends = in Electrical, Electronic and Communications Engineering (ELECOM),=

1–10. https://doi.org= /10.1109/ELECOM54934.2022.9965212

 

Kadkhodaei, H. R., Moghadam, A.= M. E., & Dehghan, M. (2020). HBoost:

heterog= eneous ensemble classifier based on the Boosting method and entropy

measure= ment. Expert Systems with Applications, 157, 113482.

https://doi.org/10.1016/j.eswa.2020.113482

&n= bsp;

Kalita,= J. (2022). Machine Learning. Chapman and Hall/CRC.

https://doi.org/10.1201/9781003002611=

&n= bsp;

Khan, J. (2015). The Role of Research and Development in Economic Growth.

MPRA.

&n= bsp;

Kowalsk= i, R. (2017). Patients’ written reviews as a resource for public

healthc= are management in England. Proced= ia Computer Science, 113, 545–550.

https://doi.org/https://doi.org/10.1016/j.procs.= 2017.08.275

&n= bsp;

Lan, H., Wang, S., & Zhang, W. (2024). Predicting types of human-related

maritime accidents with explanations using selective ensemble learning and

SHAP method. Heliyo= n, 10(9), e30046.

https://doi.org/10.1016/j.heliyon.2024.e30046

&n= bsp;

Langan,= A. M., & Harris, W. E. (2024). Metrics of student dissatisfaction=

and disagreement: longitudinal explorations of a national survey

instrum= ent. Higher Education, 87(2), 249–269.

https://doi.org/10.1007/s10734-023-01004-0

&n= bsp;

Li, Q., Jing, R., & Xihua Zhu. (2024). Determinants of travel satisfaction<= o:p>

for commercial airlines: A data mining approach. Engineering Applications

of Artificial Intelligence, 133, 108597.

https://doi.org/10.1016/j.engappai.2024.108597

&n= bsp;

Liang, = W., & Jia, C. (2023). Application of improved neighbor propagation=

algorit= hm in international communication and cooperation to promote

interna= tionalization of higher education. Comput= er Applications in

Enginee= ring Education, 31(3), 696–709. https://doi.org/10.1002/cae.22578

&n= bsp;

Martínez-N= avalón, J.-G., Gelashvili, V., & Gómez-Ortega, A. (2021).

Evaluat= ion of User Satisfaction and Trust of Review Platforms: Analysis of<= /p>

the Imp= act of Privacy and E-WOM in the Case of TripAdvisor. Frontiers in

Psychol= ogy, 12. https://doi.org/10.3389/fpsyg.2021.750527

&n= bsp;

Naem, A. A., Ghali, N. I., & Saleh, A. A. (2018). Antlion optimization and

boosting classifier for spam email detection. Future Computing and

Informa= tics Journal, 3(2), 436–442.

https:/= /doi.org/10.1016/j.fcij.2018.11.006

&n= bsp;

Nipa, N= ., Riyad, M. H., Satu, S., Walliullah, Howlader, K. C., & Moni, M.

A. (202= 4). Clinically adaptable machine learning model to identify early

appreci= able features of diabetes. Intell= igent Medicine, 4(1), 22–32.

https:/= /doi.org/10.1016/j.imed.2023.01.003

&n= bsp;

Noviant= oro, T., & Huang, J.-P. (2022). Investigating airline passenger

satisfa= ction: Data mining method. Research in Transportation Business &

Managem= ent, 43, 100726. https://doi.org/10.1016/j.rtbm.2021.100726

&n= bsp;

Ogutu, = R. V. A., Rimiru, R. M., & Otieno, C. (2022). Target Sentiment

Analysis Ensemble for Product Review Classification. Journal of Information

Technol= ogy Research, 15(1), 1–13. https://doi.org/10.4018/JITR.299382

&n= bsp;

Pecorar= i, N., & Cuesta, J. (2023). Citizen Participation and Political

Trust in Latin America and the Caribbean: A Machine Learning Approach.

Policy Research Wrking Papers, 10335.

&n= bsp;

Polce, = E. M., Kunze, K. N., Fu, M. C., Garrigues, G. E., Forsythe, B.,

Nichols= on, G. P., Cole, B. J., & Verma, N. N. (2021). Development of

supervi= sed machine learning algorithms for prediction of satisfaction at 2=

years following total shoulder arthroplasty. Journal of Shoulder and Elbow

Surgery. https://doi.org/10.1016/j.jse.2020.09.007

&n= bsp;

Rosa, D. M. de S., Dos Santos, = B. S., & Lima, R. H. P. (2023). Predicting

satisfa= ction with democracy in Brazil considering data form an opinion

survey. Revista Gestão Da Produção Operações e Sistemas, 18.

https://do= i.org/10.15675/gepros.2965

 = ;

Sabarmathi, G., & Chinnaiyan, R. (2019). Reliable Machine Learning Approach

to Pred= ict Patient Satisfaction for Optimal Decision Making and Quality

Health Care. 2019 International Conference on Communication and Electronics

Systems (ICCES), 1489–1493. https://doi.org/10.1109/ICCES45898.2019.9002593

&n= bsp;

Sagi, O= ., & Rokach, L. (2018). Ensemble learning: A survey. WIREs Data

Mining = and Knowledge Discovery, 8(4). https://doi.org/10.1002/widm.1249

&n= bsp;

Tauil, Y. B., Santos, B. S. dos, & Lima, R. H. P. (2024). Machine learning

techniq= ues in classifying satisfaction with the economy of Latin American<= /span>

Citizens.<= /span> Observatorio de La Economía Latinoamericana, 22(5), e4912.

https://do= i.org/10.55905/oelv22n5-199

 = ;

Van Ryzin,= G. G. (2004). The Measurement of Overall Citizen Satisfaction.

Public Performance & Management Review, 27(3), 9–28.

http://www.jstor.org/stable/3381143

&n= bsp;

VeČ= ;erník, J., & Mysíková, M. (2015). GDP and life satisfaction in European

countri= es – focus on transition. Post-Communist Economies, 27(2), 170–187.

https:/= /doi.org/10.1080/14631377.2015.1026687

&n= bsp;

Veenhov= en, R. (1996). Developments in satisfaction-research. Social=

Indicat= ors Research, 37(1), 1–46. https://doi.org/10.1007/BF00300268

&n= bsp;

Vishwar= upe, V., Joshi, P. M., Mathias, N., Maheshwari, S., Mhaisalkar, S.,<= /span>

& Pawar, V. (2022). Explainable AI and Interpretable Machine Learning: A

Case St= udy in Perspective. Procedia Computer Science, 204, 869–876.=

https:/= /doi.org/10.1016/j.procs.2022.08.105

&n= bsp;

Yadav, = V., Dubey, A. K., Singh, H. P., Dubey, G., & Suryani, E. (2022).

Process Mining Techniques for Pattern Recognition. CRC Press.

https:/= /doi.org/10.1201/9781003169550

&n= bsp;

Zaghlou= l, M., Barakat, S., & Rezk, A. (2024). Predicting E-commerce

customer satisfaction: Traditi= onal machine learning vs. deep learning

approac= hes. Journal of Retailing and Consumer Services, 79, 103865.<= /p>

https:/= /doi.org/10.1016/j.jretconser.2024.103865

&n= bsp;

Zhang, = S., Chen, J. Y., Pang, H. N., Lo, N. N., Yeo, S. J., & Liow, M. H.

L. (202= 1). Development and internal validation of machine learning

algorit= hms to predict patient satisfaction after total hip arthroplasty.

Arthrop= lasty, 3(1), 33. https://doi.org/10.1186/s42836-021-00087-3

&n= bsp;

Zheng, = X., Xie, Y., Yang, X., Amin, M. N., Nazar, S., Khan, S. A., Althoey,

F., &am= p; Deifalla, A. F. (2023). A data-driven approach to predict the

compres= sive strength of alkali-activated materials and correlation of

influen= cing parameters using SHapley Additive exPlanations (SHAP) analysis.=

Journal= of Materials Research and Technology, 25, 4074–4093.

https:/= /doi.org/10.1016/j.jmrt.2023.06.207

&n= bsp;

Zhylins= ka, O., Chernyak, O., & Bazhenova, O. (2019). The role of

innovat= ions in driving economic growth: case of advanced economies.

Globali= zation and Business, 4(7), 11–15.

https:/= /doi.org/10.35945/gb.2019.07.001

&n= bsp;

Žižka, = J., Dařena, F., & Svoboda, A. (2019). Text mining with machine

learnin= g: Principles and Techniques (1st ed.). CRCPress.

&n= bsp;

Zou, Z., Wang, L., Chen, J., Long, T., Wu, Q., & Zhou, M. (2022). Research

on pean= ut variety classification based on hyperspectral image. Food Science=

and Technology, 42. https://doi.org/10.1590/fst.18522

 

------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/plchdr.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"
Clique ou toque aqui para inserir o texto.
Clique ou toque aqui para inserir o texto.
------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAABGcAAAPiCAMAAADl00C/AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAMAUExURf///wAAAK2trQgICPf3997e3oyMjGNaY+bv7xkZGTo6OtbO1ggQEL21vebm 3q21tXuEe5ycnDpCQpSUlHt7eyEhISkpITEpKc7OzkJKSlJKSsW9xVJaUqWcpWtrY2trc0JzexBz exlrtYS95hnmOhmtOoTvtZS1OhnmEBmtEJS1EBnmYxmtY5S1Y71r3qVzGYRzGRlr5kprtVrmOlqt OhmctUoZOta1OhnvtVrmEFqtENa1EBnFtVrmY1qtY9a1Y4Tv5pTmOpTmEJTmY72c3hnmhKVzWhmt hNaEGZS1hIRzWtZjGd5r3kpr5kIQaxAQa9bmOhmc5hnv5r3m70qctUrvtb3mrdbmEBnF5krFtdbm YxBzQlpzEBBzEL0Q5r0Qc3MQ5nMQc70Qrb0QOnMQrXMQOoSU74Rr74SUxYRrxVrmhNaEWlqthN7m tda1hNZjWvdajJTmhIRzpfdaKfcZjPcZKfecjPecKUrv5t6c3kqc5s6UpRA6QkIQnBAQnEIQ7xAQ 70JCaxBCa0rF5s5rpUIQxRAQxb1C5r1Cc3NC5nNCc71Crb1COnNCrXNCOtbmhPfejDFzQvfeKVpz MTFzEN4Q5t4Qc5QQ5pQQc94Qrd4QOpQQrZQQOpS9tUIQCHO9td5zhLVzhEJC70JCnBBCnBBC70JC xRBCxdYQCHMQCKUQCN5C5t5Cc5RC5pRCc95Crd5COpRCrZRCOggQOkJCCNZCCN693nNCCKVCCBA6 CPfF3vdS3veM3vcZ3lpzUta9rSkQOrW95vf/e73mzhA6IZRzhIRjhGuEhFJKMQApCGtae/fv1nuc pc6tpTE6QhkACObW92t7YzpKKWtrhN7v1t7v7629pUo6KUo6Sub3997W7+b35jFCKYSMe729pSkI IebW3ilCIYR7jGtaUrW9xRkQCK29tQgZCPfm93uMjLXOzoSEjObO1hkZCJSUhJycpWtaYwgAEDpK QggQAObv3gAAEDo6Ka2tnN7O3oyEewgAAPf//62ttb3FvQgIAAAAAOaI2nMAAAEAdFJOU/////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////wBT9wclAAAACXBIWXMAACHVAAAh1QEEnLSdAACvtElEQVR4 Xu2da0/cSNOGpy1sjLGl9cZebDDm//+TfFoRKU9INpsEheXRPO8HVghy0OwivXdVlw9zggGGGY+n ruzi9qnd9rhuV5fb3QNFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRF WQqxAbnM2DlHZjKaCWVmEPCcL3OKoiiLkkM7QgiInfPsnBWa2IxCmstoxjcyt8/rFEWZwN/PWo9h P2vPuZkrKWJs1TbgmPAck8CUNAcxwdWAG0NXATOkN571aPatz1M2ro+iKA3/XJDDn1ZyUtBcIjNX NGMimbNViK1Smtx4NDm3YlKagiaFucLf2AQ0M2DtqfhpboaSVBSlxk9NWJYHVWShwNzujXnFMyfG FCVqDlZoHJpLt+uB7bE7AxfmkiahrRUdm99p2chWn8Z0JhHxURSlTWzSD5gU9lHtcp0Af0/tDMUe UHegVbAyMqy0DoNuEaFJ7YTFOLKqY4EMVx6el8AZ3MKroygPEphjmrjmC00ObZWpMJ/w1xPfxT6x HWtrzvY9sf1LcelCw5WiyF4JBsrCoRsAf6/1ZkpRlAYn5cexY/ZoEpqfdo7ExL3kVymiM4WVIL95 fm8JqFnaKE3jz9Q6A2+mkd3MwWwV2lIUZRKoB9vLaMqSyLrCHUwOzN80d3qzZTrjhsbENnk9eXWC SQcmHovWKIrSAjJjm4HIE/tdS2eqp/mBrWANZZNtgRrjWbeOLsURTWIRF3J0Jt2XoNIkRVHGcWFL 9p2SmYpA4GluAxAH1oJub+wmW4LTbuP7yTp9gflBE7pqU1HfQAPBijKTqJYZqMotTSTmi0c2ZEYe 2bnVGfgzvMl24BnznWT11GrNiBTGM9c0R44O1ZGGXFHaLWiZj3rTFl0dRVkc2Eb9yE6t4Hj2Lfcg GxlpJUJNQ7i2kJkRz24F/AUTY1/tkyIDukZU1RQgNMM9SWu1SVFmkRgTUJyXia0jI3ITjUxYxSao mkCblfV73C2g0Rlp5hsFxryu3sJVsOyU9B1lWmgUWFGm8asGINEdz49QTcIyVhtUGgJydFz7jC5o 7sqYP3hOURRlQSZrBhTcRJoey+M1AxByWisGiqI8jkmdGbjlt5uvHK4ZygogUWLv0mjFQFEURVEU RVEURVEURVEURVEURVEURVEURVG2Et933SyL7qIo+vyv4zjRO6TujrLMdf3q+zBFUZRFuc2i2Dsp zoIgTdNL2xD6QUZhiK0PgrwovTjKuAdzRVGUNq7jFWkahiPRjSUQXqZB4UXaiFpRKoa+m92hQhDH 8ZXneQn+v0L6hxPdZa7f396toiRfRFrgrAT5YVEUu2V5UibJSVle7BZFngeLeTyj3JPvNxRlC9jZ GX70952rkyJYsEYwRRgUyVWU+cOPg03VH1yEozepnE+b0Sg0aY6qz9hQnI/BRaWryL/cfLuRLMdI k20b1VPZIiiMSRUDuduXyQFVDdzbjbGeoZslE9eBYiu/l3Hd287yGP4VlzM8noOv2dtt6gBV6Tmo DDne4Xx5CcNLVAhQJTjLi6I8odoSV5csNJckZYn6wfuAo6I8Wv0cUggOqlhy5E7iHv0ydi3CIHgR eZlBRoIzdvEC70hdG2XD8Y+cJJ8WBTy57SsR5+jJkuC7kRN7ZZEHBzNU5zJPnC7WDfzoTau0qBs5 6wjQusdJ3pK6MIlUa5TNxJ1WmJC0BdIiWywTiA40ZzLYExaJ0yEL8q+oZ01L/uZ43a+AXDg3UhqU 51ilRtkwjiYkJoC8rMi7oCpay3xAmH9aTaXkAZyqVOF6nJjZuMdl9VO91vFYlI3BTQ7kvgWj4lW0 lmAJalVeLoUgAm/Nj+tErLnoYBXl/LNcqi/aI6qyCbhF/R71+s3624YN3ais26WEF+uz8COrMgUP Hd5JsoJL2AwuoSgd5Q3fqiDtUlRk4F/VQxtdyaIV85qO3XkTtkNDbdGYNcomUlVTJsd77gQfEild uYYWI3RlRt2rLk3D40uo0CidZeeKblFz2eUKvoRI3snsynBwUE/SXYfkWKtOSkcZcmuMvOvPbJdf +ay6mHBnNie+CqFRh0bpKCQzPPZ11/FJaezI3Svj0phNqDRZImNHAlWUzhHDeDflQ2Aq65GkVwOk bSM0mPlzkwqrbBewpM2p1ENoVlszIBcq34wup7hieSgzitIt9japZuAYE0hyNZDtGrPG1juLcmrb 0Kg/o3ST76YaG7v7+OGqn9hV++h8XxZ0kzurh+rPKF2FwsA33baiiozaB682EAz79aX5TtGdD5vG caX1k+eqP6N0FfskTLsfg2CVWfUTG1dnOBiUfGTQuXaMlQhy0aAz6s8o3QT+zBe6T8NOfW8wiX/M xoTCrtyf+UjTqKqYmDDpSE9cvltrjAk4lK/+jNJZYECD2La2DTrU50GLoRtzU0KTRit/YuPAkhrE tdTAnL2nd/L1fOiD9qYwYV71CaH+jNJZrCXF3+WuzZ1uxWoyp/r2KoA5ZeuIz0gSZGW7N67rIPkR uav85mrHjY7L6noQYVC2fi71Z5TOQv4MsV/3mWSKFfV4+wDDrOmGJvTY1Vr5ExtXZ0JI3LhoddID 9vLkyvnrRd0b6ufUe5NfyhEtQRmfynpB/Rmls8CfqUyk3Y1/midrrEVRx6FNWQKvemivw5/h+MwE mTPe7x8xCoO8SDxnSUNJDm8ziEtS5DNGrwlm/zbqzyidpfJnLOdRWXf4Ai5/L7yjWYb2UviRN25Y 6Vg/2yt/YsN1mVsxgpcRv3k/c5AlHknyLN8tE+qvPbv9ILvMxz+HrMReUhb5++/pnEEhwjw5vpvv OUGF1Z9RuknLnxF8t46JWK7Dg/xN/KJjePhRXOaTgx8UU0/trvgzbWgczjgpxis1s7m5HoX0j7kO KX3zbYHBLMm5XGDAGfVnlM4y7s80+I5tyT7OKDwokng5vXoO3c9ecpjOGpA6vJjdFW8H4jP3MPT9 IyjOw8N0jvDvQcKz3STO/EeMGKzxGaWzwJ+57072nYv7zCZMKSbxgzos3xnc/5+fRcfeSZGn99lY WN7bcX8X/Zl7+CN7F38ti6AJNc0nDYrylzh6ztAS6s8onWWePzOBi3oNnP0FnsOP5iYMvywYdV75 E/sBFe4W++rPKF1lOj5zP6gaeGVOY9jeM4LtQ4R7l2kQ5DTy3KMOvmH+zIpRf0bpLAv6M3NoXpMc 5hAfC423zYNuQ0ssPPr2Cb18ibLnDNjf7fjMutH4jNJZHuvPrBX1Z+5D/RmlszzPn1kxK39i39d+ pnNo+xmls6g/cx/qzyjKMlB/5j40PqMoy2Cj3tyqP3Mf6s8onUX9mfvYNBVWf0bpJhqfuQ/1ZxRl Gag/cx8an1GUZaD+zH2oP6Moy0D9mfvQ9jOKsgzUn7kP9WcUZRmoP3MfGxWf+an+jNJV1J+5D/Vn FGUZqD9zH9p+RlGWgfoz96H+jKIsA/Vn7qOOz9z+G5iUUwTKYUw6swdAh/vxqlZFNJfbLHxKE4/s XZnzMDyk1rAZjIJXASqKDLe18qujKIui/sx9iD9jJaLWGcx+od7GZwhGQj394poe8RzKm2LDgGew F/X8lSY8tzCe5BjRTEpp5GFG1Y9GQ1M0OqP+jNJNGn/GP3JaowzcRs68USn9yLlrohaTG0aO8wTh 8h3nsyQH5+0cdzKn6Tp45U9saT/jhpd5LnIBAla7wxlWjQJS0T2rSf5342ESmh889yTPETmSwsRm j+YKq21lfWgoWa13mxufcR2lR8ivOkbtz1zRHWuuOM1PUWO+z/Tw8cg25qbK7BXNtaoQsAtzJ+lH gEy/iDxxQVKZybgT4vxW5tYYn3Eaf8ZeMpzp1MiTnohRyLaf2XM6MiEtGz5JZ+I6x5aaG1Nd/tCU PfBn+G5T+oL8qmNU/gwMvfRwz9IDmKMMpZc2T/AWcNQTrxA/3m4YmO88A/yWH/8IzrGXmLHkaOcg LLmXoOZhR3SEJa0pPkMGX+lM5ZiktbXXRDd87iJBiaiiuSa5wW7ncTLL2YvpxzmCs1JfhIbsmv08 f9SqpSF7STkmRLayZnPbz3hPUWClmzgzf0zxZ3Dr/oVJJhV/KyOpiWlmDFg+3dZ0g9NsyLaWijzx 6qfoDJkYVwwGfpUjHzo3F/g7vBSL7ow/Y70Vs2vnp4DY0m4Xclns9jt0acD0NeVIb8YX4f0MGSKw rtGZsn4AhOYz3KSN92di1Zn+MFtnxJ+JzRnPWvdcbCqyDv8YpbV0yAE96B17x2eVDQ73TJk+Xmdg IZUZRzZHOfSl4SH8C2ODp9hutU9sqHDjz9TeHYdqcAXmmPUQMvOVElWxrUbA8Qh/RPAbp7wglhHP P2hryTiHcPIkCUJxJuEwHQz+qfeC8Kk/o6ybuf4MWZKfkjtDJkFWUNi7Gqa0Q9M2/s0pTWDxFDOp awZyr3+GPMzSGY7pOD5EbebrrdSUkCr2HEoxKOtYBdYjqByrdfozTb2JTjfkYTVr5RkDO9lS7o75 M4OC52LxBMeB0EC35gk0hKslabgKNgHl8umP+jNKd7jXnxFSG0p4bw1keFM/zSeghhw0PbQb1jEC qm+NRSwFmAbZxAX+tp7LFag31C5RXtsmFQRrvAHkSUxz5f4Mrs50fAZAnY2XzzqXgX9Zn+PumD8j +KOZFxVCw5d+FlCgtrzWb5suKH/UmyT3lV+dpaH+TI+4Nz5jgVm9oemfYuzhLOcDfMRe7GEUtSrw vc7vc2fXm0pjLk7Dmc/ywQ2cKOgMm1+TI7/MYUeofmKv059pxWcsEIxZJ0oKJMnYCgKUoH3WIXuC k1xjv9kta3awamzNnlSboCtCPb+h/ozqTI940J/xoR4Udq2dCv9mut5EnOKRbW1JVEGeqezH78yJ z7BiWC2Z4BVZcCRmLB6S+DMQlpAaqR3wstU/sVv9z7TiMwyu1oxqEwr8TYInVNwbOomrsQ1/Nlk2 QLNCOHuzhIbUZCyiU1eb2Elk7H6YV39GWTcP+TP+F2NObFKMfTjbn3Hhx1sxgJdib3GrMzasMy8O /MZYs5vEHqWqNzWxU3rqp/yE9kM5Hixpbf7McePPZPvQxcvm6wIUWs7ZgS5SuX07ixqOT4WmOf/L m1M4J24wQwxQ14KjByV+M6XrqDnycXzbwhg0b5ssGp9RusQD/kx207xyleZmrhnx7DhHuPOrR7bU DFx+O3QqT9em4tCGvfxZAY1PvAtge5Icfc4RDhUrkycGtHJ/BleHnA96t2ShM4P3RshnS0Qo5YND V8HlPrXfI/FZ8/kTNt7dwodMmXCfqpbGtpZpwBWoqFStqjYx1qexv9vKr87SUH+mR8z1Z9heomtj 25gRXAGq/JMJfoggMJAWSr/hG/yW73lihs7ACA48uCPTdQYJwRgz4ue2zfGCHZfKoboSO16XP0Ox XQs7W3FqvhQtY8e5ScvgWo/Ex/CpjaHUevz/nYVmlE9fG3oPbkYZ68zUS+/6yLW6lFVbaWJCZ+xl 2jjUn+kR9/ozV8YE9MLat7WW0hzc4iljrZzAZjZ6CWPgB3lmv1B4Y9Jz+vbgD55jZtabYA+odsTz LaFugoNqgVsf+pA/aTiuzG/lT+xKhe/HW7H6zQHXWP0ZZd3cG59pOhywj00sBs3DNRRT2vnGKwhu R0MCBPhDQcI+X6fcIM7OoXYgzSdUbajmID7A0OZoD02haUIyXIc/MzMSPk7Q6PE62Vx/RnWmR9zn zzQBiEpbnNSUjZMCA7cJn5qnWaTydJyaojEzihG39cniU5UA7j5VkZpKVwv+wicU1wHVkubQWW7C xEraGvwZXJ2HJcQfzQo7rZ6VX52loTrTI+71Zx4gmfnKdeWsw595uN40DDrhzmh8RukC98ZnHiDt xo2w8if2QfNeu/tofEbpAHP9mYef2P6oE+5MR/2ZrqD+jNIBnuHPDPlrhPWzjvjM5vgzGp9ROsBz 4jMdQf2Z+9hcf0Z1pkc8Jz7TEVb+xIYKa3zm5VGd6RHqzzyeXK/OKtD4TI9Qf+bxlDN67O0q1Aaq +kBtw1B/pkfM9Wc2JwKx+if2tWk+Gu020QhFlfSmof5Mj5jrz2xOBCKa/cX3CwJlM2ZvVhPmbsHl rD/p3jTUn+kRs3WGPgWQZOdBtcn8K+lVMeQPKUZPGftuZfj82cbsTsQ2AtWZHjFbZ7grg42o1g9/ IVuSmRXi2U+60uitLOgWrmO/TQvrb1k3D9WZHjFHZ875Nj3u+msV+8y+XEsx45SODcqoWzUT98h+ 6A4VPJZFG4nGZ3rEHJ3hl7cgecJotatiGNFICSsPzjRkhXUaQBFnXdBkP7vKq2/nw/KnLN1Q1J/p EXN1ZhDZ53VYdvPNilPaziuDGf1nrY4oqbwaeA+556zPs3Gd5LCWPZMma70sS0H9mR4xX2fwvH4t d23Qsbs2enMgJSvWXzDfKRv7JrUpV+vb+Efxxa+N2qEEZdT1+u5CqD/TI+7TGdzDx/UNnB52Ilpz Hud157hBZ973UH1FCmX5dkl686KBm7dRXOYHbYkDebz/QdZvPKozPeJ+nQG+07KgMPDW50DcJWnY dNyXH3Xtoe27zkXT02lFGKZnu/87XpKLc3r3IymCL3sT8gJQv93UhjJzUJ3pEQ/qDOHX71YsYblS T8J3LsbtKnA63ChkmCXjvs04o/T3okyunMg9fega+n4WOa+SMn8/fvnH+XbmuV2T3KWg8ZkesZDO MJl9u9MmKJ19f7izQKfcj2U48If+flxOGViYbMxTO0ryy2+NA7Zs0sLbjG8fnsp6/Bkfd96CN7SP 23QZ+MNFGt/7S3+2rvLptLjOMK53lk777FCcIjm+++nenvv+zhOvx9D3b13XjeLkMJBc24Rf8qsN fWz7f8VJ/j3dC8PrWdduMUZheBmmB0XSjTfoK2CZ/gxuLDdb5AnFTY9mjvc+xVDGnX8udE9MHtDP XHffbfupy/+0Oaj7+F8Bj9QZi++U+cGMGIFwkwb5YZl48bETRdFdRuxn+J338S/Df8TR3VEUOc6V d1Ie5gfzKwYhMks63cD/kfg/76LYS06KIj/7PQjSIBXgoghYSOTFxcn/ro6ju37Wix5iif5MZO+l BVq4/wzywOzJzP18zPNXknwW8dmUztQDiKR1OLT8/bWklkWZ23HzV8KTdKYic7yymO3gPBfIS1Gu sz3KynFnjaS3zSxRZz4mBcXMFvs+JTN7Kw7/hdXIpTXxnvlttyjgxPSkbvwsnanx3SMnTsoix8PZ 6sTjGaVpnl+U/4udzF3x79wJwuWZVT9Ybnxm18BoF1Jy6IykVoUM5Nzm0A4T3R79daNZjs6MM/RR Gb5DpSiOr7z/JUlZFtDm4pCeKfgLdssySTwvjmPnXRShLrqVFYMx/L48uZbGct83GfOzsP0UOfSl PW7FVEY3LXM45GlSB3+zKj5DfjqSOzTl4ct/wUM0LFL+0MV+Q0Yp5hgZjvLDGR5TVASoBdnx1HFo Q4f+Lh+e+UVowvxohs4UMhx9zp/V2HpfvdFP+uAlLcN9nuPPX/IoL3izwPa2YF0ylzc8EX2NobRh nvPAYhM5/kNvXGwZ/8ZGDrasRoBfDi+hM/PJjL00yhRnK/0hNoGl+jNXJqTueBoTI9iUaVRUou6t vfJnhn9i6QGm3+3aZnhWWkvG3OgM1coYmW8hKzg4NHFokh3LlM7kojPYA39tR0K8ANgOPwB/jG8L AtJBRoJj17Pg1flzXtAOCx3srk4RVbnoGjRlXGaHDavVmQHJrTKDf8xSYop9Yqn+TEpWE9hh3H0Y HiwMxsur9snasKzyJ5v4jGc9GwgMmVzMTo0Pu+aVZJEjSZ3bKhnsurLcBp+dddg+zbjVoSljzCQ4 EsnCZHwG9SY7OBrKxdN25Spk3XD5lEgWaOLn3G+iZ87wd3BkO1FMOZPblLfH6boQzaaMOC1J3Yam /IALYcfLxyGvPlYKtyxWrDPOxvbu9sIU5h9JKcIy/RlrNFAKmvGtFQ7HVCFt64zUofxLQxWcxKS0 IDYhy0Fabfiu7hIVpsm1jGRu3wHQFJnQMbE9ssrFh4JytQpiqfyZ28ra/VF9OawcDP46wF7/hFY7 kTM9wj2bZWRPNDUFKabLagmd4YKXJ/QXIEfR00IKgtLBPM/ltDZZZ3yzKylljPX1btFZlqkzdb2G TG1obtjAxLyrisc7mgGZuazazf1tzA6Jgg2n2HpTMwhr64lvozXFrIfosPrml7RKdAaHxqbVayYY /KP8mSPOzsodzuWUF1pEZ+6sVNrqVqWL9hoUVS7UKaSk0ypAHpBvBBluX57lsGKdwY+6OR0PrxBv mb9pT1iizsC8BVsx4Af2Dne271NsN6W2GZWbkrXef1/C3Mt6/igISWuonkI4tT8zGJwecnsy6xe0 IVtPU1pJcygI2TDUwx0Mb6YlpKbyZ6ApPG37M7g04SUyvMFebqsMYNyfwbz9JNBm7x6GNFd12u/f yHJUoETn+C2Xay4pjTKKu7MMVq0zvlw/ZYxwQ8dye0mWGJ/xxO5+2hgFW6g8sD2pDQUtf0beNwG4 LJAGq0ClFZHmVXPjzxzd8NOzqpq0Ca3ln4/5M6iysT9j3QhIyC0nWhyarzKtHN1ajHbsWBv+GeXM isUMKTOJz9yx+vipVcSAq1SOFaRoVJWx8WfYjSFSqv5Bhvmb/432ZwYX3yShNGjYagbL82fgs8hL Wg6JNv4MTP+1raA4s/0Z7MCvigljPstUfqzGnwlEDYJWrcoCHSBr9cvan6HZj5xHYms3Q1Ropiza +jNuYa5l1bD2Z3BY2g2VOgpD5ybnOVTdIBY2AnVb8OTIvo3HDuSgVGULqif9bR2fiY3hvhdLrjGd W38G58mT5bBynXGlsqu0SPU13DRL82fggdi6A0dibg7pb8kVGpgmbKz0knBEtR6X5EawLg9vJQKE VP7VO7lhdbF5EmTLUIo08TyI0tTzIjCXiQe7x5YH9h16SWrDta/UjE4+Jdy09XK8jlK/gw4pQ97e grJQGUvva2FfV59emrBMvOSSX3n537CKg0Ujl99dX3ylWVIYZIkyUhMgZNnK8QjrsEnhUdeQyJ4v T2KDQFUN8fmsXGcGQfUQUCqi+lmqNCzNn2FNoLoQ60y4S38TqzNwc3hh7h+wTaMqJHyROGLtzgyK 99SgBhZJktDSGcw5oW2FcyDx1BY+S4ZHhh3YYyXWysnDYkV4TQ1zWi4UsDthD+t6uCSCFhzgNpTI tVWBWxYGbMvHZqGkU8T5+qn09MhNJuLUdrjA243nWJ3OryRqXKbm8iyJ1etMVgW3lYo/x+8yhVnm +6b78KN7PqODJLRWupEz72t5/+jdnI7G3Gh+P6p+5jyp5Wr277uml3nqpujuj2pm/Gx+vosac5tf xsFg/1009dJriaxeZwapWtU47hL90x6xKp25l3TGKyTl8axBZ5xlxrH7QKE1yVkstT3wUyhDeo19 Xb0HVp7BGnRmEPK7N0Xw5RWmMs66/RmfIhRAnwJLYB060wmHuDskejlmsnZ/Rlke69CZQd0kUQF6 NWajj6MesRadKfUOaoiX2by7T6jO9Ii16MyAGw4pTN0+QxlHdaZHrEdn3ustVKFv3+ah8ZkesR6d 8ZfY0nDDCe3HJMoU6s/0iPXozCDVl4WWTN2Zeag/0yPWpDPn+kWPJVVjmof6Mz1iTTozMN8lsd24 qrdzUZ3pEevSmUhHPiACtaW5qM70iHXpzEC/TwO+dCKtzEDjMz1ibTpzpQFQarCobfTmov5Mj1ib zgy1h39cA22vOB/1Z3rE2nRmkOiz3DP/kZQyjfozPWJ9OvMfjU3oKAf3oTrTI9anM4N82+8jR9+5 3YfqTI9Yo87sb3vbkT39gvI+ND7TI9aoM4Pv2/3xQaZt9O5F/ZkesU6diaZHu9kmAu2P/V7Un+kR 69SZQbjNFQcd5eAB1J/pEWvVmXib2+od6ifr96M60yPWqjPb/PHB0HySlDIb1ZkesV6d2eKu/t+o FT2Axmd6xHp1ZrC9Hx/oKAcPof5Mj1izzhTbei+pET2I+jM9Ys06MzCeJLYMHeXgQVSKe8S6dSa4 lsR2se7LvgmozvSIdd/w9cgH53bScy5kGqoNPYjqTI9Y+4M1lFax23FT/W6riUfb3RJ6MTQ+0yPW rjOZyWiyJQ/4Q3u2OqzMAqg/0yPWHyjgjw8uzHbcVKUhT8bVYfIWQP2ZHrF+nYlheZ7ZEp1JjIEr s/U97yyE+jM9Yv06MzBFBpnZjpuKBDU/154EF0F1pkesUWd8175jwjN+a3QmpjMNbc/I/rkGg++D NFnpDfKrroHxG0kW9hvHnusN/w11ZJn78N2tIHAk0XPkV10HXF8SRrKs30RytoS2CFbIBnTAxJdH TI6QJf3GlZMFOnSTAg6NbeqgvCiBWB29htkCGp3Rm0sBdEOoQ7MCJAq8JfWmyoG71NCMQuR0N+jw OitAQqNb0im3PVl9ginMud4OK8NN6Vpvk86cyIyy7fzJ94N+7bYSfHIet0TT6a7Sjw4UgW4HoK8e V0NitqUbS9xU+vBSBPbkCQ3XrYZoWzoK3pb6obIAvqjM1kQNJvgkZ78aRvgHrnmm93y7uTY33/iM V4X8qkrXOJAfCOzIoq0iMeGquJTp1nAj05UxUp3pKI07s6UOzRYPq9Q/tBuXrkJtVNPMeNyE7FYW bhOqMz1CdaajuMYE2YBH/IDSbOMrJ9WZHqE601HyIKKJHVkoMT9psl2ozvQI1ZluMryz02oEs3d2 sk2ozvQI1Zlus60jJQLVmR6hOtNtVGeUPqA6021UZ5Q+oDrTbVRnlD6gOtNtVGeUPqDDk3Qb1Rml D6g/021UZ5Q+oDrTbVRnlD6gOtNtzCdJbB+qMz1C4zPdRv0ZpQ+oP9NtVGeUPqA6021UZ5Q+oDrT bVRnlD6g8Zluozqj9AH1Z7qN6ozSB1Rnuo3qjNIHVGe6jbafUfqAxme6jfozSh9Qf6bbqM4ofUB1 ptuozih9QHWm26jOKH1A4zPdRnVG6QPqz3Qb1RmlD6jOdBvVGaUPqM50G20/o/QBjc90G/VnlD6g /ky3UZ1R+oDqTLdRnVkufpE7knwOcZEnji8zT8I5zBfY/0NxmB/mrsy9PFk+82DJYX7RLq1HpXrU nak6021UZxqyMi2zgfdKZp+Ea5ZwRSNjkdknkRizgM44fJyFdCYysaSeAc4sk2QLH2XYkzTDpSpl ZiE0PtNtVGcqzkO+u4EseBr++bPcEMaYN+dulOcy+yR8/1xS97Fz6sPIZ5j+NJ55VnmEc3/W5fEj E7aXfzz1y8fpjPoz3UZ1RoAjEroD//1zdWYJuCaV1ArYgaot5M98MoWkXgDXXEqqQnWmV6jOCEbM CJ49nqy+67o0qZyToe+2HsRY6w+reazCptZUkTx9K34EZYE/jXszpO0k40k4jyoZmb23yGbGZmMb YgZzsFEs4oPZY/JqJM7fDinFy2ghTeqVba+i7c/gZKrjYuudf86ro/luYnLOws438ELJn/elwlTZ n9t1ch2xon1arQ0zs/eRLqSdI07aOtPKcfyC16jOdBttP2OB4y6pmwOYB1WfYjfF34iW2TBGYg2X FwNsB+wqicocUCrg5YNDJAuaT3gWFQEwor8XvKDFOW83suZOSQvPjpFx3S61G/oeb0V/R1Qk2B7N Uxg6o4Qtuj/itMR84CgFnDBXtJJp+TMxryrIpum8EpoL2MIpZZkwcHuoYMCngHO1RTThPq2kwItx eBHKbIvyhnfDjrZgcCJpxoR8fbj0zJtGZ+Ss5cC2jHJ2NRqf6Tbqz1gm3HSvCA2EIsjZu4EN/V5g do9MDsacFodYcUlzP7BRUcDM2RuKDougqvRk2MS8L4oRX+IPZ2aUYyUMq2ATbHEempDXsSIdF7n5 dlgUxfQvAxO7PKSDUUT2nzNjbI6miB0UEcVJUGyy1GFSFDdiiTFWBcirxFEKLArD4BCHaKK6jT+D pQGtIi1hXTygo30neY2KA+yOYlnVbFFih/zz4BSHOSjcQTTaw0mjWCwLVCDKFf9jLi6KS3NCy4Fj 0pwuF4erf9Jp5HTs0op5y5+BkKaHyMeWGMVC/peT4Xb1Z7qN6owlmLwQ5JrAZC9+ZfMmafC/cyTU sQ5LZvUkteJwUptPXPkz9KQnEzpiE0vM3n94Yg5pXRvkyyIFD8Iqg2Q9BTLkUCwsGkZ8YkOn8FNC Ms1rPhjOo3rOH5j/k1TBRfLDUeuN+6vmGLWLgsKRKfshbz8MzX/txMqQNzc+E/K1k9MVgkrHcB3D I0iYBJF3xb2ruTRYSzuHp5jibKSQtfBjFR84NyHVSGWDvNFJRnWm26jOWAIz8TobfkllNqH5wVN4 MlhE1h7D9P5rH9hw+B2k4h3ehG74yoAzc0MT7IW/1s8gs5p6a4M6gz1SIuv25+gMHuU2EZINVqrk mRs6dljpTCUmKRswccpKEps9cRWc5OQVym1nKCPxZ0TG6AxpieSYmjua3KMzDp9AUCmoG5+Uca0z gTmzZ2cpWn6jG5fJ36n5jCQOSZPB4KqS6cTs2kRhdZQEjyQKckMti4bjMqM603FUZyxT/kxaG6xf mbeYtg2LXMpzmaoZqBhUG4/5M2zKrDMwdWtt5bTOJJWBZtKIZJ4/k3LNBf++YIM/KqFwbeLGsDUG 5h1NOFV5NoPXKBO8FGuaNg4C/4HnQOXP4DzPbP5cKdmpdeYhf2YYjmJSCt7c5ZocECFIzb82YSlq f6YKc3ExsfcHu7S5UFaQhimqqcyldcs4BmZeizZWaHym26jOWJJJK6ofyINhXSEQp8TPnBJGElj3 wI8oAlJfx7Y/c00T1pmPxtjXUDN05mt1aNeGfObqTGXBBHK8sTm65pr2qv2ZyqzTRmdQhHNnZL0m iEgZZQ68BF4FWv5MDdn4pS1ylY83XeOriM0l9PaMkpAzE2dHcdr4M7UEE7tVBdNuGMW2duaaG3s1 a52p4zOts7aX5Tby6IKPZav+TMdRnbHg/qb4AIis1deGQvZnk9YGcmsIsBPYny/eS1T7PFP+DB7V +FtlV9VNWtxJxQDP+qreMltnTkxxenv69vStT295v4g8hXwY1CrEn6nsL5D6DpGaPLRvmKpWeajr 0ISo4zOw3T+Q9bnvnv/DJ8gn+rA/Qy+SvkouibyGq+MnjV/I1P7MrpzkQeXP2KM4sn/tz1Di9PYc pTq9RXlcqU7FTfkZ1ZluozojoDrBdzoUgw2m8WcoQEu2AhOlJzpslhbCy0EN5Vw0CJvQBMyJz2AD yv73GTqDQ/GLLNTHrK3N0xmYc6sVwlt+1QsDta7AJcnKELW4yqxb/gyVYXTDOopaFh3reKzeZA9b lbHi0tzSpMonNu9p4qdNtjVUlbTyKv4ayiE31oQ/U8dnCpatHWxIFT2cxojKhYLKZU+qDbGoeQdP P89fNE3qC25Rnek22n6mwgZaAO5/8sstbFRVSIPN38YHAEcLJG3Nqs6CHB+elGQQbPt1ltO1j9tL WUUmBrMSpjckUbGQSLjcrMSMrGJUzUqolE2pKh8Em4ofIVERKtb3VoZc/uo8aWNbXlsclo460xlu Da1j87cvqI25pEvhVAcDEJHhnqS56ZFsGNBJNGW3uUuSwBykRcAVb0o8Lncan+k26s/U3NE9H3Ij uCwQcvsayaVVqX0wR5+OYT43e/a5m0QlWUrAjkAkewXUXuUVTTPsCuhR7WCvMJgRnwEe5fietoIg 0Q6ENdwxhqj+mFGYFramk+0GpTuQ0MYVKlCpg71RzFKyoAIw2fs/pZkytaMxuU9FJfWzWwHOMUvp ZNIUmsSXAKdBW1iT9n+FpIUyM0ESVKpIceAwoRK8f9tcENamWGb4yAOX3nh7gwtcZB9b57TjjXWW mg35Ivt01tdy1oV7iLnwtb0CNerPdBvVmdVSVweWhj8RqdhOVGe6jerMSnG/jYVAlsHQRja2HNWZ bqM6syo4UFOHSZaFjXnIK/YtRuMz3UZ1ZlVw8768aqO7LGzrktdVa+StRf2ZbqM6o/QB1Zluozqj 9AHVmW6j7WeUPqDxmW6j/ozSB9Sf6TaqM0ofUJ3pNqozSh9Qnek2qjNKH9D4TLdRnVH6gPoz3UZ1 RukDqjPdRnVG6QOqM91G288ofUDjM91G/RmlD6g/021UZ5Q+oDrTbVRnlD6gOtNtVGeUPrCx8Rk7 GpjSE+RXbaM60yM21p+5MqXSF3LVmZ6zsTqjL8p6hKM603M2Vmc0sNQjVGf6zgbHZyShbD6qM31n Y92CV3oX9gfVmb6j8Rll/ajO9B2NzyjrR3Wm72h8Rlk/qjN9R+MzyvpRnek7Gp9R1o/qTN/R+Iyy flRn+o7GZ5T1ozrTdzQ+o6wf1Zm+o/EZZf2ozvQdjc8o60d1pu9ofEZZP6ozfUfjM8r6maMzkeXz f6PP/0bvov9Gjv7dyL+fo3JTzVX9mR4xR2eUHiG/6qah8ZkeMVNntgQTS0LpIurP9AjVGaWjaHym R6jOKB1F/ZkeoTqjdBSNz/QI1Rmlo6g/0yNUZ5SOovGZHqE6o3QU9Wd6hOqM0lE0PtMjVGeUjqL+ TI9QnVE6isZneoTqjNJR1J/pEaozSkfR+EyPUJ1ROor6Mz1CdUbpKBqf6RGqM0pHeTl/JqfeMjyZ mcQPTS7JuWAbE0iaCe7L8Rn8EWaSenk+0En4MlPj0pmZP2TO/3InqUeiOqN0lEfGZ0o2CKaQRfPg jeaqwqU5lNRcfmL/MZ25P8cGhzfck7mC58BcYftenYuL0yt9L0GS5CAYRLSfQ2pMSAY+zxjzZ2Tn H8U57TmUmRpb4rfNnCvJx6E6o3SUx/kzHw7YIJiHdAYUz/Q+nCltKBa5nXZtAcVWv9g5Y0I7PwVE 5JQTlYhiQ/KlTOizvkB22Der9IHFh0mnHJMFgO8iqXEaN+djusjFnYHqjNJRHh2fCa05eIuYwuGz dWbMnwGL5kjuSFNAeCDzFQGSQg7MYPC3MX9DRULoC+ZCw5WpvLp/U+T4i03CCaRy7acP1/1mkM0p jDHnkhocGXvwx6I6o3SUx8ZnYJX8VGed+cPzEjJNL/GiQewl8cB3vjqNFbX9mczxvOgfm3Y98Mqm fc/7upPFyEDgDT9ykuw5i8dzbG4nP/K8/5P0BLBl/CczrDO1DU8Rm5HNP7B5u+aSJqIzgTmmCZyY 8LjO0bP6B89kvAYUef9zMs/5cB57VcXnryuvkQw39hwfe+3wHFZFLcVpy0/wNIdGdUbpKI9uP0P+ TJbA7mB/XJ2IBjf4G8KuTWjjGOUH2bbxPmJeYa4dnuOQCXsN5FAZwwHelE3TRirMNcuOY0JyI1pB mbxJvqLDmnDm7VXC0wibTaEz/5HkNLVNB7JDsEt/L8f9mdyUUAJbfPFn6FpUIRWLLawZ0R/OC84R CKHFwLe1L5wsnXl0yXMnvIpoayEul63KPQ7VGaWjPNafGd7gGZ5CXHgG9hCy3JTuIKKO9cNjB5Pq Ydz4M//eHMaOU4q4+I7jWa8BabgJJnGcwFZCMpPzhvzM/4FVKc+VtA4c1rcTtCqnvRo1aYCuZINj 80Vm7/Vnzmv1gEiWje9R+zM/aAInxB0kJqU0bfknTfzRhD+TcaGgLSUuDM4Ufw8dB5eHyuhfQhTp 6rBbhFU4M9qe9wRtfwaHe8orJ9UZpaM8IT5DiGlSTDSA6XCAg9I0PQ+r33wqmpLWO2bmi3g9tzZi Cy1ovWSxSgbnRsRHhK1RLqziFDToJy9oE7PENLaKvBsbngAmXYkL+xvhod3UuhuAzyWhU6uL6Jn3 NAnErWm4oiUFqWKKTbE974wLgzIemgOawfFQGKziM8NpVFdkTAtDcyWpx6A6o3SUJ8RniHcySzZU uRRIWkvxrEW1/RmsLcKwDCu9gHRU751heGTZtRFjw7T8xhrxd6UPZeUi5UbCOrnY+DA0bzjR4kPK N11R+wrIe64/g1LXGuTamg3fsfY8AVV6cNYkBwdyLHg+YRiOqqpfg0dv6wuS3RBnk5hf7WKqdKEM tn0Mdt4ZfKqOGlQ+0pg/46cSm34cqjNKR3l0fOYS5hDUcjEYvEEFwKaiSjrqNyqNP8NyRHyWBVlt pKd266H1KyjMwxxhxqkEK6qOUSnXUEIhxKRT0eRRWS5sfDyQ0gIb70uSgYmz4H1px2fq4odcUUKl h4IwVWWugaPju6QR5M9IYNkWPzM3NvyLAw5xZWqupZDG3NoEkbYUenFUZ5SO8mh/5trGJPCEZ/vg eINtmVJ7Bs6kKgz+D2oA481m+TNv7Vsb68/AuaF4MDYkf6aKtzY6U8dn7tOZQxNepmF6WUeCkffc sGodCnEr98d6Q2PxmUBy/GZrOV4TVRlH/Jmv1p+pg9b0fh7CamdwmcbaO97YxeP+zKiuTj0G1Rml ozy1/QzqK/T4hcx4rlQgYECvaRUkSOyr9mcOxTAPzL88ZZ2RGCoMnd5iW53JZcNU/BmJnXDIg6hz TGZ4EwJysns55tKa7n3+DE7IZgmHw4qRdUPa7WdQxKpGyHrHYZhZsD/D9SbyZ5zKZ6ND4ILRKbED 6Deq09Cu28HnsafwOFRnlI7ySH8mi0fmh/PDcfiFyh0eyzAspC/hp1DlIox/QHoCSEjm/O0EpsBf yEdhDv2B73yhN0swe4feSoU/nBh7udg7xiY/oFg+Njz7gPV7tOHwHbJPYW+nb8w3cnKOHefA7Dox 5fj22pQU7/AzmmsTlSZ0qCoUIWcvw24/6BBOPMdyCxENFD+FZ3OOg7ooQmg+RZikpvwrKkzKR+Ec Xd/ZpXdFrVY9FRnyipBh4aJ6ibMJzQEOmqX8bi0xNzhdbmJ8nEGHciqj70bYwkdu0FSUUTItK//t cajOKB3lkfGZ+i0MuB3yJII5AW9wZ77ADgF7Gpxi8OR2bVT1DdV2jmxdy0JBDJCySFG09BtNTULH sY1xGLLQVo5khPt1oJZUrQUvI29BEjxh7PpJ4DtwZQ5Oi3BM8kuct0oKMbJbBFAE5oJ3b8OVOegM CojkxcCXzzRSjgBzqyGoCf0ZDPm8iZFvT97C1aXGI3wcqjNKR3mkP3MUe1fUmNfDZDB4hykM4+jq lUfNgink4lQNeyPZzuOmsedlaA4jrPVwOwxpFa/GztQ2+AqbxFiFeotf7pn8aPD3lRf7sQfXBTsG CT/lOcdXtBvlOPCvYKphnhzbtsM1DrJ+Rb4LDnaFRF0QKdgU8np6x3E/F6FJE8rdv3p15f2LCfZz kJHHrXpRRkrwxIurz6sb6FDOIJJtqNDHuRnlVaglQvaF63MeyCwPTRiU5MvZHOnUYj5TOHvj2rkg qjNKR1li/zP1+6YNAw5Nt+5R+E1PaT2jOqN0lse+b7qH+qXQppHUDZi7wfTnowuiOqN0lEe3n5mH hDemXqNsAtMR3fXy1PKozigdZWn+jP+ddUZ/7TWiOqN0FO0fuEdso8744vxVOsPvCJSuscT4jLJu ttKfSUuWFqszTjjvraKyVpYWn1HWz1bqTGaoVxLWGWfGRyhKJ1B/pkdsZ3yGWkcWvomPqeUmtUxS uofGZ3rEduoMjYtRsaEtK/qP+jM9Yjt1xn73Yml1raF0CY3P9Igt1RlfRGZDW29tBerP9Igt1Znm U1mZVzqHxmd6xLbqTOXQqDvTWdSf6RHbqjNVdyVd+35EqdH4TI/YWp2xH9fpy6buov5Mj9hanbE9 jOknB91F4zM9Ynt1JoPMaFPgDqP+TI/YXp2h7l+1KXCH0fhMj9hinYnUnek06s/0iC3WmUGg7kyX 0fhMj5ipM60xG5TNR37VTUP9mR4xR2ckoWw+Gxvm0PhMj1Cd6Tsba67qz/QI1Zm+s7E6o/GZHqE6 03fUn1HWj+pM39H4jLJ+VGf6jvozyvpRnek7Gp9R1o/qTN/ZWLdA/ZkeoTrTdzQ+o6wf1Zm+o/EZ Zf2ozvQdjc8o60d1pu9ofEZZP6ozfUfjM8r6UZ3pOxqfUdaP6kzf2eD4zG5Z7O4W9l+h/2/u/7tF oDrTczY4PqP0CPlV26jO9AgNc3SbMJbE9qE60yNUZzqNs8VDLz9TZ4Y+kPSjwI6Seha+P5ydz3Ky Xxy6EJJcH6oznQY1CkeSW8dCOvPxNHP9gbsjsw1QaLDQCGzZ2Liz/o25kOTT8Q/58KMZBh4/aVy4 KHyqVtCQl5eSXhA/XfCm88NIUg+hr226TEQ3q6S3jkV0xgnpCiWmkPkGv8jzBS26MImkiGGR/0+S T+fQhHkepLOO7+T5E3QmN0+uQJeB2ZPkgkTmQFIP8HnhIXvVn+kyZERb69AsoDPwDfKLAlozcwyk YbjYAPnjOrMMfGOGklwSufEk9Xjcxw7gHS26w78LPwVVZzqM9f239RdaQGdC+5Q/mGMXl4v5M7um lNSygM5Ialkcmk+SejyuufwgycVYWGfgb0vqIVRnOoyVmad7zJvNwzrjSgAkEqHwUmPSsvZhdlr+ TJaHqMpU0YTsED5QjhoMnJ5ArrLhCAgPGhXarUBEu5WsVtguoAPMrvVE+Qgb2sMVnB2Yjqn4XM8T 1wSZFcmlCQtsRuNs5y6KtfcGmuDT8P6DwR1tfIvZA0oQ6XSOCYpYHRplzBPKVsoYYUFY/DVLNj7Q uQRcEtQvcaH8ESbkOzfjZkUf6cA+cgwPaTQ7KlVmz4HuyQvahnl4qDuNz3QXcWe21aFZyJ+xAnNE z2s2TqKOTYa1P1PZTvGR5lDdspCg1Krwmqo6vCqtKj0lr7BWVaVnBn2qTPiRUBvqwZQqWFUTnamP DLV0SSzsXLg/GJxh+nFwTkv+aG+ZT1XHOIQHLulYE2WsZxvhrDiVi5ViQ9oMe9MS0pn6tgtduFHY xM6h0LRhZs+BTvQVLwfY8CHUn+ku8itua4RmAZ25wsVJS/s0He6xdfmwAjHvYUjOAOEZk8BCISKv MAfTJDPxD8X+JuIzd/XjH7uRZtWT8AiTckbQ+at9pENgoBHg3npTE2oprYXmfHwUbkTlP+Razgcz 4k0ql2x+fMY9p79fKokbUUEKc4K/Um5oxZQ/83HPnCFjSDOv+maPEsid1qo34Uz4yCgd5SWuS2qP pvWmPlA/dbfUoVlAZ6qnOXk1P8QGoC5VuKWKz2ARakgAQsAPbtEVed87EZ/JzBf2emg36xol/P4l ttHmWbZV+VClGOj5fT/ZWS0ZJ/bAr8wZ/uLntoLJxRtKDqFhGXkwDmyVBSVlETzmolYPqIPGQatw TGpDNlZyRc0qnWmUlipJVlYTFmUpYyA6826GpzQb1ZnOYk2Isb/qlrGIzoDoz28sNLkJ/J3hx8FH axHgY2hOOZHB06F1Q9cYuCS1wyNM+DNR9Rr4rkpgN+zhWZ2Z0XQyqo5Y+TG39+nMry1/hnXGYxUU GaMEZqucHvZnqscRn0NiBZXzyqpSzQjrHlbZ2WPf2NdjgchlVBUF9auRvDlDgXz6M+bP/Cte18No fKar8P0TSqVdlm0VC8SBJTDgmGsfltggOnJp3vKU46kCDGSy+dyEP1PLS22feKjjQPP9Gad+rMuh K5WYSbvetEsTz7zH31pnHEpU/sylVP3m6kyBmyRN01pnDmnimO+kM1J814ST7Rgrh8QebNKfadeb buRi2kYCE/5MLbAPov5MV6HAYDYwV7gb68jhVvGwzpR1BQi1C9SJ8rNf87P8/evf7VKYxikbGKox Aa/Df7CTJpJrKypT/oxYGdwga2NH3Bym9membMutHuuVBsEB4ulMgpbOiD/zJ/5W9aZhQEs/Sg4P +TM4Ivsgcimk3sSaBXmhNM1N+TN1kCmng+FCiT8zpTO3I7k4Hp0j1G/Mn3EW9mdUZzoKbg76Sfn2 Khd+bPSJRXTG3vYw/Z3Bf0bmL17aUDkDUJJ27LZADYsTpTVecSt8xy7NzJ5NDH7nYOngNjVvMJnv z0ANctrQDcUoF/RnTsb9GY6nuDk5Z5VnhIU2PiNaWJWx5pOtKGVy5Ha9CWrAMgZvbIYyWqVAJZCu oA1kOeFEfCZyB/41PCVUmDwb7EnNZ1pe1eTlWnz4XAn3XFRnOoq09ZB7shQ3d5tYSGdMkSRB/Uok T7ykzL/ByM5vqJLE4EL6lyZMvn5KivQbzAqGNyq//nKCygZf5L+MOfES1LsSsjuB2r5AN8IkwVEO Pgx29mhpxMecaheDo10mCaowFC9uWuS0xY3x6X215cS2QzH7qLYhRyp+auvIe2y0qTlLSl7AdwAK liRUxkqjBPhchZek/PLZwWmCzJZxSOvSxCsNHXSsZgi+GuRfXTnssPeJLocUGSU7/F9SXENu/JF5 TcsNHGuQIEdqoFNtaMzF/5KLbw9/p6DxmW4zeV9tEQ/rTHadWNO0KvwXm5kx1/A+UBWoIC0ZVi1Q XpMR+9LCLLVaDiNg8NxudGaPahK+3Y3eicPwjbm5Q6lgw9bHaFFtSOl/xDCnjZt8mYqExA+4rArp EDqTD73QBNUTha25HImBkzCAEco4Dpc4zSiTd0PeJ7NlxDqXFS/5A39KG81tiFg3q+8guVwFdrdF hnvEC7hR3gcngLqIx2I3xGqrodS8kBaoP7PhqM48gBtFXHdiMBNlk5Zo8TMnympz+EBzUqkCWJlN aQfjH7Wyv4+FN5wHv2Zqk41n6N/NObXMmW/luCA2FD4DrGt23P88nnkmK29HE7+C60xs+N9WLvNR nek2qjPbwpTOdAL/ejlfhKrOdBvVme2AP5oIw+e5RMunvKZSTdf/Ho3GZ7qN6sx2wE18RtOR4zUj ES+Zewbqz3Qb1RmlD6jOdBvVGaUPqM50G9UZpQ9ofKbbqM4ofUD9mW6jOqP0AdWZbqM6o/QB1Zlu ozqj9AGNz3Qb1RmlD6g/021UZ5Q+oDrTbVRnlD6gOtNtVGf6Rtx059eCRsEe+46Su3joz4+v8Zlu ozrTNxbUGe4BxvbO1wfUn+k2qjPbwnS/EEWPfnzVmW6jOrMtqM4o60N1pvu4+WF+WLgDh6Y00LV/ lOSHse12zi+w0B24JY+APfwFW+a2t2/gR0leSNfisTkcRGV+1Qy539YZ38tL6WMT7Cf5heMvoVuY laHxmW6jOtN9bPfCiQ3dmohH4yW4p1/uQTejvsbNMeSCpvVvSp36Eiwgsbm2fafX8tHozD80zjWw fQfXA4nXetV91J/pNqoz3Wd465nQH3JnVdR5bhaWR7d/QH043ntOIV5j/sI2mPPP/Wb8psgkR7cu 1IZmaFyVwHWxW9XZVa0zJCzJuYu/LDSXJoz8LFedUZaG6sxGYMwP/L0YG5CtGnUNK1k6Cqn3vJ78 TXm0S9IZfr0EWTqiKenMV5tIxOUprHR9swJW2MGrNgPVmW6jOrMRJKQw1ejTA/84gG9SjbqGxdVY KczvzW/qX6UmPLTDZl7RkEtEPVZk5c8M92TJB5sT5CZ8c0QO1Oag8ZluozqzGRjzXwjEF07Xg0DV /syY49GMRynjRhkeBjw2r+3Sf+24l43OfJStCB4+244fN65eHUf9mW6jOrMZlCY4vTF3lIxQTTpF /eey8WfGdOas+k1RU6KXUNm1DHErw4LbofVB7c+wqljIsXHgyWRevlFCozrTbVRnNoM/jHktw1hX g3mnc/yZX6vfVMbEHtbxGbtZUDUDruPAMri2EEn+8fSw2d1FdabbqM5sCDSUrtUVuDbu4NZD3Sb3 /IFTlvBCkjJh58Mpk3LPvH9zUkJTAhr936VBakvPp7GzaRTaLOc4jVOenKQmKHlDN7Qjy7oODT9L btAfg8HdQScHlpuDxme6jerMhuBCJmyDOzs+v6FB8k1EL5sErGqN+o1Kkn3hbRxaeIz/ZWVIkmKT BL3C2q/3gyuDepkltcfbCNSf6TaqM5tC1ozeHaemdLHgCL6Ij79H2V/ZEa99KzPZEWmE74U0MP/+ XZYNsrvM9b1LI42F/SPanf5jMRk6cHeC0tmnmWzwDk5PIW+/NwPVmW6jOqP0AdWZbqM6o/QBjc90 G9UZpQ+oP9NtVGeUPqA6021UZ5Q+oDrTbVRnlD6g8Zluozqj9AH1Z7qN6ozSB1Rnuo3qjNIHVGe6 jeqM0gc0PtNtVGeUPqD+TLdRnVH6gOpMt1GdUfqA6ky3UZ1R+oDGZ7qN6ozSB9Sf6TaqM0ofUJ3p NqozSh9Qnek2qjNKH9D4TLdRnVH6gPoz3UZ1RukDqjPdRnVG6QOqM91GdUbpAxqf6TZbrTNKj5Bf VekkW6wzTrkVmEAS/WZXflWlk2yxzmwJmzQav9JXVGf6juqMsn5UZ/qO6oyyflRn+o7qjLJ+VGf6 juqMsn5UZ/qO6oyyflRn+o7qTKfxs77jZvuZa0qZ6y0u/efKr7qFqM50Gk+aGSq9QH7VLUR1ptNc aUPm/uCozijdRD/M6hGqM0pH0Q/Ne4TqjNJR1J/pEaozSkd5pTrTH1RnlI6i/kyPUJ1ROorGZ3qE 6ozSUdSf6RGqM0pH0fhMj1CdUTqK+jM9QnVG6Sgan+kRqjNKR1F/pkeozigdReMzPUJ1Ruko6s/0 CNUZpaNofKZHqM4oHUX9mR6hOqN0FI3P9AjVGaWjqD/TI1RnlI7y4vGZKI6d+Cn91jqxIynGj2In knyy2PFt6lFM5PiyZPHqb3zVGaWjvIg/40eelw18+uVd7rb2KfadmlRShPRjXPJMYsxCOuOGV5Ji zFiOSyAJh5KaplxDZ72qM0pHeYn4jNWEMDURZpw4Dp+kM2PeR2RM8sorZXgU+ArzDbxFZAJJMbG3 ZH8mNXeSmiaKVz+Ui+qM0lGW788Mc7gdjlNAasSsgyfpzBilSST1GJxxnVk6Vkm7g+qM0lGWH5+J jeEwir9MncmfNNDbS+vMb6oznUF1ptMs3Z/xbypVyU3G0+Fvtc5EKVepCpmFJIHUBlt88oCoukUz tuolQZiMZwgKz+xzqlYu/5Bm9yI2+ZLXhdb6X/MM0aziFUQWVitQThPwsadEg5ZiO9QA5YB+QNvl XGmzkSeCSvwG05Cqd3xytsT29AkcApvZMsq5yVkvFdUZpaMsPT7jwtwmaPwZKyVVPJatjyCD3LmW Gd6djXhUWaJVJ8B2+hulqhxveTkBh8dn8QC8Nvomcynlw6ZfF82qDgQGaUfSLfESjmQ5g0LWgscK Up0MV+l+YhraE6JZLnGlW/DsBHLKxs56uajOKB1l6f7MjLpKOmnAtmYF8+NJaPYxcaz4ZOaSJoQJ myd+MV5vqnMchian6UfTus88u2wqDuzXOgNpIRGAmpGHdGyu6UgzSg5hyWhjHwWIqcBcRogIr0Xi /2yCIDW59JGnFCSshSS0GfsjOgkcU06eznq5qM4oHWXp8ZnIHEiqph2f8bMoE1OD/RXZOYyZX1bD pL19mPvXelszwkrhcI7O3I1EOkrxHtwoy+JKMN6NK8fQ3MhrqlDuysyMPtQCk02/9t4nrXNI+kjo Lip9sT4LFaNyWcB5Ux9kap2BV2QTJ7RkCG3LbnGdnhLYfgDVGaWjLN2f+TztFTT+jHtmqwxWZ2yF Jb2CqQNYMcg/8wyA9/GwP1NKixrBBnxsdQj8O16W2p+BM2ETUAyYvujSDJ1h78oxe7YA30zgxPQv kC1Tc8RT5u1EhbHWmXJcfyQoFe/I/BJRnVE6ygvEZ1B5GKf2Z9zQhGVSFnVswilzVELCU575j3eR h1AangFNfIaCGrN1phh7351AYZKTMqjkZaImNDSjKtHoDDwSx3ynNHRmsuSZ2RtiNQSkMP+DcjTw 6rH3TadmvNVeWInQ7rgWop5mz3ryYM9HdUbpKMt/3xSafyXliSXVqpDLqxrrz0RWbfz35g0m5R5v jeqTmKdf13LAvHrTq1pJoohCH7y4lpcJnWniM1WM9g9+pyX+TDTLn4Erw5Ej8mcKE3ixx//Zm3qs nd7bJrLE1P5MXOeLMg7eXduz/v6kFkH3s40680HuBNEZboSudI7lt5+JxNo/nFXP8dqfSflmGIo/ k8gjvWAXJpWtm7c+xtxKypp5i1pnUAOyKyJzM7izb8KjtJIXUY6dxKrKTuXP4NA3VAJ/jw9dh6Cn dMa18Rn2ZxKKwFRls8iJZSUdFv4MzdTUOlOXEeWjWlTAZ304XptaClvpzwS2GYPVmfwFWgsoS2D5 7YGp9hIGBwdcH/JvpJ7Bb3ZiY9IAKkCzLm03OggC1EbozQvVJIIDrCJr/cx7MDBW+bYJYKZ+d22D sQ7tFqTYuxgMU8oiNNSihmtf2BbHw7pUoiIM+VK/25KQu+KPaKFHxanrcwK//c7oEKSNAWVySQdD trzeng8KFNHLJgtJHByrCiojlBdlPMDhUKoTLPx+UJ31ctlKnUElmJSGdOZ9q9atdIqX+L7JhUWB C4p01q1FuKbC1u7BU6GHur9HzdqMOeCg8L+HbOjWqzmtxSTEyrrZSvgfrGtyZGdCDsYzH74jce2+ w1/7AaV/yevgTrh1jjYIY2PQvBW3g3FJDcxe84aL+C8WhS42PaONIBnuHm2LPESPrHrRHGsnQa4L fXoh8LPWlzLSI9cN7KEPXuDBu53xGfrRTWZivuiyTOkYL+DPKOtiO3WGHlsVY/E4pTto/8A9Ykt1 RrxFQpYoXUP9mR6xpTrTODTqznQV7R+4R2yrztTBMZlXOof6Mz1iW3WmetunL5s6i8ZnesS26kz1 DnKsPbbSJdSf6RFbqzPnLDOHMqd0D43P9Iit1RnbBkqbAncX9Wd6xPbqDLXAXv53HMrS0PhMj9he nSGHZrwtt9Ip1J/pEVusM666M51G4zM9YqbOZI7zw+nv/xVpLImeI7/qpqH+TI+YqTP281SlJ8iv umlofKZHzNEZSSibz8aa69r9GeqOQT5LKduvJv2x7uay9ngGC2I7llmDo0kvWW3PWhbuP+cFuumc QnWm72ysziw7PrNzSkYlLNIzJXUMIyMkwMNv99TZFpan6MyQv+N9pM60+sN6cnsMqqm0O8ziDmdU Z5Tno/5MRTNwW9Vd5UPUw6CM8bSRbicJxhyLBbBdb1lk0RNIJzrmG7jmcgWN4lVn+s7G6szSC87D oUjX3Yv4M/N1ZrG976c9dNSCSLF3nvO5zNQA/9zR8IujOtN31J+pOKfhRVg6dskjoXoINMcT1fDj MxN6tQF74Sjxrc7Yvi0rN6Aal9a2iuBXJq32EU5qyj84lcNpcnOTc9efIEtCk7dsfI4/Qx0JRFxl mxpKBcXmovIYT9TvpxsFhjsa56WUf/ZV6nBZbgLWMYrARGHgZgF7YTiX7G1h0qaqB39GUiBOTVEV eKmozvQdjc9U+Oam7c+QeqS2MgJb5c9QgDXAOhZCOmP77pZxSoZ1b74cJGEJqr+Ss/3rWoWwSWD7 HZeZxneY7c/8QRv9aeVraj0V24cKFSWHhQRb4lr+aKbqchir6g5QAPWjzgUmqtxb/kx11i+gNKoz fUf9mZrkK10O6IxvBxBhkUmsxWfvYyzD059WwODsGAh1vakd1piIz3i1P3PMrk20Z/aon3PqH9wn PWC/pSz/wnEPqgFd5voztNsrKtmMHksKs5sl9YrQhCg3CknngsNc4dBQETsTHg38MxYaZFWScxVD +SAg2CKMBj6OIoeHzogTB3HL/UGEfGsxXBqqM31H4zNjyIhIzJ0xezC9D7XtkxcCPfFlkGs4Mo3O NOPITsRnvMqfgatjfQs70JoMIDc2/m1reLi58Rl4JlCBWR0j7ZIu1msurd9hAy6O+cLiEFL+uYyX WZBivCPpSUgAQzpiKusSY0e/o3pTlbCCidPY5QXLRHWm72xss9qXKXg7tBvRIEkVURGaEWoZMF4e fo0oFvFn2IaJejebyO3YKKIz/iu4F5f1uLfz/RlbBapcpDFQnDKodObDl7bOUL0sLT0u5KkxxzSl SlhE/gyV8aLWGVt4aKkdpQn+DE9xZWQ03ysTLn2EbdWZvqPxmTHG/ZkmXcVnSE9qD6URpXGdme3P 1BUoeAaoishAlSfsHfyswjotnZnjz1D1y5xIegyKA2dQLx/1scFgz+qM6JVf8hFCFNPGkyxJpTMo hOiMOGZncvw6PsMxIYFzXiaqM31H4zNjNENKkz9Tp7/awCjcApjYcaUGySL+TC0vcdWqj0a6Ha83 +ZcmINttBt2e78/E8ExkULoJqtfxnDMcEsrRt/5MhiVD18lJVMbbCTmT9SaRt+oFd/2+qYoCE6oz yiPR+MwYc/wZO7426QxqE1ZtQNjSmUYV5vkz2I1t+GPAKiH+TEmuRCZNeBvhmuvPcAzam1lzkvfa UgDxZ75zyZoSI9cxIRR/BiUSnfmNF/9VNSqu/Zn6rF8C1Zm+o/GZBjcIQzNKUzJD/4yGn07TSx4p NqeX0dkBHuVhMaQISTykNy/GXGaD4sseHIy9dE/GlPUocurHl+bvgROmX27MtzQNKUtSB35hcw3L DZAVBCi5NmFCVRlv4L+iDFMYe5F+2cNq5Djp02T03jniqs+Xv2WZ4NqygxF0Zp8y8Hgc2/Azv0X3 Pg7cQ1YP7E3ekx+9CdwYx8xh0dglNJcJlyAbDLEAwnq+l14iny97e68/cPGpQuYe5xdyyOWhOtN3 ND7T4Bj+gJHf5OKBLlD8RJrFcGgDamJbowQUKcnxnK8QH0OGsja3JCYCvxyWqgcNUG2zz2DchuKr ds0ZNbCBR8MzzORrJe4e/1fSBWQpy4R2/CSREpITQtvDTRFYuFx7miDmEu7TvlwUIJuSMLaqSuTK UJs+y9IdG9WZvqPxmcWIfiNPo8ZLqxHxZ/DX62/FpCdicYKwbqE7ThnC13lJcOimvbFbXIcFtQia BWpv9gX8FHEQpmX0j8wtEdWZvqPxGWX9qM70HY3PKOtHdabvaHxGWT8r0pk4Sbht0WCQVYln4R8n iTO//kxEOOTLvad7KVDqGZfHx7mM1ag9LEjuP/8Kjc8o62dRnfHLgvGeZLocxrdfa8XNF/ZPRwLj dVuEBqdu50DR9dmxuscRL1re5tDPAJdnxhWW1xQ1fD3lY5qH0PiMsn4W1Rl6w2fJ5evOR5HBfuw3 E270fGvMjPGiKAlnGFrz1ZofLUdnFu49bdHOk+5lzuWJyvE3oFEU7c1p5zWJxmeU9bNwvclNzO+u 6zqjWQ0VH6ZqELkU6i/XpmmvWrHO7M5sK74kvCnn7be++zMan+kRi8dnvtonKlz2pwgGdEZSS6CY b9Htr/A30Z+ZhzfVoqv+UOUBND6jrJ/FdcYz73ma2u/JbVPCygQhI6AIWIOoEx1TdztoYyn4i3nb tJI/l+cmjDm3TRQ14BaOB9QgcspeqXW1bWZZHYqYtDwbk7FQGY35hZJSEJ/zoO9Zp3FvaB0d9iMl fPoohAMlrbagPgVJUj56iDVvMd3z7dlRRIWmFjnvCtuMM5EWm1lV/lZPSxl1f0YfmdijVW4Kr6s2 9OyVaXVB1NIZ231aPnFgQeMzyvpZXGc+WbsWwQhgcylMx36IBokIg/QSN/uQPZ7r9Dfc+mwH1YY2 PnORHtSGRF9emPQA66hLRP8LbUiLQv6ytQ1yDHkdKZJfHIQmPEhT2//pGDGtQpYH7NRQXimW8Peo ZN40M8s7wTntURnJiE8wxUFeY0J266UjOthB6g38M25vzqcWDYZFSifvYz+2fQ/l41JNulpZgO1x SjFyTHEJSzqXqlQfSWlx9bAzMkOeuFzVab2RDfkSs55x+av+lhqdwTocGetnRJBprSQ2DfVnesRj /Jn0c0TGQoYK06C7HMZL4ZAq4oon/kfq54u/X8VzHPd9YjvPIe+HpiCvH9jI0U5o+9L274WH9nTt 48YGXZCjzWOsi7Jx+MNUQbLaoxdGQ9gr7YyCT1WmUHw22QNzRhOp4YUyyr98dkvgLCqjR16ZnRmY 0S1PyxklZyCTpADe2AcrtSrgyoQo0oHElYLJsEvI77uu5IUTyi/Xsd4Qxefv3iB4PD+BxmeU9fOY +AzDL3ng4FtzthYXiIV9SGEL/4r5YWlJnWTYigrsg6dtnZGYrcOOUvW6e4bOOFW3Z/Z7e4q4zuwG iOCv8AWRFH7w1++L0+nq1q9yyP9UnQLwXCgG3YrP1JkEVPJaZ6QuMz8+c0Cb41KIA+I6sQNxsN2Z oZRjEd52dwFuFMeRvYK40FX5pTitjkRsOSBnza4NGp9R1s+j/Jlfvopbj1u65KZicDEwb3vcEWpn g3oR2q8ev7AreQ43OvO10hkYWmXdtWa1KCpZieSJfa8/M0NncEDUVri8X/NWiEOoW/Rw0YZSkktj 3ZQxnRGPwTHXrDNUFdwxo1NeWM5VP7h9p4N4ZA+c8Re0QA5aJyyNP+O2N6zfNx2b7zYhPaZQBu// R6cGKZKOUMbQ+Iyyfh4bn7H1DuhMTTwY3lQaQtSPdXreZ5VlwtSk3c0MfwYmVPdSmk7rTN2vUNX/ 2b3+TLve1PgzdbeMYKIBECROZNL2U3afPyOFjMnDOrKl4dE6iHveN6Xm4p/Qxr8p1uTFMa6jHLR2 bCy1P4MrJhuO6YxTddpW+zNyVoR4kmNofEZZP4/xZ7jCAYM9J1uMIwFGdlDd8oOSBsiRWk4OGfFH EuXAw/YjJ7BY3jdhWaMzlShgOmWtx5X9vLY73OfP2N5YLbXOHNNB0s9S4Giyk+XKhcJZYYedWmes myLdLxKoN1mNDGmZ+DMDc20dn3vaz2Tm25W4M7nU2x70Zw5FWWyPkbXE1e/06w1RiZMTi1puZY3G Z5T185j4DBuIzx3/lSYV2SDquEUOK4d3wxvaOHBhNYLe9tAUTPkzxxx+RcWG7PBgVhxYXmGfVHWv eyxahrdxaRjAtj/jX873NhxbGRymbNnQGRyFBr+xB5NaW5af03nS+H9OyEbvmpsPg8Htl8qfEfXb ty+ixwmxpz3+AcsWva+bpzOi2TJ+YF75M5UoV35Q7c9k5ub/bGomGp9R1s+iOkONR7hjMK4zFbAC uPWGmp38wFqqldxc4w/ZBG1AdmXtgN63Yg7uP5SG/lhS3oy24WYhsJ3vyJ4XTevBWI5k7BaxszHg k9hNC1gmkqxwpHGcxw2VWF4PteAmLlhjPQ6cjHRHxuEO7DjiHP+HQwd0OlXk9r0ZyYbs8dSHniGC kb12ABeS9uLYS8ZXx0JrJQlwADpP2vALpq94ob3EUGmfD8OQ+PCZ3tBv8ScfYhyNzyjrZ1GdccNw NAr5/Wlivu3X5h5aVYAdEdJU7JDS1hbpMW/MtQNrDT2kr2/sf9CIHPYbDlGCbzf8zRRbezAjDgxY jGyOVJJvN99GN6k82MchPTHhZUaJ8CYhz+HmG1n+8FdaY27SGQ9/N4RFX3+SOTpYGO19u7GORkQW fE29q9EwG24QVl9Uf2SxzXA0WxKWtOvZxdqTC2UVO6TBAWlILw8nzxeEnRVcqpBEbUQDDdoNvcFv N9+C2+ubb4d8xUUKcQXsdeTWNPtUfKyb+emZxmeU9bN4vWlFLNzMfw20x+TYGDQ+o6yfrukMfALx FjpIeyzDjUHjM8r66ZDOcAhnVnimI3CNbOZ3C51G4zPK+umQzvAo5U2P7Z3DRpS7q4Nz0PiMsn46 F59RlswGx2eUHiG/ahvVmR6xsTrjRu+iLfjvwJtY0NP/5FdtozrTIzTM0Wn+kDbu24jqTI/QMEen KeoG3tuH6kyPUH+my9BLTPvB2xaiOtMjVGe6DPcjsK0OjepMj1Cd6TD0Tdz2OjSqMz1C4zMdhr/b 63IT+BdFdaZHqD/TYazMbOLnLMtAdaZHqM50l6pn1skuHreENerMP5dh090d9YTAXVGQg2l7RBiH qrfSr8tMnKqrh4dwF/2ewBn7vKkegeF+CukrcC2oznQX1hjiN1mwXaxRZ86q/ikJ6tVGOo3K7XhH EwxT095+EsjQgqF86Mxi30eOCwt0ZpEnUXFfIV8ajc90lgMrMoQs2S7WpzN/TfRieTK/h07Lzr0m PJHbEpjoNXxBjHkjqdWj/kxX+Uc0htjAjo2ez/p0Jp0Iic0fq0TwH/Bnlq8zT2nscEXjsKwJ1Zmu YvtuNR63oZFlW8XadGbfmJ+SdEs4Aa71Z2zPL7WBf/yJX+bCvXv/kUZbCs+9Ud2V5sBPQlNYcaFK lcVWiXwnNa9peAbqXtfJTYlDpDTkLlV/mieKbdJAUJ5+5uF2KOyx/TpH6krdzjWRFxeHLu2GWOM4 gclrlVtjtzWqMx0FNxqN9k53Bu7nbXRo1qYzMHib8C/YnAHpjO19uNIZv67WYsmtJO1aX/rKek8S kVG/vgz5SDu2J3Uag186krE4WNXqfZh/foFCL1U5OEosvSAD+vbNql+tM/xUMob66LVriKrWJ8M+ rAONz3SU/JLvHfsEKq7bcb8tYW06w+PJEqX5BpeB3jdVllqPeekHZg8/kAu7PmJVIK/hwlafEvPt CnKwZ77bX61Vb4JGlP7AhaQgnxByAzEIfKeqdjVd/9rxKKFKXBS3dJAV5uTojdwxaa0zKA5K7IRW rwIeHxiCJsfHcdZ1H6k/002GcudUni65yFvGunRmuCcXHQbK5nxkqvgM6jpi4NWIaXaJxGcgN/iL 3ThKWw9l3eiMX2VNo9cNwlFGu7Brw0uRax0YusK+ULixAHSd0ZTOcMWLS8pC4o9YeVLSQJIbuXt+ 0uh660F1pttUOrOFrM2f2RO7lLEvSRXE3Ie1ztQDIuyTlgxFdbiWk1QDTMc89FxbZ7LKoXCpwQ2N jT+pM+2KDWSmHgYlD425rOtH8/yZsmroYweqk+V2rDcA56n2rFaM6ky3UZ1ZOR9Tuej1WLP1CLcf LyuH4KCuqhC3tl2N9WfqEa5lIG4srazbEeWhZeczdab1osujQeGYf+QDlAf9mdT8bRMOH7rWGfFn KgdtDWh8ptuozqye9+LHyIi4JDhT8ZmzynaZ6r02D99d7xab33k65s984AQ8C39wCXkYzvVnIDPV b48k18BMpScTfkntz9RD8Vp/JpjwZzQ+o8xBdWb1/CJmX0U7IApNfEb8Ga8K3bqkKmPxmX1RgXM7 Gi8trVRhuGd9nSGHmkOzP9+fKe1r64D2Ta2oNdWeef5M5bBgS4rMTPozuTmwidWjOtNtVGdWT23P qK7EgyGP9Ar7bYaTJltOjTn2B35C/XZwy5eIdIkjKJCI0h9c1a0Rzmgk3tOC9ouwELpyQ2lq+HIM nTEu5CGkt0lCAXVr5jhDeg9OQ1yblJUvoBzpXZdrR/dlyOXBonK4g/JAryhrcmuo0mVrcla61oLq TLdRnVkDQaUQMFsyUmoPE0N9Kthaq9Zy+RAVIHBB+tIa0l5eSYM/pAkN+Sp3Vq0OfPI9jPlOYhBT klRDoFjPmM4Mv1Pi5i39rfwVJrdiYuHDSdMdqj5B6IC/Q3/ZTUoqH2wNaHym26jOrAHYPVc4YOFe IK1wpxle5UERz/6C0cmD9g/n5HlSZZOVQd1ueGGyIv9XkhbnsMlxHBxrttcCSapeX60e9We6jerM OoBvIakeMftj8xWhOtNtVGfWQtp6v9wXElvnWg+qM91GdUbpAxqf6TaqM0ofUH+m2xhpErqFqM70 CNWZbqP+jNIHVGe6jeqM0gc0PtNtVGeUPqD+TLdRnVH6gOpMt1GdUfqA6ky3UZ1R+oDGZ7qN6ozS B9Sf6TbafkbpA6oz3Ub9GaUPqM50G9UZpQ9ofKbbqM4ofUD9mW6jOqP0AdWZbqM6o/QB1Zluozqj 9AGNz3Qb1RmlD6g/0220/YzSB1Rnuo36M0ofUJ3pNlutM0qPkF9V6SRbrDO+uxUYTxI9R35VpZNs sc5sCesbi1ZRKlRn+o7qjLJ+VGf6juqMsn5UZ/qO6oyyfra4/cyWoDqjrB/1Z/qO6oyyflRn+o7q jLJ+VGf6juqMsn5UZ/qO6oyyflRn+o7qjLJ+VGf6juqMsn5UZ/qO6oyyfrT9TN9RnVHWj/ozfUd1 Rlk/qjN9R3VGWT+qM31HdUZZP6ozfUd1Rlk/qjN9R3VGWT+qM31HdUZZP6ozfUd1Rlk/2n6m76jO KOtH/Zm+ozqjrB/Vmb6jOqOsH9WZvqM6o6wf1Zm+ozqjrB/Vmb6jOqOsH9WZvqM6o6wf1Zm+ozqj rB9tP9N3VGeU9aP+TN9Rnek0nlF6hPyqW4jqTKfxTH72q/7Xj/9S1Rmlm8RbfGv2jn9VZ5Ru4qnO 9AdHdUbpJq9UZ/qD6ozSUdSf6RGqM0pH0fhMj1CdUTqK+jM9QnVG6Sgan+kRqjNKR1F/pkeozigd ReMzPUJ1Ruko6s/0CNUZpaNofKZHqM4oHUX9mR6xjTrjy7TSmaGdKN1C4zM9Yiv9mQOHJ1Zn/PwH zykdQ/2ZHrGVOhMbQ0rDOhOYkJcpXUPjMz1iO+MzoTEmI50JkLDOjdI11J/pEdupMw738GVIbtSd 6Soan+kR26kzA5YZi7ozHUX9mR6xpTojDg0hS5SuofGZHrGlOtM4NEeyQOka6s/0iG3VmUhkRu/l zqLxmR6xrTpTOTSZzCqdQ/2ZHrG1OiMOjcwp3UPjMz1ia3XGOjTqznQX9Wd6xPbqDDs0klY6iMZn esT26szOjTGRpJUOov5Mj9hencGpa1PgLqPxmR6xxTozCLUpcJdRf6ZHzNSZhGOkSk+QX3XT0PhM j5ijM57SF4pNNVf1Z3rEHJ2RhLL5bKxboPGZHqE603c2VmfUn+kRqjN9Z2N1ZrPjM8VlGEiSicO9 yzCXmSXgITtX0nMosUnVF/a6UZ3pO+rPPJrWe5BCFj0WH/t++UdmCO5TbUx5nkJRNfnyKb9Tm57D Bzqi6oyyGjQ+82hSslDLoSx6PP8xezuSFBxzIKknk7fGAkrNA/4Mid39UrQ6VGf6zsaGU9cZnxFH wHuyPzMYuGZPUhXx8/2Zts6ED+rMqTG3klw3qjN9R+MzTyA0PKiXR/7MqeNEA9eJGqvOHCfzM6mS vI2cI07SUtf5a3Ab/fccs9CZHb9ax8QmlRRwsbUkW2Cp40eRP4jqtci2OnLmHJgSW9h1l8ZF/k0m bnuGj3xb1Zsw57g76/zKRnWm72h85gkY83HgxoPIvCIfwoQ0Lkbl28RcoTLmgmZcrAXl0EZMAE8c 0pnQrvN4L9DyZyLbBf6xzNbYPSwlLbAdzIYsERTzETD3ITQFJVOrQi4XcWSbuPslzdB60pkhbwce 8n9eENWZvqPxmScQwkAD6aL+loy29L6G5oRmj43JPQ+CQC+PfobmW+ntwtoHg7/OaA22LRJzM4TO QB9KDztXb5kanYFUpYkHZWAtaeEm2IlWBMgI4oK9Ay/BPItV5KV0bM9j2Um5IIFJyfXC0ZAjBIVz PKNSsdaQZxVQORJsvkaHRnWm72xsM5Q1Fnx4QzZaDYXxl0nJLXDNJc0V1pRjdm9Cc0mrMmMSMpv3 ZNTlYEgyRZZP6/brfGqdwSr2jSAqk3UnrPKxIWQrMORPUb6DwUXli+SmdoFwENINuFGUhwjMEYvJ SVVg68/Izg/HjV8Q1Zm+o/GZJ3Dd1pkj+57It9/3wxcJPJh2BjcClmx9hMSEPv6gKkXyAPm5pXW2 j/s6LFMnEjMi+6ftJiPDqG3RhnCBcvgwuZUx2pD1BguaOPCe1Y3vVAQIEi9D1sjRKhC7XhQHTlGD c9zBzqSmrRLVmb6j8ZknYMwOFMNaK4yY1UB0huoyBNVkYMh7aZrupSH5DCX5FKQz4s9ItyPVfvgl RFVQD0q/0I5htaqm0ZkzHAEKgY3Svb1r2fWs0ZmdkCtF2AbFTKrgEdSN/rfqJImhfU//ULO+F0V1 pu9ofOYJkFDU0zvrhwwbUYgSCAssux41AxzBbERnsNs5KQa/syKdsZnV/kwr2jtfZ8if4diuxe46 w5+Z1hm/cpcww1JE78woFrxGh0Z1pu9ofObx7Izse22f32/fWWfilkVheGOlgX0FSEirLd5JpTNw NTg+c8eLr6rmebU/E5s/bWKaRmfeQ2fYQ2rT0hn/sqUzmbEFxgaHg+GeeGKo4kFwIqlzJZXMrQPV mb6j8ZlH42Y3JsrusgxTiElsvtyxvY7gEPjfTEnegrXhC7PHToLvugO/MLkLnXnjDy7NZ9eBs4J1 O/B5YPU+MoOh4y+JQ2gKymP4H1f8jQrfMTf7yPvAhWKUvn9tEt7wdp8mVRD6PA5dfz800VuUNTUx Jt/5YPQ++z+kbDcUGiJvK3Kh1+Yz1NDP6xdfa0B1pu9ofObRSEsYxt/hyRsblnEGvn0VBa6w5T9N Fcg2iaGqTjCUDEZ28gkbtmpAUIzT+ggT9SbOzqEWOjtnVFe6qze0rtBPmTPOBU9szW1vMPhwwPMS l5YGM7/Qn8EPToNwQtRWiepM39H4zKOJypOyYjj4lyZwV/CXnAsniyEaXwoJdjg5pOAyL6OBg73i gVcimZQlpolbhljFG2aUCWNfYlGbmPAgTyZisz+xQeJj43jw6gQZDYYnKW1YfJUPCPZxuMsc5XCp iNHgHxyq/JfWONCo9A1vhDPAZkH0Aev+xrH+KJHJga09rQnVmb6j8Rll/axOZ5wmUr4CwiVURvMq bt8pPGnVsSgan1HWz7N0pvqkg3ng7bx/TRXTVYGSyYu+Z5BPvXV8NPz5SyAu9oJw5dpz6e+M4/uP fWug8Rll/TzPn2k1BHhIZ2xThC3DfgU3/RnLvfBOEUcOz2RRi7o1xqJofEZZP8+sN9VtlziMfh+2 KcJ2EdmXEpg8KgbnWJcFu/HsOOePdbI0PqOsn2fqzE4VwrD+DL2/LyvHxk0CE/Lrf6ywTZ/BsU1z 0yJrSPTgjgfnVRMkP05Nnk10RSbs52bvinOkKlvmpGa3eleXBeZ7RHmivmTdCLucNnSj1BRVsfyk VUbaLT22ZeSaij9wwoDW3vInLvu8hvy2BMc+qCpAdJ4enYd8fnJIjRemqfoEQLFc+BUmxbHD2O4y GBzl9aHHmdCZndPShF6rjMzCdTGNzyjr55k6w99ueLBOD+btSzUqYJuolIXDllUFgmSAbAV7USMB Og6bTsxBCQrd0of14OYn7TZOZWTkHBxJmiQK+NJUASBr+wUKLWdrFeyGh3bGBjlY6wCv4iMfcUYo s91P9IjTBAeXhzZ/5g9agD2lpecYzcC6AcosbRpQQL481cnMiI5L+3TRmeqqJuQOytUBda8mD6Hx GWX9PLveNHLgLHDjoCEcE9z90A82uqxwYFAwDHlkt+IzmRnRxK+0gDya9O6cvgqBs5H7A2Rp3tp1 Ddg8jAYfYK9kYzvYBXIQW4cqNWlmu/rhTVlBJIUD0wC3x7Yg2AQyFX8z6QfeCI7IKXK01s62X6DM 8q6q8RqwCbVZCFk1UUZsT2Ijq7F8VsWoaTXOigOtzV0SOupzFodKI9aQaaHB1lH0LsKlw8xOzsW/ qoI89Vd5i6LxGWX9PFNnPpJlSiNECAxZIT2HecrA0bCJYSs+k1lbaesMGVHm0CJ+TzTrfdFrkawT nmJLdjbY2D3JEPJEU9DSmRubSmlD2DqXDasxRb2OVxWNj8E9l0klBXlX9avC+g+sHNiKzxdyw9O5 BLXTwV2XOKK/7K2k8pUdBIwmY0ASBcxAdHhDlJgL82id0fiMsn6e7c+YxAvNZ0rnVeVBPqRwDkO4 NrP9GSsLlQZRtcICrbJqhARPGyBU1mx3QvIBcGTRGRj77xxvZRmRg4z5M7wspe5ADqXChDIekFRZ QUSCFQMKUgkL0/Zn+Nj8WaxjfuNl2KtaPRv64taSUdNw6e5+nzshqvyYugwtIC2Jx52jYSaXU0MR +CL51FfbY9D4jLJ+lhWfAdUXFgDGTLUoizWL4c2UP3MungZ0prI1+Ag1tSxZYJE18CrgSTX+zIF0 KVSFTtupypFif6YKGoGQejqrYUWAzowdtJGdQ/OVJiXpTNUJPjK2H+TOg/scYrgm1vZncKSaqSrX WHxGKqWicU9436TxGWX9PFNndlpPVzx/K2AnpfURzms3hvoYE6r4zDc5DvfZwXBwWJjQGWRQA50Z 82eqGkrtDs3wZwJShbEytpWLnYZpnWn8GfoYztq6vA6i3a26zaPJjr0X2Q++DcoohyUqp6dm7H1T 3bNRYbunHVbdmiyKxmeU9bMMf0ao7M8iVRHYuzUL+DO1DUtXY7XP0fgzsN2xmkubwvYwL4z5M1LL 8i9rdbmrU6hmUQl22J+xwZGKM/M/SVnu82dYDUqzy2Xk4kJJKxkq85mlDuRoBZ/vWHymqSpO86Ot M39LmXAh+SW77QXlEWh8Rlk/z9OZYsQfv4vJ2JcnfualMMrA7Nn3Rsa85sYwB+QLnMOhgEka82OQ 7dE6l8zJckD2BMW4wNSN86rO0RDaPjaiEhP+QB7HpQPA6jGJBhl5PLRz7fl8H9qFbwY7VI3Dhigj CkdlxM7+tblEaShHTNjXGcnpDIPqTTm9YaejoHhUq8NJvDJwLT6cYUaqNCh0W74akEc0cL9wqbhK 6JJe0JWBWKV8MkWtZRX0Hhvl4dfZWIeCx/wqXVR2ZD7tULOfRX8jjc8o6+dZOoO6C1MZGZsGkcOC OBG61F3HB1pZhSQoRtw0p4mteTPsHTQ1J5obA7IgeHav1GZKOdaBF6SbRiawU24vEzYb1ocjHWsU CRIkKdqa3YeKVzLzk2tuVGupDyD+DNbbl85T2CAVZWivR0JeENe37DxR1RkF2xQosZeLJE+uauV6 Vbo854hTaHxGWT/PrDdNMPSCtKDO4InPeSDPeyEO0qq/Db84qF4eT/FvkQbJ+J4V/slBWtQNasfw y7TIYJzzcm14FaSHVRkHbpmm5cxWufcSp4HThGjvwU/SuiXyBG6Jk1nk0L53gKPVfPSCYO7Fm0bj M8r6Wa7OrJvWiH8vz39GC4ja+tH4jLJ+eqMzThzHD7acWxYRDualY3HpzqLxGWX99EVnbFiHWuiv AImtLBohWS8an1HWT6/8mWj2V97L5wgHc/gTyu6j8Rll/fQrPqNMo/EZZf2ozvQdjc8o60d1pu9o fEZZP6ozfUfjM8r6UZ3pOxqfUdaP6kzf0fiMsn5UZ/qOxmeU9aM603c0PqOsH9WZvqPxGWX9dE1n yjw/XO7XieXvr6k/iOUzRFl/Pas+/AZlTl3nPBY/z1/0awmNzyjrZ+k64wdpzZwOEe6Be12R9HLg 7lokXVGibFAEl4r6/fGFFGyvNH/JHKi6z3uIZOxrz/OpHmiWi8ZnlPWzdJ1pdRBVd2v5GGB2kloS w78mcxxSf1WQBPvtJfe6+ySGvj/WBY3vL+bOSCegFYvu9kQ0PqOsnxeoN8Xcb127d93H8OjxiR4E yiepBugLOxHPFbVFurqaohlvZRVofEZZPy+qM/Bn3H3XH7g/39Z99A9dF0uqR7jv7jcPcx+roDMy ggKtknWum2HN4La1bQPtdW5X+Nhsx6cjClh3O0tnuGMHUsF6FZeKQSYZVmFXLM1++m9/3tKMXTuk o7VK0dKZffcn7WKhEtM/KXGrjEjn5o2cEc4Ja9xqjHCALVsn0yrWk9H4jLJ+XkpnYKppCIWBPXMH 3NTRN/Bt17oX4SXNudyrL/XHTavs2E2eueZV3LPuyEZIKVnykqlIBg1BSZC505BRAc/bzWi0fYB8 ebYFdIYHvMSUZj/aESDfsElTB8Lh8Bf8zan01Fsv5ckj9kvnwk3HM2k9hJM9MRGaqlR2vBb3kpM3 LElNv8DcGx93efwnrSCkxHTWlEXOOz4zSqzxGWX9vJDO1D4Emd+XYvdMTDCH8RQF9IAqRxEsmGdY FjA9pBlzs8OrrnlVScboFCnZ+gHMvPYYBD+8RIbIlsQqwg7fDgtsxjlemtDmOHU6Q2P2jTmmwQMo f1g3Mrk2KTkWbnFowu8mLEKTJCHWUD/gyIactMAERYEVtdA0/oy/S8etineADHdJlUgk3PBLU8ZB XIbIBVtzGR06y/eUAtAWlBgb0ohwDs74W3GBuSdUzVpofEZZPy+iM4zMpeYXmvzKFueJXxOTzvgy +j2kCAtP7BjXEJhvqE2E9tUNVlkjg09yDbv05r3QKazpX9ndHBaF3KRUA6Pi0MI25Me8wQGhN5iL zTUrQCoVPnJjiiEmGfQCRRyh7O2BnyIqoqXxZ0A1dB0ovyEF+fpb5oncni4Vdiw+49X+TG4CugYQ adIgGc6yGv7yqWxwfMbz/pd4Ho0BrP82/F8x6y5cps4EVimsbZHFMl8gCyIKYoDV4I5cy0EW1mLh QPA0qSpe0/jxSRnnVmckNBSZ34akJXYXuBU8bbGDRUPq35cH402repbsAZ2xC+j4KDANaPmTR5FE 1knpQf0+8tq2PwOqoesEyExV5fH/LstXtc5MvG96Vfkz59X+x3xlZKDbKtz1VDY4PqP0CPlV2yyj 3lS9NRJLtDpTD0tL5OaVTRxDTHxzY2dcShTmOj/Ev/xABkop53XGO3wtp8HrPXNIk4jUqa66wUWy iQaOy2D5f2mKGRmRV8bFdBvfJaUlVAbrz9gQErBr5/szoKnw+Fx3Aw/4M5Ed6J8FC2edjGnnk9Fw ardZUZ/WXWQJceB9H2ZDdtLWGYgJq4alfqw75mDHt+FfkQAbDrXwHmJz04TGeFnmBDQgbW2TdyQK tc40Q+DW2PoSxU+Qfe34QGfYj5FheYnan8nM3g7JTBFlEUpXyeV8f+bQmP+TZGrLmD7kz0S1vpkR 6wz7M3+bM172VFRnOk1kx5rfSpagM+CK6zxiida2Wo94H9uJWfFY05WN8vsmxwS3vsBL5/kzjmiI rPfsodmfgXxU+06dDosZBYhoigqUdaxQX+IyjPkz0WBnBFkhfwZ7cfFbL8rn+jNwYTIc4RJ/4P/z ot2H/Jm3xti+zT0uwMmYdj4ZfW3TaXALbq1D8yydGcZ4AO/gnx20LTDvaGnBRmZDvoBDwKGtJ8Ct gCCU/AwnG6ZpSoFYYocmQ2tzrTpXRWyuaVBdSEnxD8+KztBY3bl1S2iMXZq2EQ2iVfbl1rFdSHtT APjLRzmW+DPUCCf9CB15i2XY3CoYdmUV3aFhFrADMsDZ8SorM3BVcAmsalAZRSslaH0k32V45M/w XoW5oUUoFt16dXzmPY8b/FTUn+kyuN+nb89t4Tk6Q1ZYEcDQCB8WCLCW3hEz9HKpHt2a3/ZIEINe hKetga9h0nVUZIby2+UhVYFKek9EIVw+CPK0zVY4x7oixNhqGZwKbEnz1QFIF20mRGDTAY3Gn9D9 kPFY3ca8oT+DW/prgTy1ThuFbDL5HRJiz2WPisUezU+eBx50qgYrqAEQg834BkRevIhV6ImoznQZ /pVbde+t4ln+TB7UlAO/4MnAC4LfqcnawPkOqxulUoMoYWepeC6DGDN70YfXQUBRElplwjSn2ofN Lfj9bIa95aEJLwavfg+C/UGCbV77gwx/OVOPss9c7DguUG7++1mQk+9xFvCQT+4ZckntS6YSR3r/ J/7g16fSOwNs7bq/n8Fj8vagO66LpdgWRxOojLQpk6OQTYnJcxlS7rt0DQLrwWQQD5waZiK7HbBV KWo0gyNQssTeyIu2KGd4cgujOtNh5PEkc9vG8+IzSqfQ+EyHsTJjPsvslqE60yPUn+kud6IzW/oT qc70CNWZ7iIqY8y/smC7UJ3pEaoznYXedwqyZLtQnekRGp/pLNQXgDD9JnULUJ3pEerPdBVxZ2yz B1m2VajO9AjVma5CApMNjMcNvqovd7cJ1ZkeoTrTUX6YkBro8Uco0nZ9y1Cd6REan+kogY3JyMdu h1vo0KjO9Aj1Z7pJ1cZbdGYbUZ3pEaoz3UZ1RukDqjPdRnVG6QMan+k2qjNKH1B/ptuozih9QHWm 26jOKH1AdabbqM4ofUDjM91GdUbpA+rPdBvVGaUPqM50G9UZpQ+oznQb1RmlD2h8ptuozih9QP2Z brPVOmPH+lB6QKg602m2WmeUHiG/qtJJtlhn1sC2WMNW9mek3IPqzApJt+Whe663lTKG3hCrw9+e 7lEL85xBbJXeoTqzOoItiiHcBJJQFKA6szLcbRq+JtrKru2VeajOrIxgJImtoDBvJaUoqjMrIzI0 vsTW8OE6l5SiqM6sjCCVxJbgbOcop8pMVGdWxJa5MyA3vqSUrUd1ZkWE2/cC5tuZJJStR3VmNUQm k9T24GzhOSuzUZ1ZDd/+lMQ2sU0NhpR7UZ1ZCbFxJbVVGH3npDCqMyvBHEpiu3C2LvitzEZ1ZhUk 2/rqZWu+HFXuR3VmFZhCEluH1pwUQnVmBRTb+1TXmpNCqM6sAFNKYgsJbiShbDOqMy/P2TYHKdzt rTMqDaozL84/232NX2nNSVGdeXkOtvydS7plH5AqM1CdeWn2t/27ZXebw1OKRXXmpTnY+r7/E/3O aetRnXlhtq8/iGnSUHuI2HJUZ16Y3zQ6gZpTIillS1GdeVnUnSG29rsLRVCdeVnCbewPYhqzVX2w K1OozrwonzUEajEnktBxnbYS1ZmXxNfPCIVSak6+fsC9lajOvARVNCI2PyW19Vzb1/uh6sxWojrz EuTVw1vdmYpbfufkGNWZrUR15iU4sPri6WuWhpK6Lg2Nvn/bSlRnXoI9c0wT/VS5xTBMoTVGb7it RH/2l+DS0MM7N0OZV0BmvkJmtCq5lajOvASoHqS4tvr9YJvsN5IZcymzyjahOvMSQGfMJ+2DW8iK g5SuiGXrPyvdSlRnXgJrUbHMbT3+tb0gjLYM3kZUZ14CMSmLtoClz7waZJGyTajOvARiUcyW93JV Qa+aLLJA2SZUZ14CsSiQagsawQ/kkugXX1uI6swL4ItFGe13pU20x9dEw1ZbiOrMCzBkezIm1Lav 43h0VfRt/xaiOvMCiD+jrYGn8C80Lr6VqM68AFZntjsA7LtZ5MReUhaHeZ4HQXAQpPSPmjAKQXoQ /H6W54dFmXixE2WuBrP6iurMC3ALldm+ALCfOd5FnqZhGI5YaJ9GGF6maV6+clR1eoTqzAtwuk0B 4Cwug6a1L/EclZkiPDuJXTmUsrGozjyancEO+Dh075wY1QKuCjxEGJztll4cZbfDuhOszcYf/iju O/EwyC8SD5Uh/8GPSf3T7N3fXlnkB/dlmJaRP+jfh6nDj7gjhrid+vgX/4aDj3SaxrPJPv+/FHzf dTMnKSae3U8mDErPcd1zf9Nkx7/dT6qmMDWjMERl500cncpWz8SNvDJPL8Ppi52/cjfukt1HLOel 9AL5VR8NhTOnKgYzCYnL8HJvby8NU0x5wSKhijRPnCN3AyoHvuvsjl+JMA0KyKWsfxH2nSQPJgQn TaK+1KU8bR/dH5zH/5i+S/oi9/U44V56cJbblyROlp0v8HgluYriV78ku4d5MK+mFZ6R3uzILl3j yGtfjTA4/IR6zApxWW/k8EQe96Fl8ZXqTH94lM7s0B19KTdzTRjkZfLKiZb1FsTfj2IvmRWTSItX q7Xgh3G9XApHaniyTgOPrnYPpCSgcDa9DqX+TI9YWGd8Z9KHCYpf4qWJy2x8VM2SIpUDWsIgiToS 9PQbRwaF6oRd40lQX6483ujgcKw60x8W0hn/aswtD0onervSWxhVtVdjcpPm62/rl1WeTNCx18t+ 5sm1uik32KlRf6ZHPKwzWd5ozF75wg7M/fg/naKJHofluSxfB76YctLNUIifFbZ8+cb6NKozPeIB nXGb6MNF1pFno+80Fbi1NfqzncaUf8hsJ8nsddrUrzxUZ3rEvTpT9/V20Tn3OzuTooW363gNxS7e BjTkZKdmQz8D1/hMj5ivMzsZ3aMw5M4+DxNboQtXL4KHOOyGfHNO1bvN7IRD/ZkeMVdnfK4x7V3J bDfxS5aaZNVKs0m2m6Cwktws1J/pEfN0xqd4a7ABxnRFXdGt2LeIcWkkuQFAijtX7V0E9Wd6xDyd ofDHhnQjSSHZ1RaVvryR5AaAwq7zxdyTUZ3pEXN0xsXNuTHfyazc7I9xwE3pEpDfv6s/o6yXOTrj bdRoz6gZ3EpyJTgwXZNuRITmigNYG6kzGp/pEXN0ZqNqBqertiTpsWCv8y1Tvto3curPKGvmHp1J Jd11uM/hlVoS/Bl5p150uHIZ2WZ6h5is1NtbFurP9Ih7dGZDAsHUlsWYlbauh854HMIi8k7Wn47l swg8LKAz6s8o62WOznAEAngdv0N9+Ypn9f4MJm79/UN+1J3rNGy+yxgVJL+YW1JffqtFdaZHzPdn pGOVoGs9vjS4nq28UO8MK/VncHXkw6pY3AaQO/vrrp7451lca19YtX7CEvVn2mRZJB+/+kfZ3M5r oyd8z0c5P+8zQBc5jBfJzR7/pa6fHWV3z//A9ymHnsN8f+bT4Fw+okyTDj2uBT+yTYH5651VW5L4 MxbnUApCpOXy+vt6DNRRT9lonkmL5g4563l8xncaFgmXUYVXYo9eu/WGE7b3xlaPDhvYqvSz3g5Q BuMnAY/90TeU9fJl5umUy7Ore/wZTFwJd8Kt6Ug/ToTrVBpjAr4XVq0zP9o6A3znotWTHVyJwySO 3srKl2XoRlfl7y2lg2N1Mh4x+r3n/sy5nDex0KetSVHpTFSeNJcmH1MIvzx59MN8+Kk8CZ+nMw5s e1xn4vLxnRK45cnFEnTm7zJZVj1hvj8jZ3dU2zQe1lfrdmz8yGvGLDlI5BdZqz9TQaM1ScGEMM2L xHOy8ftmKbjRMQ23MtmdcpDMeKLDK93I+MzC/gzkxYN0eF4642eZhTvzXWpulvExX/rcfjiW1ED2 P91qmHK/P2Nxr1oGFAaFtw7XhrombjsNh63+b1G8lcZn/p774HT/nd1F+14aUC/K3tNrVVWvyWcH s/pqD/PyeJ4HtWoVXhaL+jOordB9nJNSLNZVRzZHZ5bxfrUrOsNXpTs86M9YfDeq3uxYLtPCy1bT 80uUTDy3v7y5G39Ar9qSZvozLT7cZij0DDmouA5DHkY7L8rypEySxEs88Cqmvx7mEyym4eECbDVj qKaGL1B99/7Pl3B1NjI+s6jOwJ+hn+RMdIaCiunACW2HJllAUauw6oKHX/cHDuvM2Fjvw/oif6Fb iUNdTYt4CveHZ3yP4Vl3QS51atXA4x5tW23DZ+oMfTOPHQOUjUv1zwXd0aOgumupzjDKHe4EwBgq pJT4iMphpAKHjcriGtnIbvZk5jSrQG1SUrg4vOFfnPa5/9tRbvOg3OMPqKulPvc2RVuG9t7ep3Xm jtP20Jg9kGfZBRZcxvizqCgu4s9UDH1HIsMNozA9TJylhaVrfFRD8hljPJWzam6r9meOH9CZGh/6 /OmQftglExRx5C84Klzf/Rm2qL9JFQrySK7o8thLDhPEyTP2c7T69iWdGfJGlSrUj1HekrtLrHTG /84r7La8hiF1t1oFanGZqTN4MDXAMusO5HitT/bKkEMlSVuOt7xKzKt50tPcsDq1N7xykpY/U23I 0kXf5hGXNPOBagglpAuGPHBvaErwoe2p2UMP60NzZ0/1WdsLuQgL+jNt3HjctWmBSlVy/NQXe7dR nOTVNZkiLJ25WrJqS3rIn5mDG8UnE4M3PAJc2vhJ4bFVX51l8aj2wI55Lylr1SHpVP2oP7UhKrgV 9PjF7VuZR9BShYl6k1frTGGtS/Y+sQZctu3bo+NZZtebMhI9lMsdO4rEkw5scfwRP9vtvTVsfrRa Z1CQA1qY8xbQTDo/r6VxbZr4DDakLcY3TM0rmyCDQ3YhtoZ8UAEwqQ4d1pewtIcu+NCp2cNferu2 oDczV2dm+jPj+E55EN7r0xNhGgTB61/zw6IoLnZLsIvUYZ7nZ78H36nvmPsY4QB5MsczbFi1JTXt Z57JaZZFUfTuX8eJAapMNKH3s1h698yWGDWbqjOPaj8Tm18lNfXz+Lf+bUhVRxiQvZWCWmfaqjCl M4c2AXuy1fSClae0fkFcyRDcSv9oAZ0hLwaHPRTDot2s1UJ+eAnyP8JfMV5j9mnCqcqad+15JVQy lMqGrfPZPkXtz0Bj7dWA3vCUD10Vg+6OKvtKYJpDX7YkjjNh8eWTAaybCzJHZybf3N6H63h58EAY 4THwiNSPijav2pKe6M+sibMN7X/mkf7Ma0nRjk0vZLZbSIBLkPFjGNj4DLGIP1Nn57KanIzpzJHc 9Q/rzEerM9Zg4VwwlFViLngbQYw3rE287c/wbZfQoXEPRhmBitBPXjtOHZ95V20oskCxIqLWmfqs oTN86OaAacufaXSmujLD8Nk6s4A/Mwt+KVIW+fuAhWeBEbTxC1FINAhyfgf8tNcx0JmVxmfwiz3l 6qyJvrefYWLzu6TGdAZP9VF+SLVxXIKoWt68b7rHn/la6UwtOC4HNcSfsUthJ+lhkac23EHc6898 p6Pg1oH4BSjWiI1X1KNiytib1EWlMwUfuaZa36b2Z8Y39HEpAhjoHJ2hGwVVNsnwn0bsxJXis2Z/ Cnx8vs4s7Yntu+6+S2p6lP11h9oAgTT4mbnLGqFf/Zn7wE3df53h99rCcaMzVaWCLQKmZy+EN8ef GXt41PKCSpF9sRrzbqXZtTNYDcvkG2F/AX+GXuhg/0PsERmuIYluXNUSyc38RWduahNvdKRdb0KO FIU4oT+zzOhtpTM463pDH9cp5NyK2TrDOTUHbPyZts6g+LwMRagqWA+yXH9mTazan8HV2SCdWbUK L4tH+jONzrT8GRvI9G0D+p3UuiKwvNn+DN/yrnw7/KmKz+yEo4KEBuZFG9f+DFafmxu68faDBf2Z 3+xRROeckG8jFOeYZmmjj7XONMbepOp6E70QeqBRYu3PYEMusKW0ZxWHs3WGTh0TOaA/Oz6Dq0o5 Uk+NsxRuJi/tz6wE9WfuA1en5/GZ6jUxWS+MVSBDSowpitwE9Op2OHBDruUYel9awFoq7I+JX/Ww oPeBV+QCCvxi5caERYHLCPNGFiCD3RlzswMbTmkX6pskH/jNa42J24NjIhmKGVIHA+kt1V2KPUPv HmHltvJFB8jtlrk9o0COxsSkHGCfC3fpD05Ds4e9DoPp2gvOpAKr/G8mrDfE5XlfFLgOWOdAdSpg P/Zd/hCFo/I3L9vp0Dzj4nTpFCgTnDZFRZ6rMxvnz6xUZx4TJV8/q746y2Jxf8ZaoG330Zgm+xVs PAkZDYnQ+Z80G5MWfaXrIogHQi1vYEeYq2Kl0pTk1PZxxK4Rm9ofvMUBZqkByvUdZYg7YirHCjZ8 H+IRDKESpW1+F7gkVpRpJmWGyXE0JbFnVNrsLZG1fFg5nRLVtG5tqej0+CANle7ipGlV3XkKeSFc lLMP2Pc6s0cjUrhl3LLmjT3M8WDYiCYOTTPhkA99hkxcugomHz1bZzbuib1SS9Krswoe9b5pLjun b9t16uEfY7PjDH13zpdgw9vzOdfQf9qHJBO74cjzDnAPQ/+PxY6O7P/wq/P2n3CkKXy6jun2+TPz b54X4G/VmZcgHr+oj4rPKKsHbpOkHkb9mSewcVdnQ75vQpWm9TuqznQXCWBVb6MeRv2ZJ7Dw902d YGP8GQ4XHNdlVZ3pLDxarUmrl1ELMEdnNNJ5Hxvnz2xK/zN0944qpVlOfEbpBH3xZ1aqM3p1Xghy aOiND7eLU3+mR2h85gls1tU5M6Y8eZOUyQn+x9+rOI6P+WvNfz9HUXTHX7+4+67r3p77/tDfWWkd dBzWGeraBGn1Z3qExmeewGbpzO9ivE8gpA/mw8u9vfQL9cv1PQ3o8/sgOPs1B4f8Fb79DP/kzQl1 10WfnJOOkYrJR+dZRhLm+pCwuWML1FiHBqSO+jN9Qv2ZJ7Bx/oxcnX8Gw3+GH4fUL4B/e3r7B9k/ kfEXaEyUwcGJIpKJYyeOX11dcf9+J2/KcneXO/SAzBwcHKR7Xy4vn/WJ/shc31yTjIV7l2HK/Qse pNz+y5IWqjP9Qf2ZJ4Crs1n+zEpUeDj4OPAH8FqGH1nJAMTs9O3p2z/eiqCxntGntNLlztXV108Q sYR6JWpJjCVXnekP6s88Ab06L0XT4N/R+Eyf6Is/s1JLmn7r7x81nwv78YFJo1mxiOobv+b7Wf84 Nbn9ytH3Rqb8g5OLU33JwjniMghjV2OTdEbKzw3ArlRn+oP6M09g4upE3DpSZgbSVdrY4IZC9b3f tZTWt9ty3yXIk0geN4ZEpVzcSX/zlfHY1WjiM53Hfj8c2mamr1Rn+oPGZ57A+PdNPhtHdR0xV34Y uHnTB0oDVEFSjH9oTOEPPPq4FxKELHHZ39l1C3LXzlE6UJk4yib1p0fXsR6jRN839Yg5OjNVM/Cj /1V9AzF4/M4wJICHe1h38JWVYWuOnvvF4p9EWKqawSHZSkdqBhP+TBy7Ldt2uE+Aqm+yMSYUIGlt w32+0qTptn8RxnL0bX3MdpfdAH9mQ9oD4/5IP0uaRFcSfYW82XErI9grlS62+sNC/szHhF8GyBxB nVTM1BnsCPbY7P+p+r2w30HI3CP9JDyxGbad+Tqz6u+bJs5i0oegL0CmO5ca3wpz3HsjU/eiP3VV /ThJEnfgU/OUKTWd9cls06mrZWP8meH4oGe992dIZ6aswQ7LxN3e9ImF4jNDnDmEReYIHoxL0m3+ Qy8KPpRWFbBbPBh8SGwAAgqEuwiG8Yivr8CYbUpX0ZPWtWZ/BkzqjJ+b9B9JN6BydBiaVPYlF8bZ lTGdHRu0CVoxYgFZ4zFv38RMdJ/EK/MmR2ayKHR1NuN7bU8GPxS24H2THYlpCm9rdGYiPuNm1AWY zADUCmYGIOCzkJ3A22ExkX7G4bfvVF21Dn6ZtqR7GdcU+7zLJ/JYtc7g6kzcH2Ol5K9Zwxl9ZbJk AHvlUvOG27nZc/puwvxsz45INk4GZzKifVujq1bU3l7jzxWTN+mqr86y2IL4zETX5xXbozPTT+yx iGNJYxTP0hnpq1RGexGMoVF5U+pkmWx0er8iTS//b+AGaSrD/raYejyD0cSINV3zZ87I9OvunRts D8++9CBNddFyv5Qgzb+0z1S+Fmz5AzIz4xxdc7PPuv5JFtDYXk1tjNlUndlof8b/noZZeeD43t6F XH23TIval/e9gz+Pa38Gq/KWr9rWGd8L0t39qylPdsNYzJ8B7Sc27OV8ps6cjuxGr1qhSHdU9y4P YBJTWo2sjXlvX2pOPbJ5pYRnBJi5pARY0pq/bxr3ukAlH+PYUka2Ign1oGtcmD/xF0IVnFJHrjPk yUrSWBh+Ah6xwzJVEvVn1gFukQa6E2yXLVVzB/sCH9AdwD3yglpL7IAGTLXhfb/+JrCwP9N+Ygfm BFtM68yOf2M3qnXGthixaYKiXNPeP4UqHTY1mW+BpWaEH+KysZXJalPn/BliqpANuChU3MLePHaU w9yOp/h1ptdCwj4dm2khORLllI7Du+r5eAedhDQFN0r4D79KhJZAYqj/bnJpoB7egPoCp/uIFMjh Ds6rn7jxZ+ydFoWzb4sN4in+zJG5oR1niMKtbHRV+x9lCo2ojZIu5oSFWl5j+bjTUuHa4xy0Mpka SGLV/sx0fGasVsnUw4xNA1Wg4sr4YD6P/ZOav2hGVk1AWnuv0ECrZDdcnEkd36D2M2NseHyGhkDB zymWcijj8hY0XgAWcwXKYyvLzYh/n7z+ERM7FB3w7N3vTlcCNoynxGdS8+8cncFzl6ftehNZpdz6 JDNznvLUamCuYYK/zF5lgCibpCq65M+4UgUPaqH2I8cu2zmypUzspfvD3m120DBxfxyzN90gGJmn uEFnValkDPKkHl0a205eig1qDzzGxuuMS4Nc22EoYRj2kxJO1D4n3UfDkdwp2FgaaTb+DBTJBIkz owq+YTzBn8G64zguqYuQSYY39nGcjMlJLpdtHw7izPADoDDMxBHHwAWvvhg6nNKqVevMRCvGKI7h jMVxTLIRmOAV5uEmV0XCU8veJ+QGxbGH0lrdKU3o4TqyCkMfCrqo0xfIxW44ParEJ5P3W2xGYznS +KRTTz71Z9YC/ersnn7GY2W/tp4UP1U9BiQ9jEhKKr7axa34TMbN9ky66UozR2emvxRsnthV67tZ kU65gu1hi8ka+PkNKZEvV6aBhzCvSmXJaqdyONkObfU6M+7PUPDEQo4J6tLM6zomAuWxiX8u7Ko9 uQpDG+Sz99yR3W9aa/lGO8C9B1pBKsbfpaVNjrT11CXG1dmQ8Q7G2fj4TGafjuTPICE/HVX662Yz qfnUun3qu6rxZzLYkf/XVTCrvcNG8QR/Bo9v0PZnsmJXBNpuFdsXKvu/0F+6tJQXsrTNhGeAdQVZ 0rTQ+PIMz80FTweDdzbzNrCkqlK1Ev4evzr2ggBbVNeJ4+g/nCT81qh9/2DTthOMTRtZ2LcO0STn lLM/GP6oD9Dm49FkjpJoWLUKL4t++DNkYnjOVINcJxSNc/iJxE467qPXUw+Xr/XNXo3Edjnr7ckm sVh8Jnmd427N8/olv5OnJqyrL1CI6k7OzYg25e1ys3eWY25EwkDe/2vq7TGcEpOf9MiG+OOJPtbw nMBuAe3UfP98WAfJalZtSdPxmXuI7o07rQBcnU0Z72CMzW4/c4gbN4OQ5DTcbUnVgffQHdQF/sXa lNpc7jjXcIEPffebyXFz+5lXYPJfGAlsC/c8qc+lCfEEP4Xj23qWbCIL+TN/sFNHVLFfVHJAde6V WBNcq7JyZEfhldCv7QKBqPKo4UGPA1szoHHT2wxlv9e1qfw6VW1auT/zqPGbLtZ9i6xahZfF5ref KaAz5ugz/pzWLbf5QcqjdOMmogcsN+gQoCliM2CEDevxtafd1M1iMX9mQP3g838yz90zVnevH47d yPVyQN3R2tQO7/5xiL92QQvJi7awC8bYGTaHJaa36bQ/czAVmF0xZxsan9nsepO9mfEXf3x+h3gX tNx1eDaBO6C+mmmOor2Bt89p7EL2UFtRnJo/nZU+Rl+CheMz93A89QJoxaxaZ3B1FteZtaPvm5S1 s6A/cy/Fuu/jTvsza2dT289swffa28My/JmDxTd9GVYdn9ksnVF/Rlk7y/Bn1o76M/eBq6PfNynr ZRn+zNpZtT+zWfGZVavwslB/pkfM0Znp9sBdRv2Z+1CdUdZOX/yZlVpSZqbbJHcWasOxka9FVWd6 hMZnnkJov2XaBKiV9bpb8DwNjc/0iPn+zAbpTLrqJzb5CJvh8HHzbElvGOrP9Ig5OkOGJMnuQ+22 HzeM47OxTcWTjsc9hvytt+1FafNQf6ZHzNEZqhlsSvQQdbw1OF+oq4FUOprqIC6NfQM2yC8dR/2Z HjFPZ7hXjIsN+Eg0I4NfR1SWDwxS+S6lS/hZYruzMdMDSGwMqjM9Yp7ODM75w9HDWT2idAff4VKu qeMFtxBjNnncHb/GjRJRwPHx4zYO1ZkeMVdnuFcZEJZdlRo/sj37jdb4zfxfF5XUmHT3at1i40Ze LX0mPdnwLks0PtMj7tGZgWv7lTThYdw579v9dPbNFk568lsb+1e/c0GYMC9frUNtSGEqL4Yojjdc ZID6Mz3iPp2p6yXgMvc6c+dmSVBXWCbGXlwTWdx0mgzCNCi8aCXXy3WSPGj6RgJh2YPu8Qn1Z3rE /ToD/Lj2xE2ax2vuMaklMcYE0YrfZt+Lvx/za+Q2LDgvYPb+vpMcpmloxzisIYnZ3LjvJOrP9IgH dYZwpVt9ZhQWf69BbVwvbxQGdLTtiu9eTakNMwrDoEhiJ3tiuc8zx0sOg3DsItSEhXPeH4WxqM70 iIV0hvBtWLghLOL9ncFw8II+BbLf2Yk+tQMPRLrukMwCuHETkb2PMD0I8sOi2C3L8iQpk7LcLYri EHWhy4X2T0unb/pSoTrTIxbWGSZLaBjbCQ4oFvH23P84XI7kDH3fdV1UDPbkADWjMPA2rSuVo7gM 0jCcrOI8HThGe5d5KWNc9hiNz/SIx+mMxUlgOXLXj7MX5CXqBndZlkEqfP9B5dkZfvT9c9fFDhHq BRf5nIzDIPc23rBcOsUCrgpYWHnC8BKbB/bCZv2I8C6G+jM94ik6Y/Ejr5x41TEbPH4DGMrZ72c0 fFP+++uAIFOTDeYTprCvmaOn9QX4btDYuyiK3kWO4/z7LoqO/i+CTJ/PHPthm1B/pkc8XWdq3Cj2 SjymF9CNhSBxuTjxtuvhrUwhI3cp/UB+1aWAh3PkxHGSkO5QWEKOcQ+oFgR5UZSJFzvR3c/bbX+K KxWZF3te//9Py5mLe/e//KovB4dg/uMyP+3Edf3bq83sTVJRlok7PYyzskz+2PixPBXl2Wz+0Nld 5/uhJBRlW6H+VzazW9WNwdvM7rG7AvcdKjzYcHFT++7sPfyp8qnMKC+Ba3rf1OwleYzO4KkpKaVT cHdy6tC8LKle32fgUy+CHt2jwSI6o0H3LiKf+euP85Ik+pB9Bq65nNCZzGl9pekf0Rz3heM7x8Y4 Tuz09lOojcXKjNFI5UvimkhSyuNxzR7pDG5RqzMRN1YKYw56+VUjN+q5s2nwpg5kt6g/7Zd55UUI NmdUx+7hU7UzIel4RYEuiEnqeYExv9DKT8aUPFfSlnFijEeNpdSf6RaiMmvr4XpLiLTpwDPhehOR ibMCRaHoemBHsUuqUVX0idlFWj0VyRLlRbjZlNFju8rXSmcuqls15SWQm9z7CfmxC/V9UxcZisYQ gSxTXoJXevs/D47PEL+bmy9hehmmIzuYlbzIkBdRuKO1rVLnYHfGMQlPZZnyIlSPY+Vp/K+6gO3O Qu2SYURtwGy9Sf2ZDrKDnyeCCaCGG6hD87IUev8/i9qf8cZCib454Kkrg2vjlu5Sl+0KUdgP/Gwk LdA2NC+K+SoJ5dF8yI5Kk2cZNVv3L03Jd6pLTWhcYzxM/E8yIjB0xsXsfq4NNTrDUOq0VmfwpLAT 5UXIVcefTNUu5oZmTuu+fsIh1ZME+Sb+jcyGerW7RqUzyksyNBeSUh7L6ZvypMR/MlZecgAdOSi+ 0qA3cealNBhC3W7gFWaDQnvi6B6qMyvB0zY0yjajOrMSPobaFlLZYlRnVkOkXzkpW4zqzIpItemA sr2ozqyITDsKVrYX1ZlVUei7bWVrUZ1ZGWGgX98oW4rqzMrIHux4UlF6iurM6ii1EY2ypajOrJBU e9ZTthPVmRXia1fMynaiOrNKHPNOUoqyTajOrJT35qekFGWLUJ1ZLdJViqJsFaozK8ak2opm6Xi5 toHsNqozK8bVUWyWjs8d6SkdRnVm1UTVaEPK0jBGesFSOorqzMr5Rb+oXDZ22Dilu6jOPIZ7hu78 vvigHoXZl5SyOE5uTHhY2DH3zpMUv4XDoa7zus9gHb6ms2y7zjR9WZsF+vC951ZOH/EmKdVPtx9N PXQTzTg3Nv0nCY2/Z2fsMNtKJ9l6f0ZuUWJXFr08KjSPBc8DCsEcG7pymTGBS5Guyr3UelPX2Xad GdKNGxl448kqH4cqNI/k3JjPNC3JoQzMHqUHTqUvqjNdR/2ZkehMSf4MHpHkmR+Hdjgy3ymMJPmu NjdfbNqlQYLi1Hh2AEQKEYQjebeaGhNlZ6aolMQvTepQ/azdyCPUN7GPw9abLugS4lpKDxupvLtT nek6264zO+bGH3wmnTkhf+ZX3MshRATckotjsTdzQEn7IB184uUEy0XMSSsjdm+CjcE/lDnQbqGX qtA8jvPcUMAX/kw7pmbjZaozXWfr/RkP6sL+zD8HbPgsEwUen7gwfuBhGfyYShLcSmfoXt+LyAmq 3zI1WxnzDTvbUMKgoNESfdKoc7u2ItAREB5BZq8z/E1ctdSkRID/K39Gr2W32XqdIf5LOiNkcGj2 B4NhK1gjoQHQ6Mypfb30oa0zVbVInq4h3fzIjuUHXk0lQxW5GsfiBOJU5uYN+ZkTXaDKFXf1gnYV 1RnA/owAYWju4Z8lDaRqzL8y79Yvr29NyKGZtrpUDosxdzQJqT1eIl3OVHrT5kIv/sK8Nib1Yg+/ BX3wnqMuG8evylwCNWW1UqtPHUVvdfDvmM407WCq+EytM1m94am5pMmwUaUZ/gx0ppDnMOpZUzoz eKUtyxbl7xAVUJDypfVRX7Wztmk110vhiOrN3FVUZ0DU0pbM3EiKggEJtAMSUX0oMObPsMC01aWJ z7D/zjrjiZTM8mdoqY4etzB+FDvNNYziOGp5L/tOHFW/hNI9VGfAeL3pWlLwzjlIA5+lqvc3/oxv FWfHGPtme1xxGn8G+sIz8PRn6AwJl1qH0n9UZ/w83YMDzm8uPhSUpvcYpCyJCX8O3OIGDnngDzJa bMxBmhbDgYMUfHby11MXWfxGq+gVCGaQCpEZXPvLY37fdGz9+lk6Mxhc1s6SovQW1RlumkcgDe9D 4NoOFAPwBg7pRoUPlwXktt1MMjjiWUa2C/1zmpD3Y+MKYLbOYL26lErf0Zv8PrJgCaHFYWkCag88 R2em39IqSt9QnVkNrsSNZ5GZm1ZEU1H6h+rMi5NFUeSE8n57Njm/2FKUvqI689JIzOf+j8E97uhA UXqK6syLEydJ8uohd8VNzbEkFaV3qM50hQuTazhY6SmqM50hMzfalEbpJ6oz3cEvxrrCUpTeoDrT JfZHVU9xitInVGe6RXlPOxtF2VRUZzrGeaptaZTeoTrTOTzu0E9ReoTqTAc5M7l+iKD0CdWZLvLX galGc1GUHqA6003ogyhVGqUvqM48E/feDySfQWwu9R230hNUZ55Ju8/PJZOYUBsIK71AdeaZOC/Y lfiwoF5BFWXjUZ1ZiJ2d4c6gjpcMmyR0Jt2h1TK7ZPzAhFnV07mibCqqMw+zc2e7kLHXyrcd/toa DY34bHmpF9H+mQmPPsqMomwmqjMP4xiTBr9e2s7JXUhLEKSYIRfmKEcqABcv93LoAw2ZoO+elE1G deZhZGznE+oTz09NSOPbxpVHE61gqLdhaUaeKo2yuajOPEyCGlN0OxiQqR9Vg8YVJuXazAu+b2rj hSbRkLCyqajOPIx/xhGYnATGM6PyBP/KXMaffLeioWt3rkJzqF8jKJuJ6swiuM5Xiv5eDQZXLDkW /tpxRf4MEQUm1aZ7yiaiOvMgfmg9FoeGrMxMmFXw++aXbD8zhVuYMNHX3MrGoTrzIOcS8mWdGQQm p5kaGdp/+Gc11v/LMoyNDsGibByqMw/iSzWJRtIeDE5vZEYGsq3Xrqz6lIXwqSStbDqe3D5KL5Bf 9UmUEQVnRpVxl9w4L0zl26NhQHMr/RJpiPJc+Pqiuw94Jg31Xx/+7e1dhs/SmS7ipCaMtf60+Xi9 uzW3GKeHP+YwSU3gqFOz4cSqM/2hjzoDMqo//SUzykai/kyP6KnOACc3YaJR4c1FdaZH9FdnBoPz q9TslTpCwoaiOtMj+qwz4NwLTVioV7OJaHymR/RcZ4CfGGNy9Wo2DvVnekT/dYYgqQnUq9ks1J/p EduhM/BqLkJjUn3ZvUGoP9MjtkVngJukxowSV7VmM1Cd6RFbpDOEk8OtKahrLqXrqM70iC3TGbCf BMYEnkZruo7GZ3rE9ukM8J3i2uwVGq3pNOrP9Iit1BliP4Zb86VY5cfkyqNQf6ZHbK3OAN/9JTQm vFhNP1zKI1F/pkdss84QO3+U1ElOoR1JdA7VmR6x7TrDZNQhlylVazqF6kyPUJ0R/matyR3tjK8r aHymR6jOtIiKdGRMerWvWtMBNtmfeVqrCXdhjxret6QeQ1bd1xk9UiX9VPwUmUj6YVRnJnA9asoX lo62G14zD/sz5IKmfkSOaLcGDfDseNCPJbUDLC6AMSeSegRuPdCRgytGQ+I/h3PqDHxhG1GdmYHv 7NItHCQ/9DPv9fGwP0N3euiT0Tzp8f5yJE+yYj80NED9i5GZkaSohIeSejrwiiT1MKoz88jiYo/E poi1GrUWFqg3BXb8sPxp7sPL8TSdGVzaAYleisyEkqKL+1x/RnVmiUBs6KGZFvqdwsp5jM6g2uQV RUG1pwRTx8Gf0x2naDpudb0iEe/UxUpUO6ISm/+NtD+Ii+SnXTfwo6Q4kRZVtCHMMaMNicwryr+H ssJNStd/VVTDLUdl8bc8j6LiwHyhXWU3Nym+ioBkEzm28JPim6HVuygznQwWlZggU5zNqyHKKJlE tJUoK0pSDqLd3boNGA7m+UfY4EgWVGRFbswFVpxQMcmfiati8XGG2DWRM8iS4hUnac0rW2w5oFOW /w4wW35gnYmKcqHmZ6ozD+K7Do1SZfZ+S7RF3wpZ4H1TYNjMD+HP2FEJ/YHLUyLmcQtTNiWf3ybK KIL0a166tCT8zyX+xiNaZzeELRIhz+xSknf9hvmY5gAO2R7C7gsZpGPHSLR1EQqQWuhwHC+tcqTG WoaX2PkWHGZiUlsjHJIhGwMBxPYhH8DGbmmlOeAkZ8jzqdUFe550gMnRGeXMAGmzZ/eyXg2fmc83 OanTuS0xBXOOMcUmtColgbWF5F0dKl7r0PejOrMgIjYmzOMFLqvyfBbwZ9KWP+OmJqdfBtNdf8hy 87cbhWaEhS6UJKYZtvyBC3P5ZoIsMIm/TyLjuNGeCWnvq+tfMjfLpYZBG45Mink8zV1TRK6bUGVh SCaWwcYpD+gOFqaZi3k2bh+pwgWnO7QXZe/gKJT90OVo0oHNcZxzNzRHtBvSp9gNExeLMOufIOcj Koz1nlz3uA7pYuH1DzdLzWuag2xG7hWOYFWzDR06/EPylxKjMHwB3Z8kGeFRaf4cDP5TraJrQKdC +x7zqeFgxU+UHQU5h5fDp4ZDs1jdj+rMo/Cv5MFY1g658kIs5M8IZLS47SmMClt4iwkEgp8Hubnk ZznPBPKUZwvB9BJLIT68LK9NF3ZVRR5IJWDbw9bA7amBV4vl/mCftqJQDHwp9jT+ErNtx2fgG8h0 7ND+rKHgWVSYHWT5kRIpL5JoSlQ7KU3KFUk03z6wethlrXNpyMyNpOocPfOeZ3G5OJRO/dtWujHi JWOHtheanCg6T5wKzZ2ba76496I68wSy8gs7jPmVq836XoyF4jMmBPJaOyBrR6WEbaF69sMAb8+r mTtxaGAhlUX7I9EGlg7Me5dmD64rL6MNWz+wg+PlobkbDN7ScrazBNYo5s16xtPE7PKUc7XZQ/44 p/Ecx9gJTd0xkijdcI8LKrr1ruXFVKnMKo7PcsMaCHbn6EwTB5b3TY7Z49kd+EGcgCtlQqohVQom h47Mb42m4eLS1qIzfC0eQnXmqXx0dlN6IWUOTt79vH34SiuPZPE4MMVnAGx6Hzf0zSnNiKJQ4i8Y RA0LTibmBYa1ExFibxtAIewPiix5SkApLNCZ05bO7HL4ooI3bfyZ9qHZksU4Z9J63wTDZ2t/0J/Z l/AIu2+h+Q8vjM1vVivGmPG+yanyabTirs6a/cOvdkNeiooXr8Aa8WdoJ74WD6E680yiJA/IuQmL OKrbWypL4JHxGZ5+/xBKunJh4BicQy1qRGcqWxr4N/IkZ38GnglJFiSFl7VVAckcNk9BlNqfgdmR P1OLE+BtZ+sMl7XOeho4L3X7GdSbeGpVUPJz5vszQ5aAVMQ1WdSfieVCVLIGGg3miNUvlcTBn6kz UH9mTWTHySFH6YPC+/F/56o3S2Ch+IzoDPszZJwXIw7nkilYm/uTTK6qT1TAOKufCP4Mm7IfUCTV mL9pIWuOJHgKcnnbczntz2TmmlfVNDoDoRiP5GGnGa6GpYnPUEl28Fe8rSl/pnE6XLPH+ZkRJoXV F3+v0dEWbZ0RN2WGP4MkX1RkRu+0vKqCRRvKKgkf41SojOrPrBo/ipOc5eby1+JrrO7Ns3jQn/GT 0OQxJqkJrPNCjsUrTsEkjCmSMuQXyHAifsGPMXRjDxMv2TU3CSAF8MkZ5Q2/oM7B0VB6kWQSZBwn qBFVG16Y4HRw62HzC899g+U+7CzGIX/7L8WXScj8I8+aqMNvu7MyvCKbpGMOs5j8LK+d4xQp+WK+ E0Aq4WA4ONoNdyMQB+YAmWSFCXGeLnZHyktQxEFU4FTcgY8CffIH5zgVf7AfzI4DQzRRM3ST8GLg ocQ4lpObG+/DwEnofACX3uMSuygoFTIir4aGqw+xPdw9B5cFlwdb4tAGh3YvUMYH2zGrziwfP/tv fHJGN7rZC/LEUb15Eg/6MzBhsG8bs9g2eDAH8Rbg2vPbqAu++FXbF2OOpaUN8R1r4DFk/GjgDSEd BIdi/Ka6RVbLggQTpI1hYcZc0cb7MD08zpvGKXS0weA3mYMSNIeOyNIFaf4yThUBurwdDD5LGrU1 qAdwKOpNts8Ht/gsp3BN6FU2iZSUX16wT1LtuWsvQQQHCjh2QlhfsGodZH3A5tQgO3UNETrDV00q jbX7Ng/VmZfDzaJP9FEmCNOg9CLVm8fwoD8zjO6iKIMXEdGEgP1Yh4J0Bo/aJmLmXx1ALkqHaiEZ tmdopX8Da202dMswxNMcOWPLekN+DTS8Ssm5wML/G2LZ3dCnw7oRbTnILuA5HdY/8T9xatLEzrkk TUEydui7qlzjuMglj+25ZIEJHDo3uBO0x2BwjgnW4bCYpT+YefsXpj4uBW+BlThwEMcz/RkIWUBf CL+15cDeKHw1Ie7ELaES49h2ZngVjsq/+FwBfL2whJpBg3ivjygOysJb3ofqzIvj+250xZ8vkOB8 +dPeccpDLBAHngRGICnWmUWAP/Og079xxM/u9eF+6pd5C6M6s0J2XKdkb5MJSo3gjDHRdO3xOnNa +fpgUZ3xb2x7vj6BCuVjdeAx+FVz6UegOrMOPkZecVDXiukzzejc9/0BNwHdWlDraQvvAu+bWlRR F/tSVmYelhr6vgnI3OYjARSKOb8E1VWW2cVRnVkvfhaXeZpSm1YiDA6TOMpc1/Xnvv3sLxTobAbV epw/s1OmaYD/7BvumGcW6JTGOzjAlt3qveY5uM01eBE8ZH/2l8w8AtWZrrCz73hlHgRpE/0P8tJz orvMhbMjW/UbPu0rOdfH+TNKp1Gd6SJ+5sRJWbz/vveNTY9IoTqJFzvk7chmvUNevNpuUJ4QB1a6 iupM1/HduyiOk6TM37dCOiFkpyhJeOIIytMXf0fOzlxASlVneoTqzIbh+/tZ5DhX5O6kTR0LhKg6 Q3wuThKP3J67n65PzcI3iqqJGH1LpDrTI1RnNh3fd90si6LYS4o8kPcnLcJwD84PSVBeFGWSkAvk vCMnyPWH63vBZUv9zoljz4OzVhSH+Z/vA27yKoR6a/YH1Zke4oPzty4sOXr3Nzyfi7wVXZ7Dzbcb 6solvIQqwTNi3wjCVOwW5W5JnLw5oU9gkuQXDw4T8ctXzJUnZbmL7aATeX72ewBFo73TPeRCmQmj EEeQQ80lDJvWRab8qrdmf1Cd2UI+DoYDf/Bx+HHok1PhOI51KnYvDvMASnH5kCg9DAQLUvX7WX54 WOxelPCjvqI2B0/KcaIsI09q6KMMVI421B8tkw4GV3pr9gfVGaVDiMpwc1ONz/QI1RmlO9gPlmUo AG0/0yNUZ5TuQCrDPbkQy/Jn5Evmhij6/IQWrQ8TRe8e/nB5JfhO9PnfVln86PN4m6tbFHV8ySwy +h57OajOKJ0hgy9jO6wiHuPP+FlMH6VWnUKMsTfRSQJ1AnMp6THuYicbZA+b3xzYGZP0LD5GlL87 s4yPxo0JJCKaTsqbbe8oMwCnPP7FE73Xa650zT8HF+2mEKW5WVa7LNUZpTOEY/f+I/wZO9JbeDjz M2WP+p1r45WzuoFyOPhdjbzyFDyYtyRnQB1iUavuBb8jfwDbACCrPmyUpRVukpTthf5kB35usjdL Z6BHkmKcxFvWV3aqM0pXyMafuYv7M7DvIo7JkBfrDmF/hpgcGZPHcS4x6KcBf0xS0yDnXc5/OV02 uJ4x3M1mRImJiiEBAZLUbPI5OvNCDctVZ5SOsrA/c2wMD6VC/UrwgodoDXdQE9i+zL1n+DNUc5LU FBBB9mMgZ0vRGSqw/cq8HuxknAnXZIr3C/gzS0R1RukoC/szYdVZZ062TC7DwSBGLYgM6RPVKpqe rGjxTVr38t+Ch0shrbKraEOTWknwD7lKdWBzoXRC/bzY12I8Tvd1mVDXutAZ6qc8nA7BDMOqBy6u N1EZ08ExtmUXjoe2DqtB9LkCFwbWsxhyR4xpON0/Hg7GW3xngRzaDmIDyWNMMniNjDuJg9HBw+RP vjxH3H4zLDkq03z0QTnarobryA8XJGRpo36ZaQxhEbqFUJ1ROsqi/kyrtkJWRl1yB7ZdMYyEraXq m3zwmheDaZ3JTcrGxpvK2PtiSba/c8lmSGZaXPOC1jp2V+4kWXdSXPO5OSKVkfoml28sUEb4OAyN wtt0Fs5+z1vWCDBd4I8pKwVOkHb7IdvVl6KlMxwZqoSqOpiV4e+S5n7Es+pgfGifY16V82VVB9cA B0PWwoPdj9eozigdZVF/pmXDFrJ91CWuaKAl4NdvTaTyAl9k2mzZePaO7esWSAAZGLZvvckJzZVN kNJAgAKUD3txdQvOBXLGX9rNmR4NcqrDXmxKZYzNZxpIgeUssB6T2LadyDhucMCmA7IeV5iKsZxl 4Dxw3ugMqI/v37A4DHH4pt6Es7BXqCVOTO2FyW4o4yVdIeuH+deLR3NUZ5SOsqg/87cdH8V13X2X R1eBt9COKJ+b0KqHX8nGzJdK59a/2IPp4OFtjRBODk/pq8/zatRLLB1Vj/naytnmIR6U3pcx+Fu8 mtQZaGHV6101eCTMFlU3KEDpogwR2/UxinwLiblo6V0FHI6fdE5c3wPUCWOjM+OSUevMVzkYVttT 9M+xXyhj103qzGXlz3iyG+p/dAA7QNzADv69EKozSkdZVGdstEWqG2QFE6OK1P5MHf6dFZ8h3E/Q GlSfIFQ0ykhE73JoV654gP/ZzWrBGQy+tB0eqjfRBNb6oD/TDMkP1RNtKNmvsTWxVLwN8p1QP/k/ OzcOiVwVt/arMlZeytvZOvO62sDWuv6oapL2CqHkNiHU43gG1W52pE3ZzA7+vRCqM0pHWVRnrBfh FruQmpwMfEJn4M9Ys68HpZ7xvsmV4C2qG3c4coNLI+KavCjyUePP1DrTBDAI8WfgDk36M1PK9m9T xmpQbLFhlD8/27ORELBf5uRoVc5PmyO4FVWTo9SWkcbBs4y7JpXOfDgw/3LCKgc2CouieD+n3vRP PWhv7SfZYXBFSNvj9D6A6ozSURZ+3ySvjOm+Z7M4nvRnxGTrp/WMl9f10NXkXcCAbRcYYAgTCTnb 3HziLZCorT6oJecHsp7vz6C+IdUbP+YyNEPywy2R9zZi+uxCQNwuMCltqSTwM0lqUIXj7OCB8TWo /Y7BHzN1ZrArZUeBsGUgpQgbnRkree3PlFXI155w7c/YUUAXQHVG6SgLt58pZVR+WAlb4zx/BnZB tkv+xpTOoLbCigGLhsGmlekTpX0n3ER9Wv4MdrMal5Ahz/dncDI3XDb/zCpBS2egaryoZOtNzG98 Mjwk/3DPHsq/GaufVVAvGnxG2JpH24cj9oPn+WJIiqh1plIsHAwHtQEreq1urxB24sBLbL0Xv47P 4JR43HJbRuzHm6k/o2w+i7cHRqUhyLl6kZFFCPTgtsEOBibhhiak7SiWI3ZXAfszl3mOnOjB7aM+ kYOUHvQwPuQeGnrX/aOO1Yi9IqsDbIh6zhWe9YBG9ge1ElVgwxQbIuNzylFg5wLqgFWhNXrM3Lzn gtAcJlj1+tqkMz9oRA7W0nHWVEYensdpevHhQtLZWihWjfJjy5R7FMsw8x7X42yEg7K6BXw4rPJx CSroNRtUFmu+cACMM/w+cOnFt5W5h1GdUTrKwv5MLSclbAVaIpCdNhbN75y4jZpxSIsmhMBPr36n dRKH8A95xoyoqkQaZM4+0L77jXJJZQwGyHOVQUeDv+1kEm7ZZssIP0GwR7MNV3Ief9cP7RFSFhCv sCrRcq/aNB9qcRkPh9Qexm3a8bCj90rSWE9bcvYpXQmcwRua8T5cQ3w4G/+AFphdd7BDQmRhQc14 /k9qeM0yVg7+Q2chYZsHUZ1ROsojdGYw2BkuOOTDfZsN24PzIcN6bnhf3gsfGhuORT9aYJWkiPEM F8x+uHCv82PFmMwcR/tHkhMsepozUZ1ROsqjdEbpNqozSkdZPD6jdB7VGaWjqD/TI1RnlI6i/kyP UJ1ROor6Mz1CdUbpKKozPUJ1RukoqjM9QnVG6Sgan+kRqjNKR1F/pkeozigdRf2ZHqE6o3QU9Wd6 hOqM0lFUZ3qE6ozSUVRneoTqjNJRND7TI1RnlI6i/kyPUJ1ROor6Mz1CdUbpKOrP9AjVGaWjqM70 CNUZpaOozvQI1Rmlo2h8pkeozigdRf2ZHqE6o3SU2Dhtjh3n7x/6d/P+xvTrlaozSjdpj3KtbDjG /D8alWXDqp2cdgAAAABJRU5ErkJggk== ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAVAAAAERCAYAAAAt7P8QAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAH8/SURBVHhe7Z0HWBXH+sbTLElMbze93dzkJrmp mhiNvffeC/bee++9ixUFUVRUEDtYUAQBpSkogtJR7L0manL/73/e4Ryk7PEs6wGP3vme533YnZmd s2z57ffNzM4+BWXKlClTZsgUQJUpU6bMoCmAKlOmTJlB+58H6P/93//h7t27Uv/9739Nqenp169f z5Jm1FgP68tuf/31F5KTk/HHH3/g6tWrptQHW1pamk32SZll0zpXZmOeWXosN2WVPX72Pw/Q06dP o3z58mjevLmUt7e3vODv3bsHBwcHXLlyxVRSvxFwCQkJ+Pvvv+V627ZtNaE3Y8YM9OjRQ0KxZs2a ptQH23/+8x/8+eefpjVleiw8PBxOTk7w8vLSdexmzZqFixcvmtbuGx+y/fv3l+dt/vz58tqxZi4u LoiLizOtKXvS7H8eoCkpKahSpQpu3bolQda6dWssX75c5p07d06Cj+LNcuHCBQlXeo6nTp3CpUuX ZDneWFw3w/bs2bNo1KgRzpw5I7fldjSW42/QI719+zYqVqyI4OBgWYbbmO3y5cs4f/58hufC3+Pv cx+//PJLBdBc2MaNG9GwYUPs3bsXbm5uFj39adOm4eTJk3J537598lhnt9jYWHTv3l2eu/3798vz aM0GDBiAsLAw05qyJ80UQAVAq1evbloDbty4gU8//RR37txB5cqVJRR79uyJYcOGYfDgwbh58yZa tmyJUaNGoX379nKbdu3aYcKECfjhhx8QHx+PKVOm4KOPPpKeJ2FXv359GaY3aNAAEydOxKRJk7Bj xw68++67qFWrlrypS5YsKetauXIlmjVrJredOnWq9GJbtWol96Fp06ayXgVQ/TZ8+HAsXbo0I5Sm +LCj58/zePz4cfj7+8sHEx+eUVFRcHR0lA9HPsgITJ5fNrW0aNECRYsWxdq1a6VHywck61uwYAGa NGkizynXGb0QnB07dpTbKIA+uaYAmg2gtA8//FB6Gb/99psEaIkSJXD48GHpCRKwTD927Jj0HHnD 0FthmMabddmyZXJbQpAQptHDpRf6+++/y9/jdrSqVavKemgMzbld6dKlZcgZExMj03hD80YkSOnB fvLJJwqguTA+8L799lsJQYblZoASkDy25gdY48aNERISIh90jAx4nnjeIyIipKfJY75nzx706dMH 165dQ7169eQ5Wrx4MebMmSPLlC1bVkYSrHPLli3y2uG1ogD65JoCaDaAHj16FN9//72EpRmg9DQ6 dOggbyxCjl4mvUHeKAy1y5UrJ8PDcePGwdnZOQOgZtARoARgZGQkatSogU6dOskbOTtAebP/+OOP cHV1lZ4oPR3e1AMHDpTlqS+++EIBNJfGB8/WrVtRrFgx2RRy8OBBdO3aVbZ5Fy9eXHqMbdq0kV4m zQxQhv+VKlXCkiVLZB18iI4cOVKWMQOUkCV8uT2jCKa98sorEsS0fv36KYA+waYAKm4U3kQBAQES XBUqVMho9DcDlO1dJ06ckMBj+dDQUCQlJUmY0VtkOkNBtrWZAcqbkDccwUmA0nNlWbaj0cMloLMD lDcp66D3wk4ohoT0ltjJdeTIEbi7u+O9995TAM2F8fyZI4Vu3bpJmH399dcSpDxnpUqVygCo+byb AUoIcns+LHl9aAG0Tp06CAwMlNEGvVCe7/fff196olxmaK8A+uTa/zRAeVMxHJs5c6bU+vXrZWjH dNrq1avlTbRixQp547CHnvBauHAhxowZIzuACEJ6n2zbZEcFQcftWZZtnYSip6enDPP5G/RSo6Oj Zf3m36MR3jTeeGxDZTl6rKyL9Y4YMQK7du2Svbr8TWX6bN68edKrZ/MJ2yMJOR5Ltm+zDZTpBCjP NT1IwtAMUJYnALnOB5kWQNnxxAcwOw3Zbk2Qsref7eFs82Z0ogD65Nr/vAeqxwgxszKvmy37Os2c plUuc5qWGd1OWU6j90losp2THiGPIdPoWRKcfBiZ0/gwZRlzGvNZjlA0H3/m08xlaMw312cux99k kwzLmdu8lT15pgCqTJmy/3k7cOCA7J/gSJvsxocvown2eXBoo/nBSVMAVaZM2f+8JSYmIjU1NceI HFqXLl0QFBQkm2LYdJM5orALgPodOoF5Gw9i/sZD9qHNhzF/yxH7kVe4UJhdaNa6A/jbQkh67PxN hJy4ahcKFdodfwm74i7ahXYev4jDp68j+oz9KOXybdOZu2+xaVex0CfWbuS2N8G0Z9p25dotOK7y w/zVe3VpzRp32X8xfvx42eyS3dixm9040oLNNOz/+OabbzKacWh2AdCus3aiQMXpKFBphn2o2nwU qLHQflRuEgqUGW8XeqrYCNz76/4FlNncwk9h9I54u9CYnfFot+YIWq8+bBdquUo8lIOSsWh/it3I O/b+229mc90dj+cbueKFxsvtQl939TTtmbbFJp3Bs193RoH/dLWqF/7TRYTgZ+UIGopt1tlNC6C/ /vqrBCg7hDmm2O4A2m2OLwpVmYnCVWfZh2ouROHai+1HFaegcPmJdqGni4+yCNBVEacxdleCXWic UMd10WgrIGoPcnA/goXBKXA6kGo38jl2znTm7tsKvwS81HQFXm7mZhf6poeXac+07VjyWRT4rjsK /9jTqooIWbPMADW3ddauXVt2CHLEDEdq2F0IrwBqRQqguZYCqHU9EQBNOYcCPwhA/tzbqor81Nu0 VU7j67wc0vbaa6/Jsb0cakiYEpYcmsjhaByPzbZQu+tEUgC1IgXQXEsB1LqeGID+KABZtK9VFRGy tSmAakkB1KIUQI1JAdSYdAH0JwHIYv2tqkixfqatbGcKoFpSALUoBVBjUgA1JusAPY8CP/dD4V8G WFWRX/qbtrKdKYBqSQHUohRAjUkB1Jh0AbSoAOSvg6yqiJCtTQFUSwqgFqUAakwKoMZkFaCpAqC/ CEAWH2JVRX4bYtrKdqYAqiUFUItSADUmBVBjsg7QCyjwqwBkiWFWVUTI1qYAqiUFUItSADUmBVBj 0gXQ4gKQJUdYVREhW5sCqJYUQC1KAdSYFECNSRdAfxuOwr+PtKoiQrY2BVAtKYBalAKoMSmAGpN1 gF5EgZKjUbj0WKsqImRrUwDVkgKoRSmAGpMCqDFZBegJAdDfx6BwGQFJK3rkADVPFmtW5jSzZV/O nq9luQHocxWn47kK0+SkH5nTuf1zFUx5ldPzCsq0aTI9V4DWCdBCtRbhueoL8RwnH6m5KGdetQXp qpFe3/20+SgoljOXf6ByAdDnSo0TGouCZSdkSS9UboJMl3liWZYtM/5+WrbylmQrgI7bnYzxfili OTFHnjl/rG9S+rpvoixLyfRsZbWUW4A6uHPCjyi0EmojYGdO5zLTzWoj0w7LcrL86qgs9VhSrgEa cgJLw09haVhajrylYafgLPKWhN7PWxJ60pR2MkvZB+lhAfpik+Uo3NAVzzdaLrbJmseJQJhHZU5/ scmKHGkPki6Alh6HwrymraiIkK0t1x4oP3HAd0Jr1qwpP2PBmUn4pUgPDw+Zz08jzJo1S34BkZ+A rVatmpyodPfu3TJfy/QC9MXqs+C4IQI+oUkY6LQ3A5Tc9h8NF2Clbww2Byeg+cStKFh5Jr5q44xN gfEiLV5sOztHfRalE6BF6i6G844Y7Ig4ga6OezOgWKjWYvyr/Sqs8Re/HZKMoa4HUFjkfd9tLdb6 x2FbaApqj9kmy2WvU1M6AEpAvlVzOlZuj8KO0AS0GOuFAmXHyzzC8QcHJ3j4xcDLPxalu7viWQHa ZmO8xPE5Dq+AWFTuuzIDrA+SLQA6cls0qrfthdK1m6DFyLkiLStEx+1OQvmGbdB0yDSM25MCh4lL UKJqHZSu0xSN+k+UQM1cXku5ASihONs/GVGnrmF/8hX08Dqakd7JIxqJF2/JqeiOn7uJTqLOziLN 9/gFHEq7hr0Jl9BhrXa9mZU7gKag9wwXVG7QHLUdumDBvviMvDm+0ajVqjOqNGqFxt0GYn7AcSwI TEDjrgNFWku07DsSC4MSM9VlWQ8DUAKzn8sB7Iw8BRffOLztsCoj/dXmbpjgcQjbxH3hJf6XTzut lXkEbtu5AYhIvISCDZZlqc+SdAFUOAJa12p22QVA+Y1zfpCL0ztxZhLOkffSSy9JWPJjavysL7+R zq9V8suU9D5Z/u233zbVkNP0AJTeZNtpPhjmHIDnq83CenHhlOixSmw3C88KD9MnNBG/91wl8zz2 HsPrteYKaM7BO/XmY3tYEl6qMUezXk3pBOgQ12D0XBCAwsLD9AlNxScO4ukq0gsKb3SCexh+67Me zwoPdb24wF8QAN20Pwn/bCdAJbxQ34Mn8FqjpTnq1JQOgPIpPGVlIGoNckdBcUFFHD+NjxuI/1nk Pf3baARHn8S7dWZIyPrsjxchzXi8XGUKXqw4CW9UnybBqudCtAVAW4ycg5aj50sQ/lK2Mgas3pcp PxF1ug1F7a5D0KjvOOl1thozHz2XbsOYnXFymrrMdVlSbgDKqebizt9EWwG58TsTsP3YeQk8ArSL ZzRiBTjpdbIs0/iXdXO6vDWHTmPJ/pPSg81cZ3blBqBzBSSrNm6FheK6Ge6yCW2HTs7wLBcFJ2NB QBwW709Bu6GTMGjhWgxavA4dRs0Q+SfQacxM9Ju7Ikt9lvQwAH2vrTu2hZ+Qnmb7efswZEWY3I76 qe8mrNmXhCICmC1n78W0jUfkNt/0WI9J66OwS0C3gM0Aekk4CuLarDDZqopUmGTaynaWa4DSo+QH ufj1yp49e0oP9K233pLgnD17tvw4GgHK76B/9dVXciooftRr27ZtphpyWre51gHK/DleESjefaVc 7jJ7JzoLcfnZijOwZJsIwSZtwxsClCfOXcdnzZfI7YpUm50nAC0ktFEA8QsBREJyyLL9KNbLIyPv qw6rsCcyDX5RaRjvHo4Cooy733H83m89XqnvhOu37+K9ZiLEMdX3QOkBqICfz4EEfFR/Np4tPR4z 1gSjRCdnmfd0iTHYHpKA71ovwheN5uLqjT/wStX0OhdtDEdAZCrqDFkjvdjMdWrJFgCt3r4P+q/y l+F4o4GT0MVxXUZeb5cdaDZsFjrPWZcO0D3J6cvC86zaujvq9RyJMZnqsiS9ACUQOwoPMuzEVQnB Xhti5GTDrU1A7LjuCDZHn8W6Q2eQJDzRbuvT6+yzMRZRwis9lHYdHUSZzHVqKTcAneS1D017DoHT /lTM9IlAuZr14SyOrTl/zq7D0jut0bIj5vsfxwjXLajepC2WipC+Yee+aNlvFJaEnMhSp5aMArSI yP++9wYMcA2RAC02YBM8ggQwCVCRTw907taj2HP4NIJiz+G9dmvweouVcA9IxBstV2LPkdN4rr6L Zt3ZZRWgJwVAy4trudJUqyoiZGvLNUA5pT2/WEhAcvonLr/55pu4fPmy/Ib23LlzMzxQfi+bHiq/ Zsgy5m9l0zi3HstNnjQRvzYaaBWg9EBneYajpPAyWbaHoy86zNiRsd1zlaZj6poQOAuQbg5KwMdN RTgt0vMKoJSX8BC+6rhKAHQBRqwIwc891sl0eqCDnIPQapov3mm2DN5hqXhdeJvvNF0Gx82HhY7A MzAR74q87HVqShdAx2FbcBw+EV7nM8IbneNxAMU7CA/XlP+m8DIXbQrHvPVh0jt9udIkFCo/QXqh v3RcAo89R4XnOi5LnVqyBUBrduiHvm5+EqANBSS7zPeU6VwvVqYSmgyegmpteqKMCNmHeIamh+xC zC9TpxmGbYrMUWd25cYDbS8UfvKqhGZvAdDDIpQ3A5RtoHJSZLE+PzAFO45dyPBC6Z1uj72ARUGp NvVAJ28MQtMeg7FYLM/YFoYKdRvDOfw+QOl9zhXnq2mPQRji5ClgeRLdJs1H7dad0UKE8A6Dxss2 1Mx1askoQJn/n55eGOIWKts/fx24WXiciekAZV4vL3gIT/njDmsx2C0ME9ZFot28AKzcG4+BArpx p6+h2fQ9mnVnly6AViAgp1lVESFbm6EQnp/eZQjP74fs27dPwpHfPed3zOl1sm2UAG3evLkM4blc qFAh+XEms/FrhYTwpYsX0XbyJl0AbTxuM2Z6ilChxmzsDE/G9x1dUayrG56vOhOv1ZmL12o74vOW S7A9lMCcLet8s44jdgqAviH+WvuNDOkEaLf5/hi/OhxvNFiKvYfT8G5zVxQXYTs7jRZ7R6P84I14 XpTzCEiQIH2riQtequeEb9uvQlDMGbmsVW8O6QzhhzntQduJm/GagOKRxHPSG/21o7NsA2XoXkRA k17p2t3Rsvw3LReiiAjhPxVe6e7wRBTKpxC+9fjFwqOcgJHeMfipZBkMWndAep4MzxnO0ztlmF+z 4wCM8jmG/qsDMHr7MQxcK7zqavUwYmu0Zr2ZZSSE7yqA6LgvBRsPn0U/4WEO2HxMeqA9vWJkO+dO AU/Ous/lnl5H00P4g6ex8chZOAjIatVtVq5CeAHHSvWbwdEvRraFdp04X4A0HLN2Rso8hvhs52w7 bDJ6THUSy0mYvTMK8/YeR7123TF65XbNerPrYUL4f7RxR8DRM3hTeJRDBCS7LQrGd3024OOOa1Fu hDdcd8fhNeGJ1p3kK+qMx/vt3PFDn434TniuB+LO45OO6zTrzS7rAL0sv2ZRmPe2FRURsrXlGqDt 2rWTnie/lc1vlzOEZ1soZ2zm5KP0UJ2cnKSHWbp0aZQpU0ZOTMoQ3lJvvJ420EL8K8qMWRGEPYdS ZHsoe+IZur8qvMsvWi0RUE2BZ8BxfNtumexEervBAkTEn8ORpAvYfTAVr9Saq1l3DukEKHvVZ6w/ BN9DaWgwYTueqjofK/cclwD9rM0Kubw94gR6LAiQHUzlB2/CroiTWBMQj49br5Dba9WbQzo7kV6u MlmG5LsjkmWn0JvVpmK5d6QM78v3WoFd4kGybNshvF9vFp4uNRajnPdiZ2gi1gig/tpxKQqZOp0e JFsAlDCs03UoStVoiPbT3aR3WUWE56N8YjPKdJm3Hi2GzxYhfIr0SEvVbISKTdpL0Gauy5Jy1Ykk 4Ma2zyMiJGenEDuJnA6chIvw7HoJeO5PuSLDdY/IM7IttIdIC06+IjzV69gSfU6C1OyVWlJuAErP c7CTByrWayZDcgKy26QFGLrUC1M2BaN607YCsM3RZvAELNyXgHl+sajerB0qCuj2m7NCeqha9WbX w3YitZq9V4bps7dEy7B9xMpwVB+7E6+I/OGrwuEbdQqr/BPwYXt3WSfFjiQ3/0TbdSIRoByRU0Xc t1ZkFwDNbtaGKOmx3AxjIhgLVp4hPVLzOsGakS5krot/zWmZ061KN0DTw3WzmGb+Szhm5JlAyb+Z y+qWDoCaRW+zoAAhgUpx3fyX6ea8zGUzp1mTLQCaocy96ZmXtSTzrfe+m5UbgFIEI8NwijDkulnm dHOYrpVmTbkBaIYYhmuG4hrpFsta1sMAlCrSZEWG2PZpDuGz52ltlz3NknQBtLK4Z6vNsaoiQra2 hwaoLSw3AM0X6QRovikXAM1r2RSgeajcAjSvZQigeayHBWh+yDpAr6BAVRFZ1nC0qiJCtjYFUC0p gFqUAqgxKYAaky6AViMg51lVESFbmwKolhRALUoB1JgUQI1JF0Crz0fhWuKetaIitRaYtrKdKYBq SQHUohRAjUkB1Jh0AZSvSrOfwYqKCNnaFEC1pABqUQqgxqQAakzWAXoVBQjIOk5WVUTcS7Y2BVAt KYBalAKoMSmAGpNVgKYJgNZegsJ1l1pVESFbmwKolhRALUoB1JgUQI1JF0DrCEDWc7aqIkK2NgVQ LSmAWpQCqDEpgBqTNYAeT7uGgnWd8UKDZVb1Un0X01a2MwVQLSmAWpQCqDEpgBqTHoAWqueiCczs eknI1qYAqiUFUItSADUmBVBj0gPQwgKMLzZytaqXhGxtCqBaUgC1KAVQY1IANSarAD11Dc83dEWR xsut6iUhW5sCqJYUQC1KAdSYFECNSQ9AX+AnRfg+vg7Z2hRAtaQAalEKoMakAGpMegD6YmOd+9vU zbSV7UwBVEsKoBalAGpMCqDGpAugwrPU2lZLtjb7AOjsHShUaToKV7YTcfIBjXdpH5nKCXhxtng7 0NPFhlsE6LLQNAz1Pm4XGuZzHM1XHEKjZQftQg1cIjB3XxLmByXbjbbEnDWdufu2fE+87HDRakN8 FPqmm6dpz7QtTgD0pWYr8WqLVbpka7MTgO4UAJ2mDbNHIXsDaNkJKFx6rF3o6aLDLAKUn5YYsPW4 XWjgtuOoL6BVyynMLlRjcShmBSTBUYDLXrT5cQBoVysAPX0NLzdfhddartYlW5sCqJYUQC1KAdSY FECNSQ9AX2mxGq+3ctchBdD8kQKoRSmAGpMCqDHpAqjwLF9vLQBpTQ7upq1sZwqgWlIAtSgFUGNS ADUmPQB9VXiXbzis0SEF0PyRAqhFKYAakwKoMVkDaPzp68KzXIu32q7TobWmrXLavXv34ObmBkdH R1y/ft2Umm63bt3C0qVLZd65c+eyfAdOAVRLCqAWpQBqTAqgxmQVoGcEQNsIgLYTgLQqywCdPHky Fi5cCH9/f5QvXx5379415QB9+vSBt7c3wsLCULx4cfn1YbMpgGpJAdSiFECNSQHUmPQA9A3hXb7d 3kOH1uFwVBR27doFX19f/PHHH6ZagF9//RU3btzAX3/9hUaNGuHkyZOmHGDGjBlYvnw5NmzYgC5d uiiAWpUCqEUpgBqTAqgx6QHom+088E4HT6v6h9DhqEjs3LlTQvT27duyDobkRYsWlet///032rRp g+TkZJlHY2g/aNAg6aV27txZAdSqFEAtSgHUmBRAjUkPQN9qL+DYcb0OWa6rQoUKuHLlivRAuXz2 7P1jw3WClaD97rvv5LLZFEC1pABqUQqgxqQAakx6APq2gOO7nb10yZL5+fmhWbNm6NatG4YNG4aE hATUqFFDepsM4bt3746hQ4eiVatWqhPJqhRALUoB1JgUQI3JKkDPXsc7nbzwXpcNOmQZoIQi20QZ xhOa1J9//inTucx0c4if2RRAtaQAalEKoMakAGpM1gCacPYG/tF5A97vulGXbG0KoFpSALUoBVBj UgA1Jj0AfbfLRnzQbZMu2dryBaCZ2wy0TAHUihRAcy0FUOt6YgAqPMsPugtA6pCtLQOgV69elYNI OYCUwAsJCTHlPLytWLECo0aNMq3lNL0ALVBxKr5uvQTVBq/FR40WoGCmbQqKvOJdlqPywDV4u+5c uf5Bo/mo2N8d5fuuxms1Z+uHtE6AFqwxH991dkfV4ZvwbjNnFOI8oqa8F2svxG99PFBt+GZ80no5 Com0F+oswu/9PFFFlH+tgVOW8g+UToAWEiradhGq9lmBN6tMRqFSYzLyXig7DmW7OqN892V4pcKE +3mlxqJEpyX4oPb0LOUtyRYA7b/lODot9YXDzDXouS5cs0yHxT7outxfLvffcgzt5m+Gw6y16L76 QI6yWsotQBuKssM2H0Mvz+iMtJpCtYUGbYrBaO/jUlwnDNusjMTwrcfQac1huZ65Li0ZBejsgHgM XrYZQ1y3YrZ/XM78vXEYuMQrR7oePQxAX2y0HB+1W4Ma43bgpz4b8GKmvBcauuLLrh4yr+SgLbIs 9XrzFag4wlumv9Nqla7f0QPQ97tvxkc9t+iSrS0DoIGBgXj11Vexe/du2WharFgxmX7t2jUEBATg 6NGjEqwcbMrXmWjx8fHytSfC98SJE7IO5kdFRWHv3r04c+aMLOfu7o4JEybIZS3TA1DC8qeOy7A9 JBG/91yJkJhTeLP2HJn3XIWp6OW4CxNWBktgeuyNxfOVp6Hfwt2oOdQTTcdtwnr/YznqtCidAP29 vyd8QlNQY+QWBEafxiv1F8v0gjUWoNOc3RjtFoLivdYh4MgpPF9zASatCUf3eXtRZdgmeIck44Xa i3LUqSkdAC1QcjRqD1iFxRvCJEBDotPwooAm854pPhJz1uyHw9j1aDxsLeZ5HkDB30cLjZFADT2a hqYj1uUbQNvN24TSDdug9Yw1+KF4KfTdcCRLftcVAfi1Um3U6jkWA30S0GjkfNTuMwFt523Eb9Ub ovf6Q1nKayk3AK22KBT7ky9jrE8cNkadwcQd8ai5OB2gBGusuEk7uEehy9rDsnxrt0MISbmMvl5H ERB/Ed3XHbEKUSMAnXfgBJr2HoEukxeh3aiZaDloPOZmK9Nq8ESUrFQD8/anZknXo4cB6GvNViAi 4QJqjN2BtYGJKDt0m9yO+qTDGviJa77U4C2ivjh0WRgkv0e0am8CGk7xRakhW/CvLuskVLXqziyr AD13Ax/02IKPe23VJVtbBkD37dsHBwcH1KpVC3fu3JEj8zkmil35HEjatm1bOQA1IiICy5alfx6U A06Dg4OxZ88eCdzVq1cjLS0NkyZNwpo1a1CtWjU5tsoqQOfoAGjFaRi3PBDVB6+TnuhIlwA0E2Dk ds+Um4J9R07gx/YueK78FGwPTcI/hBf6XIUpEq7Pi/J+h1LwQlXtunNIJ0Bdd8WgeO91eKbyXMxY fxDfdXGX6ekA3YPOQh81d8Hm/Ul4vvp8+ISl4D2x/lSFOQiOOY13mizNUaemdAD0uRKj4LE7Gl81 mYunfx0BN59I/NhqvszjJMgHj5/Ga5Um4uVy43Ek4SxeFLB8s+pkLNoQiu7Tt6LJ8PwCaByqdx6C 9gu2YOD2JFRq00cC1Zzf2zMSJWo0QvNJrqjVa4wEaOOR89B41EJ0dwtE6QYO6LM+KlN92sodQEMQ ceIqqi4MgYPwLIMSL6G6gKoZoIkXbsFPgHLu3iQJwp7CS10dnia3m7QzHgGm8lp1m2UEoAtC0/Bz idKYsy8Rs4SnWbFBC8wNvF/HYJct6DjeEbXbdMtXgNLbJCSnivNQoI4zSg/ZiiU7Y/GCCaCfirxt YSfwmfg7Y+NhtJnjj1/7b8KmAylY5huHKWK7IjrgSekB6Ic9t+KT3tt0ydaWBaD9+/fHggUL4Onp Kd/5pIf55ZdfSqiWK1dOQvTQoUMyJKd17NgRBw4ckGOo+KK92fjiff369eW2bBbQAig91t9//x2l S5fCez/VsApQ5s/bEIGinV3lcscZPhmeK+H6fQcXhB0/g11hSTiceA5ftnKS2xGoc9aHocmYjVZ/ I0M6AMqQfPOBJHzqsBzPVpuPQc7BKNbLIz1PeJsM1T1F+DV8+X5sCE4UafNRZ8xWhBw7ix0RqQiL O4f3mrnkqFdTOgBaUMBvx4F4fFBrGp4tMRpT3fahZAdxDEReAeFt1h20GiHC02SZE2evSpB67Y3B mxXHo+OkjagzcBUKCY80e73ZZQsPtHLrXjI8H+idgLr9JklPlOlcr9pxoIDoIbQW4X2dfhMEQBPR ccl2lGnYVniko1GuSXv03Xg0R53ZpReghGQjUS4g/pKEXIsVhxCZdi0LEFsJj7OxKLM1+hxm7UlE fedwCdkoUe6A8ERjzlzPE4ASnMVKlsFc8Zfhe4V6zeSs9sybuScGDbsOxKKIM6jdrgcWHTyXY3tr MgpQgvLnvhvRa8l++UnhH0UI7xUsIioJ0HTvlOujVkcgOPYsfheeaIXh3ohOvYwP27qj8/xALNh2 FM83XKZZf2bpAqjwLD/pIwCpQ7a2LADt27cvLl26hBIlSuCnn37C8ePH5aBSjn3ibCUM4QlQZ2dn udyyZcsMgNL7pHl5eaFevXq4efMm+vXrJ1+ZsuaB9nDcbRVuhORwZ3/UH7kBBYRXOWX1AbHshafK TBb506RX+lSJ8Xi65AR4ihD+rZoz8XTZyRi3Igg9HXdKT1SrXk3p9EAXbzuCcoM24JlKc7Fo6xF8 03EVnqriiOeEt7nS9xg+FYB8qrIjpnpE4ONWrnim6jw8VX42nvptOnwPncSbjZZo1ptDekJ44YGu 2h6J71rMx1O/jMAGAcf/NHPEUyJ8p2f5zG+j8NTPQ1Gw+AgERKbg+TJjsSXoOHwEUGOSziM25QLe qjpJs+7MsgVAa3YfKbyS9Ri0Ixllm3RE+4VbBSiTZF75pp1QsmZjFC1XBT/8+ju6uu5FiZqN0Nvj oIRpJYfe0hPNXmd25cYDpecZeeoaqiwIQdtVkfCPu4iqYpmhPcGX/jdMtoH6HD0nlyvM2y+3Gyl+ h2F/jTwA6MKw0yhWqqwEKD3QSsIDdQxMxvyQNEzdESWA2lTqh2LFUalhC9keqlWPJT1MCP+BAKHj 1qN4Rnig5Ydvw7yt0XiurjMK1V+G6mO2Y+SqcOmd/qP1KumN/tJ/IzyE91yovgu+7uYJ/yOnbQLQ xHM38ZHwLD/t661LtrYMgLKds3fv3nLZxcUFzzzzjAzhy5Qpg3nz5mHx4sXYtGkTTp8+jbJly8qw /oMPPpAAZQi/cuVKuS1Deob/9FL52hPD/lWrVmHcuHEyX8v0tIEy/9OmC+EfdQIOk7ci4PAJvFBl Olb5HsVr1Wbia4el6DJrO6a5H8AUIQJ11LIAEc4Lj2HkelQftA4vaNSrKZ0A/bK9m2z77LNY/E5Y qvBE52FDUKL823mOHxZ5H0GLqTsQeOSUKL8AZQash8OMXXDefhTjVodKT1Wr3hzS44EK77F4eyes 9zuK3jO3wTsoDm9WmSTC+iMoWHI0SndxRuux67Fsy0G0Ge8lPdZCpdLbTnvOyM8Q/jg6u+wRYXpj 1B88Q4Cymkwr07gd+m2KzijTfPIK1BQeJ6HZcPhcVG7TV4TxC/BbdQHT9ZEZ5SwpNwAl3HbGnsfS 4FQEJFzCgI0xMlxfuC9FhvRLglIx1TcB8Rduov3qKDQQHqijf7L0Rtk+yvZSrXozywhA5wWnoP3Y OWjWdxQaCG+z04R5GLJsK+q06wlHkccy8w+cQM1WnfO9DfSVpssRKLzL3k77seNQGv4toDhu7UHU GrcTn3dcC//oMzJ03xKairbib5HGrtgoQvieTsECqKmoPNpHdjZp1Z1ZegD6iQDj5/19rKufj2kr 21kGQDnnHTt96FnS46SnyWWOvj98+DCio6NlGaalpqbKTiX+ZT69TbZ1mo2hP8sTtuxUYt758+dN uTlNby88e9bfazAPP7VzwWu1ZsuOpc+bCcCIvCJVZ+CHts74tyl0Z33/arEIP7ZzRtGOLvi+zVKR brsQniogPM0PWizDD51X45X6TrLt859tVkgwUl+2XYEfu6wWnuZSuf56Qye5/mU7NxQQZbXq1JQO gFKE4qf1ZuJH4YUWKTdOepn/rD9LwvW1SpPwY8v5+GeDWRKU7LHnNlx+u9pkvFl5Ur4BlOrhHoLO zr6yA4m97N1XBqH/5tiMfLaF9lwblrHedXmALM/w3pz2IOUGoFSdJWGyR53AJBCbuEagqetBmd5B QLOzyGuyLEKCkOXpqbJTqaGAafa6tGQEoBS9z3FegRi/MViG9DP3xGLSVgHwTGUmb4vIsq5XDwNQ 6o0Wbvip9wZ82mGthCF75d9uuVKG8u+3WY2fRd6/OgvHReSxztebu+FHkfZ5p7V4XoT+WnVml1WA nr+JTwUY/zlgu3X1327aynaWAdBHaXoBmm/SCdB8k06A5odsBdC8Vm4BmtcyCtC81MMCND+kB6Cf Ce/yi4HbdcnWpgCqJQVQi1IANSYFUGPSA9DPhXf5r0E7rGvgDtNWtjMFUC0pgFqUAqgxKYAakzWA JgmAfjFoO74assO6BiuA5o8UQC1KAdSYFECNySpAL9zElwKOXw/bqUu2NgVQLSmAWpQCqDEpgBqT HoB+NZRw3GVV3yiA5pMUQC1KAdSYFECNSQ9A/y3A+O2IXTqkAJo/UgC1KAVQY1IANSZrAE2+cAtf D9+F/4z01aFdpq1sZwqgWlIAtSgFUGNSADUmPQD9ZoQvvhu1W4d8TVvZzhRAtaQAalEKoMakAGpM VgF68Rb+I+D4w5g9OrTbtJXtTAFUSwqgFqUAakwKoMakB6DfjVYAVQB9kBRAcy0FUOt6UgD6vYDj T+P8dGiPaSvbmQKolhRALUoB1JgUQI3JGkBTBEB/GLsHP4/3s6qfxiuA5o8UQC1KAdSYFECNSQ9A fxTeZdEJe3XIz7SV7UwBVEsKoBb1IIA6CYDye0f2IELU3gA6MyARcwOT7Uabjj4BAL10Cz8LOP4y yd+6Ju41bWU7UwDVEufprL3YflR6DAqXHGEXevrHgRYBujLiFMbujLcLjduVgHpLw1FtYYhdqMqC A1gWmgq38JN2o93xF0xn7r49lgAVYNQEpoZsbQqgWqLXV8fJflRqNAqXGGYXevqH/hYBujbyNCbv SbQLTfVLlADlrPH2oErzD2B1RBo8xDGyF+1LumQ6c/ft8QPobRQTYCw+JcC6JgeYtrKdKYBqSQHU ohRAjUkB1JisATRVAPSXyfoA+puQrU0BVEsKoBalAGpMCqDGpAegvwowlpi2T5dsbQqgWlIAtSgF UGNSADUmqwC9fBu/CTD+PiPQuqYrgOaPFEAtSgHUmBRAjUkXQAUYNYGpIVubAqiWFEAtSgHUmBRA jUkPQEsKMJaeFaRLtjYFUC0pgFqUAqgxKYAakzWAnhAALSXAWGZ2sC7Z2hRAtaQAalEKoMakAGpM egFadk6wLtnaFEC1pABqUQqgxqQAakxWAXrlNsoIMJabu9+6HPebtrKdKYBqSQHUohRAjUkB1Jj0 ALTs3GBUEHDUI1ubAqiWFEAtSgHUmBRAjckaQE9e+QPlBRh5fPXI1qYAqiUFUItSADUm3rwKoLmX HoBWFMe28oIQXbJk//3vf3HmzBmcOnUKf/31lyk13f7v//4PV65cwcmTJ3H16lW5bjYFUC0pgFqU AqgxKYAakx6AVlpwQPOY59ADALpy5Ur069cPc+bMQevWrfH33/ev8f3796N9+/bYtm0bdu7c+XgD tFAlapr8mzOP6ffz7pcVylb2gcoFQAvVXmySvrwHlbeoXAC00G9DpXKm388rlCXdlKaxjZaeVIBW ocQNRmnmZ8szr3O7zOUs6UkE6IuNKFfN8lp55nWt8pZkFaBX/5DnoNqiUF26eeMGLl++LJUZkqVK lZLeJb3PmjVr4vTp06YcoHnz5pg/fz4GDRqElJSUhwOok5MTunbtiqFDh8rKaGPGjJFp1KxZs6Q7 fO/ePaxatQq9e/eWadevX5dltUwvQJ+rMAXVB3tgjmcYfujgggIVp2bkPVN2MjrP2o4p7vvxWfNF Im8avm/vgnFuQRjtug//qO+o6zekdAL0meoL0WDCdkxffwhfdlyNggKM5rwX6y1BjwUBmOEVhV96 r5dpL9R1Qq9F+zBrQxSK9vJEwVr3yz9QOgFaoPgQtB2zDjNW+uODahNQsPh9KL74+3AMme+N0U47 8WbFMRKYzK/WywWzV+9Do8FuWcpbkm0AmoTOM91Qv9sQDPfcr5GfiHYTxbFa6IUpe5Mx0M0XDXoO R6PeozF8Q4hm+ezKLUAbOYfDPTwNM8W+Zc+rsSgETkEp8Dh4Gg5uh+T0dOO2x2HdwVNovvxgjvJa yi1AnXYdRPsBozHM0TVL+qqQJPQcOwNt+gzDOJf18Iw6m5G30CdU5M3EukOnsmxjSQ8DUALy2x6e mLXpCJpO25Nlm+cbuqLs0K2YLfK6LgpCoQbL8HarlZiw7hAWb4/Fij1xKNzAJUt9lqQLoOL8VF8c qkvuq1dh5MiRGDVqlIQojUAsWrQobt++LaHatm1bJCcnyzzaxx9/jHXr1uHo0aOyHPlmtlwDtG7d uoiLi0NkZCR++OEHCcqvvvoKiYmJuHbtGm7duiV3qH79+hg2bBjS0tIQEBCASZMmmWrIaXoAyvyS PdzgfSARnzVbhKiE8wKKc2XesxWmYszyQAx22otv2iwRZRLwgkjvMXcninZ2Rbk+q+EbnizK2hag VUdswZYDyfixxzocSriAVxs5y3SCtN+SQPRZHIgPW6/AgWNn8bxIH+yyH13nCbiJtLC483i9cXp5 q9IB0AK/DkGLEe6YuSoA3zedheOp5/Fy6ZEy7+mfB2L51nDU6OOCMp0WYcW2CBT4ZQh+a7sAM1cG 4J1KY/F1oxkCoENy1JtdtgBojwXrUaV5JwxauQff/lgU47yPZskf5LYbparVR+P+40wA3YNhawPR 33UHStWojwk7j2Upr6XcAJRtaFFpV9HD4whWhp3E9N0JGd4m5/H0i7uIgRtj0GRZOFquOIia4kYc t/04wlKvoJdndI76tJQbgK4OSUblOo3guCkQDr2HYMqqbRl5bsHxmOa+Hcv2HkUDh06YvmaHKe8U ardoi1pNWucLQF9v7obYtCv4sbcX3PbGo/qYHXI76ovOHtgXcxb/7LgWC7xjMMg1BJ92WAvfyDS8 0tgVb7VYoes3KD0ArS48y5pOYdYlzpslK1mypOQXPdDatWvLtlCzlS9fXnKN4Pzuu++ytJEaAmh0 dDTCw8Px5ptv4u7du/j3v/+N2NhYnD17VrrB9EyZRrtz545Mv3jxolzPbAQtpQegBUX+pFXBqNDP XZYduHAPWk/aIpefKTcF/odT8XOnZSgovFLC8r16jnI75j9fZTr2HEzBC+Jv9no1pROg7nvj8FP3 dXi2xkJMWBOOH8Qy0xmiO8zYjUECmB8JWO6ISEVhEbK3m+0nPdBP2rhhj7iYXm6wNEedmtID0F8G Y4NfNP5VfyqeEctOXiEo2mKOzHv6x/6IiEnDmxVG49Uyo3As5TyK/DQQu8MS4OZ9EJFxp1C5x9J8 A2hd4XkOWL5TwDEF9boPQy+nTRl5Y7ZEoVT1+ujuuA5N+o/HZL+k9PStUejvsh0VGrbGRN+4jPKW lBuAEm6hyZfl3xbCowxKSl8mPB1WRuJAyhUcPnUNwaJMjUUiXW6zH7uOXcgTgC7xPYgW3frD45Dw RHdGoFZTB3gdvZCRv/ZgGpb5x6Bh2y6YtyUI64+cQ9u+w+G4cR/qCIjmNUCZ/5mA4zj3gyhUfxlK DtqMZb7H8YIJoB+0cceeqNP4oss6uIpz1WjKbnzS3h3HxUMqOvUyhqwIlV6qVt3ZpQeghGPtJeHW JcpZMldXVxmiL1myBA0bNpQMoydKaHp6esro2sPDQzqGDxXCs33A0dERHTp0wKJFi2Rln3/+uWwj WL58OQIDAxETE4MKFSrI8mxLYN4bb7wh181Gz7R69eqivhr4pHhDq22UBOG8DRHSo+Ryxxk+6Dp7 h1wmXP/Vygm7BDi9Ao7hYPxZ/KvF4gx4Lt58EDWGrJPrWnXnkA6AFhLaLDyFT9uuFABdJGH5S29P mUcPtNKwzXDZEYM+ToHwCEwQHuhiVBEe62Kfo+gjvNP1gYl4qf6SHPVqSqcHumP/cRm6PysAOnXF XpRsOy8jr2JXJ+w8EAfP3YeRfOoSXhbhetq5q6ghQvi3K46FX0Qinv91cI56s8sWAK3ZvjeGCo+S AG0+ZCp6zPOQ6Vyv7tAdg9390X7yEtQXYbsZll1nrUbjvmNRp1N/TNxlO4AShnWcQrFXeJmVBTCb uEbg4MmrGQDt6B6FlMu3Ud85DIM3xwi4XpLeaV4C1HFzINr1HykAegrOew6jQs162JAJoKsOJKH/ tEWo3bwtFu+IwATXjeg6fBJc9kajRuOW0kvNXJ8lGQUoQfljnw3ovTRYhOLL5PL6oOQMgDJcX7tP 7KNLCLaFp6LamO14uckKvOuwCq+3cIOziCCaz/DDCzogqgugS8JQR5xra6q91DJACcqgoCDZSUSn jx4nnUTyjXkHDhzA7t278ccff5i2SLdcA5QEZnc/PU8CkD/2zTff4Pz586YSkG0LH3zwgXSJzev0 Vi2ZLg+04jQMEF5nK+F1cnnu+jABRQ+5zG2p54QnWqDCFGwMjMMbNWfKNlJHr3A0GbtJeqZa9WpK pwc6e2MUao3ZhmerLsCyXbH4quNq6X0WqLUIy8UT+XMBV7aTss3zgxaucPePk97n09UWYu6mw/iw 1XLNenNIpwfqvDEUvzg44ikRsvsEHcPXDcSDx9Q5xPbNAsUG46VSI7BHeJ6FfxqA9QKmXzecgedF PuH6Yr4ANAlNB0wQHuZaTA04ITzKVtIbNec36Tce9YVXWrFxG5SsUgfDPILvb+uXjIoNHTB686H7 aRaUGw+0/Lz9OHTyGiqKv+1WRWFn7HkJPA57oUcafoJA3Y+myyJw9PR1Cd2KJoD2zAOALvM/Kr1L LtPDbNF9oPAyz2cp4xl1BqMXr0G/SfMwfe1O2V7aRnihv5UujxELV2GdCOkzl9fSw4Tw7wsvc6kA 4bN1nVFj7A5M33BYAHGZhGJVAcxxaw+iYD0XfN5xHTYeSJF1SoltezoFY/TqCJsANE0AlHCs5xyh Q+GmrWxnuQZotWrVMnqo6HEOHz4cb731Fjp27Ig+ffpg6tSpkth0d+mtduvWDW3atEHPnj3lNlqm tw303fqO2HYgUXiUh+C+OwbPi/SN++LwerWZ+KbNUizdGom1fjHoPmcnnqswVZaLP3lZwnbsiiC8 WHWGZt05pBOgH7Zagd2RJwUsj2Hp9hg8K2C58+AJPFtzEeqO3y6eyonCmzgsvE0BLAHWhhO3w2Nf POaJNE+R9lJ924XwDL+/aTwDW/fFwHVzOOatDcI7Fcdg275YFBRwrdxtCRYIGK3ffQTVe7vIDqcv 60+T5Rd7HcA4Z19RR/54oCPWh6Bcveao1robqjTviEkirXyDlrJtc9KeBFmm88wVaNh7lIQsgUvP s2a7XqjXbahNPVCKnqdbyEkBxPM4IML0zmui4OifjEWBKTJvVVgadsSk5/VeHy09ULfQkzh7/U+E pl7B5J3xspxW3WblBqBrD54UIfkINO3UG9UbtoCLAGrPcbMxZsk6OG7aJ8N7h95DRbguosDt4Rnb uYcmi/LN86UN9CWh1QEJWL47Dj4RJ/Bp+7WY5hWFehN3iRB+NbaEpmKhdwx8o9KkB/p9Ly847zqG +duOYsfBNOmN6vkdvQDlBwSt6ZEDlO4sPU4Cksa/XKdbyx4sistMZ1l6qUz7888/s7QbZDe9vfDS yyw/Bc+Xmyw7jrheUKzLv8LDZHohIfbAM43Lz5dNV2Hhner5DSmdAC0oPM0C1RfheeFRFhDQpPdZ sMbC9L+1FqOQAOrzQs+JED+9fNY0lstep6Z0AJSSPeu/DMLzRQdJQMr1YoPE3yF4ToTxTC8oxHSz mF+46EBRXsBTrGvVm1m2ACjFzqGp/qmYwjbO3QmYKsL3SeKvOZ9QnSI8zixlRZnJAozmMg9SbgBK 0cPkq34VhWSILrxRpnG5soAf33ZhPsN6lq/gGIwKogy910rz0sP97HVmVm4AKiU8THqdbN9kKJ+5 t3394XMyz1P8zbwNRwWwfH71wrMn/XnhZbId9EXhfRaq7yLS0j1NLsu8es5ynd5pYbGeXt5F129Q VgF67U/UE3BssOygDkWYtrKd5doDzQvTC9B8k06A5pt0AjQ/ZCuA5rVyC9C8Vq4Bmg96GIDml6wB 9JQAaAPXg2i8/JAOHTRtZTtTANWSAqhFKYAakwKoMekBaEMFUAXQB0oBNNdSALWuJwWghGPTFZE6 dMi0le1MAVRLCqAWpQBqTAqgxqQHoE0EQJu7ReqQAmj+SAHUohRAjUkB1Jj0ALSZgGOLlVE6FGna ynamAKolBVCLUgA1JgVQY7IG0NMCoC1WRaHV6sPWJcrZ2hRAtaQAalEKoMakAGpMegHaWgDSuhRA 80cKoBalAGpMCqDGpAegrd0Po82aI9blfsS0le1MAVRLCqAWpQBqTAqgxqQHoA4CoG0FIK2pjShn a1MA1ZICqEUpgBqTAqgxWQPomWt3JBzbr422rjXRpq1sZwqgWlIAtSgFUGNSADUmqwC9fkfCsaPH UavqsE4BNH+kAGpRCqDGpABqTLoAKsCoBUwt2doUQLWkAGpRCqDGpABqTNYAelYAtJPnUXRZH2Nd njGmrWxnCqBaUgC1KAVQY1IANSabAlTI1mYnAN2BQpzwmBC1B9VcIOfvtBs9JgB1jzwl5/O0B02R AA1Ln2bODsSp8VZHnJQTHduLAhJzfmaH83ty6jlC1B70TRcP055pGwHaxSsG3TbE6pKtzT4AOsvO AFrdMR2i9qLSY1C45Ai70NM/DrQI0HmBqejmJS5UO1B3cbNwbs9SM4PsQiVnBGLq3kTMDEi2G22I Pms6c/fNVQD0+foueKHBMrvQN53XmfZM2wjQ7uJ89xTnW49sbQqgWlIAtagHAXR+0An0EBepPajn xlhUEgAtPSvILvT7zEBMFwCdvS/ZbrRRA6D0QB8rgN4QAJXn+5gu2doUQLWkAGpRCqDGpABqTNYA ek4AtPemWPTdfMyq+gjZ2hRAtaQAalEKoMakAGpM+gCqDUwt2doUQLWkAGpRCqDGpABqTNYAel4A tN+WYxiw9bhV9ReytSmAakkB1KIUQI1JAdSY9ACUcBy0zboGCtnaFEC1pABqUQqgxqQAakxWAXrz roTjEO84qxosZGtTANWSAqhFKYAakwKoMVkD6AUB0CHexzHMJ86qhgrZ2hRAtaQAalEKoMakAGpM egA6VHiWwwUc9cjWpgCqJQVQi1IANSYFUGPSA9Dh2+Mwcke8LtnaFEC1pABqUQqgxqQAakzWAHpR AHSUAOOYnfpka1MA1ZICqEUpgBqTAqgx6QHo6J0JGLtLh0Q5W5sCqJYUQC1KAdSYFECNySpAb93F WN94jN+dYF2+CqD5IwVQi1IANSYFUGPSA9BxAowTBCCtyp4BunbtWjg4OKBLly7w9vbG//3f/2HR okVo27at1KRJk0wlc5pegBYoPwXNx2/Cki2HUKbXShSoMEWmF6oo8sTyoEV+mOcVju/aOaNghako 0W0FZq4LwbQ1Ifi82UL9kNYJ0OeqzkP7mbuxcOsRFOuxBoVqzJfphWoswKv1FmOoS7DMqzh4AwrV nI83Gjph9IoQzNschc9au8py2evUlA6AFioxXP7tM2MLFq0/gH83mokCvw3LyHut/FhMcPHDNDd/ fFhjEp4rPgy1+q3Aim0H4bo1AnUHumXU8SDZEqCcBKK7Vww2HTmHPXEXMdw7Tq7LPPHXJTQN+1Ov Yn/KVUzdkyRn3clehyXlBqClhBouCYPnwVNwFJArNydTngBf1fn74RyUivWHTqO5S4RM/31GIJqK ZY+IUygxfV9GeUvKLUBHuO9Bvc790Hb0bMwMSMqRP3KtPxr2GCqXZ/gdh8PImajbsQ/Gbw7LUdaS Hgagz9dfht8GbMIinxh0mrfvfjpVzwW1xu0QebEY4hpiKu+CD9qsxhTPSCz0jsEXHdfo+h1rAL0k ADpRwFFrTtjsmrQ70bSV7cxmAB0yZAh8fX1x5coVfPfdd7h58ybatGmDQ4cO4c8//8Tdu3dNJXOa HoAWFPmV+7vD3fco/lFvLg7EnMKnTQWsBDyfLTcZsz3C0Hm6Dz5psgBbg+NRpPJ0NBmzAV+1csIP HZyx+2AKnteoV1M6Adp4vA9cd8bgc4cVCDl2Fm81WiLTC1afj8HOgWg7YxfeFNAMOHIKLwi4umw/ iurDN+GTVq7YJ9JeqrMwR52a0gHQAsWHovMkLwxfuAOf1pmK2OTzeL1C+nZPFx0Mz92H8Xv7Rfip lSPW7oxCwWJDMGTedhQT6y+WHonnfydotevOLFsClBPc+sRegPvB08I7SMTh09fllGPMI0D9E69g xPY49MwFOM3KDUB/EwCMTLsmgBiO2eJGmyVuNAKPYC07Owh+xy+g/cpDqCZAWmtRiNym4txgbD1y FmEpV1B8mm0BOs03BmVrNcJYr2C0GDQRPeeswuzAlIz8GXviUKVJG5Sv11ymT999DL0c3VGhfnOM XLM3S10P0sMA9LWmy3Ew4SI+7eCOOZuPoNHkXXI76l+d1mJ3ZBr+0XIlJq47iGFuobL8ltAUfN9z Pd5rtRLvtV4pymrXnVl6ADpFnDNOoK1HtjabAXTQoEEYPnw4XF1d8fbbb0uAtmrVCtOmTcPy5cuR lJRkKpnTdAFUeJRTV+9HuT6rxPIU9JvvizaTt8rtnik7Gd4HElFWeKUFBUzDj5/Bhw3myW2ot2rN xq7wJJsDdO3eOHzXeTWeqeKIsatC8GO31TK9oIBl9eGbMcvrINpP2wnXXTEoJLzVLQeS8M82y/F0 pTmIS7uCfzRemqNOTekB6K9Dsdn/KD6vOw1P/zJEeqG/CDgy7+kfB+HAkVS8W3UC3iw/BqlnrqCI 8Da7TtkEzz1HsH53NH7vsAgFf8tfD7SL51HcuvMXBmw5hm4CmKEnrorl4zKPAN189DzCTl7DQQG3 MTvi88wDLS3gFhh/CSVm7EPdxaEISrwk5++k90moRp26Bm8Bm70CpPVFPvOW7T8h8w4kX7Y5QMcI cNbt1A+zA5IxbmOIBOPc/Wkyb27wCdTr2A9j1gejUsOWmcCagmrN2uULQAm+f3ZcixErw/FcnaX4 td9GrBDbFTYB9O0WblgTkIAOs/2xVnjPpQZtRomBm+F/5DRW+cXDMygJH7ZZZTuA+iVh2l4dEuVs bTb1QJcsWQInJye0b99ehvCtW7eGh4cHwsLCcPnyZVPJdKNHGh8fj8TEBDQfudIqQJnvKMLzYp2X yeVOM3zQ1QRe6o1asxBy9BSi4s9h3+ET+Lz5IplepMoMrPOLwa9dRMgs1rXqziEdAC0ktGl/kgzF nxVwHOwchGI916bnCYA2HO+N6R4RqDRkI3YfSsOLtRbgx67uiEy4gNDjZ7E9PAXvNXXOUa+m9ABU wG/7/jgZnj/76zBMWxmAEm3FtiKPofl3TefgaOI57BfH5ljKeRHSj8ELwuuk5/l2pXHwDopFQRHW Z683u2wawgsg/nnvb/TZdEwuHxDe3MCtcel5Qr1kuRgM3nYcx8/dlB8Fy16HJekFKL1Mltt97IKE XG3hYYamXskAaKvlBxF3/gbKiHKtVxyUHmfH1ZFYKsBVY/4BRAjoV3YM1qw7s3ID0BFr/NCo5zC5 zJC8VPW6cDyQDtAu053hMHw6xm8KRbm6TTBFRECzTCF+fgGUoKQn2XtJMArWdcYPvbzgEZiYAdB3 WrphW3gqqo32kbBsPt0P5YZtRXDMWbzYwAWVRnrDMzAJheo5a9afWdYAelkAdLp/EmbolK3NZgAd OnQo/P395TJheurUKdn2GROj/R2S27dvY+/evdgXEIA6feZbhRs9yd6Ou9Bh2jY8V34Klm6NFCH9 GjxbZhIKVZoq20efFsvPlp4In5AEvF59Jp4T6xv2HZdtocy3JUCpqR7hEpTPVJgtvNHj+FfbFXiu ylw8V20e3Hxj8XkLVzxV2REzPA/i45bL8FxVRzwt8p/9fQbCRMj/Wv3FmvXmkE4PdOH6/SjRbgGe /mkQAg4l48v60/GcCNUJ0OdEiP+0WH5FANMvXFzsApbPCk+V4C0s8veExaNQPgO0s/BAUy79Icfx dRXh/NGzN9BXwJTp3U3fsOHs8r0EDE9cvZ0nAKXoQUamXcUvUwPQfFkEtojQnGklpUcagnAB1N+m BUjv9PCp66jvFIrRW49jpPCc48/dQO91RzTrzazcAHSSdySqChjODkzFCHc/NOw2BI4hp0ReCkat C0DXGcvQZepSlKhQFYNX+KRvJ8pyG7aNmoFqTQ8Twv9DhOEr/eLwTHUn1Bm7Q4TqkcIbdUYBAdSq o7wxerXwTmstFZ7mamw8kILvenhis/hbsPZSFO2zQQD2hG0AevuubCOeJf4fqxLlLBkdvjt37sjm Ri5nN3P+f//7X1NKutnUAyUQaSdPnkS1atXQoUMHiwDNbHpCeLZ10svcKIC4ZEskXLyjZMfRpsA4 vF51Br5xWCLT1vnFwmHSVhNkD+Fw4nnZsTTBLQgvVJmuWXcO6QTo242WYHtYMlbtOYY5GyLxdOW5 2HXwBJ4VAK0ydCO8AhOwYMthmc920SrDNmHxtiPYEpIswctQX6veHNIB0IICggzfN/nHwM3nECYt 88PbFcbCO1j8tgBj5R4uWOx1AF57olGmsxOeKjpYhvmL1odgne9hNB6yOt9DeHqdhCfbPsOEJ7f6 4GnhbcYh/ny6t+kbdwH+Ipw+KML4Wf7JMszXqkdLuepEmhmEeSLE2xEjopeES2jqHI6ZuxNFWrLs LFoYkAKfo+dkaE+PlDAsKUTIhiRdluDVqjezcgPQWcJTatZvLGo6dENFEb5P3RWN1sOmotfcVell hPc7Y2+8DOHnBKVKMNR06IqffyuFyo0d0N9pQ446tfQwAH1RyGl7LNz2xGFzSIps75y6Pgr1JuzE WyKE9xAe5mKfWPhGpqH04C0oXM8Fkz0jRf3HsVXA86su63T9jjWAXhEAnSP+l7mBemQZoEFBQahd uzYaN24smx2zQzQ2VjhEn3+OAOHwZTabAZQ/mPlHs68/yHIzjInl2KFkLs+/ZjE9PS+9rHn9frpt PVCKEKTu98Df74nncvY8c3nz9rqkA6BmEaQUvU52Cpl71vlXpgtIFjKV5fL9stbhSdkSoGaxvVMq 03qWdNN6bpSrNlAhhusUQZe+nq77y+n5mbdJz8uZpqXcAFRb9Cr1eZaz88EDpViOYTtlXjdva043 52UpL2BqTrMmXQAVcHQM0qOkDC5lZ1OVKlVw7tw52bRYsWJFuWy2W7duyWh61KhRCAwMNKWmm80A +jCWG4Dmi3IB0HxRLgCa18oLgOaFcgvQvNbDA9T2eliA5oesA/Qe5gmPfH6QPo0dM1pGxzVr1sTZ s+n/P8PyokWLymbFv//+W8IyOTlZ5tEmT54sO8Hnzp2L0NBQU2q6KYBqSQHUohRAjUkB1Jj0AHSB AOPCYOtaEHwfitntl19+wfXr1/HXX3+hWbNmOHHihCkHKFiwID788EO8/PLLeOONN7J4pwqgWlIA tSgFUGNSADUmawC9+sc9LNqfgsUHUnUoxbRVTpswYYIcQcQQvXTp0tI7nTNnjvROGdYTrPRE/fz8 TFukmwKolhRALUoB1JgUQI1JD0CdBByXhOiRZYDeu3cP06dPl+PZr169ivPnz8s3KTO3lRKe2cez K4BqSQHUohRAjUkB1Jj0AJRwdA49YVVLRTlbmwKolhRALUoB1JgUQI1JD0AJR5cwHQpVAM0fKYBa lAKoMSmAGpM1gF4TAF0mAOoqAGlVCqD5JAVQi1IANSYFUGPSA1DXsJNYHq5DAqK2NgVQLSmAWpQC qDEpgBqTHoC6hadhZYQOCYja2hRAtaQAalEKoMakAGpMegG6SgDSqhRA80kKoBalAGpMCqDGZBWg f96TcFx9UIciFEDzRwqgFqUAakwKoMakB6CrD57CmkPW5S7K2doUQLWkAGpRCqDGpABqTNYB+peE 41qdsrUpgGpJAdSiFECNSQHUmKwB9LoA6LpDp+ERaV0sZ2uzD4DO9UXharPxfHX7UOEa87RB9gjE me9frDQVRSpOsgs9U3KMRYAuOXASA7YeswsN3HocLVwj0MQl3C7UaGk4xvvGyw+g2YvWCqhktxV+ 8Xi5mRteab7SLvSfHl6mPdM2ApRw9Iw6Y1UsZ2uzC4D2dg7Bqy1W4bWWq+1Cz9depAmzRyHOIfpO ew+833WjXejVdp746++ss3KbbUvMWSyQs948es0LSsb6qNPYfOSsXYiz3HfyiEb7tUfsRvzmUnbz CDmJz/v74J8DttuFSk1In6TdkhGg6yPPwEsA0qpEOVubAqiGFEAt63ECqKcA6CYBLnsQIdrZMxod 1tmP5uzLObnG4wjQDVFnsfGwdbGcrU0BVEMKoJalAGpMCqDGZA2gNwhQDVhakq1NAVRDCqCWpQBq TAqgxqQHoJsPn8OWIzokytnaFEA1pABqWQqgxqQAakxWAXpHAJRwjNYhUc7WpgCqIQVQy1IANSYF UGPSA9CtR85jW7Q+2doUQDWkAGpZCqDGpABqTNYAelMA1FuA0efoBR1SAM0XKYBalgKoMSmAGpMe gBKO23XK1qYAqiEFUMtSADUmBVBj0gPQHTEXsDNWn2xtCqAaUgC1LAVQY1IANSbrAP1bAVQB1LIU QI1JAdS6ngSA3hIA9Y29iN3HrMtXyNamAKohBVDLUgA1JgVQY9ID0D3HLumWrU0BVEMKoJalAGpM CqDGpBegfseta4+QrS1PAZr5o/QPstwA9KWmK/FCEze81GxllnRuX6SpW5a8l5unl6W4nLn8g6QX oITbs1Ud8WzluShQLesMTgWZVyU97zlTXsHq99O4nLm8JeUWoG939MKbHdbj3c4bsqS/1XG9TDfr /S4b8J6QOf0fnb2ylLckWwF00YGTWBx6Cgv3p2bNE+uLQtKkuJxRnmmhIi1z2Qco1wCNPoetsZfE /3AhRx7TsudtNacdPZ+lrCXlFqDt1hyBg/thtBHKnN5eiOlmtV/LCUrup7UV22Uu/yA9LEA/7eeN D3tvw8d9vcU299M/6+cj0836ROTf38YHH/XZlrFuTVYBevdv+B+/DP84PXrEAL179y769euHUqVK oVOnThgwYAD8/f1NuYCvry/c3d0xa9YstGnTxpQKDBs2DO3atTOt5TS9AH25+SoMdQtHUOxZNJnu J9fNedx+7rYY7I0WF+rCILwi8iqM3I6dh05hZ+QpVBu/Szek9QKUYBztth9+kSdRafAGAbv7eW81 WoIl3kfgF5WGppN8RNp8/KOpM9x2xWDXoRP4ttOqLOUtKTcA/bDbRizaFYeguAuoPGFPBkTf6OAJ F79EHEy+jIiky9gXew7viLx/9t4MzwMn4Hf0LOpM95dAzV5ndtkCoPMCE9Fq0HiUq9kAw1y3ZMkb umwLKtVrhkr1m2PEiu0ybdbuGNR26CrSmmGcp3+W8paUW4Au2haMGg2boU2vwfAIT8lI9whLQZve g1GlbiN0GTIBmwUw1x5IhIMoV61+Ewye4ZSlHkvKDUA5U9Ik30TEnL2B7bEX0DFTXvf1R5F48RaS Lt3GsfM35XrfjbEIFOf16NmbcNp/IktdD9LDArTlolDsT7iI2dvj8cXA9DRuW316IMLE/kSeuIrI 1CsY4B4l8wjWBnODEXD8Aj7UCVFrAL1tAmiAAKQe2dpyBdARI0Zg/fr1EqQpKSmIiIhAlSpVZN5/ //tf1K5dG6mpqRg4cKBMT05Oxl9//YWiRYuiePHispyW6QHoKyK/6Qw/LNp+DP9ouwb+0Wfwc/8t eFXkEaTdFgejj6jnbQd3bApNxbuizCedPPBRh3V4t90a+InyzNOqO7v0ArTj7D2Yui4Crzdwwr7o 03ivmbNMp3c5ZuUBVB2+CS/UWgAfcRO+IEC4xu84fum5Fq/UXYS9USfxcr3FOerMLr0AfaeTF8Z6 HkZft4P4vNdmxJ2+hn/33yrzCMYPuhKOG1Bloh+W7E7A6+3XY/neJFSfvBdf9d0KfwG/dzrlD0B7 znJBq4HjMXtPLH4qXhJTvQ9m5M3cdVikx4i/0agoQDpfgLBSg5YYs2Y3Zuw8gsoNW2CO37Es9Wkp NwDdEnMRFWvWw+rg4xi7eA16jJySked1KA1uATFYf/AEOg8eh8EzF8MjNAlLd4TCI+IEmnbsgfkb /bPUp6XcALSbgOKRM9fR0+sonIXn7SI8b7Nn2WtDDK7/eQ/NV0ZmeKe9N8Ri4JZj6OIRjf0pVzDC J05COHOdWnoYgH47dCfCEy/jmyE7MWVLrIQkt6Mn+rnI/2KAD/410Afx4iHw65g9cpufRuwSxzgV +45dwAfCM81ep5b0AHRf3BUExuvRIwboqlWr0LBhQ3h7e+PcuXMyRC9durSEJ4Fao0YN/P333+jb ty/27dsHV1dXLFmyBJMmTUKxYsVMteQ0PQCVHubWGOFV+sjlvstC0XXxfrHMvNX4uocX1gYmybrc 9ibgjVYCugKslUbvwLCVEViy6zhes/IbZukBKCc69tyXgH+3dxNh/DyMWL4fP3Vbk54noFdx0AYs 8YlG17l7sNw3BgWFt+oVmCA8z5UoVH0eEk9fxbtN0oH7IOUGoDujzuCnwT54Wywv3h2PSsILzVzm H8LrXO6fhJpT/WX5xnOCsNg3HqM8BLS8j+HdfPJAG3UbiHEe/lgowvjWgyZgsPPGLPn95q1G2+HT 0LjHEBm2l6/VCBM2BGGuAGex38tims+hLOW1lBuAeokIpW7zttgswng3/2jUbNJKeprmfHqcw+e6 oFYzByzbfSgjneUbt+sm0iIz0ixJL0AZog/eehy+wktjaD5g8zFEn7mB1iZY9hBQTbl8G1Gnr8M/ 8RK6iDrl/J4ij2H/AQFQbpOXAP1MQLLUeD9MFOD8pC89zn3YEHZKpN/fjnUUG7Ubu8T//V7PrSLN B8sDU/DTSF8ExV/E+zYEaJCAY7AOsZytLVcAJTAJzqVLl+KXX35BZGQkli1bJiE5b948CVgaAXrh wgU0btwYTZo0weHDh3MA9MaNG9i4cSM2bdqIWv2ddAF0gXcsygxPB2gv5wPoseSAhCc90BoTdmHO lqMoMWQbfCJO4oP262S5zzp7oMqYHSItDW+1tp0HSoBuDE7EF22WS4AOXRaMn7uvlXn0QNvP9MWg pYH4sZs7doafwMvC6/xX2xXYciBJbrd5fxLeEyF99nqzSy9A2Ya5+/BZfD/IWwJ0wc44VJ6YFaBf 9N6CABG+E5RsKx2xLgr9hMdae5o/dgjY6GkHtQVAG3TuhwlegRKgbYZOxuAlYn8z5U/ZGo4hAqpV GzvA0T8eU7eFSy+0SuPWqFCnMaZl8lgtKTcA9QhPRYNWHWU7qFvAUVRv2DwLQL0OncSS7SFoImA5 cdn6jPR+k+ai5+hpGesPUm4AOsw7DjuEl0aA9hcwjD13MwOgZrUTgORH0hiyc5ke6kbxGyvD09BB bJe5rCUZBSi9zPKT/TFGeMMEaJVp+7D54OksAGU7J0P7pvMPyPJdXSOweE8imi8MQXTaVVQT0M1c pyXpAWhw/FXsT9CjRwzQS5cu4datW9LjXLBgAVauXIkrV67go48+kp4o82kE6PXr1zF27FhMnz4d 0dHROQB6+/Zt2X4aEBCAxqPcJQi1YGYWQ/huTvsxfFWEXPcISkHF0eJp2MVTdhqt8k9A3Um+eFXA dPGOY/iu90Z8KML317m92HZTyAm8125tljotSW8IT6+zq6MfCguPkkD8pJUrPmzuIttGl+2MwU9d VsvOJbaFftDcGUVqL5Se6OsirA8+ehqv2DCEJzTn7TiOZnOD8K4AYbjwTn4a4oNvB3jLEJ7QbL84 BKPWHZbLr7X3lG2iPw/dLttOg46dzzeAdho3B92mLBbLqShVpZaAaRCmb4/EAgE9tncybHcMSBDh eiuxfhRz/eNkZ9Ms36MoX7cx5ojQX6vezMoNQLfGXkTlWvWxQXiisz12oW2foVgXloK1IYnSO/WM SMXGw2dkeN+8Sx85r+SgaQvRe+wM4YXavhOppwDTwZPX0EksT/NLkvNddvE8iq5CrKOzCNU7CGh6 ifTFQekAXS+WVwovkCAlhLXqza6HCeG/H74LO8RvsiOpz6pITBLe6A8i7WsR0jOfoX3sqevyLwH6 u/BYO7pEoKNzBGJOXUPd2cE56tSSNYD+IQBKOB5I1KFHDdDNmzejQoUK0vts2bKlhCetefPmaN++ vVym9erVC9euXZMeK0UP9KeffjLl5jR9Ifxq4UGuhptfPA4lXcIEjyjpefocTMM7Du74VHiau8TF HhJ3XniqMbK+oQK2IXEXsE/c2GwftfYbZukF6Et1FsJD3NwHE86jz+IAPFVpLvZEpUmPlJ6n76ET 2B9zBtPWRche+ZojtyD02FnsPZwmvFV3CUetejNLL0AJya/6bZWe5OETV9BTPPHpcfrFpHucDN+j Ui/jl+E7ZHmmVZiwG0HHzyM04SKGr4nK0XOvJVsAlACs0bIjSlSohg6jZ8re9or1m2N+YDLajZyO 3wVUy9ZsgO6E7P4UDF66ESUr1UD52o0x2t1Xs87sym0n0jintSgrfrdW41ZYuS8G/SfPR59xs2RI X7up8Hxr1EWjdl3gfiBetn9++dW/UbpSVfxevjImunhp1plZuQEow2/X0DQkX7qFQ2nXZJjuEXlG HJ9UjBJeXcL5m0K3sF089Jg3VXh2vM9OXPkDqVduyw6ovG4DZTsnQ/hoAXp6n18P2YHFAvYEJPMd nMKkx8led1le1ElxnR1P7/eyTQifK4Am2kEIT++T4rLZzKA0m7X17Ka3F55lOCSpYMPlKNJ0pVwv 3GiF/Mv2Ti4z70VRhmn8y/WCDVfgpebp5bXqzS69AGWo/lTluXi64mw8J6BJ2D0tIMredeY9XXGO 1DNVHGXac9Uc09MqzNEFT0ovQKn3umyUnUOvtvWUwCRUuc6/zHtNwI/gNJeXnqhIY3m2ibJc5vq0 ZAuAUotCT2FJxBnTUKVkLA47LT3PheIGdgo/jcXhIk94qLK8KLMkQnhbpjLZ69JSbgHK8N0n7gq2 HbssvU0OWaLobTLNJ+6qHLZkLs91szKH+5aUO4BGS0+y5erDaC0khymtSR+iRG+zlUhjXht3ftvI VHaVSDNJeqE6wviHASjF4Uls32SHEMP3D/t4y5DenPeRWM++DUV46v0NPQANSbyG0CTrChEQtbXl CqB5ZXoBml/SC9D8UG4Amh+yFUDzWrkGaB4rNwDNLz0sQPNDegBKOIbpUGiSAmi+SAHUshRAjUkB 1Jh0AzTZuhRA80kKoJalAGpMCqDGZBWg9/6L8OTrOnXNtJXtTAFUQwqglqUAakwKoMakF6ARKdal AJpPUgC1LAVQY1IANSZrAP1TADQi9ToO6lBEimWAmju6s3eQ0zKnZ89TANWQAqhlKYAakwKoMekB 6MHUGzikQweFF2rJkpKSUKZMGTnckm9aZjbO5cFX0StVqoRjx45lgagCqIYUQC1LAdSYFECNSQ9A D524gUgdOiS8UEvGtyYJx5s3b8rJki5fTn9vnrA8c+YM7t27h9jYWHTs2FEB1JoUQC1LAdSYFECN SQ9ACccoXbqOoUOGoGzZsvKFoNOnT8s6CMSff/5ZvmXJuTwcHBzkREjZbcWKFXB2dlYAtSYFUMtS ADUmBVBj0gXQkwKOOkTQcnY4epOUGYRmgNL7JEBbtWolJ0fKbF5eXujRo4fcLrMpgGpIAdSyFECN SQHUmPQA9HDaTRzRIwFRS9atWzc5L8f58+fx22+/yRCe03USrjt27ECDBg1w584dCVjlgVqRAqhl KYAakwKoMVkD6B0BUMIxWo8eAFBOftS6dWs5j3FCQgJOnDiB7t27y953TtPJ+T+oLl26KIBakwKo ZSmAGpMCqDHpAugpAUc9SrMM0OyWObzPbgqgVqQAalkKoMakAGpMegB69NQtnbpp2sp2pgCqIQVQ y1IANSYFUGOyCtC/BEBP30KMLj2hAO21OAgvN16GV5q42oVeqOuE5+sstgsVFjB/o6kL3m6xzC70 YgMn3Pvrb9OZy2r7ki7D8/AZu9B6obl7EjBzVzxm2YFm7IyX83RO3p1kN1oXecZ05u7bmv2p+KjH Znzcc4td6LdRu0x7pm0EaMyZW4jVpScUoN3m7EKhKjNRuOqsRy+xHy83WS49YvuQ8Ih/HYjC33ez Cz39z/YWAXrnr//D7Xv2oXt//x9Kj/fDR7224qPej17/6L4Zl27+hT/vsefYPnT3L9OJy2Qr/BLw imnuXHvQN702mPZM2wjQ2DO3cUyXbpm2sp3ZCUB97QegQnYJ0B+624We/qKDRYD+aWcALTtxLz7p s80u9F6PLbgoAPqHAJe96I4GQPlBxscNoMfO3sZxXVIAzRcpgFqWAqgxKYAakzWA3hUAJRzjdEkB NF+kAGpZCqDGpABqTLoAek7AUZcUQPNFCqCWpQBqTAqgxqQHoPHn/0CCTtnaFEA1pABqWQqgxqQA akx6AEowJuqUrU0BVEMKoJalAGpMCqDGpAugFwQcdem2aSvbmQKohhRALUsB1JgUQI3JOkD/T4Dx TyTplK1NAVRDCqCWpQBqTAqgxmQVoOI8J1/8U5eShGxtCqAaUgC1LAVQY1IANSZrAOV5Tr70J1J0 KPmSagPNFymAWpYCqDEpgBqTHoASjqmX7lgVy9naFEA1pABqWQqgxqQAakx6AHri8h1dShWytSmA akgB1LIUQI1JAdSY9AL0pA6dEF6orS1XAOVEopknGrUkrfwHWW4AWqDyTDxXaQYKZivP7ZmeOY9/ zWmFMpW1Jr0AfUXopaYrUaSpG17OdtExr4iFvJearZTKnGZZDw/QQkLPfdsFzwoV+l67jF49LED/ FBc8devuf7Okcz17XuY0rXK3s9WRWbkFKCf8+KCnUK+t+DhT+sfmdJM+ZH7vbZnStmSpx5L0AvTO f/8Pd8S+Z0+/fTc9Pf3/Ts/PnKZVNnOalh4WoC+La5jXN6/z7Hm8vtPz3LKks+7saQ+SHoCmXbmj S4SorS1XAN2wYQP69esngciv1nXo0EF+J2Tu3LnyOyLlypXDwoUL5TT4S5cuxWeffSa/s8xp8Pkt EUumB6CFqvDvTExbG4qI42fRefZOAdMZpryZeLXWXKzZE4ug6DTUGu4l4fmv1s7YGZ4Mn5AkvFh9 dpb6HiTdABUXw5KdxxCRcBFt5gZkgJLpX3T1xIb9qQiNv4B+rqEZ2/Ci8406hYHLQ+WyOd2yHh6g H5YfjA2+hxCbdAZvleyvWUavHgag5y5fR9v2HdC0aVMcOhKbJe9oXBJatGwFhzbtcOr8ZZkWfSwe zUVa6zZtkXbuokj7L4JDw9G8RUs0bdEC4ZFHstSRWbkBKCHZcG4wIpIvY1NEGr4dvD0jvfhoXxwU 6TGnruPU5duYvf04vh60HVEnruDoqWtIvXAL7+uAqB6AHomJQ6MmTeUxSkk7myXPPzAEDRs2Qu8+ fXHz9h8i7f/gFxCEBg0aoU/fAbj5592MsiHhh1C1ajVcu3U/TUsPA9BXmq9Ch/mBiEi8KO+Bt1qv lk6D3FbkDV8VgTBx7W8MScV77dbIbV5q5oZG0/xwJOUyCjfSd4/pAeipq3d1Ke3KXdNWtrNch/At W7ZEaGgo6tSpI79cN23aNAwdOhTXrl3D7du3ZR4B6ujoiK1bt8plflskPDzcVENO0wPQgsLzbD5h C6auCZEw9AlNxE+dV0iwPlNhOjz3HkP1IZ54ueZcbA6Ox6s15+CNuvPw71ZLsD00CS/VmKNZr5b0 ArT/slCMXxeJt8XFs/fIGXzRxVOmE4xMrztpN14UT1sC841Wq4W36oYxaw7BeddxjBP5+QXQV3/t jS8qD0Nc6jm8U2qAZhm9MgrQu8Kz6ta9J0IiInHi1Fm0bdce127eSs+/exddunZHQlIqIqNj4dC2 Lf68cxcdO3fF8YRkHD2egB69euPO3Xto36EjElNP4uzFq2jXTuyLqDf7b1G5Aeh7PTYjLOkS/j3I B22dQuG4M05Og8c8QpReJ7Xv2AUUG7kL3w7ZgeC4i/j3QB981pdltOvNLGsA/eu/vLda4bR4UIQd jMSAQUPE//G3zLsqjlPLVq1xTvzPnl6bMHT4CFy9dl0cp3a4cPkavDZuxuSpM3BXnJZL125hwqQp aNXaIU8B+r6AIq/518V1PcA1DH2cQ+R21Pd9NsI74qQEZj+XEEz2jJLp3/T0wtytR7Fb3A+FbATQ v3IB0FP2ANCrV6/i888/x/Lly+X6jz/+KP/ym8rDhw+XH2ait0mA8tvLXK9cuTLuipvEkukCqMif 5RmOEj1XybLd5vqi48wdcvnZitPhuv0IGo/bLEA5G8dPXMKnzZzkdkWqzcb2MNsDlE9bPl2/ExfL C03cMHrNQZQYvDU9T1wsvw7cAu/wk1gfnIyZm4/ItHIjfDBQXGxtHAMkYPMLoBTD97iURwdQhpm/ /vorLt+4LcLwe+jWoyfOnT8v8/g52TYCBjf+uIOrt/7Ef777DjfF9URP89off4q0OyhZ8nc5E77X pq3o3KUrOnTsjB279+IPC7+pF6AM1//Zbxt8os5ISBYVgNwbc04uZ5QRgPxKwNI3+iz+0W2z9EAX 7U7ADO9jCIy7gH/1984S9mvJGkBvCZo1EB7mnwJql69ek8fjtjhOzDt74QKGDBshwnLgzIUr8uNm p0+fkZBlfqrwVnls7/71FyZOnorUk2ly+7wCqBmSQ1aGoYi49osP2oq1gckyAmPem8KhWLQ9FusC k7A3WjgWIhp7o+UqOdcovVGm2RKgZ67d1ScBUVtbrgF66NAhlClTBiNHjpTr34mLnUZP88qVKyhf vrz89jIB6u7ujnPnzqFv374ytM9sly5dwpgxYzBu7Fj80rC/VYAyf/b6cPzWY2U6QOfsQqdZO+Vy +rYzMdMjDM7eh7E1OAEfNV0kt8tLgG4OTcW3vbzworiIRrlHoMSQbTKPFxJD9C6LgvHv7l7wEU/j 99qtleHOaPeDWCMurJ2Rp/BJp3XigtOu/76eHIAWEzf+1Zt/CID+he49euHsuXSA3hAAdRAe6fU/ 7oqb/g6+/fZbAdVbaNa8pUi7I9NKlCyJu/f+Qt/+A7E/NEKG7126dZOgzP5bVG4B6h15WkLz5xEE 6PksAGWIPnlLLDq7hEuPNN0r3SK91F5uBzHT53iGx2pJ1gDKdkszQK9cvZ4VoOJBM3T4SAnQswKg RYsVw6nTpzFoyDCZf+L0OQnVyOhjaNS4KZa6LEelSlWw2GnpA9tCjQKU1/f3vTdi0IpQ2Z5ZfNAW AdCkDID+R0DPIygZX/fwwijhWNC56CjCfU+RNnhFGOJPX0OLmf6adWeXPoDew1kdeuQA5Ufl//nP f8pPgDZv3lzCdMKECZgyZYr0MCl6nWaAbt68WXqjK1eulN9VzmxsR2U55ncxgVALZmbRA3WY4o2R y/bhBQHFDYFx+LWbG95ruBCFRRhfRIT19D5fq+2IHWHiaSiWud0rIqTfIQDKNtLsdVqS3hB+qFu4 AGUYXhGe5M7INPGkXY/POnnIi8p1d7x8Mr8qLihn3+P4ZxcPfNV9vQDuBnkRzRGhzOviqaxVb1bZ BqCFfugmAfp+mUHp6wY7k4wClKF2+w6dZLvmBQEIhzZtcen6Ddne+YcpXD91/iLiRBjftHkLEcLf EV5mJ5w8cw4pp86hc9duMqxv0rQpzl66IjzZP1BPXFN/2SSE34KQhEsyHGdbKL3Lrwb4CE/TR+bT w4w5dQ1fDvCW658JfSnyPxPgnSTAOsoz+qEByhCeHveVG38iPjEJffr2Fw+bP3Hu0nWRdhOtHBxw /fZdbN+5G337DRCR4DXZVkovc+duP4wZO1548PeQkJKGk6cvoGmz5jgWn6z5W2Y9bAi/42CaDNM7 LwwW90E4Pmi/Fm87uKPKmJ2YvSVa1lNi8DYJ1/fbuctr/2sRxgcfO4eP2q/TrDe7rAJUnP+z1wUg 9UhA1NaWK4AOGjQIQUFBcvnixYto3LixhCDbQel58pvKkydPlt6oi4uL9E5Lly4tOw3YRmrJ9PbC Py80fV0oAg6fRA8RwrNddKXvUbwmYPlla2fsiUzFFuF9Fuu6QgL3nQYLEJV4HnFpl+Evtnmltj6I 6gXoawKAS3Ydx76Ys+iwIFA2jG8SYT3bPb8TT2ivAynYfeS0bFBneXqbVIvZ/hKi+RXCv1OyP6KO nUS8AOj+yET80niSAGg3zbLW9DCdSKcvXEYnAcrWDm0Qdugw4hKTZdvnPQGPI7FxaNOuHTp06oQT Z9I900PRselpArypAqLsRNqxZ6/wztqjnYBH4P7QLPVnVm4ASi+06fwDCBLhuFdYGr4bsgMD3SMx zOOIzKs42R8LdsXjA+F1snxR4aVujzoN/2PnMWf7cXza58HwpKwBlDp0OBatWreRD5PE1FPw3eOP yVOny7w9e4MEYFuhT7/+AqR3ZNoukU/o9hNe+Q3hvZvrIYx79e4ryqV7sJb0MADlddx1cbC89p12 HsMbrVbJZqk6k3bjdbE8eX0U/I6cwQZxP3wunAfztc8e+w3ivrBVJxIBek7AUZceNUAzm3loktYQ JWvDlrJbboYxsb3z2XJT8Zz4K9fLT5PbFqw8Q6Y/W36qBCvz+PfZsiLNJL2/oReg9C5faLwChRou zxia8bxY51/CkReJzBMhfubtWPbFJunlrOvhAVrwu2549ssOeParjuJvRxT4T1fNcnr0MAClCDbK 3HbJZQ5N4ro5T6u8eT1zOUvtnxTz9QKUYkj+TrfNeLf7Zhmic3iSuXedee8LABKmXKe3ybZQln+/ x+Ys9ViSHoBS98ShpbjMb0yZlxnaZ86zlEaxOSB7mpYeBqAUr2Ne3+nXvLgXxDVtvg94fTOP9wCb uzJvZ75H9EgPQM/fuKdPAqK2NsMAtaXlBqD5Id0AzRfZJoS3lR4WoPml3AI0r6UXoPmphwVofkgP QC/c+Eufrmv8ww9pCqAaUgC1LAVQY1IANSZrAP2bABXHlcfWmghRW5sCqIYUQC1LAdSYFECNSQ9A L936S5/E8be1KYBqSAHUshRAjUkB1Jj0APTyrb916dJN7ev2YUwBVEMKoJalAGpMCqDGpAegV27/ rUuEqK1NAVRDCqCWpQBqTAqgxqQAqsMUQB8kBVAjUgC1ricDoMDVP/7WJwFRW5sCqIYUQC1LAdSY FECNyRpAhQOK63/+V5eu/SFoa2NTANWQAqhlKYAakwKoMekB6A0BRz0iRG1tCqAaUgC1LAVQY1IA NSZdAL0jAKlD14VsbQqgGlIAtSwFUGNSADUmPQC9eef/dOmGkK1NAVRDCqCWpQBqTAqgxqQHoLfu cj4FfbK1KYBqSAHUshRAjUkB1Jj0AFTr/GvpQQDlRPHNmjWT03HGxMSYUtPtwoULqF+/PmrVqoUT J05kmSzJLgDadfYu+X0jTkH3MOLnPbTSc6sijV3lRWQfWoXCvwxAwe+7PbQ4hZ1Wem709D/bPzYA LTPBL2MC5IcTZ6XXStcvzvL0OACUs8a/3MxN4zp8NOJnQB5kBKjW/2ZJlqxr167w8/NDamqq/L4b v5Jgtvbt28tPEkVGRkqIcrpOs9kFQL0PJGLCqv2Y+DBavR8tR7hq5+VSkz0jMWXD4YfS1A1H0HSk G6Z6HdHMz40mOu/CxMXeD6UJQg07T8BEJx/NfL0aO4+TZGs3xhNatlBAULBmem7EAdauASmYsyPu odVx5kbN9Nxopk8cbt/5W+zb/SnojIjPrsDgA/KvVn5upPUcjEq+jMleUZrXYW40YMkeDF8erJmX Gy3cHmvaM22jM8j/Q4/u3PtLfhmD32jr2bOnnNPYbMWKFZPQ5PzGrVq1kiA1W4kSJeTHM//88098 8803WT6Q+cgBmsupQx9ojRs1Mi3Zh/36yy9ZDvajNIYd33+f/vmVhzUbnjJNe+mll0xL9mHVq1Uz LdmHvf7666Yl25ut7sd1a9fKD0zawmy1T7wHOLH7+fPnZVhuvjeZXrRoUflRTKY5ODjIrw6brXjx 4hKg/OIGPzdjVwC1pWX/bMijNn7S2Z4AypP/OJi9AbRq1aqmJfuw1157zbRkv7ZmzRqEhISY1uzf Ggnni9Ckl0mPk99sIzR53/ALxGwjJXhLlSplfyG8rWzRokWmJfuw8ePHZznYj9J4IYwePdq0Zt/G 8MqebM6cOaYl+7DevXubluzXwsLCsnhx9m78RHvNmjXlp4m8vb2RmJiIunXryvv32LFj8nNFfJDy /+K9ZLYnCqDKlClTZgvLDMkHmQKoMmXKlBk0BVBlypQpM2j/cwCla24vHTvZTW/YoCz9WNlL+3J2 U+cxd3bv3j00b97ctPZ42f8UQAnO/v37IykpyZRiP7Zhwwbs3Lkz36HwON7s7Cnt1KmTHIpib8Zx hkFBQfl+XB9naPO+ZOfN4/g//M8AlGBi7+7SpUvlOock2IsHwwsoLS0NZcuWxa5du/J1v+bPn48j R46Y1uzf6K106NBBPnB4nM6dO2dX55E9tnyTxVZjIPXaH3/8gRkzZpjWHg/jA5D3IY9bixYt5N/H DaL/MwClZ9CmTRt5s3F59uzZj/xk8fe9vLwQEBCAGzdu4MyZM6hcuTJ27NiRb1CIjY1FmTJlEB8f b0pJBwHHvdmb8ZhMnDgRgwcPlsdu5MiRcujaoz6P3C+OewwODsatW7fkeeRYwn379plK5L3xnA0Y MADDhg2Ty2bjeMbM6/ZiPGcc5sfXJAnPjz76SB4/HstHfT5zY/8zAD116hSqVauGbt26yfdezU87 AuRRGd+K4KthtWvXxr/+9S/ZDsTw74cffsjXm4+vrX333Xc4e/asPCYjRozA9OnT7e5C5v6Yx+fx PJrH2fJcPspmGT5sPv74Y3l98TjSQ+Z4wZ9//jnHuMG8MHP9PA79+vWTDxkeF8KTL0/QO7UnO3ny JMqVKwcnJye5n3zDh9dg6dKl5fF6nCD6RAOUJ4Ihsbu7uzxJvKAYJq9du1ZebKNGjYKzs7OpdP4a 94diCENg8umbkJAgPSq+7TBlyhRTSdsa/29XV1d5EfMiNV+oBBBv/j59+uTZbxs17vOmTZvg4eEh 31XmvvL1uj179sg8wnTlypWm0vlrPIdsVuAsPb/++isOHz4svfmZM2dKgLKJJK9gwOaLFStWyGNi /g0u8xx27NhRQp3esD0ZPXTCk++dZ77++JfXf+vWreXxfFzsiQUoLyS2eQ4fPhyNGzeWsKTxQuc6 vb1Jkybl2cVtyfh7vOjbtm2L6tWrS5jzRvjll18QGBiY5aLKC+NDZfXq1XJWGd5c/C2m8XhFRERI 78WejK/TscOIbwPRU587d65M583G/6Fly5ZYvHixTMtP4/FasGCBnAKN+7F161b55g3PI9uU8/o8 sm5OhkFv3MXFJYvXRkiNGzcOly9fluv2ZGyu4r5lNh5L8wP9cbMnFqA8UWzb44U1duxYlCxZEkuW LJGhAk+WuRMiv4097QMHDpQTF7BZgR4xgcaLnSFM5rZIW5r5hqb4f2/ZskUeH/P8hnzYbNy40VTa fozecr169eQ+so2Pr9PxeLHTjeE89/lRnEc++NhpwxEBvKY4mw+vKV5bP/74Y56GzfS6zeeRbed0 CNg5yvTjx4+jSZMmdhe2m6+9o0ePSseBywQnzdPTU57Tx9GeWIDywuY7w3yHlcAiKNzc3OQNyE6a R2W8uBnm8eLnBU/v8/vvv5cX1PXr12VImBe2efNm6cGxA80c1jEEpvfE6b2mTZv2SEBkzQgIeqCc KIadRoQVm10qVaqEqKgoU6n8N055xqYEM8gIBj4AeU6vXLmSZ8eS18c777wj26nZXk4PneEwr3M6 ChUrVpQQtydjPwMdAwKTx4sTd7CdmGl0dNh2TIficbQnCqC8aHfv3i1vOPaK8mLmuM+hQ4fKPJ48 s/LT+HvmXm1Cffny5XJ/KIZbv//+u8zLK+Pv82ZnqMtJYznmjr219Hq57ujomGc3vFFjSMzzuG3b NtkmxlCZzQs8p5nPZX4b4cjf5b75+vrK/eE627I5GYXZq8or4//eq1cv+eClY8D2RHY48nd5jLh/ 9mZsLmvatKl86HF4F/eVo2DoqfPhTcfhcbUnBqC8iAkFNt7zydy3b195QdOD4TLDv0cFCd5kDRs2 lGEWb7R///vfst2KbVjLli3D1KlTTSVta/xd9vQznOMyQ2HOOlOjRg35u/RaDh06ZCptH8ZzRC+d sKd3wrkZOczF3BY6YcKERwJOsxECDNXZBssebnr2HM/I647ttHm1b/TQ+BDm8eE5mzdvHnx8fOTx 4YOFn6KwR+Px2Lt3rzw+bHYh8BnC8/qzt2YGI/bEAJSA4I3HE2a+iLlOUPFE0VvIb4Dy93iDcXA1 bwA+hdmBxM4G9hyzA4DDhfLCa+HxIJjZI8sLl8dk+/bt+PLLL6XXmfk42Ytxf9guzPkXzfvH/4NN DxylwFCV+57f55H7YG7f5LXEkJPtdtHR0bIzkA8mAi2v9osPPY6XZLsrrxU+TAhMNiOwqcreziX3 hdc7HQQeO0YQfAiyA5CjA06fPi2vzcwzwj+u9kQAlBcuTxTboHjiuM6TyJuO7WaPythpxd83z4vI faMnynTzhZVXFz5DYA5H4u+YbzB64/x9e+ydpXFfCXsO6+KxMZ9H/i/r1683lcpf4z7wIccRG+ZX R3kcCU3uE4GWl+eRwGZnH4+L+XhQ7HSxt3lKzcaJlHmdcTgem2C4v4Q/Ix624Zr/hyfBHmuA8uJl +x3bObnMEK9Hjx7yAueTmW1F9AAfhXFQOj0p7hc7Ptjmww4ctvewI4tDlvLS6O0ePHgw40LlX3p3 vOl4UduTEUCEFJtg6GXybSy2WxMePI+dO3eW3t6jMJ5Hepk8j3FxcbKzjeEnw2mOoOB+5SUM+Jvm Xmsa//J4EahsWyRU7ck4MoKfx+BDmiNOzB1EHIPNpiPem0+SPbYA5YXDGdbZs07PhRc4QxtC88UX X8RXX331SLwW7hcvEoKAbxcxVOfbRmyXHTRokAyjWSYvLnzeXHxgsO7JkydntMmZf49vYJnfNrIn a9eunTxXPI9mj5nQeuGFF+Qx5DHLb+M+8GHHc8m2TvYa0xPkWFkus7OS11xenEcavd0DBw5IEL39 9tsS2OZjwwfyqlWr7Oo8cl8o9rhzJADPGdv66blziBejQ96vT0K7Z2Z7bAHK3mu2jfGEmE8eL2Ze 9OaOk0dhDFHYy803ZwgrjlOkF8V9o5eVV69o8mbmO+L0cvlbHKrESS34mxzYzSEubKezR8s+Ew+X CS6eRx67R2UcFM82Vw6Bo9fOc8tjS++YzUN5ZWwzZ2cVOxzpbRJChDd7sDkEj+fV3maiIuC5z2yv 5TA99rCzndh8X7Lji17ok2aPHUB5MnhTMSxgKExQMI1Gr49vHj2Km44XCm82XjS8UDgCwDxYn43l DP04GoBehK3NfFMTljR2nDF8Z6cHxwuah3XZk/E4MGLgcSOozD3MXKfMb47lt3Ef+PovPSheW4S7 OWogSPkWDY8p1/PC+NAlIAlPiueOD0e++MBOI3px9jjsh+eMDxW2c3IwP4HJMcbmDssn1R4rgPKi 5QXE9kQu8y0VPpl5wtizR3gypH8UJ4xDlDjEhuMtuW+8Edh2RQ+UyxxykleD5Gns1ezSpYs8Nnyr yOwt0ZPLC2g/jBGcHMPItkTuI9/oYa8y288IKYbvj6LtmvvChxCPJduLuc6HEM8j2/M4dIkwzcvj STiyDZjXDTuqGBJzP+gc5GVnlVHjg5pjUrlfFJuq6DywmYHtwxwF8iTbYwNQnhz2KvMtFHqYvAkZ 4nGikM8//1wORqeX9SguMDbo800Zego07gNvMl70bD/jDDN5ZbzRCG5exAQRJ7Tgb3Mf2A7K4/Mo jokl476wOYHeOSHP80ho0GvmeWRbGdsXH4URlpzy0HweCS4uM50hKQGaV0Zg8zyuW7dO/h7bfjnV IY0RDKH0KJsztIznkiMk6KVzH7nOY8bmK55jmr09vG1tjw1AebPxiUxvjuEMwxzCyezFPApI8Dd5 gbCNkV5D5v3gzcbB4PQAmW5rY53sfGGbJye1YG8nf5vtZYQAQ+C8GqD/MMbzyPGvBCeH4rCDgefR PEPWozqPPJ70mNizzXXzfjCi4H7yYZ0X55HGdkMOMOd19Omnn8rOIzYD8WFIz5dpvO7tyRgtsA8i PDxctsuyGcb8lhYdBk41+L9gdg9QXrQUTwwHwzPU41AlhuwcX8mBuWaPIT+N+8O3K+hJEZKcQJft PYQA94celXkMXF6YeeZz3th8NZRT0RGkbM6g55l9xptHbWY4UgzP2VPLJhd6LnyPnEOVHoW3wt9k +zGHlfFYEgQMQ83nkdPRcc6AvDJe2xxyxuiJ7cAffvih3B8+UGJiYuRYSnsbt8vOLPY/MEzn+eSx 4jllUwcf3HzX/UnsMNIyuwcoB6LzKUwz34AU24PYHsqQJ7+Nv88hQuz1ptFL4Xg9elP0CvnWCIcs 5SXYeeMxPOcNxjkUeZPRc+FvM92ejMeBr9Lu378/4/yZH4r0RDnUi1FFfhv3gWGz+esEPIfs/CBE uU/05LPP8J4XxocIO4g4xynbPAkmjm+mc8Dr3N6M76/Tazab+VzSqeGD3d6aGvLS7BqgfPKzQ4Se Fp9wPEk0njB6LOY3evLbeJOxvY77w84h9pSa22TZqM6OkPy48Pn79FzowfAm5HHh8eBfezLCkSBi OyJ7as3nke22fJebEyXnt3Ef/P395TSHPFccV8lrirBnKMowlG2R+XUs+QBkO7q584z7x3NpPlb2 YGZQ8nrL/h0tOjr2ODogr80uAWr2WBii82nG0IZPZ3Yu8ARyeAnTH9XFxXY8tjXy5uPbRuYxp3yF 7VEYIc52RTYl2JPxhuOLDTxffMDwPHKWdHrKhAPDvEc1XpfXDn97yJAhsv2YkYP5YZz5Da78NJ4/ hsaPwhu3ZvTO2c7PKIIRIdut2S7L48Rxn5yTNC8jLns1uwMobzp6nfQueUIIK17YfEJzyBJ7/B5V 2M42WIbtnMeQ+8SGcj6N6cFw+BTbZh+Fcd8YOtmT58njw1f36CFzv3iMmMYB4Iwo2PTwKEDBY0WP l+BkpECI8mHNc8f9Y7s28x7VseTIDXtr84yMjJTwpIfJ40dxOBff9mOzFZuN+HD8XzS7AyjbgNgj yYHyfHPG/M0iwpRgNbdX5afx97gvbJNi2ydvfnpUvOE4XIMDhh9VJ4i9GjvUzENv+BIBh1vReB75 KiQfOPltPD+MHDgQnqBkpwcf0IQ7ry1GE2y7zu/ry96NHUNs3zQbj4/5gcj74H/Z7NID5dAc9tJm 9gR4osy9o/ltfG309ddfl09Zei+cEo7eJyFBj4pttbwRld03gpLHiBEDO2rM4R2PE8/jo4AUH878 fC73hdMKctYnjp3lfJX0+hiamvdTWbrx/mP7tbe3tzxn5vuRaWya+V83u20DpafJVx8JzkflEfB3 OcZtzJgxEpycFIRtPRw4z44kzi5P7+pR7Z+9Gx92HE5lfr32UR0n7gc7ZzjxMD1fzhbE8Z70qjiO kZ2ABKqy+8bOPjoybOdkj/u7774r29rpRLAvgm3u6mFjpwCl8WbjuEbOK/govDv+PoeS8EnLty04 mJkXzk8//ZSlLehRtZU9LsZQj2+QMUR+VDccIc594PAuPgQJU3qf3B91HrWN9x4/sc1mDjoKBCfb QT/44AM5feT/0lClB5ndAtRsDK94gee3cSjL119/Ld+4oP3nP/+RQ4X4FGbzAsN6ZfqMHiA99kdx Hvmw++KLL2RTC2969h7zL1+AMH/yRVlOo3fOtmo+ZNhRymues8qb7wdl6Wb3AH2UxmFJvHjoibLz wQwA9nir8OXxMbZR84Nr7PBjWGo+j3wDSp1HbeNxYYcaRyfwzSgeM77qylECyu6bAqgVY1sQvRaO SX0UHpSyhzeeN0KUE85wcLw6j9aNx4idbmzrVOG6ZVMA1WEcB8dZguxtEltl+s0MUc5XqbwofUYv lJ77o/qcyuNgCqA6jDdffr7WpyxvjOeRg+fVedRnPF583VYN0bNsCqDKlClTZtAUQJUpU6bMkAH/ Dxdf97EKH3BjAAAAAElFTkSuQmCC ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAWIAAAESCAYAAADHft+7AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAIZ1SURBVHhe7Z0HeBVV+sZVql3Xtez+7bqurmID REXpvffee++9d0gCoUOA9BBSgEDoNaSTSgghQEIKvXdRdNV9/+c9uTcm4ebO3OQmueL5nud9MnPa nUz5zTffOXPmMShTpkyZshI1BWJlypQpK2FTIFamzEL73//+h99//12Ky1r266+/mizHtJ9//hkP HjzIt0xeY1k95ZT9uUyB2IrGi4kX1i+//JLrYuEFe+fOHcNawY0XIdvPa/yt27dvIzU1VZahtOzH H3/E1atXDWvK9Br325gxY9CyZUt069YN9+7dM+Tktps3b+K///2vXK5du7Y8PnktMzNT5m3duhX1 6tUzWSavNWzYUB23R9AUiK1oLi4u8gLt0KEDevXqhZMnT8p0Xjhjx46VQLbUeOGfO3dOLjs4OGD3 7t1yOafdv38fderUgZubG/z9/eHl5WXIyd8iIiIwevRow5oyvTZjxgysWrVKHpfLly9L2BpvhIQv l3kj7Nq1K06cOCFvzixn9J5Z7tatW/jtt98QEBCAJUuWyJvrlStXZBqNbd+4cSP7fDHW4828Zs2a CsSPoCkQW9HmzZuH/fv3SzAmJiaievXq0kul8cKi/fTTTzhz5gx++OEHuc6yXKcXTePFxnVenLwA Dxw4gAULFsh0ihep8cJkOV7oKSkpqFatGq5fvy7bM3ppzCPEmWY0LjMtJCQEw4cPN6Qq02vOzs5o 3bp1riccHvNhw4ahY8eO8ma4efNmvP322/KmTBjXrVsXd+/exdKlSzFgwAB5A0xPT5dQrVKlCvbu 3Ss9XZbJyMiQ7Q8dOhQTJ06U7Xt6esq2WPf1119XIH4ETYHYikYQh4aGymXC0tfXF9OnT5fLnTt3 lhcvL0p6QU5OTjh79qxcnz9/vqxHj6pNmzaYOXMmatSoIb2t5s2bo2LFili5cqUEcmBgoIR8s2bN MHfuXCQlJaFv37549dVX5Tq9rDVr1kjgs8zs2bNRoUIFXLhwQeqbb76RXl3lypUViAtgPJYEI/cp jyG9Vt5Eeez27NmD+vXryxtgly5d5A2P5T/99FN54+S+5w2Qni/Td+3aJdvg8pdffinPj1q1aiEo KEgC+ZNPPpE3Vx4rts96n332mQLxI2gKxFa0nCCm0ZslJHmhEbD0ghgLZGyQF3BMTAw6deqES5cu yTJMIyzDw8PxxRdfSK85NjYWK1askO3NmTNHgpZinJJeNuvxYmVoggDYtGmThDa3Y/DgwfI3Fi5c CHt7e0yYMAE7d+6UbRHoCsQFNz6ZEJp8Ghk/frw8HgQ0jwOPI0MT58+fl2UJYkKW4YcePXrIJyUe W4J77dq1sowRxB9//LE8VjyG9KAJYN6IjU9MrKtA/OiZArEVLSeIeTFOmjQJ7u7u2SCmR0MwNm3a FJMnT5brfCxlh423t7e8MPl4GxwcjK+++iobxMuXL5dtGkHMi9LPz08+1h4+fNgkiNlW//795Tp1 /PhxCYHo6GjZFn9DgdhyO3jwII4dOybj/wwn0HP96KOPcOrUKQliPsnw2HNf0/vlk4nRI+ax5E23 RYsWSEtLMwlihh8Y3mA5nkt8KuJxDgsLk08/fPJRIH70TIHYikYQ29nZYfv27bJzrmfPntnxWYL4 2rVriIqKkvruu++k9xsfH4+NGzdKz5mdcYQuH00ZYySIExISZMcf48FGEDPuyIty2bJl8tHWFIhP nz4tgc/6bI8dRB4eHhg4cKCEMoGvQGy5RUZGYtCgQVIEKW+mTGNMl52kBCtBzPAR48YE9aJFi6QH zSebkSNHStDyWBHePBdoDFcR2jzmDCex3JYtW+RNnNDnseL5QS85v5Eayv68pkBsRaOnRNjxgjxy 5Ej24ySNHigvIIKToKTHQ4DywmIHEDtqeBESruzsYQiB3hA77ZjPDiFe3Iwr8+J2dHSUXjR76HkB 07MmAAhsXuC8gOPi4uRjLj01tsP2GLdevHixBDm9c2WWG/czZTRjWIl/jaY3zZSZKqennrI/rykQ K1OmTFkJmwKxMmXKlFnJGEbiUEP2FTD8lNPYB9C2bVsZRmR4MOcTjgKxMmXKlFnJOJKJfT+vvfba QyDm+HGGKBk+5Ogp9i8Y7ZED8cEjZzB8+UEb0gGMWBuJEetsRGvCMNw+QGiLTWiJd4jhyOW2337/ H05e+gGnLt+3CUWm34LdnlTY7y15cTt8Yy7g7I2fcMZGdOfHrNe5jfbgv79hsFMERrlE24SGrTss tik3GPPa0Lk+GD7PV1MTFvmjT58+cugp3wHIC1waR7fkTecYcHrF7Kv59ttvc/UhPXIgdvSPQbl6 C21HdR1QvpWL7aj5GpSrPAblvhprE6rbd6XhyOU2gnhf8nUcOGEbcg0/i4pzgvDVvEMlrspzgzBw fQJiM24jOt02dOFW7vlNfnjwX5Rq5oxn2nvYhMq2csW9n/4Anyl75pMBKPfZYE190mwm7t//QXau s6PcVCeqKRAbx5MznS/3PNIgXrwxFuXrL7IdCRg/2doVT9mKWqxFeQHA8lXG2YTq9VtlOHK5jSDe LwB48OQNm5BbxDlUmnsIVeYHl7gI40HeRxGXeQcxGbahi7dzg/i+AHHp5i54roOnTahcazcB4txe e1579rMhKP/lME1VaDHbUONhI5QJ2ldeeUWOaGL4gaOjOOqFY8STk5PlOt8dyAlqBeKilgKxWSkQ Wy4FYsulD8RDUb7icE1VaDnHUONh44s6fPvxgw8+kJ1yHEravn176f0SwHyfoFGjRnLo6CPdWadA rCEF4gJJgdi8HgkQfyFAW2mkpiq0mmeood+0xoArEBe1FIjNSoHYcikQWy5dIP5SgLbyaE1VaD3f UMN6pkBc1FIgNisFYsulQGy5dIG44ihxbYzRVIU2Cww1rGcKxEUtBWKzUiC2XArElksXiCsL0H49 XlMV2joYaljPFIiLWgrEZqVAbLkUiC2XLhB/Jc7JbyZoqkK7hYYa1jMF4qKWArFZKRBbLgViy6UL xFUEaL+dpKkK7R0NNaxnCsRFLQVis1IgtlwKxJZLF4i/FqCtOkVTFTosNtSwnikQF7UUiM1Kgdhy KRBbLl0g/mYyyn83VVMVOi411LCeKRAXtRSIzUqB2HIpEFsuXSCuOh3lq83UVIXOWZ8us6YpEBe1 FIjNSoHYcikQWy5dIP5+BspXF7DVUIUujziI+dUK4/fZCmqWgJiT8jxe006qLCfnyZFXpm5W3hPM E+WYVrqOAx6vYYdSdexzlTUrC0DMSXmeaLoOpYSeFMs588q1cJZ5VM68Us2y0pifs3y+sgDEZSuP xeOfj8QTX4ySE/TkzCtdaXRW3pej5XqZymPw+GcjZBr/lqqYla4la4E4JO0uDp2+81B6cOodhKbd w6GUW9lpXGb5YBPl85MlIGa5z2cfxBecJChPXmUBUeZRledllf1sllgX4t9Kc7R/oyAgjj/3I46c //Gh9Lgz95Bw/ieRf/+hNFPl81NhQVy+jRvKtHLD023dH8ojRJn3lCGPf0u3cpVp5UVe3vKmpAvE 1WehfM05mqrQdbWhhvWs0CDm5+A5ETKnhON30HLOsWmJ8RVATozB+lqvA5ozvSAuJ1R16Hrsi8vE fqHu83fkypvpEQ7fgyewJTwV1YZ7SxiPczqE8GPn5F9COWd7+UoniMu3dEGLOXuwM+YM9h85j6pj A7PrEbwLA47CLzQNO0R+yzl7Uaa5M5rN2oNt0ZnwPJiC+lPF9os28rb7kHSCuNxX4zB5+U5sCz6O /dGn8GGLBdnpL3w/EV47YuG9Mw57Ik/ixWqT8E7jOXDbGi3S43Dm0i0Ms9ss4Zy33byyBoinLVqD Vp16ommbjvANSsxO9w9OQsdeg9Ct/zC06tgduxMvYl/SFXQV6136DkWLdl3htj08V1v5STeIBVw3 x19A0MmriEi7gXqLw7LzCGFOY7k/+Sq2J15Gy1WH0X5tDLYlXsIOsf7fX3/HaP/E3O2ZkKUgDjh0 BC3bd0bbLj2wYIVbdjqBO2DERPQYMBxtOnbD1uCjiMm8i+n2K9Bz4HC079oL7gEHcrWVnwoK4mfb e+L/emzA7rhz2BSRAbcDqdnAZd4HA/2xJ/48NgSnwWX/KTzdzh2DnCIQnXIV3iFpcqrNZ9t7PNRu XukD8WyUrzVXUxW62SCIOYkFPxvOmYQ42QUnt+CHFPk5eH6t1jjtGz+O+fnnn6N79+7y68ZM40cx WY6z1vNT75wwg/N80vgV486dO8t8fquNxnY5pyc/3MgPdZoCtl4Q0+M9EJ+J9zs54fHv5yHy+Pls uD7d0BEBoSl47Pv5+GebldhxOA1lRF4pocoDPDFy5UGrg/ixhk44mn4DL7Rzw987eiDw8Bk81niN zHulsyciTlxGWeH1Vhi8UQL5pfZuCE66hI8G+uGL4ZvFb+iAMKUTxKUrjcGB6BQ8/ukIfNnWDs5b oiRY6Rl/230Zpq3chdLC6203zgPLfUJlOvW48J5jjp9FqS9HmWw3rwoL4rCM+2jQrDWChJfrG3RU AHYIDqXezs43esLj5y6Fg7M/NoWdQIsO3USZO1i+YReGT50v6xrL5ye9IK6zOBw7j11GhZkH0dfz CNaFZqKyqEd4tlodhb3JV9DROUZCuNLcLI+Z+tYuBOdu/ohPZx0w2W5OWQLiI+d/Qst2XXDgSKYA 7w9iuRNCjl/Mzo87+4P8uycmFYNHT8IR4TnHChgT0gcTMtFv2FjpTRvL56eCgviZdh4Y6xaNbo7B eFJ4xZsiM1B7yi6Z92Qbd4xxjULjWXsFgD2wJSoTLwjoDlgVhqnr4/DN2G34Wycv64G4hgBt7fma qtB9jaGG9azQIG7SpIn8LEi1atUkbOnVcoZ6zi7Erw7zq7b8fMioUaNk3owZM6Q4K5Hxk/L84jHT +FFMQpb2ySefyA9e8gOY/KItPxtv9Lj5wU1+0dYUiJdsjjcNxDx6ssEiJKRdxfONF+OJ2vbYHpmG UrWz4Pqk0J6YdNQf64uBi/ci8/IdPNXAUXrKVQYXDYgZWki9eAfPtHHFix08cPjkFQln5tHTHSxO vojky4g6dRWfD92Id3p649rtH9FzSTCmecVivFuUBHXedh+SDhATqH+vOQWe22MlkN9oMBN7hedb Riwz772mc7AzNBk1ei6Dx7Zo7AxLFukMZYzBZ+0d4LkjRpY11XZeFRbEewX0WrTvKpe3Hj6Nek1a IiRNQCRHGXrBzdp0wo64M3J9+OS5aNiirQB4G2yJTMlVNj/pATFDDW3XRGOh8HpZtrUA766ky3KZ 8BzucxTp1+5jpF8iDp26hiEbjsp6BPLA9UfgsDcFFa0emriL6rXqIlycN1zvMWCYgHJGrjIE7+ip c8UTTqhcj06/hS69BqBeo2bYfDA+V9n8VBgQr9yZjCpjAsWyO0a7RKHn0hCZ96zQa928xY3jEsLE uT/b/4j0lquO347W8w9gnFsMXA+kyDbytptXukBcS4C2rr2mKvRca6hhPSs0iFu3bi0//cEJkunZ BgYGonLlyvJrxfRy6bnyk/EuLi6yvI+PD6ZPn47o6Gj5dWHamjVrMGXKlFwgbtiwofxLiHMeTz8/ P8yaNUumHThwQH623ghifiqeU81x2rkPvm4kAOj4MBDziDHh+NTL+HuLZTIOvDs6XXq8xnjwa61W oMWUADQe54+Qo2eFB50F3iqDigbEjwvvN+3SHTzb1hV/EyA+dOyiBDHjxm/0WI9A4Q282N4d/xnk j4NHL+KN7t44knYdjzdywj+6esnyZZutM9l2LukC8Tg89fV4bNx/VHi2o/FekznYGnRMQpkgLiv0 UcsFaDfWAx0neMpyTCd8Gcr4rscyk+2aUmFBTM+2cav2cnlzxCkJ3Jwg3pVwHi07dIfz1hC5vuHA EXTtP1wC3GnTAXQfMDJX/Dg/6QHxVwLETZZHYnVIOr6cE4QO62Kw+ciFbBATttuOXpLx4aYrIuET fV7W+XJ2kIDhTTReFmGy3byyBMTxZ++jZt0GCE2+iFgB5a59Bonz50x2Pid1n7pgOWYsXCWXjemH T9/ErqhTaN+1t/Sqjen5qTAgdghIRM3JO2TYYZbvEXRwCJKTuTP+uyQwCQ1m7MHfu6zHxogMvNnb V3rHrFdOnM87Ys9mhzLMSR+IF5gEb15V6LnOUMN6ZjUQMwRRqVIlBAQE4N1335XfbmLYgp8SYSdc 1apV5V960DNnzpTL9evXx9WrVyVAmZYfiPv374/bt2/jo48+ku22atUKixYtygYx/zLUQTn6R5sG Yh4xNGHvE4UBjntQc8QG7BUe8Cstl6OH3U4Zhqg0wAN/a7YE9hsOY+iy/RLcLzZfivrj/DDFJRQv NRewMdHuQ9IL4qZrsT7oNOpP3Ymui4Iwc0M8Phzgh84LD+Ifnb2QkH4d7/bxQZOZe2Q87SnhJcem XkPlkQHoZH8QjluPoWxz64CYIlSjk87gk9Z2mL56N/rP9ked/qtRW+iZqhPwZcdFwlOegfgT51Ch rb0E8T9qT8PhxEw89tkIk22aUmFBHHz6Lpq17QyP3dEYN3sJZixxxroth7B8w07sTriANgIkLtvC sC/5Gg4IMXxRt3FzbIvJxIzFzug/arIA8R+hjPykNzRRzT4EmTfuo7EAsm/seQwTXvBI/0QZlqi5 MBTJ4qmn0bJICegpW4QnKOq0copCVPpNVNTRPmUJiBl6mDTHEQ6rveC7JxKtOnTF/vgMzF2yFkfO 3ceUeYsxc9FqAd4bEr6s47ppn/RCnTZsR5feA3V12hUGxAStb1ga3u3rh4wrd/FWH18MWxspwTx/ YwJGOkfhbZEWlXJVArnDwiC80csHDcW1EJR40Xog1ulcVeid5VRa0woFYgJw8eLFEriM59IbZhq9 1x49emDnzp1STNu/f7+MCU+bNi07rLBjxw707NkTY8aMkWDlxMleXl7Z7dIIbA8PD5kWHh6Obt26 YcmSJdLjZlpes2TUxJP1F2KmexiWb47H800W47XWK2QogiDuPHc7fA4mo/sCAWYB7XL1FqG3/S7Z gbfhQDLmro8UcM7yns1KJ4ipF9u7YWngMcz1TZCe8WdDN4vHtEMoIwD7+bDNcN13CvabEvG8KMcO vJc7eWDt7hOY7h330CiLfKUTxNTr9WfAJSAKIxdulaBtNGQtGg5eg6e/GS/h7LE9Fl+0X4gylbPi wxXa2qH+ICc52sJUe6Zkjc66wOg09B46FhPnL8OBE9ew2n8vFntthX/IcfQcPAYdegxA2259sHz9 Dhk/pifMDrsxMxeJ8qbbzCu9IKaH22pVlOyMm7n9hITrhM1JaCtgy1hwW6doBIonmhnbTuAL4Qkz jbHk7q5xD42wyE+WhSayNH6mAwaNmojgY+dlvHia8IITLjzA0PHT0K3vYHTu1V9CmfHguUvWoYd4 apg4Z2EuL9mcCgpiiiDt4hiMDcGn8eWILTLmO849Gi905GgKd0zdEAePoFTpNbNs10VZZR0CjuEf 4snQajFicY2Xb7BYUxX6uBlqWM8K7RHrMQKTnrG7uzuqVKkiY8j8gN6yZctkGkMZ9+/fN5TO31ie 4Qx+ZoQxZlOmxhFryAIQF4esAeLikF4QF4cKAuKiVmFAXBzSB2JHlG+4RFMV+robaljPig3EHBFx 5MgRXLlyRa5T6enpMo2esJaxPEMgLE8vOT9TINaQAnGBpEBsXo8EiBssRfnGyzRVoV9W35Y1rVhA XJymQKwhBeICSYHYvB4NEC8XoF2hqQr91htqWM8UiItaCsRmpUBsuRSILZcuEDcSoG26SlMVBngb aljPFIiLWgrEZqVAbLkUiC2XLhA3WY3yzZw0VWGAr6GG9UyBuKilQGxWCsSWS4HYcukCcVMB4uZr NFVhoAKxpikQa0iBuEBSIDavRwLEzcS10dJZUxUG+RtqWM8UiItaCsRmpUBsuRSILZcuEDfXCeLB Gw01rGcKxEUtBWKzUiC2XArElksXiHVOJfvZkE2GGtYzBeKilgKxWSkQWy4FYsulC8TC232qjbhG NMQ3Xq1tCsRFLQVis1IgtlwKxJZLF4hbueDptpyc3rw43YC1TYG4qKVAbFYKxJZLgdhy6QJxGzc5 FaeWvhi+xVDDeqZAXNRSIDYrBWLLpUBsufSCmBMIaYkTE1nbFIiLWgrEZqVAbLkUiC2XLhALb/e5 jqK8hr4ctdVQw3qmQFzUUiA2q3r9VhqOXG6zRRBzAnd+9qikVWkOv+ihQGyJdIG4vSee7+SlqYqj Aw01rGePHog3CRA3cLQdEcbN16F8CxtRs9Uo/91UoWk2oXqDnA1HLrf9+tvvWB93Hj7xtiG36LOY uTcVs/bZgMR2LA/NwLZjl21GKVd/MBy5LJMgbiFAbMKjLAmVa6MDxB288ELn9ZqqNHqboYb1TIG4 yCVAbAqIJSW+L/+9gOD3021C5kDsGXsO3gKCtiBXAWK7oHTYHyp52QmtjjiDrQKAtqI/BYjFNpmz 5zqtx4tdvDVVeex2Qw3rmQJxkUuB2JwUiC2XArHl0gXizt74W9cNmvpKgVjbFIg1pEBcICkQm9ej AOLnBWRf6u6jqa/G7zDUsJ4pEBe5FIjNSYHYcikQWy49IH6hmw/+3sNXU1UmKBBrmgKxhhSICyQF YvN6FED8YndfvNzTT1NfT9xpqPGw3bt3T34QuW7duvD1zT1dZmZmJtq2bYumTZtmfyTZaArERS4F YnNSILZcCsSWSw+I/ya83Zd7Cdhq6OtJ+YN4+vTpCAgIkB9H/uqrryR8jTZy5EikpKRIWH/zzTey jNEUiItcCsTmpEBsuRSILZceEL8kIPtqn42a+mSYH1o0bya/Jj9u3Dj89ttvhhYgvd3z58/LZeYF BwfLZVpqaipq1qyJOnXqwMXFRXnExSsFYnNSILZcCsSWSw+IX+7tj9f6btLUt1P2GGo8bM2bN5df m6eNGjUKYWFhcpk2Y8YM7Nq1CxkZGahataryiItXCsTmpEBsueyEFIgtkx4Qv9J7I/7Rb7Omqk7d a6jxsDk6OsLJyQl3797FZ599Jr3jiIgI6TW3bt0aR44cwZ07d/DFF1/gl19+MdRSIC4GKRCbkwKx 5VIgtly6QNxHgLi/gK2Gqk7LH8QPHjzA0KFDUb16dRw6dAg3b95Ejx49JHQvXrwoO+saNGiAwMBA FZooXikQm5MCseVSILZcekD8at9N+OeAAE19N32foYa25YStOVMgLnIpEJuTArHlUiC2XHpA/Fr/ ALw+cKumvp+x31DDeqZAXORSIDYnBWLLpUBsufSA+B8DBYgHC9hqqNpMGwGxXndby3K2w+WoqChc vnzZkFIwswTEZesvQqmadihVww5l6y3MlVdarDOd+WXrCZiKtFJ1DGnib86y5qUfxGWbrUWphqul yvGLsjnySjddk51X1pCXK42fAs9RPl9ZAOIyVaeiVKVJKFVlEspxtrQceaW/mZKV9/VkuV626jSU qizWK02UylnWnKwC4iMX4Jd0Fb6JVx7KY5pf0jXx93J2Gsv6J12X6TnLmpNFIA7OgGPEBSwMPWsy 30HkLwo/D/ugNLm+KOwcFonyDiGZD5U1pYKAeMeJm9hx6uZD6duSr2HnqVvYcfKPvO3J17PSTtzI VdacCgtigrJMK1c8ZWJO4LKtXWXek23/yHtWTm2ZO82c9ID4nwO34I0hgZqqNuuAoYb1rEAgvn37 tuz1e++991C5cmXs3Zt/8FrLevfujbNnz0oQX79+HT/99JMhp2BmCYhfb7cKu6MzEHPqIir0ds2V 12C8P2JPihP48Gm80cEJ5QS0+zvuRWLaVQxeuh+l6+qFsT4QlxP6sJ8PIpIvY/+R83izu1d2HsHb es4exJ2+hoMJF/B+H28J3s72B5CQfl2UP4d3e3k/BG+TsgDEtQe74GjKJfgfPIa/15uTnU4oj1m2 G0dPX8Ji3wgJ7FcbzkPcyQtIPXcDF67dRelvp+ZqKz9ZA8R2vvtQrV5jNOvUC65hJ7PT3cJT0brn QHxbsy7a9h0Kz5gzcA49iW+q10KV72vgq2+/h0dUeq628pMlIO5v74avqtdGk55DMW/vyYfzHVxR uXodCevJfmGo3aozvq7dEL1mrxT5GQ+VzytLQexzOA2N23RCzQZNsGJrSHZ64LErGD1vOarVbYhG rTvCIzhJpvcfPxM1RFrLLr1lXWN5cyoMiJ/v6IHlO5KRfPYWei0LxdPt/4DrS129EHA4EwkZ1zFk bQSe6eAh01/o5ImtUWcwdO1hAeWsNHPSA+L/GxyIN4du01SNWQcNNaxnBQLxrVu35MBl9gTyLZEv v/xSgnTFihV4//334eDggN9//10O2ejXrx8++ugjOZ6OZbZv346PP/4YDRs2lG+ZPPPMM/jnP/+J 0aNHw97eHvHx8Vi/fj3mz5+PTz/9FHZ2drIex9zVq1cPLVq0QK9evXDu3DnD1uQ2vSAuIzxe/2Bx UQ5ej2cbL0Hk8fMoY4Dr040WY6c4AVnmPz1d4LkvSYL3lVYrUH2kD0auOmh1ED9WbyWCky7iDQHg D/r6wP3AKTzWaLXM+3sHNxw+eUWAdg0+HeyPrYcz8EobFxw6dgFPNF6NL4ZugvPeEyjdREA2T7sP SSeICdKwhEw8VW066g51hZ1XiADuNAnhyj1WwXFDuFwetmgbJq7ai9cazceBmDQ8+dUk6S3n9aDz U2FB7H/8Omo3bQW3yNOY570TXUdMwoaEizLPK/asTOff4fNXYPi8ZXARoK5Wr5H0ho3l9EgviGfv OobqzdqJ5Qz0s3NBtymOctmYP3FDMJr1GYlv6jSCY+RFzBXHbY6oY3cwVaZN8gnJLpufLAHxduHV tus1GKu3R8A/JgMNWrSDf2ymzNuSKG6yMZkIOHoRzvvi0LpbH+EZ34BnaDI2J5zHur2xEsr0mvO2 m1cFBfEz7T3Qe0UoJnrG4DkB1HDh/FQavVXmPSW83QkivfHsvRK8O+PO4UXx92lRZ6JXDFbsTMYo 1yirgfj1odvx9vAdmqo555ChhvWswCCuVKkSxo8fj+7du2PevHlyfFzfvn0lnAlfvlEyZ84crFy5 Uo6pq1ixonzd7/vvv5fwvnr1qvR+W7VqJdMJ27Fjx8oxd6tWrUK3bt3kUBAO9Th+/Lhc37ZtmxyX 9+9//zvXq4OEPsfmcbsWrA8zAcOHVU4A8qjwbl9othRP1HEQnm9adsjhqYaOCEo4i5daLEO1ERuQ dvE2npR1HFFliFeRgPhxAdTTl+7gqZbr8HxbV4QnX5JwZh493RnrY7BudzI2hqXh+3FbUU54xPP9 j4i0E/AXaVXHbNEXntABYkL0hdqz4b0nQQL5zWb22BWRIj1f5n3WeRm8dh3BC7VmYrZrEHaEncLL 9ediqW8kHL3DsedwCl6sM1sXjAsL4vUCsvVbd5DLa4TnXrtJy1whCpfQE+g+agoat+sKp4NH4Rqe gs5Dx8q0Ru26wDkkObusOekF8SS/UHSZaAeH4ExMEtBt1HWADFUwj95xkx5DMGNrLL6pnQViY70F +1PwVbVaEszGtPxkCYgDj19F1Rq1BXyzyrfrPQjrw07kKHMFg6bMQ+vu/eDos1uuG+tNXe6B6avW Y2tSVpo5FQbEy7Yfx7fjtolld4z3iEG3JcEyj4B9v78ftkRlwmn3SSzaekyW/2JkAKasj0WHhYcw yuUvDmJ6tDdu3JBeLd+ppge7ZUvWR/USEhKwevVq6b3ScyVk6fHSK+arfZ07d5brBHLLli2Rnp6e C8SEt7u7u2xrzJgxCA0NRZUqVbLfROFv8+0UoxH0vCnwBvBt054CfovzwNCE6jsi4fRVvEgQ1zaA OAdcqwz2xJodRzHLMwKHT1yUoYmiBHGpxk44LYBvBHHY8T9A/FJ7V2yPzsRH/X3RePpOeAWl4G9t XUTaGbzfewNazN6NlTuE124lj9gI4g0GEL/V3B47w09JEBvzO03xg3NgLMYu24UdIo9p5b5j3nT0 mRuA8Sv2oIyO8EShQSy8pPqtDCAOSpTecU4Q0xteG3QMvcfNxGiHNTKe7B1PnccUJx8Mmr5Ql2es G8S+YegyQYA4xADibgOzQdxz1goJ5g5jZuPzyt9ghFOATJ8vnn4aivRR67bnais/WQTiJIK4Djbm AvHJXGU2iJvsAvet6NB3iPSgCeM56/zRacAIBCRcyFU2PxUUxE8LiC4liMdvkyGJCR7R2SBmvHjQ 6nAMdorAf4Zskh7xq929ceXWj5jlewQ+oWnYFX8Or4m0Z/O0m1d6QPyGgOw7I3dqqta8P15btpYV OjRx//59VKhQAR4eHhKkDEdMnDgR+/btk3+9vb2lZ/vdd99J4BLM9IQnT56M8PBwtG/fHsnJyQ+B 2NPTU/4WQRwSEiIHQjOP8Ofv5QRxTlu8Oc4EDB8Www7eB5JRe7QvXm+zCmHHzuOZxotRobeb7MT7 R+uVEr6tpmyG48ZYGbagp/zdMG+MdTok2hCANdHuw9IZmqi/SsZ6P+i7ARWHbZLe74sCtv/p74O3 unnh4NHzeLa1s4QxveXXO3tgt4AMv0H32WB/7Iw5g9IC5qbaziULQhMRiWfxogBy2/HemO0ShLeb O+CdFg54stp0vNpgHp6pMRNu2+PQbqIPnq81C681nIena8zAMv9IdJ+5sVhAzBBDnaathWd7AtOd N6Hn2BkCvElYtTcO7uLmui44WXrNYxauRbcRk+AZlYG1Is1LgKnfxLkY6+iMDRLOpts3Si+I5+xK wveNWmHBgVT0nLlcaurGCMzemYhZ2xIwYf1BjHLejsrVamOWuNHP25ssY8kjVgcUSWcdO946C6Au 3XgA68UNs0HL9tgQmYrV28Olp+tx6JgMTazdFY1qdRpiV8odzHPdhO7iqWGLSDfVpikVxiPuvjQY s/2O4MXOXohOuYovRmzBV2MCUb6tGzyF09Fk9l78rbMntsWcxVt9fOXHOxm+YNjCYcsxGbYw1XZO 6QHxmyN24N1RuzRV21ZAzM46xn2fffZZvPnmmzKmSwDPnDkTL774ovROGS749ddfZejhlVdekWEF Apghhpdffhldu3aVgI6MjJQx4oEDB0pwc52vCBLgNKbRIybwGTPmGysUO/hMmd4YcTnhETPmG3z0 LE6evYEPuq3Du53Xwm1PEsrUWYi53pG4eus+1oiL55nGS2R5e58Y3PvxZ3mS7Y/PfGikhWnpAzHD D+/09MaxzBuIOHEZ/xCgrTNxG5ZvS8LjArAd7PYh88o9caJewXu9vFGm6Rp0X3QQ567dQ6Qo/26v 9dmjKcxKJ4jp4X7bdw3OXL6NLQJcBO2IxTswbOEOubzrcAouXLuDbtMFcKtOw/utF+HIqQs4c+k2 JqwU3rAMY5huO6es0Vm3aPMhVK5aDY3bd4NbRKrwfJ0waJoDVh84Kjzk1viy8tfoMGi08J7PYqUA 9Pf1GuLLKt+g78Q5EtKm2swrvSC2C0rDoMXe+LTSV2jcYzDsDqah7fCpGLk2MLsMY8JV6zeXoYkh S33w4X8+wceffi7+/kd4xdtytWdKlnbWMSZcr3kbfF2tJtbsPAy3Awlo0q6rgO5tdB08Wu6fBq3a w1uAmiGJLytXwSeffoYKn30uvOKR2CZgbqrdnCooiBlWYAfc8h3HpafbedEhkeaJ7QK6Lwr4ErL7 E8V5Jc7z4esiZXnqaeEtd3YMxrB11uuse1t4u++N3qWpOgtCDDWsZwUCcVEaPWNTxphwYmKihDIn zMivnCWjJujxPlHLHo8LcYiaXK/tIPMYL2Z6KcN6zjTqidr22enmpQ/EFGH8eCMnPCHAy2XCtpQh 3FCm2ZoceVnlmZ+zfM628pVOEFNlBYwfrzIZT3w9WYK51DdTpadMwDKNeVyXZQWMuZ4zTY+sAWKK 4QifhEuG9QvZ4Qafo5fhKx61c4YfZBrDF0es31ln1MKwc394uMEPe7oOIWeyl1nWqJxl8pOlIKbY 4bb9xB9ANcJ12/FrsoMuJ2wZnmAaRTAb082poCA2isPQ+KVldsQRxOUFOI2A5TLz8g5tYyjD1HA3 U9ID4ncEZP81drem6tn9BUCcn/GdbY6g4KQaDE/kZ5aAuHikH8TFIgtAXByyFoiLWpaCuChVEBAX tQoL4qKWHhC/qxfE9qGGGtazPw2I9ZoCsYYUiAskBWLzehRA/P6Y3fj3+D2aqu+gQKxpCsQaUiAu kBSIzetRAPG/xu3BhxP2aqrhwj/mGLaWKRAXuRSIzUmB2HIpEFsuPSD+94Q9+M+kvZpq5KhArGkK xBpSIC6QFIjN61EA8UcT9+KTKfs01WRxuKGG9UyBuMilQGxOCsSWS4HYcukCsfB2TYE3r5osUSDW NAViDSkQF0gKxOb1KID4YwHZT6cd0FSzpZGGGtYzBeIilwKxOSkQWy4FYsulB8T0dk2BN6+aLVMg 1jQFYg0pEBdICsTm9SiAuMK0/fh8xkFNNV9+2FDDeqZAXORSIDYnBWLLpUBsufSA+LMZB/DlrIOa arFCgVjTFIg1pEBcICkQm9ejA+IgTbVYGWWoYT1TIC5yKRCbkwKx5VIgtlx6QPy58HYrzTmkqVar FIg1TYFYQwrEBZICsXk9CiD+ck4QKs89pKnWTtGGGtazRw/EGwWI6wv42ZIMs6XZhJqtRnlO8P6d gLENqN6gdYYjl9uyQHxWTvxuC3KOOoNZe1MxZ1/Ja7bQ8tAMBAoA2opMgbhUc+fsaStLWvwA6b2f zIO4ogDxV/OCNdVGgVjbFvtHo3xde9tRHTs82crFdtR8DcpXHiU02iZUr88Kw5HLbf8VICb83GLO 2oTm7U2RMcQvxONrSevzmQfQx/0IIk/fQniqbej8zQeGI5dlEsSN1+Lptm42oVItnAWIfzFsnWmr JLzdKvODNdV2bYyhhvVMgbioZZMgFhD8aoxNqF7flYYjl9tsDcQL9qWg4mx9j65FrUrCc+vnmWD7 IG5iOyAuLUFs3iOuLLzdrxeEaKqdArG2KRBrSIG4QFIgNq9HAcT0dr+1D9VU+3WxhhrWMwXiopYC sVkpEFsuBWLLpQfEX9uFoKpDqKY6OCsQa5oCsYYUiAskBWLzehRA/I3wdr9bGKapji5xhhrWMwXi opYCsVkpEFsuBWLLpQfEVR3C8P2icE11clUg1jQFYg0pEBdICsTm9UiAWHi71RzDNdVZgVjbFIg1 pEBcICkQm9ejAOLvBWRrLInQVBf3eEMN65kCcVFLgdisFIgtlwKx5dID4uqLI1BzaaSmunocMdSw nikQF7UUiM1KgdhyKRBbLl0gFt5urWWRmurmqUCsaQrEGlIgLpAUiM3rUQBxTQHZOssPa6qHV4Kh hvVMgbiopUBsVgrElkuB2HLpATG93borDmuq53oFYk1TINaQAnGBpEBsXo8CiOuuPIwGq6I01cc7 fxDfu3cPDRs2xFtvvQVPT0/873//M+QAv/zyC/r37493330Xo0aNwu+//27IsVEQ59x4S02BWEMK xAWSArF5PQogrrcyCg1XR2uqz4ajhhoP28SJE7Fjxw65/N133yE9PV0u05YsWYLdu3cjKSkJ9+/f z8U5CWIm3Lp1C7/99ptM/PXXX+W6JXbq1Cn4+fkZ1sSF9N//4vbt29k/RvrfuHFDLuc0/ubdu3fl MvO5sYUxS0BcTkDy5WaL8VqLJRKYOfOerGePf7RcileaLZHlyom0Fxo74p8tl+FvTRxlWs7y+coi EDvjtS6eeKWzh1w2ppdv6YynW7vgn1298GpnTzwp1p8S6f8n1t/oth6vd/PCSx3cZbnc7ZmQBSB+ sspY/KPWFLxUbRLK5ajD5We/HY9/1p6K57+bgLKVRqOsTBsn0/5efZJMy9lWfrIGiF2iMrAq6Dic Qk7KeYP/SM+EU/AJkZeENaGnstIOZ2DlwSSpVUJrw1Kyy5uTJSCuMu8Qai0Kw3d2wXJGr9z5Qaix MBQ1F4bhK1Hu6/nBqO0YhjqO4bLON2I9d/mHVRAQ70s4h73xZxB66kau9INJl7AnLhP7j55HWMrN 7PQDiRexJz4TQUmXc5XPT4UB8VNtXPG3Tp54vYc3nmvvLtZz5rnhlS5e+D+R97w4x1mWeqGjuyz/ srheuJ6zPVPSA+L6q6PQyClaUx3WhqFjh/Zo2rQppk2bJnlpNKadP39eLo8fPx7BwcFymValShV0 6dIFDg4O6N69ezZvadkecbNmzXD58mW5fPbsWelem7L8vNUjR45gwYIFhjXgwoULqF69unTHaZmZ mWjcuPFD9a9evSrddBrz+E/l9xt6TC+ICdKmE/zhc+A41u1IwDing7nyVwfGY4ZbKNZsO4Lmkzai VM35stwEpyBsCTmFqoM9c5XPVzpBXKb5OvRaEozVO5PhFZSChtN35QKr+4FTmOEdhzW7k9FvWQie b+uKwavDMWpdJFz2ncS09bEo02xdrjZNSieICdtlG0Lg4B6ErYeOoVLHhdnpL9eYhICDRzFh6Xbs P3wS/6w7DS8IIAccyErbFpyEOv1WCBiPeqjdvCo0iGPPodeEOegyfCKadOqJ+f5B2XlOoSfRZ/J8 DJzpiPptOsNha5gE9uA5yzBo9hI0aNsFIxeug7toI1ebJqQXxF8JHTx5FetCMxCach2Nl0UIcGbl fSnqu4RlwjX8DJYeOI0myyPQaGkE7PekwGFPKq7e/VkA9shDbeaVZSC+DbctQejSdxAGjp6M8TMX ZedFpt+RaZPmLkGXPoPhsSMcEadvw0v87dpvKKbarcByz0BEpt3J0Z5pFRTEhOg7vX2wO/4cZmyI ww6xr8sLp4N5T7Z2xefDNsEvNA2TPWOwMTxdln9G5G0MT8MEj2gMWBkqymWVNyc9IKa328QpRlP9 fRLxu4AoQUrl5FWLFi0k62gjR45EeHi4XKbRQ2Ye61SrVk16xUbLBnHLli2lB0u7cuWKhCa92AkT JqBdu3Zo0KCB9HIzMjJQqVIldO3aVbrg7dtn3Rk6duwIOzs7WZ/GjWNefHzW4OdFixZJj5mue6NG jVCjRg3pts+YMQPvv/++vFOcO3cObdu2leW/+OILDB48WMJ8z549Mq1Xr15o3rw5evTogeHDh+eK sRhNL4jL1F6A0MSzeKvNCjxRdTbCj51D6VoLZN7T9R2wUXhSj30zG/9ovgT7YjJQuuYCPFFjvqhn h8rd1sJuQyTK6vGKdYL4sQarkXzmJp4VgP1bOzfsFCfkY43WyLyXOnogLvUqyjReg0+HbMT6oFSU broW5QSoH2vohEDh+b3d09uqHnHpiqOwN/IUHq8wDJ+1mAeP7dHSyyWIv+uxFJOWbUfpz0eg5Yh1 WBcQiXcbz8L20ON47OMh6DZlPaat2oUyog1TbedUYUHslXgFNRu3gEf8BSzeGY1mXXrDPe6CzHON PgOPuPPYcPwGBsxYiOH2TlnQ5Zc/jl1HrWat4Xw4/aE2TUkviOsIrzZAbMt/ph9Ad9dYuAnocsJx wrONUxR2JV3B1MBk9PWMx6cz//g0D73o9Gs/4OPp+022m1OWgPhwxg9o1Lyt9G4j0++hZfuuwjs+ m5UvPODDIo3LO6NPY8CIiYjKvI8uvQdhiesm2K1eLzzo67nay08FBTFhO9EjBm0W7EcZAUuPgymo N22XzCvX0gWDVoehxdy9KN1kjbwmXhAgtt98FMPXRkhH5O3eG6zmETcSIG66JkZTA3wTDTUetpUr V0rW/fDDD/jwww8lSw8ePChZtXr1anh5ecknfzKUPDVaNogJ2n/961/4+OOP5V+CmcYQxbFjxyQw HR0dcebMGdSqVUvmhYSEZJdbv359Lo+YFhUVJb1d3gE++eQTnD59Gp07d5br9JgHDBgg/44YMUKW 5zIBT/vyyy/l35SUFAng5OTk7N9inGX06NHZIKbXHRkZKR8Dhs5xNQ3EPHqqngMSTl/Bc40W4Qnh 7W6LOC283iwQU3uj09F4vB9GLN+HjEu3JZwZnmDIwmtfEqoMcMvVXr7SCWJCNOWi+B1xd39BPJ4d PnVFwpl5ZcVJ1MHuADKv3EXKhdt4r49PNnTfESdi3OlrMlyRs718pQPEhO1rtabAPTBGwvSN+jOw T0CZy8x7u+FM7I86hWq9lmHjvgTsDEuW3u/k5TuQfv464pLP4YWq42VZU+3nVGFBvC4iVXi2neXy igOJqNGgGTwTLmXnL9t7BF9Xr406zdrCOTItO91+cwiadO4FNwFrY5o56QExgdpOPLra7U6R3m/L VYexWzzac5nwHCY8qfO3fkJn5xgEnbyG0f7HZD1+GXi4z1HM3H5Cls3bbl5ZGpqoVrMuDiVfkcvd +g/Drpi03GUEkOkZ++yLkR7x5xUrYZr9Kqz22Yl2XXpJOOcqb0IFBrGA6ErxFFhxRID0bEeIJ7ye 4smQeTIE0cEdUSlXkHn1B4wXHjCBejTjBtYfOo2vx2xF+InLKC/O67zt5pUeEBOyzdfFamqgOG75 GR3QMWPGoGLFipKb5Gffvn0lowjeIUOGSOfy+PHjhhpZlssjvnTpkoSbMYzA2G39+vWxbds2Ge+g COI+ffrIOoGBgfJHaUFBQQ+BmGb0fIcNGybrGj3Za9euSS84PxDzxkCjB85yoaGhsseRFhcXl6vX kf8gQyPR0dEY5SAgZQqIeVRWeMRxpy7hFeHxPv79XOyNSZfhhzIGr/jFRgtRpb8bvu3riqAjmTK9 nKizbHMsWkzaKOpbN0ZMz/b0xTt4hidfezccPHpBgpghi7d6eGNLZAaebuUsPN8NCDt+WcKZMF4o vINWwmPguql2H5IFMeKAg4l4Qni9/xLe7uYDR1HqyxEoI4DLePD/1ZmK73ssQdsxrvDeFYfP29nL UMaTX43Gt92WyPL0qk21m1OFBbHnkYuo1bS19HKX7YlHvdYdBYgv/xFuEH/pGU908kGnYRNFOr8/ dwb1WnXAHO89D7WXn3SBWKjB0gisC82U3m6HNdHwj72Az8Xyl7MPSi84UNwkPp1xQIYkNkSfk/Dm VzcSz91BvcXhJtvNK8s84nuoWbchDiReEJC9g449+md5x2l3ZEyYMePhk2bDfo23XCeI6zVqjoPH Lor1G6j89beIOfvAZNs5VRiPeL5/AmpN3iGf8OZvTECb+ftRTpyrhKfz3pP4bnwgnm3njg0hp/Fa t/UyjFFn0g6UFeXpQbMNU23nlB4QN1srrm3nOE0N8k8y1LCeZYOYsY2cMWKGD27evClBTK+U6wwr ENJGEDOU8eabbyIxMREdOnSAvb29TM9pM2fOxOeffy6ByqEdNWvWlOEKetg+Pj4S9vxtgpkgJnRp /F0a63Xq1Ak//fQTKlSogBMnTkgPmTcFI4hzmt7QBEE61SUEY1YdQKupm7Hx0Am82mIJBjnuQVkB 3WrDvPBhFycsEe31XCAew0XaeuEJj1y+H2+3WykAvtRkuw9JJ4ifEI9eq4Rn0G7BPgxcGYpxrlH4 ZJA/ei8Nxisd3RF58jK+GrkFnR0Owi8kDaWbrRVahyjhOT/RdK3JNk1KJ4gJ3IPRKajeexnmu+xH 10leaDxkrdAaPPfNONTsuwJftHdA1LFMfNB8Lj5oNgf7D5/CJ60XYPrq3ZjvvK9YQOwRfxGNO/XE DLdA9Bw/C6MXu2KmeyAmrfaRHvJ0sey4/TDaDxiJofNXSUA7hZ5CjYbN4ZVwxWSbpqQ3NPHtgmCc unwXndbFYFP8efT1iMf4TUloszoK39mFIP7MLXQUeYEJFzHaL8sjbieAHXzqmi5vmLIExBECuNMd VgmtFh7uLnTo0VeGISbOXYLDwtMdISA8fvYi7IhKwe64DAniMTPsMWeZC9Zu3IdOPfsXuUdcbcI2 +IWnoZLwipPP3pSwpff7lCFsMckzBl8MD0Bo0iX8TVwL1SZuh/O+k6g8aou4qZyT0DbVdk7pAXFz AeKWArRaGryxCEFMj/bHH3+Uy4xvMK5BN/vw4cPw9vZGTEyM9ESZxzCA0dLS0mTcIyEhQQ7LyGuM hxC4xngIYcvye/fulR1zhClDCkxj22FhYbLc/v375V+m0RvmtvAGwW3x9fXF/PnzCwViiuEGdsR1 mLkFzzdeJEdD1BzhLePHXw90kwD+fqinhCnTus3bhj72O9HXfheqC1BbM0ZMvdDODe0X7EdL4eEy VvxWL29UGxeIssIrZjiiy6IgtJm7T5ajN8y/dafslJ6EqfZMygKPmOGJLgLA9QatQvkqY/BZOzt8 2sYOT4nlJkPXyFjw+03mZI2aEPq0rT26TfWWsC5feQzKmWgzrwrdWSe0+lAyxi51x1TXADlSYmFg OOw2HcLasFRMWuMr4Tx7/W5RNstLXhl0XObnbcec9IJYesVLwjFlazJ6ucdLaHZ2jpXeLr3fhsIT nrwlKy8rdnwILVYeRrPlkXLZVJt5ZWlogl7vSu9tcHT2l6MjDoinLSffXYhMv4vFLhuxYJUn5q/0 xBq/PRLEDGOsWL8NS1w3F8uoCcL4u3HbZEjiX/38ZEii4Yw9slOOy01n70X3xcH4ZMgmuc6RFDUn bUe3xYfwXj9fmWaq3ZzSA2J6u61d4zU1ZFPusII1LBvEfwZbuHAh5s2bJ2MsJ0+eNKTmNktAXCyy AMTFIgtAXByyBoiLQ3pBXByyFMTFocKAuDikB8StXOPQ1i1eU8MC/uIgpgdsHDKSnykQa0iBuEBS IDavRwHErQWI27kf0dTwgGRDDevZnwrEekyBWEMKxAWSArF5PQogprfbwSNBUyO2KBBrmgKxhhSI CyQFYvN6FEBMb7ejAK2WRm05YahhPVMgLmopEJuVArHlUiC2XHpATG+3s9dRTY0OVCDWNAViDSkQ F0gKxOb1KIC4k1cCuqw/qqmx20wPFCiMKRAXtRSIzUqB2HIpEFsuXSAWkO3qnaipsdsViDVNgVhD CsQFkgKxeT0KIO7qfRQ9fBI1NX7HKUMN65kCcVFLgdisFIgtlwKx5dID4m4bCNpjmpqgQKxtCsQa UiAukBSIzetRAHFPAdnevkmamrQjxVDDeqZAXNRSIDYrBWLLpUBsufSAuJfvMfTxS9LU5J0KxJqm QKwhBeICSYHYvB4FENPb7et/XFNTdqUaaljPFIiLWgrEZqVAbLkUiC2XHhD38U9C/43HNTVttwKx pikQa0iBuEBSIDavRwHE9HYHbErW1PQ9pw01rGcKxEUtgrilCSCWlCSIR2XB2AZUr88Kw5HLbbYG 4vkCxJzAnVNXlrQ4yTy/bWdTIL7xk+HIZZkEcWPbAXGp5gRx1vcz87P+ArKDAk5oaua+NEMN69mj B+LN8SjfaKltqfk6lG9hI2omQFx7vs2o3nAvw5HLbQTxWgFiFwFBW9DC4DS0dNE3X21Rq5VLPEYE JMPvyAX42oiSr9wzHLksI4hLt3bHi128bUJPtffEPbFN5myQAPEQAVotzVIg1jYFYg1JEM97CIgl JQViy9VKbIcCsWXSA+LBm09g6JaTmpq1L91Qw3qmQFwcUiDOVwrElkuB2HLpAfGwLScwYutJTc09 oECsaQrEGlIgLpAUiM3rUQDxcAHikYEnNTVPgVjbFIg1pEBcICkQm9ejAOJR205izPZTmloQlGGo YT1TIC4OKRDnKwViy6VAbLn0gHj09pMYu+OUpuwOKRBrmgKxhhSICyQFYvN6FEA8RkB2/M4UTTkE KxBrmgKxhhSICyQFYvN6FEDM6S0nCtBqaZECsbYpEGtIgbhAUiA2r0cBxITs5N2pmlockmmoYT1T IC4OKRDnKwViy6VAbLn0gHjy7hRM3ZOqqSWhCsSapkCsIQXiAkmB2LweBRBP3ZOC6XtTNbUsTIFY 0xSINaRAXCApEJvXowBiQnbmvtOaWhF+xlDDeqZAXBxSIM5XCsSWS4HYcukB8UwB4tn7T2tqZcSf EMRHjx7Fb7/9ZlgDUlJS8N//mt8hhbGCgrhcwyUoK8S/ptJN5emWThCXa74WZQ3icv55+adpygIQ l6s1D2WF+Ldcrfzzcq7nTNOjRxHEnJSHsKTySzfm5VzPmW5OLPOogfiFzuvxvBD/5s1jes48Y9n8 ypuSHhDPFt7unAPaWh151lDDelbkIH7uueewdu1a/O9//5PrtWrVwrVr1+RyUVhBQFymwWLUHuuP /ov3490uztnALSf0dJNlaDtrG3ot3IuXW69+qK4u6YTk821d0G3RQXRYsA/PtHbOTido3+65Hn2X BaOj3X48K/KY9l5vb/QTaR3s9sm0nG3lKwtA/I/mjuhrvwNNx/viyTp/pJetOQ+f91yL/g47UW2w B0rXmIvn6tmh1WR/DFq0CzWGeogyc3O1lZ+sAeIVh45j+MK1mLjGD+sOZ2Snr41Ml2lD56/ENLet cIk9J2UfGIFhdqswYbWPnGozZ1v5SS+ICds+PolYGXYGU3aeypEehw4eR7BKpK8VF/I6Iaaz7JoI butZrBEasjEpu05+shTEPnHnMM3JB+MXO8M9POWP9PjzWLQpCGMc1mDKyvXwjjmTnbc+OlOUd4F7 2KnsNHMqDIif77QedafvxTDnKHw8NEAC1phH0LZ1OIQhaw+j4uhAmffpiC0Y5BSJ/qsj8N6Ajbpg rAfEc4W3O/9gmqbWHP4Tgrhy5cr49NNPcfp01mTKNWrUkCAmmENCQjBp0iQ4Ozvj119/xYMHD7Bh wwZs3LgR06dPx5UrV2Sd27dvw9HREXZ2drh165ZMy88sBXHZBkvQeNJm+AenoOpwHxw8chYvtlgp IVy6/mI4+Mei3+J9qDHKD75Bp/BEPUeT7ZiVDhA/3mg1Vu5IkqAdtDIUY50jUaqpgKbIe66NC8KS LuLrUQHoufgQVm5PwgutnBGefAkVh21En6XBmOcbj9JNssqblU4QlxEg3ReThtojvDDPKxxd52yR ni71fscV2Bp6Cl/0WgvfA0myzAsN7VFbQPWT7k7YdOgEqg1xl8A21XZOFRbEbvEX0aRzb0xx2Ywe 42dh1GLX7Dyn8FQB4EDYbw1H6z7DMNHJFysOJqFG4+ZYsDkEvSfPw8DZS+BKQOdo05T0gri9ezxS r/2AcYEnsOvEVUzddUqCk+q9IRGJF++i54aj6O+bKMoLOIvyA/2PYZB/Eq7d+xkD/I491GZeWQJi v6OXMGzOUgwT/+dMl01o2bUPNsSezc538NuPpYFhmLDUDb1GTYF/4hX4JVzEGPvVqNusDZZtj8zV Xn4qKIgJ1trTdmNjRAaqTdqJY2du4o0+fjLv2Y5e6LjoEGb5JeDbCTtw6NglCV0uV5+yCw1n7cN2 cWyeEyDP225e6QHxPOHt2gWlaWrtnxHE33//Pc6ePYvmzZvLEIURxFFRUWjTpg0yMjKwePFijBgx Anfu3MG7776Lffv2Yc+ePWjWrJkMYzRu3FhCOz4+Ht27dze0bNosBTG94S1hp/FZPw+5bOcbg6oj fKRXTOjui8vEe12dUabeYiSfuYHH6ywy2Y5Z6QDxY/VWIu3iHTwjAPuC8IwPHj2Px+qvknlPC283 SKx/MtAPnewPYJJHFJ5puQ4hAs4f9NmALgsPYJhTGEobwG1Wuj3ieQgIPYlS1ebg/XYrEBB8QsA5 C8TfDHDDLPcQmddhxmZsEnn0gJ8U9V5rvhh+Qcn4QnjMxQFi94RLqNW0tVxesjce9Vp1kHA25q8T nt2KoCS07T8S090DsVJsa80mLbBkTzz6TbXD2GWeVgVxb+Hh+h25iKbrYiUsdwsYsx7h2UsA+Mrd n5F8+R6WBGeIdAFVUYdedGfPI4g/dwdN1sSYbDenLAHxxmNXULV2PXhEpIr1i2jRtS9cQpJzlXET N9Xp4iY1aOoCAeLLcBRe8uDpDug6bKIAcUSusvmpwCAWELUPOIb6M/bguY6e4gaZiA4Cvsx7ToC4 8ex9mO4Tj/8MCUBg9JmsOgLG/9fbD1XH78DGyEyrgXiBgKz9oXRNrYs+Z6hhPSsWEP/++++YMWMG vL29Ub16dQni/v37Izg4WJb5+eef8dhjj8n0qlWrSs/4hx9+wD//+U9cvnwZ7733Hlq3bo22bdvi gw8+kHVyGr1rtsF6CzfGmoZhPqJHvD/+DN7ouEbGgSe7hskwBUFcruFS4SX7IvX8TSSmX8Ppi7fw XLPl0ls21Va+0gHisgKQKRdu4ykB2OfbuuLwySsSzjKv+Vq47z+JUesipdfcf3mIKC+80ZDTGLYm HKt3HpchjdJNnR5q9yHpADFh+2qzRXDbdVSGHd5ovVR4x+nSSy4n8p+pKy5YAdtTZ2/A72Ay9kSn iTrz8VJjcfHO2YrwxLN4u90yXeGJwoKYXm/9Np3l8rL9iajesBncj1z6Iz8sBaOXuqN28zaw3xIm vJkMNGzXBUPtVqFZt77Ckw7IClkYyucnPSAmUIdtOo61EWfRwjkOgzceR8jpG2gplmUZkd9JALed Wzwi029i+u4Umd5MQNsz5nyuUIY5WQJin/gL+LZGbXhFZcj11r0GweXQ8Vxlpq/zR5fBY4VX7I4N 8efRpucgbDp+Dd2HT8KqPbEyhJGzvCkVBsROu0/i63HbxbIXxrjFoM+KsOy8CsMC4B+WjuHOUdgu PHl6xFTd6Xsw0+8I1u05JUDs9VC7eaUHxA6H0rAoJF1TLjF/UhATlPfu3UPNmjXxr3/9SwJ33Lhx 8PPzk3mE7auvvirDDt999102iP/v//4P169fl140//7444+4e/euoeU/jGUJ+pEjR6JGm8GmYZiP 6AWv23kM9cZvkssuu4/hywFeMk921Im0J2otFBByQGjieTxey+GhNjSl0yM+lnlDxolf7uCGbcKT e7zBKtkh934vb2wMT0OpRqvxQhtXxJ2+hre7ecLj4Ck8LrzmVzp54FDiBZRubB0QUwQwAVuq2mx8 3t0J7gLKZUUa6xLUpb+bhTJivdvsrbDzjkDZWgLSTBdpzSb6YrF/lMw31XZOFRbEnolXUbNxS7hE n4XDtggJV9e4C3AW3hPFdHq8M9fvQqveQzBvYxA6DZ0AV+E1O+6MRgMBZTdR3lTbOaXXI+7ufRR7 T15D07WxmLT9JDYevWTwiLMAShHSHgK8y0IyZZ127kdw7tZP6CD+5m3PlCzziK+iTrPWcA5OkuuN 23WFe/ipbLjyL0MRnofTUOmb77BB7KtOg0ej44CRqFqrLhq375YrdpyfCgPiyevFDWpRsAxFeIn9 3Eh4wYTtU+08sUPA94uRW2Wex6HT+PegzXihy3rpBT/ZzkPkn5N5ptrOKT0g5jF2FKDVEs8nc0an kKyiA5rXyDvyLecABlqxgZgWERGBp59+WoL46tWraNSoEYYPHy5DDxxdwdBEXhDzn5kzZ470iFnW 3d1dtpWfWRwjFrB9t+s6GRtetCkOa3cmyg66XVHpeKyGA6qN9IWdXzR8Dp5A1wW7ZHlT7ZiVDhAz rNB9URCc956AT7Dw8qbsQK0JgViyNRFPifz1Qamw35QAl70nMdwpTIYm/EPTsMD/iEzruzTYqqEJ jn5w8BEe+OZYbAk7hYq912HYkj0YvHg3Xmhgj1nuobAXAA4UeU8JD/m9DiuwUJSf4RqCXYdT8UlX p2IJTfCi6D15PtoNGoPGnXpK0A53WIN+0xywZHccuo6agh7jZ6Nhh26Y47sPq0JOokHbrug+ZoaA dj/ZYWctj5hqIxSadgOBx64g+sxt2RnnK7zSSTtOYqSA55bES/BPuISjF+6gs1eCBPTMPSnYmnhZ AtpUm3llCYh9BWTtffagVdd+Eq6DptnDaW8cGnfojs3J19F3wmz0mzAHHQaMkJ12jCmzHmPFncU+ Xbot/OE2TaigICZwPxi0Cbviz2HxtuPYIo7537p6Y4u4if6t63o0mLkXmyMzYReQKPMYrpjlnwC7 zYlYviMZy4SsFZpYHJqOpWEZmvKIO2+o8bDRqWQYtmXLlpg7d64h9Q8j97788ksEBgYaUrKsyEFM T9hoBDJha7xT3L9/X8aIjR1wTGd5ljOWpfHuceHCBZw5c0Zz6FtBRk0Qrn9rsQJvtnPCk42ZtgSv tlopwxbPCCgz/TWuFwTClA4QU/R+/6+TO/7RwV0uP91qHV5q6yqXGbJ4o7MH/inysoarZaW9KdKM 5U21+ZB0x4iz9EYzR7zcaKH0dp8XAH6uvp1cfq3JQrzZ3BFP1ckKZbDNfzZdJNIWS1DrgTBVWBBT zjIOfByrQ08KD/gM1oSfFkrFuqhMrDyUnJUXlpJdfk1EGpYfTJJQztmOOekFMWO+hHG39UflKAlC k55uW7es9K5eR6XasqyhvXbu8TI/b1v5ySIQG8TREm5i/3AEBTvrGDP2EekekafhGnIi12iKLJ2H l/CSc3bsmVNBQUwRxq/18ME7/TfiJQFherz/7OUr/zIe/HpvP7zdzx8vd9sgy77Ksv024q2+7NTT N4RND4iXCBAvC8/QlKd4isjPRo0ahf3790tmMQLA4bpGY9qgQYMwbdq04gdxcVtBQFzk0gniYpGF IC5qWQPExSG9IC4OFQTERa3CgLg4pAfEy4S3uyJc3NQ1tHz/Mbz5xht4/vnn0aJFCzniy2hNmjTB xYsX5fLEiROz+8FohC8HHbi4uCgQl4gUiPOVArHlUiC2XHpAvDIiA6siMzW1Qfy/+VmrVq2Qnp71 KaVhw4bJcKzRnn32WdSpUwcffvihFMMYRlMgLg4pEOcrBWLLpUBsufSAeJUA8WoBWi0xpJOfubm5 yT4thlI/++wzGRMOCAiQYQmGXdn3tWLFCvj6+maHaGkKxMUhBeJ8pUBsuRSILZceEDsdzpTnnJY4 yiQ/I3CdnJykN3zq1CkJXr6MljN8ERYWJgcn5DQF4uKQAnG+UiC2XArElksPiNdEZWKdOOe05H80 fxDnNeOIsbx/aTmXFYiLQwrE+UqB2HIpEFsuPSBex3HnJo59Xm1K1A9ivaZAXBxSIM5XCsSWS4HY cukBsWvMGbjHntNUwLFLhhrWMwXi4pACcb5SILZcCsSWSx+Iz5oEb14pEOswBWINKRAXSArE5vUo gNhDQNYr7rymApMUiDVNgVhDCsQFkgKxeT0KIPZUILaeKRBrSIG4QFIgNq9HAcTr487BO/68prYf VyDWNAViDSkQF0gKxOb1KICYU4DyZQ0t7Uj+4404a5kCcXFIgThfKRBbLgViy6UHxHrmXaYUiHWY ArGGFIgLJAVi83oUQMz/wz/hoqZ2ncj6hJs1TYG4qMWpM20NxLXmCgkY24DqDfM0HLncZosgbuEc KyFY0uIXP0YEHIe/AAdhbAuydRA/qUBcvLZ4YwzK13OwHdW1x5OtXfGUraiFAHHlUSj/1WibUL2+ KwxHLrf9KkDMHmrOdGULWnwoDd/Yh6KqQ1iJ61uxHUN8jiEm/Q6i0mxDF249MBy5LCOISzVdh2fa uduESrd0wb2fzIN4o4Ds5qOXNLX3xFVDDeuZAnFRyyZBTAiOsQnV67vScORymy2CmAD8bmFYiauq gwKxpSqjA8SEbEDiZU3tO3nNUMN6pkBc1FIgNisFYsulQGy59IJ4iwCtlhSIdZgCsYYUiAskBWLz ehRAzO8G8luDWjpwSoFY0xSINaRAXCApEJvXowDibccuY3vSFU0FpVw31LCeKRAXtRSIzUqB2HIp EFsuPSDeLrzdHUlXNXUo5YahhvVMgbiopUBsVgrElkuB2HLpAfFOAdldx7UVkqpArGkKxBpSIC6Q FIjN61EA8a6ka9h9XFsKxDpMgVhDCsQFkgKxeT0KIN6TfBV7T1zTVNhpBWJNUyDWkAJxgaRAbF6P BoivYd+J65oKT7tpqGE9UyAuaikQm5UCseVSILZcekBMyB44qa3IdAViTVMg1pACcYGkQGxejwKI 95+4gYMntXU4/ZahhvVMgbiopUBsVgrElkuB2HLpAfEBAdmgU9qKyrAxEP/yyy84deoUrl2zzpsm v/76K86dO2dYK5hZAuJydR1QpradVDkBzNx59n/kGdLK1PkjLWdZs7IAxE+2ckG5Fs5ST7bKnVfe mCdOqKyyrtllc6ZrygIQl6s8BmUqjpLKm1e20uhceeVEm6UN6/JvpYfrmJK1QOyTcEnooon0i/A5 egkbcuQZ02R6jrLmZAmIOTEPJwiizOVVNZGes2x+KgiIo9PvSplMz7iXb17etPxUWBA/2cZNXidP t3V7OE+ky2tIlOE6/5Y3pD3ZxvWh8qakB8TBArIhKTc1FZNx21DDemYSxDdu3ED37t1RtWpV9OnT B7dumb4D2Nvbw9nZGUePHsWoUaPw+++/G3KAixcvonPnzvjvf7P++bt376JVq1bZ67T//e9/EuYj RoyQ68xLTU2V6QU1vSAmhF9vswIbQ07hQFwmKvRy/iNPqMFYX+yPzYBfUDLebLdSwneBdyQOJZzB up1H8UqLJbnay1c6QUwIfzTAD3viziLwcCbe6rkhu155cRK1nrcPBxMvIDAqEx/088OrXTwRJNaj U64hIf0G5vsnoGxz54fafUg6QUwI1+q3AsGxp+G+LRp/rz7JkJ5Vd7h9gMhLg53rAQHlUfh387kI T0hHdNIZpJ65iqELNumCsTVAbO+/H3VbtEPrXoPgGp6Sne4WeRodBo5CnSat0GnwGHjFnhX5p1Cj QVPUbNQc1es3gUd0Zq628pNeEBOok7cmI+H8bfjHX0ANR5GWnReKXp5HEH76Og5n3EDrNdEy/Wu7 EEzfflJ6WpXmB+dqz5QsBXFQ4nl07NEfzdt2gu+eqOz06PR7mDxvKZq36Yju/YfL88uYtzcuA3Ub NkFg2PHsNHMqKIgJ3mfbu8MhIBHhyZfRbfEhCVlj3t86ecIrOBWHjl3EgFXhMq/zwiCcEPs3OvUa ZvgcMQnvvNIH4psITbmlqdiMO4Ya1jOTIO7duzd27dolPdTMzEz89NNP+OGHHzBy5EgJ6ISEBAnM d955By1btsS0adPw5ptvolmzZnjwIOuAsG6jRo1w+vRpuX748GGMGTMG8fHx6NatG8aOHSvhvGrV Klm3Y8eOEvizZ8+W5WfNmgVXV1e5Lfwt2qFDhyTcmb5y5cpc4DeaXhCXqWOH9fuPo+7oDXir9XKE Jp5FWZHGvKfqL8Q+cSI+12AhvhrgBrddR1Gq1gJ80UecIA0Xov20zZjsHIyyebxok9IJ4scar8H+ hPMSxl+N3IK1e06gVLN1Mu/vnTwQJ066F8QJW3VsIPzD0lFG5BHeLLNgYwK+Gb1VAjtvuw9JJ4jp 1UYkZODv309E+9GumLV2j/SCCeIvOzhgzaYIPF1lLKat3IURAspMZ36pL0Zi3+GTeKXmZJTV8TuF BbH/8Wuo07Q1XEJPYLrzRvQaN1N4v1merleMuGkGJ8NbALHf5PkYs3AtXMNO4fu6DQWAM2R+3vby k14Q110agSNnb6PaojAs2JuKBXtS8K0AJ+HZaHkkQlNvoKVTNOovixCQDpfg7uwaC5/Y84jOvImK VgZxbOZ99BE3Ic9tIdgXnymg2wmhyVdlHj3eTQePIPTENbgFBGHstAWIEeUPn76NkZPnoFvfIQg4 lPBQm6ZUUBDTu+3ieAizfY/ghY4eiEq5ik+HbpZ55cVT31CnCAneFzp4YP/RC3hBQLf/yjD0WhyM v3f2xFNthRedp01T0gPiUOHthqXe0lRcZjGB2NfXF19//TUWLFiA8+fPSw+1b9++2L9/v1yvWbMm fvzxR5lGzzctLU0CksDO6c3u3LkTM2bMkGmtW7dGREQE6tSpg0uXLmHPnj0YP368BHyHDh2kZ8wQ R4sWLWTdTz/9FElJSYiJiUGPHj1k/hdffCG9dUKYN4TffvtNls1p+kMT9khIvYIXmzjiiZoLsEN4 T6UMIQeCOOLYeRme+HqQB05fuCXT6SkT4CNW7EeXOdseCmeYlE4QlxZAPX3xLp4Rj1ovipMuTHgH jzV0knkE7ljXw9gUno6dwqurMmpLdiji6dYuOHH2loR0zvbylQ4Q0xt+4bsJ2LArDqW/HIm3Gs7A zrBkGXYgcD9rZwef3fEo/flwzHfdj23BSTKdernGFOwKPyHrmWo7rwoLYm9Rpn6r9nJ5bdAx1G7a Cn7HrmbnO4cko22foWjSvruEMj3mLsPGo/+U+ajfuhNcwv7woM1JD4gJ1bbrYrD8ULrwckPR0SUW O5MuZ4UhBDyH+x1D6pUfhKd+FvHimLV3jkVNAePtxy4JMEci9swtq4OYXm/1WvUEfK/I9e79hgon IzNXmZiMe1js4o8lQly2W+UJt80HMXjM1GIB8ZLAJHwjHAyGGca7R6OrY5DMo6f7dm8fbI85C39x 7s/xOyLLNJ+zFwuFB+11KBXj3KKs5hGHCxBHCNBqKb64QExw3r9/H5s2bULFihWlF1uvXj1DLtCp Uyekp6djwIABEowZGRno2rXrQx4q2/nuu+9kyOGrr76SACa8CdDbt2+jQYMG0oMmxGk5Qcw8GkFP rzs5ORnt2rWTaSdOnEDPnj2zQcxtJZzt7OzQtPdE00B8SALEp6/ghcaL8ITwdrcTxLX+iP1+M9gT geKiXbY5FlHJF2Uagd14gh/WbT8ioKwDwpReEDcniO9kgzj8xB8gfkl4CnvizuHjQf5oKU5Cz4Op KNsiKwzRb3kI5okTtFxLHWEJSheIR+PF7yZi/Y5Y6Rm/2WC6gOsfIGbIodeMDdh2KAmTlm3HbpFH eLPscp9QtB3jJtdNtZ1XhQXx+vjzaNC6g1xeK7andpOW8Ev6A8T8Mi9h3H3UFIxb7CJjxVnx5EuY ttYfA2c4mIwt55VeELdfF4ulB7Mmke8gQLsr6Uo2iEduTMI+AcTKAraEtHfUOTgeOA3/uAtYJP6e uX4f/b0TTLadU5aCuFrNusLrzfKCe/QfJp/2cpZx3bQPnXsNRETKDQQdPY/va9TGvGUuaNamA0ZN nivSb+Yqb0qFAfHSbcdRRTzRPSXO/bGuUTI8wTyGIXouDcbwtZH4YIC/8OjPSy+YMGZeGXEN7Dly HuXFet5280oPiAnZSPE0oKUjZ+4aaljPTIKYQKSnSoDOmTNHApkQPHPmDO7du4datWrJfCOIGb5g aIHhiJweMW3o0KGYPHky/Pz8ZOihfv36sg16u/3795cgbt++vayXE8QNGzaUfwlvptEDr1KlCn7+ +Wds27ZNhjeMIGZdplMOGyJMAzGP2PHmf+iE9Hifa7QI4cIDZvr/tVkuPd0XmzriqQYLUW2YF1Zu iZflm03ehD0x6cJjNt2mSekE8WON1uCQ8Ize7rUBH4qTzn3/KZHugte7r8c7Im2H8ISfEXf+9/r6 IuLkFQlenogRyZdkOVNtmpQFoYnQ+DQ8/bWAZX9xk3M7gJeqTxIe7yQ8KfL/9v1EPPPNOCzbEILu U70loP9WbSJOZlzG45+PMNmmKRU6NJF8HXWbtYb74TTM996NbiMny2WXsJMy9OAecRrrY89gyuoN 6DJknASzmyFt+NzlGGW/OldHXn6yJDRxOP2mDEdM3X4SjvtPS2+35uIwtFkTLd/K+l6UmxCQjJXB GagvyrddE4NOAtqJ526j9uIIk+3mlEWhiTM/oruAr//+OAQnXZLx4KBjF+R5HCXqr98eivbd+iD8 1A0ZkiB0t4UmY2dkCnoOHIl1frtluqm2c6owIO61LATjhCf8vHiqCzl+CRVHBuCdPr4oK+C5IfQ0 qk/aLkMTfqFpeFNcC6/33CDXX+26XvwvF8X1ZR2POPL0LRxOu62phLPFBOKAgAAZSmjcuDEmTZok IWgEIgHJkANt4sSJEq4EIOPH1apVk+GJnEbvtUKFCrhz544EJiFKGDMccfnyZQnT4cOHy7SrV6/K zkEaQw+0K1euSC+adb28vKRnPmXKFAwePLhQMWLq7fYrZWfczsOnUbm/G94S60s3xaKM8JBHrzyI veJkpUf89+ZLpNdMD/rgkTM4GH9G5B+waoyY4YfPhm6SnXEMQbzXxwc1JmzD/I0JKNPcGX3FybpD gGWjyKs4IkCGJl7p4gmPgynZ3rEu6QQx1WiIk/B2T8BtW7SM+fab7Ys+M3zw3Lfj4LQxQoYgBs/b KKFNEFfutAhjFm1FKZ1hCcoanXXzvXehcbuuaNN7CJxDT2D8UncMn7cca4KOoU2fITKvy/AJAsCp cNqfgBYCPI3bd0OfCbPhWQSddTN3nMThjJvYGH8B1ReFYdWhDPRdnyDhPEPkRaTdwOYjF7NjxBSX 9wpvueL8QybbzSlLQEztF+dsl16D0KZzD3htCxXnewq69xuChIsP0KRlO6kW7Tpj9NR5Etysw9jy uBn2CAxNeqg9Uyp4Z507nu/gjkVbj2F/wgX0WxUmQw1eQakCtu74vx7e2BCcJs79sxjtchjlWrli 6vo4+YS4KSId1Sdut1poQs8Nh0o4m/v7fNYwkyAuaTN61fxrXKYxXnz2rDggo0djw4YNufKMZtnw NXuUrrkApWvMl1A1rjOvTO2s9NICwBxhwTS5bpRIz9lWvtIJYoowZiecsSOOXm/Z5lkddhyiVkac 2MzjULac5XO2oSkLQMzON8aBS38xIiskUXGkgO5Iucw05hmHr1EMWbBMzja0ZA0QU4wL+yZekcsy 9GAYmsY0hip8j17OLusryjKtqIavsdxXC0LkaAiu8y8hzGWGKXLmGcWRFVXypOUnS0FMxZ65j7iz WZCV64ZOuTgB3vizP0kxLcoII/E3JuOH7PJaKiiIjSonnurKtnCRw9iebucmvWH+ZR6XZZ44f3OW ZfpTOiBM6QFxlPB2o8U+1dLRc38REOdnsbGxcHJywt69e0121NEsAXGxyAIQF4ssAHFxyFogLmpZ AuKiVkFAXNQqLIiLWnpAHC1AzH2qpcS/Ooj1mAKxhhSICyQFYvN6FEAck86nAAFbDSWeVyDWNAVi DSkQF0gKxOb1KICYL2rEZd7VVNKFHww1rGcKxEUtBWKzUiC2XArElksPiOMEiOMFaLV0XIFY2xSI NaRAXCApEJvXIwHiTAHiMwK2Gjp+UYFY0xSINaRAXCApEJvXowHiuzhy5p6mks2AmKO6+DJav379 MGTIEENqlnGIL9+r4HsTW7ZsyTXqS4G4qKVAbFYKxJZLgdhy6QEx35jjGGEtnRAg5jsMRuUE6qBB gxAdHS2X+c4D3wim5SzDF9oI45wjvxSIi1oKxGalQGy5FIgtlx4Q8405jhHWUvTJS6gvIMvpG+jl 8o1io/ElOE7LQOMLb5yoLKcR3EuXLoWHh4fyiItVCsRmpUBsuRSILZc+EJsGb16dvHTfUONha9u2 bfaMk5wCgrNOGo0Qdnd3l28r54Q3TYG4qKVAbFYKxJZLgdhy6QExX9Q4dv4HTZ0yA2J/f385ZQNn pPz3v/8t5+JxdHSU8/ZwigZO/8tJyjgthPKIi1MKxGalQGy5FIgtlx4QHxMgThKg1VKKGRATrj4+ PnLudc6dQ+iuW7dOesD8kAZDGezE47KKERenFIjNSoHYcikQWy5dID4vQHxBwFZDKZfzB3FBTYG4 qKVAbFYKxJZLgdhy6QExX9RIvnhfU6ev/GioYT1TIC5qKRCbVb2+KwxHLrcpEOcvBWLLpUBczCZB XH+hbanhEhvSYpSvvcBmVG/4esORy20///obBm1MwtDNx21C/f0S0dolDm1dS15thLp5JmDk5hM2 owMnc3/J/c8IYr6oceLSfU2lXVUg1rTFm2JRvoGjbSmvl1zSarTUZlRvjL/hyOW2BwLEBF979yM2 oQ4eR9B9Q6LNqKNHApqujUUzG9HGhEuGI5dlEsTNnPFsew+bUNlWrpog5rC0k5d+1FT61dwfv7CG KRAXh0zBsCRlAoglJQXigkmB2DLpBfGpyz9qKuOaArGmKRDrkAkglpQUiAsmBWLLpAfEpy7fR8qV HzWlQKzDFIh1yAQQS0oKxAWTArFlsiaIM68rEGuaArEOmQBiSUmBuGBSILZMekCcKiB7+upPmjpz I/cIEWuYAnFxyBQMS1ImgFhSUiAumBSILZMeEJ+++iPSBGi1dFaBWNsUiHXIBBBLSgrEBZMCsWXS DeJrArYaUiDWYQrEOmQCiCUlBeKCSYHYMukBMSGbcf2Bps7f/NlQw3qmQFwcMgXDkpQJIJaUFIgL JgViy6QHxOnXFYitZgrEOmQCiCUlBeKCSYHYMukBccaNn5B544GmLtxSINY0BWIdMgHEkpICccGk QGyZ9IA488bPOKNDF2/9YqhhPVMgLg6ZgmFJygQQS0oKxAWTArFl0gNiQvbsTW1duq1ArGkKxDpk AoglJQXigkmB2DLpAfHZmw9wToBWS48UiB88eICuXbsa1rJmto+IiICvr68hpWBmCYjL1V+Ex6ov wGPVFqBsvYW58krXXSjTH6vBvEUy7YnaDnjs+/nyb86ymjIFQxMqW8cej303V/zGXJSra58rr1Qt sS3MqzZPrjOfyzKtelaabpkAopaeqOco9oX4/+uIfZEn77HaYj+KvCfqiv81T56WrAHitq7xaLou Fs2dY9HO7Y90LjcT6QQWZczj3+br4mQe6xrLm5MlIO6y/ijaifIdPBPQLUd6N++jaCvSmce/Oet0 NtTJmWZOloK43spo1FkRhSZrYrLTWL/+qqz02kKNnaJlehOnGJlWV0jvbxQWxKVbuuAxUb58G7eH 8p5o7izzyrV2lev8+1jTdVKcVS1veVPSA2JC9vwtbV26Y0Mg3rt3L5o1a4aBAweib9++OH/+PDp2 7Igff/xRQvWXX37BTz/9JL/VZDR+LoRpxrxvvvkmO51p/HQIl/mRPdYjrJluNC4zjXk5PzOS0/SC mBCuM8YPOw+nITA8FQMX75Npxnw7nyg470yE76ETqDvOH2UEqEetOogD8RkYvzZYgjpne2ZlCoZ5 VKa2HTrO2opNIaewPSIVtUZ4Z8P4mYaL4LzjKNZsT8DmkJP4T/e1eLX5ErjtPoaVW+KxM+o03mq/ EmXzwDtfmQCiOT3TZDm89iXDdc8x7I3NxPPNV6Acp9QUeW91Xod9cWewRuwrT1HmuWbLH6pvToUF MUHqEX0eYWk3EX/uNkYEJGcDt5tXAi7f/Rm7k69i38lr6CrW24jyTuFncOj0DZk+ZusJUV4bxpaA ODTtBsLSb+DohTsYJraHAKaGBhzHzfu/YO+paziYeh09DOW7rk+Q6xdu/4T2ArB52zMlvSAmVIdv Po7ozFsIPX0TayLOZMOYeVn75ip2Hr+CgX7HZJp71Dm5v4LFNo3ZmpwL3vmpoCDmFJVv9fbFrrhz cD+YCp+QNDzdNgvGT7d1xydDNmN7zBms23MSnkGpeEqkDXaKQHDSJTjtPoHey0JlG3nbzSs9ID5/ 6xdxDLR1+a75dgpiBQYxv1aamJhoWAOWLFmC119/Hc2bN5cfxpswYQJatGiR/f1+Aprf/G/SpIn8 ZhPLEMTMGzp0KJydnXHgwAGsWbMGp06dkp+q7tSpE2rVqiUhf/v2bbncpk0bNGzYEPv27TP8cm7T C+Iywss9lHAG73Zag8er2yHs2LlsuD7daDE2h6YIT9MO/2y7Enui01FG5LHOV4M8MVIA2dogfqzq HBxLu4rnGznipaaLsU3A2Oj9ftx1DdYKCNMr/rSXMzYFn0SpmvMlvAnfuqN90GPBDpSpY/dQuyZl Aojm9O0QbzhujEWZBkvQbvZ2jF8XilL1Fss8ez/hac7eJtYdMdMzEt8O93movjkVFsT0ak9c/gFt BUyHbjouIHgdrVyywEoQZ974EYsPZWDUlmRZZqBfEhLO3cGCA2mYvitFpuVt05T0gniQ2AZCnt7w rH2p2Jp0GV1zgDhdbM+y0EwMF9tjTF8WkokVYZlIunRX/I51QdxAeLyJ4obQWWx/YwHZ2LO30U7c jJhH6O4UIF4anIFJ205mp7F8c7FfWwolX7onvOmoXG2aUkFBTNiOd49Gx4VBKN/aDRtCTqPu1F0y j+uDnMLRev4BWW5b9Bk8L6Dbf1U4lm07LtL34+9dvKwG4gsCxBcFaLV0xZZAfOzYMTRo0EB6wa6u rhKUPXr0kN4sPeL09HTs3r0bnTt3RkBAAHbt2oX58+dL8NIbpipWrIjBgwdL75p1goKCJJBTUlIk xFnWxcVFfoxv6tSp8PT0lGkMaRDapmxJwBHTMMyjJ4USBPiea7IET9RxwLbINJSqkwVX5gVGnEbX eTuk95t5+Taebii8aJFeZYhXkYC4rIBq6rmbeKq+A55v7IjI4xcknJn3SvOl2Bebjg4ztmCBdyRi T13Khu7TQtsjU/F2+1UPhTPylQkgmlPL6YHoxyeGhkvF/+8NrwMnJHiZV3usP3ZFZ6CNKBOedAFt Zm5DWYO3rEeFBXFHAZgj5++gnVju45OIU1fvoaWhXieRN3//aUzaflKUuY2J4u/YwJPSK529JwWb jwqvSnjH9JLztptXekDczTsRE3YIzy32vAxPjBVwi8i4aQBuIvoKj3PRoXTME9t09tZPGClgPFp4 nFuTrqCbKH/s4l20FjcGU23nlSUe8XnxW62c46RnezDlOrqIm4TME+tjxDaMEl67d+wFuS8I7kPC Eyac10Scxa+//w91Vhx+qN28KgyIV+5MRuXRW6QnPMr5MHouDZF5zwi92m09Dgnv92DiBSzYfBRP tXFD5VFbUX/6bgxYFQbv4NPSS87bbl7pAfHF21lhBy1dvWdDIKYRutevX0evXr0QGBiI7t27Z6fV rl0bO3bswIgRI7B48WK4ubnBz8/PUBMSxP/5z3/w7bffyq+d5gUxvWTa9u3bZVrv3r0RHR0t0wjl /fv3y2UaP1lND/pf//oXXn6/soCf8NZMATGH6N3Gp17Gyy2X44laDsLrzUApAddy9bPyn2uyFJ/1 dcMXQoeOns0Gb5XBRQPix76bg9MXbuHpBgvxQhNHBB3JlCAuVzcrHvy3ZotReYA7vh7kjgNxGSgt POLy9eyx8/BpVOrvph/ClAkgmlNdAdtxa0NkOKKWAOeyLUckiMuJvLLCS36j41pUHLAe44SnzHwC 21Q7plRYEDPWS0+S4Yj+AnSEshHETGPYgZqxOwW7T1yV8DsqyrDtgf5JMpzR2uBBm5NeEDMUsTnx soz5Ttp5CgcE+AjirPwsD7jL+gS4RZ3HusNn4R13QVzYP+PinQf46ZffEHDs8kPtmpIlHnGG8ML5 ZQ+CNyTthrxBsa6USKPai5tR5o37qCu831bOsTJMwRtbhkgrahDbbTqKWlN2CKC6YY5fAtrZHxBe bhY8XfafxHfjt+P5Dp7CW07D27198bTwgOkFM1ZML/lJE3HlvNID4ku3/4vLd7R17d6vhhrWswKD ePXq1Thy5AiuXbuGGjVq4NChQ6hfv76M4Z47dw6NGzeWefR6Gbagh/z999/jwoULOHz4cHZo4sqV K6hSpYqMDR88eFB+epqhCYYvaNu2bcPatWul18yQBNv+8MMPZVlTtnhzvGkY5lHZ+osw2ytSxn2b TNqEndFpeK3NSgxdtl94mwvx7bD1eKXVcqwKTECfhXtk/JjQbjxxE6a7hePV1ityxZTNyhQM8+ix GvPhsusomk3ciH4OuzBpXQg+6eEsfnuX/O7d90O98I/Wy7A1LBXfD1+PZxsuQlB8JqqL5WcaLpSe dFF5xP/Xfg3iUq7gnS7rsDs2Ex/3ckPvhXvFujNebbsaXw/1xtfCU447dRkvtVxpso38VFgQMwxB b3fCthPYeOSieMzPwHQBXfsD6ejnewyThYfaU8AvSXibc/emooOoc/bWfQzbfBw+cRfhImBoLY+Y 6uWbKMD6AKMDkxF8+ob0fleEZ2KC8MbHBJ7ApB2nMGLLcdz68ReRdgLdBbx7CuD1E+BLvnwXHT31 /Y5eEDdyisa6yLNYFZqJ8eL3GZpgrNwz+hzqC+jOEvuqg1scXESZjQkX0XB1NIZvOi5gHY8t4obi cCBNAtxU2zlVmBhxzck7JVD/1d8f56//gH9098Zkr1g8IyA9fUM8JnrG4L1+fohPv44XBZB7LQvF O318Zcji4NGL0pM21XZO6QExIcuwg5au/2BDID5+/Dhmzpwpv99PCNMT3rRpkwQowwcbN26UcWKC NCwsTNahRzt69GgZbiB4V61aJdNTU1OxfPlynD59GjExMdKjZj3ayZMnZRo9ZnrU06ZNQ//+/REe Hi7z85oloyaeEhomwDvNNUyGKF4W4O00Z7uMBzebshmO/jFoPX2L9J7pKbeZEYjFG2Nl+qiVB7NH U2jKFAxN6LnGizB5XTBGrjggPeMPu61B66mbZRy4+7ztWOQXhdqjNsj1l5stwVzPCCwT/++KgDjU H+tbZDHi0vUX47P+nljoH4uGkzbL9VZiX7zeYQ2ea74cszwPy/jwPwWwjZ14elVYEFM9hPfpJyC8 MixTesEMQUzfdQrdRTo78gISL8l4MD1fese9Bfg2H72M5QLarXVAmNILYnrFI7ecwLbjV7FEtM8Q hcPBNAHmExgScFwCa4vweglmes3Ger3ENq0VMOwsIJmzvfykF8QUPd7VYt94xZyXnZsd3eNl6KGh 8JbtBWg3iW1iHD3LO46V8eLNIm3evtO6IEwVFMQUPdrmc/dh0dZj+HjIRjwrvOG+K8OEF5wVJx7i FCG85kR8PSYwu+zCLccw3j0Gr3YVjoiVYsRX/owgLm4j6BmuYFiiZcuWuH//viEnt6lxxDpkAogl JWuAuDikF8TFJUtAXBwqDIiLQ3pAfPXurzLsoKUbf2UQ086cOYO0tLR8IUxTINYhE0AsKSkQF0wK xJZJF4gJWgFZLd24/xcHsR5TINYhE0AsKSkQF0wKxJZJD4ivCxAz7KClmwrE2qZArEMmgFhSUiAu mBSILZMeEDPkcPP+b5q6/aPpl8kKYwrExSFTMCxJmQBiSUmBuGBSILZMekB88wfT4M0rBWIdpkCs QyaAWFJSIC6YFIgtky4QC8jeEpDV0p2fFIg1TYFYh0wAsaSkQFwwKRBbJl0gNgFdU7rzQIFY0xSI dcgEEEtKCsQFkwKxZdID4ts//i68XW3de/C7oYb1TIG4OGQKhiUpE0AsKSkQF0wKxJZJD4jvGiCr pR9+ViDWNAViHTIBxJKSAnHBpEBsmXSB2AR0Tem+ArG2KRDrkAkglpQUiAsmBWLLpAfE9x78T3i7 2rr/y/8MNaxnCsTFIVMwLEmZAGJJSYG4YFIgtky6QGwCuqb0owKxtikQ65AJIJaUFIgLJgViy6QH xPR0CVkt/fRf8yDmRzA4PzsnP8tpnLjshx9+wN27d+XcOTlNgbg4ZAqGJSkTQCwpKRAXTArElkkP iH8UgNWjB7/mD2LOpc6vEHGCMn5CLieMY2Nj5YRlnFt9xYoVuWD8yIHYwS8apWrZF151FppOL4hq zLeOai4wnW6p6iyyjuo6mk63QHWG+xiOXG578N/f5LSMLZ3jCqVWAuacs9hUniViO528EgotTn3J vx3zpFsqTunJD39y4vfCqKFT1uTxhZVv/AXDkcuyHwT0Hm/ghLItXQqt8m3cTaZboiearMXdn8x/ 9PNHwWmyWksPzEw1wSl6jR+w4Gfj+CUjoxHQnH/d+L3OnN/zfORA/KO4E1+7/WOhNd9uIa7d+clk Xkno6vXb2LJth8k8i3Wn8Docm4DwqHixLPaRiXy9uv3Dz/KRLa8x7Y446++Ks74wOpmajoTEYybz SkL7gkKQdDLVZJ6l4v4prDZt2YpL12+ZzLNED37N/aj9++//w1Vxbly/+6BQuiY0dfosk3mW6Nqd B/jdxHmW05itR3fv3UOHDh0kaKdPn57L6+UHMS5dyno6mDRpkpyr3WgfffQR7ty5I+di5xeFcn4Y +ZEDsbWsVatWhiXbMMacHB0dDWslb/ysFb9JaOsWFxeX67NaJW0eHh7ZHpMt2Lx586SXZstWvXp1 w5LtGz+qzPAEbcCAAYiKipLLtKpVq+LmzZvSE/7qq68UiPUYvxZtS0YQ89t/tmK80+/Zs8ewZrvG z3nl91mtkjAvLy/5xRlbMXt7e5sHcc2aNQ1Ltm/8Tme/fv3kzfazzz6T4KXXTPjy2PMDylu3bpXf +XykY8TWMn62yZaMjzOXL182rJW8seeXj1m2bvyIALfVVowfujX3YYPiNj5G54xV2qLxG5Z/JuMH j+3s7OQ3OzmCgp94Y/iC4F2/fr3sqOPoiZymQKxMmTJlJWwKxMqUKVNWwqZAbAUz1euv7M9n6jj+ +Y2P/HlfpPgzmAJxIc0W41c8Ge/du2dYU6ZlDx48QHp6umHNdowxRcYZlekz3kj5IoWt9e/oMQXi AhoP+qJFizB27FhDiu1YYGAgunTpUuydafRE8nZC2Lqxo4pvQO3bt8+QYjv2888/o0qVKjhx4kSx e+u8ked9DdfWjfto9erVcnTCn+3pRoG4gLZs2TLMmjVLHnAO40pMTDTklKzx4uE2rVq1Cp07dy7W EQP03r744os/TS83IcxhRFu2bJH7jOO0beVJgttDJSUl4dtvv5V/i9P4Gu6aNWsMa7ZtPGY9evTA 3Llz5WgFOkfG6+DPYgrEBTDCrXXr1vD09ERISAjq1q0rX1ssSSNUvv76a7Ro0UK+NHDx4kU5TIYn aHEOl+K4yffeew9nz541pADLly+Xw+9szTIzM1GtWjVERkZi9uzZmDNnTvbFW1IXMX+XT1offvih HHOanJyM48ePy2N78uTJYtsuPt00aNBADr0yGsdkc5/Zkl29elVeg7z+wsLCpHPElyUYnvgzefQK xBYa776EHh/Bu3XrhsqVK8t1nriurq7w9zc9iU1RG086Hx8f+T47Jxfhm4H0pF5//XXp3RSV8Xd5 YyIgjJDgxfHJJ59IiBBw9FJsybjNDNvwb1pamnzjafz48XL7ecMYMWKEfDuquKCX0/ib/G2+DBAa GooxY8bI48ib/Ztvvilf7CkK4+8aZwwz/t88rxs2bCgf9wm5GjVqyHGxtmIcA12vXj0kJCRkQ5fb npqaKm+wTP+zmAKxTuMB5glJT7hdu3byQuaJy0dbep70QnkBF7fnx+0wvm7M5ZUrV6JZs2bSQ7h+ /bp8A45ALCrjCwqcwIQnP/eR8SKm51ShQgX5VpHxIrEF434ZPny4BNvEiRPltjEGy3kDDh8+jHHj xsHd3d1QuviM5w3BQQ+UgGEo4ssvv5T7kbFi5vFFgaLal4QuXyVmmIa/YTyOXO7evbsEXlHdBApi vGGMHDkS8fHxct24vdyPXKZHbJzz4c9gCsQ6bcGCBZg6dao8MXkRHzhwQB5wesbsGOMFXNwQZsiB k4wwlsff5yNZRkYGNmzYID1jgtl4ghaFGS/Y8PBwuU+MXiRFmPFC4AVjK8Zt6dq1qwQal+lhGj08 jprg0423t3eR7jNTxv1IqDAUwVeOP//8c/j6+spjyW3iDF4sU1TG/5ft88mmUaNG2LRpU7ZnzNfD +ejPkSW2ZLw5MXTC17ON+4bXHx0iW9tWPaZArMN4gDnPA0MRO3fulN7BlClT5AxMhDNPipIADn+b HYXGCykgIEDOd8plhkjopRaFsX1nZ2f5Pj2X+fu8WLlf6MHR05wwYUL2BWIrxhsXwzSEHR/5ua8I QMKZYaWSeuxmKInDroz7kvuQnZ6MtzMuzH1dVMabKM8h7hv+Np9wCGOeSxEREfIR35bCETRuJ8UO czpBxpsGvWDux5yT6fxZTIHYjPHCYEyYFwQPNkciGL0oHngCml5LcRt/m9axY0fZ0cTHSm4rbwjs 1Clq4+/Ur19fxlXpeXN2M5783JaXXnoJ06ZNM5S0DeO+4WM1nxDoLbEDc8iQITKP+5IQOnfunFwv TjMeR4aVjGESpvFcmzlzZpFPDsTfWrhwIQYOHChj+gy9MXTD/VSpUiW8//772dtoC8Zr8eWXX5bh Nz6Jcn/ROXrnnXdk+IQhMm77n9EUiM0YH/k7deqE2rVry0fvCxcuSM+pffv22R5EcRsvUsYz2cnE 8AgvGN4oaPRminrWOOP/TG+EY2954r/99ttym3iB2FqvOsHL40WxU27QoEG4desWevbsKWFnjCmW hDk4OMgwADs3P/744+x4J29q3M7z58/L9aIy/t+Mjw8ePFg6F/SE6QFzcnP+tq094nN72CfD4ZF9 +vSR28lljtDh0x+vyT+rKRCbMJ6gnEeUd1vedQk/DhInkLnM8aac7q64jScavVE+TrIHm0PUuC3s 1OGJyUdtDnUqCiOwOCrDxcVF7hPelLh/2KvOR1vG6oqyM6kgxuO4du1abNu2TS4TcMOGDZMTdnM/ crrCkpjRjvuSx5I3Tj5RcPuM0yZy7DdvEnz6Kqp9efToUXkT4A2A+2XUqFEYPXq0DHURdvTQbWnG Om4jxf3h5uYmHRC+tMSRQQQzt535f2ZTIM7HeKIylpjzANeqVSv75C1u4PDRmieecTJ2ek/0hgkS bhMvLuMwsqKwGTNmyFglR2Lwf6d44RLMNP6uLV4MjCHSSzduH1864RhdAof/Q3FvM3+T4OOwPhqP GWHMmCy3iaMjeIMtqvOLQ+L4GJ+zY5WjRRjfp5NhTLMV49MeR7kYv/HGc52OB0NL3F/cVluLYRfE FIhzGA8q45zseCLoGCMjAI0XLGOyPPjFbfxNPvqfOXNGXiw8GemB8m2+Tz/9NPsRtqguIMZPOWSP v03j71D0iukR26LRS+fTgZOTk7xoub08jvRCuc3G/6U4jdvAOOy6deukV8w4JzuYCOPvv/9ePlEY yxWF8Tf5OrdxXg3jcWQfA5/2eF7ZkvFmwZANxzDz00L8y+1lHwSPL62o9lVxmwJxDqPHx2Fg9Pp4 gOkF8l1/HnS+scO84jZuB71eXqj05jgagfDlGF3eLAjjohovyd8mLBh/I7wIMqOnxpsCoVJUIzMK aoQNt5WeOkMR9Jb4JMNP2NAb5KM/Y9vFfQHz97jvGHZg2IuhLp5b7CTjucVtLcrOOcKewOUYc3Yw G50L/uXQTH5Sivm2ZNxWjqvm9chhfAwrcb/xCcfWvqBTWFMgNhgD/uysMJ6MRujwoiFw+GIE14vT eKEwDssTj+Nb6RUzNk0PmescolZUQKHHyG9u8SZESPDEZ6iGversveaj9d69e4sdaFrG0A07EmlG 0BDG/D/oHZfUnCB8fZqxYA5H47BHxvYJGD5V8EmrKD10xlSNozLobBBwfKLiecSnP4ZKSuIJIT+j 48HjSAeD5x1vVhzix2uU+5ChFVt6ucQapkAsjBcsO8DoNfFk5TrFi6SkZuUi/OiN8nGVAOZJaNw2 hiI4pwS3ryiMFyXHY3LUCH+PMUT+PkcecIgQL+Si7EwqiHE7abxB8CLOCRZCmI+5JWHcRxxZQi+U cVieT8bjSBDyKYvx4aKyXbt2SdDTweBIG54znByH45R5HHmz5XlmS8Z9xfObY/YZI+ZTDG8gfNqx pXPOmvaXBzFHAjCWyJORk9Wws8R4UXOOhJL44i5jdRzrSthxW3gx8S0iXkSM73HcZ1GCha9EM/TB E5/xTONbg4QbvTj2+NvSBcFt48RCxrg5Rx/weHLfEUB8+5Cx4eI27i++OEKPkx4ct48w5o2C28be fj7VFNW+5O/zLT32ezCEVKdOHTl0j7/H/UPIcd/ZknG/ULzxs3OaT4A85whjvm34qNpfFsQ8GfkI y4uBFwkPfnBwMN566y0JHr5tRW+huI3DqhjjNMZ9uZ28oAjjou5Q4W8R9rxIGYtjRwm9YBr3Dz1k W+uh5nZxZARnwuO+4zpfUuAgf85zwREJfPwubjOeX7yR0bhdPI4cEcFJfBjqKkojcHkOMaxVsWJF /OMf/5DQ5Xawb4EhElsybhfHo3OODS5z/3Ff0XPnEyCfKmwthm1N+8uCmN4ARwLw5KRHzLGljNsR yvSqSqoHmY+PhIfReFISMPSm+BnuovLs+DsEF72Qf//739Ij4csGvCkwZseOS8ZYbc0Yw+ex43Ek cDkqgF4Ujy+Pq/EmW9zG7TGOdDEat4NQISAZ8ywqY6ckP0H/n//8R96guC8IY76yTGeDTwgMfdmK cft4Y6Dn+8EHH8hOS+4rik5RUb9haAv2lwUxO504EoGP+fSo2PHE8YrGYTHFbYyLsVOFwOVFQ8/U CBCOEV66dKn0EorCjCc8H6P5G7wRcOIgAphQ4yiNovz9whi9Jk52xE5NPt0QNNx/vKhLwhj3ZbiL 3i/DS5s3b84+jryhMvZelC9LcM5g7g+C1jgtKocfUpxdjc4HO1ttxQhgvr3KFzR486IHz+3kfmNI hX0SthbDLgr7S4GYFwc9KD7i8OLgnZieidE74EQ+7JgqbqOXy3GS9EJpHLLDx1duC+FMr5R5xgva 2sZ22VlJD45jNAkLdo5wyk/epHgjsCUIE2j0krhN3HZ6nfR+eXxpvJB5oy1uI0gYyyRUaDxmvCkw pMPt42vLxq+BFJXxSY5vWHJyec4Hsn79enmT5TLBzH1nK8bjxf2Vcxw80/jEMG/ePBna+StAmPaX AjHHljLmRODSjBcE78qMB3OIUXEDhycdt4keHL0pzg7Gx2k+ZvMVXHYYFtXoiLxGb4qddOzY4b7h DYtesS1BmNvFeZ/ZCcXRBlw3HkfGXXkzoVdc3MZ9RK+cEOb28Fxixy+P7+TJk+XTBueNNm5rURo7 Uzl2mvOi8PcIN45B5/llS8YbF+e2yGncRg5RM95k/yr2lwAxDyo9Xw4FoxfMRyHGQ42eMR9v6SmX hPG36cHx5CNEOLCeVlKdYvz9pk2bZr8WbEtGb45votGz4+M9X/FmKInbyWNMr7O4blp5jQDhyzZ8 muAQOo7bpfEcM3rqxWk8fxjvL2oP3FLjtvDmxFAg9ws7oI3HkMZRQRyv/lezvwSICV3OJ0zjXZgH nfPQsgOKnosRfsVpBAlnvqL3wrgwZ3ej58RtI5yLYzrL/IwhEePrpLZijGty+JVxDmRexOxJ5xtX HNbEWD+99+I2bguPIz1O3ij4SM2wEsNdDI9wu/ikURJGp2PJkiXynLcV47BLvqRhPI7sG+Ex5FMq 53ehh8zt/qvZIw1igoRTHfLVSB50dgDwjst0npx8DOfg9uL2WAhagpdvWHH2KG4LQxP0iPllC3aw cPSEsizj8eHFy3g5l/mmo3GcMG9oL7zwQol0stILNg5zZCyYx5UAZpydaYzN8osRtnRDK0nj0wHj 5HyqoXG/UDz3OUKH81rbUkdicdojD2KGHPjqMj9DwwvD6B3wzlwSb4fRi3v33XdlBx0v3H/961/Z 8zXQE+AcqwrCuY3HiNMfct+wc4djnI1wY0dYSY104QgE4yM2X7gx9vxT9O5yjphQljVSiU81vAaM EObNjMfQljoRS8L+EqEJfvOLwMt7Jy7ui4QnIt9aY/yQk79wPCc74+glcNwnX0Qo7m36sxj3Cztb +ehqjO0b04t7n/H3OCE5wcsQEscxc/wyw1+My3K0CeFc3Ntlq8bQG0HLGyr3FcOCRoeI+5HDDm1p XHNJ2F8CxLwg+JIGH/3pbZbEBULvl5O5c1wkPSkOL+LFyxOS20PZ2ltrtmiEcUlO+kKYcFpN3kQ5 rzHnjuBfPlIbj2NJDJ2zZePNkx3SnL+acXzeqPgEwZAhQ3R/1XBETvtLgNho7IQqiRnDePHyLSd2 6vDOzwH37DlmLJHhEnoLxb1Nf1bjfuKoCeOcusVp/G3GhI29+nyk5jhdvslG0PBmq47jw8Y3MjmB D4fz8SUqPgFyaB3Dg3+VccJa9pcCcUkZQcw5B/jmHgevG18xpTfMOHVJeXfKLDNCliMgOGsZh/dx GCRhwnSO+y7K15b/zMbQBIepMbbP7+NxP3EkkzE8oUyBuNiMMUN6AW+88YZ8PDN6TvyrvKg/l3G8 8kcffSRfA6cZj6E6jqaN+4VPEewXMcJX7avcpkBczMbHNA5tUnHEP7dxljAOMyzK6UgfJeNICb6q r7xg06ZAXMzGMAXDEQrEf35jBzBH5CjTNnrAHCH0Vx8dkZ8pECtTpkxZCZsCsTJlypSVsCkQK1Om TFkJmwKxMmXKlJWwKRArU6ZMWYka8P9+03avDVmDNwAAAABJRU5ErkJggk== ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAbYAAADfCAYAAACahfZWAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAG7gSURBVHhe7Z0HmNXE14dRP+uqWAFFEMGGit2/ iLJWLCBdBAUUBCkCogIC0nsv0nsHkS5KR8CGCAjSe++912U5X97ZzCV72V2Wuxe4e/e8z5Pn3iST ycwkOb85k8lMKlEURVGUMEKFTVEURQkrVNgURVGUsEKFTVEURQkrVNgURVGUsEKFTVEURQkrVNgU RVGUS87Zs2fNkhDsj46OvmC4C6HCpiiKoiSZM2fOyG+//SbHjx93t4gcO3ZMZsyYYfZt3LhROnTo YIQrPvbt2ydVqlSR06dPu1sCQ4VNURRFSTKnTp2SrFmzGgGzbNiwQe677z45efKkbN++XXr16pWg N7Zjxw55+eWXTVxJQYVNURRFSRirRQm0EF5I2Ni/c+dOd4/IiRMnZM6cOXL48GHZunWr8eqssB09 elT++usvOXDggBv64lBhUxRFCZCuXbsmudksWfBWA5Gbi7orcYNwPfroo7JmzRpTJiyrV6+W9OnT G2FbtGiRFC0aE8eqVaskQ4YM8vnnn8urr74qt956q+zdu9cIW7Zs2SRv3rxSsWJFSZs2bSyhTCwq bIqiKAHSuXPnlCFskXVFIgq7K3GDsCFimTNnlkceecQsDzzwgNxxxx3nCVvOnDll6tSp5j/v4e65 5x6fsKVJk0b27Nlj9iFuNF9eLCpsiqIoAZJyhK1eooQNj23lypWmAwnLihUr4vTYaJ70Nks+/PDD PmF76aWXTHho1KiRNGnSxPy/GFTYFEVRAiTlCFt9R9iKuCtxc6F3bF5hI9yCBQvMfzy2u+66yyds 3s4jKmyKoiiXmZQjbA0cYfvQXYmbixG2oUOHSrp06aRp06ZSoEABuf3221XYFEVRQoGUI2wNHWGL EaX44Pu09evX+0QJ+L927Vqzj16Q27Ztc/eIabKcMmWKEbMsWbLI/v37JSoqSjZt2uT71o13bQje xaLCpiiKEiApS9iKuStJ59dffzW9Jw8ePCjt2rUzXhqiFixU2BRFUQIk5QhbY0fYPnZXkg7CVrhw YcmXL598++23sTqSBAMVNkVRlABJKcJ2NrKJnI0o7q4lHTtupHcJJipsiqIoAZKyhK2kuxb6qLAp iqIESEoStmgVNkVRlPAnpQhbdGRTR9g+dddCHxU2RVGUAEk5wtZczkSUctdCHxU2RVGUAEk5wtbC EbbS7lroo8KmKIoSIEbYTpwU2bBLZPs+d2v4ccYRtqiIz9y10EeFTVEUJUA69egqZ95v6ljSvCK3 fiyyM7D5w0KdqMiWcjqijLsW+qiwKYqSYlmx8rhMX3ZKTpwK7Duqfi3aO1a0gLMUjPm95SN3T3gR FdnKEbbP3bXQR4VNUZQUweHj0bLtYLTs33Nadu2PkvlzD0vuMuulSPHVUqThDtnmbL9YBjRu44qa Xd5z94QXpyNby6mIcu5a6KPCpihK2BIdfVa27DwtPQftkqydjkuqBscle6mNku6rPZK2+j75otAS qVpwqVTNv0SKF1wu1Xrtk8WbHYFL5EgYg+q38hO2vCKzV7h7w4dTkW3lZEQFdy30UWFTFCXsOBUt 0ub3U1JjvCNklbfJzY2PSqrWpyVVmyi5tdG5/y9V2iZfFXTErdBSKf/BMnn7803yaI3d0m3KETl1 OmaE+YQYVruln7A5y6CZ7t7wAWE7ocKmKIpyZdi17YR82XSbZK+4Td74fKP8X8uTRsRYrmobJVmr 7fatP15tl0/YqjjLVwUWy/2198trn22UyVP2JTiGIbK38+6iKUTY2jnCVtFdC31U2JSgwVTwCRmC M2fOmPmatmzZ4ptvKRA4lokLgz1wanwwnQbzSsV1viNHjph5pi4G4jlw4IApDyU4nHJctI0bT0i5 2pulcoEl8qWzVHKE6qZmx+Ua1zvj9/5a+6Xkx6vkOsSu1Sm5ylnyfrZBqjrhzeKIXMmPVkrREmsk V5kNsvC/w+4ZzoerF31D7vOFbfCsmADxcDb6rEQdPClR+2OWU7uPOb8nYtYPnHRDhRYnI9vL8YhK 7lroo8KmGBCLn376SXLlyiXPP/+8vPbaaxecSoIp3e2kgrt375YnnnjCzK8UH/Xq1ZPIyEhp06bN RRv1w4cP+4SFdObOnTtJ4ngxtGzZUr788kuTZs6JKFlKliwpXbt2ddcSB0J5zz33yNKlS90tysXA bcC7M5aZU/fJqN7bpPm36yTDl7vlya92SekPl0vFwsvMUrDUOilefJU8/dVOR6xWyzf5FxvxKvPh CrnOETXjuTmCd1PTY/Ju2Q2Ss+IW+aLwUiOKZZ14nvt6h+zffW7iTC/cwWduzHO+sA2cERPA5axz z0QdOSU7Oy+Srd/NlvVlpsu867rK3FQdzDIvVUfP/06ypcafsq3h33Jk7k45cyJKzp45a8TwSnIi soMcjajiroU+KmyKYfny5fLQQw+ZeZKY8ZaZbS80c23evHnlr7/+Mv8x+MyIm5DY3HvvvbJu3ToT 5mK9LSYixCMERA7P73J5bMziy8y/nG/x4sXyzjvvuHtESpQoEZCwMS2+ClvCnHaM+pmoaNmx/aSs WHNcZv95UEYvOCkTftor3xRbKl99sEQqfLBMyhVaJi9U3i4Zax+QD0qukY+Lr5Y3y22SynQKcUQM kULIShVbaZoc6SxS3hG9O3jv5jZJsuC9RTrCZjqTuOEqOUuNj5fJH1P2ypGDsXtNImxRcQnbg+WN R7Zv1BrZN3ilrIgcI//e3E3mX9VF5qeKWf5N1TXexRfmhm7muIX39ZP1pac7ca0ycR6cuklObj8q 0ZTPidNyOZ6CE5EdVdiU5MeYMWOMt+Y/PBAitGDBAqlbt640aNDAzHqLgR89erTxOr766iuZOHGi 2da3b19jtPFsRo0aJXXq1JGePXuaZsM+ffrIjTfeKM2bNzficPToUendu7d89913MmTIEJ/nRzz/ /vuvOVejRo1Ms+WAAQMkderU0qFDB/nvv/+MqI0dO9YnbAgqXhVpnDVrlk9c8exWrFghgwcPlvr1 68cpJKTdbkcwbXph5syZRojnz59v4t2+fbtUr15d7rvvPiNmhEfYOnbsaPLA+efMmWOO9YfmykGD BvnS6BU28k7ZsW/GjJjaPtsoM87ftGlT6datmxH28ePHmzKj4mHzyS/bKW/KyFshIS/kn2P69+9v rs3IkSNl1apVJt2U5759+6R79+4mzPDhw33eNOVLxYWya9KkiWzYsMFcCzx1sHHZ8goeZ+WLXgck TcdT8v5XW+S+JoflngaH5Lqmx6WMI0hVCiyRV77YIplq7TfCVsQRs1RtTsv9jrDhpSFmxT9eZQSt srM8+O1eR7A2m3UEq6LjkaWrc1BSNzoi1zue2jXuOziE7cGae83xRtjc5UtnnXNW/2iZ9Gm50U2j k/99RyT6uvfPE7YzV+WXBXf1ccSps7skLGQXXqwgunFd01UW3tZDFt7dy1l6y6J7+xkhvZQcd4Tt SMSX7lroo8KmGGhCzJgxo2la27p1q080MGJVqlSRP//8U4YOHSoPPvigaYobN26c8cAw9NOmTTPh 06RJYwx427ZtjVczb948+eGHH+TQoUPGqN9www1mHwZ9xIgR0q9fPxMmZ86c0qlTJxPHsGHDJGvW rDJhwgSZNGmSzJ0715z3tttuM2KCKGLE33jjDWPQOT5TpkzmPHibjzzyiBFM9pGGZ555xqSV80ZE RBgx8tKlSxf59NNPfeJw3XXXGe8VgadJFmFFNCtVqmSErXbt2pIhQwZzDt6vIWyPPfaYSTeieP31 1xsPzwtxFypUSD788EOZPXu2lC1bVq655hpTDojDc889Z2YR/uOPP0xc06dPN8J/xx13mPg55skn n5Rnn33WiBz5vPvuu2XRokWmzJiJ+L333jPhWrdubYQXceNa4OlyPsoRoWRbjhw55JVXXpH27dub vFIGAwcONMe/8MIL8uOPP5p4EUnOiYhSkUAEH374YRMOdu3aJY8++qhP6JKKveeWrz8pN7U41+HD Li9V3maEpliJNXJV65ht9HikN+NDjnilantGSnzseGWOl/XZh8uNID335Q7f8R+VWG1E63+ebS9U 2Wa2v/P5RvNe7cmvdzlxrIolbN6lQu7FssJ97xbd7ic56/s4+9wS7WxbkappHAJ1qZYusqH0r6b8 /Bfw/vpv9/5PiGORneRwxFfuWuijwqYYuLERtHLlyknatGmlWbNmxmtgO0Z+48aN8vvvv0v69OlN bR94p/bbb7+Z/2CFrWbNmlKsWDFj+LwgTjt27DD/MfZ4CsuWLTNGvUCBAuY8xPnPP/+YMF4w1rYp 0its+fPnN16EfTAx4Bhn0oGwMZYf4Enef//9xtvzwnvExx9/3IhU8eLFjdeCkLEdMSFeK2ycD48M Y29BeMgv4difLVs2X/OshXJAfK0nRT7uvPNOI2yIGRUK/q9evVpatWolefLkMQKMsLENEHrSQ76A 8sIT47oQl/e9HxUFyuSXX34x70qtN2xB2KhIWBBX0kalgXxWqFDBbHvggQfM9fFC+ghDfqmY4LFb Dy+pIOawfccxSdfyuBGeiMbHfCL0yhdbjbgU/3i1XNMqpkMInhnbvnI8qjT1DknBT9ZK7s/WSxXX 63o+DmFDDO22a1qeMp5c0eKrfd5fZcejo4ekFTO7fEnTZL4lsmXjIZPO05Pmy9mr854nbGccYVuW qnkcAhTsBU+wi8xN1VG2dvjX11rC/cX1sRUOW5nDs+YeJRz7CWu9bftsxcexyM5yKOJrdy30UWFT YsENj/GnmZFaPM1P2bNnN4JH8yCihwGE+IQN7+/rr782tXmMvn3ArLDxcNEk+frrrxtRQ1Deeust c+xdd91lBM+f+IQNY+8VQrwqtiFUCBvNkZb//e9/pmnPCw/3U089ZbwRDD7nJi00pZIHuJCwed+x cU4qAF6Im2OsEcGw2KZImgdpZkWoWBBqysQKm60I4KXhZXEscF6aJ/Gk8SC9TchVq1Y1acbj+uKL L0y6vZBP4gP2kU+aoRF1PEvithWB/fv3m3AW7g1EmmvBfeEvfMFi4+7T8vXII9Jp0G4p3XGvlG++ Q4p22Cetqq+Rr4svkxxlNslN9Y9IuQ+WxwiPI1hPON7WC1W2G2/NNifS7Phs1Z2Sv5Qrdo4A0jRJ syPNl+nrHDDbKjnh7ql70BHMU/Jgjb3yRrlN8lXBxSaOSvmXSNPKq6VX8w2yfdO5HrDIefQN579j i74ur2ysPFNW5Bwp/2XoJ/NSfW+aEeMWp4QXOpOY46/uJMteHG7iZFn++mhZW3iirCs2RfaNWitn oy5tRyoVNiVZgiH1GkB6HSJkNOGVL1/e7EOwEDwrbHg6vC+yWGGz3gs9JWm6+vvvv81+K2yci3jY TziazxATjDPNkBhrC3EBnmJcwkYzHAbchsNbevPNN01ciRE2juPdFgJgez6+9NJLUqRIEfOODfyF jeZNe77ECBtiizBbD5am2VtuucXnseEZ4a1wbhZExTZFXkjY8LJvvfVWXw9W0oXHirf2888/y4sv vugTVJtmr7DRbEra+CV/vKcjbtKBYNLcaeF4wlA2VHooT6+gXg5Iw569p2XVuhMycsJ++aDiBtO1 v4rjTeFplSm6wudhGVEqvEyyOEKGR2e2Ob8vV9omaRsclpIfrTbv4D4tulK+cMJd1zym+fOmpsfl FsdTpIckXlrbJuvlNF98+xFv55GyXWICOJzee0KOL9knaxwRmu+IVGIEzvdu7urOsqXebDm+dJ8c X75fzp65tOKVEEcju8jBiG/ctdBHhU0x0AUfg/jNN98Yw8Y7HDplYBzx0tq1aycffPCB3H777T5h I9zbb7/teydjhY1OH40bNzbNmbzz2rRpkwlvhQ1jyPsr3m01bNjQvGNC2IiDzgh4CsSB52JFjnh4 14cQeIWNNGKY8To4J8daDy4xwgaEv/nmm825SAPGHY/KeiteYdu8ebNp+kP0af5LjLBxHAKMYCLi CNRNN91khI19fALBcQg08ZHGxAobcM2oEFAJoQmY922IGdeCcqWsuH543VQOvMJGON6bso/3h08/ /bSJm3IgfvZRrog+7zOBigrvErnuVxq6/C+cfUAmT9onZb7eIKXyOQLmeGZfusJGk+JniJ3d5vzS 7T9146PyyLd7JHWjo8Y7470c79euaXFSHqi5zxG8JVIt3yJp9EX8w2PFeGwX9x0bVYsd7RfK5m/+ lDWFJsrGcjNk3v91Mb0el+cYJZur/ylHl4fe9DeHI7vJ/ojq7lroo8KmGDBw9H6kpk/zIl4FUHNf smSJ6ciBkaVXJAYTML4YSAw0htB298cTo8PB1KlTY737sZ0yAK9t8uTJRlR4v8O7IiAe/rMP78t6 G3g9bKPbPcfSREpYoPmQdHA+zm0hHpsPQDD83zcBaSJtdh+eKWHJC3i7+wP5JX+UA51LvL0QOad9 V+SFfNDpgjSSXsrKliPnxxOkjEkH56Xc6dFpy4umVe8nDt7zEp53cRyP+NhjgDwhROyzPVqJh/gs pIeypTcqXiVxA/Hy6Ye9TrZ8CI/wx5XPK82WbSel+nebpIwjVHQeoVny9oZH5N0yG8z3acZrc7ZH OF4Z7+Suan06RvhcIaxaYLHkdsLe0OyYvF9lk6+84yJej+0CH2gnRw5HdneE7Vt3LfRRYVMUJVFg 5BFovGN6ZyZk9K8kx05Ey+KlR+StBrskS/XdkqrlKTOsFkJnvDjn94lvdpl3balanZY3y20279jM 92vOvtfLbpTsX22XTVtOXvAbsZmFa6QIYTvkCNs+FTZFOQfeB++ArIcSTPBaiF+5OAIRJcoZzxDP Pi7PN9Q4E3VW5iw7LsUGHJGIGgfMN3C8a6P3Y1rHW/uo+GrJUnOvXNXmtKSpf0gKfLpOXvt4nfQa sEs27kncPTWwcdvzha3/dHdv+HAosocjbDXdtdBHhU1RlLDFq98DphyS8g23Sa5W++WhHqekSMUN 8k6ZDfJ/zU/I/d/skUYNN8r+oxdXSerXvJ2fsL1HG667N3w4ENlL9kR8566FPipsiqKkGJiK5sTp s2bZsjtKitbfIW+32CeL1p6QMwGMxziwkf9Eo+eGWwsnVNgURVGSGYG+LuzWqbNEX1fIsaT5nSWf yLuN3D3hxX5H2HZH1HHXQh8VNkVRlADp3KWznP59qUijYSJNfhQ5GHo9RYPB/sg+siuirrsW+qiw KYqiBAhDtnk/rwhX9kX2lZ0R9d210EeFTVEUJUBSirDtdYRtuwqboihK+NO5c6cUIWx7Ivs5wtbQ XQt9VNgURVECYMHOaHml5Wzp+u9pORj8TzRDit2R/WVrRPLpGKPCpiiKEgC3touZOofRS8avCe9B AnZFDpAtKmyKoijhzS3tYuZ0Y3mxT8zg1OHKrsiBsjmisbsW+qiwKYqiBEAsYesX3sK2M3KQbIpo 6q6FPipsKRTGCmTcvwvNnBssGPX++++/NzMFxAdpYmYBO7q8ooQycQkb42meOhJ+nUm2O8K2QYVN sTDPFbNCszC31dChQwMagDYYIGJ2jjEGsWV+MKZRudTYySyHDBlipmXxwmjx7AemSWEusbFjx5r1 UIVecEyPczHXkQGgmQ+OKV+U8MBf2I7tOyGDnx0vA5/+SRb3Xe2GCg8QtvURzd210EeF7RLz0Ucf Sd++fY1BY36x1KlTy/z58929McacxYKxtAvbrfH0X4f4ttnF//j27dubSTPt/mPHjsUaGd//GLBh 49rnjw3jf17mIWOS0bjiHj58uJm92h5rhc2ue8ODf/xxYY9l8RLXNsJ647Lr3sX/fMxvVqBAASNw FwoLrCPgTPjJXG92W1zpARtXfGG8+/i127zrXmwc9jj/xRu/DevFhvFut9v4TZmcjSVsz/U4KSOy /yx9sow2S88sIyTqZPg0T26LHCzrIlq4a6GPCtslBmHDeFuYqn/QoEHGKCB0n3zyiZn1eOLEiWYb MzTXrFlTBgwYIBUrVjReFk1zNWrUkKJFi5p9zKLMZJvMek38zI9lPQHEC+Ek3Icffmhmd8YAz5w5 03gMLOXLlzdxNG/e3DRHAtPKMHM0aeG8y5YtM9tJD7NFjxo1ysyszEzKTEYZl0GbPn26lC5d2sTB TNF4KUwIWrBgQbnuuutMvHZGaPjvv//k9ddfN7M/kyaMP8LWpUsXqVq1qpl1evTo0eZcLAsXLjTx k2dmxvYaWgsTmzJXGGVVpkwZU354p4MHDzbHsX3YsGG+majJs236tHONEQeTcdarV8/MEm3LmCly ECZELWPGjPL5558bD5iKC3FSNsyCzczf3il6WCffPXv2NNs5d69evUx5Mou49VgthOGYWbNmSdmy Zc35mUiVMuD8lBXXo1SpUqZywiSo1apVM+GYZdzOWE54ZvPmenAejqFsqMzMnTtXOnbsaO4B8klY ZhAnzo8//thMpMo20sJ9xjauH2VDGurWrWu2cd5QnHD0UjN3W7Rc54oaywO190r/+0f4hK135tGy oMty9C8s2Bo5RNZGtHTXQh8VtksMxgZhwwgjHvfcc4+ZLXnRokXyxBNPyB9//GFmLn788cdNMx3b IyIipH79+sbQYLhowuzUqZOsWrVKpk2bZgwjBqhy5cpGmFq0aGGMFwbrrbfeMk2MHIvAPfXUU8Y4 Y7wxiBhKRA6xQ2QJx3EvvPCCiYf4EN706dMbI0Z6brnlFiOQzOicJ08eIwYYPS/EQzqJG1FEzDD0 xMHoDOQJQ+01gjTnYSDz5ctnjiNfCBueDXN+IV6UF6JN+hET8o8gUnaLFy92Y4qBMn777beldu3a Jq0zZswwhhkDnitXLhMeg464c03IQ+bMmX3v/RDBO+64w8zWzYzRN998sxEjrsu7774rTZo0MfFR FtmzZzdCjhgiUFy/MWPGmLAPPPCAmckamG372WefNceRPs5JHrhGlBPnsV6chTK68847TTM2x1MO NOXynpJ76KqrrjLXgPJEbKkYdO/e3Vw70vbwww+bGbK5dlmyZPHNck4enn76aXPtyX/atGmld+/e Jg2U12OPPWbuR8qI81Hm5J8KEnETjgoV56biwezaeOOX6z1tKNHs72hJ1fqcsD3yxSbpn+mcsLH0 f2aMHNp4WI7tO+lc+9iecXJjS+RQWRPR2l0LfVTYLjEIW4YMGYzx4T0bTYEICTXykiVLmpoxS+7c uY0RwRjdfffdxoAAngBejbfJEAiDccJI4u1hiA4dOmSEbeTIkT7hwTMgbtbxohAv8Aobhh1jiJEG wubMmdMYVNKDYBEe8KDef/99X/wWBK9fv36+7RhcDCdGGmNJU2Rc8M6xQoUK5j8PPsJm30MidAgY RrlWrVrmHLwTJM/8b9WqlTnOgiAhKl5DS7ox7lQeiJPlhx9+kLx585oyTUjYHnroId+EmlwHjuF4 jDn/rdeHsHE9reFq3LixVK9e3YTFw8Rb5L8FEeee4Ne73UKZpUmTxggZEC+iRDxW2BAuGD9+vDz5 5JO+eAjL9eK6fvfdd2ZhG/u5zxBZK2yvvPKK776qVKmSuR8pXxbuOc7H/ZMtWzZT0bBQGUGYqWil VFrMiS1sNV6YKn0yj4olbKz3zTBM/nmwrRzM0VBOPFdToiLrySlnORvpVA49i1yuJaezvFHPWeqL fPK989Ak7p3v5shhslqFTbEgbN26dTPGErHCwLDQNIRxoLnMLngACEmmTJlMDR8aNmwoRYoUOc8A Xn/99cYQ2WPxjjCICBs1eQtG/LXXXjPGLT5hw5Dx3xpqIN0Yc9JDTd7uwwuyBt4LYbwdUTifFeiL FTbbeYT1l19+2QgPeXzmmWd8+WXBqHtBjAjjzQdihadnm1yB5jm8QsIhbNbz8xc2KiM2rkmTJhnP knzHJWy2XIHmWzxlPJ57773XV0mxEMcvv/wizz//vBEamna9cB05DhEDwtP8iVdmhY2ygT59+pgy 88K1nDx5shFVPH17rehx+txzz/mEzeYHqKz434/Wi0bg8Ei5j/CeEXuaixH+Dz74wKQ3GNi0+P9C fPu8v4kJ4/2FxISxePd9O8sRNCtsbaOkzvOTHSHziJq7jLivt5xOVdixtAWcxTtv25VeSE9+kVuL iBw+Hmd+vWyK/EFWRbRx10IfFbZLjG2K9MJNxHsLhMnWmDEgGCt/YUOkqIHTJAkcy0JTobcWbb0t hI33JoQhbt7h0YQGCFujRo3MPq+wYSzxJq0h5dwYfJrKEitsCCvvnKzBRTww3KTrQsKGESW+hIQN A00zoy0vfu25LDR74iXyzgmIk3QTBz0yWWehPPCoOP6RRx6RcePGmfAI0o033pgoYXvnnXdMGYK/ sLGdMsKLo+nXHxsnAoGg4BV5QSgQWNLA+RBc7gGalv2FjWZDytZ6cHjt6dKlM94eaeKdImVFPKwj /HEJG/cM+bDx2vvRppXriBf/888/m20cxznx9G2za1KxFQDbqYl0Uka2DMA225JPoKxIJ+kjPP+t 0NoewDZeewxxEpZzcC6bF/BPAwv55dc+k0ePHZU3fvAIm7NUjZx1vsfmLKPT95KTV33oCklcAnOF l2sd0V2x9YKVk42Rw2VFRDt3LfRRYbvExCVswPslasA0EyII+fPnN7Vhf2HjgUKcqNkjAIUKFTIP 5cCBA43h/eyzz8w7EN4jAcKGUcWgETe1cAw+4FHhvRQvXtzEYYWNBxtjT62cc+TIkcN0CsBIJFbY SDvHIUwYSI6xnlBCwoaxRqQReYxTfMKGoaG8eFeGWCAs1lBZSBPGm3LBWyEshsq+w+Ra4P1ioG0n Fsrx/vvvN+8suQa8V7uQsCGcNCVSjjS5+gsbTJgwQW666abz3gMCTby8g6SsaUZcuXKluycGjAxN kVw/G4aKA9fMX9hIHyKNh0hYrmm7du3MfvKBkBEP9xBeH/cD8fgLGyIQGRnpux8pI8SE96PcX8SN t4f4846NPLNwTfw7v6QEmv19JpawVX9xWpzCNjx9X9l3TUk5eFVxOZWqkJx1BC7KERSWGLG7zAtC dsMHItc5C79v1HVqYrFfc8SFCpsSCwxfXLUhDArGGsOH50U4jBG1SQySNVyAIaIpjXA0W7EPwdu6 davZtmbNmlgeG+LD+w/ipiZqjRfHYEQRK+LASNrj2IfRIj561dnzkx5EwMaB4GLI7LoX8sn7MDp3 IKY2DOewXpQ/nHfdunXmGM6J4NvaOceTX/IPnBuRI42E85aRhfjwVghDfoiDBeHlHOSddNq0EZ5O EGynrEgnYkGavfkmTTbfnJcy4hyEJW5/kcWrQ+ht+Xrx5gNBseewkD7EnnIhXVxfWwaklyZO7zFs o/epzTPrQBjSRW9S7gc6t1AxYj/3nleQCEv+uWcIT56824gbb4lt/FKWLN6yTEn4v2OrlGPGecLW Pd1wWT54rawZsFQ29FskB3v+Jie7TZUjPWbI2W4TJdpd5FIu3SfF/PZwfofMFPlrmaNSu0RWbnVq 1473G8czFBcbIn+UZRHt3bXQR4UtzEDYeJeiXBkQPcQK74/u9YEYfSts/u/eLhbEH1HCa0UM6fnK e9OUKETBppWfsGWqvVcGeHtFZh4tkz7/Q6KjEiccoc76yBGyJKKDuxb6qLCFGXzsTNObcmXA8+Zd IL0R8XYDAW+KJlniSgp49DQ/kh46y9CJKdA0KbHZf/ys3NT2nLBlqbtPBj440idsvR8YJSuGr3ND J3/WRY6UxRHfu2tJh1YLPkPhUyRaI2xrQLBQYQszuEniaqJTLg88nIhHUq6BjSMYDzpNpcQVrPiU c3hHHnlp8Bn5Oc/UGFHLPEpGvjNFzkY75R0mRb7WEbZFQRI2ng2axPmEhZ61tCjwvpZBEYKFCpui KEoA+I8VeepolPxR91/5s+4C2T4vac3IocaayFGyMKKTu5Y0eKdNSwKVLjo78R6X72P5NClYqLAp iqIEQFyj+4crqyJHy78Rnd21pMG7Y3rg0iGLUYDo4MSnMfQWDhYqbIqiKAHgFbb/9Q1/YZsf0cVd SzoMGcgnKgwdxycjfJZie0MHAxU2RVGUAPAJW+soqTIpvIVtZeQYR9i6umtJh/dsfFZCz2G+EaU5 MpiosCmKogTAI70RtWi53hG2DQfDu8PWisixMjeim7uWNOjgxve0DLztXdRjUxRFucKccrSsxfc9 ZM/R8Jsx259lkeNkTkR3dy1p8BkLIykxGhALA5ffeuutZtCCYKHCpiiKEiAMOWZHhQlnlkb+JH9H 9HDXggvNkkzBxQg7wUKFTVEUJUBSirAtcYTtr4ie7lpw4ftKBjlnVJxgocKmKIqSSNYeOCsnPf1E UoqwLY4cL38GSdgYZYRBvRkliYXByZniirFRg4UKm6IoygXAqyjxy2lJ1TJKHukTM20PpBRh+y/y Z/k9ore7ljQYTovpj/hujYUZRhh0O5iosCmKolyAedujJVWLmO79V7WOkp4LYmZQSEnC9lsShQ1P jYG541uCWY4qbIqiKBfgjaGe+dec329mRMnpLXtldLn6cvjXJRJ9Ory/Y1sQ+YvMjOjrrgVGlSpV JEuWLPEu2itSURTlMhI52BE2d5QRhC11pzOy89Gv5Wyq/HLy6oJyZvkWN2R48m/kBJmRRGFjOibm aYxvYezIYKHCpiiKkgAbD56Vm9q7omaXttGy74aijgUtYMTtUOVL02MwVJjvCNuvEf3ctaSDyM2a NUsmTpzoW2iqDBYqbEqygBHBS5Uqdd7UFrVr15a5c+e6a3HDjNG2/Z5a4ZtvvmlmGQ82fIvTsWNH M0XM66+/bl6KA+cMtDY6Z84ck2+WmjVrmnWdlujyMn2D462579e8wrY+dVlX2ArIknJ93NDhybzI iTItor+7ljSYVT5r1qxSsmRJeeSRR3y/zEofLFTYlGTBP//8IzfccIOZIRzhsDz66KNmvLmEYEoM BAcQhXnz5pmmj2BTsWJFad++vTkHYmtroA0bNpQxY8aY/xcL3/YwAvrQoUNN3BkyZJApU6a4e5XL QYbujpDZ92s+YTsjK28vb4SNZV354PQYDFX+iZwkUyIGuGtJg+GzihYtaiqbefPmNRXPNm3ayN9/ /+2GSDoqbEqyAGHLnj278YR69+7t627tFTaaN+g+3KtXL59ns2HDBilfvrx8+OGHMnnyZOM5/fbb b7Jnzx5zDA/V7NmzzTFjx441s1cDojRt2jTZvn279O3b13RPtoJKd2X29ezZU6ZPn27iAK+w0cxC F+YFCxbIyy+/LN98843Z9tdff8XyOomfbaRz5syZ500GirAVKVLE/Gdfo0aN5P333zf/N27cKIMG DTLlsW3bNhOG8fZo1tm5c6c5duTIkaaGDKQfL5J0k1ebn8WLFxtj8/vvv0u/fv1kx44dZtgj4kaQ yS9484242nyHM3uPi1zjFTTP0vXFLj6PbdUnwRlHMVSZ89pkmRQx0F1LGjxbr776qrl/8uXLJ6tW rTKj/Y8YMcINkXRU2JRkAcKWI0cOWbZsmdx///3GcINX2Giqq1evnjHO9913nyxatEj++OMPM/fT 888/b+Z8wvA/99xzRmSgbNmyZt+AAQOM+L3wwgvGgGPs77jjDsmdO7cRDs6JQUdQMPaVKlUyXtS9 995r9oMVNmqiTz/9tBFMxIUeX7ly5ZKWLVtKs2bNjFDZ5kSaGJs3by59+vQxTaT+TZZeYYMaNWrI p59+akSJ9Pbo0cPEmylTJiOkiBLj7r3xxhtGrBmLr27duuZYRI3zke6XXnrJbCc/VatWNdOGEA81 acbuo0zIF2P6UZsm3IQJE8wHtUOGDJEHH3zQpDnscPL59+ZoaT8vWjr+Gy2PmoGOzxc1lhwVl8jE h+s7VvRt2VK0nRtBePL3a5Nk0s3BETagYkVFlIrSPffcI4899piZly1YqLApyQIrbBh+hIB2ef57 hQ1BweNiIkOEB0MNfGtkjTvHWGGjTZ8RD/bv32/2AW39eDwIW5o0aXxNlszuSy0TA09NE4HE62Mo IGqdEJewAcKE9wMIEuckjTzYCBLf8BCvFTsvCBtx0ZTK9PmE37JliwnPeTAGrGfMmNE05Vhhs+8r 8E4RZc5LuvHe8MYQfMSL7Qhb6dKlTZzkN3369L73lpQFsxzb9CH65BtBzZ8//3lCHOo42ZA526Ll +YFRcj3TziBacS1xCFmcS+vTck3LE5Kq1Snzn2OvdpaeC/mI2z1pGDD7zcnyy80x93CgHD582IwH yX3L/WRhPdjevwqbkiywwsYDgCDw3onmQStsGF1EBq+nWLFixtOoXr26OTY+YZs6dap5ic2DZcEb wjND2KwgACL1yiuvmAfyxx9/NB4RgvXOO+9Izpw5TZjECBsghMQxbtw4I9BxCZoFYSMvpGn48OFG EEkD81chdLyjKF68uKROnVp+/fVXn7DZ93t0ukEMyQfNpqQbT49hjB5++GGfsFFZACoGVjwBL49y 4Jyc3x5PvnnfGUxhs+XAL+ezi90G1gDaXxvWe0x8Yfk9feaspO/mCFIrRMkjUMFcnHhvaBslh06e S4s3fYlJZ1LDxnWMNw3gDWN/4+PPXFNl/C1D3LXAoLmcyUW5h7p37y6bN2++ZBUjFTYlWeAVNrtO RwqazRA2HppbbrnFGHbC8E7rQsK2dOlSSZcuXawmEB4867F5hQ1vyAobzXC8OyMumj0vVth4l/X2 229LwYIFL9ij078p0oKoFypUyAgRRomyiEvYGH8PocJTy5Ytm+894/Llyy9a2Ng+f/58c/zgwYOD Lmz2XR5pIk/EbQ23rXzYObviCsvCf3vN7PtSG5bfKEfYnhngiA/CFpcoXcyChxbn/yhJ3TFKjp0+ G+v9JmkjPyzedPrniV/ybMPy38Zjw3iPYb8tKxuv9xgbljK0aWA//2252rTExx/vTpWfUidN2Dgn 6eVD7AoVKkjmzJnNc8D7WpvGYKHCpiQL/IWNh4QXzldffbURNpoTeSfGeyGMLg+NFTbEAcGicwYP uxU24qD2SGcMDHitWrVMsxsGMSFhe+ihh6RBgwamo8qTTz55QWEj3nfffdecwxoe9rPYB5oX57z/ svmzxCdsdDghj3id1apVk4iIiAsKG51Y6EhDOdAJ52KFjXeFlDn5xosMtrBdDpxsyNbD0VJpWpS8 NyJKcv0Ye3ljuCNKHRxxons/S0IC6AjYtc2Oym2NDsjTDTZLLje+N504Zm1CPNyThgG/vzdVxt02 1F1LOtxP3JM0lVNBS5s2rZl8NFiosCnJAprgxo8fb4TBglHFY7K9DKkJIjh0BEGI6BkJiEfXrl2l devWxpDTBOjtRYh4YLBp7qOZE+iIwXs1KzT2/DyQnK9p06bSpUsXWb16tfGeABFAEDmGDia2gwsi QwcMRJf0s9BpxXbKAI4jHd78AU2JNCH6Q97p8Uh+8QBp2ty6dasRJvJvBRlv1OaDHpiUQdu2bc1/ xJTtCDDT9AOiTHhbDuSBJkjSSVrIN2VJvulM4p/e5A6X46DjFO1ynL39zu97jlDF12T57JcrZM+N H8vB64rJms/D+wPt3/JMk9F3BWdaGe4lPDfet7Vo0cKIGpVNegYHCxU2RbnMIJI0C/KOQQldqHKc cBxS08kkDmH75aEGpqu/+Y6tTHBmlw5VZuadLiPTJE3YqETRq7lx48ZGyOiJ26pVK1NJshXIYKHC piiXER5kmi/pVRhu3k64knOoI2T+TZJto2XnjcWNqCFue0vGDAAQrszMN11GpP3BXQsM2yxO0zfv qIMtZl5U2BTlMkLTIN3tbROkEvos2BktqZqfL2w7bvrEJ2xbinVwQ4cnM/L/KsPTJU3YaOam6f9y 3PsqbIqiKAmw4+hZSdPZT9jaRMv6W8tItCNqp1MVlO3fT3ZDhyfTCs6QYemHu2uhjwqboijKBXjV b9qarH2jZPYXw+X3DDVl3ONN5ci24I1MH4pMKzxDht73o7sW+qiwKYqiXIAKE2NPNFp95hmJOh0t bdp2lSOHTsjZ6PBuWp7iCNvgDMETNnr10r2fHr00UdpvDoOFCpuiKMoFWL43WlK1jBG2axxhG7sq puND586djGEOdyZ/MFMG3h+8QYoZ4YdxTPkWk6G2GIHHfjsZDFTYFEVRLgD+2M9rz8gNLaKk1qwz Zh0Y1SYlCNuED2dJvwdGumtJg3FMGXGEXpEMiMDwcHwrybeYwUKFTVEUJUBSirD9UnSW9M2S8LyH iQXPDGFj5BGEjZ7CfNsW6JyFcaHCpiiKEiApRdh+Lvab9AmSsAGzbzCQNjNdMKg2s2rQJBksVNgU RVECJKUI2/iPfpNeDwXHo2JgAoZsY8xSxlZlIl+GsAsmKmyKoigB0qd5O4lqPsL5MzVmoMkwZVyJ 36VH1rHuWtJg/kGml7qUH2qrsCmKogQA/SLP3JDHsaIFneV9kUkLYnaEIQhb96zj3LWkQVd/5kyk qz+zctAEyRLMIbZU2BRFUQIAM3zWJ2wFRLLHTJMUjoz75A/p9vh4dy1pMAP7Y489ZqZDYgoopk9i YXaOYKHCpiiKEgCxhc1Z0n0asyMMGVPqL+maLWZ6pqRi37HRzd+7qMemKIpyhTlP2O4JX2Eb/dnf 0uWpie5a0qCzzb///mtmY/cudg7AYKDCpqQIeFFNE0hCL6ypMTKdxqJFi5I0pQzvEA4cOHBZRjEH RkyPb0giJlS9UDdq8sokoqSb/97ZB6wR+u+//y5bfpIL5wnbXSXk0Jr9sm/lQTm4wS3zMCmyUWXm SOdnJrlrSYP3agULFjQz17O89NJLcu+998qqVavcEElHhU1JFmBUmbH53XfflRdeeEGyZ8/umzk7 PjD4fAQKfAT64IMPmkk+46NWrVrmw1G6IGPkEwtpI37blDJjxgzzjY6dxfpSU65cOfn222/Nf9LA jN2W/PnzX3BEB5qB7rzzTlM2jN/HN0U2LzVq1JDcuXObeeSSIvbhyHnCliq/jLivl/S490fp89Ao WT12U/gIW9l/pNNzl2YGA+4r7l8mIQ0WKmxKsoBp4++44w6ZPn26Gbngn3/+SVCkoEiRIjJpUkwt E0PNRIcJGef77rvPiOXFeiZ4Sy+//LLxCAFBJY2Xy8PhvHhZMGXKFClRooT5D3nz5k2UsN12222m PPHQNm7caNKOMFMZ4KX+5cpLcsCWxJl9h+TsdeeE7djVRaXPAyOlT5bR0ifzaOmWdricPpb4ClIo M9IRtu9fmOKuBZ+OHTvK0KFD3bWko8KmJAt+++03M2Cq9cAsCBVNGI0aNZKaNWvK0qVLjRGeNm2a ZMmSRSpUqCBjx46VEydOSJ8+fYzoIHJTp041HhoPFIadhyoiIkJatGhhRJNwgwYNMjXJ/v37+85L 3NQs69WrJ/Xr1zdi0LNnT+PxtG7dWhYvXixbt26V0aNHm/MQHrFs1qyZfPfddzJnzhyfuP7888+y fPlyGThwoNSuXVtWrFhxnvD+9NNPZup8wBMjndab/PXXX03e+dD1zz//NOfBe2OGbtKE4CJsHMM6 56d8/M/hFTaaiUgPae/Vq5fJV8OGDU1TJMfRTEs8eLXBHpE9VDl15qz8uiFKUjVzlsZR0n1BlBw8 4chbyzFmklErbEeuKSa9Mo+KETZ3mfbFbDeW5M2IcnOlw4tT3bWkQTP9J598Ih999JFZ8uTJI7fe eqt5boKFCpuSLODF8qOPPmqa1hAA21SGh4FAjRs3TkaOHCnp06eXnTt3yuTJk+WBBx4whn7UqFHm Ybr99tvN77BhwyQyMtJ4f7179zYez4ABA+Smm26SJk2ayOzZs40wtmvXTmbNmmWaP5s3b25EinPQ VPfDDz+YeBcuXCjdunUzAkAYBACheeWVV4wA8c6O6fD79etn0ki3ZoQDeL/w7LPPGhHkWLwj63lZ 6tSpI1WqVDH/R4wYITfeeKNs3rzZ5JvmWLyp8uXLmyZDPNIyZcpItmzZpGvXrj5hQ+hIN8JLF2vE y4tX2IgjQ4YMJu3EQb7q1q1r8kGZPPPMM0aQGzRoIG+88cZ5FY1Q42TUWdl0KFqOnz4ru4+dleV7 omTZnjOydl+UjFkZJR3nRkmJcVHykbO8NzxK8o6Ikvd/jJKcA6PkZWd5fkCUPNHXEbQWMSP7m6Vl lKTrEiUtPhkv0any+4Tt2DWOx+YnbP0fGytj3p9+bsk3XSZV/EM2/bZdjmw7JgfXH5KThy5Pk3VS GF5+nrTPPs1dSxpUGrmHxo8fbxa+Zwv2O2kVNiXZwM2Pt4DhrVq1qvHCeBgw8ngrf/zxh/Hq/vrr LxMeceEBAjpQWGHr1KmTeZfGKONe7rrrLtm+fbv5j3eCyCBceGYIBMY+Xbp0vvgtiC7ntU2RXmHL lSuXETX70OJlWeFA2BAPIA8IIB6cF7y1jBkzGiFnag+ECw+STiE5cuQwRsIKGyCSiL+FdH///ffm PyKEsPqfIy5h43wII/myHiN56tGjh/H6WKhEILKhzMc/x4jS+6Oj5LZOrkDZhWloWFo5C3OteRcr YgktHaLl4LWFXWHLL+tvrCy9PKIW39LrgVHSM8MI6ZE+ZkHsgmnULwU/VPhX2ub41V1LGjyDPFNe Jk6caDopBQsVNiVZgeDQZPH8889L27Ztjfi89dZbpmmDDg4YYpoZIT5hw5DTlMjHoZ9//rkRB7DC hpFhDEDem+Gt4DFxDsTnqquuOs+rSkjY8DL//vtvsx0QUwZ+RWQQNjwpC51iEAwvhENAaHIkDXhO //vf/8xI6DS9Uh4XEjb7jg2xIl3+H8ImVtjwgF999VUTJwtNSAhssLDeH+/2yBdpYLGVF7DXikoN 2LCUNWH5bzvtHDxyXCI6uCKEgCVWsBK7dIyWpXdXcoUtn8y+o0mihM1/6e0IHROV2vzzS569+bd5 svn3lgP7/fMf1zGUoY0XCGvL1YaNj2FfLJA2L8901wKH+4t7nlYEWgDsUrx4cXPvBgsVNiVZYB9A C++kSpcubd5B0WvPPtSJETbgAcegMwICDxZYYSMsgkQXeMLxrs0KG2HwDL0kJGwcx3s8Cx5b1qxZ TVr9hQ3B8hc2zs9I6OS3WrVqJg14jRgC3qvBxQhbzpw5AxY2mj6pWZMm7xIsbFz+8dvF7vP/jWux +0pPdATI8ciKjY+SO/HYrCgFQeRubnJIjl/zvitsBeR0qsIy9P4hcYrXeUtmR9CyjDK/4wr/aoTN m+64FrvP/zehxYaxv3Etdl9CIGytgyBsPDvvvfeeaeIuUKCAb+Fd9oXE9WJQYVOSBbwXw6PB0/ry yy/Nu6K5c+ea5gua6mhe5H0a3pAVtq+//toIjP87NjpS0Emke/fupoOJ/X7GChsPGGLJLL9dunQx Bp1BWxEV4sJzwTts2rSpaZakhk3aEJ558+bFEjbeB9LEiOdHhwu8RNINiRE2II+8XOczAkDQyTOf GIBX2HjHlyZNGtNkiOAGU9goV94Dkg/KpWzZsiZcKBPtGOxNhxyPJlrkwImzMn5NtFl+XhstQ5dH y7ALLEOWRcsdjtfHrNm2mfIaRyhfHxolc2uNjdV5hObIcel7xBKwXplHyvqJW2Tt+M2xl583y55l +2XL7zvclIY2Q6r8Jy1f/c1dSxo8g7yjvZSosCnJAowsgjF48GDTiYLu/3g9GFbEhJ5/9FZENGxT IQYb4UAQECV6VvJLUybGnmOIx9ZWeYltm4PwvghDhw+67vOujfMRlvMgtHiLnINtCALx8UvnDEZS IDzwHoo0M0uw7UoPiBBiYiHtxOcP8dCJhTIAmv/Is42fb8/WrFlj/rMNAeJc5IVejHSmsftIl/85 KEPKBkHnHHiChGU7HWnsedmG8JJ3ypV0XKimHy50mHtGqkyPWQYucZvyOv0SS9iiUhWSIRkH+0St d6ZRsrD7ChM2uTP4y0XS/LXYLRVJgRH+eV6ogNmFbcFChU1RFCUB4pPuM0dPyNnrz33HdsZZhmUc GCNsblPjqaPhMVfboKqLpfnrMU3fSYUKFz13P/74Y9OCwS8tARcacOFiUGFTFEUJgLhGHhl+Zy/p 5XhqjD5yaIvjzUeHh0c7qOoSafpG7N7AgUKLB2JG6wnvg2myp3mb70eDhQqboihKAPgLW3Tqj+Ts 8VOyckzwPI9QYcDXS6VxrnO9e5MCTfV8A0lTN++ZeQ/NIAA01wcLFTZFUZQAOM9jC+PR/ft/s0wa vj3HXUs6DHDAu9tffvnFNEc+9dRT5w0ckBRU2BRFUQLgPGEL4/nY+ldbLg3fDV5TIZ2O9u3bZzog 0bvXdtoKFipsiqIoARBb2AqI5KgZsyMM6Vt9hdR/L3jC1rhxY0mbNq35bIfvRvPly2eELliosCmK ogQAH1vsuaOIY0XziVydV+TftTE7wpDeNVZKndzz3bWksWPHDjOqD6OmvPjii+bzE8ZP1ZFHFEVR QoCuHTrK6SEzRTbuEonChwtPen27Wr57PzhjOfItJ51G6BVpha1Dhw6xBitIKipsiqIoAdK5U2c5 HRUec64lRM+aq6V2kISND/0ZRouRfRjFh4HNmQtRP9BWFEUJARgsG88j3Olea7V8m3eBu5Z06CzC 0HYVK1Y040QyYk8wUWFTFEUJkM6dv5fjx9zBe8N4dLGu362V6vkXuWuBQScRhsXDYwN6RPJx9qVA hU1RFCVAqhebJo0qrJCeTdbL6VMxBjsc6fLdOqlWYLG7FhgMNs60R3bgbJoh7YwYwUaFTVEUJQCW zd8vlfMvkaqFlsoX7y+SdcuPunvCj8511sk3BVXYFEVRwprpo3fKlwVjhK2SI2zrl50/M0O48H3d 9U4+Y093dLEgbEyJxAS5tWrVkltuucVMQcV/FmbRCBYqbIqiKAEwb8haqVJwqRG2ynkWyoalMfPj hSMd622ULz9Y7q4FBr0eq1evHu+iwqYoinKFWd1rsVR2RM0IW+6FsjGMha19/Y1SuUjShO1yclmF jfHBaFO90t1jmVCR8cnimiSRWoVtA77ccN5L1easJA7uCSYqtT23LifclwcPHnTXAoN7KCmTf16p ez858u/Q1T6Prcp7C2TjwuANCRVqtG2wUSp+mHwmTTXCxjTdZcqUibX06dPHBAgmPHBMf798+ZVV /j/++MO088ZlvLJmzRprVuPLgU0HosrU/UrcXA6xQVxef/1136zRlxqeCStEzFb9+eefm/+BwLdB b775ppkGBLxxJwZE9YUXXghqk1A489fQtfKlK2yVCi+VKfcNkL2DnbIPw27/bRpskvJFV7lroY8R NqaLZ+r5Tz75RKpUqWKmiWcyuGDDQ/bwww+b6eWvJHxLQT7jMpTp0qUzY5ldLtq2bSu9evUy/5nC n+kblPMZPHiwfPPNN+7apQNhe+655y6bsDECw7x588x/KlxMwBgoPF+rV682eYBcuXLJkiWJf+HP 88ALfvXaLoBTztHOMvvx1lK58LKYpkhnmXz7AJmfqpPsn7jOhAknWjXcJGWLJTNhAx6KevXqyfff f+9uidm2du1as61ly5by77//mm3+8DC0a9dOOnbs6BuhGXHo2rWrtGjRQv766y9fEwnCxsM2fPhw n4Cwb9iwYWbMMAbGHDt2rBn9mQfd/yFj/6hRo0yttFWrVjJgwADz4R/MmDHDxM2Amps2bTJNnlOn TpVGjRoZw3jgwAETDmH74osvZPr06WYf6/ZDQStspHXz5s1mZAHyv3XrVrNt5cqVJj9MikeZ4GVR 027SpImpHGAcWBYsWGD2d+vWzWdo/Jk7d668++67UrRoUV95IGyLFi2S5s2by/jx433HYmgZS61p 06Zmpln/68A6U6tzHRBK0mJnpCVv5JE09u3b16SZshkyZIiv7FjnGhw9etRcw/79+0vr1q2Nd03c lPtPP/1k4p0wYYJs375dfv31V5k8ebI0a9ZM/vvvPxOO+Lg+f//9t7mGc+bMMdeiTZs20rt3b59g 2GtDfqZMmWLWKTfKgYoPgj906FBzXtJAGb3yyivmOvqXJ2nmnuFaMr8T6eCe5H7kHuE/27iGpJfr znkRFLZ7Ie5nn33W5Ifrx71k00w5kmfKceLEiXFeVyqEzAZM+rkeNi2Um4XyYe6pn3/+2XR5ZuQF 7t3ff/9dihUrZv5Tdt7nhvCDBg0y2ydNmuS7X0nPmjVrzHPA/cp9yXPEvcK9XKdOHZNPynfcuHEm 7ZzfHk8aeMZpoaGlwpY518JeW8rclgFp5Nmz9wf3gX8ZhhOnT0fLiSjn/neWU86yZ/dx+WryKSny U5RsTV1WvigUI2xVnOXnu4bKv6m6yqp84+RslGMHTkY5y5nYy6nkWWlo0XizfPbxanct9ElQ2LiB n3/+efNAjRkzxjzw3NheMJKPPfaYeWhYGOASA5IlSxZjyDCGOXLkMEaMc1iPjW6eiB5wzCOPPGIM BU2E7Js2bZppluPXCw84YfG4iJOmm3LlypkHlSZUZmZlqJYNGzZI5cqVpWTJkuYBrV27trz22mvG UGDkiYOBNzHS1NBJJ+mzwsa7LrbzoPMQR0ZGmvdyGP8nn3zSGAfSihAx1hnrGCmMOOL3zDPPGOOH ocbwxgXlUKhQISldurRJI+elO2z9+vWNgX788ceN94yRIW/kgTg5/+LFsb8p4ViuDwYK4/bggw+a 60meMIYFCxY0BhFDxTU9fvy48RYQBMJQaaHsMIqUE4LOaNuUAcYLsSNO8koa/vzzT3MtKRuMKlNQ UD40Y917772mbCkryqR48eLm3O+8844RXiBN9trkzZvXnAvjy5hxX3/9tdnOuYmba0n+aWajXAhn 4Z4pUaKEVK1a1dwrP/74oykvRImKAdePeEgbgkF6KCPSbdPshfhIA/GRBtLIfcR9g2BxLu67Dz74 wIgeZeeFbsuIBfdg9uzZTTmThvLly7shxAz8ilhzbSlDrgmVHJ6tTJkymcoQEzHa+4k0cf/xvFCO lBfHkE9aWWg6JU8MS/T000+bER0oi/Tp05sKBefi+lH2pJ3rTBrhvffeM9PzI16cK3PmzCYszxMi SPiPPvrI/AeeTa4D6ahbt65vMNtwZPOSndIrZw954csVcnOTQ3J3gz1yfcsTkqp1lNzQ5IjMTV/b 8dSWSbX3F0r/h3+S8XcNMcI2P1Vn+fcGZ7m+i7N0Pbfc1E0WZRkkx5fsdc+QfGjWZIuUKrHGXQt9 4hU21jHcGDj+s2B8GLjS60XRfJYxY0ZjRLjBCYdRoaZoj+Ph4N0aD6IVNmqxiB/vBQhP7Y82frZh NPFaqHF/+OGH7pliQNiYcRXhIW6E9dFHHzUv/DF+xMV2jIHXcLGOYaZWi7DxMNv0ki88AtJnha1H jx7GiFFzZ+HdA8YfY12pUiVzHIIVERFhxIB14sQYkj8MBJ6crRnHB0LRqVMn85+yvOeee3zpQuAo A/JM2omPcuGYr776yhxj6dKlizE65MEey/Wk9k05UD7AtXvppZeMsSOt5JttZcuWNSJH2WCQFy5c aPJN+VP7x9hRzhhq4ucaIYz855xcNypCCFu2bNlMOLbTHIYQEg5jiJBzPsQDL4b8UAHCQHKNKDcM M1CZ4hoA92Fc75/w0MkP5wPOA1wb0o/BRmjxnhA2+4Eo4cgn3o4X0sD9xX0F3J/kDXHnGtCKQJoR XLxt8uiFewFvnfNyLbmm8QkbkHbrWRP322+/bdLGQvyUEYJnp9IHnhPSQh4Rtu7du5vwXGsrbMD7 YsoASCfXhmeRYz777DOzHWHjunA8abfCxjrPAeKLR8k1Be4xKrrs557iHLYlJKnYsuSX+O2v3Qb2 ebJl4Q3r/Q82jP+vDWf/x/ULM59uKmdT5ZMMtbbKDc2PSao2Ub7lqlanZNnd30jFD5bLsPtHyQLE LJUjZI6wnVv81xG9LrIgbY8E02m3E8amM7688GvjsuHtf//4vWHAG8b+xkeTJlvlkxLJZ1qeBIWt QoUKxrhYeBeXO3fu84w1DzK1fDw3DAiCSI3YQvMMxgKDbYWN+BELHnBqo3htGBOEhfNSS2axRt+C kcfjsE0jPFScFwOCsOE5AQaJGi+GCjgfTVkIKsabuO3FpDmHWjDrVthowsLw2XSwkDeEDW8DrNGz NdYiRYoYgedcGFGMjJ2WIT78hc37jo0aOoKPB5wmTRozYKhNC8bFCzVqRNBCUybXE4OPgSWtQNoQ K9JHsyFpJL8YStJJTR7j5s03zYoYu7feestXZggb6bFwXfEiMZ5UYuzDRLlSIQDKnXX2pU6d2hh7 ew48PK4VXqo1lHgdeEYQn7Ah9kxSaM8H3CN4zHgU3A9UvPBmyLP3HRaeDt61F9KA52u9bO51rjHe DAJJE7ZNM94Q5WmhPGkJoDMWrReItxU2WhUs3g5U/sLmTR9eNkJExYAKpT0Xv0zQSKUNkeL+Ba5x fMKGR4eo84tQcRwgbLYMyLMVNppriYsKEzaBuABho+kYEFi220pTUrHPEWVOHrnX7HW1Nsc+z/5h CUd4/tuw9p63Ye2xhPOG5deGsb8wLWtDR9gKyO3198q1LY7HEjaW5XdVkqkPt5UZN/c6T8BiFq+w dTGiZpZbusZKp3+e+I0vTzas9xj22zyx2Dz5H2O3EwbsOcCGjY/GTbZJ8ZLBHaj4UpKgsFmvBeNI AfBAYPDZZ+HmsbX4atWqmSYSmsIQEcSH4zCyNWrUMGGssAEiUbhwYfMwU7DEw4NCjZiwHG8NjAWj xUPNA0sYaps0WZIOhM1OVscFJxzveAiHKGFoMD4YWMQRw0A4DLQ1UlbYaJqk9kwtmO1s44ZIjLCR D24m8oTgsw3RxjsgLi8YX85N3PEJG3EhPPZdEWViH1oL6cqTJ48pM/bR7Mf1JA3UtjGQHMs5aO6y Hi+GCu+Pjhmsc224BpQz6xgt4gu2sHEOPBHOQRljJCnH+ISN97WlSpUy5+cYC4KDmFAxYjtlg0Dg 4RAfRh5hvxhh4z7h/uJc1sujXKmIIaQ2zaTTmxbEgDjJH++tuJcob+IgPcTNfXD77bf7hI1mesqS c8UnbHQIwVsmLs7HPc+1IH8IFPED18krbFT4qIwSN5VHvD/uB5rxLyRsNB/THMqxNMFeDmELNTb+ t0O25G4jxavOlzvr7JKIOnvk5vr7fcL2fNWNMu7x7jIjorefiOG9tTcLnUnmX91Z5t/QVZa9MEJW 5/45WTZFNmy6TYp9mkyFjRfqNGtYMPwIGw8FDxI3OzezFx5g2tx56c2sqBhGHjBqtjy0iAPNT9ZQ Uhu2DzWGAa+KJjH2sSAovBMhPuL179VFPBh/DABNfwiUFS+aCDnegmHEGNHMhdBa0cOg4nnS1MM5 bPoAzxIDQh4wpOSJ/dSYMUw0yyHuQBjSYoUNY0Htmpf1GDhEG4PGg494IT6k0wvGBtFClBFPysxi O+RwDE1f5BVvizSTRi94W6STa4XAcW6EDUgP5UCeKQdq7TYdGD4qAHbaCLbTjMy5EGqEiOtE+eAZ YegAL453YRauK9ce79Iad6Cp03oNlLtt+kQEKDvSyb2FYFCOeLj2HsNg844LuGe4V7juVBwspIfO MtwzpBUvENGmHGgq5XhEgYoNzWqUs4VyQjS8cI3JC++VuG8QCm/6eb9JOdPEiqfkvZ6UEeXGeWl1 QOzpkMFzxH1APrmvid+KCU3nlAP3B51FvOkjr5yDPHLPUWEgzZQv+QHyS76A+5H7lWZTsNcRj5FO Q3ixiCXvdG3TKOVvywBhI3/kA0FFGAmPmHH/AJVb6yGSL7YjhOEKnUb2nhDZfuSs7DoUJYePOpXV vscl19DTUqroItNppP3z092mSEStkyzL1keidh+T09uPxiw7nGWXU8k/elqiT8c8P8mN+s12SJFP N7hroY9P2ICH2hppCzU8apk8oPz3h4cOw4dRtp6b3Y6BwQATL9tZCGONI+vUhO06sI0Hhvh40Gx8 Fh46HiZ7Tm8YHmz/NBI/4TD8NhyGlTTZ83jzTHhvOPLtzQPx2/Cse/Nsz09+EDMrkKxjQPAu/OFY ysnW/r1Gm/N4z2Xz7E2jF9LIOckr3hTGzEK8HEuevceSNv/4vOm3+WOx3ivYMrTY68riDWfzDxzD uo2PdJImvGi7zVueNjywjWtPuux+i91HXDZ+e91Jo02bNz4gnTZtFo5lO+E43v8etPFSjnEda/dz vLfs+M924vae195jlIV/+vjPNiA819/eUxZvGHseGzf3DnHb83GfUU5st3Hwa8Pb422aESyO4Z5m O1Ce/ufjN6XgzWqfl36ULx1h+zrfIvk1oq8Rtvmpvpdja5xKcpiVSb3mO+SDUslU2JIDVtjsg5Yc wHBQQ7cG5FKAwaM5kWathg0bGi+MslIU5dIw46c9ZhBkxK1qgcUy84YusqXGX46ouQHCiO9a7JQC pc+vmIcqyU7YqH3S9m89GSUGat50def7KTruUNNWFOXSMWOsZ3T/9xgEOeab0HCkpiNs73+22V0L fZKdsCmKooQCM8buPidseRbJ+jAWtuqtdsl7ZZPPUGsqbIqiKAEwY8w5j62K47FtXBK+o/tXa7Vb 3im71V0LfVTYFEVRAmDRAEfQfPOx/ScbloWvx/aVI2xvfa7CpiiKEtYsnrVLvss1W6o6XlsVR9g2 LQ9fYavceo9Elov5jCQ5oMKmKIoSIA1KjZYGhedKjzqrJCqZDnCcGCq23Ss5KqiwKYqihD2dO3eS qDPh30O7vCNsL1W4fNN5JRUVNkVRlABhDNOU8OlR2Xb75LmKsUc7CmVU2BRFUQKkU5dOKULYPm2/ X56otMtdC31U2BRFUQKAocW6vdtX/uu1JCxHG/FSov0ByVopZiqn5IAKWwLENTbmpYDR2BlHMD4Y i4/xOu0YfVcCxilkPMOL4XKVH8OJ2RnOkwMMdcYYlMkJhoNLSWNCJoZfPv5VemceJT0zjpD9aw+E tbh92OGAPFBZhe2iYWYBRjNnNgHm5mLorCuBfXgZPJbpUC71lBz9+vWTJ554QqpXr+5uOYdNC0aF kd3tdCRXAkZ1Z1boC2HTzGC5jFrPXHyXEmYJYOoUpmK5lGNxBhMmdWW2huQEE5MyW4Byjn4Pj5Q+ WUYbcRv9bsyM5OFK/o4HJN2XyWeYvpARNqb1YJxDpnFhihjmMbtcNX4L09rYOcYwkhjlS20sEbUN G84fNZtysBNrkgbC4ZVcKZizjTnREmLu3LmmcmI9S+aPu9TXkGlVELfkBJU3pg5KTlDB0/FHYzM4 yw/S2xE2xG30az+6W8OTN78/KDdXTT7zyIWUsDGBIjCg780332yavjCMGK769eubwY+tJ8cM0oyY 361bNzNVCE1lQ4YMMbXKX375xYTh+N69e0ujRo3MnGR4E4RlVmXm1mKSz+HDhxvvAhHDKDN/FfN7 MScYE61yfo5jzirmxCIu5g6zxpuaN/sQZWYbjmvWAYSJObMYdZ851piMkzhJB5NOEqd33rnNmzcb UWMuMPJH+hA2Ru5n8lEExjYLkg4mMqV8mIvOTkfihbxwDLNscx6OoVzsvGekD2+MsmEbeaIcmT/O 5scKG/HjZdrzIMrMus0UJ8wqzUSh5JEX6pzDNrnRlMo5mCNuwoQJJk/AXHxMUMo+JqSlbPwhfcwy TTlxDbjulB/XDq+aeeGYk88Lk3YyYe3AgQPNjNZMdko8HEcFgXnumAvNzkNHmXP/UblhLjLuJ8SH cqDcgXuPgabZRhkxdQ0QB5OoMlcf9xQzynMeypn8cW24jnbesviEjWvK3GmE534hvYCoME8iZUfl gbgRGe5TwjJbty1PnhUmtGXKIib9JV+EZ2G+PLbROkLZ2Pi5nsw5R/mSf+JmwmHKmpYLYHJR8gVc W+418spzaJ+FlMaAB0ekGGF7zRG2iK9U2C4ar7Bh6JhUEuOJWDGXGZNO0oRjZ6/G0DMRJrN1Y4yZ 0JQHHwODoefhYyJRBIfJP5ncEaPJg8qMyjzcxMlM0xhi5kpjQkUmceQh5p1XmjRpjGHHcHE8hpQ0 8p84gUksmRwSg8LEp8TlD3kgfcSLEcEYEz8TS3IORuP3ztWGYSEvTBrJecgL5cF5mOSRSTQROCB/ TIjKdiYh9Z/MFLF66aWXjEhTLkw2icgwAadtDkPsmOwUw8pknZwbw8pkmUzeiuGywoYxJ6w16pQH s1xzLMJExWDs2LHmGGai5v0XgoBIYywpJybwtOVE2pkAFQGoXbu2uWb+Xh5lwASsnIv80cTJBLdU ToiXMvCfMLRmzZqm+RYhGjNmjJn0kzDcK0y2ikFGiLh+iC8eMqKMMUcUaTWgIkA5MGEtaaLMmBqI e4ymY8qb7Qg1zaGci/uRWah5j8a5EE/iqFq1qlm4NnEJGyLDdoSK+5JZ4alAUa7kl7JjO3kmjuzZ s5t8s43JRxEl4Hpxr1FWCDD7SCPCzn2LCCJKlIed2Txt2rTy3XffmXxQHlwDrgcVFZoguZb8Uhkg nTwn3Iucm7JNCb0C42LQg8PPCVvO4e7W8CSy0yFH2JLPhLIhJWwYBwxjpkyZfNPlY7h4GJlBGQOB oPGg8ktTFw85RokZja1BZBvieO+995paKsfSxDh48GAjbBh360kgdpyThxOBsVPmIy5W2DD0GBHS Q9x4hIgt/zEEttaP0Sa9/mCYVqxYYcKzIB6IHTBvWlzvzjAyGE7gvMzsbePAIDGlPxN0YkQxgOSR 2j4iQXgLRhiDhkdKGOLEI6H2zYzO1PR5P4WhZ9urr75qKhScB68FEabMLiRshMfoIlq2Bm+FDQGx YVgQJfIDCBv72W7jtt4ocE25tlQCgHAY4fbt25v/GHG8OX8QNoTJnrNatWrmGLxkyt+WB5UEvHnu IcSEtBOecqJcKAPWucYZM2b0GXHKyM62zrUqV66c71zkgfuO/9xHeJOIDBUM8hOXsOFZcf9zbUkX FRfyiefFbN7EBfzitZEHmxbSYCuCCBtiQzhm0ub6cZ9QhrbSw0JFxza7Z8iQwTeBK4LNt1n8pyLA 3IfEa4WNChjhbcsJ4VIqQx8YFiNsmUfK6FdHuVvDk8jOhyXi6+Qzv2NICRseEd6EnbUYI8NDhNhQ S2ShOc8Km23aoQbKVPfeh4yHn2Y+exwLxgsjjTG0TTcYHqbDZz0+YcPAIUQ2fgwphoL0IWy2uQYx pibsjzcM1KhRw3SQgcQKG/m179gQdMoLr4DywbOyecR4e4WNZkKMnrccEH2MYrZs2WT9+vXmF1FB PAoVKuSrIPCL8caYxSdspPNCwoYRx9OxYETxEgBh47oAxhKhxhBbSCeeK6JuIR21atUy50xI2BBr C5UTvCeaJilLb3lQnqSBtFgoW86RPn160+TH+am02HuAX9Y3btxoygDhslBmNPVREePewtsizS++ +GK8wobYUyYIk00XIkzTIV6cFyompNWWMxUB7iN+Od42y/Isce9xrUgrFS8LaS5QoID5761MUE48 T0DeqAR6hQ2xo6LmvcdSGtGnz8jJw6dk5P0DfMI25vXwboqM7OII2zcqbBeNtynSwsNDzRRPi/88 YBhK8AobtWMEheY9DA4PKcYYYaPWyjaMKeKFwFDzxlPDMPCwIor8x+gVLVrUnAujYIUNUWM7zXqE o4cg3gAkRtjy5ctnjCPHItrUoq0xjk/YaH5DZEgLS1zCRnnQ3Gabp0irfW9moWxoesVQE4byswaR pkMM5BdffGH2Wa8BI8s6BhJRIc1W2EgLecTjwUgj0lbYaMKjGQsxYt0KG54gzXxUFjie60ne4ELC RjwINx4M6SaPiCf3CvsSEjbemZJG0k/THUKDeOM5UU4cz/1BvKShdOnS7tEx4kta8Z64xoSjJcF6 zTTfIlrEHZ+w8e6P5l7i4d7C+4lP2Lg+nMe+P6QMuI8RIyoerLOd83G/cZ1IE3HTgkATOv/jEzbe h3GdeQZIA14g3iBcjLBxDSkH65GSHn5TCnvmbpFF/+shs27tKKPv6eM2RY5yPLaRbojwJLLrEYmo psJ20fCui3dQXnhgMBAYb5reeDdCcwrQvGaFjQeadyMYT+LBoHBsp06dzDaE5c033zTNShgFRIJ3 DxgDDJ4VFgx6unTpTE0W4cMbwpDy0GP0MIj01sQwYfgA42aFDaNJ3P7QwYJmLpr+MG5t2rQxxgUw gnEJG8dgvBAK0kB+bThqzeQTOOdjjz1m8kizGiLnBaPN+xdq7IRBCIgPMNrkd+HChWadckSACUuT JqKGaFCWNFHRfAWtW7c24kYZ8q7FNpVRsSDNXCeMISJF2bAPg4mRxNMl7XiKwHtTBAcQNgyxV9gA A46Qkz+uAZ6UbQojnXjn/iBseN9cL5qaaYrEqLPgDbGN9FMmCDFpsL1QgYoMcXPv4XGRBww+15ft vPPjvSbbqYR4vSruObxi4sySJYs5B02V3ANcd8Sc1gEvxIPQIGKIPvcrnUBIGxUpyo4yoHJBWCol bOOe4j7mWgLv8azQI2zcnwgbwkm8XBuuK5U5RAm4f6yw0SKClw8IG/nnWpJ+20RJOXCduZeKFStm yjTZsvewRC/bLHt2npBdm47Kuk0nZem2KNm0/qgcWL5bohZskfUbjsu6zSfl7xazZEFEY6n8zt+S q/R6qfPyTNPVH3Eb/9JoiV60SU4v3Oos28xyauF2iVq4Sc44S/SJ5P0eMkbYDrhroU/ICBsPB4bV Hx4kjBg1RR4+G4bw7LPwn1o44eyD5t1GHKxjaHkgMZ7esBaMgH2vwgNtz4FAIKQImvV4wBuGtLHu D/s5D+cjfhsevMd7YRv5tZ6WN7+cx5tuhMqWT3xxkSebXxuGX//z8594vGUGGFgrxpyfdBEnZWE9 NBaMJftsWdjjWSfv/mngWPYB2+IrD85N2XNOGx6Iy7tuQdjwDLn+XDdvGNJMGkkL5wf22/9AOuIq U7x2tvNrtxOfLRvgWOJjP3nm/ISx+eY83nvIwj57X3JNbfzERXrJvy1rttny9Kab/zavhPOWJ+ck Lf7l4Q1DPmza2OZNszePthy86Ux27HPEPMPncvbqQjL30cZSqPQ6ebfURnm9zCZ5v+RaKfHBIvkr bR1579ON8q6z/J62mbT63yR55/Ot8vZnm2R0+v4yPP0QI2xLr20th1OVks2p6snGVI2cpaFZtqWq KWdSFZTTBdom6++3I7s5wlZDhS1kQdjwGLzGQAk/EDbbQUdJHlgv3FZWEFIWK7BgWxvsL6KMEFvh 5Ti2gfVIbbz21yfSf61wLGABZykoR68tIgVLrpY8ZbZIntKbzG9ultJrzP+SRRfLoVSfSfl8/0nu zzbLqAeGOCLWRNalaiYT7u5rfnek+lY2OL8bPcv6VM3lrBN/VOoSErV+jzkv6SWd/nnyptObf2+e /PNPWMrHxstiKyr+x3jLlf223MCGjY/IbkcdYYv9miOUSXHCxs1Ol2wuqhK+0AzIeyAl+WA9P369 i912od/EhLG/5v+O/SLpPnWEJ58syFhL8n6yVnJ9uklec7y2PMXXyMeFFsn4TC3l7U82SuGiy+Tg tR/JhExdpXDJVTI1bU9HuJqaZZnjra2+qoUjfJ8463hsDcyywVm2OmIX7cQfla+ZnD0Tu2UhofTZ 38SE8f5CYsIA6/Ht8yey+zGJ+Damw1hyIMUJm6Ioio+Nu+Ws47ltWXtY1q84LItWnZA5607LymWH ZPe8bRI1a5UsWXFMlqw8JnPf7iI/Zu0mqyJqyr5rSzuiVVtm3dJVBmb8QX5+doic/m2NnJq1Tk7O 2mCWE87C8WdmrZDoAzFeU3IlsocjbLVU2BRFuUTYJqxgY5vClLjBq9k7e6P0f6yfrEr1nay6uplM u62HTL6jp4x+M6YnabgS2eO4I2yxO3WFMipsipKMoLflLbfcYjpv8L7EvyPIxYBA2s8I6NHKpyd0 CFESwG2xWzN7mwy/b4j0yDJG+j4wQn7KEdNbO1yJ7OUIW+1zAyeEOipsihLi2E4B9r/9hILPU+i6 j0CxjsDZdyV23cI6x3r389kJH/Tb7TZeu9+e17vNnoPtgQpquDAoy7mxIke9NsLdGp4YYftOhU1R lCDAcGOMQMO3gggZ31fyH0+NsUkZhIAxUxmQgG/Y+Mge+DyA7/3oAcd3gHy3xveZbOMTBgY75ps8 RhHhw216xfH9J7+IFgOOM2wcH9/T2QoxYx/fM/ItKefkuz/Ok1Lp99AoI2oxgyCH+QfavU9IRJ3k M4egCpuihCh8IM0H3nysz39EhA+xr732WiNYfIzPB92MY4nXZkeEAcTMjoHKMYz+wjbEELHk+z5E ihFTEEu6hPPRNb8IFx+gEy/H8iE4I6Kwjw/6+VCbuBBcRiOxHl1Ko9/D54Rt5Jtj3a3hSWQfR9jq qrApipJE+Bid4d8YDcS+C7PCBoxMgnghchCfsNFkyGj9xMM2OxMAM1wwuDfxeoWN0VoYHs3CCD6I IPvw8hjRBBihhBFJUmqTZN9HxsQIW+bRMurtCe7W8MQIW71j7lroo8KmKCEMIsJ8cnhueGgJCRvD kdl5/fDCGIYNT6548eJGzNjHh+t26qf4hI2hy7zjbzLMGsOQsY/h1mgGBYYSozkyxQrbwzHeGsNq jc0dMwdkuBLZ96RE1E8+nyyosClKiGKHg0N4mGGCMTq9wsZ4m4xLybsvxI0xKe1g24gWzZSIEYNu 48nRk5KxJa3HxviqeHEc7xU2xqEkLsKTBoSOpkwVttgMf2OCEbVeGX+UPcuTzyScgWCErYEKm6Io SYSOIAx8jBgx8DYzJSBmeGmAN8aEqAyszXs4BrOmlyTH2HncaIpkPkPCMFMGgzUjfsAsEQwCTkcQ vmFjkGQrcswGwIDTxMfkuIgXYRgcGrEDmivx/lKqsB3dc1x6RvaX3+v8I2fPhPd7xsh+CJs2RSqK kkTw1PDE7Hsy1u1iYTv77XYb3huWhW3ss+vAL9u82+0+G6/dB/5hvP9TKp06dzLlFO5E9j8lEQ2T zwf8KmyKoigBQg/RFCFsAxxha6TCpiiKEvakHGE7LRGNE54BIJRQYVMURQkQFbbQRIVNURQlQFKM sA08JRFNVNgURVHCnhQjbIMcj63ppZlV4lKgwqYoihIgKUrYmqmwKYqihD0qbKGJCpuiKEqApBxh i5KI5sknnypsiqIoAZJihG2wI2wtEpdP70f9VwoVNkVRlABJMcI2xBG2lonLZ+7cuc1sFFcSFTZF UZQAUWE7n8yZM8uhQ4fctSuDCpuiKEqApBhhG+oIW6vAhY2Bs5mN/bnnnpNixYqZuQYZcJtBvJmN AhiEmwl1gdkpmFEiUFTYFEVRAiSlCNvLQ87ITa1i5v27EP7CxiwUTK/ELBNMedS1a1fJlSuXEbSn nnpKduzYYWauSJMmjfTv39+8o2NuQaZsChQVNkVRQoIXX3zRLG+++aaZqic5LI899phvaqHksFC2 lHF8+9q1a+dejdgs3n1W/twaLYnpEuIvbExay5yAdnojfpkZnmmQqlatKiNGjDBiN3jwYPN+jimY mDLJhg8EFTZFUUICDFmpUqXMfzslTqgv06dPlyNHjsS5LxQX+Oyzz+LcZ5ek4i9sf/31l6kAeOPO lCmTmfeP8mOG99dff900VzL/X58+faRHjx5JSosKm6IoIQHCVrJkSXcteTBt2jQ5evSou5Y84L3W peT++++XRYsWmUlx8b54n5YhQwb5888/zTXGQ8NDRLhomkQImeyWfXhwzNK+cuVKN7bAUGFTFCUk wND99NNP7lryAOPNO6TkxPjx491/lwaaHdOmTWuWBx54QLZu3WqEKmvWrHLfffdJnjx5Yr0/+/jj j827NZg/f75phjx2LGmzdauwKYqiKJcEb3MinUWoBCTl3VliUWFTFOWK8++//0rv3r1N7d4fmrB4 59K9e3fT9HeloLPDwIEDZfLkye6W2GzevNm8H6IZLlSYN2+e9O3bV7Zv3+5uOceMGTNMmbLgKYUT KmyKolxRaM4rW7asMcIffvjhed9ANWnSRCZMmCDLli2TLVu2uFsvL3gZFStWNKJGevybTHmPxPdZ c+fONZ0heLd0pVmzZo2UL19e/v77b5M2f7777juZOHGiKdddu3a5W8MDFTZFUa4oHTp0MKJGs1W/ fv2M9+aFj3VXrVpletFdKfjWqkKFCiaN9IJEMLzfr82ZM8ekHWbPnm2+b/M2w10J2rdv7/vImfT4 f/Bcp04d+e+//4wneqXTGmxU2BRFuSxgPP0XPKFvv/3W1wRJ1/BRo0aZ/xaaKDHCn3zyifnI90qw bt06ady4sUkzQoCHya/lhx9+kD/++MP8RwRr1qxpwl5JqlWr5hvJg3LzL9dOnToZr61EiRKmWTKc UGFTFOWywHsc3kHxzoeF/3hqCNu2bdtMGJrNRo4caf5bGImCjgd4bAUKFLginhvChucYn7ANHTrU iDIwikYoCNs333wjmzZtMv8RtvjKlaGtKNdwQoVNUZTLAh/g0sHCu7Ctbdu2ppkMIWD0CUaqiA++ d7oS340hvJUrVzZppCny888/j9UUSQeXIUOGmP+IdceOHa+4sLVu3drXkYUOIgmVa968ed1/4YEK m6IoV5QVK1bIF198IWvXrjUD4dIRgw4kbdq0MV7R2LFjzb4BAwZIuXLlLkt3cX/wbPiwGXFAtIYN G2a2834QAeO7LDq+kE5GT0nqB8bBYOnSpfLll1/K6tWrpXDhwmYbnidpJj/Dhw836e3Zs6dp6g0n VNgURbniMLRS/fr1TScRwCuiiz/NZfRAZF+3bt2uiKhZSFOzZs1Ml38LzanWM0OgSefvv/9u1q80 pGvKlCnSoEEDI2hA0yTvLClH3rmRXoSNcg4nVNgURVGUsEKFTVEURQkrVNgURVGUsEKFTVEURQkr VNgUJYVzpbulA50agpEO4iAuev3Ro5LeiqGQv1CBsrjQcF98TmG/fwsVGDzZfmyeGFTYFCUFwEfN NWrUMN2+69at6/sgmm+z9u7da/7Dr7/+et4IFR988IH5NsuCaBQsWFDee+8908WdHo1JhTm4vB88 Bwq9KvlkgDTywTTze11uglEel5IsWbK4/+KGnpTPPfecuxY4ixcvlt27d7trFw/laKcEQmxvv/12 0zM1MaiwKUqYg3G44447pHnz5qYrOl28GVQYmCPLO6I+82IRzoI4ML/W888/726JGbHilltuMd3b +cYsderU5lup+EiMx4Qh9QobxwTiaSHejNsINo5A4kkKTzzxhPsvNOF6JgQzKLz44ovuWsIkVLYM 12VHYwmEJ598MtY9weDT8c2s4I8Km6KEOcxSjLDhxVisQWLKfuu9AR9Bt2jRwvznW6evvvrK1Jxv vvlmOXz4sNmOsN12223mP5QuXVratWvnrokZkePhhx+O9ZGyNaYM7YTRZNZkxl60309ZYUMg3333 XbMNGJXefhfGkFwvvPCCPPTQQ2bA4biMKhNZ2jj5mBrvlHD58uUzYyOSX0bZQMzx7Jjt2Y7IwYfX fKf22muvmfQyvBfH0pyJh0qaX3/9dd9I+OSTfJMehJ/Bm3PkyCHXXnutmTGab9y8MHQVHmSmTJmM t2vjYaguBinOmTOnEcW4vBwqHPXq1ZM33njD5IFRW2rVqmXSzzUDrhf/H3zwQeMBW4GHRo0amfPy S3qB8HwjmC1bNhMnI/1DfMLG9edac86iRYv6RoCJjIw042MCnj2jsjCSzI033ihp0qQx8dtZtClj PEYGlOY6UYbZs2c39yhwXRkxhW/trrnmGnM933zzTXMuWh3efvttE+5CqLApSpiD8WAmY8YDxNgy N5cVhaeeespM04+YYGwxrC1btjT78PQwkPv37zfbJk2aZLZjkG699VYzJiLTtNxzzz2ycOFCs8+C V4iBAkaQx+ADxh9Pj/c8GDQ7/YsVNpoSEQ8LgjJr1iwz9BYGkbgYLQNj6p2FGTCOGG/7ETeG3Y7Z +M4778jXX39tBIExFDke44uoPfPMMyY8Q3thfJcsWWLENGPGjOZYRkFB5JgyhxFHEElgmCriYXoY RvlALDHgVpz8h/5CBJktmvdXHEuaKEsEHsFC1BF+DLk/XDdmlqZ8ECA8bcqO9TvvvNOE4VpwbioU pB8Bo0wYI5IKAR9pI3x420A+X375ZXM9WLjWhI9P2PCGGcmEd12IMU3UQFg73xtpYLBq8kVYPHrK gnvw7rvvNvcR157rigfGdsrfChuCRosB9wIeG2nmOnNNWdKnT++7dxNChU1RUgAY5169eplhofC+ xo8fb7ZTU8fAYWwx3Bhf67Ex/iFGipoyRvvVV1812zFa119/vam9U/PGwFoxsXAMXhtGiEGO8UiA 93mMhFGmTBkjbLbZ80LCNmjQIOMpcBwDEGOEvSOAAMfiHcQlbNT0rfj+8ssvZmguQLwff/xxI0II W8OGDc12QEhIL/nl/ExVw5xseESAqDGXmT+kLS7Ir+24gfeTNm1a886I8mB4K8DA4/H5g8FnGhrA 80bALQgDlQzSb8uTPFNhYcaB999/31dWbMeLAvKKKFGmLFwvmvriEzYqQbbZGrEi/eQjLmHjGuBR 2lkDSDOtBvZ9LsKLcMUnbKSTe8I7Nx9x4sF5myfjQ4VNUVIQGAeM9CuvvGLW42uKxLAw7QlG8K67 7jJeAYYJw4yh570aYVji49lnnzXeAwYTr4+wjz76qKmpYwAxfBh1iE/Y8ufPb4SN4bXy5MljvCwW PD9/jw2jSXNhfMJmRQjP03YqwbDi5WBAEQbrrQLpwGDb8iIdeGd4cvC///0vzp568QkbecRjBIQU TxdhoAzsO0/K6eqrrzb/vWDwqZgA+UOMLaSDePGiGAfSggc+c+ZMk/cff/zR3SrmvFC9enXTvGnL lAXPOD5hw0u0wkQ68cAI7xU23qklJGy28weeMvFxL1lPEbp27ZqgsKnHpiiKAcHAG8OoYFAxHBg9 iE/YMETUjjEsx44dMwueF+96MEbed2zxgUjwjoxmTgSEdCA8iCPx0gyGyIEVNjwPavCIFkYULw1B If2IK9tICx6D952hBdEhfXAxwobAIGyUB8aadKRLl84cS89RpqXhvCNGjJB7773XHEtzK14r5Up+ 7HQ6iDd5semwUFHgHR7x4LGQT967BUPY8LgRJN4Pkhc8KzxLfnmvRW9Y0onwREREmOP4z7E0n5Im 8kx5xCdsDO6M8HAP4fFzLNAzlooK2xlMmXCkkWs7ZswYk0fKggoSAks4RJV3cYAnSA9K0kflpVWr VqbcuT+4V/CqWad8c+XKZY65ECpsihLmYEholsLo8a6LTgq8UwEMpG1eAtsrki7fvOvBQFkQBgwe RgqP7UIgmBhpjLIFo4Unx/ulzz77zOexsQ0xAASUWjydPDCeeB3AlDaIAU2A5MUKiRfEA0ED3osR F0aR8/EeDHhHVaVKFfMfQ04ZWI8Nb4P3XYgTZcGxeJGcFw8OrwgPFBAQjDppJE12olGMM2XsP/8Z XgnXgSZO29kEEEiaRwFho9OEP5QhgxUD1wQBtvD+DM+R64Jgs04zn7fzCu9X2U4zrm3GJO9ca9JP MzNlhLggbFa0vOAVEo4mVeKy3ufy5cuNiJI3ZmmguZs0Ut40DfNOkvJF2Ch37kHi4b4E3itSplSA SpYs6fPYqExwPPcJ15qyt03oF0KFTVHCHIwEtV4MCYaLGrSFmrpXvDB2hOXXCo0FD4nwxEdc/CYE 8XI+r+fCNo4lHnsusPEC5+E4zs9iPTP2E87ui+v8dMDgnRJxc5zNK4bR5pP0sJ3jbZz8Imx4JKyT RhuefRzPednGfgtxsd0bnjyxzXoaXuw+ryizzZYR4dnvfxz5YbF4y8ubN1t27LfbgGNtmrzpJ4z3 viBO0uJNnxfC2LAWjrFlxrH22tjthGc7Hre3bCw2DYT13hPe7XjRfMfGemJQYVMUJWzAmGI4+b1Y mP8NYVOCD4KLMNlKysWCyHFdE4sKm6IoigNdyy9m2CYl8VDRmDp1akAVjkBQYVMURVHCChU2RVEU JaxQYVMURVHCChU2RVEUJaxQYVMURVHCCJH/B41klUUZ06axAAAAAElFTkSuQmCC ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Análise da satisf= ação com a economia a partir de modelos de aprendizado de máquina e inteligência artificial

explicativa

Luiz Fernando Menegazzo Ferreyra; Yasser Bulaty Tauil; Helton Messias Adigneri; Bruno Samways dos Santos; Rafael Lima

 

 

IS= SN 2237-4558    Navus    Florianópolis    SC    v. 15 • p. 01-17 • jan./dez. 2024

17

 

                  =                                                                           <= /span>       

 

ISSN 2237-4558    Navus  •  Florianópolis  •  SC    v.9    n.2    p. XX-XX    <= /span>abr./jun. 2019

 

 

------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/image005.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDhpookS9sB /v///wAAAAAAAAAAXwAxADcAOQA1ADMANAA0ADEAOAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA40sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb9iXb76z v9mZc/bM7M4/e35z+3zee11Vt+4ru7fqDQ/hLuVUgJYR/kZEEJAQ7u4fIaD8VRrin/whOAgID/78 f3d/f/+X5Pt/y/8pgQMg/zmGf+HXmKMCoAE8AkAHeAyAAYAJgAWA/XsKIOAC4AHgAxAAEAIQARAD kACQAoAAyADIASgAngBQAlABUAPQADwFoAV4BkAHQA/AAMAIwATADMDy53v+W/51ooJgC/ycgLGQ RLAB7g4Ibn/rCv5bIUJ4+J9r/pc/0NqUNQofS2yQtGBVuNjpjv/rstl2+aG0crOISMBz23/6FEWE dwim/5TNvxZ0hAeIf92ef1SP4M87EmDfCMEKQQZovRnQE/+s4AH2Ef+o57fv+0d0fpX/i199hSCB oAL0vSvQ96Z/jIDjP2Wf6M/2I/8T9n+NE86fz3+97v8t//8J4u/p8L8QpP+3J/gfCHUsCAEiioRw ZEuNkDv2v6np3/I/kVcIJoDPfwV4vl++xxDBEribAimqf8QCUyDl/X+rTwdMn7+eT/+IzYcAMwr/ irf/Lf+s/X+1/F+2rySHhAzEQjQ0hHkFOxnr2fdXmUBoqhD6vYsztrVxMrVxYjcxdDL848LJBlz3 teXfkUkSeLuAcKmKck59cRI8s5kIZfDp5WW08gOmnuXTOoPo5bWr0SObIyNu8a/osUSD0OyXxmkC oq8dEXIcxFZ866jsw6PrcqQDyaioxdoD0QKK6gIuFvZcfVacm6wLg7hseQQruW1b3E42BmY19xXQ ZUkSl2lPjXrEMN5kY0jyQzgHNSLkGFvRHiL0rOiCuKaYokp4pJco1h9/msiLLFFNvGMiT7/55kBc 7v3IA19o0GuvvS6iyhst+dadts+0WkIg8bV5lRpLUo/FK3oEz7feOBJMn+UUVSmoL5dqkQ5P55EO MbqkIDA1FT6fIpy7ts8RfYvLEehH83DXz7ufI7ntCAQbwj3LjJoSWB6kLxQpTTfGm890J1O8xcam FJmrZeSAzeMkd9wP7GSgH8kVw470+kYRc6GF/TfPN0TrjxULAhh7WWZjhD5jl10zLNB4x0fMYKfP FV1ynm0LHC3fdi5/KYNt8m41oRIdf1+Ig8Gt7+brn3gKTGEdmr1cQ4pCWWp2FC6nhDou+d9wPw0l mLa8WhStCdrgq7XVob92kfjksG1jOPi2axHTq1dZq3jojRmdPr3eDKe0e9FjF2puFuW0z2x2E3YX 3xawdaXCtUJdAhrESyYJ+36AXm6gaE7ufoNcun1ZVuUNn6QVme+77chou3mIJk6JYbzXOMQaPGPw 4UwmlkhsaDVAE9fF9N2rdia6bIFiBUJnNwFwhkr7p1pwUUb5TRnYZKf2axuWDcMVF9S4AU15gc3S tUw6hkYylIBRJf/vHtSyMime+ySmwNfPB87aYE/PnVivpvGtzUurynRdCx0fhEYHsbwTf4QeDeFf YLy+V0Eziv4eHcSlJYHw6apfHc/dkGhMneWxoTxiu9sGMhrvuNUDBwtttdR1fWdZzNpwB11Ebeue RdQVDy0sf4jpSmGeZtMGbkEtWJekpCH4ikQu+7vcWzARpZ+kq/wm0tZIgT04czUrvItzww3Dobmp p45xg+2NlCQ/c4/6S5EfJKvs3qez41xG8nY2j3bNl51ZRt7h8demf0+lkZO4luW+eGDFGtGQyx4u 7sPsWiYmOUls+dKiuagWLblL8pj9yHyRpGa/Otw83eMMomKGOVjOA9oFr75gpQq99PpqMpIieMvJ ot85+kBbCgtP3eOI5r10rUyEuc5KXRJTeKXM0/5vpq5irinOsRC+5MqOr3kpMZJO+4VTd0lChmhp oScCeHMI8CfKse8+LzU4G7useb9TrjlFf20URnLfJX2WRCIKs0R5tkKeONZ3ZraoDKUXtpbTgvIk dbDqTTZHbiiBBs79pVnZl73jB7alXU2+6gjue32Yk8l0LmG8N++2KLmozOXbvCl+qyecRdjZvFhZ YzuxqznSdCnE/JEvSuNx3gjhu/ezTLbmku8XJn92OdaG7pOYjjumf3je0awyv14vaTmnrTU7cZJg szk3VZloJ2kiFFHgvDARaQ0d9d2tifDQqqRHW7IRHLgZRaY5Pdb1+7A6dn13wZJrak9feqR40/h0 3KpWdfYMJ3dPH13oow6h4imF2ECfrjOu9rkBuTmFsignHDMP+jS71tctE1c80kiRUxcCjvnxlmzT Hs0jrBybIIiM5t1Q/hmeznD3T1loGBtHRG0YBw07LJp1Ci8/7ElMDx6eUJAZT15mcYa3oXCXBi5k OWDXm+1ohqqZDrQVd03mtJfXFmQy+q62SrvnkHz9SyVYyJRFrlwfo41AuzhZMiQWfCq2Zy59L/YB 5t63I3xWvyUjQkbThN+3tUDbsSvasitQYbw+tRnzgctJp9jf7knHjS37vWXaz4vwZ5nsy9WJbrpr Tj5bPExIUhuD1G/Cu199QyTv5m+/DAAZ6CcPd0dv6MS/z8sXfR+WqIkDu+Csofz8dFpFep1o9hFr h7fwkJ4Lilz34TRvcE5aFl9hRTGZ3LV9iRJoDbSCZgRac4PxllDiuoOg0692waZ6XsJNNB8Zzk48 5hRrOh3xJfvDjmxUhaSi8nxAbc7CeznYxl5CJNytjkIxX2o60AkyXepsSKy+bDKO6+U2NNqFPRU2 tJ6sl5j/TLlMOL9KKjIhM/rQ6wM1rcjxRJwdvAJefkZ/UD54Vz1P2uASj1Uuj+jllT3HODz0Xqg0 a/aSYOLTDsX+VW5aaV6t6EWrUl6Nx2AFUqu9S9GiB+qYKNw1OLJmWDlhRIPuaqvPcWnHFc/LxY1s DRfH3Ysjy20aZE80oGV7UPLiemuSCDu0yNnfITXs+pTyv0a0yBYu8WsgkpE++P0N4r9EtPeGjk6m DkqG5qa/wtrNxf29Dx0KCgrOHarJ/dM2GOooy0uWBx2gl1CkDqKXe4gdIi91sDqonrMnk5KwlXNz CA0bGzCktrdFt47vcITNycOeKb+/DYdciM2QkoilavrhIN8hcTYiIGEttUf3RncDDqtHCZrdHz2o hL5G/6DTPPeFFE6Yo5mR/WCEV6BqmIbUtWIzPhPVh/gBnANyuiJHX6qHtY5YXASc+Q8ostuiH+QT ksj63kpAaKkGEQW4KIuM2FLb6yr437ERBT0Cp2aezaat1Saduczaa7ajhdsJuG7hZNo5oAoirzCQ pAxFY2CU6VCxY28pRa+qvYSIU9Aj/fyMQIj6Ahn5bzYBoaIxyppUwNEQDfHvNwF2QGf93gRkPNKJ /3lxj93OxYKEkbvR5WtmsZHqEW+UG8tsxmZZGuxhVWerLy/PMclD6NhbZvnps6aVldkKaCNV1mY9 VnawnWv146E65KRx8wk4vmi5f/fs+d0du6uXY9amyEX9UMbyVbrjZnrQO4n0kSlSG2xm7OmVzXeo Z4YISyyy9spMoUY4BZ8YcnIDQsRvFLcRS9+gBuux7Vjrv1gyahi2kp8kbVGoLh02XJJArQ+1vRZX PgVfhpU1FZ442jWciDbVWnQk2dZqn1pL5W1Ha5dIFY6tpyt4nsF3xwbwO59tOiU4lpb6MSznVhGZ vlZI0x5UzHS5qohz7muq4DlFug/WlKG0abnR1zO1JkF7ZYhwCsFVwrxuZ1CGsdYMQbnJe8z5uU9I sZpmzmUb1/m0S1NqmgdNneDwofaU0QNbyEnTVhNfuD9DMIQq+wVLazbG1OLDr0P8L4q1OzltXiCV pYwxY16zKjcEcwWjsMqGMoxPxOkRKUeu6WDo9sBYO7P95A4kMPHHuDG+vMq3oMyo5JOIf6SEeB1i SUbTwtzG/E1ERafdzp5QrYyqSxnxSygXWMFF/8rnvvtcPtYjKKSXkvE6u1k5yj3X+Dp0HynTQvRR Ka8IfjnTtsPLsvSY4fhc1xK5R6M1Ky9sBS7S4euFPotzX6d+dp3vPpp9bjnhG8KaOrXbXvb+blB9 r7XhcLEBL+Pj+XStbeoTtEmoAEf644DPck5Yu/DOtV3HjVaswzKlDuMTH+Xw3W8MwpKN0spFzeYK HmPGZZ0Z6ZM/7iQny6U0oqdLE7hn2w2qPCkxiQM3nEwyNfxrW5kXbEdWLj/lwnGUcx21ngfyHvJW 4bEKiqNaoNiGZlmJvNnpu7cOuXfrj1v8iX6pumD7ZBqN80Cak8i9jMDG6b6/QjJUWSIElrMCbV+X 3j/p2yx5ukl30cg03j99cQFzkirTsL3S5l5TbFWPlIrXvgwWyR3wTV/s3IhqTsrcq6wV0jCvyPK+ mQnJQ+ltOYnsFzmgXgleHpa4JWCtibhSjUJasyY9S2LNXXNN7dMDr03zSVcVHrWcJV0kNF2gZVbg vjgxpHQs6daTcd+MincUPh9ZaIJlz70Ig55geeJrte0efnMt2b1bbzz0OcHaYy6z9sVZNjS6ddO3 t3lVpiNawQfTUbxNI5KXiNjMi/L0AQufM72+DfvhNcIJ7wy+O/C8qma8Jb0ijHI/FRx/MSSYfWBc dvxy2rEq3r10enZqUTuvw00qVNhJPyIeFup3fHCSv+K57EjXlkaw7KY4tRcP6UA6UR2JX0I82/1k tD8I5ZU5iL0RcQqCn6SMZ9bRCmBqh8EJFfJ7zyUEMuuUT6Vu9uFkK6uFs/edM6bZVt1u7GCdevK2 59bGl7Nlc/BI028EPOXbTV9rSj68oF7uyVt1GS+7zfrSredBGwdvmmQNJr4xV2+IGXa22paatVYz I00XzDQdVtbtzY+VeRYnS5fwWsSa64WLT3mIiYMWcaIwTa+JWaJeX+7mu40T0xS58waZFFqVG36x 2O/oRqK9NNX0o0cSO1Hnszc+O1zTk+vPC3/0mUwSrVN3aKDeoCQEYfGlk08Ynz6M6+3NHeEBptxf rDClsPRxkTpxTanJzwUGzZ/4h5RZSHs2t0Lkyq6+J16BavQ7WYQD6wX7sGONeG6/xVF6nrBjfjg9 9r+efx5OuoOqAOfxtE2lDMDGPXsGxXbhHluFZ7+m36hdBpmhudh+Wt5R9o6m2gIdoPrrG5338OSl Gdw/Njvd2kbVh/HmUSem1KVejSqIllPwGs/6e9utEnMPCnZ47gZTVoXyGYujVGo2UOrwm3XlrDQM 6prx1r8H35zxTsFQic+geGygCfx32EKDLzTNmli7fJh/hrPyXX0//Wq2h9t9Gml6rXjon2G2IUN2 YvcCU7H40L+GsL51d2gzk777NZrHg1NVEjj5XR0hp/CtZTIu5hs6EnRrMMlOfJCYn8DUXJ1QwIKT w1t95Ze2HjEWtWrxhH2zg1JfEkhzoGimYAbuXIYU3E0fLN6rsEa79BDTpLcONZBPJqtPZ2rx4Trw NngqpPYA9Mx6gUt8VJPuyXh5osGMCyZ9KLx5wrquqzNKM9aSEUZ/gf8ZjiEmcFcZO1fGWehz44Yh rn+PaB/hUo8cSKihT3Gz9PPrIf1O5I7mw9MRWAg4JdeEkVKYElF15UuHeshXvMlc2tKCSJQ0PdwP y/WzERwFzZCOFJgVyVUJbupjyqZlLKLpLeyUeaOIwxs76lBOaL4M+PLU6/t38Ha7ou1AunbituFZ 4ChSMqH+8LAqB5Pm5VJnBIdHFmmrxeBtNd9Jxgj4cqeONEzx+Y9PzGav3cJNFTi+FvOuhviB3wrp X64tQ6ufJ0/Kki2383MvcJHkTDFxs33gEi+wNytetw0oCwpd/UJGbe9LegHh9tnpTxdKuMDWMwog haUdtYGfkt9NhVd2ejbVJ2zTenreCCXg7C+yDtz26LefwcgM88Xai3vBJEyeR8erEYe9wtzgUHuQ TUqFEb2Zg67ZZii4nu7l7Yu37WwfI2h4br/k4DZgjdvp0ZvdUEMxRvSV+DBvFHG7FOogZB1XfYGW DpkLttD856g3dRhRt3fdiYjHbBhCltVCkrOm6f0Q8Vm2MQVUmdl8hzfRt7dtysIlvo+RZHIz6GRT tUgux+Y1p9n6XJRrwr7phibux9azTqkpzAV2N+8yv484Bb0mJtafmsuq/0oztt9AGjVxmrB74+ef PMic4qFw80OulTNMfcKujMprAafJ74YsbawVLnQWdCl+aoDpATXuKjkMVEzjlukPieHlFuEbI2bR GHB9x8Fd8fykE9JSzpt2pTQloY5cVjN8aPL4YGihNUOxlFUIngBhZFtFL5kwPkcRSzkWkBbCo03a pviJ9LhoYijExVTykZpVRhQNU/Ubq5Jxrc/Oyiq7iEff6fAScK291ri8+q50zvmspWf38/cdNOGW Pdrhcq456yXz5C68MK/+wU95DQ7ghCZGN9XjT2v7mnG1dUh74XRJhzEKRvcnC7HGvO5y5vHSgwwx 6SOTbK5ym45inJS9IwMpz+kupX9lWMiLOYBXF9a89+Gz9Tl1UU54ij/N3UO9e0ifxXLL0po7mbFS bnvyMg2+izlgrb9NrXUCh6yFl+LQmleF/NQ+rxX5tQ7uLM3HH3o/ZinWutjqtfJ8LyCYFrkjW5Kg xfxHo641VXcRPd6WwH24pM0dI1mTvMgsYnMiePbi3vsmc2B6fdeGJCran0GSGi0uM1r50vG/kKuk TLOEk84NkvFKcHhMmKm0MhducOXn0NXbp0OkGisThg8JzbpVoAYZfBhZ+cv7r/1v+b3lUCq1GsS8 MUSp/Ka3ghE/RU5Gl/oPKpIPR6asSmw+QhqKQGXfsZqvE/lqb5BERULlaS51lvZQbXdRotE6d+7v BiFD0F/etFP38mId5VKoM3yTmMQAysqtd9eGoG2bXPFTeuPxfkrtLoj/u2x51qGfMfJk1ShHczXi J+xhE4+Vc1KoY27rZQtoQtvM96qZh7ypCwHfiGeOyNz3IrAvEmeTWl2PdICnpaMYZuJ715wSHy3J M8+zOsOEwnDRTPoKldMnvYuH9XkPFd8tFOExVtqIt7Ci64ih4nzB+ceIQKLtZj2WH2NWFWiCX4iZ DWjrCy3WnspyEspkRuEwxbyhKZHQCnFSxtu+hPnLi62w3c45swf7KLSrfbdZ5xGya5czY8QvVB87 zDboLwUJZJzG0rh78TpqMpv1EzcbvOH7dHHyGu+sAVdPRUKQxcD7mvDkOkpPRa1b5/AjnhQ0+byS OABN2XkR9lAqLsD+sDpJx46yJX7anIW7Oo04f4FzNUnXrenc3pbgTJjaKB3mKqPRMkrFvu1eOGTC O9ujUznwmKjqZ/l3XhtbUTbb185TcXLripIjYd8DxJmvayeRvg/l+xOKNKEdFC1U+dp8CLaYfBv/ qW9/UOp5Qi6zpEZoKUEzA6P75YJBXFDdY/27LlU2ug8Kfetf9S3581omn7o0MEx1n+BaClKYFwrn Mu9ZSjonQBIDE9v8yJAKxrT2nbKdtCh+Jqh+pVWSyY59+cxvKBW5i75c1WO0XVUgyFpYuEBV8Hu/ qkC1hIMVPXqsaiPzvH/GdAkUa+S1bkCQk1XI2jhe72d5in3qjLdlutDBVo6kAjfpwhrI8CMHq0lT d+lC3rtEoFzGkIc0fY2DUCW0EFqtKpyvSnbVEkRe5jXnJZmRPhYyJpSv6mHaEuRkxPfecEaBe7F+ jTpDa1cS6JRSBv5qMaWG4VARVw7mGnvl7PB2FzWNGH3Zkd8dcFfMeD24T36VwD+TQSk+Ez09O6vb ZYnPqJAmHaq1TfiBNEnYHrlyU8BsW3/eNJ03ZqWqH00l/Xy8ZC6r2UdQ9Mk622pha5jxws3cX9Ts Z54S1fXX7fXlJVcLcJo3HbCtVoUQFFI8BXLYqzfviDZObUWHRCkKdR/ZpKB/ndAVR6Kezfe/lH5j LHV2dPBQdddiRKGJ/FuzinXBxO9lz9ZnRXGjWh6ytjPo3OzZRBjzhPrJYaXelx32k2RmCOcrwZ31 px3WPJP9UsFBElvAs7DHVoHAYtREvxSEzCj5iT5X9/sRIBOfcdCjiUpYvEklXk9E/Lb92v0KzZ5G WDxdOgona/YNe4nflXGyLbuBjWZhUhSOaLM6OyWFnpHgya1Csw66LRz1pAez2TOAX5f4t0qtPuxC f3c9rznktK58/uMpmj2IXrIugmC1UCo4S6c0KQrjXhhyNUKyESv2pyEhhegn1AuGkXrgYmWfqkhD UUUYrjvJTQEEE7xjOI0lr6eRRskjxBdCKhIhc3IxZoNpX/rEKtRFOGnLcIQvN0vxbNi2ElLNx+F/ zuVzJYNtfG6B9rGW3drV8fFY0sZNPISVb2d5kBMzQ9ScTadz7ugR7AP8LfbqkNXlDgsnNrEruWGr 5WUn/8ZHho1RNncLb7X2MNsT56myzVZ3nmtR8kgNCheCGYdrjauX/BqyqMKvprgc1DR2yfscVBLj vqXHr58WayogORyPpO25+DOJp4TEc06Ym7IRSx25CF40clFamL17AkNhT+db/ZFnw6H2lqEaf57K OIuUb9EujkhBC4VbeYhoKBXPvQjuT/oVZSunyWKyPl1PZMvJU0b49DXXKoOo8FyjZZfSh40VD5vY SdV5gx2KDVl2+dgux5F8HwkQ+/vaSluhqLjSMH/0476zsTDuIiRHIBTWjtCKOjMQt9kjR+7sPyYx P4RYjIPjz5kGqSgl1f7wwNUqu7n5ExoXyGlMIY12RhBmp+vecBmb4po7RBuuJ0sGuma3BhuFFTYO wn5vqfvDnZHTEkfsoCR8DOry7RDbBr9FZlCNBZVaw2fI7pfG73t8yZRORtdSVpcRU4q7lKbanP1O 5pkeSep1BxZ8Kbi19qFk0JTSZWiMzbBrIiTJo773LNGMNUXTNHngfanSO4JKCY+NXhRQl1tjb11Q badzMXvOclGNzbH9trlAxU+xpjTDrsqPJwFnMcMz8t47ynlPTg5PXu9sfjBUrxqtR9QCMrj1r4R6 hPaG0jJDxXAewAhmqLa8Ex+KbvnJoLfkNaALqaH4caHFi2VjfDQfoNr66YeEra1nl4DoKbbyRsEv 6OKh5fdMab8gCXShYq8edXS7EEsovnxy3ANd0yXqGORkIAsptVH2lRGY5eRUy6yXUsd0aRkSV8p1 WO758SuGkKdpIXBNrxpUh0h68kbVWzBwb8lrkLq6vvjYbU15QahciPADoyLrAXbjuUOCHyShkKO7 1Ozu23d1lCdYC237+92EgW3tn5QqhkO9PVMetXBsZ09z4hcTh+4X6VX4huop8KDjFeSqnHqqqTI2 qDgVbMmOhMXmZhGH6onNBQqa1LV55fQ0Em/EPiEk9mBIOlVK7qDUWZO6gHntPzi741g9Tnjtpb8x WdbwUs5W/psX2XLfY4GhsUM9UeIrZU/4UPLnI6iXuY7BHR2mfuPBg6cik4ftPMR17irtUaX1LxMq QS6iezSi4vpw0kovR7PohYcNJSN2jWmP0y16MTBGh7XmHpYKc+RpOBNbIqZjfvBj/GGE5jb5sAHG mef8ovLa26w7je04h88Jbtid4gSHlDf5FO5lHc5o/5j3/WF1u/xkL2EofVCvPq/heCahizlCA1TG c6c5dlmRMWWdBY+pPPW+YbFL1PPwDxwctaaPnVSgLfMapzXfLviAZQii3KK9yByTKcuQ1hOMaTrH nBbYLqAPEJC7vjBwId1naT5fIzHfrpZSsE/Uu+lYBipYnB3TtDodIII6focuZAIJ2MdLRzPdunrj vTc2S+uAxnpBekGSSDniSWMpVCXml8p40OxsFDO6ngcyOWNVLuVXs1ifhHeW9HEYcY5qlOovJX00 eNwV45VlR06U5X8Nza8wwi4bmnn4pnz7mT2xC2lZnE9G+JRhFeRnNyd30HY2DBV0txCRcCNuvOFM aUaRg3V6MSRKSPvYVzoqGPN0tLe8Hq+My6N5gAe8S6XJ4Lrvs22C0NptsrF34cxluNRZlkzBu7u2 +CqrLoQVaaXw3nCm23IzFtis+WCudtT5ewZ0cr5B5RYKSBIVR9U9SD16w55BPtn+BsrGzjkmu23y AzFmFIv14ynD/KBRq6SORusEVJ8mJUFqx0CSGPMi7A4WYFmnlg57WQQZXLm1hXBklWUJsr1aaFVW +Fnus4cd9wFSJ06GOWCLKs3no2rPi07+0xjdguc1UcSnELy8cIhngCYpZp+FEtifCxQaO2KwT/Du C93Bj8fXAr0sIjSmrAeWMNqIjyPgDes30U2paFzWR2uG0ZphSQp+UK05O1KTiZWVRqq8Y96dDNrJ 1g4W3X4ZM1Y8RuuKcCpT1jtXfJMJo4QMqkqikPhq6fzizh16MRDZc+6Ue8YNWlLlaaAseNI+diRw dperm9cpFizl4LPRxkCfUi09KakZJtGnVaVvW5uUYcJLHfONKMREYpgfqNpVHSjAz9ImA+JTnU+p 7nANPosT8z4VA+pH+Rhf7To5C9Sr4mPyenroRN/0QhiTO5f+lKmKlHPNyff1iHUcHtUAspRzwo/C 32dh8RTcoVRS3NlA1cvSQN/Xzk9V0NPZOJII8hWBQ4aBO03B4bPAj6+Xv86DTNAXUyKp4tBnwBV7 QxT95IT9GNoYXIGwKfRoRk/SfrFPhwmaD7gCyzoeRDN6aBinnIE5CzEfpvyQyicQoYkwvy2szz8a dRFkDBzy1r13QtcnGGeu0tKf/qHQvBmCcDUNOD7ZZdW/uHtzhRJBB/TFoorg+NhzMQyaz/sThMGn pF5rtVA9Rij4CVWGNfBqGc6oKT80uPBjVC4Hs8D5BC35GcHxPyZvmSVkl4GGUALpMzDx/E7feamU RXgXeQZEeifN9Vey1qOQbIIW4jFcxkDb0ecSWp51V/iO09/Sr2l/q+rHUhUc/swKk65AS5kFCpVd ygAZYSJB0m9QAXUwGlDkfjU4/tuHY22zcRDd2StGz15VoOCQiL4kQ6AtWh3RDBWaJi6C/wPnw1li xOOhVf4vZQzZNy3SVdpMfejrLZtPG/qolH47eqV4jI9XMOS0207dOmsyCa3n9LE3HiVObPuzIebW Txv0xw770aEez3DjBrmOqLjfN0JyjHzKzkBYRQN7i+H1zz9e4H/2ckWmVLz53Mr9Aj479MrmQrSc VwQvMom5uK6Fmwdh5nLL4BiPSFHqzP4hweSFRKNybrjqSmqUL6O9+h/fI6yV8SZVxHW8gCNOxM60 yuuz1cqC4NLFnvRb31pFwZ6mY03eUWN4UAm0K9hIHDnJbPVlBqSrc7ruqOZQRdTM3atjln1gsGs+ l2JwadVGyl70/ERYq3LDtbqQOh3fwC0nsNKIWw/S8jw4KYfip3poKp7Cs3RZ/gQ7EesfbtXMhUUR LGkRx2Ks699iVMY/PvgWY/QlOD4XGNDqg+t39Sxzl9HyXI4gR11bMpVQUExiYAhBcAvVBF1Sbe1t h+clKjfBL73B6/9g3Duj4Xq/tiNadFGDIBLdDMKoCRKdUaJEG9GZYJSooydEF73XECX6aKP3bvTe Re89+uDx+//fd73r+X16v9zrnLPO2fve17rO3vde69rmr3J+V530yyqqhbobSSmqQaBIppxs+vuk q3aqDTrGuUj18Xnq2TX4/mquaE4yNrCcKee3sqGNlKKCdXNG7TUOubqNPIdVqHpN421NVmTWubg0 td7IoQT1oxglUXaavpKSB4qqaTw0HZ8eCttfqPIIeZ1jiN7FRUX27hs4hHt38im+t++VjAPVKKaF lrnFcp1iWxU2XTpliW1YPZHQp9ertIZ0Jaqk+Pt2Md1DRFAcUJXxxC8LfQqTdo1ei72zciJ+T9A8 OpqoUHPEXusnEbnh2PAYKoDCSyW7GeZ6/WDJMm95XFYwVfxrkiR3rVFxFe1BgXW7oavVpR5C+C4y AGkiiBZXa8/gK7ffKqWdFO9N/Ssw5qVGxWpIOvWqpGKUR+nGuU2LKPCwr22q2jLR6QVBns0UolV3 Y9KJ9cfuyWb/eZnS9U80Xdn9yRytRaqFuo+LenOAXKulDz6vD18dehuA2SEZ85BPp1JwWvtlB+09 dNymJw02EbZfjEDzZKuKT9dJRth1KVA+xqDnaNwwnJsfPBdIHXCQUaNcdWdC5jcjr+NipSfmkuzk kkmk9z6JpE/bvv/mOejlR4e0RnPmy+vP8WFX/z31G6COGVkaYq/1KH5/YkxRAXPENHtr1PU9W74k Oe7lhd188ss58jkK/jbW1p82SqraEkE1HdmnbngHBx1K+lEh5C50TA6GnE0aSW5uyRFmpmx2vfcg wXcVVpbRBiVUni/goDC3lTBsw9tqjLopxMo3ebtn0zMhM4zuUvcGWns+w3QGW3YyvNctUL/imuwU ksQAyHHMoedP10pKsYIrRW6vhCRQNzVrc6tSD0Lefa/SKHX63iRVBsnmTb7/SqQjIuk2VCgbiDTK wFzkXTYlGPSYopu30LO/3V3k9WaP6QKjE9J1HQ1pkwU9/L6Y01Ldt8iV76Bkew8XT2Oyp3Jc6Df6 DdCiI2iadJAKA89V0ZdpVzE+bULl+8AypynXH1/MSpz6uQUz+uP8jWkCGYW0RfX5FByZQcJPDuS2 nk+6Ug7rX+mBZrn7uM1LhEF4sbVZ/ZTmJeyOOexJXG88sFKsgj3KD3dLSFehMibBQsXTFRGFsftr E/3HU0k5YvNGO7xctheufquYxfCydLr+HdvO1mVbI3xzdQkpLO0J5bgOFAcclpECMrSAjYEPijaZ BhJKJsRYrGFH33G0k2zock0u9VSfHFfLp1uZtBovubcVigHhlw1sSgywVu8pscxBDyr09AIBWk7v qNg+1wdweiDKc1mGGXNdWzkCPgenjnFjq376G2tB/cNPmG6BxSYh0Yss8dM579SekcvcBvEAlml1 XXsQQa+ObdkbT29xGg8lJ1ySVuTtvHFnrRlhsH2gqG+pkAMu6Z5WjO7VRyEFxtdD5rPZ8qM1e6d2 8LY2+OjJE5TCOkpo8MjHEg74dmpOUK9yYn76KHFkmqYSixxkXeyo4wr8uWxMfrrFTFvH2d6eWcPV LkXD0Hf0IUBOje/tfD1OinyRIHNtyxRlkfzbbXPKtr3HXW+oAK4t2LJserxO8eRmiypdPiTOvmp5 0ccGdGzTSCGawqaeMAdjb3tMo/1es9RXtneMOtHHlzC60WMWuZnIa+u3wwHjElGDcoCZgZDSzpmj H6+1PM/EHT+ewXrB9BVRhKlrrTPw3GLKG+0vvnw0HDoXufwfxNCZFaCvuZr2GFb3ctq59yqsn0jO 7Jqb3u7in3d49k7nMa1wGX/KlGn45KBbK8rLA3jnnbj827u10ejlXcXnBHb8Ku2XJdL6wTVkX1hW 7g+D4Oi51tzzlXQ0QpvqOgwssxK7nQ/XOZr21dxjgd9XaFb+7W87mdM4BrYqyqm/zpWjctdX7qRf qDiKuMnXUTwKh9J6n6pQxXMlBAxgbUvh+bS6MSlNUVlenmYq9S5tvoY493bUleYsO35LenZhQnsg nPJNOczyclmbRmcmmnNmh/fUALiBX63ZkJb4bcw2908mflLNuTR++k5kMF2TamtcBX+UFlsBPbSr yiOoUnS5wV/3flDq70yML09Cf1shm8Yw/1sC62SNNWce7qEp1VP7n4FEF/68HrLZRn4DuvKFuEPV buwip7DctfXJ/tpNvqOYh+7NzQwn3I0Ju1vvwLTxN0VDzbG4wVJ7qv6rj+XTTBsBXZY6Auvi3BDW DdMPOIuiGQHU5HyIqnrsTVCf9OYLgkWxvuwrl6f6lFH+p7+A8KNRKbR5EnbMEcapeIV0H6Y+UPiy DxPGfrmwjQvfIycQFL18ZI1vsHT96FWC3rDh0S9hgpUNXHnGUU9keK2TyBgVau9t0NUXyg3BIdya l+kKhfRz2JZVwedjO2RVbA9dTqbZqiNJmbQhFwMequ0LsAhOCrvUes11QH2qt0MQuqbypfH8ShDd KQeKIL2B8gMyAlklFibiqnjrhgN0r7DNs5cF2MqKQA3PJya6Rft4NQKS+Ppjjc9hdBbtHqfdolCp w1cyMaQcdcysW00gYQYDhQRC3U6nlMhwRx9w1/v2seOz3d7pBmXRUc6+yUinBlP5qGzvIDFOXea8 BtPWq6ZtHbtybMhhTSDBJl67yYKYkr5Rq+HmQrt6KKDGfloM1jztC5xdaBcBAy4P/3iMkupEe2uX a9y+iY5K7+8UsjWFjgy6bwnaUndX67vSeUkgja7n5y575aj60+F09YOUtw1wOpsYABy3+NnkjytJ BDa/jZbSsUrcnvtbbPAnZNZSLsVeeXRtNi5/eSbloWecr4RW9crsPofwqFEn5EYdsS5F0OTsr3D7 fQZwOXBK1TsmyuXOiFBsX1uyOZQfdZb3M1evYx44VYSy/ugWvw9o0OpdQv8dX1HYKkQEdCOer34j 9AvJggera8R+UGtzOM8YrYgibXzecrhf1z13sD3mErGbQyOBM77z8geO3+UQJVz65vwQt/G4lHvv /l9ihL+AN1H/zI38MyPy7F9iBFlLmLmSpaPTP3IEsAJAATT+sC73KQO4FYD48kqq2I4EXwkR/5Y3 KP0aTBLBfvRoj/G/Kvj/a9HBzu4/lopnDJUgH5/jHo3x5eQHfxOPDFJ6ES3yQJ8N6YRa1pSWFUK6 6PcgsrvYOVj98CyVPWtICg6zhUswTnc7frtubswyI6BdIhZXmozlGAPUJWBhIWWotWnWIUP9NuG8 L9Nz5pDhL2ugh+N1Y3P6kEh1dU7x9Cd1B46UsrR6TsW4SVk7WlNYlB1Vk+u87YrPmE7h1FTRRUrC 9cwoEnoRE8fQZHdcIDJbxu9ddLIBDpVLTAPamdz/ajM1ub9tcHt3r7XoG2xarXq8ddvu+Y4f5vb2 1PPQSWgNJMDOLXbqQGxamtsRIbYoK3PI02O0F94g3by0O3VTdesXAZiab7/ow5gopYd2RtDBHXeu RBcZyE+szSUlLUI3jgq9XUMNJ/grGnJswc9irnmYr73Qz72Agk8cCyeK1lDr+Y4CnAUoNovn/U76 qPGp+oyxa2W8X021u7v3+0NPGcasDP54JNTf/XTZ+9NttWBs5+DFxZ9Gus8p8d75ze7fZIzFkO/J 1hNlpM7u8NBnv09jtyedVU60bPRqDXpp9struM26KiaTIUgT2wHr/mKa/uLks6UNrcLtO8YNrdIx 65/hcWWQyZHJaxXjxeeuq6Jhv8dyimM+bA4piWsbqA4WiMZfxrIO3bPyp98XB99RZVToFpFrHuha qtIOfVw8T9E24PcuWRnIh1q5cSnoDioBxO5bJ0wF+QloHdmxI0RSfbvnucJqacNmOg/HllgGP6Jx NRsN6w2QEEtwTGRUlRKkjMWqM14cMz5FC/YldyxeyD+syFycHiI4jVinMN5WWr+gpkOmNoYi0exm ZsA5vrL1YyXYNhuA7arueV8HFZjbhoOKrzyevHbagZUassgK8Dl1TurrjA/2nOXjefgiDnt6BdAS P/adpWtqPe4x7Fj8HeT6wUcnrJsqhR6yyASYmTepNkU1mcw6SPf06HFTmaIOO6fJ+BDc2ySmqBXi WfUtnWaWPy3xBrhIwmcI6efTfDqKkCxJ2cnyRkJIOnt7PP/3db5qUJwxWEbERoTzwadEgimqygHm loCYvvTqR1JDTgo+g3MeoiXUNkZJUyIb5HRcTpxrNf2BFxPD8ZxMr6xp8lvjS60Q60XfnK9ycCC2 oNF4T/PbeG5siDsFzG2pxdpHszX+G+vsSeODlbfjYcCcgWk+eZ30zaEVq6740OJKlkab23joHGJd /gEtfgR33iyC5eilTfATGl2wyxskBdIURWo8023Is74/PTr1HtJE+QBalgrsi5MJChfH4KYqbXrF Kw35l4Bme8gUA1aG/ZDG2qK7geePkHuHuUD6h3D5pn4ACRamT6K+OffCCSCCuJbgqofdpJKYoDRJ IeKsAOD8iTUpJB1vJN704XUHlu9AIalpPtgfn7UfmNMO189tkp4+OAVKTZdbP4GIv7ZXdSF+wCwR +ZySbzQD2D7tAAwDGmNemM09QYLCRuKFvocVrUe8hikEG6GCvh1yH/wwQl0mVK4XPDjdS+uIn1WA iajqEDuiwDHTDqt0s9ESjd7gKRDyr5Ip6vc3j5MtENJTTApyR/bgNA9atj4MQHpa/UlHzwKQCHYb jn8er6rBtkNNUNDv60K2NBEmqGHz2ZN/WLmX2B5/IgK7SkWEOYR6EEMEuz//E6v3UoQxSpMQ0vQC UG15ePMaVuuQhoTp6zSv+2PDRJBfgabf13HvAH4E06Nl8pC2BxCiW5WGyzlGMmDBz2q6FMk2S65L eCak9fCBKBrcmPtijcJftyXU8uNXuP87zR6VvJ0cfkivhRj/HRY0tYPZOfD8Z+WG28D8I4cIfHkp ug/f37eT+opmr79/MklcjCCOYl922wFrOfrZSN9emAfr4KQxHN6IL10QaLDEsl5S/o6mskX2vixW 0X+00jkajOpnYiXW/lyd2er5FEtjKc20lOAOMbLj/aVnRFk/VjLgtwkVPkhlVAr0Xvu+VGJ8z9aB tYXJ2lytp0b6DvZ3rFob+4m6KqzPDqP7BcGwfnz95pfR6GdYFWh8ngBtI4GhsgtlAbHZCFiS292f yDSm6oDURN6vjaplFjvHXr8LJzU9tBj345JleuyP/lVjyObl6OlwHj0CUf13ItLG3Mn4v4rD/3Px DwQLOmDHFWHSpk3tmoaqj/W4vCSB32KPNR8zSSkbYPdabLAjHu1Px4PjMfdKl+LNwmx6k4pFbIm/ uO5qFE5cM1cdiTNmDbt3A1hADHMLLt1I+4ZcjOBq05sz80na2Unofdsbffos5rbnusNMKqXEpnTY Tv6l76gsus95AJenOohaPSWoCGFlWePq21qH1FvvpcWLuVibtIPPIAdRsbwpa4ysOAbTcOJi4Vvg hTo8ecVpQL6NSRS89VmGXxxps95kT//rSR6e3up5Mt/ztvueJKz+p1HYQb+iIdvusqbpTbnCv2dD je2GJx2svFIDVBaxAtBg8+FDYlH6IQ5IwXTpZU0eQN5riKODcyXKAZA8UT17LgkPylT2KrSZollS 22jmtqNOj+H62MEHuf0x9fw6I/v6bfSrV3Np71LXOS2+LQWnxu+K+Ov7z/+K1fbloLHCiHoUjbfc Y+flL5nEclacs5zYAwhSrTJnwNXtm3mqR1AWArcA9Ux6MlwiVKCdT9yxtK5MgO3bK9cD14Ls7j3x encx2Yq+0ZkhDb3yz95ajODz+2ydi+XBfmOTvWzKBES3pq/p1W3TYtDU0VO3oeJmk6MGLCR/fV/W lK54h0j5LvWrcfaMygTf6Eu6JJqZIyYkHKfQ2CPtQ5bcxIdNcMPAMDKxTaE4K9dJLOMaQ3ZBGVpl Wdu6Ub5O/Gme1oXnBriGk5CmxqtXu1CyyQ6zgZiP8MOVvT7zmBE5RIQjzERYta24HtMvybe4epfO PfVB8PorBHq3OpCfyWYMTs/n+uUxt5XphGgKVxNTOVVkyZ9xCuyIJawxAkTc9jmdjIfLVMOMhG1r zQokE5TPbtNHecmJltBNie9mhrFuDQK9S8esKkZ0fz3+HsY2LLtYtuapMNFaffyG2PJllH9Re24Y K4p+XssDA2Ap+pe1o4y5iIxQikEY9VjAhJu2wShIxj3KlzixxeUnzen6x0xpKc4thgoFebKkIMnX cAJLwCt1X+Ia3JUgl6uJFMNnIcsnZvaHjNhFWXSjCuoqSWsh8pu6hZ8SumTOw3AD8P0cKK69hEni sl8dPBsga9VlecYX9fpFiH0mM30Z6VT6msXtdcyA0Hc5eda3CYSET4wp1Tu/6o+/JxFeGJBnV/jQ k8tCHAGJ64757Zd+YOdcCKtlOyZxbtqIptESDxqAIr6LdH1rqCe03YxkD0ijpK95K8tllZgDS10h CsZL6E4wUlYQcE3s5pA7pgVf6r7+vgAqufAlcSher5ZVOW1k0eWPEBoHNcLiXjSBb5uKMmKL2hks HxnXtYf//vPYtINk62cylhpBDpWRFLuIFJ0JBaWahiRdn56AnpRcLwJ6quRzUJl5amlHw8qmVWBs NRSUCZTqPags+Oi3uExLnBMbc4ZnOOJ8GRbM9r3oY6zZ9JVaWwRUX/f2xWIlGUwqOk6OZeur0JXS o5aUO4PIr73E6NLa31odAvaThH7r6xOlxZ8doWo/B36KyjzHCfDVm2gRMP2Bu7F+Ho9+Rhv42TMp yR2+0i9w+ME5XiyZBzWV2MMJgQ3GwH4SDPw0elnGaes444llTpihwsSUbPsttlC7pO4JvnKg93vP RnJ2lsTPbOrFtrH6oDhGJoEoKcENBcFqqqDIy5jAQ0MxNu3+plRZaNbRa1wMjSevpxabzi77sWwO doHkffeojoHwFPf2nV3QaTofg+Ceea9oazHONdBSfk25GKtdXGpbZWH9gZmhritITeo7BcG4/Ddk uHl8Odk0WWRDfVCA28ceVncyF05K/KupS6hBwD2BZT/WsfQ3Hk4Nrg46ceQyoTPuAdvcCohm7tfy n/KpKuBVRf/0gTOPnNdUVTHleqqsab3AnqvcbXgxfQQflsbgswXSVQWuFOq5CdzAr576uaH1dNbe b2ic5PzeF05RHVrsj7ilO/+SsyOj90HDEFPn5TaNy3ECmUGrLdemV+d/0XlnizfwYYupo/R33Zr3 rdKM7oq1zrhsDRO76Lvjz4w1sRIMNGTpFXUW+gRzmJoBK42OWgUv4FnYiVHwNxEib/9gV9oWNN4v H4dmkrZZJrHspHLfjhckx7q9TruiTtdA3+0aogn+dzXxC6CsoXooo1WP/1VNnMzhTpa2Fnb/VJOc aDVVP17S7qUrCuULQqEjGXnj4GgxoFU/+tEnyFNMoGWh09Ji+VNf2w7pm+G/B9f3CxK1r+imBLc0 PmtwJa0K65kyM2s0xH8MNzyfO6L6pfyUNKEWae2f00OQ3asfzqGNG3V1EYmjj9XDmHVlfa5v220n 3necUvUJZ/jCa3xJWlGbNM8SfxcrmvmvhKRjbHzdh+QJ+ST5HF6lqbSzg2HSMb9rhEgXFP09vpIy 95eStJLlyGW9v0eJsX1Xfg7/Ht4tHE7dL05YcBiXf0xfzM2lUZUfmlag2VHDysvKLWJPKW1U9mZm 5NfwfXmVKNMHNC4EPNBLXtzBk0uKzgYG9RgIQ66j+imh4ArdiHqsVb6rWz9LjNA//wLSoa1b4uoB SAy8/w6A//dMYmZn+sEYZu7kZP4PjlVavbZzvKSN1FsSpG9TTuRfVj1C+mkGMqhjypJgeK5ZaH+L /xod+iJjXHVLQELL6stL7KoYgkw/qs8bAw1uEWs7G/mAYTub5IaSyemLR0uwJm9dsRPJ6mLZbo2S SR02dWxj5p73bE8zX1A+pTCRJIl9vGmZZR6m1glu7Krnjn6VE1Wwnj/+ESIEr4h2VkuxMCVnPLsM MKvomnHxcSUekHw3l5jZSPL14HGAWop28S1eAykadEL9pxPkbzQihk04isUjkUQoLn8eLM1R4eaL cmsBd3sYNbfHzTbRGPReA8eymnkLlL37uQz2cM6bL9bAHHEZiu8/U/BLiowxPw0hx5Z8MijTRmJP s2OQon7PmWvkPVVGjpjb1Hifze00tqPdkm4Avb0tohNnGf2FmUqOSBvZvym7UoksT9U+i5WEYlkE xwn99DL6xCegMMp0rmQwFp88MJOEcGduA9s6tU6YYS3UpGVawH6yeskR0XktiXh7NqSu4VZb+CRa gxy0Tia5Sz+ioLauOakLKMNTOB85QoUbulwDMfpOxePD+nPkj3v33c/7M9xGweuiOXeky830kEk9 9mvPuGG5LAlarhu36lVOuYW/c9T0nV4j74ULRUO+sax6SkmEte/GJHfUaRhbFFaJ0yPdEmfCgLJQ 7kCN7hPPJ7rh3XQeo/8+vpanJSajSB89ynn2+D9UcXRyg5k7/sMVZxtzWyduUzNHx/00m5isLtqA 5k1tHa00u+RoHM8Zu4M9WLRoRVJxmgJSRT2fAj/MjBLQsadS3msnQfQE8y/Bb15R+JBmefhtD2ps /nzsYmJraclJdEH5qKayrlTUZ0xiK+NegXFUAgat7UcrZ+AxTBnba2+fp6f/vatEVx3WvJ/m60EO Q7UD7uHrQDEJWIP7RfP9uXdd/d0wnXRz34s7O8TNtuNdAtqsuj7pJn59sbjYrRJcx6Ic8ctd6lrb lfpK9SS6pJooPtx6XVXWcz7ghpQlB1I+tSVEx1dBFW7d9ONUy7OqrFJctHXF5TxQAHpBwzAwqqPq tXTT3wQ3vqRq7nUY4DJtNE6/b3ecv/nkuk4r/sYCYaTqVrFIHxc9dNb3xHMTPB75V+8uddP5osQS RmXX8ELZCWljOfM+ObAUnWv5LgKOJCoS5jDkb56BL7npBCHPxrW+mILyteD+XmusrutY8T6rwz5t rGJTynPKf6YH5588H/ph2KPf6Dh705Vq+9Lnlu+E4ommS74Q2+gO30BqwbsCFmhLnDVLqyILhHuW bEbRnyu+RLrh5ZUilv77NqIgHW7T/MiLhHL9ftyeWqVhdQWwTFrzZAKoBWiwjaQ2XJuq+JDob5uV MNa18imQbrN0y2oETy3W91oCsnwVWCwFXFrB6hpddh6aFNh2pt+N9Og9TREE1WcAOI2baNMESlvL 9zUh8yCvmuanLJY7b7rUE1+Zg5pSATMBPjawx2q5BnQYXhkUeSFK3GwfwZutpGFV1qLj4pdd7lGM 1qtgxAdjGU4fs/Q8v9h1w5HxxeIftVKOg0Q1mY1MRJdbVxas74wJcuBvQF9OEEnmHk1n6emJbwcR 2xv4xv7qRyiSVMdXe7la4TeYm88DYH9sY/zfxWmcdhcfFhktJ/VnYjuRZgwKLkY3VTnSLQnTud8O /eq6M3vnE/r0ggB611slONLzczu5hPrlRoaZR6IP50InWsOWUSlIBHIX2yP99ICLmmUJyq3p7T3z Qd1yibnazlzJx/8NW06vs52r3eNRAyXf8noGsJB2pnbh3hUHZ/Uuk5j1S0Lg/j7zh9kZyw+2Q3tF HOS6sxMK2ZV5Yz/nw7d12dt6TmybwIvDObepsuauxbISbcP4Yp8sN5MQ84tny0bswcD9PZD67Jyq Wm1aRNevY51nerNLlr8r2zOyym9YV+032z4MNsW8F7h2Fap0ybMrqT+K/wNshfhWY9nl61eylMfh awM+BcNlTuKe1Ph+pyMt0+9SZzrkMa9NJIl0TPqZEx0fUvfFToFl9X3rB7dtlXe3k+oEMeORFeNt ShO2gPXcN7zxRoBWHd8yLFO8LnVWhQRbQGPz3bHtrP+DB7xFsgYWOHg9CxhVrFljsq3YwRVdKt1C yTz/NWidLx7fzYcD1en5NRWFBYyr1Bz/4QE246MhmTPHGT8EVvEqELmBgf0U/1j4f5sOJp/4Wu0k 4EUCzX+VXNCm61uBBcUbJEtlEQZv7gI4Qkp2gBCoenPVeBdAYA1Y9frjkI/c86fCUjeiSkVimIEc Nv7tWIHBdHiBeMQas6/tE1U2eZM+TYMRCUY8rQa+jZr/nz/EArqNxUaYQ+nKsI5muKUt55wlP98f vI+ioOJu1fItxoLgIclgLNOKqb9xYDnV4c14ohcqkVf2douEVDjkhKzPlHgTjXjXwwkebnI9L9KO NBI0P1kmvRpuyeOu4lFQ9tpRv+H7GNEKmuNO0DoSVLEzv2W1pLduX/5tpTfE6XHsplqL7TB/frvQ VjZzLWiL1p18piwlibmL696VWv42vM5Z5k2utvAQbSikfV9WgzWdgNou0dDNDEdfQXZRMeT1iL+8 XK1rwP0fBBsFkY6v4Jt+9S0AfvkaJOXPJDGmoG+QF9Xi2cemito8KdF8s8jyQbwpxo/GERuvjCLa GPzF+gh8xa7xz3+zVzLvdwHSmc/lVV9hytB4E7F1XBv9jDxi2v6x5axUWbrs5P42F8OvDWUH8GsK NmtlEHpRrARw2eJFfru4XXU3rsXZ7IA2mXvW8U2qLd8mmAdIjQTMqFEIfOK2NKKNnOt/OdP6ppvo lS3ggonbjUJNB96fMjXyR59BqMr0UJH0vJEavdLJUiQp23mBswQZw9yk8AqtmScfF87MFbpYpLs+ 2eJcC+u287JztvPq1a53M0VvXDfdpAZccuwffYVSMR5GbZKwaM82vij1BPX/iLNHXdkE1q37/236 3Ix+Pu+QHg9WKawL5lav1BxbL+AeqdKcMbEBjwMnq6WXKUGLX/vWRRM4vXyKURPeXxdRlDwTDZpn A0ukSrFqc+Lwpm90vpDEnFzbJ7bGBVaGlUmFeV+kjrjJJpmLFHRiEKzGyrkKdc+t+Wh0f/mQ++2k LQ8RjZ2+0RI2zMxJGe18PAjmzzvJI7YOmcOxLvgEFpnbkqSMwSDBZ9DUDzss098zF8Y5g3wAKqlL EWsS8J/ph4pKiB74KdzPjUfOVCga2eyKUmZZvVJRv9CZy7d3WeyfVYl9yS6jpx8Sy6PMunfm4tvr L3ChX4GXy+B2xYVyCmsJEWRw6S9NClpyWEZWO2OuKjz33ysiGlOadxNY+rveh+/qbD1X31qtih94 0iNNITqxUHLwOJRrOg560rETaF2kvmlgTOcjGD+35e+ufGiDLqtGOu9JfRxqdnOcKudXuymClmLQ /E875xnV9NnG4RADQgJSZhiykSV7FCFUAyigYYQwFIQEkGVlL6sEQSyrKhIiASwgU1CrhIAilRHZ M2JkgyCyZCQyWpCC0gD1PSGt73lPP7//68P94Tnnd315/s+H+3nOXXaOO8V2COwJ8my8CdIGap+C cbS+D3s4eF5N6BEp2bFcwBUh+eDcoUslvM1tDb7Em1JUMb1LRyRtUhPapZ1N+Y456upFHaR5rp3J Loy0D8sXEgylFi379bgjphLyifWoSw5i6eppiiNEHbTKyxQLKnsSiIHnEFzWWBY2tazGR7Sv9+BD eKryk463CzWOxGRNxRJOXY627fCKiiF2FKkJVdqPSuO2UewStJjEcRmxJdknPl7OHQ/WRUmQ4pR8 5dtxCDVzsSKcVG2kVdh3s1Ze8Mueub3NcvMjl5XxCz9W03v5OHXL1QzGVC3fk7Dl3S3cY6pZgqb6 EJrQW++rJX0A/d62Sk+jVxwNbXSfirFIxWjsfhqIZulsDDOGVeFys3Ozz7fERMRGTCfzVJSHV9jR YiO20fbfXsoOWSdwnlFxL0s8pC3M5SQ7BfYIgFNCjBGHaupKpkhH4QNTVMJPZ1UCu60ZUPDe4IqV VtDTd7WIXu/rSOXZxhm8t/MDe6U4D127vIPou555hPyHMGIcOA7fO/PirnnnkbkFhJvWF6zrrzbF /MU7s6PCDcUpEcftHLs1dyCu/H4H3qBdCuC5oFML4NnHAHYX9DQ2ftzOotw1GTVJReDMXvQnKULJ aDLaJl2HCCVCNfgHIAOHaSJuGm6lI2VskU/YI8flNGD5yoe3V7epVvjBiozOuiA5MN+ZClpw0LMj o80VvhmAFHGewhHSZNOv1ZwJeyL1hwftoPqGRwOgDlBHehSD2SWWwrEJZNBOGZ7/EfMR1Jjs+w78 kX2XFq5kgbfQmTv7Nw3L5dmuOHQJvu3HcYE2TZRjUYVeRa1TZI0D1UP4K1YcDvRNjwZ4HZyRnIvZ hZH8Ccig3XpkPhez9rr/4huFF/0bs7fWKo+h197X1Y3V1NUUnz7rspCa5y8qUFQqdu9Nv3dBcLQ3 4+9XfPqIYpXGreBIv/09G6aal76fZ2Lfz86XMszG7v+Gvi0NKHMVw/B/8/BkcwLFiR3OPdaAO3/f w1or4CRttSfYJB3hqrL6aUodusmWqgGtsV9Fjesnt1fI2IKPbiB8xH8vIAkr3Jex76u3/A6qMjEL zbLse8YrN0F7JmpGMDZJvdEqbTpxd8iRPtxASvDi7ZAkfKcaeUVeNfLMKrAj5zddbeTtcUqWlJI8 1uJy3r7tYxu7fWwH9a4Haww4YGChpaESlw+H3UkKFPhJve36MnWlOBmGeOaf7ls4QeEfJVD6tTQU 9nUYuKe3hBL73oBjYIggnzZIRUewD1cd30VCrqCxckhAkYXBbzL/OXnsntJMKw/KZKV5GZq5nRDn hU33WzYGVgUND/96dUk+2SSiL/68AtKsSz+qilTv+mZoNWCRhq/PM9Lmi7MOr3z4nPwOHDGVaVT2 R150GlA8zn9z8ExAAXROr6ZyqQWNLRWwcKeCUZyo1psgZZCyJYyj8Bv9tclkHhGSqwj/GL2HL22Q nLLL4ue3n9hMQx5fcmvVQfBrevZasplKZpIF3Czi3qvcEpFMkO2VOZsIPJF/sKonpNBWcH38ef/x fvyoPUehOYezvyaJ8igd2GbNOY+WeHFMZzi1oav+R3WIPiSqk9xVf1LLt7wbfdVPOOh7Hk+7bCyi WcBfM2vhitlGzcXllou51rmUQqESgRK8OFcPV09mBDdSEelDH4gxHI4zXHJFS+BOsPVw7RLINyqL VGTs3jkjxu4Nd+wSRM7guPyaJNIfdAnnoTqTbGwpFfb3keAm33smBtVH2/jVTpy+aA8RAis+9Nli x4SvHsoQ+YLiuJvHF4LlEpLGG8xh+esqSJEdBtbFrODumacBcU8yXQFxbAyybYBnr9YvjhcMqpsr h8wWWRT0zDfiIZoamqXFHaKdkM7rUK5p9um0CO4MaMZp+gC52vlF9eLJdIlXWCHG6g5mAjcUNDUo erzT4d4ngSsP7ihrlsoJcE7HoUBFFh2ncB3uaNXKoVuRZegDUGyZuzRGGjPomKKxi7HPNexVBl4z tCc4Deyiu7nuBfZ14A6xb0DPuSavh3Zdw2Y7pcJrH3iDJ+dbQbHYPMbOo5JQkyGt0AQXWlKtwjWV NUYyHANnJOdq7GLssy+KjYGXIj08tzSa51gu9KHOrdqmtTH6Z+5ftKhN2NClJYycS2zTR5eSHIMM o42qRqlbhmJZwbrdh9dnue7CwYmJvn2uF+5O3Qpc2oi/MLOp/AN67vsOibMZQ+4/WQZ6h9+r1Soo lmkXrKaZ1I6iRP2N1vJCoRnZvO+q7zs/X2muXoJY+mcc0JRwMySHxcwCXsvgCzu0JD6u4KvKXKjQ 252Q4SPsqr+gJyyVmq/lCGdqJWS7JFfUzB+2Vzh+OjLKQYrPan6kWy0igFqM98l8hqk9MMsr+m2Z h/VIaUv2xvUcc8mQOR9DXI/F55r1IuH1l1o4P/fHOV6yg4TqpRbz105O9OYllxspM8dMvL/NxqTH voIWBC4bmWFu1IpEvVQL3HylvxwMWVzQbkajjhAURL3mMvah7kUCChvfExB8Zvo3AvbP3Ly0Uhl1 Li1KXLkp3XwsumAOHzxln3P0XM27+/1BWzzFuNAPNx/g89rNQgiBWmtjQXTKScdmK7+ntSmj0XhR O3kn3BsyceviiyDhrZmhqvnPTh952g/8Rc4HKHJ11W7VL5lYIYXYEHca2up6nH+dJ56i8IOL2Vpv s5d0tkl3uybxyhapvS++AlEQMPrk3vMFscGzoTp2yQmPBITE4/NLziHkPr0acPxjaET6U5m76CcD 29kpGOlm2R18oriN/68fGiREJV7PdZNeOV3+eXE8a7Ut/oPp+nCR1+r59F+M+pMOTPeXjFcuhtWt z2ztbX6IboQk6gMAAD3A7gBQv/MBF0K3m2PlZaWtXbZKCDUVSufLcgftHh0kyqILQbFp60RUOoB5 gl8/QaKIlROktrbOjtVORMfp7soJIACJYAOqAb42ZkqeZSTVPw+dAu+MC90enigCmKmsOQaAU9lY K6tn7/APZg+V47+OAmGWiarV7oSzVlbZ3rEZzDJ2zq8N0fg3nr0vYpg9qUpffx/DbJLNIe8ks1ZW 096XMsymSaW/v5v5N4a9l8TMBoT6366MmQXkgMadQNbKKth7EcsssND4yrUss2Z5YjeWtbJq9nbo mTUEva/065k1AtpNO7GslVWzt3/NrBn79p+72cyWMmDbTiprZbXsbX0yW8AG/9wIZbbUK++mslZW y94zhtmy/xTTicMcbfO6cyeKtSIR7DvjVCEMMCAAwOsU4P/f//j9CTLn3AwAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DB4B0B.6541B4D0 Content-Location: file:///C:/B009C636/Navus_v15_2006_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DB4B0B.6541B4D0--