MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DC57D6.3C2A5F60" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="us-ascii"

Desenvolvimento de um Índice de Infração de Patentes com Apoio de Inteligência Artificial Multimodal

Development of a Patent Infringement Index Supported by Multimodal Artificial Intelligence

Alayde= s Mikaelle de Morais

https://orcid.org/0000-0003-2135-6578

Mestra em Informática e Gestão do Conhecimento. Universidade Nove de Julho (UNINOVE) – Brasil. alaydes.morais@gmail.com

Cleber Gustavo Dias

https://orcid.o= rg/0000-0002-4232-2409

Doutor em Engenharia Elétrica. Universidade Nove de Julho (UNINOVE) – Brasil. diascg@uni9.pro.br

RESUMO

A crescente dem= anda por agilidade e precisão na análise de infraçõe= s de patentes impulsiona o uso de soluções baseadas em Inteligência Artificial (IA). Este estudo tem como objetivo desenvolv= er e validar um Índice de Infração de Patentes (II), indica= dor que combina similaridade semântica e visual entre patentes e produtos para apoiar a triagem automatizada de possíveis violaçõ= ;es. A metodologia integra análises textuais com o modelo PatentBERT e análises imagéticas com o modelo CLIP, comparando o claim da = patente com a descrição e imagens de produtos suspeitos. O estudo de = caso utilizou duas patentes norte-americanas, resultando em um II de 50,84%, o q= ue indica sobreposição técnica relevante, mas não caracterizou infração direta. Os resultados evidenciam o potencial da IA para acelerar a verificação de patentes, mant= er a consistência técnica e reduzir vieses interpretativos. Conclui= -se que a integração entre algoritmos de IA e interpretação humana contribui para a automação confiável da detecção de infrações no ca= mpo da propriedade industrial.

Palavras-chave: inteligência Artificial; patentes; propriedade intelectu= al; detecção de infrações.

 =

ABSTR= ACT

The growing demand for agility and accuracy in patent infringement analysis drives the use of Artificial Intelligence (AI) solutions. This study aims to develop and validate a Pate= nt Infringement Index (II), an indicator that combines semantic and visual similarity between patents and products to support the automated screening = of potential violations. The methodology integrates textual analysis using the= PatentBERT model and image analysis using the CLIP mo= del, comparing the patent claim with the description and images of suspected products. A case study was conducted with two U.S. patents, resulting in an= II of 50.84%, which indicates relevant technical overlap but does not constitu= te direct infringement. The results demonstrate the potential of AI to acceler= ate patent verification, ensure technical consistency, and reduce interpretative biases. It is concluded that the integration of AI algorithms and human interpretation contributes to the reliable automation of infringement detec= tion in the field of industrial property.

Keywords: artificial intelligence; patents; intellectual property; infringement detection.

 

Receb= ido em 07/05/2025. = Aprovado em 10/09/2025. A= valiado pelo sistema double blind peer review. Publicado conforme normas da = APA.

https://doi.org/10.22279/navus.v16.2133

1 INTRODUÇÃO

 =

A propriedade intelectual é crucial na sociedade moderna, pois protege os direitos= de inventores, artistas e criadores em diferentes áreas do conhecimento= . As proteções de patentes garantem o direito exclusivo por um per= íodo definido, promovendo o progresso em tecnologia e ciência. A proteção legal incentiva a inovação recompensan= do inventores que fomentam a criação de novas tecnologias e conceitos. Devido ao número crescente de inovações e invenções complexas, há uma necessidade de soluções mais eficientes nos processos de análise de patentes (Barbosa, 2023).

Nessa situação, a Inteligência Artificial (IA) se destaca como uma solução promissora para melhorar o processo de concessão e supervisão de patentes. Ferramentas orientadas po= r IA podem conduzir análises mais rápidas e precisas de conjuntos = de dados extensos, reconhecer semelhanças entre patentes e identificar prontamente possíveis violações. Esses sistemas de IA são capazes de automatizar tarefas complexas, como pesquisar patentes anteriores, contrastar informações de patentes e avaliar a exclusividade das invenções. Isso significa um avanço notável em matéria de propriedade intelectual (Garcia, 2020).=

Incorporar agilid= ade e precisão é um aspecto vital quando se trata de modelos de IA que detectam violações de patentes. A detecção = de infrações não se resume apenas a simples compara&ccedi= l;ões de palavras-chave ou imagens, pois também envolve compreender as dimensões técnicas e legais das invenções. Redes neurais e modelos de aprendizado profundo têm a capacidade de reconhe= cer padrões e detalhes intrincados em descrições de patent= es e visuais, melhorando, em última análise, a precisão do sistema. No entanto, apesar de sua eficiência, a IA encontra dificuld= ades para compreender contextos diferenciados que exigem aprimoramento contínuo para melhorar a precisão e a confiabilidade (Berente= , 2021).

Além do progresso que a IA facilitou, existem obstáculos significativos que devem ser enfrentados. Entender as circunstâncias técnicas e legais precisas da inovação representa um grande desafio para= os sistemas de IA. As patentes frequentemente são formuladas de forma v= aga ou contêm termos técnicos complexos, tornando a análise automatizada mais complicada. Consequentemente, a experiência humana é essencial para garantir a precisão das análises conduzidas por sistemas de IA, particularmente em cenários complexos= ou pouco claros. Outra preocupação pertinente está relacionada à garantia de transparência e explicabilidade nas decisões tomadas pela IA, especialmente em áreas como a Lei de Propriedade Industrial 9.279/96, onde as decisões podem ter consequências legais substanciais. A falta de certeza nos procediment= os de tomada de decisão pode diminuir a confiança no sistema e l= evar a complicações ao questionar ou avaliar decisões automatizadas (Sichman, 2021).

A integração da inteligência artificial na avaliação de patentes traz repercussões sociais e econômicas significativas. Ao aumentar a eficiência e reduzir os custos no processo de concessão de patentes, a IA tem o potencial de tornar a proteção de invenções mais acessível, especialmente para pequenos inventores ou aqueles de países em desenvolvimento. Isso pode promover a inclusão e motivar um número maior de indivíduos a buscar proteção para suas inovações. No entanto, a adoção generalizada dessa tecnologia pode beneficiar predominantemente grandes corporações com os recursos necessários para implantar essas soluções avançadas, o que representa um novo desafio em relação à justiça no acesso à tecnologia. A supervisão = da utilização da IA deve, portanto, se esforçar para evit= ar que essas ferramentas reforcem a disparidade existente, mas, em vez disso, promover um sistema equitativo e facilmente acessível para todas as partes interessadas envolvidas (Ertel, 2024).

A qualidade dos d= ados usados para treinar modelos de IA é crucial para uma análise eficaz de patentes. Dados completos, precisos e representativos de várias áreas tecnológicas são essenciais para garantir a precisão na análise. Dados insuficientes ou desatualizados podem afetar a eficácia do modelo, resultando em análises imprecisas e decisões falhas. Manter dados de treinamento diversos e de alta qualidade é vital para a implementação bem-sucedida da IA em aplicações = de propriedade intelectual, ao mesmo tempo em que considera sua importân= cia junto com outros fatores críticos (Huynh-The, 2023).

A colaboração entre humanos e IA é crucial para superar = as limitações da tecnologia e garantir uma tomada de decis&atild= e;o justa e bem fundamentada. Enquanto a IA aumenta a eficiência e a precisão, o discernimento humano continua vital para abordar questões subjetivas e ambientes intrincados. Os profissionais de propriedade intelectual desempenham um papel fundamental na verificação dos resultados da IA, interpretando as nuances do= caso, garantindo a operação ética e eficiente do sistema. Integrar as capacidades analíticas da IA com a proficiência hu= mana pode aumentar a velocidade, a precisão e a imparcialidade da análise de patentes, reforçando assim a proteçã= o da propriedade intelectual como um todo (Barbosa, 2023).

A inclusão= da IA na análise de patentes é um passo notável para aume= ntar a eficácia e a precisão do sistema de propriedade intelectual= . No entanto, a integração dessa tecnologia exige a superaç= ão de vários obstáculos, como decifrar os aspectos técnic= os e legais das invenções, garantindo processos de tomada de decisão compreensíveis e garantindo a disponibilidade equitat= iva da proteção de patentes. A fusão de tecnologias de pon= ta com uma estrutura legal aberta e justa desempenhará um papel crucial= na otimização das vantagens da IA e na garantia de proteção equitativa para todos os inventores, independentemen= te da escala ou do histórico (Garcia, 2020).

O processo de identificação de infrações de patentes é fundamental para garantir a proteção dos direitos de propried= ade intelectual. Ele é conduzido por especialistas técnicos e jurídicos que seguem uma abordagem sistemática para avaliar s= e um produto infringe uma patente existente. Esse fluxo de trabalho, apesar de eficaz, apresenta desafios como tempo elevado de análise, subjetivid= ade na avaliação e dificuldade na comparação manual= de informações técnicas e visuais (Park, 2014).

O fluxo segue um modelo sequencial, no qual cada etapa depende do resultado da anterior. O processo inicia-se com o recebimento do caso, no qual um especialista &eacu= te; acionado para analisar uma possível infração de patent= e. Essa solicitação pode ser feita pelo titular da patente, por advogados especializados ou por órgãos reguladores. Apó= ;s o recebimento, o especialista conduz uma análise inicial, revisando a patente concedida e as informações preliminares sobre o produ= to suspeito (CHOI, 2014). Essa revisão busca identificar se há indícios concretos de infração, permitindo que, caso não haja justificativa para prosseguir, o caso seja encerrado nesta fase.

Caso a aná= lise inicial indique a necessidade de investigação mais detalhada,= o especialista segue para a captura de imagens e documentação do produto suspeito. Esse registro visual é essencial para permitir a c= omparação posterior com os diagramas e especificações contidos na paten= te. São realizadas fotografias em diversos ângulos e, em alguns ca= sos, vídeos para demonstrar aspectos funcionais do produto (Liu, 2020).

A etapa seguinte consiste na identificação e listagem das partes e características do produto, estruturando todos os seus componentes de forma organizada. Esse mapeamento serve como referência para as comparações subsequentes. Com essa base estabelecida, inicia-= se a comparação textual, na qual o especialista examina as descrições técnicas contidas na patente e no produto suspeito. O objetivo é identificar termos, conceitos e funcionalidad= es que possam indicar uma sobreposição de características= (Choi, 2014).

Além da análise textual, realiza-se uma comparação visual entr= e as imagens capturadas do produto e os diagramas da patente. Esse exame detalha= do permite identificar similaridades estruturais, funcionais e estética= s. Caso haja forte correspondência visual entre o produto e a patente, i= sso pode ser um forte indício de infração (MDPI, 2023).

Após a eta= pa de comparações, o especialista conduz uma verificação jurídica, na qual avalia a conformidade do produto suspeito com as leis de propriedade intelectual. Nesse momento, são analisadas infrações diretas (casos em que o produ= to replica elementos específicos da patente) e infrações = por equivalência (situações em que métodos alternati= vos resultam na mesma funcionalidade protegida pela patente) (Instituto Dannema= nn Siemsen de Estudos Jurídicos e Técnicos, 2013).

Com base nessas análises, o especialista elabora um parecer técnico, detalhan= do todas as evidências e justificativas para sua conclusão. Esse parecer pode ser utilizado para fundamentar ações judiciais, negociações entre as partes ou arquivamento do caso. A última etapa do processo consiste no encaminhamento para decis&atild= e;o legal, momento em que os detentores da patente definem a estratégia a ser adotada, seja a judicialização do caso, a busca por mediação ou outras formas de proteção da propriedade intelectual (Zhu, 2020).

Embora seja um procedimento essencial para a proteção de patentes, o método tradicional apresenta desafios significativos. Primeiramente, há a demanda de tempo elevado, uma vez que a análise manual de textos, diagramas e fotografias torna o processo longo e custoso. Alé= ;m disso, a subjetividade na interpretação pode levar a diferent= es conclusões dependendo do especialista que conduz a análise. O= utro fator relevante é a complexidade da análise comparativa, pois= a verificação de similaridades entre produtos e patentes exige = um conhecimento técnico avançado e pode ser influenciada por pequenas variações na estrutura e funcionalidade (Lee, 2013).=

 

1.1 Objetivos

 

1.1.1 Objetivo Geral

 =

Desenvolver e validar um Índice de Infração de Patentes com apoio de Inteligência Artificial Multimodal.<= /o:p>

 =

1.1.2 Objetivos específicos

 <= /p>

Os objetivos específicos do presente estudo estão descritos a seguir: 

i-) Desenvolver um indicador de infração de patentes com o suporte de técnicas de Inteligência Artificial  multimodal; 

ii-) Implementar a análise de infração computacional usando dados oriundo= s de textos e/ou imagens das patentes; 

iii-) Testar o us= o do indicador de infração em uma área do conhecimento particular;   =

Aprimorar a estrutura de͏ patentes com tecnologias como IA pode gerar͏ vantagens econômicas substanciais ao facilitar um proc= esso de alocação de direitos de propriedade mais rápido e preciso. ͏Essa progressão auxil= ia na͏ elaboração de melhores políticas públicas que garantam proteç&atild= e;o imparcial e equitativa, promovendo uma atmosfera propícia à inovação sustentável e promovendo a justiça tecnológica. Além disso, a eficiência e a acessibilida= de͏ da IA͏ podem dar suporte à ampliação do acesso à proteção= de patentes,͏ capacitando um número maior ͏de inovadores a receber o reconhecimento e a ͏proteção legítimos para suas invenções. 

 =

2 REFERENCIAL TEÓRICO

 =

A utilização de um Índice de Infração (II)= na área de propriedade intelectual, especialmente na detecç&atil= de;o de infrações de patentes, tem se mostrado uma frente promisso= ra de pesquisa e desenvolvimento.

O estudo de Srini= vas et al. (2024) apresenta o PatExpert, um framework autônomo baseado em múltiplos agentes, que visa otimizar e automatizar os fluxos de trab= alho relacionados a patentes. A proposta de utilizar agentes especializados em t= arefas como classificação, geração de reivindicações e análise de múltiplas patentes representa um avanço significativo na eficiência desses proces= sos. A incorporação de técnicas como Graph Retrieval-Augmen= ted Generation (GRAG), que combina semelhança semântica com grafos= de conhecimento, aprimora a precisão e a relevância da análise. Essa abordagem, que integra mecanismos de erro e feedback, não apenas melhora a acurácia, mas também assegura transparência — aspecto essencial na aplicação de= IA à propriedade intelectual.

Em outra vertente, Vesala & Ballardini (2019) exploram as implicações jurídicas do uso de IA, com foco nas redes neurais e seus impactos s= obre os direitos de propriedade intelectual. O estudo examina em quais condi&cce= dil;ões o treinamento de redes neurais pode configurar violação de propriedade, oferecendo um panorama crítico dos desafios legais da aplicação de IA em tarefas como a detecção de infrações de patentes. Essa análise reforça a necessidade de garantir que os modelos de IA operem dentro dos limites lega= is, especialmente quando aplicados em contextos sensíveis, como o da propriedade industrial. Diferentemente do presente trabalho, que prop&otild= e;e um indicador técnico para estimar violações, o estudo = de Vesala & Ballardini (2019) se concentra nos aspectos normativos, sem apresentar soluções computacionais.

A pesquisa de Shi= et al. (2024) introduz o PatentFinder, uma ferramenta voltada à detecção de infrações em patentes relacionadas a moléculas. Com o uso de componentes como MarkushParser e MarkushMatc= her, a ferramenta aprimora a análise de pequenas moléculas e supera abordagens baseadas apenas em linguagem natural. Sua performance superior reforça o uso de IA em áreas especializadas como biotecnologi= a e farmacologia. O diferencial deste trabalho, no entanto, está na criação de um indicador multimodal que pode ser aplicado a diversas áreas tecnológicas, não se restringindo ao domínio químico-farmacêutico.

Complementando a discussão, Dos Santos et al. (2024) investigam o uso de IA generativ= a na redação de pedidos de patentes. Embora não aborde diretamente a detecção de infrações, o estudo evidencia como a qualidade da redação impacta etapas posterio= res do processo. Um pedido de patente bem estruturado facilita a análise comparativa e, por consequência, a detecção de violações. O foco do presente trabalho, no entanto, est&aacut= e; na aplicação de um índice baseado em similaridade semântica e visual, enquanto o de Dos Santos et al. concentra-se na f= ase anterior de geração textual.

A pesquisa de Lu & Ni (2019) apresenta o modelo BERT-CNN para a classificaç&atild= e;o automatizada de patentes, com acurácia de 84,3%. O uso de modelos de linguagem como o BERT é relevante para representar semanticamente te= rmos técnicos e pode ser extrapolado para tarefas de identificação de similaridades e possíveis infrações. A proposta aqui, contudo, avança alé= m da classificação, ao comparar patentes com produtos reais, utilizando dados textuais e visuais para estimar riscos infracionais.<= /o:p>

O trabalho de Yas= aei et al. (2021) propõe o GNN4IP, um método baseado em redes neu= rais gráficas para detectar pirataria de propriedade intelectual em hardw= are. O modelo alcança 96% de acurácia ao analisar circuitos eletr&= ocirc;nicos por grafos estruturais. Apesar de o foco ser o design de hardware, o concei= to de similaridade estrutural pode ser adaptado para outras formas de patente, como o que se propõe neste trabalho, que utiliza uma abordagem multimodal mais ampla e aplicável a diversos setores.

No mesmo campo, o estudo de Cao et al. (2021) introduz o IPGuard, uma técnica de proteção de propriedade intelectual aplicada a redes neurais profundas, sem comprometer sua precisão. O uso de fingerprinting na fronteira de classificação das redes oferece uma nova abordag= em para detectar cópias de modelos de IA. Essa proposta pode ser adapta= da para fins de verificação em sistemas que analisam a similarid= ade entre patentes.

Este trabalho, por outro lado, não visa proteger modelos de IA, mas sim identificar automaticamente infrações de patentes reais cometidas por produtos disponíveis no mercado, por meio de um índice que po= ssa ser utilizado por especialistas ou agentes inteligentes para estimar o grau= de similaridade e o risco de violação.

A principal diferença em relação aos trabalhos revisados est&aacut= e; no escopo e na generalização: enquanto diversas abordagens são restritas a domínios específicos — como hardware, biotecnologia ou geração textual — o presente estudo propõe um indicador multimodal adaptável a diferentes contextos técnicos, combinando análise textual e imagé= tica com o objetivo de oferecer suporte à tomada de decisão na gestão da propriedade industrial.

Além da literatura internacional, estudos brasileiros reforçam a importância da Propriedade Industrial no contexto nacional. No que Barbosa (2025) destaca= os fundamentos e desafios da proteção intelectual, Silveira (201= 8) apresenta um panorama abrangente do sistema de propriedade intelectual. Ess= as contribuições reforçam a representatividade nacional e= enriquecem o debate sobre inovação e segurança jurídica no país. <= /p>

Garcez Júnior, Eloy e Santos (2021), ainda no contexto brasileiro, realizaram uma investigação empírica inédita sobre a qualidade= das patentes concedidas no país, a partir das ações de nulidade protocoladas — indicador claro de contestação técnica à validade das patentes. Esse quadro evidencia a necessidade de um mecanismo preventivo de análise de infrações, como o Índice de Infração (II= ), capaz de reforçar a confiabilidade e reduzir litígios futuros= .

Nesse cenário, a propo= sta deste trabalho busca justamente preencher essas lacunas, ao desenvolver e validar um índice multimodal adaptável a diferentes contextos tecnológicos, concebido para apoiar de forma prática e transp= arente a análise de possíveis infrações de patentes.

 =

3 METODOLOGIA

 =

A presente pesqui= sa adota uma abordagem metodológica mista, integrando revisão bibliográfica, estudo de caso e desenvolvimento de um Índice = de Infração (II) voltado à detecção automatizada de infrações de patentes. O objetivo principal é propor, implementar e testar um modelo multimodal capaz de estimar= a probabilidade de infração com base em critérios técnicos e semânticos. A metodologia foi estruturada em etapas interdependentes, que abrangem desde o levantamento teórico at&eacut= e; a construção do indicador de infração, culminando= na análise dos resultados a partir de métricas de desempenho validadas.

A etapa inicial corresponde à revisão bibliográfica, com o intuito de mapear os principais métodos, ferramentas e abordagens adotadas na aplicação de IA à propriedade intelectual. Conforme Gil (2008), a revisão bibliográfica é fundamental para identificar lacunas no conhecimento e consolidar o referencial teóri= co.

A segunda etapa envolve o desenvolvimento e validação de um Índice de Infração (II), com base em um estudo de caso. Foram seleciona= das duas patentes norte-americanas para simulação: a patente US4656605A, intitulada Single In-line Memory Module, concedida em 1987; e a patente US4727513A, intitulada Signal In-line Memory Module, concedida em 1= 988. Ambas apresentam alta similaridade estrutural e técnica, sendo a seg= unda utilizada como produto supostamente infrator. A escolha desse conjunto se justifica pela disponibilidade de documentos técnicos detalhados, incluindo reivindicações formais (claims) e representações gráficas das invenções.

O cerne metodológico desta pesquisa é a criação de um Índice de Infração (II), formulado para sintetizar a probabilidade de ocorrência de infração com base na média ponderada de duas comparações:

(i) a similaridade semântica entre a claim da patente supostamente infringida e a descrição do produto;

(ii) a similarida= de semântica entre a claim da patente e as imagens do produto.

O valor final do Índice de Infração (II) é dado pela soma das similaridades obtidas, dividida pela quantidade total de comparações realizadas. A fórmula geral pode ser expre= ssa conforme indicado na Equação

 =

II=3D (Similaridade Claim vs Descrição + ∑ Similaridade Claim vs Imagem) / Número total de comparações            = ;   (1)

onde:<= /span>

Similaridade Clai= m vs Descrição: representa o valor de similaridade entre o texto d= os claims da patente e a descrição textual do produto. 

∑ Similaridade Claim vs Imagem: corresponde à soma das similaridades entre o texto dos claims da patente e cada uma das imagens do produto. 

Número tot= al de comparações: equivale à soma de 1 (para a comparação textual) com o número de imagens analisadas. 

 =

De forma didática, o Índice de Infração (II) pode ser entendido como a média das similaridades entre o texto dos claims da patente e as informações do produto (descrição e imagens). O valor final, expresso em percentual, indica o grau de sobreposição técnica: valores elevados sugerem maior probabilidade de infração.

A similaridade semântica é medida por meio de embeddings vetoriais gerados a partir de modelos de linguagem pré-treinados. Para a comparação entre textos (reivindicação e descrição), utilizou-se o modelo PatentBERT (anferico/bert-for-patents); para a comparação entre texto e imagem (reivindicação e imagens do produto), utilizou-se o mo= delo CLIP (openai/clip-vit-base-patch32). As pontuações resultantes são normalizadas em escala percentual de 0 a 100.<= /p>

Além desses dois componentes centrais, há possibilidade de incorporar pesos específicos para cada atributo, a fim de ajustar a influência relativa de cada fonte de similaridade e, assim, aprimorar a precisã= o do índice.

A Figura 1 a segu= ir apresenta o fluxo de funcionamento que integra todas as etapas operacionais= do modelo:

 =

 =

 =

 =

Figura 1

Fluxograma de funcionamento e etapas operacionais

3D"Diagrama

O

Fonte: Autores (2= 025).

 =

Na etapa de validação do Índice de Infração (II), os resultados gerados pelo modelo podem ser comparados com informações e pareceres técnicos relativos ao caso selecionado. Essa comparação permite mensurar o desempenho do= II com base nas métricas previamente estabelecidas.

Em seguida, realiza-se uma análise crítica dos resultados, discutindo os fatores que impactaram a acurácia do modelo, tais como ambiguidade jurídica, lacunas nas bases de dados e limitações dos modelos multimodais empregados. Essa etapa visa apontar caminhos para melho= rias técnicas, ajustes no indicador proposto e possibilidades de generalização para diferentes setores tecnológicos.

Com base nessa estrutura metodológica, a pesquisa formula três hipótes= es centrais:

Hipótese H= 1: Os modelos multimodais de Inteligência Artificial possuem acurá= ;cia comparável à de especialistas na detecção de infrações de patentes, sendo capazes de identificar similarid= ades entre produtos e patentes com precisão técnica adequada.=

Hipótese H= 2: É viável criar um Índice de Infração (II) que sirva de apoio à atuação de especialistas em propriedade intelectual, automatizando, com alto grau de confiabilidade e eficiência, a análise de possíveis violaçõ= ;es de patentes.

Hipótese n= ula H0: Os modelos multimodais atuais de IA não possuem precisão suficiente para complementar a análise de especialistas na identificação de infrações de patentes, apresentando limitações significativas na detecç&atild= e;o de similaridades e na interpretação jurídica dos registros.

A partir dessas hipóteses, o presente estudo busca não apenas validar o uso d= a IA na análise de infrações, mas também contribuir = para o desenvolvimento de metodologias mais eficazes no campo da propriedade int= electual, promovendo avanços na automação e na precisão dessas análises.

 =

4 RESULTADOS E DISCUSSÕES

 =

4.1 Comparativo com as soluções de IA para Detecção de Infrações de Patentes

 =

Nesta subseção, apresenta-se uma análise comparativa entre diferentes soluções de Inteligência Artificial atualmen= te disponíveis no mercado para a verificação de patentes.= O objetivo é compreender suas metodologias, limitações e= de que forma o Índice de Infração (II) proposto neste est= udo pode aprimorar o processo de identificação de violações de propriedade intelectual.

As soluções de IA empregadas na verificação de patentes adotam abordagens distintas para otimizar a identificação de infrações, cada uma com vantag= ens e limitações específicas. Um exemplo notável é o uso de Processamento de Linguagem Natural (PLN) e técnica= s de aprendizado de máquina para comparar automaticamente textos de paten= tes com bancos de dados técnicos, reduzindo os erros associados à busca manual por palavras-chave (Helmers et al., 2019).

No entanto, como destaca Gollihar (2023), a aplicação da IA em contextos jurídicos, como a detecção de infrações, ainda enfrenta desafios significativos, especialmente quanto à definição de autoria, responsabilidade e confiabilidade das decisões automatizadas. O modelo de IA do INPA, por exemplo, constit= ui uma iniciativa relevante, porém restrita à triagem de pedidos= de patentes, sem contemplar a comparação com produtos existentes= .

A plataforma iPNO= TE utiliza PLN para buscas textuais avançadas, permitindo localizar patentes similares. Sua limitação, entretanto, está na ausência de análise de imagens — fator crucial para identificar infrações em produtos visuais e processos industr= iais (iPNOTE, 2024).

Já a NeoPT= O, desenvolvida com o apoio da EMBRAPII, concentra-se na construç&atild= e;o de um banco de dados global de patentes, empregando agentes de IA para acel= erar a busca por registros relevantes. Apesar de sua utilidade, a ferramenta n&a= tilde;o realiza uma verificação detalhada de infrações, funcionando apenas como recurso auxiliar para recuperação de informação (EMBRAPII, 2023).

A parceria entre o INPI e o CAS representa mais um esforço de integração = de IA à análise de patentes, organizando dados científico= s e permitindo um exame mais ágil dos pedidos. Contudo, o sistema n&atil= de;o contempla mecanismos para verificação automática de infrações, o que limita sua aplicabilidade em contextos contenciosos (INPI & MDIC, 2025).

Por sua vez, o PATENTSCOPE, da OMPI, constitui um dos sistemas mais abrangentes para busca= de patentes internacionais, mas não dispõe de funcionalidades robustas de análise preditiva ou comparação semântica aprofundada (World Intellectual Property Organization, 2025= ).

Diferentemente das soluções analisadas, o II proposto neste estudo adota uma abordagem multimodal, integrando análise textual e visual entre o conteúdo técnico das patentes e os produtos reais. Essa característica permite uma verificação mais precisa e automatizada, com potencial para reduzir o tempo de investigaç&atild= e;o de horas ou dias para apenas alguns minutos — sem perda de profundida= de técnica.

 =

 =

 =

 =

4.2 Detecção de Infrações de Paten= tes em um caso prático

 

Para validar a eficácia do Índice de Infração (II) proposto, f= oi conduzido um estudo prático utilizando duas patentes norte-americana= s: US4656605A (Single In-line Memory Module, concedida em 1987) e US4727513A (Signal In-line Memory Module, concedida em 1988). A primeira foi considera= da como a patente protegida, e a segunda, como um produto potencialmente infra= tor.

Antes da aplicação do II, foram realizados testes com o objetivo de identificar o modelo de linguagem mais adequado para a verificação de similaridade semântica entre a claim da patente protegida e a descrição do produto infrator simulado, representado pela claim da segunda patente.

 =

Tabela 1

Comparativo de Modelos de IA = para Similaridade Texto x Texto

Mod= elo Utilizado

Tip= o de Treinamento

Sim= ilaridade Texto x Texto (%)

Obs= ervações

TF-= IDF + Cosine Similarity

Estatístico (termos)=

94,43%

Não capta semântica profunda

Min= iLM (BERT generalista)

Semântico geral (leve)=

91,98%

Rápido, mas não técnico

Sci= BERT

Técnico-cientí= ;fico

87,00%

Melhor para textos técnicos, mas sem foco em patentes

Pat= entBERT

Específico de patentes

95,19%

Melhor desempenho para documentos jurídicos e técnicos

Fonte: Autores (2025).

 =

TF-IDF combinado = com Cosine Similarity é uma ferramenta robusta para identificar similari= dade textual entre documentos de patente, sendo útil especialmente em eta= pas iniciais de triagem ou em verificações automáticas. No entanto, seu uso isolado é limitado quando se trata de compreender semântica complexa ou interpretar informações visuais — capacidades essenciais em casos de infrações técnicas (Shen, 2017).

O modelo MiniLM, = uma versão compacta do BERT, foi desenvolvido para oferecer eficiê= ncia computacional em tarefas de Processamento de Linguagem Natural (PLN). Utilizando a técnica de deep self-attention distillation, o MiniLM r= eduz significativamente o tamanho do modelo e os custos de processamento, manten= do desempenho comparável ao BERT-base em tarefas como perguntas e respo= stas e análise de sentimentos (Wang, 2020).

O SciBERT, por sua vez, é um modelo pré-treinado baseado no BERT, voltado para a compreensão de textos científicos. Treinado com um amplo corp= us de artigos acadêmicos nas áreas biomédica e de ciência da computação, o SciBERT mostra-se mais adequad= o do que o BERT padrão para tarefas de PLN envolvendo literatura científica — como classificação de sentenç= ;as, extração de entidades e análise semântica de tex= tos técnicos (Beltagy, 2019).

O PatentBERT &eac= ute; uma adaptação do BERT treinada especificamente para tarefas de classificação e análise de patentes. Esse modelo foi desenvolvido com foco na interpretação das reivindicaç= ões (claims), demonstrando que essa seção do documento é suficiente para alcançar alto desempenho em tarefas de categorização. O modelo aplica fine-tuning sobre um BERT pré-treinado com um extenso conjunto de dados do USPTO e apresentou resultados superiores a métodos anteriores baseados em redes neurais convolucionais (CNN) e em embeddings tradicionais (Lee, 2019).

Com base nos resultados apresentados na Tabela 1, o modelo PatentBERT (repositóri= o: anferico/bert-for-patents) foi selecionado como o componente textual do II,= em razão de sua elevada acurácia e aderência ao vocabulário técnico-jurídico das patentes.<= /span>

Já o CLIP (Contrastive Language–Image Pre-training), desenvolvido pela OpenAI, é um modelo que associa imagens e textos por meio de aprendizado contrastivo. Treinado em grande escala com pares de imagem e legenda extraídos da web, o CLIP consegue projetar representaçõ= ;es linguísticas e visuais em um mesmo espaço vetorial, sendo efi= caz para tarefas como busca multimodal, classificação zero-shot, análise de similaridade semântica e interpretação visual de linguagem natural (Radford, 2021).

Para a etapa de comparação visual entre a claim da patente e as imagens do produto infrator simulado, utilizou-se o modelo CLIP. Sua capacidade de representar texto e imagem em um espaço vetorial compartilhado permi= te realizar a avaliação de similaridade visual de forma automati= zada e eficiente. A Tabela 2 apresenta os resultados combinados das comparações semânticas (textuais) e visuais realizadas.=

 =

Tabela 2

Similaridade entre claim da patente protegida e elementos do produto suspeito usando PatentBERT e CLIP

Com= paração

Tip= o de Análise

Sim= ilaridade (%)

Cla= im vs Produto (Texto)

Texto x Texto (PatentBERT)<= o:p>

95,19

Cla= im vs Imagem 1

Texto x Imagem (CLIP)=

100,00

Cla= im vs Imagem 2

Texto x Imagem (CLIP)<= /o:p>

8,18

Cla= im vs Imagem 3

Texto x Imagem (CLIP)=

0,00

Fonte: Autores (2025).

 =

Sendo a cl= aim da patente: "What I claim is: 1. A memory = module for installation on a printed circuit motherboard comprising nine data memo= ry chips for storing digital data, each having a data input and output, control input, and an address input, and each being packaged in a plastic leaded ch= ip carrier, wherein said ninth memory chip is for storing detection and correc= tion information associated with the eight data memory chips, an epoxy-glass pri= nted circuit board substrate having a length and width adequate for mounting the= reon only in a single row said nine memory chips and for interconnecting the con= trol inputs and the address inputs of the memory chips so that bytes of digital information may be input to or output from the memory chips, the substrate including thirty terminals for providing access to the data inputs and outp= uts, control inputs, and address inputs of the nine memory chips and to enable reading and writing of information into and out of the nine chips, support means for supporting the memory module at an angle with respect to a motherboard and decoupling capacitors mounted on said substrate and coupled= to the memory chips for suppressing transient voltages. 2. The module of claim= 1 wherein all nine memory chips are interconnected such that data is input to= or output from the ninth memory chips when data is input to or output from the other eight memory chips".

A descrição do produto infrator simulado corresponde à c= laim da segunda patente: "I claim:  1. A memory module for installation on a printed circuit motherboard comprising:&nb= sp; eight data memory chips for storing digital data, each having a data input and output, a control input, and an address input, and each being packaged in a plastic leaded chip carrier;=   a ninth memory chip for storing error detection and correction information associated with the eight data memory chips, said ninth memory = chip having a data input and output, a control input and an address input interconnected with those of the eight memory chips, and a control input to= provide writing in or reading out of the ninth memory chip at times other than when said bytes of digital information are written into or read out of the eight data memory chips to thereby facilitate said error detection and correction operation;  an epoxy-glass pri= nted circuit board substrate having a length and width adequate for mounting the= reon only in a single row said nine memory chips and for interconnecting the con= trol inputs and the address inputs of the memory chips so that bytes of digital information may be input to or output from the memory chips one at a time;<= span style=3D'mso-spacerun:yes'>  the substrate including thirty ter= minals for providing access to the data inputs and outputs, control inputs, and address inputs of the nine memory chips to enable reading and writing of by= tes of digital information into and out of the eight memory chips and to enable reading and writing of error detection and correction information into and = out of the eight memory chips;  su= pport means for supporting the memory module at an angle with respect to the prin= ted circuit motherboard when the memory module is installed thereon; and  eight decoupling capacitors, mount= ed on said substrate and connected between the nine memory chips, for supressing transient voltage spikes between said memo= ry chips."

E as imagens comparadas foram as presentes nas Figura 2, Figura 3 e Figura 4:=

 =

Figura 2

Imagem1 comparada com a Claim= da Patente

3D"Diagrama,

Nota: Recuperado = da Patente US4727513A

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

Figura 3

Imagem2 comparada com a Claim= da Patente

3D"Diagrama

O

Nota: Recuperado = da Patente US4727513A

 =

Figura 4

Imagem3 comparada com a Claim= da Patente

3D"Uma

Nota: Recuperado = da Patente US4727513A

 =

A média dos valores obtidos resultou em um Índice de Infração (II)= de 50,84%, indicando similaridades técnicas relevantes entre os element= os analisados — sobretudo no aspecto textual — sem configurar, no = entanto, uma infração direta. Esse resultado é coerente com o f= ato de que as patentes envolvidas representam soluções técnicas distintas, embora relacionadas.

A patente US47275= 13A pode ser interpretada como uma evolução funcional ou variação técnica da US4656605A, compartilhando parte de sua arquitetura, mas incorporando modificações estruturais significativas. Assim, o valor intermediário do II demonstra que, em= bora haja proximidade conceitual, há também evidências suficientes de diferenciação, reforçando o uso do indicador como ferramenta técnica preliminar no apoio à análise de possíveis infrações.

Apesar dos resultados promissores, o Índice de Infração (II) apresenta algum= as limitações. Sua precisão depende da qualidade dos dado= s de entrada — descrições incompletas ou imagens pouco repre= sentativas podem comprometer a acurácia — e dos próprios modelos multimodais, que ainda enfrentam dificuldades em capturar nuances jurídico-técnicas complexas. Em contextos práticos, a aplicabilidade do índice exigiria integração com fluxos periciais e validação junto a especialistas jurídicos,= de modo a assegurar sua aceitação como ferramenta de apoio e não como substituto da análise especializada. Além dis= so, o estudo foi conduzido em um único domínio tecnológico= , o que restringe a generalização dos achados. Futuras aplicações em setores diversos poderão ampliar a robus= tez do II, verificar sua adaptabilidade e contribuir para consolidar seu uso em diferentes contextos industriais.

 =

5 CONCLUSÃO

 =

O presente estudo evidenciou o potencial do uso de um Índice de Infração (II) como ferramenta de suporte técnico na triagem e análise preliminar= de possíveis infrações de patentes, por meio da aplica&cc= edil;ão combinada de Inteligência Artificial textual e visual. Diante da crescente complexidade dos processos de patenteamento e da dificuldade em avaliar sobreposições técnicas entre invenções e produtos reais, a criação de métricas automatizadas torna-se não apenas útil, mas essencial para garantir celeridade e confiabilidade ao processo decisório.

A proposta metodológica apresentada — baseada na combinação de modelos pré-treinados de linguagem natural (como o PatentBERT) e modelos multimodais de similaridade imagem-texto (como o CLIP) — viabilizou a construção de um indicador numérico capaz de sintetiza= r o grau de similaridade entre o claim de uma patente e os elementos de um prod= uto potencialmente infrator. A aplicação do modelo a um caso prático, envolvendo duas patentes norte-americanas, resultou em um I= I de 50,84%, valor que indica sobreposição técnica relevant= e, mas não absoluta. Tal resultado reforça o caráter do índice como instrumento auxiliar à interpretação especializada, e não como substituto da análise jurídi= ca.

A combinação de anál= ises semânticas e visuais demonstrou ganho significativo em abrangên= cia e precisão, evidenciando que modelos contrastivos multimodais s&atil= de;o particularmente eficazes na redução de vieses e na priorização de casos com alto grau de similaridade. No entant= o, é necessário atentar para questões como a explicabilid= ade dos modelos, a qualidade das bases de dados utilizadas e os riscos associad= os à aplicação indiscriminada dessas soluções em lar= ga escala.

Para além dos aspectos técnicos, torna-se fundamental considerar os impactos sociais e econômicos da adoção dessa tecnologia. A disseminação de ferramentas baseadas em IA deve ser acompanha= da de políticas públicas e diretrizes que assegurem seu acesso equitativo, evitando que apenas grandes corporações se benefi= ciem dos avanços. A democratização do uso do II pode amplia= r a proteção a inventores independentes e instituiçõ= ;es menores, promovendo maior justiça tecnológica.

Como perspectivas futuras, destacam-se: a incorporação de pesos adaptativos no cálculo do II, ajustando a relevância de diferentes componentes (como texto descriti= vo, imagens ou partes específicas das claims), conforme a natureza da tecnologia analisada; e a validação empírica do índice junto a equipes multidisciplinares de especialistas técnicos e jurídicos, com vistas a testar sua eficácia= em outros setores industriais. A aplicação do II em bases de dad= os reais e diversificadas permitirá refinar sua utilização como instrumento de apoio em auditorias técnicas, disputas legais e exames de patente.

Conclui-se, portanto, que a incorporação do Índice de Infração como recurso analítico automatizado representa um avanço relevante= na modernização da gestão de patentes, oferecendo agilida= de, precisão e suporte técnico fundamentado. Sua adoção, no entanto, dependerá da integraç&atild= e;o responsável entre tecnologia e regulação, com supervisão humana contínua e compromisso com a ética e= a equidade. Nesse contexto, a Inteligência Artificial não substi= tui o especialista, mas o potencializa.


 <= /p>

REFERÊNCIAS

=  

Barbosa, D. B. (2025). Tratado da Propriedade Intelectual R= 11; Tomo I (2ª ed., 5ª tiragem). Rio de Janeiro: Lumen Juris. ISBN 978-8551900833.

Barbosa, L. M., & Portes, L. A. F. (2023). A inteligência artificial. Revista Tecnologia Educacional, (236), 16–27.

 

Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A Pretrained Language Model for Scientific Text. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP). https://doi.org/10.18653/V1/D19-1371

 =

Berente, N., Gu, = B., Recker, J., & Santhanam, R. (2021). Managing artificial intelligence. M= IS Quarterly, 45(3).

 =

Cao, X., Jia, J., & Gong, N. Z. (2021). IPGuard: Protecting intellectual property of deep neural networks via fingerprinting the classification boundary. Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security (pp. 14–25).

 =

Choi, S. W. (2014= ). System and method for analysing patent infringe= ment [Patent].  https://scispace.com/papers/system-and-method-for-anal= ysing-patent-infringement-2jjl848s2y?utm_source=3Dchatgpt=

 

Dos Santos, J. W., de Oliveira, A. L., da Silva, R. G., & Pimentel, M. T. (2024). Previsão tecnológica para uso de inteligência artificial generativa na redação de pedido= s de patentes. Revista Eletrônica Científica Inovação= e Tecnologia, 15(37), 41–55.

 

Dos Santos, M. J. P., Schaal, F. M. M., & Goulart, R. (202= 4). Propriedade intelectual e inteligência artificial. Almedina Brasil.

 

Dos Santos, M. V. R., Alves, G. M. R., & De Andrade Maciel= , A. M. (2022). Benchmarking de sistemas AutoML open-source. Revista de Engenhar= ia e Pesquisa Aplicada, 7(3), 19–28.

 

Ertel, W. (2024). Introductio= n to artificial intelligence= (2nd ed.). Sprin= ger Nature.

 

EMBRAPII. (2023). EMBRAPII apoia sistema de Inteligência Artificial para agilizar processo de patente industrial.  https://embrapii= .org.br/embrapii-apoia-sistema-de-inteligencia-artificial-para-agilizar-pro= cesso-de-patente-industrial/

 

Garcez Júnior, S. S., Eloy, B. R., & Santos, J. A. = B. (2021). A qualidade dos privilégios patentários concedidos no Brasil sob a ótica das ações judiciais de nulidade de patentes. Revista Direito GV, 17(1), e2116. https://doi.org/10.1590/2317-61= 72202116

 

Garcia, A. C. B. (2020). Ética e inteligência artificial. Computação Brasil, (43), 14–22.<= /span>

 

Gollihar, J. (202= 3). Patent Infringement by Development and Use of Artificial Intelligence Syste= ms, Specifically Artificial Neural Networks. MPI Studies on Intellectual Proper= ty and Competition Law. https://doi.org/10.1007/978-3-662= -65974-8_20=

 =

Helmers, L., Horn, F., Biegler, F., Oppermann, T., & Müller, K.-R. (2019). Automating= the search for a patent’s prior art with a full text similarity search. P= LOS ONE. https://doi.org/10.1371/jou= rnal.pone.0212103=

 =

Hu, W., Qin, Y., = Jin, H., Han, L., & Qian, Y. (2024). Bliva: A si= mple multimodal LLM for better handling of text-rich visual questions. Proceedin= gs of the AAAI Conference on Artificial Intelligence (pp. 2256–2264).

 =

Huynh-The, T., Hu= a, B. S., Ngo, T. D., & Lee, G. (2023). Artificial intelligence for the metaverse: A survey. Engin= eering Applications of Artificial Intelligence, 117, 105581.

 

Instituto Dannemann Siemsen de Estudos Jurídicos e Técnicos. (2013). Comentários à Lei da Propriedade Industrial e correlatos (3ª ed., rev. e atual.). Rio de Janeiro: Renov= ar.

 

INPI e MDIC. (2025, março 24). INPI e MDIC avanç= am para agilizar patentes e marcas no Brasil.=   https://www.gov.br/inpi/pt-br/central-de-conteudo/noticias/inpi-e-md= ic-avancam-para-agilizar-patentes-e-marcas-no-brasil

 

iPNOT= E. (20= 24). AI Patent Search: Transforming the Future of Intellectual Property.  https://ipnote.pro/en/blog/ai-patent-search-transforming-the-future-= of-intellectual-property/

 =

Lee, C., Song, B., & Park, Y. (2013). How to assess patent infringement risks: A semantic patent claim analysis using dependency relationships. Technology Analysis &= amp; Strategic Management, 25(1), 23–38.

 =

Lee, J.-S., & Hsiang, J. (2019). PatentBERT: Patent Classific= ation with Fine-Tuning a Pre-trained BERT Model. arXiv: Computation and Language. https://scispace.com/papers/patentbert-patent-classification-with-fine-tuni= ng-a-pre-1bxqiytdzu?utm_source=3Dchatgpt

 =

Li, Z., Tang, K., Pan, J., Zhang, Y., & Tang, J. (2024). Monkey: Image resolution and text label are important things for large multi-modal models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 26763–26773).

 =

Liu, W., Liu, X., Kong, Y., Yang, Z., & Qiao, W. (2020). Game Theory Based Patent Infringement Detection Method. Database and Expert Systems Applications (pp. 134–145). Springer. https://doi.org/10.1007/978-3-030= -59051-2_11=

 =

Lo, H.-C., Yang, Y., Zhu, Y., & Wu, Y. (2024). Large language model informed patent image retrieval<= /span>. arXiv preprint arXiv:2404= .19360.

 

Lu, X., & Ni, B. (2019). BERT-CNN: A = hierarchical patent classifier b= ased on a pre-trained language<= /span> model. arXiv preprint arXiv:1911.06241.

 

Lu, Y., Wang, H., Zhang, T., & Zhao, = Z. (2020). Research on classification and similarity of patent citation based on deep learning. Scientometrics= , 123, 813–839.

 =

Lv, Z. (2023). Generative artificial intelligence in the metaverse era. Cognitive Robotics, 3, 208–217.

 =

MDPI. (2023). Measuring Patent Similarity Based on Text Mining and Image Information.  https://www.mdpi.com/2079-8954/11/= 6/294

 =

Park, I., & Y= oon, B. (2014). A semantic analysis approach for identifying patent infringement based on a product–patent map. Technology Analysis & Strategic Management, 26(8), 855–874.

 =

Radford, A., Kim,= J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021). Learning Transferable Visual Mo= dels From Natural Language Supervision. arXiv:2103.00020. https://doi.org/10.48550/arXiv.2103.00020

 =

Shen, Y.-C., Lin,= G. T. R., Lin, J.-R., & Wang, C.-H. (2017). A Cross-Database Comparison to Discover Potential Product Opportunities Using Text Mining and Cosine Similarity. Journal of Scientific & Industrial Research.

 =

Shi, Y., Yang, Y., Yang, Y., Xie, Y., & Wang, B. (2024). Intelligent system for automated molecular patent infringement assessment. arXiv preprint arXiv:2412.07819.

 =

Sichm= an, J. = S. (2021). Intel= igência artificial e sociedade: avanços e riscos. Estudos Avançados, = 35, 37–50.

 

Silveira, N. (2018). Propriedade intelectual: Propriedade industrial, direito de autor, software, cultivares, nome empresarial, título de estabelecimento, abuso de patentes (6ª ed.). Sã= ;o Paulo: Manole. ISBN 978-8520457528.

 

Srinivas, S. S., Vaikunth, V. S., & Runkana, V. (2024). Towar= ds automated patent workflows: AI-orchestrated multi-agent framework for intellectual property management and analysis. arXiv preprint arXiv:2409.19006.

 =

Teli, J. S., Rai, A., & Lin, Y.-K. (2024). Abnormal returns to artificial intelligence patent infringement litigations. Journal of Management Informa= tion Systems, 41(2), 422–452.

 =

Vesala, J., &= Ballardini, R. (2019). AI and IPR infringement: A case study on training and using neural networks. In R. Bal= lardini & J. Välimäki (Eds.), Regulating Industrial Internet through = IPR, Data Protection and Competition Law. Kluwer Law International.

 =

Yasaei, R., Basu,= A., Raghunathan, A., & Jha, N. K. (2021). GNN4IP: Graph neural network for hardware intellectual property piracy detection. In 2021 58th ACM/IEEE Desi= gn Automation Conference (DAC) (pp. 217–222). IEEE.

 =

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., & Zhou, M. (2020). Mi= niLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Train= ed Transformers. NeurIPS. https://scispace.com/

 =

World Intellectual Property Organization. (2025). PATENTSCOPE.  https://www.wipo.int/en/web/patent= scope

 =

Zhu, D. (2020). Bibliometric analysis of patent infringement retrieval model based on self-organizing map neural network algorithm. Library Hi Tech, 38(2), 479-491.

 =

------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/item0003.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml CgMxLjAaHQoBMBIYChYIB0ISCglPcGVuIFNhbnMSBUFyaWFsGigK= ATESIwohCAdCHQoJT3BlbiBTYW5zEhBBcmlhbCBVbmljb2RlIE1TGigKATISIwohCAdCHQoJT3B= lbiBTYW5zEhBBcmlhbCBVbmljb2RlIE1TMg5oLmlpM3UyYXc0aXVzcjINaC5jcGt2YWl4aHVtdT= gAciExa3FvRHZQNXBlWW5iSmhGR00yTzhlU2I2djN6VXo5Qmw=3D ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/props004.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image001.gif Content-Transfer-Encoding: base64 Content-Type: image/gif R0lGODlhvQAeAncAMSH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACH5BAEAAAAALAAAAAC9 AB4ChAAAAEiMe0iTfUaTe0aTfESTe0eTe0aUe0SRe0aVe0eUe0aTeUaRfUSVe0aSe0aTekSTfUeS ekWTe0aReUWSekiRd0eRe0aRe0iRf0aTfUSSe0WUe0eSe0yRgESZiESIgAX/ICCOZGmeaKqubDsS bizPdG3feFsAxjH8wKBQaADscsikcskcHQzDqHQKhDav2GwyAfBRv2ApYKEtm8+AsHr9RbvfNSh7 Th/C73hSoc7v/wxHeYJZCGl+h32DikyIjYiLkDQFXo6VfGORmSqUlp2XmqBGnJ6kdWShi6Olq3So g6ywfq5we7G2ibNmqre8age5Wb3Cn8BLw8etxUjIzMnKNATN0myBzy3R09lhMNYs2t9q3Srg5GDi J+XpVOck6u5i7O/yduLz9kHd9/o/yrv77wqA/RuYa6BBVwYThkrIUBPDh5EePvylSKLFQXIsMuR2 B5tGiXg+arzjT+S/NwpM/450o/IjmpYizcAUyfHKTJOnbN6MiWUnzyY+TTbJGNRiQCULippsoKSk 0oNJngpdJnXqjaoquVzFarUG164zvpqsGSOpWJFMw56lSWMtWBYe3Vqk6ELu23F2XdbN+5FsCr4/ VwDWK3iwRrooGhgm/HfxxU2OLRZpHBkk5coNUcTFbBBxO84QUYC2XGK0xJwvTGcurXr1iNauRcBW SMLpbHcmbhP8rHsfYge9T74Oru/BCAHE9/FOPm9EBOb3JIjYDF0dReDV5XGznX3a5O7NDYHHLX58 Otnm1aFPXw7ABPbny8PXBoDCfHLr72err/9b/v7NAHABgPvJR+AxAGRwoP80/y0oTIMO8gJhhLYY QeEw313YC0XcaVjJZB162IgDRmAnIizGAWDiiaxMyGInLr5YiYUylmJFGiHWyMaNAxCl44wG/ojI AwPQKCSMQR55CHo+KomLk5YYCeUjSU6ZTBVWPpnlkrVsqaWXn4D55QAritlGl2ay8V+TadLT5hwx ttmklG8KIYGbdYZTZZvUFRkkkXkKQWeg8EhR5paA4knoOlXmKOOhQAy6qKB7ThrnopcSKumkkVaK qaeaghroplv2GUWmo4qaJ6qrogkGpFmy+oOjNcoqI5ttqFonqVTA6qStQNB6IrBpEmsmr2AkCqCv YRgb4Z2y6CoFrjo6G4T/sLeZCqernOIjbZvWehnulsh++iO10eqIbbPf3rdus9xq+C67sDC74Lix tjseulHGa6OH+BKnbCwB7wjYvGF2e6q/tiCsW8Gq2QsLxL/q64m23ZXbC8bQUdwIx8R57AjID1vc MHgaT+NwLxJPI7KQL6/iwMprxVwtw//Q/AUBLYc3E7++zGQzOCsaYHQPQUAb1NAypryqyeJCTa7U seJsKdVWMv2i1iw6vSvWU3I9LNhQev2m2CKiDTDZv1ptrsKKwt2p3IK6HSrd3uI9t95F2p0q334C rraGZoPLtpKDX5g4hYUXe/iRi0cYuYONH/s4zJf/OPm9fj8teObVgl5r/+dff24635WLufmBqxPY OoCpg/l6f7PrV/t9sUd9ut63z5f71Lvj3Tt8v+cbPN3Ds1d81qI33fzWz3dN+tnRj3283MuHXX3a 268t+PSGXw938ullX3b3hKOvuPqMg++4+AqTb575FcPfrfzj0Y84+5LzT7n/nLMfp/CHMgCyzn2W E+DVvqfAt/HOgK5DoOogCDsK0s6CtpOg7DCIOw76zoPE06DuUAdC5ZWwfCIEHgkbqKkUGm+FMOSd C5nHwr+hbobaq6HnbqjD0sVQeDgkx8DmIIee7cYkOhtCNIZIm4fMDDYElEIS+8CzgwSxfvaY4iqY 2J4T/iFjJeSib3Bzxf9GiNEgQEMQBs/4kDT24nVs1IgbK2RAI8pxP2WEHP/sCBM+Rol9WjRNFH3i x0fkkQqBnMuDvJi/6BWykSdKZN16SIc4so6RBWTgDx/lCYpJsmOYzNghNRfKvDwybkeypDmkdsoA bhJ7pRzMHE9lsU+ikA+tZFwsQUnJHh1reqokZQ9nGbo1KI2T4RhlMcNgy+T0bJDVyRTJ5AWvZNmw TtyJUy4PxEZodgxn21zQGb3JHHImx5yj0damwlmrJE3zR/5AZ3Dk2Rv96XEIx0zToRpEzBfKsJdZ 2gw9S6ZJhRFloLdZDztrlKj1vHNLlLAn5gCaQB7STQ4InU1GobhL4tz/yUIPFZMPNmqaaJBUNScV pDLbSVEwSaej51yp8/iWIbzVFIgtld17Xjk+DeRUXPbhafyC+kDB7bSoQr0fTEO21N6k6HMb0NsG Ugqao3BAb9x4Dt4mMBzkdRWWVK3MS0WQzwGSoJ9eOspXlbpWtrb1asvhlGd4ADe1xvVTJWDA+NAR P9GY9QTN1CVf4TpYvJ4gpFCaK2tChZdAKbYEKQmUXwpLPW+kigVoJWULnhaDyu7FcDLwbGct1xbS ziCw5bPBBG2A2LXdQDFTw0FrKfRYtWgvKudTwm1xuz9GHKm2ONBjT0IXDOJiQaa3EYAZZpse4C4B tYJkCffe4FrqXmgyvndYXx76JwgHaWUQ0OXLZPEQXrmMd7v3wW4myvsV53bXhAiZn0C6496IVKe+ 6wVlN9grNHbwVyXseGs6A1wb2JxXHAlQDQMIjIL/7obBlzEMhDe7mAl/li8WHm1eMiyDQtSMw6r9 CoiDWxX8jrixPlHviXOwExWvmLcicfGLjSHHGZ+BudOwq41lopxq7Bgl8pDxjztCjgMPOQ84RsRI j5wLMqAWAAtmMjuSHAQjSznAMIBBEbbMgy7/IstHDgEAOw== ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAagAAAHjCAYAAAB2LYtvAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAIbVSURBVHhe7f33d1Tn2r8J9m/zB0z3mtUz3dPT 0/M9533POc4+to9tjLEBkzGYnHPOOeeMQCByzkkIhAISEgiQBEgo5xxLKlWuUkJZ+sy676JEBWET tvJ9rXUvlfZ+9t7PDvVcT6qq/wmCIAiC0AH5n5wXCIIgCEJHQAQlCIIgdEhEUIIgCEKHRAQlCAB0 qipc21uIa/tVuO5W1DFifxGu7i6ERV/rnF1B6BaIoIRuT6mxFg+u6GAyNcFoRIcKkwXwOlKM+rpG 52wLQpdHBCV0eyIfGFGsqneRQ0cJg6EJUQ+MztkWhC6PCEro9jzzMUCnbXQRQ0eJ0nIg5KbWOduC 0OURQQndnvYQlEZbB4PB8ZgmUyOSkgpd0oqghO6KCEro9rSdoJoQFZWE4nwVZs+ajRXLlsOoNSIs LB5qlQUnjp3CunWbYTI5bieCErorIiih29OSoG7e9EdeXmkLkgGCgyNw/PgFh2VmM7B8+TpYLK7p 7SM5ORcbN6zHPW9vFBUWoG+f3jhz6hQunD+H5cuWobigwGUbEZTQXRFBCd2elgS1fft+ZGRoodfX w2BogFr9irvk0tO1SEtTs5Do/+JiWm6dYKFWV/NfmtRQUlIFrbbGRTY5OTrs2bMbHocOocdPP0Gv 0WD/3r1wP3gQ4aFP8cP3P0ClqhBBCYIIShDeLqisLC327vXA4sWrcPDgMSxfvhalpU3o1esXlJY2 YtGilTh06CTGjJkAna4SP/zwA8rKmuDufgK7d7tj7txFePQo0mG/KlU5Ll++hF07dqCqogLjxo3F sSNH4HnjBjZu2ICCnGzkZpeIoARBBCUIfy6oXbsOISYmg7vu+vcfiIqKJvz2Wz/k5KixZs1mTpuQ kIfi4goWV1lZLQYP/p3Tl5RUY9q02Q5jSjpdLbZt24ZrV66g508/4Z73Xfj53MP2bVvh7+eLSRMn YPfugw7biKCE7ooISuj2/Jmgdu8+hIyMYhdBZWYWYuPGnZw2J8cArbb6dcuqBr//PoK7ADWaWkye PN1BNtRlGBQUhIT4FDx7lojCwlIkJeZh6dK1SE3JQnh4PPT6Boe8iKCE7ooISuj2tCSoLVv2IjNT g507DyA9vYgF1afPbyyoX3/tDZOpjltHISEvMGXKDBQXW9CjRw/u4qOuP1/fRzh06Dg8PQMc9kvj WWFhz11m6jn/L4ISBBGUILQoqJwcPbTaOuTmUuuojpelpOTz1yElJ+fx/zRBIiwsEXl5Rv6fZujR X52uHi9epCApqYAnTDgKpwkRETEtLH97iKCE7ooISuj2tCSo1owXL2Kg01ml9y4hghK6KyIoodvT 1oJ63xBBCd0VEZTQ7RFBCULHRAQldHtIUFpNxxWUpUwEJXRPRFBCtyfhqRk56a7f+tBRojCvDpkx Zc7ZFoQujwhK6PbUVjfA+0QxigrqYLYA5tKOESYzOE833FTOWRaEboEIShAAVFU2ICrIiAdXtB8d p7e/xMmtES7L3zeCrmgRHWxigQpCd0QEJQgK4+FxGG5u+50XC4LwnoigBEFhPDw84Obm5rxYEIT3 RAQlCAojghIEZRBBCYLCiKAEQRlEUIKgMCIoQVAGEZQgKIwIShCUQQQlCAojghIEZRBBCYLCiKAE QRlEUIKgMCIoQVAGEZQgKIwIShCUQQQlCAojghIEZRBBCYLCiKAEQRlEUIKgMCIoQVAGEZQgKIwI ShCUQQQlCAojghIEZRBBCYLCiKAEQRlEUIKgMCIoQVAGEZQgKIwIShCUQQQlCApz5MgRHDhwwHmx IAjviQhKEBRi9OjRGDduHHr37o1ff/2VX9OyvLw856SCILwDIihBUIhvv/0WX331lUP07dsXNTU1 zkkFQXgHRFCCoBDe3t4Ocvrss89w//5952SCILwjIihBUIimpiZ88cUXzYL67bffUFdX55xMEIR3 RAQlCAoSEhLCkvr888/h6+vrvFoQhPdABCUIClJfX49vvvkG/fr1Q2Njo/NqQRDeAxGU0CEpNdYh L6UCecmdLy4cC8DJA3ddlneGyE+tRLlJuiWFjoEISuhwJL8oRfANPQqy66BW1Uu0YeRn1SLwihbZ CeXOt0UQ2hwRlNChqKluwKNbehiNTTAaIdEOYTIB906WoL5WuiiF9kUEJXQotIXVSI+vcik0Jdo2 Yp6W41V5vfPtEYQ2RQQldCi0BdXISKh2KTAl2jbiwitEUEK7I4ISOhQiqNYLjb4GR09eQEpKEXfj Oa+3DxGU0BEQQQkdipYEZTA0wmSqgdFIy+vecXyK0tA2zsutkZtrRnHxKxgMtS7rXIOOScemaOBl BgP9bYTRWO+UH3pt22ctDIZ3yatr0DmXlLzJf0nJK+j1lA8K1/R/GvlGlM2dgcof/wVjr6+xbehg zJ49FxkZ2rdeSxGU0BEQQQkdipYEFRaWiEGDhmD+/CUYNWoc7twJai5Y39YSMJubMHnydJSWWv+3 T0evg4Ke4+zZazh69JzDcuf90LK5cxdjwYKlWLp0DXr37gOttgbe3g8RFhaP7dv3IyWlsHlbk6kJ w4ePQlkZsGTJKhbNn+07N9cAnY4k9yZNYWEZVqzYgAcPnvP/T5/GYc2azQgKeoYdO9zeml/n/zks QMGMqbD0/AqVP3+Jyl7Wv7pf/40tQwdi4cLFSEzMdxGpCEroCIighA7F2wR1/PhFLoArKoC+ffux gIKDI7F9uxvu3AlGSUk1PD0DOD1J4eHDl7h0yQtmMxARkYadOw/g5MnL0OnqeP2ZM9dZLr6+j3kb 6vbaufMgjhw571LoL1y4HLm5Wt6Xv38oQkKiEBOTg8xMDXbvdoeX1wNs3boPUVEZLKjRoyewoDw9 A7ngT0/XYNcud7i7n+SWl1Zbi5Mnr/C2a9du5dbR3bsPsXnzbmg0tbhxw4/XXb/ug6wsAyZNmo4j R86hoKAc/v5hLGc61y1b9iAmJpvzGRhI8jrA14nO0V5Q6ddvwpKTg+JF82D56ctmUVX0+AwxQ/ph 0aFTeP48WQQldDhEUEKH4m2CWrFiHe7dC4K7+wns338EBQVmrFy5AaWljTh16jIiIhIwfvxklJRU wcsrEDk5RgwfPgKlpQ0YO3Yi9PpahIbGITW1BFFRmYiLy4bF0ogVK9ajqKgS48ZNglpdifDwRBw8 eNJFUCSzPXsOY8SIMTCZGllKz57F87IbN+7BYKjHL7/0RmmpVVAk0lmzFnDa4cNH8r4TEnKxYcMO 3Lp1H76+ISgqKseCBctgsTThxx97IDu7BJmZevj6PuJlmzfvQmamGtu27YVKVYnCQgPWrduG0NBY HDhwHDpdLSZMmMLneOjQaT4fb+9g+Pk9crh+jx++wOqBA5B48wYsaWkoWb4IsWPH4PLF2zhzww/H r3ujuLhSBCV0OERQQofibYKiwpqEMHjwMOh0Vbh9OxArV65nQVBLIiAgHOfOXcezZwncDVhWRl1t I/nv5ct3MHHiVMyaNR/Z2XruQps9eyFvS8sjItK5JUMyKi8HevX6xUVQSUk5KCwsxc2bfvDxCYGX VxDnh1o61MVHaZcvXwu1usZBUAUFZViyZDWvLy9vwq+/9uY8bt68E3fvPuBWk8VCvyU1jtOQKBYv Xolduw5i6tQZ3P22c6cbtNo6qFQGrF+/DceOXURkpK3F08Atu1WrNmL79n1YvXoTrl3zbs5/qQn4 9owKfx+xHKP+GI6ds8Yj5e5FXD55Bgd3j8IR/xVIyEtyuN4iKKGjIIISOhRvExR1XdHrM2euIijo BeLj83HixCUeY4qNzUZiYh63hBYvXsWtCetY0EiYTLW4dy8YZnMjUlOLWQjUaiJx0LbTps3mLrjJ k2dwt6Fa/Yr34Syo/HwtiyQ+vgD79h12ENTz54m8r6FDh3OLzl5Q1KVHrS46Pu1/6tSZuH7dF4GB oYiPz4HJVM+CmTBhKh+LWmaBgWHcRbhs2RokJDgKilpQdD7UxUdpFi1agexsI3btOsD5u3LlroOg TEYgIUePsWei8N2vg7D56HF4Jj/Dg9wcBKhycTkxAKsOzePrIYISOhoiKKFD0ZKgnj1LxunT1/g1 zWQbM2YCF/Y0/jR06DCsWbMFen0DF9ATJ05BXp6ZBUXddtTlRmNRQ4b8jj/+GMUtqNxcE/r3H4hp 02Zh714PZGSUwNf3CYYMGcbdhNRdZy8oaqn16fMbB7XCaL239yMW08WLt3kfv/8+HPfuPebjkuxI UCQPGoMKDo7gfZOoqFvu7t0gzJgxl4/fu3df5Ocb+H86HrXShg0bwS07N7djiIrKwr59Hiwo6uLb unUvt5pIsv36DYKPz2PuDqR80zZnz17H+fM3Ha7fo1gdzoekIi8/H6v3H8J32w/if9nlj/95hQ/W +ERhj384IiJSRFBCh0MEJXQoWhLUnwW1PpyXtRTO6Vqa8dbSsncN5/07h/2+SWA0wYJadydPXnKZ oOCc/m3hfMw/28ZMrbPwYni9yIbBUopDT5Owxi8aKy9Hw2A/qeJ1iKCEjoAISuhQvK+gOmNQK/D+ /VCepZeYaB2/aqswG4FrT/JxxD8DRv4sl2saChGU0BEQQQkdiu4gqM4QIiihIyCCEjoUIqiOESIo oSMgghI6FAZ1DVKiHT+TI9H2ERlkQVWlCEpoX0RQQoeisaEJXkfUb/2OOInWD5MZuLFfhYZ6+T0o oX0RQQkdDmpFXd5ZgJgn5UiOqux0kRpdhdToapflnSGiHpfh8q5CmHW1zrdFENocEZTQIWlqauq0 cejwIbi57XdZ3plCEDoCIihBUBgPDw+4ubk5LxYE4T0RQQmCwoigBEEZRFCCoDAiKEFQBhGUICiM CEoQlEEEJQgKI4ISBGUQQQmCwoigBEEZRFCCoDAiKEFQBhGUICiMCEoQlEEEJQgKI4ISBGUQQQmC woigBEEZRFCCoDAiKEFQBhGUICiMCEoQlEEEJQgKI4ISBGUQQQmCwoigBEEZRFCCoDAiKEFQBhGU ICiMCEoQlEEEJQgKI4ISBGUQQQmCwoigBEEZRFCCoBAZGRnIzMzE1q1bsWHDBn5Ny6qqqpyTCoLw DoigBEEhPvnkE3z++ef44osvOOj1v/71LxQVFTknFQThHRBBCYJCjB8/Hl999VVzfPnll1ixYgWa mpqckwqC8A6IoARBIcrKyvDpp582C4paUQUFBc7JBEF4R0RQgqAg1IqilhPJadmyZc6rBUF4D0RQ gqAgZrOZx6KoBZWfn++8WhCE90AEJQgKQuNNc+bMxuIli5xXCYLwnoighFbnua8BARc1CLqm7xbh f6EIPudULsu7atC9jQw0orFRJoMIyiKCElqVxze1yE6rgdEImEwSXTHo3qbFvULEfaPz7ReEj0IE JbQqtz3UXIBJdPEwAQ+u6FBf2+j8CAjCByOCElqVoGsG18JMoktGyG0jaqpEUIJyiKCEViX4ugiq s4bB0AStphY6XR2/dl7vHI+9RFCCsoighFalrQRlGwvprqH0+ev19bjpeQf7Tl3GgWt+ePD0JXS6 epd09iGCEpRGBCW0Ki0JKioqE/v3H4WHx1mo1ZUu6yny8koRG5vrsrylyMkxYvPmXThz5hpCQqJd 1r8tMjJ0iIrKcFluH7TvI0fO4dixCxzh4Ykuaah1kZ2tc1nuHDpdAwIDn7ssf1s8fPgSKlWZy3L7 IDEFBIRjx44DuHXrPozGv27pvEtcu34LKSUWaF41wTu/AV55DXgckwm9vsElrS1EUILSiKCEVsVZ UCUlVZg4cSqKiyuRklKAceMmwmy2FrQkA43GOuMvMbEQXl5B/Jpq81lZJABr4Utps7MN0GjqXu+3 CcXFFUhMVHFaWmY2NyEzUwuDodGlIKXj0brnz1Nx7drd1/mqRk6OASaTYwEfHZ2BLVv2ID1dzaFS VfDx8/MtKCws59eFhRWYMWMe1OpX3MrQ663H1Ghqm/OblaXlwn3Tpp28jLrNsrP1LsezrqtFXp4J u3e7IyOjmJepVOUoKCh1aSn5+j7G1q37oFZX4/jxC7h8+Q4vp2NlZGiahWK7vsXFr+yO08DXga6H 8/E9PB8gxdyI4CKrnDgS1EhLs+anpRBBCUojghJaFVdBVWPw4KGIiclmsWi1VIg3Ydu2fTh37gZW rFiP5GRVs6CKiqyF/7Vr3li6dA0Mhnrs23cER46cxdy5i1kU587dxMGDJ3D27HUu1KnAHTNmIi5d 8sT06XOhVlc1H99iAUaOHMv7mz9/Ka5f90ZkZDpWrdqAixc9sWHDDof8kqB27z7E4iwpqeHW0qlT V7g1tX37fty9+wCenoEYNmwE/PzCcPHibWRm6lgICxcuh9HYiGXL1uDixVtYv347yy4314BZsxZw i2/JktUOrRKVqhQzZszBpUu3eZ+ZmcXw9AyAmxu1OM9wHm1p6TwHDBgCk8kqQrqWdC4k80WLVuDm TX+MGTMepaXW63v27A2sW7cFT57EsABnz16ICxducl7sxUf7Of8oDvdet5xs4ZumR+jTGIfrYx8i KEFpRFBCq+IsKIqUlGLs2OGGAQMGc6Gdm6vHuHGTEBoag4CAUKxatbFZUMePX8TVq3fw9GkMyysu Lg2jR4+DydTIrYakpEKo1WWIjEzFvXsPMWzYSISGxuPq1Xt8rKCgF7hw4U2hnpBQgDNnrvNr6g68 dcsbc+cuga/vQz7Gb78NYInZ0sfEZGL8+CnYv/8YS5BaPCSe8+dvIitLD622iltMc+cu4vQkSxIU yWPOnEXIyTFh/fptvK6oqAqbN+/E0aPn8Px5IkuBzt/WSqK4ds0HoaGxvG7jxp3IySnGTz/1RHh4 DB4/jsKQIcNRWmpNS39/+aU3zGbHbje9vhYZGSXw83vM+6c8jBgxBl5e/vxar69xOC7Ji1pS9vu4 //Qlbr8Wk3deA8I0jbjuE4D8fLNDOvsQQQlKI4ISWhVnQeXlWTjoNUmGWjPJyUUsHxpvKSwsg0bz qllQ27a5IT4+j5eTiKh2P3XqLG51UWuGutEWLVqOJ0+iodOVY+TIcfD1fYKAAOtYz7Nn8SwE2/Ej IlLh5fWAX4eFJeLmzbuYPHk6srO1r4/tOOZDLShqsdm3MCyWBt7Pli17sXTpau5GtBcUjW2RoKZP n4OUFDV27XLndZRXEhS1yOLjreNrO3ceQHJyQfO+T568jNhYal2CW2jZ2cXo3bsviops16YcBoM1 LeWJxGMwWFtQ1M1J43pPn0axFIuKLNziyszUo7S0Dk+fJmDlyvXYu9cDixatRGGhnrc7dOg0EhLy HM6bpBv8LAbeWeXwyzTj4nVPXL58GXfvWrtdWwoRlKA0IiihVXEWFI09USuAJkBQofj99z/AZKrn gpa6vqi1dOOGH7d0bt9+gMTEAu4io8kUkyfPQGGhCcOHj+YuKhIHTXKYMmUmjx9Ra+m33/rDZGrA L7/8Cq32FcvLOn5lPT6J4+eff4FGU4kZM+bjxg1v7k6j7sGionL07NnLoQVFglq7djN3nVGkphZj 1KixSE1VITVVzd2MFksTRowYDY2miqVHXYChoXEYPPh3ljCdr0plwaZNu7B1615u7a1cuQHFxWUY OXIMdDrruBtFamoRlixZhYICE/r3H8hdfPPmLUF0dBa3FknO9rJMSSnCH3+M4nEwknxYWDy8vYNx 4cItHhMbOHAot/QGDBiEnBw9X6+NG3fgxYskbN/uxpWB3r1/cxmHar5fRVW8b6oQUGty8uRJOHeO WqCuY2ciKEFpRFBCq+IsKAqDoQH+/qF48OBFc8FIA/M04B8XZ63J03iPraVFLRIqdG0z/qiAppaI bcaeVlvD3XtpaSWIjc3hFg2NO92+HYjCwlKX4xcXV+HOnSD+S11etD8aE6OWF8nNOe2zZ4k8e4+C hEnSIRlS/mmMidJRvr29H3IXII3xkAioK5M/S6St4+PRX1pG6Ulu9+6FNE8KsQ9qdQUGPuOWD62n a0Tn+ujRyxZFQi2r27cDuGvRtuzZsyTOY1HRKz4Ho7Ger7n9LEcS3t27wS77+7N4+DACkydPxuHD J10kJYISlEYEJbQqLQnqY4OEQt101J3lvE6i9cPL6z6GDx/hMgNRBCUojQhKaFVaQ1AULbUkJNom qILQ0vR9EZSgNCIooVVpLUFJdLwQQQlKI4ISWhURVPcJEZSgNCIooVW5uO3NFGqJrhvU7ed3ToOG BhGUoBwiKKFVSX5eiqSICpjMNKAu0RWD7m3M0zIkPSt1vv2C8FGIoIRWJzuhArcOqHB1d2G3iGNr EnF0daLL8q4atw6qkJ1Y4XzbBeGjEUEJgsIc9jgEN7f9zosFQXhPRFCCoDAeHh5wc3NzXiwIwnsi ghIEhRFBCYIyiKAEQWFEUIKgDCIoQVAYEZQgKIMIShAURgQlCMogghIEhRFBCYIyiKAEQWFEUIKg DCIoQVAYEZQgKIMIShAURgQlCMogghIEhRFBCYIyiKAEQWFEUIKgDCIoQVAYEZQgKIMIShAURgQl CMogghIEhRFBCYIyiKAEQWFEUIKgDCIoQVAYEZQgKIMIShAURgQlCMogghIEhRFBCYIyiKAEQSEG DRqEoUOHomfPnhz0mpZlZmY6JxUE4R0QQQmCQnz11VcuQaKqra11TioIwjsgghIEhbh69Sq+/PLL Zjl9/vnnuHfvnnMyQRDeERGUICjIF1980Syo3r17o6amxjmJIAjviAhKEBTk7t27LClqPd26dct5 tSAI74EIShAUpK6uDt988w369OkjY0+C8JGIoIQOS1NTE9R5VciOr+hUcfLAXXjsvumyvKOHJr/K +RYIQrsighI6Jk3Ahc35yEioQnFhXecKVT3UqnrX5R05CuqQGvsKnu4q1NU0Ot8NQWgXRFBCh8T3 lBomUxOMRki0YZQU1eO5n8H5dghCuyCCEjok1/erXApPidYPkxnwP6dxvh2C0C6IoIQOiQiqfUIE JXQkRFBCh0QEpXxY9u9H2eK5MCbluqyzhQhK6EiIoIQOSUuC0usbYTBYg147r//waEJSUgEKC8uh 0dS1sP7tQXlxXvZXYTsHCrPZdX1L8SHHcQgzUDZ7Cip7fg5TVKLr+tchghI6EiIooUPiKqgmjBgx BmvWbMG6dVuxZctul8L95ct0REVluhS6fxVabT2CgyNw/vwtnDt302X920KtrsLq1ZtgMrmu+7M4 dOgMli1bi/Xrt2Hq1FkoLCxzSWMfdJ69ev0Ki8V13btFEyxuB1Dx2/eo/PlLlI8dCmOmpoV0Iiih YyGCEjokLQlq/PgpMBgaWAgUjx5FITNTi6KiCnh5BWPBgqWYP38JcnMtOHnyEs6du4GwsHiEhSVg xYr12L//CPT6ei7wt27di23b9kKvb4DB0IRjxy6wNB49esnHy8uzYOXKDTh+/KJLIV5c/IrXXb3q zdtQXoKCXmDJklV48OA5pykoKMX69dv5OCUlVQ7bHzhwAnFx2bxddrYekyfP5PMLDY3H8uXrcODA cc4TtZp27NjP6X/4oQdKS4H0dA2fC52bbX979rhzfjIytC55NeoqYUoOginhPsp+/wGVPb+E+eR6 mJKDUZb9jI9rn14EJXQkRFBCh6QlQQ0d+ge2bduPLVv2ori4GjpdFX7/3bqsoMCCgIDHCAqKgNnc hD59fkNYWByKi8uwd68HLJZaPHgQhuDgSCxYsJzFkJlZyC2ge/ceITo6GaWldRgy5HeUlzegb9/+ MBqr4e//GGfPXn9TgJuAgQMH87rIyEQsWLAMiYl5LCKjsRarVm3kfS9fvgZqdTlyc43w8XnscC4k nNjYbH5NrSI6Vnl5Pdav3wGLpQ4PH4bC09OfW4spKTkwmarw2Wefw2iswh9/jITJVIMbN3zg5RWI U6cuIT2dxFSF/fuPurTmNFE3MeCT/8Kgz/8b4774B67/51MM+Py/+f/5/b+C0ejYdSiCEjoSIiih Q9KSoOxbULbld+4EYefOg/w6ICD0taCAHj1+QlmZdbuDB09i0KChGDZsBO7cCca///3v1+us3Wf5 +RZMmjSd13/33XfQamswf/5SPg6Jb+HCZc3HpFbMkCHD+H9qSVEL6uTJiwgLs47rvHiRiosXPbkl 9cMPP2LChKlITi5yOBdnQfXp0w+lpfXYteswBg8eyvun7sYJE6ZAq63lPH7//ffIydFg7dqtr1te BpYh5Y+O8/vvI+Dr6yhCOvcD8wZh04DPsfF1rLd7Pe7r/0JFXpzDNiIooSMhghI6JC0LajL0eprE QLV+mmRQj2nTZmHu3EXIyTEgMDAMgYHPHQSVmJiLjRt3sli8vYPg6RmI/v0HwmKpR3FxOU6duoIN G7YjLS2PZdG//yCUldWxrOj/hIRcbNu2rzkftOzXX/ugtLQJqalFWLRoBe7ff4wbN/xZHFeueHOX YmhoAsrKGrmVR2Nn1GXnKKgs7sKLikrHwoXLWXYbN27n/fv4PMLZszcwa9Z8qFQWWCyN+Oqrr6HR mDFlykw+v4iIFHh4nGEhms31KC1txOjR4xyOU6YuxrmlAxG+fQgujv8KlyZ83Rxec3sgZMtglASs E0EJHRYRlNAhaUlQ1KKYNm02pk+fwy2eixdvIztbh4yMEmzYsAN5eSYuwKn1Qi0KKuw1mhrMmbOQ x5tOnryMmzfv87jV5MnTeXliYj6ePInhrjqatLBixToWAO176dLVvJzGk+zz4u//lFtVNFFjx44D nJ5EtWHDNqxcuZ7/p25DaoUtXboGd+8GO2xP42N0/KlTZ/J2Wm01y43Ob/v2fTxWRi2ohIQ8zJw5 n/MxbtwkPp8TJy5j+fK1nC+1uhLJyYV8Tdav34qtW/c5tC7NceEoPzYC5SdGIffcZKQcHdscZden ofz4SA6j3TYiKKEjIYISOiSugrJ2r1GryBb2s9qcZ7hR2uaC2mwdO6KwzfxLTVWzDGzb2dbZzwy0 T+8czultfx0E4bQ/++WUf8qjc3rnfNJfyqP9+Tjny/4cHI4T/8wqoROjrKKyD9vyE6NEUEKHRQQl dEhaEpSSkZJShPj4t39gtUtEdi4svm6w+B74k7CO39lCBCV0JERQQoektQXVbYJaR38VdulFUEJH QgQldEhEUO0TIiihIyGCEjoc9EOF1/eJoNojaBzL/4KG74EgtDciKKFdqampgcViQW5uLu7evYtl y5bxz6WvnXEdGnWDSwEq0bqRn1WL1bNOYfac2bh48SIyMjKg1+tRWVmJxkb5IUOhbRFBCW1CbW0t jEYj0tLS4O/vj507d2LYsGH44Ycf8M0332DIkCFYsmQJTp8+jZcvX+LVq1e46VaI6CdlyEis6lSR lVTN4by8Q0dCFV4+KuUfitSW6ODt7Y1t27Zh1KhRfI++/vpr/PLLL3yPLl++jNjYWBQXF6OqSn4m Xmg9RFCColDXUFlZGde8AwICsH//fkyYMAG9evXib0MYOnQoVqxYgfPnzyMyMhIazdvHO2hfFl0t NPnVnSoO7T0Ptx2nXZZ39LAYap1vAUP3wWAwIDo6GpcuXcLq1au5QvGf//yHv3mDKhobN27ErVv0 2a0EbnFJa0tQAhGU8MFQ91xBQQGL6MCBA5gxYwZ69+6NHj16cAG2Zs0aXL16FS9evODaNrWiugMe Hh5wc3NzXtzloPtZVFSEZ8+ecXfgypUr0b9/fxYXPQNUMdmxYwe8vLyQnp6OiooK510Iwp8ighLe CRqDCA8Px7FjxzB79mz07duXW0S//vorli9fzt0+MTExLCJK250H2buLoN4GiaiwsJC7as+cOYP5 8+ezsL799lvuJpw6dSpXaB49egSz2dytnxXhzxFBCQ5QYUGS8fHxYfEMHDiQv1yVxiBoPMLd3R0R EREoKSnhgqihocF5F92e7i4oZ+iZqq+v565fEtfTp0+xefNmDB48GJ999hk/W/369cPixYt5ooxK pXLehdBNEUF1Y6jQSElJ4XGi33//HZ9//jn+9re/8aSFBQsWwNfXlyc2kIRoTEFquu+GCOrdoOeJ nit6DmkWJ41vUSXoq6++wv/4H/8DX3zxBcaMGYMTJ05wV7KMa3U/RFBdHHpTV1dXc1cKddHRmAB1 z33yyScsJJq8sGjRIq65Uhrh4xFBfTwkL5pAc/v2bX4+6Tml1taXX37JLa+jR48iPj4epaWlPBYm laeuiQiqC0Fv0vLycuTl5eHBgwdYt24dD1qTiGjgmmqn27dvR0hICM+0EloHEVTrQdIKCgrChg0b MHz4cJ5FaN/9TONelIYm8AidHxFUJ4Y+K5SVlcWfK9qyZUvzeBENSE+fPp3fsCQjk8kkNcw2RATV dlD3s1arRWBgIPbs2YPx48fz5B2KyZMnc0uLZhlSGhkv7XyIoDoJJBi1Ws0to927d3ONkVpFP/74 I2bOnInjx48jLCyMa48io/ZFBNW+ULc2TcYIDg7Gvn37MG7cOB5XpW5CmlF47tw5nnEqHzLu+Iig OihU26PWEU3TnTVrFr+5qP+dPuhKU3RpJhS9CbvLZ4s6EyKojgf1NmRmZvLEH+r6ps/rUW8DTQ7a unVr85R3oWMhgupAZGdns3zoTUP96vQGmjt3Lu7du8ezmOSDjp0DEVTHhyqAJCSaxUqzBOmD5VQB /Pnnn7Fw4ULuMqTJRUL7IoJqR6iLgT5lT60imlVHs5TmzJnD37xAMqLpt9Jd1/kQQXU+6H1GvRH0 +T76Gi4az/3nP//JY1nU4srJyXHeRGgDRFBtCNXaaPYcjSFR64iERP3jVFuTrrqugwiq60A9FzT5 4qeffmJh0SQM+rgGzRKUymPrI4JqZUhK9H1l1HVHtTHqQqBv8qbxI6FrIoLqmlCX3/Xr13l6O3UH TpkyhSdbSFdg6yGCaiWoRUSziP744w+WEn1Alj6fJHR9RFBdH/rapitXrnD3PM2mpVm0Op3OOZnw kYigFIamuNLPDtCsu4kTJ+Lx48eoq6tzTiZ0YURQ3YvU1FSsWrWKJzZRRZQ+dygogwhKQaKiovDb b7/xzwzQQyt0T0RQ3ROaYEFT1unbLah1JWNUH48ISiEOHTrEEx/om77lwezeiKC6L/Tepx/rpIoq feGyTH76OERQCkCfo6AP/knTXiBEUAKJadKkSfwhe6mwfjgiqA/A9vs2FDTxgfqe6Wcp5HNL3Rvb M3HkyBGetWn7X56J7gfN3qV7TxOkqEVlexbk+wDfDxHUB0A/qEYfrKX49NNPecqp7ecr5Pu9ui// +Mc/mj9wTUGvaVl+fr5zUqGLQ98AQ/efygYqI+j1v/71L2zcuNE5qfAniKA+EGo10Q+r2YJ+XO3a tWvOyYRuxMiRIx2eCSqc6LeMhO4HfVcmVVjtnwf6wlr6/Srh3RFBfSABAQEsJdvDR98qLt+V172h b5unlpN9pYW+8FfoftDHTegzUlRJsVVW6GfuhfdDBPWBUH8yfUDPVhBdvHjROYnQDRk7dqy0ngSG viHdVomlv1KBfX9EUB8B/bInNeN79uyJyspK59VCN4S+TcA29iBfMNq9ockx9IvW9CzI2NOHIYL6 COgLI3v0+AHnL5x1XiV0U6hQmjJ1MubOm+O8SuiGREQ8x3//47/l22Q+kHYXVFpUGc5vzseZ9Xmd Ms5uKMCZDa7LO0vcOqhCfV2j821pVSosdbi2t9AlL10lzm7Ix9lO/Ez8VVzbV4iaqrZ9ZqoqG/hZ dc5Lh4911ufBZXkHj9Pr8xBwvsT5NrQ57SqohFALkl9WwmQGjEaJ9gi69he25qOpsW0+q1NZWge/ syUwmZtc8iLROcJkAa7vL0JDfdtIimR497gaRqM8M20ZGk0jPN1V7fo5vnYVlP95jctFkWj70Goa kRVX7nx7WoXIACPUxfUueZDoXGEwANHBRufb2yokhlqgyq11yYNE60diRCXMuvb7uqZ2FdSjWwaX CyLR9mG2ALGP2uZrmsLu6qHTNrrkQaJzBbW8gy5rnG9vqxAdbEJJcYNLHiRaPzKTqqHObb8vHxBB SYigJN47RFCdKwyGRujzsqDPS3975KbDoClz2E4E1cLFlGjbEEFJvG+IoDpXGHS1eLb8JyRv+l+R vOn/0WJk7v//wJzm47CdCMrpQmq1tTh8+DS2bduL4uJXvOz8+RswtzCRQqOpg7d3sMvyvwra15Ur d12WO4e7+3EcPHgcN2/6cg3EeT2FTtcAvb7ldS2FVvtu4y/FxZUID0/iPBw6dIL/url5gL4w3Tmt c2i1dS7LrNEIf/+nLsvbW1APHoTzdT569BxSU0tc8vchkZGhRWxststyuvdr1mzGihXrcf78Tb4m zmlaCrruly7d/tOBeovF9swcw8WLnn9yH1yD0oaFxbsst657t2dGo6nCs2dJOHr07Ovn5uR7PDNv O0YTfH0fu+yjvQX18OFLFBQ41vbbM0ymJpw9e93lOtmHTlfH94aejwsXbnFZ55zmbVFQUIpHj6Jc llv3S9fm7c8lh64WIfN7w/TsJqKzshGdnY3I138p8lQZsHj+v2DO8HXYTgRldzFIAiNHjkVSUgFU qlL06dMXFksD+vcfhPJyaxr6KisKW/rcXAu/pgeDltNf22uXm/R6e/pANx3HPi0VLvbp6P9Ro8ZB papEaGgc5s9fymlpuX36I0fOISdH67B/27Ht909/qXAcPnw0qqvfrKd1Lcl3//4j/AAXFJTjzJlr ePDgBfLzrW9ISm/bpy2vtuW0bOrUWSgre7PsTdom+Pg8Rna243Vvb0Ft3rwbyckqLnBWrFiH4OAI h7zbXx/76+t6fm+uR0lJDYqKqpr/t9+mtLQepaV1MBiq37pf+7A9M7///gdfw7fdN/qs9g8//Ai1 +hXi43MxYcJULrjsn0fn49jWUX5J0Pb7o/1TTJ48nY9vn9752BTHj19k0dEz8+BBGE6fvtb8zDhv Z3tmbM/ljBlzmvPlnDYyMg2RkakOx2pvQe3efQgpKcUO+bWdl/172Xbvbc+H7Xl5+jQOV69aWwtv uyf219h5v/ZByysqmtC3b39+3dL2FCUlVRgzZgI/H0lJhfjjj9FcQaL0tn07P6u2/KWmFmDv3iMu x6W/VOEyGKzXx3Zsl7y+FlRJxANM9i3A+qdF0L+qw5LgQkz0zcf5ODXKbv/vIih7nAWVkJCHJUtW NT9M4eHJfOEHDBjMb9CTJy9j2bI1WLJkNbeANJparFq1CVlZesyevRCrV2/CnDmL+O/EidMQGupY I7161RsLFy5l2YwYMZrlR3/d3I7y3/T0N7V3usFjx07k1/SmHzduMtdQf/99ODw8zqBnz17IyNDx Q7Z48SqoVBYsX74Oe/YcQp8+v0Gnq8WNG35YunQ1li5dhcWLV+Dhwxfo0aMnP1BGYz2mT5+NvXsP Y+zYCdBoapqPrdVWYc6chc3/X77shbCwRH6t19diyJBh2LfvMObPXwazuREDBw6ByVSDfv0Gwtf3 CXr37oM9e9xRUlKNYcNGYNOmHZg8eQZf1/x8A3bscHO4Lu0tqC1b9jRLkwr0IUOGw2xu4Gt98OAJ jBo1FgZDPS5fvsPPx9SpMxESEsXL6FqsXLke69dvQ2FhGcuOzjk+Pp+vRXa2DoMGDcXs2fNx65Y/ 12L79OmHw4fP8HWjfdy86YdZs+bjjz9GITY2yyFv1EKnZ2vBguUYPHgozOYmrgDQNaX0Gs0byZGg evT46XUh1ciFUWRkOtau3YrRo6myU4aBAwdj8eKV3EtA+1qyZCV27NiPefOW4sSJi5znx4+jX0tj Lp/nL7/0xsqVG2CxNGLevCXYsGEbhg8fCbXaKmAKg6EW06bNaS4Uw8Ji+XpZ11ufc6r0jB8/BSZT PVfQ1OpSroQ9evSSK4Nbt+7l55Kee7onQ4fSfWiCTleDBQuWOVQC2ltQe/YcRmpqMc6cuY5ly9Zi 4cLlOHv2Bl9bEoVKVY7nz5MxYcIUfi/Mnr2A3yt9+/bj/0eMGIWysibcvh3A206dOhsRESkoLDRy 2kWL6H4P42tMZc3y5Wv5vvv5OfZA3LsXwveEtunffyCXKfS+pHtE10+jsfYCUVD5QeUI3SOLhZ7z 35GeruP7QpUZktCwYSO5fDp+/BK/F+bOXYSdOw/w+9fN7Rhu3LiHkJCXvA96f6SllXD5uHbtFr5P c+cuxqZNO7kMovvcnNfXgtK+DMY0nxd4km9ETHEJVKVlWP5QhfPxIigXnAX19Gk89u1zrCXQjaAb QC2owsJyJCXl85t+2rRZLKh167axoDZs2MFp6Y2Uk6PhWsTChcua96PX12PSpOnN+7S2oJq4YIyJ ycKVK97w9LzfnJ4KGZIQvVGnTJkBL68HvA8q8KKjs1iWiYl5XNBlZJRwjYjESMvi4vKwbt1WXL/u g4CAp821YJ2uGiNGjOFzCQ1N5DcKpb906Sb8/UObj52bq8ORI2eb/7cXFNWSqcuFttu2bR+iotK4 UKUHPC3NWqOkNxvl/+DBk3j+PImX0UObk2OCXt+AmTPnO9TuOpKg6L4NGDAIwcEvceLEJT5PEr2X lx+WL18PX98QZGdruXX54EEE/P2f8HZeXkHcmraJODo6E/fvh2LXroN8Xeh8qaCx3kM9rz906DRi YrIxadI0GAxNfM169+7bfG2ohU4VHXpOKF+DB/+OrCwDFyi0Pjj4OU6fvtp8HiQo+lobKujnzFmA U6euIC4uE5s27eJ9UoFna7FQgZaQUMDnTttmZxtx7Nh5fg6ePInhNFTZKimp5HOivMXE5GD3bndO HxAQ2twCoCD5bd1q3ReFvaBCQqK5+4mu5alTV+Hv/xi5uWauGFFLglqFJEPKm5dXIO7cCeLt6Lq/ eEEtpyYWuH2tvKMIis7nyZNIfk/16vUrCzUiIp3fIySX9HQ132t631GlccuW3XxtN2zYzhIjcdN1 SU3Nw7fffofiYlOzjGnfMTGpmDVrAYKCniEnR4eSkjfdcpSGKgpGYx3LjuSXkJDJrTtaT9tcu/am wCdBkTho+IL2ee7cDX6e5sxZzPuiSgrlia7zmDHjuUeB8kLbJibmYt++o7h1yw+PH0fxOdA50TNH 5Q4Nd9A9p4oPpX/2LJHvX/M1ey0oY8wj9PGYheX+Z7HxuQ7LH2sw9tYz7A+6J4JyxllQaWlFmD9/ SXNN7dYtEkbda0E18s26ffs+d5/Qm5YKKZug6KGgm0ZdRIWFZi5Q5s1bbPdwVGP69Ln8mh4AEpRe X8O17fDwBNy65eNwQ20tKGttx7osKiqD80dSoJpbXFxOs6BevEji2vuzZwkciYkFuH7dFy9fpvI+ SHJa7RtB+fg8weHDp16nT2R5ND8UmRouUGz/2wuK3lj374c1b6dSVaCwsJRbA8nJhZzGJigqKOPi rOMw1BWZnFzEhS4VRh1VUFptDRcaVGG4evVe83lSAU73m1o71lbpGly7do+7n2i7vDwTd2dRwUX/ 2wRFFYX8fGs3cE4OVUay+bmIjk6Hh8c5rmVTy4OeOeoW/f77H5rvN40tjh9vrfHS80Q1YqqcXLrk xeufPYuDm9vx5vOwtaBoP7Z9xMZmsijo/zetK2DRohV48iQO7u6nOF1hYcVrQYVxq4mOSffJXlBh YQk4efLS62PH4/jxy83HpjEKmzgp7AVFz+HVq3ftnjULX2eqrT99GusgKGqFPHxo7WKlcR5rxanp dQvkzT3rKIKiCsKLFwn8nqL3MgkqOjob9+49xPnzt+DmdgTx8dncYjKba/Drr31ZEFRxoWtArVzb e/b58xSoVCbuBaFrQV3rL1+mcKWOxqGp9U7Pnq18or8jR47hFiq1iKjlRhVCqkTS+hcvknHs2IXm PNtaUPZdcCSoc+doLJTKiJlc6baWFzORnq7F1q37eB1VzG2CsrWgqMJkL6jAwLDmfSUk5MPD400l 1yYoXZQXlh77BRPPfotZnruw2n8fJpz4F66Eb0bZ7f+3CMoeZ0FR4UmFx717wXj6NJoLB2oy9+s3 AGVl9VyrSEsr5JtEXRN0M9es2YLMTD127XLnm0ZdgDZB2XeT0cNEXQGhobHcUqJCkGorCxYsQWam mpvI1669qZHSAzR69HiH/Pn6PmJxZGSoublPLS96E1Ctnmqw1H2SlEQtIi8EB7/gFlRkZArni2rp 1HVHNdH09EKuxVMrMDW1kN8wNAZjO05xcRnnx/Y/Dc6Hhibwa5Lz6tUbeTsa6KeuRbpmen01fvnF WoOkwiQlpQBPn8awpNLTVSwweiMVF5c7vMko2ltQ1MLw8QnBgwfPOO/0BqTrSTX8tDQVFyZ0PtQK DAuLQ3JyDr85Cwos3AWSkJDN21EhbWthUGWCumNIUocPU0synuXu5/eEKyKpqSouBKiyQV3GT55E cWvswIE3wqGgbR49iuQCj7pwqJvI2rWiwvr121mEtrRUWNgLjiImJqNZaPSskHjpmJRvvb6OW2gp Kfnc7UqFGU3soJYQCYZakmp1BReMVEDRc02VJrr31OWXkJDbfBydrqq5tk0RGhrTfFyqwJCA6Jyp EkV5p+eLnh3qPjQY6rhbibrYk5MLuJuM0owbN4kLcconbd+RWlB0n60tqCt8b0lQQ4cOsxNUMLZv 38/3NSIiiXtDtNpXfN3v3g3iMTo6N2tFIYorG9ZrYsTu3Qf5/UHyi45O5nIjIiKRnzvqbrZdB0pD FaWwsBie6PPbbwO429TWXUeV5cTE/OY8W8egrJVe2zKqXFOlgF5TheLsWTpmGncrm0wN3Cqj9y+d 7/79RxEeHs8Cff48gX/ih545WkcypN6d6dPn8LHpPU4VsuZr9lpQ+pe3se/Zbzj0/DdcjemPm1G/ 4VrkbwjP2odSaUE54iwoChqLuXfvEW7fDoRabe3ff/gwkh+GzEwdFy5xcbk844lquC9fZvAAMy2j tFSjpjEjSm/r3rIFDU56egZwAUE1R+q6oULc0zOQx5+ohWGf3lq7tM9fExd4d+8Gc608L6+UZxpS TZ/ylpOj59oqyZWOn56u4W5J2taa3wYeJ7l06Q7nOSVFxVIk0Tkep5EfMNuDnJqqRn5+aXMeaMCa tqOuK7pGNKmE1pG8aFIH9UtTnqjVSLO6KE+2VgRdk4CAMIfjtbegqFXi5xfCgrB1U1JQYUnnYRsX ojc4dT/R/aLXdC1iYjK5G4VaUDQTLTbW+hxQy5Jqp1Tp8fN7xOODNCZH62iiiLf3I64kUFeXbb9U A3We1UfbUPcuXTfqeqNjUrcRXX/nWYJ0v6igsl9G+aD7Z/2/ia897Y+eRVpGrWXaFxUmiYmFnN/A wHBOR8+yTlfP+yDZFBW9Qlqamis+dK/tj0P7prE4W8UjL89id1zr+C61OKnVT92ctpZnRoaGK3h0 rWiMlp5nOi/Kk21MlnoISK72x2tvQdH7nbrw6D1LFRM6b2p50nUoLKzkgp+uMZUjVMGgliNdVxrj o9aSj88DrFu3hSV1504wdwnSvadWOl0jOgbtm96vVCbRPaOyo6io0iEfNKZJy2kiFY0dUj5s98i2 H1vQ+9/apfpmmbUcsD7ztD4o6Dl3V1ufb2r1G/k9QO8FGjqg8wsMfMYtWzoneuboPX/58l3k5ZmR mlrE945ajQ4z+14LyvLsDLILriC74DJyCy6jUHUFRaorMKh9USqz+BxpSVAS1qDaMcnTefnHRSP2 7z/GYrZf3t6Cau149iyZW2k2QXXVILnbuueUiybuHqbJE/bL21tQHxIkAmqBksipReg84aFLh7YW Cbt6oNTz/4kyr7eE9/8Jc7q3w3YiKOcLKfE6SCJ/8dmG9wyaCODcQqDo6oKi837b59i6Wih9nm+7 dp1RUNao57FnZ+F29eD3vsYEo9b458HX5s12IqgWLqZE20ZXF5SE8tF5BSXxPtGtBfXwpt7lgki0 fYigJN47TG0rKHWRCKo9IjOxGwvK55QaBoW7sSTeP4oK6pGbXOF8e1qFyAcmqPLf/SuAJDpmaNQN iHtidr69rULSMwty0x27niTaJmKelqHU0E1/biPlRSlehlhnp1GXgUQbhwkoKa7Hjf0q51vTalSW 1cP3rIZ/g8olPxKdIrQlDfxDdg0NbfWDhQ3wOV3C3XzOeZFopTABeVm18DlV7Hw72pR2FRSRGVuO oCtaPLjc+SLwshZndkbjzolcl3WdISj/T710eFVe73xbWhX6AbSQWzqX/HSVuHowBVcPJrss7xqh 4XtXZqpzvq2tCh3viZeen1nXPHXcuH9BDY+N4S7LO3oEXtIg4r4R9XVtUwl5G+0uqM4M/RTyxIkT EBr61HmV0I3x8DgEN7f9zouFboil1IJPP/vEebHwjoigPgIS1KRJkxAaGuq8SujGeHh4wM3NzXmx 0A2xWCz4/PPPnRcL74gI6iNZuHAh/P39nRcL3RgRlGCjuLgY//73v50XC++ICOojcXd35xAEGyIo wcaDBw8wePBg58XCOyKC+kji4uLQr18/NDQ0OK8SuikiKMHG+PHjce/ePefFwjsigvpI6urqMGjQ IOnmE5oRQQlEcnIyvv76a9TWtt/niDo7IigFSEpKwnfffYf09HTnVUI3RAQlGAwG/PLLL9zFJ3w4 IiiFuH//Pr755htER0c7rxK6GSKo7g1NjOjduzeOHTuGxsb2/RxRZ0cEpSAkpy+++AI7duxwXiV0 I0RQ3RP62Mndu3fx1Vdf4caNGyInBRBBKQz1N48YMYL7nl+8eOG8WugGiKC6H9Sl99tvv+Gnn36C StV2Xx3W1RFBtRI0HvXzzz/zAxsWFsbiohqW0PURQXUPaOZufn4+V0jpw7ienp7OSYSPRATVypCc fv/9d/6w3pEjR1BUVCRN/y6OCKrrQpVMk8kEPz8/9OnTBz179sSFCxeckwkKIYJqI/Ly8rBx40b8 +OOP6N+/Py5fvsy1L/n8VNdDBNX1MJvNePToEWbPns2VzZkzZ/JXnElls3URQbUx9EC/fPkSa9eu 5e4/6rfeuXMnj1dVVlY6Jxc6ISKozg+9T6kCefXqVf6wLY0p01/qxistLXVOLrQSIqh2pKamBqmp qTh16hR/2Jdm/4wdO5b/pw/5yQf8OiciqM5JWVkZf+B+xYoV/Bmm77//HitXrsTjx4+5W09oe0RQ HQTq26aZQDRVfdOmTdy3TbW2oUOHYv/+/UhMTJRJFp0EEVTnoLy8HMHBwVi6dClPaKKPiIwePZpb TdQlX11d7byJ0MaIoDooNDZVUVGB2NhYrFu3Dj169MA///lP/PDDD/yGoi7Bqqoq582EDoAIqmOi 1+tZPvQTOVT5++STTzBs2DBcu3YNGo2GezSkEtixEEF1MkpKSrgAHDhwIL/BKIYMGcIziWiGIH03 oAzcti8iqPaDBEOVO5INfZEzfWieKnf/9V//xV3oU6dOhZeXl7SOOgkiqE4ODdg+efIEa9as4dmB 9Cb8z3/+w2/E69ev8+exqP+8vr5tf9a9OyOCahtIRiQiahlRTwN9tdAff/zBXXXffvstv963bx93 j1PFTeh8iKC6GPSmLSwsxO3bt3mmIH0Gi4RFMXfuXJw9e5ZnEarVaqlFKgxd7/Xr1/MHN4cPH86v qeJA380mfDyvXr3ib2mg7m36TOGUKVNYRNTtTWNHW7du5e/ENBqNzpsKnRQRVDeAZgOStOjDhXv3 7sXEiRP581gUY8aM4Wnuvr6+yMjI4EJA+uE/DBrXoBasfdBkF/n4wPtDExjoVwK8vb2xbds2bg2R iOiZnTx5Mg4cOICgoCCuaEnvQNdFBNVNoX56enNTbZSmtVOXYN++fblGSl2F9FP2tDwiIgI6nc55 83eGxgG6C9Q6tZcTff3NzZs3nZN1SbKysj7oQ+c0XkrjqvSNK0ePHsWcOXP4OaTrR38XLFiAixcv IioqiicyyPhq90IEJTRDNVEa06LChmqn1NqiWU70eRASF72mLiua9URp3qWL8G9/+xvGjRvXLWYc UgH92WefNQuqV69eXf686ZxplumXX34Ji8XivNoBel7oubly5Qp/vogm99BzRd3P1CW6Z88efu4o DT2H0jISRFDCX0ID0VT4ZGdnc22WvuaFfqCRWgj0G1iDBw/G5s2buXBxbm3RLEMqvKgQolpwV4da THS+dG1oSnNXhrrh6AOtdL4kZmoF2aCvBgoJCcH27dt5HJRERNfk119/5Y9J0BgpfVMDiUimdwtv QwQlvDdUmNiCWggJCQk8a40+VPzpp59yq+lf//oXt7hoRhW1JmyF2O7du51316Wg8T66BvTBz67c AqAxS7rHdF/p/tJ97tevH0vo73//O/7xj3/wt6Ps2rWLKyY0Dmf/3AjCuyCCEhSntroR+dka7N52 GD2/7+cQPb77DZPHz4VJW41SQ22XjLMnruOo+wWX5V0ltm104/vofG8XzFmFjORClJnq+BkQhI9F BCUoSl5KBbxPlCA9vgq5GbUoyKpvMWhdV468FpZ1lcjPrHO5nxS2c06LfQXPQ0VQ53Tt8Teh9RFB CYpRXdmA+xc0oO/VpI+iSHTfoGfg9hE1mhqlO0/4cERQgmJoVdVIeF7hUlhJdM9Ij7d24wrChyKC EhRDW1iNpMhKl4JKontGVnINLDoRlPDhiKAExRBBdZ+48jQZZlOTy3L7EEEJH4sISlCMPxMU/Qgp fY7TeXl7hdlsLVwpX87r/izeNT2ls0/7LuduNjv+/atwTveuY3/vms45niYW899SM7DmRjAs5iaY TcDLdD1UJTUu6UVQwscighIUoyVBkQiWLl2DkSPHom/f/oiLy3YpyNojzp69iUuXbmPmzPkoKmpZ qi3Fjz/+9JeSCg1NwIABgzF+/GSsWLEeBkMDtm3bi6KiVy5p7cPd/SRSUopw9Oh5xMRkuqy3j/j4 XBw8eMJh2ZUr3oiO/vPtAgLC4eX1wGX5X4XB0IQF5+5h+glPrL4SgKH7z2PzzYeYecoLIw9dQU4L 5yaCEj4WEZSgGC0JKjg4AocOneZae0lJJebMWcivY2Nz4eFxBlFR1gI1IiKNX586dRVq9StcuXIX gYHPeF1kZAaio7Nw7NhF5OaaeFlSkgrHjl3ArVsB0OsbEBubg5iYHHh5BUGlKsfFi7dx+vQ1FBaW wWhsQkhINKfPz7duT/s7cuQ8/PyeQq9vhE5Xh5s3/XH27HVotbUO50D7p+N4egbgl196s6AKCkp5 /z4+j3n9m/RNGDduIgyGej5PP79QzjOdr8FAx81GYmIBTpy4xPm8fTsQvr5PeTs6Jzr28eOXEBub Ba22DvfuheDIkbNITCzk49B5kIjS0jRISCjgY4aFJeDEics4d+4WYmKyoNFUw9MzkM83M1PD+46L y+Xrd/26D+7efQijsRG+vo/5WAUFFt4P5YvkGBwcCYOh0eEaFJVUw933OQqKK2EyAkvPeqPMQi2o Jpx8EI3H8SqH9BQiKOFjEUEJitGSoGbMmIeCgvLm/6mrKyNDg0WLVqKkpAoLFixDVpYW69bRTyU8 xbNniZg4cRpUqlLMmDEXWm01Nm3aifPnbyA9vRhjx06A0ViPxYtXwmCoRUDAE3h5BcDD4yw2bNgO laoMS5asQklJOfLytJg9eyGeP4/H7t3uvM+xYyfCbG7E5s27YDTW4fTpywgPj8OaNZvx4kUCsrM1 +OOPUQ7dYB4epzlvhYUW/pYIs7kOo0ePh1pdhsDAUJap/Tlfu+aN8eMnscCSkvJ52d69HiwoN7dj uHnTjwU0cuQYZGVpsHTpKhQWluPUqSvIzTWzNOLisliYERFJMBpr0bNnL5hMNSzIhw8jmmWSnl6C tWu3sJToWtN2587dRHx8NgyGKvTu3RcmUy3GjJkAjaaKr6WPzyPeNigoDHp9NYYOHc5/6drodNW4 cOEGsrL0DucUl2lEYHQeIlK1LKiVl++zoDTaWgRE5SEkTsXL7bcRQQkfiwhKUIyWBDV37mLk51Mr xvo/tQqodfP4cQz///JlBk6evIiNG3dyV1tx8SvuFiNBUGuKWh9btuxGfn4pj7lQQVtSUoaTJy+z VFasWMstBeruio3N4H0+fRqNVas2srBIaNQCiY5O53VUkFOL4sCBE1i7djPmzl3IBTbtV6er5WP0 6PETysqs+aX/p02bjaIi6/T5Xr1+RXGxGX379sPWrXu5wKe/9udM26hUFXjwIJy7Np8/T8K+fUdY UHTcvDwLy5kkS+d54cJNZGbqcfo0na9VUCSw7Gwdi3vDhm3o1esXWCw1GDVqLEs+JcXagiTBpqRY x4auXfPhFlRycgFLi86fvug3Pr4AN274cprAwHD4+DxkOVLet2zZgylTZnDrbP36bXyuJFO1usrh nB7FqRASr0JwbAG3mmyCiskwICHbjLhMAzS6eodtRFDCxyKCEhSjJUE9f56CnTsPcKFdVFSK+fOX IijoORemtJ66mwICQh0EtXr1JgdBUUFKBTJ1rf3xx2guxFet2sAFdVhYDI4ePceCSkrK4zQkGGol 6XTlGDFiLK5fv8fHpPQ7dx5ERoYOhw6d4v+vXr3DBfa4cZOg0VSwmL755ttmQVE+SCQ5ORre99df /xt6fTmnLy8Htzhevky1O+cG7sakfdO2Pj7BfK77978RVH6+VVA0Nvc2QcXHZ/G1ysoqRkUF8NNP PVlQ48dP4WtpE5S//xM8fPiS90Nioe1mz17A3Xb0M1Q//PAjv961y53TXL58F76+jzB9+myUlJg5 nwEBT6HR1CAyMpVbrN7eQbh0yav5nHT6BoQnF+NRvAoxGVqU6Gqx9KIfyi1NuPs8Awk5ZhSWVCEp xyyCEhRFBCUoRkuCokJx8+Y93H00atR4JCcX8vjHnDmLsGjRMixcuJwnUmzatMtOUJudWlB7uEUw adI0LjhNpiYMGzaSW0lUKFO32cGDJ1lQdExqdSxbtprXT548gyUydeosTJs2iwtoksiQIcOwYsU6 lid1pVHhTNKhY4SHJzqcQ2pqEbewqMuRtistbcKFC7e45UHpref0Jv2zZ0ncTUj7mzVrPo+p7d9/ 1EVQy5atfS2oWw6CovEk6qrz9Q3BtGkzsWDBUsycOQ9mcw0mTJjqICgS8ahR47BgwRK+hjS54sqV O5g1ax53dfbrNxBlZY0s2blzF3Erydv7IbKzDdxNSfmj7lGayEHXmORGkzuo69B2PjRGd+JRFJZc uIcDvuHQ6+sw47QXkrLNuB2RhpVX/bDFMwgZhW+6ckVQghKIoATFaElQ1miCwVDHYrIto1lhej1N RrBO96ZBeVpGYUtnHahv4vGi/Hzz6328SU8FpXXftK11+zeFaq3DvqiQJZEVFVknBNBy2t56TNvx 6jlc80/RwIX4m8kDlH/a3n6CxJuwprXu3/r/m3OyneebZW/+t/9L694cw3ot3lybN9u/yYvt+tF6 +p/WO6axXi9bGmse3+TZep9aPCde1wCdvh5Xnyaj/54zmH/WGzmqSugdrsubEEEJH4sISlCMtwvq 4yI72+g0U+79o7i4irsb7SUm8f6RX1yN66HJcLv3DKcexOBFqtYljS1EUMLHIoISFKO1BCXROUME JXwsIihBMURQEvYhghI+FhGUoBg6VTXiwh0HyiW6b6TFVqHUKIISPhwRlKAY1a8a4HtWfg9KAjCZ gVvuRfLz7sJHIYISFCUv+c0v6tIvrLZ32H7tlX4F1nldVwnbL9x2lHNMi6df1C1Gcc4r58dDEN4L EZSgODVVDfxDdRZ9+wR1K5m01Ti0/wx6ft8fP3zbF7u2uLuk6yqxZvl2fP9NH/T6YSCOup+HUfMK pYY6l3RtFXTva6sbnR8LQXhvRFBClyIiIgL9+/fH3//+dwwbNgzR0dHOSbok1JX28uVLDB06lM99 8ODBiIqKki42oVMjghI6NTU1NUhJScHMmTPx2WefccH84MED52TdioaGBvj5+WHQoEF8TejapKen 87UShM6ECErodNTX1yMrKwtbt27Ft99+ywXxuXPnUE5fjic4QNfkzJkzGDhwIL777jvs2LEDGRkZ fA0FoaMjghI6DWq1mgvbPn36oFevXnB3d0dRUZFzMuEtFBQU4MCBA/j111/Rt29flnpJSYlzMkHo MIighA5NbW0t7t+/j0mTJuE///kP1q9fj5iYGDQ2yiD8h0Ktp9jYWKxbtw7ffPMNX1vqFq2urnZO KgjtighK6JDk5eVhzZo1LKWxY8fi4cOH0oXXCpSVlSEkJARjxozh347asGEDt7QEoSMgghI6FAEB ATym9OWXX+Lw4cPQ6XTSWmoD6BpTF+rBgwfx9ddf82QTqhQIQnsighLanbq6Ouzfv59nnPXr14+7 n2gmmtA+0LWnKeu//PIL/8T97t275X4I7YIISmgX6PM51GW3dOlS/Otf/8K8efNgoF/0EzoUdE+m T5+OTz75BAsXLoRer5fPVglthghKaHNo5t3s2bO5K2nXrl149Uq+EqejQ5WJLVu28D2jz1UVFhaK qIRWRwQltBk0pXnZsmU8GH/06FGeoSd0LkhU1B1LolqyZAk0Go1zEkFQDBGU0OrQtOYTJ07wlOa9 e/eioqLCOYnQybBYLPyhX5rMcurUKRmjEloFEZTQqtA05iFDhvA05vz8fOfVQicnNzeX7+3IkSN5 xqUgKIkISmg1kpOTuYZ9/vx5qWF3YWgW5smTJ/kza2lpac6rBeGDEUEJrUJSUhLPzouLi3NeJXRB aMIEfW6KPipAH7IWBCUQQQmKYzKZ8NVXXyE1NdV5ldDFefLkCX92qqqqynmVILw3IihBUagmPW3a NJ4UIXRP6Fvmx48f77xYEN4bEZSgKNS199NPP0kNuhtD442ff/45jEaj8ypBeC9EUMJHQx+0pRlc FPS1ONu3b2/+X+he0DdP0H2fP38+T0O3PQeVlZXOSQXhLxFBCR/NvXv3eHCcas1ffPEFB72mH8gT uhf0W13OzwF9TdLNmzedkwrCXyKCEj4a+h0hGhiniRG2oILp0aNHzkmFLs7ly5dZTPbPwg8//CAf zhY+CBGU8NHQxAj6aQz6zJOtUOrRowd/PkboXtD4E91723NAsjp06JBzMkF4J0RQgiKUlpZyNx8V SvSXfqFV6J5cvXqVxUQVFurmle9cFD4UEZSgGMeOHeOCiX5HSAql7s2///1vFpSbm5vzKkF4Z0RQ gmLQtOKv//0VfHx8nFcJ3YybN2/giy8/l6+4Ej4KEVQ7UFVRj6deegRe1uJBF4uzu2Pgf77YZXln j+CrWhRmVLbpbyDV1zUiMtDokpfOEie3Rbos6wwRfE2LgjSZFt8REEG1A9f3FaJE3QCTCTCZJTpD GAxNeHLXCG1BtfPtbDUCL2qQm1EDo6nJJT8SrRd6fRNC75lQkCGSam9EUG1MXkoFigsbQB+yl+hc QYXXlV0Fzre0VbDoahEVUuqSB4m2iiYEXJQfY2xvRFBtTMJTC8wW5zeDRGeJ81va5jetNAXVSH5Z 6XJ8ibYJ6t2gLnihfRFBtTEkKEup6xtConNEWwoqJUoE1V5BgnpwRQTV3oig2hgRVOcOEVT3CBFU x0AE1cY4C0qtroKfX6hdPOU3h/Mbxj5owL64uMJl+YcGHc/X90lzHgIDn0Gv/+txsqKicu6rd17u HPn5pSgpqUZYWAL8/UMREPAMublGl3QUOl0DNJoal+VvC52uDlptHb9+8iSW90+RmFjIy5KSivia 0nn5+j6FRlONwMDn/P/9+2FISSnie0Db2N+D7Gxji9eg/QTV2HwetjzSNXXOn3Mo+ZxQ5OWZkZxc 7LK8PSIzUw+NphYGQyMeP47BhQu3kZ5uzVt6uhZZWfrmtCUltYiMzOB7SteO7ndoaAI/P6mpJfzX ft8iqI6BCKqNcRYUvcEiIpKxfv123LsXghcvkng5vemKiyv5jUJCorAtV6srMWnSdBiN1jeVfVr7 N5le3+jyWqutbbFge/48Ce7up3Dhwi1ERqZxejpmUVEFTCbr8W37oL8mUx1Gjx4PrdYmk5bzQP/P m7cEpaXA7NkL8Px5Mp49i0e/fgOh19fyerX6FeeLZBcRkYIrV+465NcmLNt1IMnQOdNrX9/HCAp6 BpOpkfMTFZWB2NhsDB36B4qLX+H48Yvw9PRDZGQqXrxIgcFQyz9NHhubjmfPEjFz5ny8fJnO92Dd ui24d+8x34PCQhNOnLjocp3aT1BNfI+uX/fB5s27+TVdG7p+KlV583Nik6rt9ZgxE2E207W17oPu Ed0r+3Oyf05s11Wnq2/xfj59Go1z52423wu6d7btSPS2dLQdVWBs+7be5yoUFJTi1Kkrr9M5PjO0 D0pvX0Ghc7Dm2TEfen0dVq/eCIsF2L//CE6evIisLC0GDRrCUvb0DICPz8Pm9Lm5JqxevYmf/alT ZyE6OhNnzlzB7t3uKCl5hfPnbznsXwTVMRBBtTHOgrKFu/vJ5lo/FTjz5i3F/v1HsXfvERgMdZg6 dSbKyhowY8Y8XL3qjb59++PaNW/k5RmxYMFy7Nx5ANu27W1+s9PftWu3ICfHwG/iceMmITQ0hkW4 fv02eHkFuuTh5k1/PHr0kl8XFpZh8eJVOHjwBL+xSYbTp89lqWzatAs3btzDr7/2wZEjZ1lSs2bR zyu4cT7s90lvfiroKT9z5y7m/81mYPHilSy/NWs2w83tKFasWI9nz5KxadMOzJ69EHFxuXjyJA7r 1m3Fpk07ERgYjowMDf+/c6cbxowZD52uBgsWLMOyZWuQkVGEMWMmcIFpMDTw/uk6kqBevEhsLvzo 2CQo+rkqui7nz3tyjZryeuDA8eZ7QIX5ypUbXQrz9hOUNegaHTlynl/TeS5atBIeHmf4OlBeV6xY h4ICCzZv3oXg4Ei+R3v3HobRWI81azZh9+6DWLx4BUvetk8qzF+8SOZ7RPePrj3th9Ju377PQVI2 QVGrmCo0e/cewrJla/naLVq0AqGhcdDpajFnziIcPnyG7yUd69ixC9i16wBGjBiNnBwdS2fOnIXY t+8IP2N0XxYuXI5t2/Zj9uxF3LLNztbzPnftOog9e+gc3rTWY2NzcPOmH1fwhg8fCb2+npfn5JgQ H5+P27cD4evrKCh61khQCxcu43Oi11OmzORjT548HRbLm3stguoYiKDamHcR1K5d7ggOfoHk5AJ+ 02ZkqLmlQC2QjAwdS4LeUOXlwIYN25GYmMNvMpKYfe3T3/8pSyc/34zr1/2wdes+3L0bhMJCC3Jz dS55sBcU5cHXN4TzsHTpaqhUFXj6NBZjx07ilgcdm4RgNjdygRkTk8V5IAEmJuY275O601JSivkN P2PGXKxatZGFsmDBUphMDYiLS0NCQg78/R9xbTYmJgPXr/tyi+vf//4GaWkFSEjIxfjxU5CRUYLl y9fxcW7dus/dONRN9/hxBMuG8kPyJAGPHz+Zl504cZmv4caNO+DlFcTLfvzxRyxZspJlv3z52tet N2dB0T05xTV++2vUkQTl5RXANf+kpAJcvXrv9TNTyPK+d+8hXye6JvRTTNHR2Th48Bgvu3HDBz4+ T5r3qVJZMHfuImg0Vfw83b7tD3f3E8jNNSA9Pd/h+G8EZWFp0H2lFjI9Y9nZOuzZc4ivJ3WvRUWl 4eTJK3j6NI5bLXTt/fweIzw8CfPmLUZERBo/XyTXggIThg0bBb2+hp8pquyEhsZj48ZtLLTs7JLm XgSKS5e8uIuP7g/dazov+3z+maD69PmNK28kJ3p+aP3WrXuaJUchguoYiKDamHcR1KxZC7ggiohI 5+6nkpIaLhCo5k8tBKqhkqDKyqyFQ26uhrfbuHEX1yBt+6RukGnTZnPNlaRG3Vt37z7EypXruaB3 zoNNUPTmXLp0DQIDwzgP1G1GNdW8PD1+/LEH4uKy+dhU+FHX2qpVm5CXZ+F9UKvv+fN4u33eR2Eh dRNSC2rR69pzGbdoqFAZMGAQnjyJZsls27YP0dHpuHbNhwVI3+Vm7X5LR1xcDgvq8OHTvC/qDk1O VvFYQkjIG0FRIUvrQ0KiuJCmFlRkpLV1QPmxtaBKS2uRmmqtANjWOQvq5MnLyMzUOlyjjiQoD49T LF26PpGR6XwPqAD+7bf+LCs6L7omdC0fPYriVi9t9/BhBC5c8LTbbyMmTJiKhw+fIzg4AkZjAx4+ jGRJ0L7o2trS2guKxnxo2apVG3jskCRArZ2sLB1mzJiDqKhMbu3T/dm+nVpGCzB9+mzodFUYNGgo 59n2fNEzPW3aHG4l0fGoQkEtRBpXpFYdtZJKSt50IdJ9LS6u4vHHkSPHNMslN7eU9/tngqLnsKio lJ8V2/qDB49Do3kzDiWC6hiIoNqYdxHUgwcvcOzYRe5ymD59DjSaSowePQ4mUw369x/I3W2jRo3j gufmTV+cP3+TX3/33X9gsbypZVpFsxrjx09ikVCXCnUJGo21mDRpGkvCPg/2LSgfn0c4evQ8i2jY sBG8X2r1FBSYedvy8iYMGvQ7dzvS4PO+fR4wm+u4pWM/xpWSoubCziqoxc1jFhQki4EDh3DeqQto 69a93AI4cOAYH5fGlKiLMjdXj4ULV7wW1JlmQSUlqRASEs0Fr02Y6eklXLOmLkcq+KggozGqrCwD BxV6JCj6eSIqDGfOnAeVqozz4yyoLVv28OC6/TXqSIJKS1OzYOlekBioC5RavpmZJRgxYhS02iqu oND1pftG3bz0mlqw1HKx36+39yPufqPrQ9221OqhtCQSenZs6d5FUI8fv+QWblkZiW8Ky3Ly5Bnc 8o6JyWEB3roVwBURGsukcUCqQNGzbi8oki91v9K9mjZtFgoK3kysCQ5+yd2S9Jq6MC9etAq3b99+ 3IIjQV254sWt7PR0DVfc7Lv4nK8rSctieTMpRgTVMRBBtTFvExS9cVWqNwUSFURUuBYVlSE3l7pP rC0jqh0WFVUiOjqL11Ptlwrplgb0KairhbrYrG+6Ru4+O336mkNt1BY0m8m+BfbiRSoXVtSCKyqq Qnx83uu8ZnNhROMAVKhTgWLN7yUHAVFQIUdipDc8FXo0+G6/PimpkMdQ6Li0D0pHEwGowDSbm7jr 6sYNP15Og+x0TNqOujrpelGBeurUNe42IhF6eT3goPWULiEhv3kZjbUUFJTj3r1Hza0mKsBIotbz ontgzT/V6Gn8w5bOFu0tKGolxcZa74M1/yU8hkOyou7dZ8+sk2xIVnTf6d7ROA9dO3oWPDzO8jk7 75fGieg5otd0zgEBYdxapbEm+3R0n0ji1KJOTFTxMrpv1P1Gx6JWE23v4xOCM2eu8/WmCSo0TkWt YBIctcKpC5dm3lEr1fbMhITENHfjUfcf/aWWH+WZKhf2+SgqsmDLlt18LIpHj6Kbn1Van5amab7v JCtqbT17lsIipdl79vuiyhd1j9uPcYmgOgYiqDbmbYLqykEFhP2gfGcImm2YnFzksry9BdUZgybD jB07kWfaHTp0mlvSzuL/kLh48Xbz+OHHBHUjkuDtl4mgOgYiqDamOwqqK4UI6sOCunOptUutYucJ De0dLclSBNUxEEG1MSKozh0iqO4RIqiOgQiqjRFBde4QQXWPEEF1DERQbUxecgWKVa5foSPR8YO+ hf7itrYRlFlXi8iH8nMb7Rn3L8jPbbQ3Iqg2hn6R9dzmfPnJjU4WdL+e3TdDp6pyvqWtAj0n904U o6RYKjNtHfS7X88DzMhPqXC+LUIbI4JqBxrqm3Bjvwqn1+V1uTi7oQCn1+W6LO/sQV176py2kZM9 gZdKcHq9a346Q1ifBdflHTlO0b3emi8/+d5BEEEJivJr715ITk5yXix0M8rKS/HV1184LxaE90IE JShKnz59kJyc7LxY6GaUlpbim2++cV4sCO+FCEpQlP79+yM+Pt55sdDN0Ov1+P77750XC8J7IYIS FGXcuHF4/vy582KhmxEbG4vBgwc7LxaE90IEJSjKhg0b4Onp6bxY6GacOnUKS5cudV4sCO+FCEpQ lNu3b2PhwoXOi4VuxvDhw/Hw4UPnxYLwXoigBEUpKSnBV199BQt9xbnQLamrq8M//vEPNDQ0OK8S hPdCBCUozuLFi3Hy5En+sKnQ/di6dSsWLFjgvFgQ3hsRlKA4RUVF/Gu4KpXKeZXQxcnIyOB7X0m/ My8IH4kISmgVLl26hF9++QW1tbXOq4Quitls5s/B+fn5Oa8ShA9CBCW0GmvWrMGAAQNEUt0A+mDu 77//jh07dsjYk6AYIiihVVmxYgX69euH4uJi51VCF4G6cukeb9y4EfX19c6rBeGDEUEJrQ59Lopm 9tEUdKFrQfeU7u2tW7ek5SQojghKaHVoNh/Vsn/66SeMHDmSxyqEzg3dQ+q+/eGHH6BWq51XC4Ii iKCENuX06dP45JNPsG7dOrx69cp5tdCBoYpGRUUFd9v+61//wvnz552TCIKiiKCENofERF+D89ln n2Hv3r0w0q/ECR0WEpPBYMCuXbu4O2/9+vUy8UVoE0RQQrtB3UQ0049+loH+5uTkoLGx0TmZ0I5k Zmby9yvSPaJJENI9K7QlIiih3aGvRXJ3d+fxjMmTJ+PJkycy4N6O0FcVPX36FBMnTsS3336Lw4cP i5iEdkEEJXQY6NsHfHx8MHDgQP6Qr4eHhxSMbQj9hhPJqFevXjxt3NvbW74RQmhXRFBCh4NaT1lZ WVi2bBm++OILTJo0CZGRkc7JBIWIiIjg1hJ9RdGiRYuQnp4uLVihQyCCEjosNDhva1X9/PPP+Prr r7Fp0yZpVSkAXUMaW6JrSl2r9Fk1mqEnX/ArdCREUEKnoaysjCdT0BRnGhuhD4lSTd+5UKXPW1FX lfPy7gCd85EjRzB+/HiH86fXNPPu+vXr/FPs//znP7FkyRKUl5c7bC8IHQkRlNApiYmJ4UL4888/ x9ChQ/nH8Uhg1OKiripafvbsWefNujQ0A/Lo0aM8fZ/On1pJ9B15ISEhPK5Hy+iahYeHd0t5C50P EZTQqamursaVK1cwYsQIHq+iAX4SFH1ehwpkWtcdIOHQB2fpnOncKfr27cvXhK4NtZzoWglCZ0IE JXQZtFotd+/ZCmibpLrDNx5cu3aNW072505jSxqNxjmpIHQaRFDCR1NV0QBNfnW7R3KMCr/+OMwl ev1nKHxuPXFJ31XCzysMP/9niMt5//jvgchO1rukb/MoqEZ1pcwKFN4fEZTwUTz3N+DpXSPS46uQ kdC+kZlYhezk2hYjM6naJX1XCTo35/O1hXPa9ojUuFd4dEuP2BCZfSm8HyIo4YMxaWoQ/aQM9FV6 EhJ/FaE+Zn5mBOFdEUEJH0xkgBE6XYNLQSQh0VIUFdQhPUqmtQvvjghK+GBe+Bth0De6FEQSEi2F uqgBaZFlzo+RILwVEZTwwXReQTUhJCQaBQXlLayTeJcoLC5Fia6CQ6W2oKikFGptGQqKzLxMratA Vni8wzYiKOF9EUEJH8zbBGUyARpNLUymJpd1JSW1zWmc17VV3Lx5Hw8ehLGonNfZhy2PbZHXvzqG VlvnsuyvIjfXyPfBYPjz83xb/FmeNHoLamprOUxl5Sgtr0BVdQ30JjNq6upguXgeOTFJDtuIoIT3 RQQlfDAtCUqlKsfChcuwcuUGTJs2GyaTdX1+fim2bt2LBw8iYLEAU6bMgMn01+NXxcWl2LBhx58W lvbx4kUKnj6Nc1luH1ptPTZv3uWy3D4MhkYsXryS87h+/fa/lNnbQqWqgJvbcZfl9kHfNjR48PAW z5G+dnDSpGnYu9ejxfVvC72+AVeu3MWePYfh7n7CZb1zFBWV49Spq8jO1mLPHg++R3/8MQYWSyN2 7XLnfNinL9FbUF1Ti+raWhhLrYJ6VV0NrdGM8sQEVPj7Ir/Y4LCNCEp4X0RQwgfTkqA2bNiGx49f coEWFZWJ/fuPcuHu7x+KffuOIDIyFaWlwLBhI2A2N0CrrcWRI+cRFPSCC+CQkCjo9Y38Ojg4ggW1 ZMlq/j85uQiHDp3Gy5fpLgVsUlIhDh8+g/v3w/Dw4Us+pp/fExw7dp6laZ+WWhUrVqxFSUkVIiPT cPGiJx48eMHrKN/nzt3AnTsPMH36bC6onzyJ5XWpqcU4cOA4EhPz+f+iogqcOHEJPj4hLgKjdXRs 2nbbtv28LDo6C+7uJ5GQYN3eFvSLFj169ITZ3MjXwd//Ka5cucNyv3s3GFOmzEJYWBxfj8DAcMTF 5SIxsQAeHmdw+3bA62M34vJlL1y75s2vab/37j3CoUMnkZxcyP/TdTh27AICAqj16Hj9SE55eWZk ZJSwvOke9e7dl69HaGgc3zf79NmFGqj1RpTojcgrKkGBWotinQGZWbko3rAOar0B6blqh21EUML7 IoISPpiWBPX773+wdGz/63S1iI7Oxq1bvigqMmPRopUoKSllQZWVNaB//0HIySnBiRMXER4ei6lT Z0Onq0NFBTBmzASo1VZB5eToMHfuIhQU6LF06Wrk5Zmaj1FQUIqZM+ejsNCAjRt34tGjl/D0DICn 531kZBRh4sRpMBjetNZsgsrJ0WDgwMHIyirB2rVbkJZWjPXrt7EAkpJyMGDAYC6o6bhabQ0mTpyC /Hw9Zs9egJKSam4FUr78/ELg5fWgef/UeqF12dkaeHkFcJ4yMjR8DJXKjHXrtrEMbOnfCKoeP/zQ A7GxGfD09GP5ZGVpsHr1JqhUJgwaNAQ3bvjyuW/atIuX3bzpi8jIdOzZcwjh4XF4/DgCBw+egKen P548eYniYjP69u0Pk6kWo0ePR26uFqdPX34tVdt9a8DkydP5XFsSlEpVinXrtjrcZ4OpHE2wfp9f xasq7t5raGyEcd1qNFZX8fcCFmne3CMKEZTwvoighA/GVVBNLB77qedU0BkM9diwYTuGDh2Onj1/ Rl5eCacrLW3gQpMLPAO1mhowffqcZkGNGzepWVDe3o9w69Z9ThsdnYGzZ280HyMkJKb5//DwBG5B kVxoDIxaXqtXb2T52NLbC4oKXkpDraaEhGz+pu+yMspPA6ZOncX5nz9/CZ4+jcXduw95exJQenoR evT4CePHT8bYsRM5rW3/JI4ZM+Zy4V5YWI5t2/ZxV9uoUeM4PYnG2/uN0GyCsljq8fvvI7jVlpiY i6NHz3M+SEZmcxMGDx7K62ib69d9uDIwZMjv8PMLxU8/9Xx9rZtgMNTxNVy6dA2v/+6775CVpcPy 5ev4XEno8+Ytae4y1OtrMXbsJM5vS4LSaqu54mDfzafWW1BVUwtzUBBMFa9gqaiA4explCQlo6qm Bq+qqlBQrG9Oz9uIoIT3RAQlfDCuggLWrt2K588T+HV2tgGbNu3kbrDY2EyUlTVhxYp1zYKytqAG csGXlFSA6Oh0FpRGU4Pi4mpMnDi1WVBPnkTg1KnLvN8HD8IREPC8+ZhRUencfUgF7t27D1hQ1CLQ 6eq5YJ89eyEKCt58oNheUFQY03bnz99EXFw2fv21D0pLrYX8yJFjmgUVF5eD06evsoQDA18gPV3L hTydE3VV5uQY3xTE6nJMmDCFZUItp82bd/P+4+MLeH/U1VZSUtOc3l5Qw4eP4uvRkqCGDBnG20dF pWL3bnd+TeNtPj6P0b8/tfYaoVa/grf3QyxevAq5uSWcZvDg37nlNm3aLN53enoxt+psx6cKBFUG rPl1FVRJySvMmrXAYQwsv1gPg8mMot07oVm2BProGJRcuoT8Ei0MllLozKXIKtA0p+frIoIS3hMR lPDBtCSowsIybhVt3bqPa/hU6NFYFBXyNH5D3WPZ2UUYPXocTKZ6HDp0Clu27OEWiFpdiTNnrnGr hkQ2c+Y8HoNasWI9d0PNmjUf7u7HWVyOEyyaMH/+Mhw4cAxr1mzhKeSFhaXcRbhz5wEcPnzaIY8k qDVrNiE3V9M8PnTp0m3ExGQjIiKV80pinTNnIeefCnv6S3l0dz+GyZNn8v/79nlg69Y9XHgnJOQ6 HOPIkXO8js5l9+5DnJ5aQIcPn8SMGXO4FWZLS61FqwzqMXr0BBZBUlIejh+/xIKiPFJrcMSI0bwf mnhB3ZYk7B073HhWInXzUX7nz1+KiIgU3L4dyJM76NgzZszja0Rpd+06gGnT5iA3134CQ9Prcb5G Fiodj44zYMAgFlRmZjFOnrRWDmyhM1dAP2cm6hsaYC4qgnrNKtQ2NMBkKeNltXV1UKnfSJtCBCW8 LyIo4YNpSVAUVKjRRAdbdxQFFX5U8NqWUQ3dvoC07z6yTZKwpbX9pTTUFWif9s3+rd1b9NdW07dY rJMHnNPa79P21751QK0VWu6cho5L3ZeOx3c8T8dwPQ8Sk3P+DQb6MUbra/vrYktn296WxraOroV9 Otskkjf7p/Owngv9b71GLeeXxBwU9MzleHRNaTIGTSixT58XHonSZ89QVvmKZ+4ZaKp5RQWKtAZe ZqmoRI5K57CNCEp4X0RQwgfzNkFJtE/QjMTQUMcPx757NOH5c8eZetZoRHh4osvy9AvXoDWVQWcs g6rEiGKtCRqDBflFOmiNZfw6u0DGoISPQwQlfDAiKIn3CRGU8L6IoIQPRgQl8T4hghLeFxGU8MG8 uG/k8SLngkhCoqUoLqxH2ksRlPDuiKCED0ZbWI2klxUuBZGEREvx4oEF+mL5PSjh3RFBCR9FwIUS /tFC+q2fYpUEhbqonsN5eXcNVX4dIgLNCL2rc358BOFPEUEJH02psQ7Z8RUSr8N9xzW4bbnisrzb RkIFSk11zo+NIPwlIihBUBgPDw+4ubk5LxYE4T0RQQmCwoigBEEZRFCCoDAiKEFQBhGUICiMCEoQ lEEEJQgKI4ISBGUQQQmCwoigBEEZRFCCoDAiKEFQBhGUICiMCEoQlEEEJQgKI4ISBGUQQQmCwoig BEEZRFCCoDAiKEFQBhGUICiMCEoQlEEEJQgKI4ISBGUQQQmCwoigBEEZRFCCoDAiKEFQBhGUICiM CEoQlEEEJQgKI4ISBGUQQQmCwoigBEEZRFCCoDDHjx/HoUOHnBcLgvCeiKAEQSH+/ve/45///Cc+ /fRTfPbZZ/z6b3/7GzIzM52TCoLwDoigBEEh+vfvj6+++qo5vvzyS0ydOhVNTU3OSQVBeAdEUIKg EFlZWfj888+bBUWvk5KSnJMJgvCOiKAEQUEGDRrU3HqaNm2atJ4E4SMQQQmCghQUFPAY1BdffIHE xETn1YIgvAciKEFQkMbGRowY8QemTJksrSdB+EhEUEKboi+uwd2jxbi2p7DLxumNaTi5PsVleVeJ q7sL+R6WGmqdb68gKIoISmgztAXVCLquh9ncBKNRojOH2dIEvwtaVJTWO99mQVAMEZTQZjy8oYPJ BBiNEl0hTGbghluh820WBMUQQQltAg3HBF8TQXWpMAGeh4qcb7UgKIYISmgTRFAdOwyGRhRpjFBp jPy3SGNyCiPU2nLH7URQQisjghLaBBFUx46EvATsDBqCE+FzsD1wADb692qODX4/W+PuIOj19W+2 E0EJrYwISmgTWhJUUlIh8vNLm/9/+TINanW1S+FJy0tKahARkQKVqsxuXSMePAh3Sf+2OHToFA4f PgNPT/93FqVO14CwsHiX5X8VMTFZuHXLD56efoiNzXFZ/z5x//5TmM3UyqEJCq7rnePx4yiXZX8V cTnROPVsPrYH9sdG/5+bY73fT4jMvYcs7Uus8PwZOn3dm+1EUEIrI4IS2oSWBJWXZ8HKlRv4tcnU hHnzFsNobOA0paXgQple79x5ALm5RsTE5KCoqJLT0/rS0gYMHz4SFot1f9Zlb/bv/L9WWwm12oSM jGKHNLbtnYPW6XQ1WLJkVXO+aZn9OTgfwxYHDhzH3bsPEBmZjh079sPHJ4SX0zk5p39bHigtLR8w YDAqKoAVKza8ngHZ8nb0f1kZMHPmXIdltB/b/5Te+fgUJKi9QcOwzu9HB0HdjN6Chtp63E86gtW3 fxVBCW2KCEpoE1oSFBWU3333LRea6enF2LfvCE9hHjt2Itat24aePXuxuHbtOsiCcnM7huTkAsTF 5WLEiNGYMmUm/vhjNG+/Zs0mLFu2FgMGDOFWWXHxK/Tp04fTvXiRgqKiCn69fv12DBgwiAvtBw+e Y8yYCRgyZBhSU1UOBXZISBTGjZuIuXMXYfHilXyMGTPmYNmyNRgxYkzz9hMmTOX9hobGOWx/8OAJ xMRk8uucHDPWrdvKchk4cDCWL1+HHTvceB/bt7th0aKV+PnnX6DV1uL+/XA8fRrL12nBgqUs1UGD hiI6Ogu//tob8+YthU5XzzJftWoj+vbtB52uFjk5RgwePJTzO27cJD7u3r0enK5Xr1/5/+TkQvzx xyhMnToLZ89edxJUDPYGDYelTIsdgQNZTnuCfkdjXSPS1M+w3q8H1nj1EUEJbYoISmgTWhIUxa5d h5CQkIfz5z2RkJALrbYOhYXlUKvLERz8krv3bILat88D6en56N9/ICwWamnVY9CgIbBYGpGdbUJJ STkSEvJx8eJtjBw5lgVAhbeHxxmo1dR6KkNxcTm2bNkDleoV+vUbyC0Oktns2Qua82QyNfAxSKDF xRVYsGAZwsPjcPmyF68PCorAnTsBWL16IyIikmEwVEOlsrbsbOHufhLjx0/C1Kkz8dtv/aBSlWPD hh3IzNRBp6vAli17kZ2txciRY1BQYITRWIuSklr4+4fiyZMYzvucOYuaBVVeDhalXt8Ivb4Bublm Pt+IiFQEBDzD6NETWKJ0fem4eXlmLF++lvNSUFCGrVt348IFT9y+fR8GQxUKCyscugxJULuDhqKh rh6esduw0a8namqqUFFpxlrfH1hYIiihrRFBCW3C2wSVm2vC4sUrMHfuYl5HLQEqtH19Q3Dxohee PUt0EFRGRj769OkLs7kRRmM9hg8fBYOhhltdN2/6wNv7Ic6du86tBhIMFcIaTRW3oqZPn42AgFAs XbqaC/hRo6wSo0KftrflyWyufy1B8NgXpb91yxcPH1rHdqir8dChkyw9Gtei/FIerR9ifdOCio/P gtncwC0u6rqkY3h5PcDdu0GcTxJxenoJNmzYjn79BuDhw0gW1OPH0ZyvWbPmtygokh0J+PbtANy6 5Q8fn8fo2bMny5au4YwZcxEbmw1391OcF5OpFlOmzIDBUI8LF25h4sSpmD59DgyGBgdBrfP9EQW6 JOTrEqAypKKutgab/X9t7u4TQQltjQhKaBPeJigquHv37sPdUfR/cPBznD9/i1s61GUXHh7fPAa1 d+9hpKbmY968JUhNzUNsbDq3TnJzS3iciFpdHh6ncerUZd5fWFgCXr5MwebNu3Hq1BUEBj5FYaGZ W10FBeXc0qDxqKCgcBw4cMIuT02YMmVW8zpqXeXk6LFo0QoUF5fx/pKSCvgY1G2mUhlYdjRpw7YP GoOydfFt2rQLcXE58PZ+hEuXbqOw0ITNm3ehqOgVNm7cifx8IzIyCrF27VZERqbh8OFTSEkpRP/+ g6DVVvAYFAlq7dotyMzUIiYmnVtgdI127jyIu3cfYvfuQ3j+PAmxsVkYMuR3nm03evR4FBSYce2a D/z9n+DKFW88e5aA4mIL51erfTMhhQS1we8n3Ivfz60oGnc6ETbHYTxKBCW0NSIooU14u6CsXWbZ 2dTNRf834uJFT3h4nEV2tgEJCQV49CgaanUVHj+OQUFBKY/VkFCo4L19O5BbG76+j7nFQF18T57Q GE4jt2JWrFgPjaaGtzl+/CJOnLiEyMgMlgPti7riLl++4zh92gioVBV8DH//pwgMfMb5puPTOBl1 wVEa6jo7cuQct6KysvQO2z99Gs+tQ3pN3WlBQS94PM3T8z7c3I5zC4fWxcfn8tja8eMXeGyJuu/O nr2Jc+ducGuKuigvX77L50jHIBHRdaH9HD58Gqmpajx/nsrbHj16HlevesPfP4z3nZiYj337jnKr jfJP1+HMmet8/OhoqzxtYRPU7qAhqKl+Bf/Ew9jg11MEJbQrIiihTfgzQbVWhIREY+vWPQ6z2Dp7 tNb1i8mKxoo732Hlnf9gi+8ArLzzvUssv0HTzOVzUELbIYIS2oT2EBS1RpxbRhIth1Zfi6TcdCTl Zrwl0pFZUOi4nQhKaGVEUEKb0B6CkmjlEEEJrYwISmgTrILSiqC6UpCg3EVQQushghLajKArJKh3 +7oeiY4fVNm4vk9+bkNoPURQQpuRm1SBiGALjIYmLtwkOm+QoF4+LEVR1ivn2ywIiiGCEtqU1Bel uH9eg6BrOgRf03fJ8D6Th7un812Wd6W4f06DtMhS59srCIoighIEhfHwOAQ3t33OiwVBeE9EUIKg MB4eHnBzc3NeLAjCeyKCEgSFEUEJgjKIoARBYURQgqAMIihBUBgRlCAogwhKEBRGBCUIyiCCEgSF EUEJgjKIoARBYURQgqAMIihBUBgRlCAogwhKEBRGBCUIyiCCEgSFEUEJgjKIoARBYURQgqAMIihB UBgRlCAogwhKEBRGBCUIyiCCEgSFEUEJgjKIoARBYURQgqAMIihBUBgRlCAogwhKEBRGBCUIyiCC EgSFEUEJgjKIoARBIU6cOIGTJ09i2rRpmDx5Mr8+fvw4dDqdc1JBEN4BEZQgKMSXX36Jr776yiG+ ++47lJWVOScVBOEdEEEJgkLs3bvXQU6ff/45Tp8+7ZxMEIR3RAQlCApRV1eHTz/9tFlQP/74o7Se BOEjEEEJgoIcPXqUu/q++OILHpMSBOHDEUEJgoLU1NTgk08+QY8ePVBVVeW8WhCE90AEJQgKc+rU SRz2OOS8WBCE90QEJXR6DOpqXN1diKiQMiRHVbZ7pES9Qmp0lcvy9oiox+W4sDUf5aY658smCB0e EZTQqamrbcSdo8UwmQGjUaKlMJubcPNgERobm5wvnyB0aERQQqfGrKtFbGi5S6Es4RhJLytRbpFW lNC5EEEJnRqTphYJEZUuBbKEY2QkVKNMuvmEToYISujUdHtBFathzn4MU0EGjPp61/WvQwQldEZE UEKn5s8EVVrquqylML8evzKZXNe9b1gsf35c52M4///OkZuAypBvUf38b6iO/Dtehf8Nd7b9HzDG XXRNK4ISOikiKKFT8zZBmUx1+Oabb1kYzuveRBNu3bqPefOW8OsLF24iMbEQQUER8PEJaSH9n0dB QRl++qknevfug/37PRzkYzDUY8aMubh50w9+fk9hMDQhOVmFrVv3uuznL6MwCyV3/09EXfo/8Crx v9GY+98IOPt/IcP/b4i78L/BnHjNZRsRlNAZEUEJnZq3CeraNV/s3n0YEREp/H96uhZ5eRaWg15f x0IqLi6Ht/cjREZmwGBoxPnzN1hQGk0t1OpqGAwNeP48FcHBkdDpaBtAp6uGj88Tlov98UiEX3/9 NSoqrK2ibdv2ITo6A2lpGqSkFCM+Ph9JSSpkZuoxevR4vHiRCp2uAXl5pbx9ZqYOvr5PoNPV8P8q VRkfJzo6m2Vmf6zy8LkIPvq/oTj0/4e6/H/gyN4B0GYfRXLkGTw8/29UPPgUBl2twzYiKKEzIoIS OjUtCYoE0b//QOTm6rBs2RqWx9Klq3H8+EUkJORi8uTpMBhq+a9KZcH589fg4/O4WVAkj4cPI3Hx 4m14ewfxNjt3HoDZ3IiePX9GUVEpjh07hydPYpqPWVT0CiNHjnaR1uLFK7F79yGUlFRwi66kpBIT J05FRoYWWVl67Nt3BMnJhZzP9PRijB07ESUl5ZxfkpSHxxlER2c175NEWvnoPyiP/Dv6f/p/gz7p b7hyZg6CvFbi3OElOLxjENJv/A8YiwpFUEKnRwQldGpaEpROZ+1OCw+PxYABg2GxNGLRohUoKDCB vrv1hx9+5M8GBQWFY9cud6xevQlnzlzHhQs2QaXh4cOXePToJSZOnIaDB08gOTkfiYkFLDV391PY tesAdu062HxMlaoCEyZMdRAJjW3NnDmPhUbjUv/5z/f8d/r0OZyGBLV//1Fs27YH+fllvKywkP42 wc8vhPe/atVGlqejoL5Dbfx/ozLtv9FY8C888vwaz4MW4+G92Xjh+Sk0vv9fGFX5Iiih0yOCEjo1 LQnq7NkbCAwMRWBgGNau3YqXL5O5RVJYaGkWVElJGaZPn82toidPInHq1FUXQaWkqKDV1iIuLhOD Bg3l7rnNm3ezeLTaV8jIUDcfk1pLNgFRC+706WuIiUnHvHmLudVkExSlcxbUkSOnkZpK+2rC9eu+ SEzM5HxT3oKCnrmMh5WFzUT1y7+jPuMfqMz4b5hT/gtl6f9EdcY/UPT4nyj2/BeMumoRlNDpEUEJ nRpnQZE8hgz5vXlyRHx8NjZu3IklS94I6rvv/gOjsQajRo3FwYPHWTrHjl3krr6EhEIed6IuvoCA MMydu5jHk9at2wKTqRHz5y/Ftm17MWfOQh5bspfA06dxGDNmApYvX4c1azZxy43S2QRlm7RBXX60 D5Lh3r0e0GqrMWrUOM7n7t3unE9quR04cAw7drjxRA774xjzkvHq0f+Fuvj/gsfy/xm75/3foXnx N9Qm/BcK/P6G3NBTjulFUEInRQQldGqcBUWh0bxpPdAEA622hsM22UCjqeK/NPGBZEDdZvSaJk/o 9Y2vo4HTqNWvoFKVchrbPmkbndMkhDfHrkJhIaW3Hqul49K+qbuR/r6ZfGHNi20/tJ31uE3cZel8 HGNGGCoe/A01kf8DddH/hZqXf0Pl/f8Vaf7rkZNrdkkvghI6IyIooVPTkqC6TRhqYSxUwZjoB2NO Kgz6VzyWRRM2nNOKoITOiAhK6NR0a0G9R4ighM6ICEro1Iig3i1EUEJnRAQldGpIUHHhFS4FsoRj pMa8EkEJnQ4RlNCpqX7VAN+zGhg/9DvtukOYmuBzugQN9Y3Ol08QOjQiKKHTkx5dhqBrOuRn1UKt amj/KGphWTsFXZOAyzpkxZU5XzZB6PCIoIQuAXVf5adWIi+pot3DY/dNHNx+1WV5u0RqhXTtCZ0W EZQgKIyHx2G4ubk5LxYE4T0RQQmCwnh4eIigBEEBRFCCoDAiKEFQBhGUICiMCEoQlEEEJQgKI4IS BGUQQQmCwoigBEEZRFCCoDAiKEFQBhGUICiMCEoQlEEEJQgKI4ISBGUQQQmCwoigBEEZRFCCoDAi KEFQBhGUICiMCEoQlEEEJQgKI4ISBGUQQQmCwoigBEEZRFCCoDAiKEFQBhGUICiMCEoQlEEEJQgK I4ISBGUQQQmCwoigBEEZRFCCoBCvXr3iOHjwIPbu3dv8f0NDg3NSQRDeARGUICjEZ599hi+//NIh Pv30U2RnZzsnFQThHRBBCYJC9OvXD1999ZVDTJw4EY2Njc5JBUF4B0RQgqAQKSkp+Pzzz5vlRC2q 2NhY52SCILwjIihBUJBevXqxnKh7b8KECWhqanJOIgjCOyKCEgQFUalUPO5ELam4uDjn1YIgvAci KEFQEBpvGjRoIMaPH+e8ShCE90QEJbQL9bWNiHtiRtAVLR50sbjmnoKL++Jdlnf2CL6qRUK4BfV1 MulDaBtEUEKb09jYhDtHilGQUwuzGTCXSnSGMJmBnPQa+J5So6FBxtaE1kcEJbQ5uUkVyE6thtEI iU4YKdGvYFTXON9WQVAcEZTQ5sQ9NkOtqncp+CQ6RxQX1nMlQxBaGxGU0OawoIpEUJ011KoGEZTQ JoighDZHBNUxw2CyBr82u663hQhKaCtEUEKb05KgCgrKkZxcjJSUYhQXV8BobILB0IiUFLVLAalk PH+egnPnbiE1tQRabZ3L+vcJna4Wz54lIyGhAEZjo8v6d4smZGbqW1jecrx8mY7jxy/wNhrNB+Zf U40avwA03L6N+suXUXP6FGqOH0VlbBoMhiaX9CIooa0QQQltTkuCOnnyMs6evYr7959i6tSZePQo ChZLE06dugTT61q9TkcF8JsCkwRGYX1tX4i+SeO8jV7fAIOhofl/jaYGJSWVCAtL4HW27fX6t7fw dDrXdSSnXr1+QXh4Ak6cuIBt2/a1mG9bge+8f0pjTd+EKVNmNG/rGo55Ky5+xf8/evTSTiZNr49p v//65mtlHyZ1FRo9b6L+5g3UXb3Ccqq7dBG158+h8fZtvHoYBoPTNiIooa0QQQltztsE9fx5PL8u LQV69vwZlZWNmDNnIUymRuzefQirVm3EsmVrodXWICNDgxkz5mLevCXIyCjByZNXkJlZwtPWJ0+e wXLbs8cdq1dvxNKla6BWv8LjxzFYtmwNb/PiRQoX7Lt2HcC6dVswZ84iqFRlyM01YfbsBVi4cDke PHjukEdq2c2duxirV2/C9es+DuvOn78JX9+nr/9vhIfHWZhMTXB3P8l5pjxQ3i5cuI0TJy5j/vwl uHLlLouI0ixdugpr1mzmbaZOnQWLBVi/fhvvr6joFe9PpSrHokXLsXz5Wpw5c5XT3rjhg6VLV2P2 7IVQqyv5PGk/a9Zs4mtCsrpwwRMrV27AggXLkJNjcMh3eVAoas6eQf0Nq6Aq9u9DxZ49qL10CRW7 d6PJxwcGJyGLoIS2QgQltDl/JSgqyIcPH4nKyiYMGTIManUpxoyZgIICA9LSCqDT1aBfv/4ssuLi cpw7dwN793ogLU3FBfuvv/ZBeXkD/6VtsrN1nI4kFBERC4OhFjEx6Sy6Fy+SkJurw+3b9xEcHIk/ /hjNQjSZ6jF27MTmVhWJZNas+cjK0qGgwMwS02prm/NP0sjONjqcU2RkMvbsOcR58vZ+xMI7ePAk Hj+O4rzPnDmPt9mwYQefs6/vE5aRTVAzZ87l/ahUldi6dQ+ePo3Dvn2HuMUXG5sOtboKEyZMZRlT vtau3YJjxy7A3/8xCgvNmDdvMTSacnz77XfIzVVDpbIgO9ux+7AxMAg1Z06j+tixZjHVXryI+hvX UX/bE68Ou6MsrdBhGxGU0FaIoIQ2568ERYXzTz/1RFWVVVBUAFOhTq2hYcNGsFD+/e9vUFZm3ZYK 9z17DjcL6pdfeqO0tAnh4XHcmiDpREdnoqDABDe3o5gyZRZ27HBDSUkFd6fduuXPx79/Pxw//PAj 75eENH36HJaA7Ri9e/+Ge/cewssrCHfuBEGtfvNZLg+PMwgPT2r+n2Tn6/sIV6/e4/+TklQsJ3f3 08jJMfH+SFAREam4dOkOp7F18TkLqrCwnAVFLb7Ll+9wK2769NnIyNA2t7I0mlcYP34yt5QuXfLi PHp5PYBaXYOkpDxs2rQbY8aMh5/fE4frXp6Ui7pLl1B17BjqrlxGw507KN++Da8OuaPK4zB3+b2K TXXYRgQltBUiKKHNeZugnjx5CZWqAkePnsPBgydQVmYVVF6eHvv3H0FFBXDvXjD8/UO5e4+65BIT 87B//1GcPXsdISFRyM7WcouhrKwe69Zt420ePYrgLrjVqzejpIR+5Rbo0eMnpKTk81gRpdm8eSe3 YKgrLj29BDpdJbegqBvNlscdO/YjKiodpaUNWLJklcO64uJK9OnTj5eRDKlrMitLw91q5eVN2Lnz INLS1Dh06BRyc83NgtJoqjFp0jRUVDRhxYr1/L9NUBMmTIHRWI1jx86zUO/fD8OzZ0morATmzl3E 16V//0EoK2vE48fROHPmGm7fDsTFi558TtT1R9tPmjSD/09PV3E3qfP4lqHAgKrjJ1B/5TJe7d/L 3X3UtWc6dQq1d7xgLq4UQQntgghKaHNaEtTz58k4dOgMjhw5yy0RGvA3mxtx8eJtLvRfvEjFxo07 eezHOtjfgAMHTnKXFk160OkaWGrUGiIZmc1NiInJ4W2oRUFddSUlNSyz7dv3o7Cwgo/h6RnI8khM LERkZDp373l4nMO+fUeg0bzpwqOgfFB+SGokGft1FLSMjkeisE1koFl2tIwmYdD/T57Eori4iiVB x6Y80LGpJUStKfr/1q37nDY1tRjr12/nGYbUPUjnfe2aD+8vIiKNW1s0ZrZx4w7el3UiRiN8fEK4 xWSdAdmEnBwztmzZzdf2rTMVDfUw0liTthZ57scQNXYMokePgibf4pJWBCW0FSIooc1pSVASHSxK AaOlheUiKKENEUEJbY4IqnOHCEpoK0RQQpsjgurcIYIS2goRlNDmiKA6d4ighLZCBCW0OWmRpfxb UM4Fn0TniJy0GqhzXznfVkFQHBGU0ObU1TbC60gxTGbX73mT6OBhAm65F6GuRn5VV2h9RFBCu1Bu rsO1PQW4sb8IN9wkOkNc36/CrQMqlJnqnG+nILQKIihBEAShQyKCEgRBEDokIihBEAShQyKCEgRB EDok/39kLDvs8ze4qQAAAABJRU5ErkJggk== ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image003.gif Content-Transfer-Encoding: base64 Content-Type: image/gif R0lGODdhfALVAncAACH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACwAAAAAfALVAof////v 7//39//e5v/e3v/e1u/m3u/e5u/Fte/e3u+ttb21lOaUlJz35v/Wzu/Oxd6cnJzO1ubFre/Fxdbv 9/e1lO/FxcWcpa2MjJStpbW9vb29vc7Fve/v5vdaWlre1v97e4ytpb3W1tbO1u+EjISEhITe3uZ7 c4TOxdbOxcXv7+9jY2vW3tb39++cpbW1pe8pKSnWpaV7c3Nrc2sZnBAZaxBrc3uUpUJKOjG13s7O GRDOGVqt1kK13hAZEClSSlJanBAQnK0QnHNaaxAQa3MQc+a11pyUc0LWpUKUexBanDqUGRBaGVqU GVqUnBDOSnsZnEIZa0JSEDGclK3OShAZEFrOe0LOpRBjY3POGTHOGXtzc70ZOhDWexBzpb0Qc61C nGtCc6WUSntaa0JCa3MQpeZzc+9Cc+aUShClWq2lWubWWuZaQubWEOYQQubWWq1aQq3WEK0QQq1a EOalEOYQEOZaEK2lEK0QEK1SOhDOSjEZQnNjnHOMzhk6zhljzhkQzhmlnHPWpXOUGTFaGXuUGXvW e3POSlKtpaWle3NSEAicpZwZEHuMSjGle61CnK2le95SQnOMxVJrpeZCnN5zc5yM786M71qM75Rj 7846zlo6zs46zpRjzlpjzpQQzloQzs4QzpSMSlKl1vfWe+Z7QubWMeYxQubWe617Qq3WMa0xQq17 EOalMeYxEOZ7EK2lMa0xEK0QEAhz1u+tta3Wve9C3vcQ3vcZQlJrnJxCQkqM7xk67xlj7xkQ7xmM xc73nLX3lITW5nO15nPe70Le7xCtxXP31sWMxYzexfdjxc4671o6784675Rj71pj75QQ71oQ784Q 75TexXPexZz31hnW5qXexRD31krexUL31oz3GRmcnNb3WkrWpdYQOjH3lFL3nBn3Whn3WoT3WsX3 GVL3GcX3Me/3GYz3pe+EpXPWpe/excXe7/f3/4S1pdb/9/+cnO/35uatxdbv1u/exd6MpZylvdat xcX3//+1lNatvb29zu/FnPfFtffe1uYI/wABCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzI saPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fPn0CDCh1KtKjRo0iTKl3KtKnT p1CjSi0Kr0OHAFezYt2qtSvXr17DguVqFd7Us2jTql0LNACHChX0wZUbd67dunjp6r27Ny/fuxzM sh1MuLDhwxnhOXjBobHjx5AjS55MmTLjFw4CIN7MubPntfASYA5AekDp0wFMp0atujXr16tjuyYd YHGCz7hz6979MwEHB1dpCx9OvLjx48hpE3BQqwPv59CjSy/pgAMB1Mmza99OOl+H39PDi/8fT54h PQ4fhF+/bpp9APfwV8dvv1o1bdXXSbvHL8FB+f8ABvicAxIkoB93CBLn3nAHJGCgcPnQ05+AFFZo 4WAfWGdcftd1YN+B79HmIVamjRiAg/QcgAgEIahw4okhXLCBcqWBd+GNOOaY1HmZ3edgicPRk4AD D9KWwANFonaVChGkoAEJK0CgwQYb1IMICSTMCGECE+ro5Zdg5lTdVfklsEEK+dk3QAIaXJDCcDGa ICKN75lwpZSIyDADIleS0CKdBNgY5qCEFooSgenRZsIUIRgIgHBMPrDBCLTlE8ADGiRZXAJ5QgAB AyRAgKWnGIQQXHcS+mfoqqy2mpFvST7/AMEFDj7wQARImpnCACrYamuDDxxwoq8G2pfAPljOIIMG VzKw4gwQ3KefoK5Wa+21B52XnmkAOGAPIg+EMCoJU5hwAQi2hgoCCRFcIMMDi9qzbqanEZACqIho wIAMnkKAASIpJJBmhF1ia/DBrRIYK4sPyDuFBjKAEAEJHlgQggwXTIFIBDJ4kMI+Mmg8BQZakqaC uBj4K0Oo/kIQSL5JBqoqwjTX/GV1+QWQj7f7pADBFAbas0IKiKywDyL2jJCPgVDKusIDADxgAwbD aeCpDCsgwk6niIBgAyJFEjyzzWSXLWB1iV4lawgWaEwaBlhEAMEKGoSAwYMJQJnCBStE/xC1DdGK uEEIKYSwMZuhfvxOkaYNQK3ZkEcunYTF6px3CBvYQys8ekPgwQZ5vnO0CSBUjMgMIbBwZQjDNWmC CqolEEKudIot+e247zamcA9coMEDjLo4hcR5SkrCihjIKsMIFvyb8T490pbCrtu193ju2Gc/GJfp nQpvAhGYYNoDATN/wAETUPnAAA9YkMAAEVDpPp24CovdcKrZrv3+/KOFM4ixKY6xNEWaHxXnASwg YGxy1rjr9e+BEDwKj4TzIdgYp4I0il3ASkMm7ARHfxEMoQiFsruckeiE+JMWBZHDKwwKZ0T2kdkI Z0jDnSBqTiak4KnUFMADDaCD6gnRD/9Tc6rSLK1gNUyiEl/yvx6uB4UhMs6IihgbExEnOCWKoQOX yMUuimSCQSzOqTo4RBMOcYgBxOJVGlfEq4DQi3CMY0fGNKKccUiIAFTQCkkTHPdQ8UBpeg8H6CHH QhryIh2ohYYSxMhGvscBmTmkJCfpkNAw5o/ZcWGCNKkfCbyAkJQMpSgNopjHVOc3jTmlKh1zyshs IJWSaSUqI7NKB+RjlLjEJTzoQSBPcsCXwGQMMCVAzF8aUx9bcIQ+OCBMYxKzmcB0JjMl0BhQ5vKa ogyAi7apzW5y85sBoAdWXJQCEoDgHR1oQTfFCU56wIOb7MSKOrFJz3pKpJwkSIE998n/z5HgUwP9 DKhANVJOEOhzoAhNKETweVCFOvShBiloQyFKUYf+s6IYVahEM8pRgeLTAh0N6T43KtKSXvOjJk3p KEmq0pYeEp8bcKlMC8nSmdp0iQy9qU6VWNOd+jSCF/2pUCHY06EaNXcoPapSkWrOiS71qWV7AJYA CtWqkq2oVs2qtXKq1a5eC6teDeuggirWshLKAk01q1rDdK98rvWtOuIqXOcaIBYYbm5YIMHRUqAC uvpVPBDQhWBxIFjBQqCvf00sdCAAAxjgoLGQPaxiJ7sbWnigsY91LN0oy1ncqAARuviGY2Ggiwsg trOo3UwKdAFZGKyABamNLWJUENjG/+qCBPKQrW4J0wIWzKCxMoDtbofLFsbCAAIUIK5yI6ICq4jz ueGMLnSnK93qUve61s0udsVJGkREYgUhgEc4m7td7Zq3vOg9b3aXK9ITfQCSyxmSfIlE3/nat774 va9+88vf/ULyAS7AHH2XE9/+Gni/CD6wgu/bARUIhr0U5SU1CdABAgiMABjOsIY3zOEOe/jDIN5w hTvwXgdQGMMCu3CIV8ziFn84Q/3RDIQpKhoOCOw9VsmxjnfM4x77+MdABjKFlRPkIhv5yEi+SnWQ OOOE1oYDVGzcaVxD5SlbuT5XljKWt6xlDGIRNrMJM5jHLBsyi1k/73DAg5s8UPHCl/9OjoyzI/Fj wfv18M4VzHMK90gcTXbAH5FkM0Kb64APaAVEWl6QohfIaDo72oeQxqOkXzicHFq60pgOI5zzGEU9 mpDAaxZ0QGvzAQZycE5yTjWqcVgfIK5RjVF89anzI2sixtrWtjZNPgaA4VWDiADvPa2o+7nL5XCa j1KuIyCXHaJATpE+yjaRiQLZ7OR8Wo/Jsc8fr81H2oxgHxt4kGqsKMirDFuglip0DjWjs+Ng8oLv 3rN4dTbvC25I05vmdp+ZnccSsQMYwUhEIiDgggcUp0OQDPW569mCDhS6j8MiFpD2WCYTKLADQxqB g7Ctn1sR60QO2rhwElCPNd2YkR3/0PiDCGACIok8O/mhBzu6oYdtbOMQovAABB4wAvtt5ZHpWTix SXzyE21ATySYGpqygwgM1EOA4boAIkpGadJoYF1YWgGtyLeBCzRKOFeK3845fqJeC8cBPzO4mX6m gSlQ/d46awcwDNGNbYij7nrQgyhW9vUFQrIFQudnON878hDYAASeAgEGKPWAe2zAxEOKnT0WD4AE iG4DBKg8sshl8EuF4B7iJs0UVuAnCIBgChGwQPrINaXOw619qK/84CagGQI8YB8hmJ0KzBRu2R0+ 3Bvwmu+mYIHabOAembHw4MItLXYYIhjjqLk4tlF3NIgiEfd4gB0LrfDAX5PUOZOd/z004CK9yY4B UjIB6BKwNOCBbQQh8FQI5CS7KcxqfQ9oOgOYT5s8aeAAD0ALbONxKTMFDGAPKXAAU2ADLBAuDrIB /nIBweIAiDAyMrAPsnN6PLciLBIBo0cCt7IBSCIuzuIAKrABU2APEMB/pFEPMcAOwRAM3TCDNdcN hyADuQB6ykF43mdPLkIk4ScubvckyaMBCPgOUycv8CKC8hIBXfM7ImgC5CN2+yBVU4ApD2MglmJ4 /2IPMuACCWABG2CEpfIAGIAu7nJ79hAuMpB9VuN14LYPIEA4NpBPByCGERACi0A0WXIps4KCdeMn slOFhoMkioIIAhcD3iCD3WAIjv+ACM7SedOSAN3Xg6PkcKVmJCGgeIiQV7aCATJgOPZgNyBgASsi K1iQAkenghAQAezjdRfjdiFjKRCABVBDGlwYAgwAAuByDxrwDikTAQGwgHsjA05oUO6iTw+wArz4 MEdXhcxIGu/AIvJiMVPgHymAASQgdSNAD/eQAibwKW0HARhIG/zwCJGgczEQA4YgcOpgD7QQLFFE DzxoidikTYSnid8SAlgwBXd4hhBgD4xSN3IoMRBgjAkwPFhAMiZghCSAASswiiCwDwJBMRPwKAHg LsVnJlIXAhqgAf9yGxcAglNgjJuYAi4AAiMAABHgARc4BV4ngSwAOAFwACN5kDL/MDj2YAL5IFWn ZwEHsDS9ApDr8g7CIl6jQAl7QAY4MAOBsDWBEAjqYAQ54CLKAUn2WE/0aGKauIIjcH+9c4WSkgK4 wgBRkgAXkIom0DO3Z3oYkClHt4LkcksL+ACWEgBdA1IwggEXYDECaSAl2TvGSAvoEpgAYAI2cIEe CY4U8AAhA4CIUIXDcw+n2JMY8C8YmJBVyCITAInlSBojMApesAe6oHWqlwP4YATqsAiS+B71mJW4 FCHGthqys4IBYAKThymTNwVVGDUr8C4qAJG3UoGeApM/swimNwUpIC/+koW04QLMOHmzkntjyAAM YH8yYA8JAAE2EIASc3UswyhI/0MC18kCKWADU+CHGDAFJDCKSGOXFvCT8oIlIrguGQMBYKMc/DAJ k0cCueAJlKAMyvALuTB+PjckH1CJsClJtWF2J2IxnRd2ZrgCMwA0lbeNuEgCJqCANuABBnUppZOd 4WaGHmA0w5ECILACHuCSGjAAqhgu4jI162M3DdmKAQAyHsAuEbAvKapzmXMBllI0pEc4SGhLvYN5 RYMFjZI3zDgFLsCCAzABE8APDZMLj/AIX/AFXvALvzABRbIcJriguERohnYaCdBzpOEABgeAKXAr pAGAeLOmYSiCAwAAACiCRPIe5OOlw3EkYiiCxXI+tZICI+Ai4NMgDiAsRyKCeP8JAi5QD1cnlg8y AikwAUgyAAdAKSAnLA7Qpg/SPt8TMwOAqfNwD/cwAZPgBZTgBfdAACqwfQkqpri0lesGId0BAPlg Kdxiq6QhEHepM7iKkTpzS8VxS2bxq90BrMJRb5UiEAHQNhaAKxvgPsiaq7iKHMR6q7kaRrrKDyNA ADlgqhMwCtGzFcAWaLJKSek2ZLWqHZxUPVt2Z/aWHQC4D7/zIe86rwCUM0UUmvfAD9gWKJSYrqEU Ie9lRoi2RkKksIw2Hx3EHrV2HGqisDz0awF0pgngcxhkanfUaZ2GsB9ypsPRRpAkYwTLoCqQjxMX HPH2IfEGcyf0bMgmRiKiSZz/pGybVnXt6rHIsSBAp6An60UO56D0gWUQi2tR1LF3pLQ8C2djVG1Q C2m1SmeZ1m1nFEBllEcKe2lBdK7CFrRyhI/A0W3cQW52ph1PdG1ZtG81S7NXdCBW9ESrZrZJK69c ayToAbRgu0Tw0BhTK0D6ymdYq2qbJLjuGrhy1gHUBHh7e0i1gBkcNmIidmIYVmEnZrmYS7mSS7kE 8EPrwbnv0bkdZrnNZrkchmOV+7mem2GhG7on5rqZW2Geu7ob5rq9lmEV5gAVMDaNG7YOoA+YQV8l BkklNrzvVbyQVGjEm7zKy7zHu7zQ+7zSa2LOS7wf8LzMm73Dm7zIm73Qy73f//u92+u95PsCFcAB X9u7cfQdJma59JC6CVBhAiO/Fsa59Vu/lju/GSYw72u695tiBPC+AhzAlBu/MKp98Uthm0u/mau/ /Uu57wvB9ZvAJ0bB/Su5GHy5FvYbJqu+kqS3OFFQVOXBJDwRaCUDTlXCKswQSbXCLrwQcvXCMhxR 6xJTM3zDBBHDODzDZLXDM4xWBuXDOAxTQnzDYFXEHtzDSKzCOrzEJIyiWeLELtzEUty7SlzFVnyG KYzFe3vFXAy2QLzFX3yyVDzGBHvEZiymXpzGslrGbLygUGzDb0zGWCLGc5yVRHzHBBvGekywUuVW fdzGdRzIsKkCr3N1F/g6Kv+QvoQsak8iAx3jATOwLohwS40sdMbVWo1FAox8yU2Wya2lC4jgyUJX D/bwWKzlWBhgAqQsdCnwAz4AWR7TykJ3ADOQWTggA6xMy+emApYVyzNAkbwsdCSwyZ08zDNGC7ow BiGAzNikAuQbzdI8zdRczdZ8zdm7AZVwTkOCzd78zeAczpB0zM5sGG7mSS/gSeqczuy8zu7czvD8 zvIcz/Q8z/Zcz+zMTL+Uzvfcz/jszwD9zwIN0O+QtyBczmoBzb/BSwDc0BP80A4d0RA90RJd0RR9 0SlmaNR7Yu9r0R6N0SD90SId0hP9AYoUpgjNGR1wvm5EGvX20rQB0y4d0zT/PdM2HQAyjdM1rdM3 ndM5PdPzdpc/TbhETdTfIQEdnNKGoQKeNLJz+9Rk+3NS/bRRTdVTDdVXHdXI0UZF3dVEvRjWpNSG 0QGjMbNZASRovRVprbBsvRptvdZuHddwPddqTbZ35BquNhZisdd63dd8/dd+/RWk0RhJLdaD4RYc 0G9wZkeL3dj76tgfC9mMDSIQ57bcxrR1m9mYvdkWq9nHBiinVhsFYtiHcR6JnbNYbdVWLUWp3do9 G0By27FSPdu0/bZV525Ofdta/R4O4nJVt0ON4RykXRgBQE1oWy+g3Wry0WcUG0VSZmpX67Nkh9sq dLX0QWdp0tzRzdxG22jK/120AZCHF+AC4DYCX7ZlHyABwj3cg6EChI1CDjA467MhRbfbRiLfhsja I1ffClIP6aM+3MbWUjZxFqZAi83fKkQakvJ4RE1yGoAP+3APv3Cq7+NriL3e7L0W3+EPw+EA+2B/ MiJupwKA+a1ntAE838KCyV1A8S0n2HYsBTh1BGR75WocZiKJRZRDktKau907GDCKrUlF/Mpxx4IP BzCqo5DkfEqxwVFNGX7Yxi0c7Pk7XcM6j7JyvHcA4qUpAawad3qpRnIcDzg7+sHli0IC76B6EeAi FnbietW2P3cda1MatFZBJ7OHZX7e9pKC7xB/iNAjbS4icsvbRWQaEeAC+P/QDu2Q5EmeAwhOGv6Q 2E/OFog9HBQTUyqyAXeKe+tTD/YKgJiDOcp3NJk5AX8KlN6ICIUIIoUjim5iJpjDqCdufxGgqwmg irhHlkWDLrYi570XAuDWNRgIOsDO44WzD6C4AexjMdmXH4phDyRAfsfiAoRKkLPDPlQi4+yTe5iT JCZwD0m+6EnOD6MwAT2StU8W1pN+FqatHrU4OxFQqCagjcOzhyOgPu4C7UWIAQxwmbZyn/IiguY0 PP4o5YBTkg8jLvawL6zzpnJDMhu3AZd5nT0zeiDQJhsgPCAohz8DAhe/AQ9Zkg1fQAQvAzZwJilo nX2oGRuwAlSz5bWy8Gb/uTHMWYYRsAgggPPoIqwJcA/4wOjingPwYhyRjuHrPhWVLhx5yJ3Z+QAT EDGG8+MWYDFIwyLmBIFYIIIWAC/xo4sR2TYbE3/8l5D2sPUugDSIF38eYA/CYcoLmYWG5ycBMwAW IAOsCezXcS4WkyXqp41e1z6nhzddV4UXgAEWMDf7NzfpqRkP4AEYUG+mYSZtZwOEIwNYMHUm4IQr aC4kUHzBEYaMHu7hGgH0ACQ547dHnxbtjkIHAIFYQ3wgsJOWNzsTQPC28qIksDwCEYZTYgIh8Jts YyDtAjT5YHtTIuediAVw6Xa844UXAG6Xgnu4N6ITOYjdBQKDAwG3sZ1Y/wABKbA0MOniCYkIQYmC 8akLGkAPbaMBvboBjn+tl2IrVNJ2Img498A2hlfJAICCmHcfEZADADFK4ChLIRBZGJAvwIAADRs6 kBAAwESKFS1exJhR40aOHT1+BBlS5EiSJU2eRJlS5UqWLV16DMDBn8MACR48SBDAwgoMG0BASJDA hIkRFqbYu5AiwQgTByDYeBDgwIApMkIcSLECxD4XDwakmIIop4oILsSO2IcIhAwNNVOYoPlgCoSo BFQIfRCCxIp9EUBMSaAhRIIDU7AIxvAgXwoMMhjcG/DAHoQIDROkfXAgBIYUJDxsqBkhp8QHIEg4 CEBvwwVE+0iEMMH6QP+EBxowkFgLOIDeDSoYOkyQY1Q7fvcQLbqwgQDN3xw40HsZXfp06tWtX8ee Xfv2kyokcKCZYAqJDQA2/LCXQsYUExtCaHiwYV+IKRdMhKALAUuKB4gekLBBAxUu8IAzGeybLKqG VGisNhAmw6Cr0i5waDYISHjAhKDGs0A8G/yTYZGvXAghBRBsAAvF0v5ChIEN1MMgLnumeOCpDaYI cAALMAihwg1ISMwCexB55wII+LNhCgtIQGSEH0G44ALY9LOApoboOSDL2eoJQQbyHOrAIX/A465M M89EM00112STupjAo2kfHvPqKYEQktNgnxRoy0yDKTZAZIoIjIpyn/j/ksuLvBGmmMLPDX5raLP5 pgghvn02sA2R8OgLYYMJUgjBHg2K8i+BRWhMANANTi1qikujtMABRDr9kyYC/DTKHgv628CCDSAA jSZJ6ZvABAtC8NUeQxnlD9P2EFlNtwDChHQhhvKJYC8QNBjNIQeeazNcccclt1xzz+2IHuesrMkC Qw9oKDL4chogy4YesGCChvKpsSd4U02BqZyw2iACFdh1MoV67+2VAIUqNCGFCW6K4AB6JvA0oQEi 6PWABCaYGN6aNsgsAYaKsmAEdm3a1eR8CIhvApGtHEGDDUaLLN8E7Nq4V5Vrik/BeNm19b8VZAh2 uQDGlAhdp5+GOmqp/6eGad2GlA6AgKAACA9r5ghrCIABNhOL66BoymeAboe2rNqauvV6gHrtzSeo tc/OembL9M56bazV1tvjaqvFO16tHcrnrrU9PkCh38LMeiHIHTLRAwis/DYBqjfnvHPPP7+ug++I Jr10dmfbQDnSJ1/IdNO9dr10t0mHdPbYb2/9dobc9vqAX++xcswOQCe+eOOPR55rq5WOm222lxvc dIagt5J5dqm3VXrmtnee3dpjt3058a3knfzcmZsc8r9p6oD1ACAaPnn556e//jTVhdP8hiaH1H3b W/8f7ByiNPdhL3LWm1b3mje03yzwgA5p4ACvRjqlBXB/YIrgBM8Xuf8LZm8hzomf/UQ4QhKW0CRv kuAAIEctDjKQWvxjIdEQyMHxDW2GHWQb5FQoQQiu0IPxcl8PreS/MM1wcuNrHtYIKEQNMpB0H5BA CE04RSpWsYQBGN31Nhi5IHKxg9YToABx+MUJum13GOShBmHntRqyMXLTm9b/3phALVYPght0ox0Z AjkORMSKfwRkIIvXAX28wI7k418ZdWjDMU5wjRzcHQttt8Md/pB1AiziD+nYxNKxsIZ3rCAMW+i9 SwoRds15geYEuUpWttJcHXgBB1j3MNyRjpZEuyXa2JXLWrqOlwH4ZS9tWbpg7quWvMylQgjgnBbA w5XPhGY0ueMAB/j/Y2c7c4DWtHnNbWrTm9xMwAfAuc1wjjMo4gSnOLtpzm56kwDfbGc62QnOea5T m9lkJz7tqTV1jvOdO+PnOPXJTQ7UAjXSRGhCFboSeMCDHg6ogD4iOlGJVpSiFbioRTO60Y1KdKId BalHLTpSkEJCHyIN6UVTqlGSorSlIP3oS2Ua01hCZ6E3xWlOPZKPDjgnlhyIZVCBOlShDtWoRf2p UJFK1KM2ValMTSpUpRpLfVSiEtyI6lOb+g6fTlWqTQVrVr36VLJ2lanfsalO1bpWtmKnBRl5K3Y0 QAISpCBqcW1rXvW6V0GyAzd25WtgBTtYwpqkM3UtbGIVu9jEHlYD/4yFbGQli9POgACwk8VsZjVr Rcdu1rOfBW3yDnvZ0JbWtKdFl4nIg1rWtta1aBrta2U7W9q+pLO1xW1udesRxlh2t78F7m9vG1zi Fre1S/KtcZW73M/GlrnPhS5kK0va6FbXunod7nW1u12cIpe63AVveFv5HxI8VrznRS8gnZte9rZX hKotj3vlO9/jrZe+98Xv1LKbX/72l1zT9W+ABcymw8Z3wAdGcHYAnGAGNzg69nVwhCVMkv9wZsIX xjBHVHAAFcxVBrTgsApUkGESZ1gDM5DBCjzwg6PJABEjLnGMIwwBGNTYxjUmwQFkvGMG07jGuoAB DmCgC0Tw2MgHTv/BDIBc42/gQAbfPXKU6asCWuiCC0IesgbyIWUu51ceK/DBkmcQgS6XecoQ+EGN PfBiM7fZvfIggQ+4QAITuNnObG2mCuChZz7v2c99BvSfBR1oQg/a0CMecQBakA9G01gXEJhIng89 6UJXmtKXBjQAnHlnTpupffUEtT1DPWptdgCf4TR1B0JwghOEoAP0EHWsST1rWYsaxp3G9XUSwAEH fICavv41NXstbGAPO9jHNnayi71sYjfb2MD2NQfe8Y4HfIDZyL62sp2tbWxvO9vQpia4cj3ul+iZ AxXgAAHap+51t68D7H63u+E9b3nXu933jje+YZ3veLM7a+/eGb7/6S1we/N74AYv+MHnXYtYJo7c D1dJTCTggHVPazkVx/i7p6XxjF+c4x/3eMg3XkONqzuBXmsfF0Xe8ZG3nOUvB7nLY77ubzlg0xDH OUkCoI/86e9833Me0H9+x6D7nOhgot3Rhb50pTe96N1rCDyck9acV/0j9EC3JoW5de0dUn1xbF0H 9sh1sgvzk31smtXVzpEAvMOQLdwh9DIp9zfOXXJ1f2Dc7053R4KSaInUO90Fj/fBDz7wdz/jA9kF VKqv3fEWSUDW2Uc0OULde66rFibtePEzsq7yW7x8161Ej2Owox5DrFYfb/141k9k52+3fClf2MKv U1KUiD/iBSl5/0ExdrCSpByl3ptY+9nrviHeCEY3gnH6JqIy7a1nPT1iiXTKb1KGnNwkwHfGLrEf fej7g2P3P899Os7uhuUfZT6A0Q3l0+N8rFM99KH/erblJQTvmA9qqvdOonEN+wvBl/jYviECIjAh GdxRmlQJgfmolKSTiN0IFtcRIIaoh2A4hG3oBmBwP0ZqCKCSIvlbO+nruQCYAg+gKwzoiaKxmahQ G/HRmsJ5QctYjRlRkBjkpKDYkR55GyUKCtjZAAwwjdwwmb4ZwKxRgRDgCYmwQSLEmu4Tu3ygB2pg PwwEB+YjmvgDwcejP5qwhxWAjZtomawxChuQgX1QQJsxlingEf/NGQC1GAwA0AwZgBK4CIAfpJGV uYApcIEPqQk15JaG+EEXsZJ7wABoqQ17wAC4uJHX0BwCCBQS0AUSaAjbuICo4BcGKC8DWpBjOIZg 2AZxUD5OlIev68AX+MAsrLoEmD6agIAVuIBdGQAVuJHkWEQQIBkSsIoUWI1A8Y8I8BMIoJRdEQxE ABY7gYDJCIGfuZe5CBQZuAcTQAR7YIDESBVEQAQX0AAH6Bb8AA2uwYAVuAlEYI1K0UXWwIBHCwwM mAuSSQHjMIibAb8AkIcYSIRAOIJD0INDOIJ61AA6pAksREW120KHKEEZQAoTwBYZsJwHiIDWsImj qZh30JVjeRL/hLAAYLyUB9gHV3wAGcCABEiBPOyWLqySffgJR5ELaJmRXemVbvmVm/HGFUiBHekV cbyNDVgMXeCMn6jGcSwY+libAKAGGcgDHJCCPBiERsABHMgDUUgBx+EjUwzIEFxFh+jCSskMABAP gwwKm1EBC/AAEGA0DVgLLCCBKVCxBwAAsoiAzkgxHKCLAwEAArgQtWwIEABHADARKIGNOpSSqliB D1HG3SjGmMSXEzkae5ABqACABzDBH+kR8bCHX1mBFSAPvUmAQGiEPJCCRvDMomwERRgDdoAHKwHI qcy5gWyIqlCliUiAC8ACauyUyDDBPSPEtYCSFdAFMmsX+lBM/12wBxb4C66BABCIiobyDDJzAFwE FnjRSGRBBCCxh8FwCInsxgAgASzIl9sAARBggBQjM8c0ztfgGjUEFbo6y27JB3ZIhEY4As+ET/g8 AkGQh/PxQNS0OhG0km/cAA0Rjc6wTJKZD44pkNSoywkQRxlgCxUAlQeBDQ3wABrhyhphj4dhgBUQ kBBwUENMiwnQmf+QAbsMANuoFCfBALpwjRdxgSkwjQ2Qh32IxNKAgKLIw4LREFwU0QBgTyuwgiN4 z/fs0SOwAkE4BtOUgNXDz4dTzQAgELNcCwh4B5vBD5s5S0QoEIUwjCGREq5oDAzYBw2ITgjAACww wwsIwkqkif8fBBJcrBR7CMLBmAA1vJApUMYfVFA5vIDKQEsGMJKw0Iu18AD7MFPcsI8I0IviNM6r gQdqEAQrAAck4NFIdVRwAAdqsE+pTFKci7wR/JVpxICVTIj7SJlZuZFgMQpXSZ2gaMVEnQAXYICw iIq8gABgGSK5CIt7SAB6wI/6qAxDlcZ38McAQAsxlUa1zIdfoZRLYQojSRAV6I+5SIEAOEJghJbG aQh5oAZKpVRBAAdu5VZttdR/PNJMxbm2e7tqORhp1Z/EI0CHWBTKaKQFAbrfYIiDodd0vTt7JZ0N pAl4wVeT69fzoRfmID1tNdhtBVfTxFRyJTes6znIKc3SNB3/WvqfBLAAhLCSYtolXYodAXqY3ntA X+Ie0guGaRCEkj3ZaQgGcNCGYCDSTJI4JGXYTjNX7pmd8SMauwm98hklsvOfWjI/00mA0uPEojVa djgGfi3FU5zZO9vUNGKb/qHX3JlaqjW6LsodBFofJWqdCqK+UUKi5quj83O3uVOBMImhmG3acVvS AtykJeKh9KE8HYqhsMW8UmrXOcojTco9kB26SYK/hV1bTguAqry4FNqkzkNc6jEi77Oj7iM5qOO8 sLs+qC0j7JtcAzIjqOMjDmiowbUzERsKSIA9JkIfowNavMVZnq0+yrXcni078HEIDtCHelABhwNd KRNdDYAA/xSrhHdwne77Wk6S2wQau+GNW9ZF20NyQOZFOuGdXOKdVx6CHUKqBBKAAA2QBxHL3QwT 3RQA0wsRU1ycgRXAgingqmxyp3d6p3dj3/fdGVjjJnh63/r9p/udX4DTJvmt374hAP6lX4AKNfZ1 X4C6X/01YAFm3/i9X/b9AH94h+/0ktsQUwhYBA14C+7t3vxSgRYQXRNgBxbYAFqITizwAA/QhRP2 EgigBRNQAYbjtWTbNmFrNgIYNnCT4WcLNl/jYR3u4REoNhoeNhvG4SK+4SO+tiDu4SM+NmazYRkG Km30E1xcMV34AQ+wzOzF4AgwAXkIsQ1Or++NRhmYgRNuMf/shQBE0AAM5g95aIG3So1eMzVx+gBT 0xr1BSh6+IA7FqdeS4BsAmQb5idTwyZs6uM+/l9A/mMbRjX17YAbQV86XmSKA+Q6puRDzlVF9mMi Lqf/DahA1kZLFuUOKGR10uNySgB4aAEKGArw1QBamFXyVTEzloE0zmCZBWPlUoGIAVNivBD0VFAb QDHsPYgIkIct4wiHCgBlXuYOKM0WaAB5XBB4cOao07NlvuZmcuYwoeaIpYdn7mZ1jdhqpubUGGef QBptbuZy3jM68jNFgxxtfmZnPphyltYGuOZ3ZuYWCBN+rmZpZeaI5Qh5mMnolOVh9hI0tkYLSAEO y2Xc8uD/A5CHoWhLDViEC6nMFD6aQsRgFwYACkDmk9i0z62IkZ4IZ2oolNa0mzPpkta0l37plr6I BTtpilDpmv5clmbpmL45m15pmLaIlu7pnuYIZPZgE2ABCyDGFLviFJ6Bn1DjFGCBoRAxDX7o0mJQ 3t2LE8biFbZGWljjt/BoE4Kw+hHdpO5lYsTFWcbiGWCSfsTlq1asxAFfX8ZEXMRFBXXrNIbrVaos 8/ojCsCKfbgQMkaxxVRQNGaNvpZrvRKxiW7lFIjOFEPhFPZIPXHhDsYrVirrP/Jg0WUHwlZIXbBi FiNmsabquG5saGLQCyDjH7hiD3hqvgbrjlZtzm5RhNrl/xRwZRKGAIU8YdiW7eyts9VuJRED31n9 ZcpegRkoX+ztR7bq7IQyAYveC+euzKPB3hO15QPYbOOen8SBbBZoy+hcgR8gbY0mAVpIAc0ese/O qd4C7LVaZXmQB1hWSPQmbcuM6qnO7NsGb6lBbg/j6q6mK0So7QwerOlWK1ZmgTWmBVhe68o84RlI 48wO8KnZbd79ZVmuTK9ub+miq/nWq+/eZesm4w9PaDS27Qxvk6qeaN4m7K22Yg8wSzVmgQ7+6Mmi 6cTCqw6OmEVojPN2aibRk4b2YgB3cek4cYye5cROY/YWayVvLLoysMn63jUmRiAsXyzmb8ZeciaP GGtUzP87bW7tVuMHOObT6vHPUgEWSIHCbu7Dpqs0xuwwR4kPTm4aP2HonuoRC2nUYvDPogAVYAet rmLZfuspp3I8nwgToAUq5mqD5Gv4MAEKgG/W8q7ZYmV2sIBe/u1ZPpojafQA/0q1TvEzr+XoBq79 oq1dDhXDdm4FnQxECPEl13NEGG0rtvAcVwFMB4BMr602h+i1VAF6SIEuTG/L7EeqDnAWaEWuxoIh CWt5eC7yInHgogCC1nISKOMrdrHizuVd9uUU9wAv0d7rInblgsa9ULGEVuNSB0EVmGje1c0f6PXb 5a5BN65tn6t7/5BbZtgOA4EK5+sUoAdhj65N3y4KgHP//FaxGUAEcZ/KFmhI8nVrRGAB9nJ17eqw 3m3uVZf3h0Nuzzj3flT4ff+r9Cr0uVoxiR9r6OsMLC6vW3evjgevfJCHVVHIFZj41jOBUHexkVf3 lZevr/SMFTgSx2uBoD9hRGic/DosC7ivDlMyyyL6Mgt6fBeQ/uotKGOvFuiMH0Asq0MEywT7+UoB TEx79oKzH4A0kh8KeWCB84Z6Ha/6BFCBfUD3Lvbu+dowCJ2Bhp77rCexmcfipVRhipcvKz1h0uZq CDD85VIBRChfHNBomm97KdMAGJAFH5CFGvMBGJgBE0h58SIBWQh9Gwt9Eph85XIK0a8xLmh9xm8z E1gB/ybDgW+AAQ+ghdd/Lgi9MTXLdvRqARaQgeHv/c3XXURIsyCrMcnnYAhYsh9js/miABrDsiFz /VwzARK4Md/vLxPwgCGrMZnELwuYge3HUODPMAjAski0/fkyARmIf+mveuq3sbgfN+HUBVkACA8p WgAoaPAgwoQKFzJs6PAhxIgSJ1KsaLFgCxY2YMCYkeIiyJAiR5IsaRJjBA8cPdA66fIlzJgyZ05s oUEXDBLyaPLs6fNnQwgcEQEtavRoSQoQcOBYtBMp1Kgm4QVQ0UFF1axYt2rtyvWr17Bgx4rNmi/F Cg+IDgRoS/ZtWbhy48Y9OvcuXbx682Zti8jDCkR89/8SHmx4LDyj8AozPkzXrYUVPzZgddz4slip mlsk4KCvwufQoEeLLk36tOnUqFerLq1vyxZIrVnTnm27Nu7PCYzSe3H7d+7gwIeDhgSbOHLhypPL 5hDAqIPl0pMjhw3J9/Ts1Fdfr6U5aoAODl5UKF/+83nz6Eenb8/+/fr46ue7l0++gj8JL/b7Jn+f vHz10QffgAESKGB6L0jggAo/0TMedua95x6FE1q4XoUYXijhhua9U8F++VXwoX8cGnhigSkieCCL J/LHwW4+qeAAB/uhuOKNLapIYIkk4qcfgPflOOSORCL4wjsvOBDjd0V15gABARwwAJVVWnkllllq uSX/l10GMEB4ARDAVpVTDmBml2mquSaW+QzgWQcycgDjl1SiaeeVd56ZJ59W6vlnn2UGauWXYRaK p5l6srkoo2wWGsB4tSTGEzwJvOCcmI1quumeVNYZJgGcisppW5E2CZ2SbeUTQD6tuvoqrLHKOiut tc7Kalu5rqoqrqv6aiuwwQr7Kq4E+EMAPZTS6EAHvrI6LLTRSitrrtXy6uy02WpLK66lOsAgT+J9 2+uz25p7KwDd7nrts+We+y6xqwJAAAcOwEPBqT/VIkGUuYIZZQf/hidwwGIObHDBABO8MMIMK9yw tRFLXO3DBVsM5sUHZ7wxxh1r7HHES/KkAge1SFwx/8oap2zxyhi3HN7LHVQM5sQnq3wzyzi7rDPM PMvsM83W0vgcTQ7U8oHNOSu989I9N83xwTVP3EFbUT589cFYJ5w111t7LbC1BIw7ab48OSBBAm0F LTXbbbvtdr/90hzlAFQTQHXdBttMcdh98/13rv36m6vdbXUAI08B1Esz2INXu/ajjkuutrWQW145 5oBTznjhekd8+eOZTx455aGb7jjVVUfOgQTJ0nS4A4ML/jbtNadOuLWF5w023XiTXjvwwRcaN7MN lm02B7N/DbHWDnft/PIzR3z76aVbHbXnqmuePfezI2w4mGvTGydN9MyZdOCGfq/67QCn37767rP/ Pv/92qcPufdxQ2y/xukTjrH/wBe/alksgKqDXK5YRzSZwMNoD0vf9Qx2vZ0JTH8T7JnAPEY3vSGw ZoLLWPOY9zwRFiwBKqDHAU6YQhSeUAUmpJgDPuC64xUNbQaUWgdLJ7Ec/g5uh9Jb/t6GN/jVLG/9 GqLaOse/0okrcbXwR+q8ZzjrPS51c6siFnWYLv7l7VFB9Bf1PCg16inxS1YsYxcn1kUjZpGNufMc 64w3k8MlgGZhvOHo8KhD0b2RbxGMIFWqJ7y3DeAYMZiGIBCpSEEkUhDUYAE9Uiez2C2QhjE5mxQD kIC0VU0FX0zb7PRHPQv+TXAEcCEnudfHBxaQfSD/y94mE4DCTe5we9lzX/s4MEOZkIySRxzAJr1H RPtF0Y8GJEAsTQk4K3oulIZDJi2JeUXGSVBzCJQiNNMWzYll0phSnNMuL8mBDjDzlAUr5RT3978w EVF5HivYziI2u1im8mMkdJ4rIZa6GFihC1bo5z+7gIR+ClQb8phbAphlyaK9QH9tecAUILCBh26A k2lMgAUegLtbwjIFGjWU9x6AiCmEYAO3K9ztGic5Z/otcCkIwQVCMNIQcLJ3ePReAh7w0UfR0YnJ o1gKRroPBwBQpR/cY79ymoAj5moDGCDBFDRQT8/5jqJTnecGLoCIEOyUiVk0gQkc+kYlRvABG9gq /yK0OlEzVnOJEYRUCmqaQG9UMibmQxrN6BGBBwiui9RLYzoxB7a/3tFaZk1bMauVgLPG9KNM9aAJ HjBVQQ4OHoGwQiKpodnNahYJ4aCGPAj3AWTVdaEnoRE9FKuBC0xhERAIwQFCQILdBAAe68rpCHj1 nN1ODAAJsEcIeLtFvSECBMBFxD3q0a10EUCyuqpttQKZrsU+YLi6NVhOLTCBEEDAHhiAwD52Y1vo VitdZi1vW3y7j48GTWwdIFtMFGeyam1gClpNawr6lS7r8vZLibFWug6QgAikt1oiJWkKgmbd2RUk BPaoblsCmSsAPIAEMghBCGhRUfIWGL0B2IBUI/923mrlg7+a1KkFLuBdDExBo/ud8ISpC+MtpmDD 1jofTzqDtFwlIAQaYEtt12Xd8aK3uR8FgIShuy4Ot5VoiMBAdVc13nNWGAQyLSlt15Xk9C42vMyF rk6tteXw8DMGDxjFKPgxglH8YhQHmEY2DDq3cZlWJuMRXD4eIIPZJgADMmDBFFbwEXqmbQDOJXQs eedCFWxgBRDQJD1JPAUsTHQfMlgLKk1oAvvWQ5uxbAuhKfCAFWCgMvQUHAAiQNIBqOAerz10pGnp wgNMQQaUgfQmXQjiEZCxXjSBRwvqNTvZbsDQGMDAhiMdpWSCmtnZpGWkNRmBCJiAwFX5dMRyTYL/ FTwg03KlsAdIAEwSgCAFkMZKtLO5jykwqC30UMEAIGDrqsUyYLfbxwU0ulj7fjTa0FbBA4xLj3wQ WpMTyOiNdcmTD9RiqapS9QUYFEt6ANMEDoemC5e9SQsg14TBbLazkxnGTR4ABCuwAMGZraoHYOHR AyCBDcy9yYDF0pO4fgAEWpw3FUypuLcuOONicAhq/GISyhhBO0YxiUnMYhrhmEZo5/aBq9QZJjQS XKtXMAUA5GMDIYiAPbidgCd/V6oRQMQGHnABEjDgu+RGRD17bA8Le2AKJoAACfBO02rZQwbV3QAW phCBp9Y6BBaQwQouYIIN5HzPS9LAscuOiB94/wC2G4Bq3inZlhSA4ALpSsEUNjCCdIVABhB4bY8x YALZylYXszWBn+0Bgon2GO6qE1s4YXK4+dJMth+tMAYioAEQQOC7S9oHA0BAgok+wM/fjWvpka3T sdtABvmOLeYh8IABhAADWCCBRuemdhJgwANYWDzbZfDgLQLAAh7AQEEwsIJ9pAADs6+wDDAQAos/ ufggiOoEjMABMN4GgIAuyAC1PRm5BVe1TAEIRIBviRRspRrhLR/O7R8GaJUHeMA90MPl2d9s5YMF AFfpKJDZ1AJTRQAEIIJZTQH5XYAG2MP3KdcHToE9pIADkAD5/V9kXYDy7R3kWZjqJYAGQAAIYP9A eAWOSD0VYOjU3ClfPVmADWwdAJCAB2yACoKABuCf/m1SRPWdcYVACuSWg6WAPXgACEiWDYLAhS2Z IFgBNdyDMszCALRDDswCHgoCNmhDalXNt7xX1b3E2aRSj5EAA55SAMhfCsSWC4LA/WXg4R0hFuTf se1dW8gW8YGAWiTAFBzb93UVA3gADNbaPmwaA5yhPViAyQlercneha3bsW3bFOxDWuzfBeQfG4YY q1SYYASA2kmVCowABNiAn4EAx/2f3pUfBrwUuTGAo7WFD3ZVT9FEANTCT+VK901UiZ3hWX2fI2pA CLAhVCXYBMjAESJhwJFaRu2DBtQa24XX8Mn/W8w5lQ6S31ppUnExgDNiwUvhohZyErhhgQZcnpW5 wCSy1lOR23qRW0R9VwisVwBMgQ3IVrjtlSNigA1oX7XgHYRJYAKIoDn6WejZQ85BVaNhASKomumx 4QbkgwPIwBRYSy28gBzJhPlQ0gDAg6qtlwuQnxHiogzcQwKkQNtpIguyYaAhwqYpn4Vp3wWsQCXI QMzdgzkSn41pkg9+lwd4ROklnwzo4lmswFdqALl5nTkiJLlpYcBdWjNq1QN0gPx5Xbg9QAqQW+wp l9rEgCFQAy14wS9Ywpop3S84nZzlCpSkViC6BCbxGHdpgLWQABZEAAVEgEeV3tfp3whyFVSl/40D QmBbGGF1pUDgDYAJWIDXRVXapEv5VSUijIBepcA7RFV90UIC3N39WcCxxVROWd8GZOQBQJQ9gNgs 1lQKXIA2ZlVFcSIE3EMKuEBwJgAtYgBnyoADjOA75FTOfeYDDpfYfMDIlIy1lGGElR9JXUCNIcI+ 6N0W5tQ+fB11Hd4FJMAInFUGLhVsWlwKTIALTAFu+h08bMD77dYDZGRbOOMGuFptjtRaAUAKUN5T WVlQCR4EnJwvWqX+aRJ3IRc7DMDagZ7fMdry7VsS4mPwAcBvXkB49dgsZhUi4KD8IYKhXdoAZJVU bddETUDnJVxNxkRn/MxDvZYFhECLHUBcev/gFo6AToVA4kWAIWbmA8wACdRDwHkEIoCfBbgA44EA 2j1ABBQMADTaoyWiB7Rni9XeTk3ACpDaD3Ii+BUXyg0oBKiiCyDTk82iRvnZA+wDlEEnA2wAPTzA Q3KSCrxhDCADGOTCL+ChF1CCPSBBNoBW4IhNaSWmSAwijw1fCKxKtdHDhNIleI2ABthAvgFXfcXV dz0HIshAClBFB/RddY2A6angFEzAalliAISdGFqACQyABQBpSdHogHWiVD3APWzVREVA56UATObZ 6aXdBMRVrkwA2m1e6G0SBvQpXaZdAKQAGrKKD87n8vmWC9jeLZob4dSCA/waPJxPtWTjbk3/wfsh wjtk1MElaSeSZAhMALoRwAQgoSalmJU9xwFE1rptQHsWoAyM3gN0q22JJgQUxISi3d451T6kV0rY AF3GVQRgWABYYXUlwBEK6QZw3QYAlwYQWHGpHQjkVjvK3EhZFExV1wC8VHg9wLhugEdt2BmGQKqB gAuoQMxqktflFPHdmASQz0zc1YQJI1eNqwnkQ6fm2UM+ZApoQGAE3BRigAWIJglQm0xt7BQk1JZa QDvm3YKOmj0UBLwiAi3A1oct58rNAAg8q2QlwLgSwAVgLADAanCCF1V0H3hp1DA+AOSNgIo+gJuM lAOsygDwEzUsghIoAR/kgifkghKogzGE/4NBFUoHfEDxUKpJLGZT5Z8XQsDgCZqStthT5hsGIMIE BGeFxWQ+OCDiFqgM6Gvqcq0F2KDbqmZkFgTB+eAFjGDoTUFKVhn94WyxWsC2TiGc/uZTgRhX0cxv TsE9UMXupuiTue497J/aPRVNyRtd2ldkQRWYdGa6/IsD5N5L3OQ5BUA4VhThLqA9BKfBPgCo7kNx oaH+VpQGTMAD2MM7zEhWsVh+Ea5TIVuV3oOf6avVhmmeqR89JMC2gaP24dwUmGv7uR7w+iIthNek aYAKKGtUaem+vdZD1oMMFqeqBsA+gEB4cVcHrooKXAADQODM6mYhGt4+VFR9maNHbSbjtf9myYpw 7C5ZHOXYNYKJCdiDeV6A4iWioAXABKQn28mledpAuE3BCEQAEFcxFtICBIzA7m7hge6v7G4rFjAA CslA5cnWXq3gTjWa53GdJrVnIYrwBsBkAYZtybauj42AJgrfMkInCYTXuv1YrggdNRiDEgCBOkiC OijBDVwCEmADaAEZMn0Ak4DuSIjuLj7VQOqgCeQtC5QeLahgYKggV4WeA0DABbAKLaThroSj4UHA DOQbVO0uCehiRPrdFm0sBIxyBuNbRaVqSaEdOB6rllaYPZgArWlhGXJSnpGAYOSDtG7YCAgrImif g+HcDOSpFgqzj7UcNIIfASHOr7FrrpD/pXEW14PR2isW82ttbMs1XwlzFXoGQASAGGO1I3BRrQNq QHGVlIPd4wgwgERpgFSKlAy0pz3sg36NGgbw1saaHWsZLAw33w1eAAa4wEvZw/Dd7vAVG+f1KUlC c66ApnkF6ln8X32V1DD3Jus+2KYhmxFOAIXBpNEibUzAQwega7/kQz3YKYYJrg1MgC+2Y+tGwFNq H/huIUdbwO5q32rlFNpdwApu7AzE5HM4wClSNQjYwDHSp42dBU/vSo+Fl6rN4vCtV/4FFUyPFFly G+jRFOdJVH1WiyAkgiPxgCQENg/wwCVQQzZobmgZjucCoid/Mp2EiaFdmRgSAEEPWHtq/wBBT8Bi TUAEWEAEEOFaGSwhel17Xh84HmxXDS2PCR+G0d8IOMBD6lR79jCXjmEArJ4FGBraDSWGYZmB5WgA jAAAc9JLYZgFYJSfblcE1EN7jqH+xvZtbxWQ+SEBfCfvPVRrb5W5SqDhJZTBagA7bhK+PSS1aWtO ffYIjiNGhUD3HqkF6O961ROgPiRJHUAEjKuPpVI+RMAi3CMw6RRb5OlWHfcAYthAStbuylSKnpVk EfRRW4sLymxpbh/BZdUHP8DqPcABDGRn+xhlypRxfmQAO2a1JHHRjJNipV1pTgBbnFUd5VR+3gM4 LoLhUW1WGSdpp91vJidnE66PYba1Sf/JfK8bbI3AVoV4tYyA4VGMlKaQgGPZYsUUO1bUlXIXbDGa 4c0nWrFXWziuNRiBMFhDmIe5NUwDEhSmmLjXpDY2RYguzeQDAZgmJ8knqGXUx0GbxjVb0OTDb9bt lGDUoQmOgE33Q2WU4FAmgc2s6KlNodFSnlUUn1O1XOVDKVvilPhLZ0fApV+6CQGTZxucZPkWeecO uvrU7JzJAxh6tRzAswoqoO4UjDf6nINaCKAkqwzlBpiAgWmrtRBcRllc1dj54KCStRzAdFcnhRd6 HbHFgFnAkoSPdn2JWe2qtWTVIlYFMOXKbyKcJlFv2hxWPpDx79F2T/PEXVVVAiSKnkv/iafUmMVt rHfZoOnJ0gZAupQ0+gGsilndo64MJZdy0gEI+6pv0toYe64sXlctHsGLCV1+ttoIe6rX0eO8IThg wzRMg8Vf/MVXw9NFXalwMnyxuUWA8uDwUNDkEOh8CbxRFh/10Nrw0ObsEY9NOKGz/Om8uUj5tx92 cnyB5+eQTvjUEmUFjdy9Q8w/Cv4c/ckH0DmZfMvLfA4JTnbllhqxzdK3hYs7zpzsKEx0xqn/fNVj vQxgARsi2wAsWRFVBheBfQ8tkcy7PNvnED9dQThgQzhcct2Hg95jstojk0KJfEhYKjVNjQ8N0uBL EQLBvOQ4fdBDGvxATmEVkXOFTanP/wSwsesGsb3Nu815v81j0U7QEFHiC33YBxbRJ8AosX03KRaX Rxjr+HRMfACM2NQg4bppTv7Qt1Tp677jeI/ib37QD4A8HIM1HAM1HIM2aAPyHwPxH4M82Fx4jBZi Av5FgHIYNT7YTFPf5Aw2TY/2vBIOrdMwCRDhE1AtZVDkvO9z2Q/JwL7u+Tzom04ridAGmRgH/fzo U478RM1RqVJ7aT5ABBA4IABBggIRDgxAIOHBhAwFQiyYcGI+igI5SFABgGNHjx9BhhRJj8MHigw7 EISoMiJFghYtAkBIMGXLiQ0RMpR40OFEiQuBXgyaU2DNnz1vJsWZsENTgSoCdIia0/+BgwAisWbV upVr164OJCSYCfTnVIpSHw5VmFbtAKksl6JlyHIu2qFwiw5dKXWlQp58hZ7MC/RgWQJVvSb+GKAW h7eAefpla9fn2sBjIdrd61LvRZ2ebc7UnDYzYcoIIQvdGXpp34ZvBdZ60UFxbQAJalllzfSiW7Uu T6PO69ss0d6g0/o+OlpwS4nL1Z4+avMDAXpXbWfXvj2kAw5l09akaXBicJTGx/5m2nPuZdbSlfJm K/9mTfufJasu75g7VxUcarmstKLYK08o+8aLiqa4hAOqpvkgMkw9stBTDzyUElxPQfqIGrDB9i7K aKP+tHKglvOcaynB4E5z6DPxWAP/8Sf8jHvOvQeVirDBHcGbKrUKqXKgg3xILNLIrRx4oa6gItsR Jx1FI4q4DguCbaDTHquSSdiUa+4z8sryDa+DgruSty6ZQuzIkBrgwAEXWStsvijRdE9M5sg7Sz34 QJPQTJts/M2hOulMkS0xowsNLOzW/KgDNytzz0yW6BossBk5LAuwCe+kcDArKSMPUYkAaw+puzYN wIEPEoCn0VfXrOUdkyRNr9Zbcc1V111zPfU4AT+wClaPGPuOV1578vVWZQe9TNljkYVW0kETqMrV YTnCrTqhko12qWmdFbDXwJ7lVtqc3LwW23WzI8nYc+GNV955z+XgBXrUxTYAe3uk/9fffwEOGNcO XuAAKnbhSaBggRlu2OGEkhSW3YkVU7WxqjDOWGOM/dnY449BDlnkkUku2eSTMc6IA0bXbcFdlGGO WeaZaa7Z5qoycoBimS6+2eefgYa5Y5E54ICenZH2CrcXJHjB6aehjtreqKmu2uqrsY5aH2640Sfr r8EOW2yo3WwB6XzokW3stdlu+2oOIOHaa7fprntto5OGByy7+W77nbj1abrvwQv+upYRk048K3gC oCeBDuhRAfLGm6q8KXomp+e6yDPf/PLGQcd889BDzxzyzilv6oETTthgc8lH15zy2EmP/XLLTfc8 d9Mzbxx2FTTHPF+K0Qbed82BR/+dc9Fnr/1z5mX3XPrGbZ8eechh9/30DhLYAARHNMA+8vF/7315 7V8/fXPabec99uzZRx99yWlLvPzlrX++9v2jhz/997EXwPNdJwEg8MAG9AfA/x2PgQOU3wDhpz7z lU4qirPgBddlAhnIIAUY9OAHQQiSFJCABBoI4QlRmDQZ6KKDKXThC2GYGBPMgAQpIFIMcZjD7IyQ gzr04Q+zogIZ/CACQDTiERPXAhOAgIMUQOITfzhCElgAilWEoQpIoAsWWJGLXdyOCUioAcR5kYwX lGILy5hGpM3QA1tU4xvhqAJEyAACY4TjHWGVAhCQYAN49OOaKJCCGazAjX80JBL/A2kDGZjgkI3s zxkdGUnFgHEGiLCjJDGJQizqQgM3zOQnsSLFPoKSlB5hhwdmwMhSrvKCFICAByBQSFaS0gIkAAEa Z4lJFSxCFwwwWy6BSTEw/gADlwxmI6VowmNGEhEr6OEyoZnHGXgAEaqM5iFTgIEaXvOPKtjHCjyg TG6Ok0QpACcETGBMcpJRj3xc5xtVQAtwWvKd9bRNIIc4A3Hak50kxCU/q8gCEnhgBbRQJ0ARChKB EhQCKThoQn2YTIg+0QRzRKUGfjlRjYJEjrrQhQwskM6NGrGWtxypDlWgAoF6FALyYNlJR6qCFCxi mitYhDVhGkMpUjGnMNRATUlQ/82eDjUftAAqBDRggowONYQjNClTQagCDSDCHjP4wQrQCVWmyhQD HtAFVlOQzpRqFYMPICFPyZq0lB4gBRoY4kcRIY+lphWmLNAABEgAzhUE9QBzpevESvrPv2JLphDQ Kx0RwYKHDlajLMDrCpxJAgggQgMOZey6JHrZRrWArYjAKwkGKYMSLlazGm2BEmlhWF0wFBFhTSlp S+sVpwo2top5rQpMkAJEgGAFq6WjQ51Y27TiNgWpJeFhkSpS4Wpnp8u1jRI1gIFpEpSElA2rc/+a 0YqCdgUzEK1kJ5tU2GIXALMlr1ZkOtULaHMG7XXmIix73toS16KrZS0LTCDW8f+WNrPyBUALVHAA ebD1rjLw6g88QIIQOFQFLQiuf4VLYER4Nq8esPBe0bnfy5rXvzJFRIUtbIOgIoIWKWCHhiF82cLm tabehcCLL1BZFEO1uctNr2fxCoKaQjaoLHhwioH8kQarQB4ayKtHcfBVpIbVBAMeq2azuU3Gvja/ JmDHPuzRW49etYZKfXKQwYwV4tKCFhSWQXf1GlTXblibtGWqErc7XchucLIkXnOY8ayY4pJABoOc M3hf3NoIyGPG5GRrBOYogwtEIKw/1mhKTaCBu74Yr2cmKA2Dqtw8b1o7DpYHC4wLzh98VbTWxe9r AVBoYLq1zz+46gbpiVAAQzr/t7rFq4XtW+oUyHUjfuX0r21DXA2Q+cP24LMNkNtaTQMUAjCAgS5w 8A0c4AAXdQSosPHqZ2eKFgPhrWwCVA1scXclvZUe5AwUuUd71LmyYt1OuJFIC104m94w+AEiGulr rwS4rVN9MQn57GcaQqDESh33wXcWgFmzwNYG9uqlJVvZQet3vDK1ITaz6Ox544AEOIUjgFOQAHLP usmMniqfwakLBMsAA63dNaoRHnMLCtvf/7b0pem4j+tqRYk2gCW8f5iPFOjCBzDAgQ9+YAF9lxGM K4h1ECNdaXASdK/gnXC7TeBJmW89hPQNeHc3uEFAI0LnywaACXAgix801JAz/4y20UHgcTXKNOMy 0LrL7DphSvN5gzY4d8TrYQJHc53wKcwHkVIqj9x+OOUeJSgdC24CAbOA6HCP7x1boIEVOHsFRhh8 GWW6eWfrs8n51S0JfO7V1e71AinAL6EbvPTCz97wAMiHCkxO7A/f3MKolAEOnP0NGMwgq3ikAAlk AQMSvDSNJnhlvXUxyN5bWLR1poWk2XGAz9Oe+1WUarYJauEf1Lvouhitq1QAj/SvX/3tZ//73R9/ +M9f/vWnP/tboPAAwCP/nkSER/GNI1zlKjbi/uzvAA0wARFwAVUgH+Ah0kgABpIP+novsloP6Lov A3OIAmaNHiIgBAxsyzxKF/8igQSsAiqeAiFQMABWsAVV8AVTMAZZEAZnUAZdUAavYwYlB3QEIgXs YQpSQCCuw3h4sAaN8AaPkAaRcAmVsAmF8Cm8JxJGUOW+6pYSANxUYPs0cAvLCB4+oDoS4B7eYQzf IQTK0AyFhACq5TDY0AHa8A3dMA7hcA7lsA7p8A7rMAHU8AM6YFXUUA310DsewA0J4A//MBDxMBHt cBEVsRHtUA/p4TBCYBLJsAzf4QEIoClKggs5EY4Yg2mEBC1WMCf0sAMy8RRNMRVRcRVVsRVZ8RVd MRZh8RQL0RBNsRZTsSkKMRINcRZl8Rd9MRiBcRhrsRApYxRv0R+axgGGpxP/nRGKBsAbViY+DiQT +cIprHEhsHEbr7EbtdEbszEcufEbtfEbpeIczREbX8NHyNEaufEduxEe03Ee3TEe7ZEc0bFMdsRe RO4Z/fGJEqYkOENPysRXDNJcfmUgFbI49AQhGdJSFjI+kGIiI5Iiv8UyMLJfINI76ucfPfKHVOAw dCM+ziNPaMRQqIQ0BENCWLJB5IQwtOQl0YIluGQm2yJUcHIdo2Qn/6QntYQnOWUqDAItTPE6PvIo c6hx3HAwQEQp4ANHouJCNgQ1pBIqTRE0FuQh5yQopmMrMcVGwDIlPWUsaaQsO+NBjMIsKPIw9g8p 3fKF4IEABBIvIBJK+gVO/yYkKaAkIfdSMiglVXbDUjZFLrYSSxrSSR7SMDlEK2diAkZATzKDAPgQ A9+yMo1EBRIgWAJDJgKTTFbEMggTQ4CEQq5SXBhz/1SSNTjzVwgTIU0lTpTCJKlRNuXkJQvxKgjg FybAAdPyIYSkGS0zOJMmKgRyLa7wCqXSWVokMIJjSi5CLMRCLTZDIsRCI4HiOKtTUFTyJMnlQvQR JU9TLUZgAsAtAbzgHgaAAEZgPYniFo1SOOEzcVTFDSljAzBABrCABB7gMuziO52kXOKjezQgBOwh BJjzIh4AAy4AORDCe2QABOzhARIgBDSgXDZAAx7AAjBUUxIiAQY0OlVlA/8eAClw5AE2wAL8RD8C YB684Dy9IBfO0wVyQRlGciDYkvniM0eHJSpWJSkQwQaYSAYiVCAeQEIjQg0xMQBGIEkXggCKVCKW lEnV0AHEokj3cyCeNB8IQAOmgIkMFAAO4EkVAiIS4ABCwPyuIgHENCjsc49AAARCoKLu4TqQFDoj QCwsYMHewR40ADrXFEkfYB9CwE9D4AI2QCyilDo3YB+m4FADoEhB1EklFDzwoUXv4UVz4R5+AUYn YCgFIjM7QPZ0dFRJRAU+4F0CoHsgYAoiQAW8JwRUwAEuwFD18AFSYANcQESn6lATwAICFRFG9FEZ lRYeIExNdB+KdB8uIAT/9jMBUuACgPUAHvUCpgBYB8BVC9VRIWZAIYCYBEIDLgBZKWIKZCCp6mED Qu4BJK9ILSBXTRQReHUEDmADGvUKNwBaeXUDyK5IW9VDL2BVLeAKwTVaHzUEpqBaDzUCGNVRuwcR XMBIg6ID5uEeJkAFRsAF7qEgJuAe5gFEo/ID6EHrSHVkjUQpR9IBui0CriIAUiACHsAeyA4D4pRa B5QB7IFeI/Rlp0BQMSCpoPUBNGAD9PUHLQARGjXqdG4KQmAfFMwEKDQF7sECUqBQg/bFTAAhHqBQ H+ACiMkEDvZWQyBgEWIf3vQCLCACBmAEmDUBGJVbMYBRc3YDRoBLN2AC/4IWaOE0At4UWS9UbTFg AyAABE40bE1UwSKg2+6qQAdUaqcgQo1MaMV1JgZgAubhMQfgPF1lBOahcgHFOnCUZEE3O1L1CwUC ACwAC6YgIWQiBP7WAaYAWkEAAh4gAmxpavUzBEAAEboHq16WAe51VbUpBEbAAgr0WVcATi9gdqfg bFd1HxjgdYUU3AyojwQCd8VoAzwAA1IgP/UVA6YARLuHhF63ZSHgHrwWAhyTzzYgBBrqXk3UbAM1 bC9AFxrKma7QaPcBEQaVaU/0HhBhAqbA/MxqUKl1txTMAs5sa1egWln1IUYgB/ghB9TzFzJWSSeA HzzWFK0COEO3gxOjBf+CRTcA4AFiF3zvdVAD4AONLQQI4sPGExE+0J1MAAvswWm1Sd1abj+zlgTs gbewygKk9TgvwJboaApWgAFcZaD6yCIuAKRG2APswZyyt4chwGOv0AF+FALY12dReApIwGVDYAL0 FWiPdgNsdoUgIAJYDjPvodv2QSz0VVe9OItAIFBHNAUYFbJ+UJEiwEFBYBEgtiD44YI79WLxQUnX cwQSwCQn04Md2Tbmk1ZSdR+0+Cq8Fmb79FFpgQHg1CKmAAMcIGsfgBYw4AFGeAYY4AFWNQXeAQIw QGYPIB+aOATqoZmczgJY8ES3Nmxf95WmgCNAgIU4EwJswJQfIHstQMT/QlkD7gFEQwARriICpmBV b9Z190EgPnl2YVhQIwBc87RA2SEEYEmPFnRCVzWTHyBXCTROEcEDbilsA2BRDUs/8XhQu3kf8jcE VFYgDuCB+UFeR4CCUzgHBuAABmCRESIzW+WRGbor4AEe+vA2P9WLp4AWvBheu419Q2ADgoogvDgC LCB5Q4AEYmyWJ4DlNNSL4VQsuuoCWKCZSOAeXpd1kVWy7nURPpkEBNWWdEYgNmDdNMAedCFCX1nS NqAeVpBsK1qjEeFvvVZ3VeCjtxZok5de9TV2WYBrZdcGICAADsCz1rdAXZlLFU23BNgeZHZVEYEB IGAf8jSpspZLc3gm/yb2HvDhAPgBYyf3Hig2Bx6zKHbxcxt6sDvCVFHVp2XA5wRXVTAACzZoA6TZ QAOAWl12HxT2TTfIHkKZtzDAHhjAe984ADSAiTCAt+J0oGTgex/gzEjAe4PWiMHKITpgA/BznkQb BLDABnS3Q+eou2wAWWk1XAXiAlJZYU1Un6fKAiagiRPbBjSAdlN3Qge1mbAgdi3AAroU9TwgBA4A AhwbBBpVgR/0jS2AiarbAhwiAVjUC35hBCKAvR8gB37BC1xgFHJQJSSGsPUbJEz2JOq5TwFgANrq Hg5VBWaXIEygWBMgAugBd8lORAsiT4XWSk2AIdSUmYMW3MwKBPZBBf8GQMJTwEiBllmfc1E32iqc dWmZNKHXl0KrtEqFJIUfADNNIAFM4E4XHBAX9USvMMQFYgRM4KApVEQJ4AC6eaOf+1GZ2VfFwmnd ulkhV2wTYgQcIAcmIALu4RFy4Rf4ocodMylAlTL3OzhH1ySQwgEpIibcQyb0VSxW8/BW1iIugnFW c32jE84DQM7zXM+RQiZk4iVgYi0AXc8TslYYR84JHSFkgtBtb2VL19EfnXEQItEpgnEuVsu94Erz XDgOo4LG/NNBuCqGI16uEEBt5SJc1mNPvTkkxUMe5tUnAin4gUUxlh+6xS0KcaE/fcwjGSNvglRo 09fXojWZJSJCUtj/9ZLV8wI+XlLQLSNPkqJZbkLap30tViPaqfFXDlqR19OgCcQ3O4CDd92R9YZV SIVJtpJDmp0uJyViyYUsxRJR4OInKMPVfTJQ3L0zrP1TgNJCYjJLLoLQe4IvPHfc9zskT0RFzqJA EEThDxM8BQNOysQ/EfNQphIm7aMl+pNHWN08fj01NV5Z+sI/G54txd3gQfehq6VGh6PefZ3eFb4v y5FQ0P3fPx4/MjHWuXLa+QQik4VLdH5MOQNRnCQ55YM7g95MLqSRUX6wVaU4d0NZoPLi4YVFGgY8 ImPjj8U6m2Qxa/4i0DHdL947jqbpCZseJMBYcp4s0FEnACNLwBLu/ykk57+EMq5x7imkUz6D7kvl 7s/D7bWkVObe7/u+HO+eN/4e7/GjS+he8WdS8BfkUZTE7AlbVd5BAgixGDW/Fzdf8/Ww8z//83Md F/++84sx9GtR9E2f80F/9V3/9U1/Gzcf9VMf9m1/9ZPkBRxAVCl/ZDvgAzCfe6xDSIg/oiORHlgF +RPg+KlU+a1j+K0DEp/fcfiwAxpgId7BBZ73EjOx+IVk+affOvjQDR2HHrzf+KMf/JcfVM9/VSDx +8tf/cs/+eWfVcB/AvRhChhgo2kFcsI/EgEiAT0C9D4IJIjwoMAEBB10OEjPocSHBRk6kMABHoCN HDt6/AgypMiRJP9LmjyJMqXKlSxbunwJM6bMmTRr2uwYIGeHDgFUBOAJNAC9nD55quA5VKfQnjyZ Is2ZFN7DBPVCgIikywOIFDl/et3pdejRpUWVBhV7VmfQrwFagP0Z9KnXsXKPNt0gw4OuSCBCmHCQ tKtctGTTzoW7lC3YoUlvOn4MObLkyZQrW76MeWUAeJw5A+jMEfRmjRtbgP7cWSPnfB8TIMr7wwOJ KRpS0EuNG0AAAPk0bt6YO3Xozqw94z4u/Pdu1LpTFze+MYGFEFNIeIgtA5GKjqQ1Puc42jPq3L3H n86MPr369ezbu38PH6aKFPsgQFjhwcMMCCziTzaBAX4eyGAPBIj/1EOBfwouyGCDDj4IYYQjqSCP CRqQ8ENWJGggjwotSEhTCy1QII8GeWlIiwkqrAhiiy6+CGOMMi44330erDADBoikmOCMMlEQAS2I kDADfvsh6GOSSi7JZJNJmmABIhAQucIKJNAij5M0qUBLgFWSYGAKJmhJZplmnommfCqYkMIFM+hl AwQpeJgmTCLKk8IiK/zwgw2IpHAAnXUOSmihhrpYY5EyEPjnmIfCxCYtUxa5gpzbPYpppppu6piF Uspgw4CWchqTChpA8KYMJNjz5wGkvgprrKSuyAIiofaJCAvy9CirS7S+lpWfc17aa7HGHuujCaje KEOYriILaQqf/+KXnaPQXotttuxZOOmXKfCq7UsUpEBClVZCkGK46q7LrpopQKDXDySww2K7MJFI ri5Z8Vevvf7+ay+Xea0gwyKIWAswpELm5QEW2iUMccTFzrcPA/hZ2Z/EMX0IALkXk/AnaxqPTHKd K17Ipwwa9FuymrQwrDLLLc9MM4wmvPYlLSwQW7N80oJg5MM9D030gtwWOYPQRc9085tWaoDw0lJP PdmaiOgVM8dUx0TiPjLossLBWm9NdtkwpfBm0nOaPdO4iKSqAdtyz12SCbRgMaAFdNdkogc20MLz 3oKbrcLVHhw8OE0356d04o4vrQK8KoP7+EuFvznF2JVvXnLhN//qzflMGuDXeOimA2yqfiZofjpL 4+aXgsitz85uCjKETbtMi/ygcu6+Z0uBPR5AEPjvKpmAIQTGL2+sCXmlwLxLLPBefPTWD0ps4ao+ e31KJswww8q8sd59+U3mI62UihoIuPkimSrlxQb+SY/79jOp7A8w4ADD/v3bELX7AeB7/ivgD+wR QAEqEEQUoIUuZNG/COqCBFla4EZUQAJdRLB/stBF+ywIQhCZYAX902D/SFC9+1GAHTYoYQlnkMAQ ylBBnnMhDJQ3QwAgAgbf4B8MflC6HArxPS1wXgRxAIKMzdACM9ggCbg3xCjC5wIa9IEHU6jAwplQ F4iQohfhw4L/GeDgGx6IoQVN4IEOkkCJX2yjeoygCxwggnwgpMAicICDD7qRc0dxQAL8CMg/CjKQ hBykIQuJyEMqMpGMpEcCHkmADrwDCyDYwCMvKchFapKRm+wkJz8pSHrIzjKO9KQpQYlKRWISk47c gA2w8ICpnHKWqazlIYeyx0N1gAMvkEAvJQDMYApzmMQspjGPicxkBrOXzJSAPrihj3f8spm+VKY1 r4nNa/aSAwnA4k3goQIHUDOb5CwnMJuJzhdUgBvcQKc53wnPZTrAJ7kclAPewQEH6HOf/OynP/8J 0IAKdKAE/cAHHGBQgip0oQxtKEA/wAEOdMAyCYioQy+KUYUS/wChtcioRz/qz3y2pZ5nakEAavEC AugmH11pqUtfCtOYynSmNIUpS2u6GZzqdKc8xSk8AgBRblYGpR/IiW56itSkduWnu8kJU2+q1KhK taW1EClJzSQUhjRlqlztqle/CtaYOqACHKhaABwg0bCqda1sTSoHJODNq87orEVVSlvvite8RhUA Y/UGZc7qAALkRLB6lWpTBrDVwrKVlxOVq5bCWdcADCAAhBXsZC1LWclm9rKaxaxnOwtazop2s6T9 LGcFW1nNTrYDkyWtZkk72diqdrayrS1tb2vb3OIWtDlxACTKKhl4ROQDiTVtaUN73NEad7maZe1P RjvYzL7Wtf+yna11q4vd12a3tdvNSXZz8tblOLZJ8NCnXRWL3tYmFr1q5Uk+RqAP4EaGpQclbGvZ q9TEbpWwgmmpfv0L4P7G9L/nLXBiI1q/8TbppHVdLUydC+HVOji1EX6uhStc4QdL+MLq5ax0o6ve lwoWwiNebYl/cuIOpPilaxFwgFnM3Zx8IB4SqFoH9Llel2J4wzxJMY9/zOELR/fErsXsfkFs4RNv WMkW/rBOOjzd+3rXK6kNQHgVTF7zdmUAmRxBYHeaYx3rlACZ9CN/C/zgLYeZzF5OwFrJLEj7DnIE lH2kmevsxzgX+AO/pcyNPzDiACSgzX88s1d0GuYXw3QA/A3/cVcM7WExD1imOR7AA76c2TNHEs8M ie5L3xpXLLcIsi0lwAP2EQJUa+AB/oVync/cWtRu+dCEhXBOErCBVIdAA5Z0aawf7ebpPloncMa1 BkKwgQcEu8mRrLJznSzrs2rgHftYNUNwrWpLPuDY+9hACsic62w/QLZNcUB8J/MTffJ326hG9bhb 6moyV3nKPp5ykMmsbEMLm6awbrKnZ/1sLvtR0ClIdQrcnABlU/kBEUg4qr2NSScjWNRLAqynTRAC DEBg1xGoqQloo1Mp+9q7bYLAFJBd03yEAAKspuk+LvCADZAgBBNARF9gmoAJWGDZM7W0Bea5j74U vC+4ngIi/zawjwccABFYcEHBdRSBFEwBAxdAdgJS0GvJ5sPcL/DzQbc6ghBk3EAdn+kAQf7VU2uA 5z3FOtuTeg9EjADjU9iHzUNw9XtYgLAqCMEFEhCCme9jCjAfgQVa3pUrUzxJDC71ATaAAXskOwAH iHmywe3mBxRcK24eAa834IBHO0DZ8CBAshO+gcu3NOwm3/lZUz/5B0xA0A94gHVC4JMN8Prgnq6O a2ywgXzsYwX2oIoFUv/HfWCAAaF3eL4Tfvy1uwYE+3BAgCyQjw1UKgKImMLPHxkAEOgidhMAgT0Y PqQQPMAEB1h56LsyVvlCRijq7orDMYCBCaiAAFhHvqnpzP9wITAgHYdrqfcAlSVIlKVsqId8jyZ1 eMeAtdeABZh6zRdzfmdJBahwFNhrpgd7btYUHYAIGAB4MnABJlB+MKcBtBFsCQABGPAAFyADB/ca IRABdedSERVqiwch5fV+LfVxiNBytgcCkZcCD6AjSBh5DQM1VkECYFJ2ARAC9jABAGB7M2cPIDBz UZgTUrcPHTcANocBIAABEZBxxwcBMjhBEYCEMoB/99BSKrABiFCCG6ACD5AdNxh5IDAFG3AflWSG Y5iED2APGEACDhMBAWIP77ICGxAAFjAbI4AIF5CBOYEhdhgBF9CHB/AOkncAORF4iLd1+tB16IZj r3WHmuj/APmQAIY4hqtmIA+wcYhAOrj2hFqIeA9gdQlgdJBnfhjgiDlReS4ghBtQICRQhE8Iga4o AzaYceVSfO2nKlQHeFqohRtQeciIAX0oeqnmgo2YEybAhiFwdJ8oaFNwfjanf65ECw9AhjkoAY3F gzJCatHFV0YnWCXXfTLgAjE4GxdQcFggJyuHbBggAw9wVBrAACFwAK1YhAyACIdnjl2hi/vwSBpg DyeHjJqXhRtne1gQAvQxBfdgFXQ4WDE3bheABRiwCIfIkNPRffYxhUJ4AXGygiAQkUVIkNyHAXg3 BVYygmHTflq4cRGgAhgwQVMyc252KsEohecHVfGHbnQF/2sPgAh4137bOIVTcGpZuIj3sAIg0HAj SI6SF2wHgJEbEAEkQHUkwADehniPiAj7EHYLaZDINgVTcHC5dgEzpwFkuAEnJ3Ws8g64eB96SY65 5oYbYAF0dmsaUH2taAMI2RURoAGU2IJTwHIXIBsQYH4MBzLwKF7z+CKcoWVAeAF/J4V9YXgn15C3 g5ARgJMjEHnbYRUWYH/GeHT0QY73wJj1YG8xuHbWRwIWYIaI0HHvMCCuIoMRAHnQ44IsNwDwkADd FgAqF5YMYIQJAJkPYAEvCHsBkEGIEADGWJCOeHwOoHsmEAAXYCXoSH2SOIaswmoQoAtuKAMgeZ3v AAG9lv8PKxhLWsd1foZQhhaDfyd1F3B4uqdsGPADUxAAeEieJlB1XJaYOYE+AlkPxDiHYpd0WxaD 6qcBdBh0ekOIeBdz04FqzXKZuheWEXCcsjiZANCKF1BzF6ABq2Z/YpcTGDADlBmOcWdJurF0JHCD WoF/jvhxIZCDHJBgpAkjjWdvN0iHYWgDSeedHRcBt7MPHWMDfuGWPOECJOCUESoDkfB39OCcnikD cNhS08GQSphsFuB6tOA3bgYBBwl5G0CjDMByt4ZyAVAdw5kA8PAAWEAC3lmIumdJGYR3WKd5faiB ufYAkYMFdugAxxYCBpNvLAUCHqABUpgdulEfWbcBCnr/X1IpGfTnEK+VcBdAhxOQkXOqdOI5PBFq AxcQoSwIeHppVHhIfaeXa9YBAfaXAi5gg7lGAIG3iicKiVzpoSRgA/npbYi6fhswAQcwBTIQAQBA m3g3AVZRKa31caEaABhgA7ETACbgnYmZmekoAxnIEzG4DwcmAaMJpS1icYeWDx+nmsZYhoQIiwUC AhowASYIeMAYAPfhlAMkfjIwAu+yATezAgwAb/T6SIGHd1PoACmQkRr3cSvQcJrIrkUYbJaWAiOg AtvKp8thAZxnFRigqfQALxpgaRCgd5T4eIc3HRawso1Io/YxeDDnEzkBAj8APe5oD7uRcRtAACy1 cqI4/wJ9ZoqAdrGamLEksA8Yp5ZiZ5BJ1ywAQA/2QAJXN3OOKWjuuRWnZkmIoAsg0FSWBqsxZ5Gh mA9IuAideHirYnN8OAUJoK3AWJ1TkIkzmgCrcnxmKBtFW529FgImeAAOQAIqWHXgp62JegEggJAs ZYU6koMvsIP5SkMIZW+CNpduxn8uoHvAmALAWA84GQEFonliZwFZWA9HlbbNgmuSZyEy61Jsm3nk aAFT9wD3wAD1oHynpjKvumv2wKRdcQCoVp1/iqGSOwUsUDFC+HL0AYzbBgGrpn6V15jcl3Q2t2rK p3529w6J64I20K0m4Lxulmsp0Fp9+QBQ9QEVwKerGv8RmEYUp8aQEWogp+ptlEiINHkBYwmM1MGF EWqIczeXMTdzN3WH3QYllrSCHWeVIdltFqCVBFIP0rEPKfAOtFByGHd+NGp071AbwxsCrXWHVsd9 fRh0iCC3R3d4gCd3pzICR3W3cdKkoSu68eGDAmZpA6eAV7mA43YAbJhwYpcAJiCkJ1uZtfeJ9bCC Scd2lQd+XLYBLmCRKhAB9cBl61d0gMJ96le0XTEkypZ13hWjVlyRytaiI9CQDcdlKjsAX2wBE8Bt 6udmzqlrlqR7wVZ7CKdwOUG8rzVWNYZuX+dpCcCG5hh2AHkA/Edno3eRU2ACA+CFEWCOrVV5vYZr 5Hj/gC0lyco2dwPgxJS3gOGmbDEbAQeLBT47xRHKe5UHyg+ArK63ZVJyv55cdVwhaOEmw8rWsW7W WlsKoS31VvI4xBJyUj8IwwOgAvely9UlWT7BykYZocqGu052nQEQsaHHUvzVY6j8bdArjJOVc47J cDA1eKwWY1X8iZNVeS0XsXT2U900XQk3AgzBrgnQWvTQxAzXcPsHb252ANZMeSbQbQkQlVQbGaza b9fcUq1MWUXb0IK2dzkRz4u2xtLRcee8zQRQtIKl0JJljgnHatlHMH53Iwipyd41kS3IcAMAVTkx eN2qgIh3xwj9ifc8ketKqaIZzSBimoambxi6Uzf1/2svJXJHJnI6tdPwZs++lmjjLNVdzdU9VdUt dWnB5l7wJX/zh1BRjVNhHVOItW8u1dQ4BVXKYg92R3gSnVTr9sZXvVMJ19H3NXFJLSEq0FHD1moy xdZx/V2zFtb1HGWzBtlvjdWRvVMbVlNsHVPz9m+qWtHh1KqGLc6ly1NSFtfP5mn2xdiz9kgqVtQw RtmNJoyli9l2dWJr7Mz3KtjSfFBdXWtFNmuoLWZu3dZaLVlN0dTCLdyPrRTJzV+bBtm6pWjGbV3K PWxuHW09N4qlKBl/BtxO5ti/PWXcxRPM/dz2ls6ZPXJL5dT2Nm9Sdl9b7d7BrV0wxV+gltsRUo+h rf9vjiZgnzVsGRZdlVbdh0bgZ0bVoF3gkqZjyiXakw3XDV5qydVSDhAPZ+0Y6ea/CS5ioU1Tpq1v 0j1smt3bBC4Y9zXVCE5uUAbiFqbN6V3V9n3fD1LE8Hbe0tXc3jXeHC5dVe3cxb1ZISjVOY7ONq7g bh1pRu7j1k1TRn7e0j3iPq7ZGz5YkODI241Q4y3kNO5kWP7jmebl55XOkabj5D1b7b1VSA5raxbh CN5fSk7iwi1O0BzjCvJTmHbcLOZiEe5c+nbdkn3a/yZsmPXgzoXZcb3hGCZTgg7ZZ/7gmbVmFD1/ Z+UPiU3iO95Tgh7XmgbowrbVW2XapB3hig5tem7/2RFe6lYGV3PuIOBUVSrlVTvN11/91HJtU1Zt 6z0V6ylXUx/wDg7wVxfxtLX+Urmu612R67CuV3xN7OvN7DKF7IOFEfiq6grCAfqAWs3m5c2GWohF ANzebCqmYpQF7t9O7pk27qgV7uWO7ejO7nUm7rJ27u8+7ip27fQ+77LG7tpOWfTA7YIW7qjb7gTB aOlOWe2OVg5AGpPBSw6h7wJf7+pO7wX/7vK+7hFP7vZe7gkw7hPP7RZ/7dm+ExeP7+lO8NqO8SV/ 7yS/aRVVC7g07Q2ySy+gDxUw8zVP8zdv8zN/8zi/8zbf8xXw8zov9Dyf80Rv9D5fAf5Q9EsP9EPv //ND3/Q8H/RTf/RSz/Q5/wKhZxktgFbqFPVOX/VXb/VRb/Q/X/ZG/wJeH/ZnD/Zi7/ZfD/RTP/Tc NEovvyDwwAEV8A4VoE6kSPPqtPcyD/h87/eBr/eEP/iBX/iEf/iC3/iPb/iG7/cyj/h6zw1bsAWQ 0Pfq5PiKP/id3/ikKPpe7/mL/wJ7H/mVX/qgj/qhz/cIjxnlFU2hD/qcb/qjf/ugT/uH3/qtn/i7 rw+Yrw+L3/uML/ij7/qKr/rL//mTj/uDf/jcQFaFavcQYlIsRQFczVI3xf0BkP3jzFIqgP3rPf7b 7/1Obf7j/P35ULTsP87if50+kf4sVQ8EYwLZX//+2n/+4I/+/K/++g8Q+QIIFBhgYAAVAhMaLNjw IEGGEQ8GAFDR4kWMGTVu1AgP4kOQ+VRMnOhQokMKA0ea/KiwYEmGKkB42MDyJEycLW+WXNhw5c6C AAzC41jU6FGkSZUuZdrU6VOoUaVOpXoxX8WrR7Mi3Wo1aVekLH7MkNcC49WsXcGmBQDWa1usStmy rVpXI9q4cPUapevW4tyzfzO2kPGDBdO+T+kK1uvX7mPIkSVPplzZ8mXMGVnMmGEi82fQoSOT+JFC 9GnUqVWvZt3aNVJ2K2SYMPva9u3IKmR4OIzb92/gwYUPf2xihozexJUvB2CCxArTzKVPp17dOmT/ EzJIpHB83XtmCik4e/5e3vx59MFbmLAnQ4OK9PEnU0A0gwR5+fn17+c/VQUiGSA4oD8CnXJuBkRq K3BBBhuUL58UZFghOQcrtGg9D2azcEMOOxRONw808NDCFHQhYUQUU1QxNAg8WAS/Ffdz7gcIYrTx RhyjSgGEFWjJMb9FPNjuRyKLNNIiWjKE8cjq1ttNRCajlBJF5zyAQJ7upgSuSgzg0/JLMBdkZwZd IFgyTN/ykadFDdF08830NPDASgrg9O2AFqGzc08+qaNAzjLP7FO09SD4YYX3BlV00d9aoGUGIVPw ktHPVEiBBA9m0EBBSjv1FDV2SFthHxUm/TQ3/xU0WCFSTk919VXKTIBghR9kiA5WuzSQQZcVEIkA V2CDhYyWVWVARFJhn1LBAgB18YCWVpOVdtqk1ltkBV1seM9UajcqtT5eERG0W3LLvUgFWlrM1Exz M5J1N/sSbXdeegGgD9IVSDh2wHJNSAGR5zKEsl6C57UU00zFLVXaUk2gpbBIEyp44nlNQKS9FfLV AMtgTdAAU9nsQSQBikum92APZNM3hXEVPeBfEnYTcmCTa25XBYd3+8EGRFhYWFEKSv0XUoFN4NZm pMkNjxYSQJ7hglv5NGERCVU+9uiksy7341XtQ2QfZNG0dB8IJJxzuyy1VntaFeRJoUVddHHPaP+s K/q5whaC9hbnfXbDIV+WJV578HodhmDWOWdgN6OPEambP8OjtiiFRYjO9wJaWiZ883JT1TlfRGhh 2SIIYPjB8Qb/86BMi/zdB2BaM0yQc9opbgHnS1fXBUGfVSABBhh6fDw+iz0AnoRSWUAEW2cx0MDo 2qM32WPYM55hJuCDR70/dFfI3gMQZsgY9Myjlf58glN97gccsgde0+HL+89793FIGQJo0ddfS4/6 z8d/AP7vKh6pyu3koYEfwKB92evV3SgiwIo8kIBCacsEJZiVC0awghjcoAYhSMEPZhCEBCRKqmbg PuD9gBbyUIH5vgIXvKDFghqkYA33d0PmjKT/VB0YCT10SA+EqICHAfAhEXsoRCESESEdWCJCnKhD JxIFABv4gQ9wAQNdZA8LIYDiDpEYRB4O0YtiRCIZw6jDMqLxjGD84hjV2MYyIiQBIaAfFrHoAw9E Bx5PfCITu8hEIKbxjGssYqmCeMiRuBCHi2xNDxPwAQdAkgAOSMAkP1BJB1iSkpe0JCYheclMOiCS CYhkKT9ZykkSYAMgwMIJTtDKSrQyBA84pSRNicpbavKUugxlLXuJS1/ykpe23GUoHRCCE8gADq60 wSsrsYEO9JIetSSlLzE5zFsSM5ulLOUQGflN1wTAAS/gwDYhaU5u+hKd5+TmI0V5SgdwoBby/+RA PcuZzltuU5/q5Gc++wnPf+LznOysZz3iac99vhOf/lynKCe50IGKUgIScIAUwXlR1NCjnh/oAAE6 +lECeFSkIO1oSEtqUpSOdKQk9ShJA7DHl750jx34KEtpqtKbktSmO8UpT3XaU6DWdKQGIeoe4XFT nCaVpSJValNzWtOSSoADPMRoVUGjAkkahIlE5WoAttpVsIZVrGMV61fJela0plWta2VrAAbQVrii 9a0GiWdFrXrXy8TTo1wdABMJoFW3GuSvARgsWpnYV4MgFrB/ZeJWGUvUwUbWq4BFbGPdatnDYvay k80sZzdr2cpONrSdBW1pE8vVzqL2tJ7dav9ruVpY2BL1q5I1K10viVfcTiaeQCRsWAtb294y9q1/ JW5gBQvZ3iJ3rqctrFiXG9jnvjW6xj3tdK3LV+pCF7vTRe5xnyvcwDpWu9Lt7Vtn293yTrarc+3A XCfZgdzG9zEajW1wuzvc5KoVuK9VrWKPa1/CJgCx/k2taL9aYARvlrIHVrCBZdvg34K1uV2dMFnx K2EVuDe47XUrPX5LgFqQTL4jnope1Vph+3KYw8nVsGTvy1+xJmADD6Dwav/74v8ud7Dfpe6O+atj Cf/Yq+Z9roqBrOLBihe7kVVBApp8gCc/OQAHMEE9RhJcB8CXxFt+ikYTYNzBCgW9Y32uetP/mmSy /nWuD9iABh7AYRfvN8L5VbKZg2xnsAK3uc1lL4xVa+O4QjkhKhA0oVvIDkSvOACQFDGXHa2UeALX ARtoM42JmoAHPGAAmDbBnXWM6QnzGbIJqORYH7CPC1h6rJje9AMmXOYec5WUFSYvATId4w1M4Mtr JUACUjCBTMP6xqQktQNU4IAUtHokwh2J3UZSp4TIIxjAMMGns2zRR2ebI/H8QI4RAQIZyAAEDxDI HO3BxQeQAAJE9e+NL9bpG+c3AJiesXdFa5AHYGAfYh3sBSDAZjONubiAfe0+prBreVMkBTaYwnEL iwgskGAD3VWzeNfsAgyce9fFNauMQxCB/xBcIAEXGHcKpjCCrgqaAkErVdDqcQxE79q9tdCytm2u EQfUorlzPNw+XACBVAfgAfYAgQaEvgIMUOQBIUjBX0ewa1InYArjBsAxN4BwyFogBG22wKZTMEuw phsR8z71A6CugVXKIAJL//IcLRDZSrObqKc2uT3qkY+lvx2wAHgA+Kb8AAtcXegzwcAD1m52jwte nGh3gFAeAAEQQGDiCNlACATs8A2ALQL+NgEGoBMBRDzgym9NgKAPcHpCH4AawWAHPQ6w3A5AsgPY vnntvUxUAEQABCTY9QMQsQETVB4Rln8AFiCgAt9fwAUp8P3kNxB6gJkdERe4gOWTK2PqT/9h65im fggsgHC8Y+ACDjD4BaYwAXqYYB8hCAG4IxABDSQA9FOYQvwToIEQ/D4CsJ3A8EPAAHugpNfZOjVT OCFJAESYAoPbgBGwABAAgX3YAKCzADZbv9BLgOCbAslLgQYUvqubI/Pbh3qYK76DgBCYNwiYgnqw hxWwAKHbB1ULALqhgAOQBxMIGnaIAWCQhwNwssTqKEqqPSG0iEgbsilagXUjqh7UOrQjAbCxgVRr Gt+7Bw0AgSloiykgAa3DAAtwge1AhMLjqlVCBAtIQQ14nQ1IAaIjt8lKtxDQFXtIAQzwPnuYAsN7 jgfQgML7Ng24AHvwPQh8PrDDt8jLQwz/wIAUwLgNuABExL0JQMIHsAFbQcMHuAASeDwPmIIIMDky DIEInMDnqz4NsIAIiBlARDsTjACGiMQpyIeRg4AE8LwJAAALmMNL+5mVo4AWkDZg0EUahD0Qq7kh vDluw70UQLqJqIgIgLxdkbynOUYMoLLgMz6KgAAsyDwQyL+Dq8TQMwgZI4F7kDFUAwEM+LIpkIHJ G4h8+z0ZOLgLWL98QYj2ADkZ2AeDO4B6uDoSkBsemYETHIgUwAJ7mLcpwIBzlI2MOTiD4DsPiMN8 GYAHcAFxCQEIiIAp8ICxOwCSk5AURMLSG4EUiIB3IAEQ0IUfsIALkAHR2wcS+EcIsYF1/1MBDVzG FZjFCSCBhlPCfNhFLFGTHDwGu4GyH0ylYRTCnNuxKTI+AhCzB/g1S8QCK9kABInEGhEKC2jHiiib r5OB6uu6AOhCF5y3EJiCFBA6k6ORivi2iVszEECECdA4pkMEXcCArASBFOgbT9yAAyi3kpQBois6 orrKK8yH9nvA3XvAfdg1WsxEqkQIRHCBBDA4WVmBX5kjkoRJe5jLCPI1lizJFVhE3uM7rlzIDYBJ wtLAWNSTCWC4ghgAHQKGGDgGFQAG1hMJGjwA9RqASaKHorQ9DsC6WCw8ehgACyjIC3ieMTzGC4gA LChHDLwHv1QBArAHG7CAfQABiRQ5kf+EQW/UAMmTsUUUyIHIwnTEOxJINee5v314ByERCgxQyevc upFxAAo8x+cxAbNjCAswzQMIAb+MQBPYRGN7K4YkAeZctwSQSJ57PCwoyw0QGfh7BwbwgKQTuvYz kwR4jkUctwDYAFtUOoZDCH9bQQ+YxQcIEK46vWOIAUNgPXagBhMwvU5TLEbrTWKcKllLNxCwh6aR zzlMyeNEQufAyZaUQ4O0RpX8tkSMvKZJxw59QEucgjZjACYtvJd4gLasxXeYowhkxMPBAhkYASUN AZgkAQyIAJacgukTPaJyADPVwB39FwyYPutbSAtoyIBE0OoDOQgYgVl5AADQgOYMxQT/hAAMgICv OcThC7dT80sGaEl4C4AIuQAUtIdYLFG+Ozd2UwF2YL1jCAZUiAEWSojbHD1xyjIbtblifK4qpNJy zIcJKEgIsAc3gwANIACTwwAQ0MsHKEgMOM8GtDw1lFXwk7oUNMFOa786FLy5MgEXoMB9sIADCDxS C4FDFJkE0LpsxUmDJLUEJIE4XC4ZmwIAhIB36ADolFVVZIgMtTztmzdK40ye+5VeFRnl40D/XAFN XLoUtAeR872pq0iiyocR0L4mq7w5OtMDwD9LG4B8oIcYCAZ5aI5gOAaVAIDbOYA9SwZhTFUuO0q5 m7eok7mRba9SE1lS80ZSIwAgGgDc/9y0qOuukcVNOUrZ9cowMLuykVWzlx1Z0ou6VxvZkRhZhBuu 4SS0S1ut07u0SkK4yMSAiSO0qGvZHrTZwPK1e2i6K2uyDl3OK5s3RGMHeZCjUoEylts4ryJKj320 DvhNPBMKmMK9mKKIrhKzoRgIk7Db7DoIvZ3bkD2r/yEKiRCzlxCIuF0uCuIqwpW3tkAroSBQvyU7 7oyIfAgKug2rFFC8hezQ+DOuDoiB1itbQYvRsrXZt4Ik3lxbRytCeRO2uFI0PEu4B+Ov/eK3vf2z vzWr2sUxQLPdrsK0B6BZ7LqzS0M5sMK032UHK5syKEO95l1a2Zo11V1dDug2GFOyAf8rr8OytwKk LONqN8kir/zSMAUrLhQbuBZ7se7N3oH7qnbTXgALWfElX+TaM0Dzse81CN4KqzJzr92c3o/VuXjr 3rTaXQImOPP6W4KjsxoLMhXzM9ydMPcFK/oduLGy4LPCYHmrr9hdLwXOLsdCVQAmsXjCOnkTr4rb rAJ0MQlOrsK6MM+C4e3FYBcb3hfuLBm+N8VSMgaDsYFr4eVKX+KVXRbbKsQiYDTb4MDyqN8cYRKj rwHuXQoeKyVDsdoqwDI74DGr39mN3evKYhtb33jrqiqGYB+GYPAaYj9D4jyTPScesWjKpC1Grxpe YPyl4O1tsDyjYt/i39VSrDnb493/XeAzluIbE69Bll3X4jE9TjPIEqWOfeO7ggcCkKfYMl+H+y9M ZmH74uQlTttODuVNduEUIzLmymT7HWVMxq8fzuRQ1rALU2UWsy9WPi6/QmVRduEE4AAJmD1Jji94 aAEOeIFMatoB8LBK6oCm9ahkNmYP6zVoVuZjjuZljmZqTqmSamZmhmYBQ+ZpbuZpZqqTEqlkJoBw rqSUCqltTgBpfmZvRmZlblplvmZ27mZ67rVvxmdk3uZ5rqR8Rud5Dmh7Fuh8rgVyoohfBmZ6ECWG JjaGLiVSgihKMiZumiR3OqdqYuiIemhRcid8yuiIdmiFimiO5uiHCqWl04cUwOiJ/1aoip7okL4l j27pjSZpiGbpmCbpmjammd5oRnPpn+5oB3iphCYxr5qm2PsoD1tqZmZqZUZqdnbqBJgmUvMwmprq ps5qq7bqLMPqp+YorLZqjmJZlh1rqyZrmuqApQZrtX6HB3wHj2Jqqw7rbfYws+61aHpqjxprvV7r mmLnru4opOaou6aHelZrsIbqudbqSoLqr/4o2itqEoMHyibqAQIAyqbsAcrswN2jiqhszMZsojCq 0aZszEZoi+ifzC5t1t5sijDtCjJt2Abt/xFtAvoYuzQLhGbtz87s0G4B2Q7u115tKeKgyibu4M5s 1D5u1eZt4t4KovgfmWruyJZs6/+ejkshAZq5bu5Gmkuxy+4Ob+9uGskRb/Oul+8u7/Ne73LJ7u1m b/imFgsgSfWOb/sGluy2gPve72RJb/7+b1zJbwAf8FPxbwI/cEYRcARf8D6Zb/BmcAiHEwWPcAoH EwOvcAyXkgnPcA4vEgev7w4PcRXZcBEv8RGnbxNP8RPXQhVvcQ/5cBePcRJpGv2WcRtfkAu/cR3X DxLfcR8/Dxj/cSE/jx4fciOfjny7xCNfcumQGPfG2DphcikHDl2xgVVJmXDbninf8tfAAFmQBfeR BR+QAX7hcjNfjdJBISzykTNv89RwjixaIBxYHDev89AoEeDBATx6bzvv88rIDuD/+QYcuA8/L/TL +BP6GRVFMnRGp4oWwAAugAHkafQBDwDdBm5LFwpMv/Q94vRMt/RO1/RQB/VP33RRL/VRN3VSv3Qb SkuTRIS/8HRZP/VZX3Vav3Vbz3VV3/VUD3VKt5l4egcJeIEHIKcX8IZh52VhJ3ZjR3ZykoBlL/Zh dnZlH3ZpP/Zkh3Zrb/Zsj3Zuf3ZhT/Z3OPYXkAAXSIVK0Ady8oZy9/Zp7/Ztf3dwj3dsn3dml/dq v/d6z/drp3ZtZ3YJ+LJfp5hj44AKqIB3OHh9QPgKeIGFV/cKeHiGd/iIf4GIv/iEp3iIl/iMf3iL 5/iG9/iLX/iOr/iRt/iPZ3h1/194h095kg95kwd5jXf5iRd5mbd5jIf5jc/5mT95DqCHtBl4aWmB D6gnpELnkEJ6pFdnaE56pldnpX96p5/6p496qV96AXN6dNZN3ax6qW96sGd6q/d6qhd7qP/6sTf7 sm/bn0dtoTeXeKK5ZAwJvqV7iBAKiMh7utX7u7f7uud7kMD7wPd7wQf8wqf7w9f7xB98wBeIxe97 gajkF0jdt4d7CXi1uMp8zd/8vXXdD55iCzsrz1crxCUAfeCAym8XgzZi/hrlWl7lXF7hXH59Wg5l OBsy3H/g3OfiNMZl2MXk3y/l1u+tFYO9Lv6vBKgA1E/9ckmAFwg1zo/+6O8zD/+eK/rl30F+3/XK /t3tYTwzKwJ4h+Vn/m6pp10D/zPWs0MmX09GLVMmZTozZfTHr9ot4wS25fdHZPl3f3vTf9yXP4Cw ZoFFDmo5NAg0oiFHigMBHgZwUMEBgIoWL2LMqHEjx44eP4IMKXIkyZImT6JMqXIly5YuX8JU6UAC gYcDAtSEiFMnxJo+eT7M2YHnUJ0dVARIsNMoUZ05b/ZcCvTm0Ko2gV59OlUnVK47hfLs2hViBCOS jElKq1btDWMmAkAloI9DzLp27+LNq3cv375+/9qdmTOp0gAdBiRIvBNqYhUJTCT4mbjwzZo3qUJ9 4CKEhgcOl1aGK7oDAcVRedb/PBw0wYMNGzwbDW0Y61LWWH/yTGx5dtHBvlmgVfdHCXEgSs4ik6Qu B7yeEwFDjy59OvXq1q9Hd/CicNLWDh4+0KC0Obx8AbxHeJAAacUEiDQEaB4AAE/z4BFdCLEB6UP5 WPPlk0IIhfkHEX08HfAAfiEgskFkEBXYFIQB3IPIeg/oRB99RQUQYAgRHAhUiDupYIIRndxw3A03 pGUMCyakxYJTc2FXo4034pijjjumNBOHAViAQQjmXUAChioMwN8+EKTAWgI3IZWCDVM8hBR3AajA YQIRRJBCBF19tlNRQyVwAQYPAJAkaAHQc9VDZUKwjwUu2IPId1h2VRNSuw2m/wIDMoRnD4Y4WQnU FCBE0NyeEB3GH0QDACeJEjf8IckfLJrQgjXKseBoAs/xGKqoo5JaqqkyvbAbABusQEKHU5wZJAQg 2FPPBhhMYAEtGD4wBQkgeDBFAvvASkII84UAggwDBhCCPRBgAMFbD/wpaG4hYICBDCCY8AAEEJAg bAApzGqPgxAlAMEUGCaArQXpgjAFIg8MkAKsMuxDzwhNqrDBgAx4cA/AgLpX7LH5vEMCCTMAakII U8iAQQIAeEtrCIM+FAFaRqCVojrWtGCCMZPKCNEINJ6assors9zydLVIwN2qrSaFSAgHbAACBisA eg8ED/i8QQoXyCADFh5coP9CCL9iMUWX9qywgrkJaAACCTw/8IA9Ri/71pvJbmsDCRGEYAMIWBip tdEkbMChCVPYo5+/ENyzAQky/LpBBCSYvewBFryTwgC+kruCBgzoAoIFIxQJwgoXJGD3tjxHIDkW Muhd9goYIDICRCpo7JY1lEpiBAAqDCMJEOqUHBSoLsMeu+yz086RYDolIKSAHx7AWnjvWIDIFAIO D/UGOHsAQe9Zb6ABBFgwABmD6tXTq6BTGE51vA/l88AMJCQGbgj7zLv7rCGkoB53CUCMxQw8+ytk AkFqsEHEXia2wT70IgJCrys8IASYw1LWWqMBAUorAfawgQWS9a4NPOsCEND/QD1GkAAOsSA5JZLE DYygAgCYZVKSiMCM6FK7E6IwhSrUkXbahK4HmAlfD1mSBSawAQtM4WfESgGwTACACKxAWIhARHqq pgsItOcBEdDABYbGgAdcbWLeg8BDVpW8iiDwYubB4QUOmMOLoatIQ4xaBBBhgwFtoEEPINYF4taa D6mgSFqbQXgwMAKKXQAR6QvSESuCCBlU6AIEAIAJIhZACDxrAz1hwVlYwAIjGCFTowOC6tRhAvvg 5HUr3CQnO+nJmDiAA1p5yAV+sIJj5e6MwiOWoIhlARJ4wAIASMEKIGABZe0jBBcAFgaQ0i0NYIBt eYMAAGc5pSo+wAMYyMcB/yCWx3skYATE2t8+FnbKDgXgbcLKxxRsICAZmEsDLrBAgpa2AhAgYh/7 aAjEyIWFFOzDf7NE2z3yYw9lPmQKWDggBiKQj1uuawPP+wEVybKxFlBABfnY1HGU0AlJtC4AJzPh Jytq0YtiNCO12A5Q7KGLFaRgXFO4wANoAQLyDY+GhzpeCJJ3S5Iiwh4MQGfWYoqBKXQGA+/spgZG 4KxjzYeHEuOh4rAVHgj46wKv2ccKFgERE0DAQgHYBwZuOIUpuIZu9cjjA+wVtxCgDwM2mMDzlogB ct6DBPNSF6ycVg++DU0GFghgOvfxGkRgoaBYigAHjWGNilhDHarjIBCMQf9C51Ako4pdLGNPeDue LG1AiGEig+7RwP2tMWvkEx4J9kG2RXAGrCnwmT2wOlqbQeACI1DQBfJ4rjdt4AJTYOP8vjWFDzks nQxS5NegGZH6KTEEoJ1X5C6wjwM6SAP2MBMEyEYC6WFVQbMd3w0pGy7WXHW2DzBBGseHVZ2wgBZ/ 6AQLCImW41zqODKKC8oa6973wndULXRTd8JE1wk45gEjWN4B8tEuF7hGKQraXwSUwkMsDOk8iBjn k5Kiy/0AJY039BwB0ri/NxGLWRA5gAnq8RnWHEAFDSQpbEeKpvOA9TXnSQEButeg+YEVMk8a8GsG 0D1aNHEAAIicvCIQJkj/Saot1kALEChFKSUEIqKfSmx8m+zkJ08nlIPZykN6BxU1icYmk+lJAsLU rs7OZwC9m3LvrnTlLg/AhQMoDe5MM5bL2OQyimGMaaqMZvr2Di6NeUpiwkQYMNXZoClSS0NTdANK ti4fE4UyoxvtaLtstDCq+ZFOMEmbKtYHd62pR4ZE9Kj/ZLrSqLk090Cd5QiJBpOWxgpUVo3JwRwg B8ZAxqxpYQyOGQEZkMSH1x7yAU0+OtjCHvZHbvdmN4llNkuZ8qeL0pVVf5orHBoLfXPC7CyH5dJj uTapuy0hqTjFziro3QEOMALETOYzjKkARYnt7ncTu4X2mXJvHjKmsdQb/zejyTZmGEWV0yib2+Hu imrAshjDbDs2V4HzVxDecK9kecr69japRwBseGM8402W8qhls3CbDIXhYfnRbmgzGI9bO9wppze4 RSPwlg+G0pTGSsjHBBRm8wnk3fZNezXu858vlgMxCwptVOPtlEeF3v1mOW2gYnST0/fpUSm4yqPS b9UsnegJD03Ci54Vl4PbxgRgN9DLbvaKaoflzmZKzYk+85kru+k6XzapkX7penud4noH+M3DLSb6 XlriPT874Qs/O3pwoBYv3zvjG+/4x0M+8pKneAI4wAF6GD7zmm8ZPCrvAAcQwAEfCP3oRU/6D6B+ 9KgPPetB7/rSkz72ov9Pvetbr/rW2570td+97j9QewLgnve7/0AChv/64cve9gkoPeyFH/rIIF/4 xCe+7i8/n81jP/ujiogEXvACDni/++L//gve4f0XeCP85B9/918wfvCfH/zmZ7/7vz//79O//uDv vtDrz3//v4M+3N/++V8B0t//IWD9GWABLqD4JSABHmABwt/4vYMEfID2YWAG6gibOEDx0UMHFl9i fGBk0INuJEYHjmACpKAKgiAKsuAHdMBkpOAHwiAK2qAIiuDnseANemAHEsA7MMAUvMMNjuAMtiAL nuAI8mAK8iASOmER2iAUyiAIMqESsiABfJAGauEWYhQ89EUK3E0KcOH/GJJhGZ4KGIKAGJrhGrJh G1oHGJKAGrrhHNJhHdoFHMqSHerhHvIhScChHPZhIAqiIEIR2wziISKiHaIhICZiIzriFsKhBjzi JFKi9i1iJWJiJp5dJGpiJ3oivP3hJ4riKDYaHG4AKaJiKrrXJapiK7riJ4XiK8riLJ7QK6UhLeJi LrZMIUqiLvriL4pKLALjMBIjdphiMSJjMkaHLTKiMjrjM8YEJ0LjNFIjS7BiNWJjNooEHmpjN3rj RlzjN4pjN/LiOJqjNgrjOarjMx7jOrqjMqZAMDXjO9IjLVJAiGnA3WiACvAjBdTjP8piCiDCrEQN CXxLCmQhQCokKiKC/y78gC7oAg7oggccUUIu5EV64iLAwEZyJAzgwAVgZEh6ogXMAA5spEnCgDe1 gEiyZCWqQEP6AEr+gAb4Y0va5COawAxs5DfAwAqU100CZSKqwCLowkZ6ACLUZFAqZSDmgzyAABfA wHOt5FJSJR/mAwR4JCJU5VY6WT6Ux1d6ZViC5ViKZVmS5VmGJQDkg1paBBrm4UWspYbI5fXRZUXU 5VzaZV7i5V5yZV9GB+JxAAhOxmASZmEa5mEipgkW3wa8A71ERmGW4GBGpgwS5mTioGRWZmJ0QChx gEX65WfqhQqAnz74HurNXmmaJu2pZmqyJmq65mnO3ueVpu6JHmzWJv/t2eZr5mZumuZtaoc+OADm geZw3kVEvMB3EABpkEZyMmdzKifwLedzOud0Mmd0Vmdyjsl1audy+sR2Al93Sid34oR3ksavMRlx omdLtAA8aAfcTd57wmd8AgABWB4AJGV64idKRIQD/AjeWcWkKRuA3htv2Nu/AWhcYJu/dRu1UZm2 QRxOdOD15eeElkRzmN6nnZxoJJvHwVmGepxUON1thN2aTJlsfCjDiRy2UQUMeiaFuqhHtMB+2l3c MQqN2hvNiWiNOlzWhRvJ+d2PttxN0IM8uNCPsp6EvmiSdgQ9+J7EjdzBjehUtJ1vfJ2BjFqDEl2W Mt0AhJwKHMMxWIP/NliDNbCDUlAbaTgAPEylkrJpRkTE6N0djiYo1WFpllIct7mnVJQcRMiDNmQD NlQDNmCDFSABNcgD0fkEfyJpmzIqfXye3WHLnYCoTShICHSgBThAt2yAAzDotWmJWIEAGOnEBtyW etREAPEW3zXFAMjDNCDBFYRDNVTDFXTBFVyBoRIF8cVHozYqPKhAkyKIDKyALOFOnySLPSTABEzB XFnABnjNgxQrfbHP0XiAseAOIpBAa3UOkCjVm1zJlh0cPVDDq16DrGbDFfDAqxYqf1SGrvJqr8oo 7tgNCDgIujmAimEY+hDAnLzLZAxAazRJlbSGevDEztCCCYAhSbGG/wmMwARkzdZIFsFGzmslyGtc SQAcwzTYarkiwQ1QAzW46hVgwzEQnO+p6bu2qa/63lDUBDw8gM5owLq0y2xpgM1EDlINLPlsAAFw SQq4RrNeTLo0Ud1ciQx4gA+tWBm5EX54iwfsQwy+RhmNDwOIx/gIyGvdhJ+GQxIkQTYgQSAEAjVA wBFcARIcak8oKsoyagcAKzJtzi0hggloy/6IVQpUzQGl1m05rM8+TNzsA0ltgAfQ67do2AA8z6Cs ZQI4zj4cALD4ywBpTTphwP4Yi7dg1bM8wGBoA6AmARpcQzYEgjEEQiLcwBFkAzVcBduOh9oqKZY8 qk5ICQSEwOPsDf8G3AQsTQCcgAAIEO7iNGsaFc2yUs3lQEu8JIB50MPWnNh8PAA4tQksNZD/5MMG zBQDsBg9FNgBLAkG6MzxQAQ1xGo2XAM2XMMNCIIxdGw4ZMMxRBzorSnrvijbwilspdYFzMDwcM58 YIAHCA3NTgED2MM+OKwN5co75NLk3oo9OKwGiAc2Oc6JZY0FyMAUVITjTED/oEmvRMwdBUAEdIvN 1CxWccfmAmqgVkM2oLD4XsH6GkXo7Sr8uqiFcgCHJEtnKNdVTYl5OO4FrMBdQcvwjIAF1I0S2Uvy 3Mq6dMmVQA0R7UPc3MMEm4fRWsA+2MDxWIA9cA764BADx8sa4RT/d2SsrFbDNZBxNpjwFUwDp6Ht UMBwkr7pYEAAA/mXgsiADVxAfEAvIrQKrERLCDhseOhPMCnLgHDvr2wrRPSKDWyLDGiACfDufADL XFmNa2gXCNhAtmzABNQxIiEVZXSANoCDrB4B15brGIMDNfBHaoTeybbxhMbo6z5EGg3SQ0xALg2K v7BGOmnAPfisZ0STCSCsLtlVl3UXIkwAtZmA8HRRYmjABMRyCOxXGhFxYmSY3gxLiuErRNDD5oaD rV5BuYZDoXpNXLhrK1Mok4Ie4DFo32VbtLWzOyfopSEJUPiZo0Qbq1IDNvypoOozNTSJxH1Am3ih OefnG9dpPC/o/53C8ztHHrWpAD186TFQw5fKg4dRm77UBEFPaLzC8zp7NOCB9LcNnDt3ndzVqGXY x0O3SWWksk0QHytrNHGqrKLiW57YacTRHLVpBYJemZzqqd8xXL1R2zrzneouakyDJjo/Bcvq6LGN qL5NnKo6W9t5nI+yGszBxbRlWdeRXositV9ydMf16JUCBaVFdWqEKEIf3NP9hFWo6k2T9WoQADwM 9FeDZkT4g1YPtVWLRch9HEJz24dqqEl/Wk+fRon6dYZCRGB6tV1vZQCAn6cONbatHVMoaJb2dFoX KI3m3Fv/dFwX3U0kwHE6NnomgAQE5nMeBssqJ04wtU+8dne6tv9rWxtrs/aaVR1z/l110nZvv/Z4 rjZwAx9t/8RMSMB5lrZfqgBnAl9kfOdzl0ZzR/djUt9jRrd0U7d1Szd0ft6jbrd2X7d2O3d0g551 j7dzm3dpULflpWlyy3QHfKDoxXd8B2d3x7fv0aB9y/fn0XdAdzd+d3d9fwAQCqGAC3h/13dt0nd8 h94H5veC7/eB6yA90LV7o2eVdIDNwYMLwUOGB0ADuNBQdPhsFKmIW8WIcziH9MvuwodhZAmJx0eI x7i9jXgHbPiNDkWKw/iOV7iF9ypH1LU1hqF1BLmPGzlIpOORKzmP8JAhLvmT70iSQ/mUX0c8gkAv UnmWv6HCzKP/lnu5X4Tjl4v5F3L5mJs5mZMAlp/5mt/hr3Q5m8O5SrRjnNO5kN9ineN5Skh5nvM5 SDBjnwP6NiqMmgd6oWtEmBt6olfEnCt6oyN6oxe6NEK6oj/6pPf5nls6n/95pht6OXJ6pLv5p4N6 mot6oGN6qcP5A2TLm6P6mCOsBSyCsCKCBXhJY7e6ljckREakrpOAPNz6mpOALMhCRw67Pdj6r085 U5kkSuKABxA6snu5PECALvgAT8KALiQNtJ95BBSlR8KAB7C6tkO5CZAASuqCsYu7mbcAC9jARs5A uKc7lGskDCxCvL8jlnTAAdBDvtMDFtJDmilFCfI7v/s7wLPJ/wXpO8E/tMELfMLre8GX4MEP/MMv fMRb/EMgwg8cpYv3+0NDfMAj/L5T/L9bfMgrPMmD/MR3PMpLvMOvPMOHPJbYOwa2QAf0H/gJHc7j 387jPGqTX87/vM/rPND3fNAPPf/9H9Hj39Djnz5MwRbMhfsxvdLf/NIHPc9bfc8f/dQLPdZTPdJ/ n+Ud+8wDHV1z5ucFZtqH0tqvfS2svdrDvQO4PXsH5ty/PdvHvdq3/d3nvdyvvT84gD8kwwcEJt8b fuH3PeL7feLvPd0vvuEfPt6jvdwzNtlnngoQwPcVRYSgGlB0/oRgBaoVyOfrBOmXGrTFR+qDfumz freZ/ueLfv/r34YESICNW37hJUUtfEB88n7v+/7vvyfhK8XtEx7iLR7wI3/yKz98lsYHvC/x/xzi XdBscGlWY3a12aliUylm4x3SGbb1V7+Kft1lJDbdWb/5j9L32x2CguhUa6nOIZ1QbCaFQ3/ZVR5p ALaObjZZX9v2KxtRA0SADgEIChxQsCCBhAUHInToUKFAggcJNmTosGFEhBofaqQY4OPDixsDEHAQ AEBKlStZtnT5EmZMmTNp1rR5E2dOnTt59vT5E2hQoUOJEu3A4YPDARYLfuSokCPJqE1BMm068CBU hFlHSvyIdaDWkkorgiSolaJCriLLatUYcaDFg3PN0hXbgQD/AXpF+fb1+xdwYMGDCRc2PNhBrbwG FyLscDBjx7GTF0acSiBBAgcJqEKUuBCyU85bRYqlLPLxw8eZN48NWdrsZHoq6NWWJ48ebJMoD/f2 /Rt4cOHDiQ8/OjphghEPMp/N/Po0bLaUTYTYx/wySbIFDzzA/lm7Y4eZPY7UWP361LPrSROkx+4Y MGDUgAVjVy82XMx7i/f3/x/AAAUcUKjECEgtgAQ2CEGDDaaY4oEEN4hwOgA8m64gC0tK4IEUHjhg OgQx1AAD6xAJgUIM2XIwAQ1F0hCzFDxEji0XPaInvmB0rC8YYI6hR57YStqNwCKNPBLJJJUsih6k EEoAEXsQ/9lgERkgiMCECzRIMALvRksghQ0SwOzLelQYwATvmEvQgRkDOMCECDa4jiAOUzBBLYRG mFGhhhLAYIV9UpgChH3eVJOzzNJcc4AuHzAhgClksICe5sgMYE/mEh3BAhcsqBNRhTi0YE2EcARG G/l4XBW/9fBKgL8lZZ2V1lptLS4BDjijKIEHLUjggH1WQCQCEkKAkgQSQNgygRBskOG6EMQMIErv 7FEWgsw2UBaDDRJEBAMQZAjhTWdlgFAFhB6wR4YSIygogX0YCGEEFSaAQEwNlAXBAgI2uAACEOzZ oIMHAiZhigQWAeEBC6YYAYAHQiA1YBAuqGcAh0GwgdwA9P8lYWAOLwjXHgoVOrXHlFOuD5ggN+rg pFtlnpnmmm3Gqcmk4A0BkQgjXsEedkBY5AEQQOCZuZEvmIJnKdMF9AFEPICAwQQ0EHiKfcRM4B5E LjDWYQguCAHkkwgadAoXIDCWoHwcwCDhAPIJ4IEuMZDS2KgxQAQRgR+4GgJ7LohgChIicIGEByKW cgMQSNhHgwQiwIAERKZAROul+zYcEaAR0eCBiPJ5b1UdV9aRndzMejXWm11/HfbYjUxAsckSuOAC nx9YAYIHrHwA5A1+3cADElJ6YOQQDgI0hX2wCCGFCZqt3MMNTDChwQe0hsADe1JiAIsU5o50hsgb R4Qi4Kf/ALGg6vCle58p7HHhpL41CGEKExKo54CAo2Z4cVPYAASmtIEIpAAEU5jbBVYAAnxFrXdT GFbDHnAmsxxDZT1iWap6JA+L5CVmshPhCElYwsGYxGx18loKBgCAFEzNBFiwxwFSELBAhcADIMiH hR6wtwTkAwMeYE6UbLAsBfXNcR6iHM9CAAFdYCAlkvIWPAJgjx/0LgQX8BZKTDCF3BGkOxuwXISa tUQCAOAC49rHsQKQrrVpTwYRiFiJmsWucVngaADIh9RWUKINuCAE14ufDCyGHBWkA4Ms45HKgNGq pWyodSaU5CQpWcmYOIADHLkdIkYQgCxhQQMpwAIDFMSz/8pdwAMMIMgDaEHHA4DAAxYYwYnWxjRp acCKU8DjFFJgD/mlEh4AsAcWHjA+8F0gARagGndSQAIMtGhdWRuYx7I4L4JI8QL2SIAJNjCCgKXg AjbAUt96ZgEHrUBLNrgAAHpFSKqlIIsNy1qUQLBFgtCmdKfzkcuc8wEVWBKgARUoCenhgJPwCn/X 2QcEphCBEfwOcw/YwIIQ1qEsumBKCFyBPD10P3vgi5sysEcNr/OgJkLoAYV719nGxk17dKwgkgpB BMgGPQboMmtR08AA8kE2iS0LEVgkwQjI1qDAaXFCFjAWAktmAev8a6ZBrQ4JxNREmBbkVKhimelw MxGBwP+sAwMV61jJWqtcdcAiNATY5cSkgl5toDtTYCgLrebLyCnopWLLTPxeuk0xSukdmWmilkg1 ggH2NV1ncR++aISphe7tQwE4bCAVRKEFHaBZgdsAAZyaGRJJC0Uj0IBcjzUAveXuACpAni8jgNkB EjCy7KHNbOgBjBgY4hCGaNVGTBLWsv4WuMH1z1GS8hHTTrRUKojArub0q5SY4B0aGMEOJUqqCKSr WaBroWSldYC5yUlMBMDugiCFkLlJbFpeRYmC6GSh7qCoTgk4SGZ+CF2CcalOE30TiLS3j07KDb2c yccA4EmhfJRyAp1pyvg6EAMHx2A0WsHLB3wrXAtfGMP/gUmMfNWroodAx8MhZktqrHKh9kwHxCIW yfgKwmIM5anDLzZJJDNcYxvfGGdOAs+HVSwkBY9YJK8pz1bCouIUn/jIP94xe5RS4hezB2a8wfGU qVzlleRKLDAOCYyhvDr1vmYtjKEIXcTD5BTDJT+6aUx4JpPiMccmJMalSmoiQuY4n8Uk/7TynvmM YXjALIXTyc6P1ROd6DClyGEO8mnSQpaoDPkp6m3IIzWC6DWHpMRH5ghaHVDhPn8a1GLFJF5Wt5by iKhPTB5Ln5zCZFYzRkRSWc+j1czmMhs6NdDJU64Z8xk6m2XTb97yqkMYamMfe5I5Y0ulJbNmQ0ua xyeu/4qPo1Jkr1jbxNN+pKIpLRn1WKXRKLbIuE/DOmSfG92yC4BBG9tjd78b3vGW97zpXZAPcGAg 6db3vmlGjwpwwNlwVrWPQcyRN9Ma3mB+spJ7XOg2D7zJqn6zjwnCgQq0iN8Z1/iS1v0Cj3PA4yEH +cdJHvIXjLzkJj95yCWw8pajPOUql7nMYQ7zmaO85TPXOc13PvKc21zlKK+5x39ucpA/gAPB3PjS mU4gB7xDHxV4xwu88YJ3SN3qUtf61KeuD6u/wOte5zrYyd51sof962Yf+9rT3naxn73tY0c729le dbqnHetrrwDZs172uJd963DP+tW5XgF9JL3piVd8f4b+jFX3BAAeqmsj5AfSgIo0nvIBsDxG2PLn uHge9JXXfOYtv/kOYJ70oz/95AdCj8ZbPkhxkUjpR2/5gbx+9JN/fBtxT/vbWwT1KgC+7CG/eOMf v0hKH4ryV6J05qfk+S+JPgCmz5Pq++X6yNf+9rnffe9/H/zhF//4yV9+858f/elXP1ECAgA7 ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAKwAAAFBCAYAAADqnEQwAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEXoSURBVHhe7Z0HtFTV9cYTYyyosYsCf7ErKMVo pFopUqKCBQSkgwYRG0gRBUUQUVBBqiigsYCAJRRFAQGxIyASAxrFjlhATezG81+//eaMdw63zty5 97737rfWWTNzZt6892a+e84+e39779+pFClKEX5nTqRIkWSkhE1RqpASNkWpQkrYMo4ff/zRnCrV KPOE/fLLL82pFKUYZZ6wKYLjl19+SezKnBI2RRZLly5V55xzjqpXr56qUqWK+vbbb82XxI6UsCmy GDRokPr5559V9erV1dixY9Wrr75qviR2pIRNkcXixYvV7373OzV48GB10IEHqq1bt5oviR0pYVPk 4KOPPlJffPFFIldXkBI2RRZTpkxRnTp1Uvvuu6+qWrWq2rZtm/mS2JESNkUWAwcOVB988IE6/vjj 1ciRI9WqVavMl8SOlLApsoCshx16mHrggQfU4YcfnnoJUiQbs2fPVt9+952aN2+euvnmm9NDV4pk A+/AV199pc466yx1ySWXyAEsaUgJmyKLYcOGqQMOOEDtvPPOapdddkkJmyLZwGb98MMP1ZYtn6p/ //vfEqJNGlLCpsji1ltvVTvuuKPabbfd1B/+8Af12WefmS8JHUTWgiAlbIosBgwYoL777jt1wokn qG+++Ub9+uuv5ktiR0rYFFlcf/316o9//KOEZ6NaYYMiJWyKLH766Sf16aefqpdeekm8BWVuheUf +t///mdOe2LTpk2qW7euqkfPnqpHzx6qe/fu6sUXX5TneL+rrrpKdevWTUaHDh1UtWrVsk7sqVOn ys927dZN9ejeXfXs2VN+XoNDQ/du3dXkyZNVr1695Hf0799fzZgxQ/3www/qP//5j5p6zz3q3mnT 1L3T7lXTpk1Ts2c/Ir+X8eabb9oOHabkILJx40Y5lLz33nvqX//6l3r77beznwNfNLF4xueff569 z/j+++/lNWhN+VsY5n0NPlvsO3MUk0TPPPOM2mmnndTee++tjjjiiLJ36OLD+/jjj81pT1x66aVq 5qxZauXKleq5555Tzz//fM72s3r1aiHFP//5T/XWW2+pdzdtyn5R/D7mGJCcn2dofP3119k5PVAh zZw5U1YQSIOD/JFHHlHTp09X06fPUI/MmiWEgxD333+/kBiS33DDUHXfffepAQMHqCVLlsj7Q9y7 xo9Xffv2Vb1795bX9ejRQy4EMGHCBPn//va3v6krrrhCtW/fXrVp00a1bt1a3XXXXfKaPn36yONz zz1XtWrVSu7/9a9/lddqcEHUrVdP1alTV9WpU0fVqVtH7b///urGYcOyrwkbXPjr1q2T+02bNhU7 NmkoiLD54p577pHVJ0UwsJLffvvt5nRoYEc76qijRA9boUKFlLApCsP7778vO0WxoHcgPYppfuSL WAjbpUsXtX79enM6hQewmR9++GFzOjTwnRDl2nPPPdXpp59e9mzYfAFhkyhdSzqw37GRiwVsWM4N HADPOOOM1CTQSFfY/MCh8KM8Drl+gQ177LHHig276667poTVKG+ExRZktG3bVjJS9ahbt66qV69k 1K3LHPf1fD3VoEEDuT311FPV2WefrS644AJ1xhmny+rXsmVLdeGFF4pnwW1cdNFF6tprr1XXXHON uvjii9VNN90kyYbjx08QbwhekPtm3KfWrFkt7kY8Noxly5YFDptGgZSwEQCXGfZgrVq1xP21efNm 2d7xLeO3xRWHu4z7//3vf2Wex9isGzZsEBcXt37Hyy+/LKTDGzNq1CjJz8K99+STT6oFCxaohQsX qvnz52cH+ldMAcBru3btKl4C7apLElLCRoj69esXtGpB8sceeyxnjgvhP/+1JxYEJWrlF/iTMQUu u+wy8UakXoIMyBdCZFHe8JeT/lIQYd955x01c+ZvXgJszt///vcS+/+///u/7QjWqFGjQHYoK/1p p50m77nX3nsl8juKhbDlFX/5S2GE1eYEgJy77767kApnP1Ezq+Ca6F7nTp0tP+0f+GAnTpok3oKk IRbCvvLKK9utBuUBtWvXLoiwJvTBjEMamQLYyp988om6/IrLJc0lzN+VFMRCWFwn2siPCkkoblar dq2CSISewWrDYr9u2bJFIlSshjw++eST1Zw5c8rsghALYTt27FguD1116tYtmLBz58zNPmY11UIg xEJllaRWxEJYfIjlkbCF2rDI/+bO/Y2wFLzYa6+91HHHHSf3tXyxLCMWwvLFoSMti2BrhpTLlj27 HYHwwxZC2EWLFqnHHn88+xhzYPTo0TmvKeuIhbCnnnJKmSQsDv8ddthB3EKHHHKI2mOPPXKeL/TQ BWGxT8szYiFsk6ZNJCKTNGADFqJQItsB5zu+zDfeeEOyT60Ig7BLlyw1p8sVYiFsw4YN1YcffWhO l3pARlJL/vznP0shispVqqgZ992nXn7lFXm+dq3CCUtYtTwjFsLmkwdWWqCFLtrN9NPPP0s26skN T1YHH3xwwYRFJ1CeEQthEXOUZdLaAR0AJgLJkPhNSwu4+LhI8OrUql1b1F1xIhbC4iUgsdAviuFf jIM0uJ4efPBBiVBZEyf9gos86gAIuwT6WHLJcJ9R6DiOz04jFsIeW726yOj8oqysxrUzkS5EJtdc 09982hNPP/10jh+2UJgVtl944QU1fPhwyQhGQ4tOAcLWrFlTdAuvvfaa2m+//WL9PmIhLFcsX1p5 Qxh+2IceesicDg1IEXl/ihmjTdCLyueffa5mz56jPv74EzXvH/8wfyxSxEbYQr640gpMgkJWJwj7 6KOPmtOh4fXXXxffcbNmzcRkYevHHBsxYoT08MLzYa2dEAdiIuyx5ZKwrLCF+Hkh7NwiEpZCH6ee cqqMhiefLMVN+J74uyn+cf4FF8ReSj4WwhIFKo+EJXCQZMKiVYCY5J5RuYYDHjvCiSeeKCJxKvJU rFixKIdgv4iFsAiOrYQlj4ia+nfccYf67LMtOa8tSyiUsE899ZSaE+KhywSJiuRyccCi3BK+ZMi5 Zs0aOXNwCFuyeLH5Y5EiFsKihtdXKdsLfaHatWunzjvvPHGul1XgFipkdUJ/QZpMscDFtHbtWonU saLSCZ2FhR2xW7fuUtDumGOOMX8sUsRCWCsov0OVQa5mrmKu8LKK6tWrmVOJAoU0ICrbPve18uzI I4+UgnQU8SD0HCdiISxXsNUkoJwmhXQ5hd5+R/GKncUN/JmFgC3Z6mVgxcU3qkchqzfg/eiGyJg0 aVLWhqU7It8Zg27fcSIWwuIlsAYOSJdBvdWvb19RzpdVUHe1EKB9RQOrQYGNypUqqzPPPFO1atW6 4AgUBy28AIzzzz9fTAQuArKcKQt6aa9LhbxxIibCVs9+uFR8JnrCCktlEuzZsorDDjvMnAqEMWNG i12pQeM3uhaGBSJfVH9hkBVCCg6krVGjhtS6hdAUd44TsRFWmwQUNaag7+RJk+U0ampIyxIKXWFv u+22nJ2Jgs7IDVu0aKH69esnJgNFjwmx5mMeEBTAhmWwgJAxwffEd3LQQQeJjoCDcZxwJWyQeH8Q mJGuMWPGiLeA7QbXTVlFmITFviQqRfSMCt/sTJCUgytyRmpxBXWhsWJT94AB6bVJgNsRDcPjjz8e u7zRlbDFgknY8oJCCXurhbB8fn/605+kHBFuQkoMWUExt7/16pUzFwTUO9CHLorQUTOW34c4Jk7E QljqEmjCcjXfcMMN6sYbb5RiaHH7+YqJQgnLCmj1EujiceiLSckxcXmfywOJjPr0uUzsbF1uk/cu Cc3WlFt2QQ5kcSIWwlpBhT58frhMKLWTNBuWmlUQjdUF+xAVk15tzIGPskqVKnLR4cLisMKtHiQo 8hyEINp39NFHqxYtmquzzz5LnXXW2XKL24jtvGPHi6T8EM068FPTrJiQKc3fsFcHDhyorrzySrk1 B6sgt3gP+Gyvu+46MSfuvPNONXHiRGlIMuuRWWrWrMyYOUtqG+CBeOONdVKZ59VMdR6ISuQLAvP3 45ONE7EQ1tqQA8LiJSBgcMoppySKsHxZEIutkfusbr/+WtJtxt/4KecxNQR0eyNrLwHr0C2QzHkG Kyq3RJxw/0EwBtGvjRs2yhwDF6G+r8e6da+LVgA9AuOpRU+pRU9l7j/1lJz+Kc/JYWuP3feQi0SD XZCwLaSPU/gCYiGsNf2ZL4fTrh5r16zNeW3cIP5fiCTQikJNAghTzO6E7AIUnOOiYHeAnFxolStX Fl9s36v7qkaNG5s/FiliISyNH5zcLkkKzXJKJgoX9LTthEIJi8C6WJ4b0KRJEzElxo0dK7sevnII W71adQnuoDMolzYs245etSAD/ac4OLzz7juJIiwrDIeQpBCW1S+s1d4O7HbYxW3btlGvvFLivuJ/ x6Y+s2lTKcjctu2F5o9FilgIS3tIvcJiw2pnNcOLsPxcoSFIv+CEjXjZaTcIikIJSyKgNTQbNubM niNZseSO0frUxIKFC4uaouMHsRAWk0BDE5CDBF8GW5AbeH1YBPIChyMyfMOCH8K6/W/FJCwrt07h YaXFhuV74TO4pn9/WWTwEpR7wuL0xl1EpAYPAVVhkgJWWA5dbiQKAmR7Xpg/b745lQURwWIRFpx0 0knSpGP2nDnqsMMPl8WDz4Dvp3PnzmrnnXdRX237yvyxSBELYTHerdD+Pmw0JIZeq2xUoD8Aq05Y wKdbCCAsO1GxgDYZXy/KLOt3xIpL9xmqeiO0jxOOhI2qYAPBAoQVDK5kbsNa0QrFf775RgIaYWGf ffYxpwIBnWoxV1gvRHl+cIIjYYsJq2uECwPHNk5t4t9JAtthmCtsodLJqVOnFq0LOgLwyy+/PHZC eiEWwrLtW0FdfjwE2LCLFz+T81ycCJuwXj7MOE0hDlvTp0+XnLpi1j4oFLETllUV2+jdd98Vg5+o SlJAKJRDV1g44gh3wgI30m7e/ElOVW9SsrnYMRPovh0GsNvRLdAe1CxllATEQlirl4C0ZT706TNm SB/UJGkJwj50HXjggeZUDljl3NRqVrcWYm1Ub4Rrcb0Vah+bQD+A4IXsgyQhFsJagwN8MBxsKNZw wgknSDQlKQjbJPBKYSeq5OZJgLA65w3CcnGzQ+FywkcaNgiaWJvVJQGxENa0YUmNueSSv6nhw2/K mY8bYRPWy4b1Q1irlwCFFYcwfo5DK+ZEmNt4zVo1Y/VK2CEWwlrV8aiPaGIBMfbccy/RcCYFYRPW K6c/KGEbN26srrrqKtHiopPFj03tWfyoYWgOataslRIW4ITWQFRMDrxGkmzYJBOWSoNnnfVXEVcj uEZrq0EOFtVaChXtHHX00SlhgdUuYltDpY94mJXB7QuLGkkkLGnxgIgXJCVthlbxpk6BXK977703 Zy4oSI1JCWt4CQB1/0k9Qcr3eREFykFhR1jmaG+kc/hxfTFHDj+3TgN3FDasmVlgHRykuHh1hgKR JbZ2vb1z4LKumvwdvIZMVlRvJtC3FoKatVKTQGA9dH3wwQeiZicnnjF27Nic18YJk7A01sDDgUAn Oxpw2yBnrkHmMZmnJa9poOrXq6923HFH6bxdqVIliXqR26XzwapUqSyiaex5M1fMa5DBweBvCzI4 S/BdMPA0mMBLkBLWOHSRBKe1sDi/yR1KCiAsCiYNVrerr7465zVB4GUSIBg3uyfGiWOPPS4Uwobp y42FsNaDFSRAGUQjCHyJtGhPCiCsNdL13fffF3RBeREWswABkBNGDB+eE+kqNghMhEHYMBELYa0r 7LJly0UczFZI1iy19JMCCMu2qLFu3TopkpYvvAhLEzrUak646KKLiprTZSI1CTKwEhahBSuuHn5E zlEBwlIhUENqKHTrnvOaIPAk7E8/uRK2Y8eOOYTdtm1rzvNhgrD0EYcfkRIWuMXL4wL1+ymqRgcV ghck3jVq1EhcRzxmQF7Cqy1bthDBDqttEN2wV31Ytns3TcDVfftGusJyCEwJm9BGcRQ64+RMQ7Uh Q4bIrdug0ASmDHanX1DF2g2Q0e3QhTclyO8rFHgy2GWShBzC6mp1JsImmDXSRStLVhX6QukS5XFg 3rx5gcwRfKAQFsc926d1cNq3PtbFKXBjsSI7DXy6RK64j3lQUmkm9/soNHoVBMdUq5YNVCQFOYTV 1epMhP0h4Tu0Qru2mKcGaRwgKnTAAf4Jiz3LQRG3FwEPDijNmzcXvyvmAvcxIbht0bKFzFOPgcYc ZKRiehx//J+lFJJ1/OEPf5CaWxTw4D3xA6Nmw5zgsX6OEzyDxwzMLLl/zDHqmGOOliAFnyW/CxUc vxe3IQdb5IhIOjF5GGhfn3jiCfNfFPELF2SSEItJYN32yIEn8kV6xmurV0tRsjgw+LrBgQhL8Q8O iXYXuBO8pJNuNiy/h0Ju7EAsLL/8/LMsJGa0TA/MC1Z0omes3F9u3SrROQZVvCHi1q0ltzy2MzUQ vyR6hY0K1hWWkGYScOmlvSQ8bMWSJUukIo0dEJywfZtbthtYVd0AudxsWNNL4Ab+rpZ//as5HQiE Zv3+vqgQO2G5gjEHatQ4TkKXXprRYqF3797qkEMPlZUIW5btu36D+uLIt1t9KEfJIY2VlsHOoO9b B0Ifqgty2mYbJpUa+5dbxOvIK1nh0LXigeCzIPXFDl27ds0SCLuY348dTagXM8EK0lyo+VAIjj4q VWsJrISlqQT1S7HB5syZE5vCHcJWPbiqfEG4sLAXV6xYIbaj3SpDEAF7E3JhzjgNalXR0IKQLqdu 7rfv0D47RyMS9AUMLpKSi7eG+esEw268Mfu3rFm9RgpB87mxzVvVWg8/PFPeI8jqb4daqR62BFbC PvjQQ/Jhs1KQgGiqo6LCZb17q/0POEBsRVayG28cJj5YGobYffGrVq0KbBI0bdrUnMoBiZh8DpgG drh11K2ysgK8CNjQ7ACcATiwQS5WW4phhJGundqwGdDATGPLZ59JEwlW2aFDh6pp06blvDYqsMJ6 OfatQCQdlLBecj8vP6x5wMOUQO32088/iUkCSe12g3yBF8LOHIoTsRDWBCsC9hjlyD/88APz6UgA YXH94EPlwunZs6eUW+fWbrXKh7BeK6wXYYcNG5YVv2gblhWWEkaFFumwAx6L7761X+3jQiyEtW77 d911l9TyJxGRyiZsbXEAwmK34iqirwAkoLfqpMmTbIMZEBZNxMaNb8nqxsCj8NHHHwvpkdQRNNBA uILfluYjTvAiLO+hS7ZzaMMHjD8Y04WLJ2xA2CAXZBSIhbBWATfJc+R0QQpOzGZQISpowgKI57W1 Ut4eOSTp6YxTTj5FggM46XXaOg56nb7udaACXoQ13VpdunQR9xoHVa/VOx+wev8vJaxSu1rqErBi 7L9fycGBL5TcrjjA9k9kCE3Bs88+KysoBys9eKx74rK6jR8/Xg49flcgymjus+++roERL8KywkZp U5brFXbps89m71tXUb4kSEAfVao/f/rp5uxzUYJ2QzpdRA/cVtyylXMx6Vs9/rTHnwJ9oYRp3YAJ YTaIs6JDhw6eK3+YcIq6xYnICGuFlbA03NUEIHBAHN4NQQgSBDrkaR0ccLjFzcROwOCwYxW1BPl7 vAgLGd1s0d69L0sJa04E+QLsoAU0ThVIeH8rYdlqKZKLgIRIT9wlyYsJL8Lqk78TiJxFCbd0nbiQ Q1jIZPr6wga/wyovpC5Bz4t7infg0EMPVaNHj855fWkEbjC7C9+LsGhP3UyCqBFEbhkVtlthowDq IQ38nNokwJdIiLKswouwmBluK+xll13m2okQEwaXXFhmwz77hO/bLRSxENYUv+BLRAiCKIQYfdSA BHYrYtjwIixmFKFZJ9SrV9eVjPwfHBJZpWkQx+5VyP/lZcPy3oW8fz6InLAcbqyE1aoi3DkbNm4Q QXFZhRdh0abir3WC6Yc1weEQMTbRQm4pe2QNXgSFF2EJshTbhDQROWHNQ9ell16qFi5cKC6j9evX h1rxOmkoNmFZDPgsrYDE+WaMxCX1dEPkhAVWwpLwZ/VtcvAqq/AiLGIWXHtOoJyQG2FZ7fDVcrrH nqWCIeWV+LzJWQsKrxU2DsRCWKtQA7uLD1WPsHOI/FZK4cu1Xjh+BvVZgwDNhBu8Dl1t2rRRbhYj XobTTjtN3XHHHWIOUKJeR8YIgZPwGQQpYTOrwJ577pl9TGKcJgBuFL6UMMDvsVNZOQGlGFmibKm4 3bxG//79A8fve158sTmVAy5WN5J07NTJ9X9i+0cIw5mANHQOYFo/iylGcbogaduJ98NGAewpq0lA XS3Cohy6+LCtxY3DhNdplsBFEAIS4EBLQPENMlEpquE10Cpwe+GFF8rtiBEjRDJ4yy23yBg69AYR 1Nw47EY1atQodettt6nRo2+Txhv4p7m97bbRv90fPVpNGD9B+hwsX75chtZCrHjuOblP1sRzz5WM 4cNHqLF3jpWUej1WrHhOenR99/32MkK3iycuRE5YExy0+PJYYTEV2M7iACtsUMIik/RrcgDUVXbQ 74F9ut+++0kOGCsjIhs+HzIREN7Yjjf/qdasWav+8Y9/SNIkWcjz5s9Xf//7320HAnluERkh4Bk4 sEQtx+8ykRI2A3KRNJD1aZOAEzIlguJAPoTFXgwCXHhu0FW1nbBixfK8T/z5ICWsjVuLQ4G1SopT PlOxoU0CVjaKSniZEBDWWijOC9ieZFY4gd+H7enmSkKw7WbDho2DKlUyp2JH5IQ1AwdJAUSBsHgq 8AkjvkYY7aQLuGXkLXKiR6DNVq+7t3Tr1lV169qt5DZzv2s3HncTl13XLl0ly2LavdMkw2LSxIlS dYbK43qnYXu3AwLxKPWwlK9PGlLCZkApTAiL/QgB6bvAlnjQQZVsU2TunjpVcsCoevj88897DuxL onjWOUqNLlv2rHrqqafk93Gqh7Bz5841f50AnUCkhK2cElbcTUkmLG4fhOSA1fX999+zXWFpJNyk iX8/7AfvfyAySjcQ+3cLnDz22GO2f0uxUDklbHJX2KCHrvETJgQKHOABIMXFDRy6jjrySHM6Cwgd JWgUkjTEQtgkdezW0IRFOYZfFac5qy4HHbuT+fi7xnvWGbBi6ZKlEiRB4O4ECOtWG4G/pZjrq2lu VE5t2BKTAP1A0qAPXfx9uKtwuOOIJzvWTpE0ZvQYcUFRL0uPU049VZ133nlS6ogDGCsqg+idzpol UOAEIWwNZ8J6FUQOG2ZxvCTAlrDmlVYeAGH1ikmI1MtWpNhGg4YNRc/rNfA8EHaGsG6VbbxWWAj7 Y4RurQNd+i3EBVvCFhNmaDYpYPs3xS1eg1XVL/i/kVK6wYuw7ABeF1KYiNp08/O/RU5YkETCsvLh K+3Ro0d2kGvGLUSjbgGds7ml4qCO7/sFxTmI6rmhhLDOhTbEJPDxpYaFNNKVWWncXDdlFXTf9kPY Gi4rbNQ2bJI6q2tETli8BG7x8rKKMAgrpT/NySLCrUZCXIiFsG71pcoq8KEWSlg/wA5kF6MM5y82 3o0gSAmbISzdTsob3n/v/YIJS6TLDXh3cKcRwsUl5VSM2S9SwmZsWA4u5Q2YBJSJd4MQ1mX3Keks 7kxAcsL4HaTGEFauXLlSQVmzKWHLMcis8OoEDmFr1XJeYTl0OdO1RAiOCB6XG9UgEecUArf8srgQ OWGJGvXr18+cLvOAsOPGjTOnc0AhkTonOXsC/HgJ0CyQc4a2ttCWUokkrF2cvJjAhkVrmjTceuut Mu68804hlnWgVZ0yZbJknZIvxXjyySeFhH6xdu0aSUlxA1ExTz+sC7BhyRtjdX3mmWckc3bRokVi 0+Yj/E5NggxhET0nDWTympEsrxFEE7Fm7VqRJLrBK9JFKVK3QxTSSA5aCM+pbUti57ff/ldqmVEC 6YsvPjd/xBUpYbVb6zjnVSQuQNggpT5btW4diLCUFSWzwA3r1r3uSli6iDvTteSzJfMBc4DCGayw uvAGZCbD107IYwcujDRwkPESUPM/aYCwjz++fYNgJ5zTqpW4kKwZqQ/8/QHJB8NcWLJ4sSi+dHYB 6TAcusxMBD3IgCU1BmnjG2+8IYKZTz7+ROzQT7jPrcPgtazO3GJW6AwJ0wyAsNZGcbyOHDZ+1g4p YRNsw0LYIDURzjr7LElCvPvuu9WUu6eoKXJ7t7r77inq7ikl90vGFDVlyhRpVnfBBRdkXlvyepod 3zV+vNyfPHmyGjlypLi1yCrmfalASCdFephhX18/ZIi6rE8f0TxsN7p3l4wGpIx4B+ixxa0evC/D Osc4sGLFjLssF3xPKWEzH0RSV1hIY4Xb9okgJohJwAHt9ttvN6dzQD7Zaac5Z+JaG/IVG/zvKWEz ttH8+fPN6dihCcsWOX36DCm8RkTujTfWmy8VUD8hCGHpIkOmrBvY0t3yvkraMrlZseEhJWzCoQnL SZ5bUpyXLl0qPbfsgP2KiNsv/n7//a5eAuzN6tWri++Tzt52GDLkenOqaOCskRI2YxK4FZSIC5qw s+fMEXsT4mBTOiUmtjqnVbYtkp+BW4nXkyrDfebwl/JYD+0uo4x+3GAnJMSbNMRCWLdtLy5YbViC BRSoIx/LqdofhA2ywi5YsFDqWZlVq3nM+PmXX6S2K75Ta8nRH77/LV3J2syk2KACT1q9MEPYli1b mtOxw+7Q5QYIG8SGpVKglx+Wtkbt2ztfzMccc4w5VTRwEVWrVs2cjh15EdYt2uIFbDVKnycNe++9 txAWYmEO6EFqth2wYYMQlmoylNl0Aw1JLnTZfXQv3CjAzuL0v8eJvAhbCFhh6X6YNOgVlr+PDNq1 a9aqt99+yzGDmMAB23fdevWkVZMeRJr0qFuv5DH+T22frl//hvlWWUBYN3PJS0sQJpAlpoTNENZL yBwHICwOfoBa32sXYYUlKRFJH4MVifL3kA5/Kk2QqbtFt20EKMTlaUf05dYvzbfKooSwzqtwStgY CAsRzJBhEgBhOWQQyyewQTTOOtjOUT3px+SlBTEJZs2a5dmpvMQk8CCs+3UUGtAgpITNEBZlvBO8 VrZigW0b32uQQaq3Xzz66Fw1bZr7oUtWWBc716sLTZgggHL66cEKNkeByAnL6upWiVoLN8oa7ptx n2vgAHgduqJEahJkACGDVEwpK6D+K4ouN3gduqJEStgMICwi4/IGas661dUCENatnBEeh6iQEjYD CEsf1CSBEpjFtp0xCfwQ1s1X6+UlIIKGxwItAuZHIf0iUsJmAGG9CvuWRczwucK6JWh6EZbDLC3q 8WCgR0AMni8gbNAuOVEgcsKymjn1qyrL8LvC9ndJBUfN5QYIiyeB/mHsGLQjzRcQNkqvhF9ETliA g728YYZPwrr5dr1WWOL/NPgYPHiwvM/s2bNznncTpJuAsGc2PdOcjh2xEDaJoP0lEakgg+xUv+DQ 5dTOSAPC3nTTTeZ0Fn4IS0ul4cOHCzmvvOoqCVjce29JwCKInQ5h27VvJzljTuHpOBA5YbFhCWsm DQcddJBoUivsVkGEy7tVYFSQCJgIYXbbTf1pjz2ktq08v9tuknflF7i1/Kyw5G85wYuwlEMiSle7 dm3JC0PdBYl5XwIjQXzcpIa3vbCtdCBf9/o6aR/KiBuxEDaJ8sJKlSpJZqtf0MvAK9RqBT7Y+++/ 35zOAcS6+uqrzeks6tWra07lAO8AFxSrIheZtYL2tm3bJFnR7yrLCksfWgjLxclBjgLHcZtzsRA2 iWotCBtMD3uOFF4j/986aCCHuYBM8aWXXlIrVz4nad9DhwxVY8aMUS+//HJ2UKsAoYwevI7PBl3s u++WzG3cuFFuS1a4kjnuv5NZ8RibNr0r4huE33Tm3rRpk4RWaSjCrR40tsOMsc7pYQLCDhg4QPXt 26/gkkdhIiVsBkEJS8o2PlOKbzz88MPbDfygpGbrxxd1uEhSb0aOvFndLGOkuvnmm3PGFZdfIRJF Os1QNIP29JgIN4+4WZRhzFHbgDFgwADVp08fGaSCX3NNv+xju4G7i6AEnz33mzVrrpo3a6aaNW8u q6gJahXwOzBj2rZpKx3Xrxs82HxZ5AhM2CDt1u2QxMABCEpYVtcgJoHfSJebl6B+/frmVN7ANLAO E7LCDhgoZsaSJYvVkqVLREBeSPnOMBCYsIUCPyz2X9KgCUuqNV/K9BkzZCVzihb17ds3GGFn3Kce fexRczoHEJYTvhM4TEUFKsSwwmLicGBkYBeXOxuWFdpNrRUXNGGpxoL/kseX9b5MXXzJxfK8WeWR wxHVCCmRSffEzZs3b2cXWgceBXyk3Ldb0SACdRCo2OLULZHfERX4XQMHDJBUd2xv8tEeeeQR82V5 AQ40b9Y825CPCjpOC4OJyAnLl+VUyylOaMKybbP1koC3cOFCyZ61A+HlHXfcUe2www6Svs19Mgqc BmnduM24T9FhBoJxPTiB6zQapzKebh6EsMHhbuCgQfIZkO59+eWXmy8pCJg+rNpkZOCO8xvUiJyw SYUmLE5yqv9RJ5baVk7BARIp+cD9Ahv2MReTgC+Mlp9uLaGizJpl5+D/p8QnHgiSNPkb7XaHfEBG Qz6ZJ5ETlu3u0Uedv7i4EPTQ1fPiiyWq5BeQ2yvShZvLLdLlVIWmGKAR3qBBg0QKStlOVn5MlkIP 3X7x2WefmVOCyAmLrdK3X19zOnZowuJD/ctfTszmbhExsgNFL/weuliZcIOxYrmB8LAbYaNM89aE ffzxx7N2uBOJgoLVlfd+ddUq9f7774vHxSxY4mTHx0LYJGbNasJ+859v1H777ZdxyG+SEKUdsG2p JI5/Unftto6OnTqpzl26qB49e6gzGjXK2qdubiGCDW7dvo866ihzqmiAsPiACfWy8t9z773qfo+M Cb/gDENvX/zSXPT8Dr/BiVgI6/alxAUIq9O8SdH2stVIZeELtUaqrIMCxUSdVq1aJadrDlzoFUxv gxX0JeBE7oQobVgrYQk4EGwgABEGICxp7yRyctHrcLIfxEJYojZJA4Q9/s9/lsbHiKgxBfiSzIFv llsORxMmTDTfxhETJkxQL7/8ijmdA1xIbhdzlA35ICyRNUwUr4s3KDAvevXqJYPIGxeEWya1FZET Ftvkb72cQ7N8OG6rULGAU56TMC6cihUryn1MA92sA7cV7iue4zV0GnzggQfMt3EEhy5cRG544YXn pWKiExBmRwUIi662cePG6oADKorrLUyVHQESUnAoqIcb0e9FETlhCc0uWbzEnC7zIHDg5F/VQPzi RtgoQfUb1FoQie+MgWLLr7/UDZgEZEOgYTi+dm0RDflF5IQFfqMaZQl33HGHJ2EppxlWNKlQ6BWW EzyuLSqOE/QIAxCWA6TuzxDkfy6IsE7CCTdA1rCjJqUBHGC8CIvJ4BaM0C2MooB2axGiReOA+yms COVXX38l5gAhWQZmh98gQsGEDWpvQtgunctfEuLECRM9CYtJQNdFJwRxawX9XjT0AqQJu3HjW2LD //73vw9NeA8Hnn76afGI0Kjk44/to4l2KIiw+YA/llN2ecNto0d7Eha3llvgwMtLgN8YhRVKMgjm 1bXGDdqtVf3YY7O9vXBFhZHfxXtTip80dNxmHHD97tTxELZ3+SMs9qAXYTEJ3MK9XnUG2L7pm8Aq DWHpiZsvtFvrtFNPlURGghoIeILkhTmB1Z+/lSZ4GzZsEG+MUyMSE7EQtnc5JCy+59fXvm5O52D+ ggUiknGCn9Asq6xWfhUCbRIQ6aNE0sEHHywmSxggMIOLkMGFhcQw0StsEkOzxQbSwLWvu6+w2HWj R482p7Pw6jnAl85KxeEIR/xHH3+cty2rTYKLLuogO0O+7+ME/PGYF6yyaBQSS1j+SK+yk3GgfYcO kkatBwl7zZo1kxZNtMNs06atatO2rWrbto3ctrngAlHj+0UJYd1XWC8b1itwAMnQ52IWQFoc8oMG DRTBfNCtXK+wEBUdAZ8HgZIwPBUovtgtKN/EClu1atXkEjapIKJFuNXar0APVFv0K9CPyQpgy/Wr 1gIQ1sskICPBjbBHHnmkOZWDuXPnqhtvvFHNmz9PonFUE4cI2Ik8dlJA2UETVgPCY8cGeQ8nUEof 3y47ymW9e8thMtbQrNvVwnNhREvCBoR90iN0agUfeFDCYru5gcABpHOC1+eGuUXImBWM6uA1LK3s v/xyqzj//UKbBISseT9W1rDyuRAHIQRCHIRdzI7g1/tQFMK6fbBsVTrV4+efgm1TxQRhR5zjfoHZ QJo3J3K7gdiFWwIBRHIgC2FXshlYWawDU0BnOXA4474ePE8aCX9bIYMMAgTgNFgmi4LvAXuXgR1p wqrWQsDNcMuGCAo+k8MOO0xkho89/rj5tCOKQlg3cJVGmZvkF/gC33jDuSWRCexDvlC0ov+YN0+t WLFCMinmzZ8vt6yU+nbOnDnS0GPkLbdIi/uZM2dKPQOSHRmQGnKjXEJfa5LfaVDLgL8BZRk/5zZI v+GWlBfKaBKEIBAAEdu3b2/+e1nCnnlmM/OpgkHBD5Ra/D3INNEPu+3KVkRO2Lfeelvi00kDSYGm op6VzQlnntk0kEmAQ59kOzc89dSTrvLCKKG1BOSusZucdNJJauw45yhcEGBicBFTYISkT1bbxBIW FdDEiRPM6diBfA7Cjhk9WrYpBk2MJ06y17w2bNgwEGFxwru5tfjCWI3d6hJw+IsK+tDFRUaazBNP PCG2ZhiHLmxYgiBkeOA3DoLICYtJQD5/0oDOFcKyqhLRYavHfnNKkcEt079/f7ExqWHlNnhPVEl8 8evXrxc7kvpZ1vH888+LS4oujE6oXz+6HgcS6Rp8rbr++utV586dZZA14XY+8Qv+X9xk2PV8HkEQ OWEpbkYVlKSB6JA2CUjX2HWXXcWF5YR69etLTSsKvnkNSIsZRNiVlRbbECJYB4TQeV9OCGN18wsI e9NNwyRogFpLF64LA3hL2L2IdKFPINsjsSZBUoE7yM1mNUE59SAmAeR2MwlYuTiMQl4n+PVVhgEI i93NxcXK6uYfzge4sRi44oLoo2MhbNhhvjCgBRjsAIg99OCxHdjSghCWJhkvvvSiOZ0D/LBuaTdu 5kLY0F4CdAS4xbDpk/C9RU5YriY3RVJcIHCASYCdyf3u3bvLcBJ88EW2bXuhlNTUA5cVxTJ+G0/I YYVsA0KQXBRuIVIIy+nZCW4mStjQXgLCwRxI+ftxgcWNyAmLfRhkZYoKmrC4XCiC5mVT4cdEY4Dm dMztY9QYbseMUaNGjZLb0WNGqzEyxoi/E9uUrdWtcopXpCtqLwFVw3W6Oheel1suCkROWLbd8eOT ucJCLpIFKR3PLeRZMH+BWrBgvkj/IJQeHBT8XngclkgFeejhh8yncuBFWK8eB2Fiw782qPnz50uL Ki5MVlg0FHEjcsIS5aCkZRJg3Z4Rh3By1Sd1P0MX3vADP2otCIvd7IT69cIraOwFvcJy8XIx33LL LVI7N25ETlj8sNQaTRoQd1DgQcfYMQ+8RpDTrai1XLwEAMKavbWs8Mo4CBMQlgwIggV6oLeIG5ET lhU2iYQtNvzIC9mC3UyC5cuXm1NFA4TlALp8+TK18MmFQl4n/e+3IWhk/SJywhI5SmK5zWJDTAKP nC7i6m6EjRJoaClwgXoMcQzDqeVqGNEvv4icsOUVfPGEZN3ASdyNsJT49AJmCqYN0sRCgGeAFTZp iJywuIu8XEZlEX4OXVqO6IRaHk05kByiR9AuNETc+QKpZUrYTJVptKClHW7+VDv4SUL0cmsdd9xx 5lQOCBdT3pOAx7///bZUVMkX2oZNGiInLLnySYx0FRuYBNiFboCsboT1anu0/p/r1QknniA7GMKS ZwowC1KTIANkdIQxyxsgrFdGA5kHhRAWouKeI1DBDkDqy+JnFvuuW2UFB8SUsFID9YVEurV0Hdgg I8j/gbzwXxt+O3T9+uv2J2v0B4UQdty4cWrPvfZSO++0k5heV119tQhX0APQPyEIUpMgAwgbpGt2 VICwxMppEkclbJTwfNk8thvkSPkNzQLTrWWXJeplwyK4cUOnTp3ENUZYmdKYVBLX6NGzpzRk9ouU sBlgEkRNWGRxXtuiFr/4RatzWnkS1uqfxCSg0YcbIKwbSexIbgXuLGSM/L8kOpKkqEEYmgwKvx4a ZJX8LUEPl25qtDAQOWHpopIEXaWJwIRt1UrttttukqlAyJKsW+6bj7nlvdEpoK7fY489soPnKleu rKr8XxVVo0aNrJ6B+zVr1pJCGAzScfAQMKg1wBz3q1evnjuqVVN169SRFktkouqMVNLRGTTBoM+v fqyHdSXWQKXldvHEhVAJW+yrq5gIStgWLVoEsmExCbZudc8YIIvULQrICpoPdAdDPXhsDhPlwkvg Z7tBS0COUNKgCbtt2zaxs++//35JMnTahoNWfqE7jVdrH8TbbjZslPJCDmllnrB+QFJekC86KmjC ovlka951l12EIE4l3CmMEeT/oMfVtm1bzekceEW6vIrBhYmVK1emhAWrXn010FYaFSAsskJsQ2q0 Ll+xQmxBJ8Jy6KIjNbsF3oV1615Xb775ppyuqb1gDqJPlAtCU0oxX2x5pIzcMvhZbF4qDTqhbl13 L0GYQJ2VEjbjJbBLtIu7SJxeYSGVzuOiN6yTd4F0FbIIKC9kNyAo5NOPKb1OeaOmTc8Ul9hvo6kk NB5S9ZCsf9cJ/GxU4DNICZshrFN9WD82cLEQ9NBFr1mKt/kFfR1YfZ3A7+ZvcOuw06NHD3OqaEgJ mwEHmiC2X1TQhOWk3qBBfSlF1KBBA8ceUue08vbDWtG1SxcxBdwAQdxs2CiREjYDUmTwFCQNmrA4 zOnSx5eFPtWp2gkp1047hQl2DsyBIdcPMZ/KgZeWgLKcUWHRokUpYZMMCMshCDuaek9e5glp3nSh pjCvOcioZej7VJXBNiXz9OuvvzbfKgtCqm51CTgERgWqgaeEVUr8m+vX/9Ocjh2asEThzGE62RmU b+d/8QMuAAhboUIF1ygfWbgUl3NClIRNTYIMcGl5yeyKCafITj5qrSA2LCFQJ4+DBoRFseUEr4yD MEHiIdqGpCFywlITNE7COqXooM4yS2DqQbU9c45VM4hXgRi+Fyh1RMMKJzRs0NCcKhpYYbHhk4bI CUu2QRJDs8XGuT4Ju2bNGnM6CyqwRAVWesrgJw2RE5ZmFU5Fgssy/BLWrX7ViOEjzKmiAcLiM08a IicsCYhJKHkTNc4971xzajt4EdYL2OYU2yA1hnTvoOXYrcBlF2XhDr+InLB29mN5QKErLDoHL5uS osloZ9HdUvXbrTiyF6hCk66wGfV/eSTteef6I6xTFXDEMdde+1tnQjsg2GZlpGMhXgzq0uYLDl1U fkkaIifshPETAjdiKAuwmgRobO16tuJBWbXqNXNaAGG90uPJlqULDQsCaqu5LmJwL5BiwyqbNBSF sD98by96Bqwicbq14kLLFi3Nqe3gZhKQAUCCoRuQKZLTha6WGgiYBWTSBs3LApMmTVQrU5NAqenT ppVLt5afPq9uhKUu1zQP7QK/g+bIRNQIraImIzcLQbrT+zqByuKvvOI/yzYqRE7Yu+4aJ4LmpGHH HXfcLpLlNZzKT9rB76HLzYa95pprzOkcUF3wmv795bCEbuG66wZnnyNjlvQfv3jwwQdFWZc0RE5Y 7LQkrrAUT2NVWrJksVqyeIlEtyAkQxoVZ+7rgaiF+gV+4TfS5RQ4IKr26KPOSi5A6FcflCD+S5Y6 BEgbvQhvBe7HNHCQ0Xwm0Q8LYe0OQk5ArUW6deNGjVW9+vWkUzbF2Kijim5Ad6GR0a2bOvrooyUR kcF2SwAFgk6eNFk0BAzKadIuUz9mTJ48Rc1fMF9WPNRcOnWFx1xgPOZ26ZKlom2AaFR9MQcEPvjg g9UrljkOv9zafR94GLCBCwFZ1GF7hCInrE45ThogbJBOgxCWkzSt3L0GaTcIwjlsYkuSecCc1iQw x8D+RECuH+vBgYvkTcrJUz0G8qGbJdVoxozpQmzI7DW4QLhYSNmhBxcmBBfUBJueE7zuhQIJWwxE Tli+5A2WGlNJQT4rbBCToHWrVubUdoBQkNMOXOReaq8wkR66MmA1SKJbSxMWUnC6hiCQx+mAGJSw 559/vjm1HUjHcTrN46YKYoMWCjr9vPKy/QEwThSNsHzh2EcmStRaySUswmytjcXOfM7h4AFhgxxK vA5d2HsU53jsscfMpwS4ta64wjlBMWywwgYpHhcVikZYJ0CCpHoJEIxQlwAidsp017ZbRbkY6b1K HQFqY+ExoC0nqTDc0uoS3ye1rGh3yaClvX5tterVxH4sOaC1U+3bd5Dfq91ldmCFpSR8VCghbDla YZ1A5MWp/E+c0Css7izab0JKqizabdGasNaaq5gS6CR+lC7VP8oBjvs/Zu6zenJB8Du4JfqEzJIO 3eR5YSZBavLAnGCXKVEsCGEdfMJxInLCIs4wZW9JIHCxD13t27Uzp7YD5pJbxkGUSAmbcGjConhi WyZSxMDPaQcI65YwaIJaXG6FNAD+VadeXvxtUR5WU8JmwKHCLXM0LmjCUpeAEz1Ckq++2ub4t0JY Kl5TX0sPlFLUFqAvK+bEsGHDpKgwIVIuAhpluK3inMztTBCA73XQoIHmdNFQ4tZKCSs27JYtW8xp Xwji2A8KTVjsRD8xdwhL82BsXj0IBOAKY5XEvtWD/xnC6oOdE9zEL7QzmjhhQs5cMT+PlLAZjBw5 UqI8SQNkGj9+vKShWwchUOLzCEEQRhPrh6i4voLYsE2aNJEDlhvcCMvv9VJrhYnUJMggSAE1L/z8 c3iRH0oJnXTSSb7HiSeeIOFSvzjv3MJyulBr5VumNB89bAlhUz+sELY0l5bPF4UmIUJYooT5IJ+Q bhqazQDfYxLFL8WGn9CsF2EjNwnSSFdJt+kkE5aDDBUWreAg5uQt8Avkh15w8xLQH4G2p2EC/7fT d5EeujLAJChthTQgbKFmjJ8UmSuvvMqRsFFjzO23i2ciaUgJGxHO9XHo6ty5syNhuWi8PjcyI1il adnJe3k1snNDeujKYOzYOwveXqNCPocVJ5zn49DlRlhs2Hs8vATUlq1YsaKIatq1b6dWrsw/63XM mDGSwJg0RE7YMN1apQn0RPCCK2H/9aZnmjcXGEGKMHDT8OGSLZE0RE7YWbNmlZoVNkygJfBCl86d HfUClIufOvVuczoHfK5kzBJWhmxffvmFrOw0eQ4KUmhSwia0thZfDFrW/fcv0bKW3Jbc34+xH7f7 icaVwbaL7jWIssqXDdupk+MKK3UJPFZYUrlJNCRqN/PhhyVCh9ejQcOGomsIAjQQ+RC92IicsMgL gxQCjgJ8MTvssIM0JUZITZt3bunDZTd4HUKWNWvtU7Lt4IewVG1xI+yM6fZN7jQgLIovKr+gXbBm L9CG9MWX/CcVIuAp5NBWLEROWGzYfEKFxcR7778nhPW7+nNiZ/UlBcipBL2Jxk0am1PboVevXo6E xa3mpRvGx63bNOGzheQafObHHnec+p/P/xERu5ccMg5ETlgOBXZ58HEBhRatjfIhLBkCtKCnlfy+ ++4rZoIeuosMaTGkyNBWnjmdMmMdVatWFXEMZgkmB3Onn366tI7nxE+9AgaPO3bsmB085qBGLQPk jWzjCHOcBu9NeJf0cAbkpo4BHggTN48c6djyKU5ETlhW2GLK4vIBVVHyIazVsa5/llvrfQ0EM7rU qNOgyAbyRFZKPiNWRU7+km6Tecxz1kFLeoZ+TJTOfI1+Hblq1kHB4pXPrRQVmonBgwenhy6QRLcW X0w+hA1S8Ld5i+bm1Ha45OJL1LrX7RM0Cc1OudvdSwDCKlRCMeSUsAklLBEkDlF82ehfx945Vt05 dqzUsrXbDTRhg+hhqfziBTJpnWxY7NGrr77anC4a0hU2waChHIRly27cuLGUXcd2pIyPKYQBmrCE QvV2zdbN4HBkNxC/mHNWE4EsBzor0kTZDiV1Ca4wp4sGPBYpYZUKVKIyKpCyo00CXf/KDZqwkJuA AOOss84S11XLli3lMERkizn9PBkK3DZu3EjaziMYx31Wp04dGfS3datL8NZbG9W4ce4VuMNEStgM brrppsSdPknZyceGDVL5BVK6gYtmr732cqwQw99WqGIsCPr06SN2c9IQOWHJvX/vvffM6VhBIAOT AD8nIclu3bqqbt26SZU/O5+xJqzd6doOhEr33XcfNfja3woM2wETxOlihqxRugPxWET5+/wicsLq QmtJAnaqPnRx8GE7x6eJYsmNsPhNsTurVK4iqyODOrCHH364Ovyww0rG4YeLj5atftddd3VdJfGp Wp39Vjz/wguqX4TF4Pr27ZuaBICYdtLEL6wk2iTAPPDaATRh/Rb8RbjCBdGsWTPzqRx07drVMbpE PbKpd081p4uGHj16pIQFhPySBq0lGDFihIQ08a/aDYoPs+Jib7Javvii/6zZ448/3nNnwSRwulhe W70676zZfMDfkm/9iGIicsImsdGDPnSZTTe8hlPxYTsgTPECq5qTQoqy8FR+DAN2F45ZkYa/BXdf 0hA5Yc0PJikgPEuRulWvvSbb71sbN8op2Wng+rLz0TqhUMJKn66QVlg/Yh1W2KSp6kDkhE1ipCsK FEpY0lVouhEVIKxXpZo4kBI2IvhJ83YjLKtikBW9UODWwx2XNEROWOLhSbxyi41CV9iokRI2g9tu uy2RtlGxUShhcXd51fJiFcbWXbRokbSrLwQpYTPAJEiaHzYKFEpY0l68ams1aNBAVatWTVxoO++8 s9q6dav5Et9ICZsB0aPyCD+E5aDjRFjysyZOmmRO54DsBy3+btGihWMGrh8g4EkKYa1ejcgJm1Sw 6psjTPghLGovJ8IuWLBA3TXeXa2FDoKABsQ99NBDXWtneQF5ZVIIaz1sRk5YrvqkfBAaL7/0kuRb WQf5WGTHQjTrYNtFQti8WTPHqJQd/BC2VatWjoQl4OLl1kKPS90HQqqEg7FjzzjjDDX+rvHmSz2R mgQZJNGthUyQyBUlMdu0aeM5mjZtKq93EqrYwQ9haarsRFhMAvrFukFH4EhFP/bYY7PyQOzfC9u2 NV/uipSwGYwePdqcih2asH63T8wFtt2wCVvIoYu/qUKFChKtQxjO/2OVB+pO4H6BECclrFLq8suj az/pF/kQlrRt6qeS2sJBxy79hS1aHxj8ELZxo0aOhIV8dLhxA9kctKtHoINQ/osvf9MC8Df5+Rs0 kDqmhM2otfwSIyrkS1h8yijz27ZtKyWCyAXbfffds0PXLEAni7hm7733lnafTgNXFKk05jx6Wn2f mgd0YWQcht72iCPUIVUPKbk99NDsPIcutLm4uGrWqClp5tRR4G+kdBGrsE7RoUWTiXYXtksJC+gi kzRYCUsUDvH2VVddJW2M7EgMYXfdtUIgkwDieKFu3bqOK6xOVowKNNhLCUtZoAAn66igCYv/slKl g6SY7+TJk8VTQAEKE3qFDUJYP1oCtmEnwnLxuNmwYYOK4YklbBKFulFCExbbj9JC6GORG7IF22lC Iewfd9pJDkI0lHvn3XfVu++8K/lYfMlIKK0DP2Lt2rVz5kp8vb85xDkscRG0btU653dprFmzervG csXC7NmzJYvXq5ZXHChohWWLohN1EFx66aXmVOywmgTUoMLWw55kxbODrLB/3EnsVtK1sRf1YM4c XATYsOR/MUivwa7lFrsWWxeyareUHbg4tFvLrTJ4vmYDP/fpp5+KzU2DvaTC/tMpIjikJA35HLpY YYOYBJTvdAOrMCQmTccOfvywwC3J0Qn8DLUSiG7pqBLeDbcLIy5ETlji5UmDJixfELYbZYUYOODD smHpTesFCm842bB+CZsPIKeXyywpiJywVBRJGjRh+eJGjbpVDR06VMiIXWm3YjHHFk8YlMxZPWjE xs+wtVoHZ4Tq1aubb7Md8JPGQdjShMgJ269fP3MqdlhNArS6n27+1HxJDliJeT11WVGfUd0addMZ jRpJXVezYjcD7YEXMBtSwuaCC94qRIqcsEnEE088IQSkNSYl7RnLly1Ty5ctLxnLl6lljGXLJN2b CBevD2IS+AFim5Sw7oicsHbVnuPG008/nT2hBxlh/y9uhF2+YoVIDMs7Iicsoook5nQhxcP3yikZ 00D7Sr/7/nuZ35y1STfLLXN29m0hIBrmRNiowP+OHzqpiIWwKezhtsJykWzYsMGcDh0Q9tRTTjWn E4PICYuELoU93Aj76Fx3eWGh4ODYunVr0fqipU0qIidsusI6Ay+BUwE2Dl1ejeUKAd4RMX02b05k mU2NyAk7dOgQcypFBjVr1rTVLgBCs8UqBocZQPoNkkgCInapOEGKNxcTkRMWsXMKe7iZBHPnzt3O JCDQ4adOlhe+/+57UZNt2fKZ2MpHHnmk+ZLEIHLCOm15KdwJS3cbTVgCFyeffLKkxCBWKXTlxdtB PQP8y88uWybC76Qib8LatQPyA2zYJLtN4gSEdfpsUFCtXLlS7tPQjpJPa9askWrhKMIKFapQzpOO jGQME2JOKvImbL6gJHuK7YEdySrndODBttXPsUtVqVJF1ahZUzJ969Wr71tpZgd+llKeKMUQro8Y Mdx8SWIQOWFpdJHCHqywfsX0kJY6WmznBDkwC2g3n08wA+E6whvaMpGftjpAoeaoETlh0xXWGW42 7OrVq7P9D1htdaOPTe+9J40/AK4v0nowK4KsuET3SG7EdqVQyICBA82XFAzdfK9QRE5YHNQp7EFo 1imDg3LxCxaU1BWAmOxUM2fOVBUrVhRTQoPVlszYIGcMVmUygFGeMUiRSSoiJ2yQD7K8gbwvp4qD EydMVA8++IDcR1R+1NFHy2vHjRsnP2d1b1HWKIiyi/c75ZRTpFIMOWpOvuAkIHLC4udLYQ8iXRTm 0IU4rNs6BLQ2soOg+nmzcB3zBx9cNWfODRCWgAF9xxhJzArRiJywTol9JvjQg9hhSUChf2/Hjh0l kRGbFFuU7f7AAw9UhxxSNVuQgzk9r+/j1sJrgGlQ7Zhq6phq1aQgBwU1eB0DlxWv4b11DVmKaHDY 4vDWuYu/7yVuRE5Yioz5gXUFKS3I54TuF5MmTRLxeNhAQ0BqOu6x1ueeK4euO+64w3xZYhA5YVPx S37g0FUMwgIuNLrUdOrUSXLVaK6XVERO2AsuuMCcSuED9C2gf1gxQMEMzAdMDjwPfluSxoHICUsk JUVxgb8ziDmFK+zKK6/MjmLKGAtF5IRNkR/mz59f1JUP3y4qrRNPPNExPJwERE7YJNaHLQ3AhtXi l7BBPhta3A/e/0AtX75cDmBRwilYYofICVtWQrN4MUz/ZzFBqf1iHbpICj399NPER04P3UaNGpkv SQwiJ2yHDh3MqRQ+gJKqWJ3QsXcpMUphOgIHxfo9YSBywpLohu8PkQeKoy+//EL98MNv4VpTQV+a QrnF9MPSG6KYRCJ4QEj23mn3BjqwRY3ICTt27FhRBVFrCleKVggBSlfqyIyO5hCZQf6GgJnHqJRw v3Cf1YBVgZg62xo/g+qIcpm777a7PE/fqkEDB8n733fffTltjXjvSpUqiw8SYCOimGIQJqVjDLcM TtIABz6lh5o0aSIV/9q1b6euvfZasTEBYc7rr7tOXX/99dsN3VSPAhxDhgzJztNfi8e33HKLPM/v 4j2vu67kOV5DZKpYh67PtmyRAxfehVG3jlK9evUyX5IYRE7YpEETEWCTEsv/6quvsgN9qm4fpF+j 56mKzdi06d1s6g/PIyDRz5kDkNdmfc369euljywFkQG7ChcRfte3Nr4lvc14vlj5cHgFMNWQGbLS ntv6XPMliUG5J2yKEjOMkDlRLnYkfeEkESlhU5QqpIRNUaqQEjZFqUJK2CIByV6S3UOlFSlhU5Qq pIRNUaqQEjZFqUKpIWyUQpMUyUWpIWyKFOD/AdzpfrUZ3mIxAAAAAElFTkSuQmCC ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image005.gif Content-Transfer-Encoding: base64 Content-Type: image/gif R0lGODdhAQHhAXcAACH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACwAAAAAAQHhAYf////3 9+/v7+/e1t7e5uaUnJSlpaXFvcXO1s69vb3Oxc6UjJStra2MhIy1ta2EhIR7e3tKUkpzc3Nra2Na UlpCQkJCQkpaY1oxMTE6OjoIAAgpKSkQGRAhIRkQGVK9vXO9EIyt7+aM73OMQoy9Wu+93kK9Ge+9 nEIZa1LvWmvvWhDvGWvvGRDvnGvvnBAQShlSWnt7nKV73uZS3ntSWu8x3uZS3jFSGaV7nOZSnHtS Ge8xnOZSnDEZWqV73q0Z3nsZWu8x3q0Z3jEZGaUZnHsZGe8xnK0ZnDFrYxC973NCGVJrOlK9Qoxr Ohnv3mvv3hBrEFJrEBnvWpzvWkLvGZzvGULvnJzvnEKtxd4ZQlIQaxlrY0Lv3pzFa4zFlHPv3kJC GRDvhO/vGe+lnO+ca4zvhMXvGcWMa72M7xCMKb2MrRCMSr2MzhCMCL2MjBCl1q17vXN7EIzvte/v Su/vtcXvSsXF3q2cjHO9a7297xC9Kb29rRC9Sr29zhC9CL29jBClnMXFa1LFnO9Sa6VCYynFKVLF axnFKRmMa++M70KMKe+MrUKca1KcKVKcaxmcKRlara1a7+ZS71pSa84Q7+ZS7xBSKYRareZSrVpS Kc4QreZSrRAZa4Ra760Z71oZa84Q760Z7xAZKYQZrVoZKc4Qra0ZrRDFSlJSSqVCYwjFCFLFShnF CBmMSu+MzkKMCO+MjEKcSlKcCFKcShmcCBlajK1azuZSzlpSSs4QzuZSzhBSCIRajOZSjFpSCM4Q jOZSjBAZSoRazq0ZzloZSs4Qzq0ZzhAZCIQZjFoZCM4QjK0ZjBC9nJzm3sWl962cvXOcEIzFnMV7 jGtKY1I6ECkQECnv/zp7a4zv/71COhm9lK3O5ualvaWclK0hCBDOxebFvaVzWmNKQloQKSnm3u/3 3u/v3t6lvb17lISUpZzO787v5ualjJx7Y3ucra3e7+97lIzFta1zY3NKUmPv7/fe1ualrZx7hIxz hITm///OvcWUnKWlpZTe7+b39//e794I/wABCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzI saPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fPn0B3ChAQtKjRo0iTKl3KlOAA BgUaQCjQtKrVjAIYNKDQoQMEclfDin2oAF2CAhgqFFBAdKzbt04LQJhQocK1Zvng6n2rgEKEBhcg tN1L+KoABQkGJEhQuHHVAArOyZ1gb7Djy0a3LXgQgQOHdv8wiy6qrwGDBWkLfLM8unXOfw4ehJsg 7kEz17h1Btg2QUIBChPe5R5u01yCA5GnsibOvOW3AkOlMhjQvLpLfQ/SNcDQoQF16+BTNv9rEKED Bw0UvodfT1LAgagNpDEIwL6+yHyKGSRgcGC5/f8YrVNABdxhIIFwI9EDYHMKNLDVOBQw4N+CFEaU gDTuQIABBAPQV+GHEw3QQAXmccAhiChCJMBZELQo4XABDKDAAAjMONg/MiJQoz7bEBUAOc0g8E0z MyKgXowDDLANkdsMIAB9Q/1Dzj8CONlWAP4EkA+UACznIQBfLkWPPgYUkJhYeUW0ojQttogOW10y 0OZcFQgGwDtySgCBBGzKw0CaA6DTQDoLtFnAiysawMCiiyIgUJVJRpoklY9GimOSbQ2lqQBUbvpo l1oGEAA9oRJUqo8iBZDABRtggAE6YYn/OmFCB0gFwT1SrdVWAg4uIKhyAJBzVgGCNnCNfB4OYE8D BSwgjYPMUpcVtA34qo9ATzHADzoF2JPOoXCuWECzgt7DGABPRbVAsw4+K6EA3EC7ALULKDBQg202 MEE7b85qkWYTOFjBBGBZpSlEAcjFgAI6KkCpQDhKuc7BYApAjsU0CrnOQFUq0Mw32yiAWAJEHbYY N/udiS43DBiwwAKLFmCAveieBS06DziArXbPxgeBPPJMdfFkc80lwQQQXAtmAhNQ4PQFEWQQob8V JUDBPfokIM4EVBvlj0RnbRNmRfSNDcCWYIKppUCybvrlUOS8Yw7cT3Jc5T/rrOMk2+u8/zPAlORM amWXkg5w6d6VbmOkjLym0/VECtAVQWfp4ZbPxV9TCK8DmXe0zrDjJmD2ZQEIYM7o7JHjAMkhKabP jLn5syzNAMa42OOQT9ABBhSkM5y+rC+YLe4RDVCABA3cMzDxbgnQgASiU6jquR6t2sABCURAcG7H H6DgaGmGL1CaHn5JD46WpXn2QOqzv1DkFVBQAQcXqDeaAHId4Ni0EDwLwQP/A6AA//esezzAQdyC DwKbxY91NWtcBWjguBhlD0UtajHISUCRMoS0CbwIN1KJHmF2QxenmfCET0NhBPwymwlM4AIXaKE8 9kXDdkxAHi0EDgSkEo4d7nBc30pHYv8E8A4FnCZ4rcEfBKhHGH3UqUYJ0IeOaoQAKXosZCNbDAYX c44tYk+LXGSAO6TSgC4uyh32YJQaSVY6BkwAA1zLzfOQuJe+NCAiazvbYRCHEFnlJwFzw9vfDFe4 KqUjHPO4AAWgg5uEQYB2hFHANGBVEcWIkHGLsR+6FoW7AUDAMxVoxzk61xqoaFIvfVkA2ciBMgX9 Q3ld6YAELBM5qjhkN+HwDAfCwbyx4OeUqIwAJSmyDo8JJAG8m8B56sc+foiDARFRgFxq08sU2QQB FFClRejxvQR4xR0Y4MAEvvMUB0ESIvrQRzXFkiTUuUUff9lIAupCAQxU4wLC0Yc0KCD/jQG0D4/D iYqjTlI2lyggnhSJ0Yy+JoBzrKtMEmKAnhagP2t2aQIRYGJJvteSAwizIitKhz5QF4AFTOAc7qRQ PkxKR71g844UWZF+MqU3TBGOlNYMwPMqWpi+DFMiMj2XAiBAgQs0DR3rZI9OLyDCsYztpSBNgDui NwDddaACfymYRQkiAKLy1GCEg9NAsgfTiQSVbbVai+G2apB8QCAC+vgnU9zYNO3pTCAIQKhZU3Yj rbK1IAGAwAXOKZOUMqSrGtCAqzhwjXvpFagJsMcB5PpXg+iUAk2tiWETQo8CZGADOxzHBBxbVsgu bLN/FYAEKEDYmFD2IfjrSgTmRwEE/4RmABQorZr209rKGqQADxjoVRhAgXlEIC2mcYAC0lGBn+52 YUkF0VDGUiW9GalKBaBLB2w5kc+dAy++ZU4+jKi7yk0kAHqLbkyHkoAFcAOYzUOMejFCH5yOBJkV EGmHfPIUXnUAs46RxgR628ePoHYjfcnmBe4hXJqYjRsVkIAEzDPLwgiANgQuiX1JclBpKMAewILt AA6wX4xMl2P5WRTNDOCZeXySAvMFCj2a1mCGbDgoedVmAgzAvJC2lGyDOUw6iFqBBhBFAeHwigKC FuOfXNi8PRUHTOkhgBsjRFwJ4ChHZKo7cfroAO5wwABQ5hgaOyavulURX0Ey1Azw7v9PXapRN/al UbhcGJ+OOWiaYZsAfnx1yxDWQJFploCpSEADG3AuXPLRNPi6Rc9RnelH8CeOtBSZKBAGDoniSJgn O3oskI6pVOuskacQdbb3IAoDOqCBCNxjAzBujHHth6Qm4yTUe+XHjzOyDgZcoAJS44dAIpcBrO3Q 1j15cmiwJZkGcMMcoH7sbrsx0o9sQ0OgfJGwEjAxMjdGO5kqwOSc9kix4BqoiEGAljdyGH7Mwzxx VIA0CvC3MiE72etIkzneOJX5cdcqZAUpjg4M1GYwoB2sngdR3NGBDZhJe1Z26kA8+UjnbdfcEXhA TraxnXHsTpurrkbAMsDpvWTlg13/hWPT5qG0q5z7IlvSFB8n4g9zZHdrDbjrPK9KoD2/BaPqGZA9 M/BBl1dA4wkdgDn0fRoH7prP+nLRsCFAoLQs4N5CoY168qOnaoclARmQRiWn6qHIXdVpRraIvCud GrySRxxO811hGG1e/DXthRLIMFIUkIHGUmQACwieAObsQW6IVdQF0A7SiMI0Ha6lMQFo2rKbMQ8N iJMCHPh3VeaJ9IkgwEymQsw3OjTepy9EAPqI2cDAko7dOY3ejfFHo88GvyVC4OJh0UcGIFBJ0D9q GwdIhwsdsI4HVIBkzPPHtbljnlivmgO7q4A7CI4SrD9K8thqlgK4IY+8iwWZYv+7/+8BEDmncYdD 3NihsxFm82tAoB0QgCb5r4G0HZI6JiXzyOyHrQB6OGAtr6UUCrAhlRR4A+EA5wEc45ABYGF3SZNU xwElvNI/09EYyjYQa3Ni34cB4RciQjQQq4ZZDJAWmaIPC3APendl/aMgkVMg8nB/bvFr3wEZUYRd KWgUCNB3FZEPzRBkC5MPNjcfBHEAEwCDBmFqR8MB4oBpETYuf2F9OSEA89IWA5AOgWFEGKB5LpFi atSFa6QfKANGi4EOG8BUi7E6izEyiJE1CsCGGlQjyMEwOUIkiyFFNJIk3DABa7E4ljIl5gA4VbIV sxV2X4MW1wNOF0B9S0FEE4cWFf/ADQXQAdoUEwxAIq5yiZh4idFnaXXRiVg1PzzXiUXlQqRoVL3x QkjDJu0gDcVSLslDLdUiF8X1LBCUDhfEAA7AMsr1DwiwH4uiNCHHHSaybo1RVYklP5k3ExAAITcz L89yDQ9wQM3oQBA0Lu3AAWoBH9xiAN2QDt0oRu4gRlDhhb6YRouSRumQDvYQjgXQDeNiAIpSJvzQ DRUEj/CoHzJCdblFM+QwIBtQAfXSGOOlThADARsAaxUgDkaYEgtQATfIEAPocw2BHyWjKaVjOnDz D3OzDhdzMUkiMiAZkg5TaFFTFwuQFytCRqYnFgGgSMt2GAzADQ4gaTJBHg/5PgT/SBHmoB8XESpo gzb+UIn0ZjVxVIkBI1haCBcEckpjskQzgQ4ZlREDyHsUQQ7QBRLcsCEjlgEVQBSRCAEIMIIlpxcC MFvAFImTCBMj0nIWgUxUeV4DgCAf0SCkiFAMsHtnkQHtoIhJIQAUkAHfcTnN4CQNMA4SqRLGt5AO MZUWoYEfYTzAgQ4DZTUmVGQBGBZlmQHLZg5UVxesZg8KkX8lQXVsWTUcGFUl5hGGtEMV2CWLwTOK aRUBUE/fsQ7KI4qxaRLkkZs46XchUgDcAIXkVwDuIDILMH0Vs33VogB8iRRlWQEzOGJp+GkqsRU3 qRDg13ucAxIMEAHz8Q8UEA55/+FJGdAV90CdYbGUYLINx+NCEJAO6HkSUMmbCsF3vokQMuIfA9AN DiCcIwgdfOd8G3AeGoBUFjgXbaEPVBcB4tAq3DATNpkRYNd5CPExo2M8CRBxbYk0zpJb9EFc2rUA 8WkVInMlMrIkt5eWL7GbUlkBHYgQaHMQGCqc5EdU81AA28A2ijEiEXKZdpYhLZIByRgTOhUB15kQ yHSYC6EsK4kRRuQA0EYQpccApTkTwrkkgGJ8GMCVLAehUemkOTkR/dikMYUj1SEANqRVRjQuDkAO zWlgEYoRbllJVPqmC7GTDXCkehEAx6UehVYXaeel9JkQClAnCpFSMZJvk3YA0v8wDx5GHM+5bOtw e65SZCNKEvnAGXp6EPOkpCqiGB3STo3pRrl1Dpf6FrMJnWBChBOwOhNAdIKaEQhQAfdwWH2kgf/Q AOIgDQggFcu2ShL1F6dKXeKgmV3iDhQgDwewDZiXlCtRpJtqEJx3qKfhH++gQR6SPSQnD7wjl43J IkXoGqlKHaryly3CHc66EiwKpm+JEHTRWsbzQQ6AARewHYI2rAuxAIZpp0wRqdgiAZWaFlXKEtAq oUcXmnQBTPHaFiPYDnkoaBuzEfaQheIqP4GpAPewQkvkrSv6pRdRqBR6EHRRY9n3QTP6HAa6Ed2Z rp1GIHKpDxIwWw3QDMTYEnH/ehGdqhAzpqpHaCaZokEKAA7nwBZGRKYMYQAVYACukQ8WCzG64ypl OLAssa4f66ILIQEVQLLo4rPDdjRvRAH9OSBFOF9CKa7NUjJu5Ce+tgHuUFgZG60FUaiHubMKayZf oyrzQ6+rpw8FQH+MVBFIq7SuoTcC0Y++ER3dEatOSqsLIQ8VkKM9yzpZQSLxB2zf8Q+NFl1Iy7KE QSVl93ojsgHyBxMFK6fSZhAJexD/oGsDAU4NQA7nIDWD8R6tORGBixuFkinpUE/joBb4GhJUC1gQ 0QwHqxBvBV/foFVWeVsFcFf34pQUUbZJpJ5TN6DjNBP5cLNrekZe2L0M0EXb/8FUXXgoZ0Qg5MsA 5oi+E0RBULEuXmiQ8Ye+5zi/6KsoKjMQt5tEf3m5clIXevi7ILGuOrUBUrNC8bNC4+Y0K6TATjM/ /2iJVbc7i6UBXVEgu7M7reIqEowBrXLBG1DB5tEVHzzCDVfCH3xVRQcADCAOnHtLzjlboREADoB5 VzUPM+ujJlG6+YAORVZB/DCOMlMm6tiN6ghRt0cB7vBA7MIs83J+8/LEDvJAsAgtSwwf4zIv1ZLF WEwv3VBj/JC0JuaYQDGuZ3MA8lCerie16gpXYwV7EjEARbYQqXsQNHoQmxvGdSwSfsmzh5Fd1cAB GTCoIVG6KtwAvwoRhapoBf8xxwUhADNzEvkLc0hBxls7D9yRAd6huDYnAb8rtwrBaBkAuXEbfych vfcTNcs2goklaIYMobX1KFLxu050mLLHs3E7AW1rEgMiuKNBxgLgABmQWJ6BAaNbfV3SJT6CDgCW DwKADgMGABpqEIX6ogZRy1qLAO0gbBiIw4CrFq7hrzVTjd0AwI1ZTgg0LwQSMFIhDnXSANxykx6l ooAVDrZMEPJWzFgSEqghz5cRFXkcEfnQnaFYF5fciZUKbBjgqQOBZp98ARigtdtwD8U8EmjRwmT5 zxFhc7szJ0WzJxL20VRnImSxSIdKz8DUDAWgxh6BGhZtE/xqECe2Iv9Dzlj/UQAbYKQ1IjKKIzI1 QiQ1sgDi9BADcLoFcQGAiRDkwM0accdR2B5QUTJWUye2KGYq0Y8Y0A4PkQD/2IUzmQAz2dXgS68p 44uMMpOfVQDn0NX6oR9Zg4sO8NZuvdZp/b1oqB9prUVdJIaHJxCR/BNYotQ2pkgzaDXQd1WCjBEi 0gGj5RDIhI11scDF9UImBEOg+NgN7IkV8Mec+NjiMFuYzc6Y7Ylu9tj0RAGdDdmvV2NMjRP/LAAE 0hZD9cHAkacq0QwSMA7tuhDelLTvSL9euB3zYA/dEDPV2CzlySwQJTNRMQH3UNwPtC7QPS7hACHt W9zUOC4ESRB9LRpNmw+F/3YB7uBXKfENFyBywosQDSvUE6DNCUHP/oE/NzlP7L0QclWJvCwaexzD 5hAyQxGjKUHYVDkUWQNMCeMVD4EAergQRg1MQ+W8DME0Dh4RSDvRpNO0XXI8DRAOwAG3FaEAF+AN HFIAMOQXYFnNBrABcbQpKj4q9KEA86BNWUJK5NAAXYEOpxQ5vIzNwDEP6905CvAy5Iy03fDN8hOx feEZrTJYKrEq3dEXiXVcG0BqNl0Bq7MoX42LF8RbYuvV+nGG+vFJiXV8BoEA1/Cg0DyvllceS3h9 FzBZ3dzSbtGSR81KVPdfU4XRcUsBuM0bHJDQdEFqDHCQOyQN7gcBx1Lohv/+LPJwVS0iAYfeNOxM oB1A4YB3VyuiO97JztTxFFsTpRSBtPONGa5trPjDFX1er1p7Xx/eTzxaT0ZqEPSwagp5HGJY68FX J2OdNZFlD1HRFSJqEM1ggF0CzIgmDv/1eUXVAIet3WDcGgFwDymuD/PwwRws5ikROYy1IuvYNH9b EAZg4A5RVZxryaJMENdKO9+AUfITAfQ2IBBQ7tFbAUPuGjIyEP+QXS7UDm6MElazAQ1wkXfz3jad 2wrBrPdtWRZeEP5gGZCBHD4tAHoTsRfRDRVA4bjhAJXmFak+Eh6+AdIgANvAKN1wvwPhDye+2A0x AOHAsjOGAbcB0/c7ANL/sGDvEagaYQ8ZAOe+ZKHYsh2uMg/9ueSsIqLkUVQUcCKNbNNY3RAB0J3X MCt7DO/Dtn4CwXD/1RkVwLEXsQCiK670RxTmsLsQ4KoVrxJEKIm5Wq+CUgCHDIL/1SRGsjicYiVV BmF97jhX9katheMgiMloIWienhEV/c0wDADXdlIC0QBDihIHwCoFMCbTYTiBX/Lf/l+kiIouxON6 Qs+rfAES38j7exAKIAGj6wDzwA8iQq9abxFoYfGQF/o210OLQheuLxIuDlpPQjUm3wGihYozNAHz 0EKo2BmWBwFtTxBG3VoIIAHzji6KMhRPzRH8gAEHP0Lr45fGGiyf1BUA/0nTFJE9/9XlbXgA5J+G IqMYEyBy5BA37P8OfTNIFjNUiu1o2M/gE2Dmj/I9VNYRqFH9e0EPANGMHIAAFCoMAJBQAQQK4u4h TBhR4kSKFS1WTFBBgwYMGDJ8BNkRZAUMHDRAuEjxAIUGKQVcwICgIoJ2BlLexEmxAAabOX3+BBr0 57tv6wga/AdAgAIGDSZMaJBAgFCqExdGqJC1wkiQITFkZfBz24V0LilkgGh1QtiqQhfwbBtXbtUA E+sePQhgwL2SHDh0uJDA5dyKAdaR+zcg8WLFAwZsawbZ8YCpPgeEK+ByQsyK36SxJYxzZ8/Qpe22 rUtPab6KAiJkSCqgQP+FDhs7XEtqWndbBRMyXxRwNq3Efwm+7b44GvnyuP4C3J2YD8KEgXoLUOjA oUI6c8y94+z92yI9mDILQ/8OQHn6uKy9B9CX4K6CBrQ5ZGgwnP1u9BER+DYLA/2AqoywnUDbTyh/ 2HNPAHRK2oiDCARLMMFvJljApfIqIocbBVIKgAEGFpTLHwPgqjDFnAJQQJ+6BrguqwjEkeDDBOty zzsELugmwAEB0GctzTBYQCq53iJNRSUtuoAChOhpRgEppUwgtwSdSy88ECngjKIEWNJMgw4oQEef AoVazyLW+luSOQFISmoABg4454EEECjAxhvZ+0+8it7h8scDLnDHpXn/MJCASwoopArJi+oisc30 CqpgoIXSeYCDBhigAEFJdbswQ+C4NM8qCOxxiZ8CBEhggsDa4gfFTyUNroKkFipgAg4gmM3TWUPb 0U+KXBOwot58lYieA6QKgBzKBIBWqG4yQPbXBF/KawAIKjCpA2/LstY0BDALUE+JFkoSo6cGCKCA BFotoLqfDgx3yVqnEoCbcMSZsQIIzJXrzJQGSEDEAhg4OGGEF1Y4gR8t6q3Hi9Z5rdRzhQSugY4a gAADdylYa50cRcOg2nrTuyAvvRCITx8pBZ4LZooY6MubcWzG+eabq+mAZ+1MpmgACYSNbkOK/gNa gHsqmIACDqopgB7Z/xoooDufdiL65PRqjbOBCy54SppurGyrMpkrKsC2C8KhoG23226ySZIwADen AT7bsgKZjzUrg3Qg0IADfhIiJ1dGcXoLaK2Rcw0tvSYYZ6PALwC47J8Y6BmCxyLjXDIFJEsAggwm eLd0008v+IJrElDgXSkRUAB2BSIouZlvEEBggNzP4VX3ARTw/VltO2Vgggq6gTaAL/ODtvnmKYo1 3cW/C46CpJSXoDYxF3jYuwK8FS/SigZooAMM4H4qffWfSvSr9CFApwD55dd4HF7nn38BqvGXnwHW 32VAOgBoDwe0jinS2NT/3uUymCVuehVqndkKkIGNeIxs+zGA+bL2p/+3REBEHxSRA84RwhGe4zoQ OEfBWCcll7UOOw1okQNC6L8EyBCENORGAnIIwA+mgwH26EYBGrCAhAmxAelQgMCw9sAb3UUAnJIc B9phsf0UYAMbkBhOyFeBDY4PbynZjI2kRg4BOGsA5HgHOQ6zjneYYwDfcFmUWoc61MkwHelwALsm kiYmeicfDHDHixqwAZNMrnLp6cYGOtDFiZgDHVz8CfmSNoEMbKMwwGMTQXAEANYIwDnOyYcTleIP 5wSAHmxyVB+/E4Cm4SsB6SjAHflxDqtV6HsbWBUZb0I+CjByItoC2gAMYhSKKEAa50gQvVTpneA4 LlwZxCWMIGAki5D/DwOkU8CyVjglbirAHRT412QmkxgEaKwCCmBTRkTFnhNJb5mmcY2t6lWAavBE H9xaFLRUM5H/9CwCrmob+yYggYEOFAIwqYA0DuZDWIoIAibZQDpg9iVfmqZX73STQbqnpBMt8gCb oQBW5NGMoN2jAxWgWgOkcY/9EREdLi2A6CiwAAMYjB8IM8AFIpQfiuijlwlqJ0aXw7V5mm8B30AH PxwgDwxcYBviA0A5UfoPZzkrMeJ0jBs5VYDJyO53TIkABzDADahGFQIOSNACqCVU5FBqoyoygCIL sI4D6IOTtoPZFisakVYVSiI5YpFBDvkOB1gSg7Jia2ni+Y6iekwp/zhBgDTEsVeFQABorLReayiT zAooLrFCqdVbUxTXDSxAAAMYoYioKZFvNCAClAWAloAjAZU1soDeEV9QP6vYkBLTWrfsxkKu2JEJ DAgB2ypAAJwnAOU+h7n5OG0BXqsZJ2HkAp5FjfjegtbdhiYAHGPsMxXpjmbAZAIQaAc6BtSMjmWg HRCArzSusVIINAAdDcDvZqqRT4sIQAIR+FFGWsKcAERKt0xMzXLyIaVMLskf3yuZP0QkAOhaZBvt MJ+rJjCPCchjOvKQAHwfAIENVDC5FnlH0wL80yqWbJkN9u7Z2pTBDpjWMcxdrvNalQFpOOYbzfjd NnQn5MZIYyMVWP/tRATQjggYdiIUTVA3ENvduExNxkrqBkQp0CS3RSCkXq5ASDEwjg5k8SbbcG0D ZLwOFWOEAn5lz064y54rtykAtBNthRzALcn12c9R9EZnI9kAbrjkvyQtJgUGd1h3Uhm04pBnuAaw gA1/zdKXBtvXwFnfA/iERdKY85+aRo6RJQTK+3Ggo+USgAsAuF75cAzsZB272P0ud7DbRmLqHJEA nKMdSTu0m2E7lyWquspty7OxEyIAB1hWM/MI8HRR3QHsKtsiBXG1tXHyRGcDp83F/HUyN9Bobd/k JZktt0tCB7QUV3dYCLigd1KZ7p/Q49v0bs26XQKBJhcGJwEgWAL/5JfkoHzPzPg2d9PijXBTd7ua 95bIOxzmkutw6XyH9EmqGX4Tekynlhtftr5nGwFEqyVpO+lAfR1bFSsOm97KS8A+Qb5sBji8NRsO MCQzVo1dQWCRbVnABqrNcKnNXCKsmiZ1f6SPye7bLzzLwOEKjkujp6R1pd74E4s0MAlcINqLvogC hHheggMl6EPH93ch8PFZnbYx/1iHYuL+D3P8A1qhVC5zfcKqPFHXyRI59UUGwI8HMMCAEXTLyqs+ rKeE11oKQMcD8Ivf+9oXvwVYAAMcYMMk7l3gGE/IPyDO1wgcXMkQ4Bl+K4CO4jFg13uk9uIpEspE JXs/NPOGX/yS/x2cPc1bHdiAR6QBeiV/3tAkNxaL+7ut6WSnAd/glOaAYkVyG10Arnp9ghrgl6xA ugL8klH3s7KBaoSj0zlhleFTQo5RYz1IyLzIP6azEJOUJQAM4Ya8EDdl2XNSHl6vlwXggAlIouZZ h3XIMWiZjcAIpVEKgAacirsgGCTitWVLiADYhgnItl8qExC5B2wSHVRRiuIJtZt4C5dLN1YKB8f7 lfK5Bhh7Mi9DhxZJgPiYEtuJDMdQgHQgNHGSjBv7Espxrud4wHVQgHUwJeU6JQFQDX9YCiN5h85T iE6Zlw6ovpnzLwAMl++ZACq6CAYgCQyRn/iRH3c4GHf4oAIIB/+oYABuEBEDQEMGSKECSJk8eZcR Op0b0kMRCiEbciimOZg3xDyuooigu0KQu74JYMFZaYBxmIDjyAkwrAB5SAcDKAAD4Idu4AdLtMRM 5MEmsaxLLABVkR9MXABIkwZL5BjKUxWOgYAQg4BwgC8JWEOGwIrv04qsyIBczIqOoIDKMcT+mwh7 c7ff8gbK8YkEaJJ0wKpmlAx96AZpYMZmnAx9aBIG0MEa1IdvmCM6Qp0PsocbSq0bOph4+55DzDqV yr79aMQJICkBgB3DyyQGmIca8TSB2ygBaAAJkJl1YIC/+46zE0arMJMABAwFkLgGOIt/qQgH+Ce7 yokOCa6UkD//CFi4LwG79Ci2gYwIrPuU8iGdV+KSsBmQAqARL6ymH+oeAfC5YrwYtDuS2ONIThqA ZigrSaGnCVDFDCgtCYg6inBIf5kfUuSf+ZGGttmfooypahCTAlhEpSgscUNHhvsuNasXkHSoDXDE DgNIAABDvwg+4AtLDBjLK+qZvxBLs1Qkb4kQAmwNW3KxmQyAe5C+cFkARwSe2diAClgdmHFI9xrE biAiwcS8ICIip1Ad+RnMwhQiDGhK37qLfDCHdZyLeRtIARgxykyP8gkHSyIY+Sm5iTAAcQgHlMw3 bEyJnXDJiBA7qfOeuOTI+6tLa7lLZBSAuBuAd5AZTnFL9HOA/24IzaCBr4XTB2ljJ0FzNM1UMo5R Tu8AydaRhnngMp7aI5AxzWKajvOrJrqUGW6ogHVKj9F0TdmryoVrk++hnASojY6IgIeYGay4hj2U ofmUoc3wGJkTztmUCKZDwbbglBLsPwexynApH3l4hwFYG4fRo5nhlvMJqbYJM3FoiBmBNO2ZABk7 LovEiAjIyO+4jvFcvAeDgOZkjna8les0taxYCxHxISEqgPgZInTomI24UMGDr6VruttblJlUihoi 0eXYPi7yRgV6F9HpzaMrMOVCQPIJvi4KgAy9yAiYSgPZUR51wpMpgG4Ria7AAC8zCJLomVfJCTyZ wYG50Yrgz/8E4ZRC41FzU5K0+TM/84s+G0Dikwg5Qc2wkwYI0D/S61DvqdKZhJ0fRY6FSB+w0bBM ewpEXRtmtAxVIT5t0c+IgBHtTA9OAdGqE4AFQIdMItSAYUJ6gK4HfK7mkRoKg8Fikh9IrIgFky/z TJEP5VF6kIZwWMl0E7sCQFFJtT3v+E8eZUl5+FS2Ejt+6B6Aky/fIo6Jq6JAHcgAuAYNrbpcBT0M xK+F+6j+rApMBdbpGFbFypJVhbGFkIY+NbUM2Ct/kBK5kNWZpNVJ3bhcRdFmeAD39BLl06xXmi9m pQpOgcl008dr+FaMytXuoQc0G9AYNL2jm40xaZJMFQ1nFUb/tYNVeoORvrMIf2iGISJOneuv8uEA +aG6bZXYAHXDgX0nsVsA4oO8VcEIj22NihMR0mmLdCjZ/rvSxcvV4Pwl+WE7U8PX8YmpIeKqnA0K BhDTNj2Z07q1WHPa4GnaaMkJsWMAVh2WSXPZe/UllX2Xg3kX5SweiDW630FZwlCAazjURVVbDXsf 11uRb+AHR1WTi5WZwKuIdfimwPioqEAYsQXKC4ChsmUrfZQGwZWLdMgOngG+xVVLxv0L6oQs+TlW 8omXl62+3jippnGx3pCHXv2ShDoAAzLcPmLJ4ponsYIANOwGBljdboBD131dpmLIqbXESBWivYHZ oCEJhQyc/7CAD3SgQJ/oDUjziC7123JTmhENwA1YO5/ghnmYJsagqnWgKudZB4HLk7x7HnyhjwZI ClCqCxbpQFJKsIhQGu91hwiYBz1plaE7gOiEG5Cx03Tzh/sa3bbgwvlNCIcE3HfZvM3zxpiyLANy Hd9BgGabJt95HQT4sdcBHlrLHcWIj9wxIAT8o5miqquaDJgxVHdxjHdI1RRcANMySHlAUYlggAiI AF4xANfthkocxflBGIU8r/ghQzKUn2vwspbKH9YTopeaPMr7Yf0ZQ04d4USBCo4hqOm4h2YYGeWB LxyWQqEi1E3tsXlqKv0FAAegAMyYkhrMJn2ID/9pkVzBkP/5NAAHSOOasgc67KWF2UQDMACngABM jKUXlR+izB9SJKIiui/4ekXI5asGqKnpABlLVaVhDdb7rYoF6AB5+DsZW6p7+JAHJAhO4iTy5SQF IKIPoQdSAuVPylVzUA1P+iQHmCzy/aRVTtJPStLmWuXmybtSy4cEiAqCWaoKYFMqrrJ7kIBe1cgN uICCvN7g9ZL6OmFKPRj9IJEFEYCakpl7As+JWJBqjoibzAl/SIDPmKML+LnFw0zltctHPgeBQFqW QCcv8Y1kY4oEeEpe44dwuIe9iYr9CAAHaIBu4IYWngBxON5tK5gP4telFaJ3Ps9rittumIAxmYAr fjIPswf/bnIMIKtJceIGqtGHGxsAc1gHczAHcnCADJAQniWIzWIPeli3pmgAfsg/wtAWrRidZG6T 2AnhCnFkCXAHrwE+X15fijgH7BCJbNiKXNzFXSSJ4PsKFVZhfvEyx+SIA8C6f+AGYC6bpmiKphqR 0LgbcaivBnCHn1Xa5NiAkNwWlqCaeONi9gQ/Fa6AGcGKL5ubtn6btgEziBrPAwiHPx2qBJgvp/jO 0lAWD3kWjwzrinBkeUgiprivlp6ZC/gXAdDNBNQx+SnABFQAp1nNFF1YxkmA/9qUrKBq4MCSPoIS k/4tYS6V02qw4hHkgfEfGatlqJCZA1i9/UC6MAsrDUBG/zpjZAKZsOWVhwP4BwXgBgA27YgonnuQ 6diimsktAHeoWym17ZqbjnkIqOU2N8dIiJo8E6mdlQDoBnTobTRpqgPgFAyANMyAGW4AJ6mQ7OVa wExlESICa9qeZjdxAASqEuo97raAkRmUE0oell/RRxIeZwnYhgToiOc2PJhhAEibgHuQPARiKQqf PGnglhq7iAU7orrNXfy+hl5yFtapafCoQ25oh5slcH4Q73kaa8qgmptIgNegAFgE5BuHgD2dh0JC if7KVQ+/773uGC5CB6joSqpQAI1gmgwYq+kRAE0c76BwZAKER4RI0lMqZecwgC1jgMgAHgTYhgfO JinhBv9xCJwuYpXM83BtBa3QOZ/6qi+SFgoFoCDzGQcM+GcVaRcD/60755U0tEQgUhUDAKLNmF01 SVLWrlZ9oBpzBQB1su3Q8Y2mxU//pqSQYhqI1JpNTdgBTxEBDJwt7QgM8Jbh6gi/gIAjNxZ7KDte O4CkkplzULzv6BCGgIBMLKxv/Yd0eIr/m6LpoYfbrZc9K3VSJ/W13BnzMfbWDrtZ6p4Fk5+9UTTb xucLIN4sJox2aYim2e1N/9rBqBByKJjN07wZAoRw/CAZOoAFBQ93kTH4IOR+BJ7pTqDi3gwApYoB 2IysIJQobws2KnFla00ZY5VN8XeOy2/Dk5JwCFmzpQ3/FQ6HdHbygw8XgSvI/nqlVk8RZpsvtKUt DEDkqkhyB5UAbjh4zUw/iv+Vi9Z4pTgAfmj5azkHqkmA1EoARw8KDOSStp7E0A6K5tRHcTY6W255 vnPboJnq/SCHpqjJa3iA7HVpNwYbp3TyBrgHsEY4fXB34EgANUfTD5eIAoOWw9A7oCARZmsAE1rL bq8yW4YvqF8cB+HzmRO4orflrJ0IbiCSi/AHcbeHBfgaBsD5bWu2Gj+YCRA6sz3KW4RXa2mXBjBo fCP6d9d6vN/PHH04pomcB/B5pBuTqaAnNr/TAmCpQeqAPN/4EVb5WWkKuz+YuqWAuhkfmAgHbzmH gFey/2ZjGv/ZjH9tjRZZFtqBv00XImUFuZo7B4IXuKOfiOL0pQOY0WKpinxZnev4CmZHcuPJipPS 9KXFr9X/lJpzfQeo9BStKARIlAGrCpBugEL3jcgPiuPy0gmAbicX9nA5VWgho/d2ntHGiZoDCAcC ABAsWFDAgQUGBhokmKDCgoYNA7xDoGDAvwEDBAjwJ/GjQQEJIExokGAbuQAgV67Mp3GbggQbWdKs aZOlAAbpGN7s6bOhggYSJsibAOFog6RKlxbQx5MmAwgJnjZE2KAAVYcVCrAcAKECBQT/IEi7OuBn zgYMEjB4sGDqT5DrChRwMCHCtXVx9/JFMEAl38AsGf9g4GCYQ7UOijcwbsyYw4YGZ21GhQsyX4Kr 5D4+jAgygAIKGDocxdCuwAO1PtPqTfAAAoPJgkFTuLAAg4ZsCQTz7u07LjoOGioQJy4uQgXkEZYj 50BaNlRpB7IWDJAAHQPqCShwBSmAG4QG6cJpwMDNX+gLf2+uc/dgN4AAAxDo5S2SAgRuDTBkOPCb L3X/CVhQAd5QwIACCSagTwIHJJBATA+OVAEECNzEgEks0aMPP5Y19M5FLJkzzwQDpIPBBg44lJQC N4lEUjoF5QMYb9xkMEGC4mzAzYD/CXARjT3u1UAH3VFWwQQMWGSRAksq0Mw3fg1QgDwMbGPOOwOs k9H/lgIMwM0CsQmAJZYCBKnSQGkSJEABDQjwTpstEnROBAywl8AEHUBUwAL8bNbbABPMg04DtUEn ZGBsYrUmoj81sIGRNTFA3FV0WXopXQxEFQEEHSbgwDkSPsjAAketFepaEGrUzAAKbDNfq/M1qU+C tS5pTgEUWvRNM00mSJVI11SAAQYVbEABfPbhqdiBATZa1UoCJOXssysR2U1PBWBAAToOGPAtXQYs cCkDVEYgz1UM8GMAP92kQ1cD8tR21QLjVpqOOwV0Y08B/LRZADpHTSDNNdIcJTBJFIA1wV0UTEBB BNIcKpIESI7qoWDkFCAaBhEU8E61fPkjAKEgh9zT/34FBMmSAUjqo5FGFyX4jcwJNjABOhIqcECt DOpn1FoOfDq0qA44oCnSbSZ1TwMPMN3APQuU1eY9JElwzQS2TTxSBO1wAyG1qxVwsFGHnmyTfFeF fXZBj9rJUUYQrkxQAeI0YKFN+nmYT3wHZVZASgDQA4A//gTAUUeFF374yALMGADkkQdADz0zAsBR PmbOOHhD/4z0sMIXFGD2XgOU624BGLNt05TZrV4TOhgwQE46EFBAQQYXqA5AAZySzplJHq0UlOsS DZDhyWkV4E5SoiUbWD7NQCABgjO93lNODMx9vUH7cWOONBp0EAEHFSTAd0O5TpDAO3BztI4A68AP P/+bUq03kEoB5IOeNBG4+ZEDMNCAs+VEGt0oVzoqoIEY8cYf26kAOszBvdVoam2r24+dJkWBBlCI OtriDoQgdIARNshBPFNAASaQulrVilcorIYGIkC6A0zAHgTEUGpKgwEV9WY7HRBHOhTAkQnSxEsV JOJHMHi5BMhjNAP8SK5AyCBRSciECaDSVRqADnQArE2EioAGyvOPjyDkdz1KSzo+Va7Y+CYBuIEM BiRgRiQC4B8JEh4dCVSkgiTgAhLwz0daNgEHYKSQ/8jIIRM5JQgUQFMG8Ba7NGUPCBSGAnMkoAMa YI+osPE3A5DG7RRWojySEmWQ4lzmHAeSukHgkgX/OYdUzGQ4xc1yAA9QIXXeZEHf5OQoFOgAsv5D D8QhrpTGrEnKOJKgXg1AghJhgDgkdhMHSAUnmdkdABAQDjslb0IloYA0jsk2L63HmBj0R1QucJQC KGBu6mNAlFx1ES95iRz/IIdXKtAOOZGRLdh0Y6SeJZIJbOseHYDUn8Qp0ARwY5dnI5L2CIMBeUAA HUKUiAEyUAEJXMUtBUgH0kJagAyE8Ylk1EfqtCOOgDZKJPfg2Dj09DyFCsl02jvmPWQHAAVM4B5P IocHiTWwBhxsKeio1wMoIBwNhNM7/tROBPhxtgFccZMLSMqiaNrSI5qzAwvI0loEQA/9EZMj/iAS /wW6ITSifU1oQitXBSCDLae6A5v6WCkBFaAptqzTlVoNjE0derIGcGCDDShLpdYVrgKwSxyk4Wff PKISw12uARFAR336yQ9ASiQBUT2ZfPR6jwv8sgPzaMZfEZU9waqWQMIxTAeq4ZzEKKa2itEAB0ZJ GQgIJFoHSOlH9MGdvJbrlxm4Rm9Te0ZNca6UeLodWKJ7HHGIowLUtW5tGGAySb3HWSIxwD8rMNeQ 2XGSHSiPBNKRUOX66FOsDZn7ELmOZnIJI/O9p5kuFMtooRSbNLRh8kwXAW+MwznmIyN7E6UpPCa4 N5Xx7lM/MgB3QLZR+TCHXq/atPCY7b0NXhMDkv/7Yd48OFpXxObltiekH3GjXPCyxxgRPGLs8UzF M+5JiUFiuqagbyIe3ksAyJFhkhTlGqT7cYIPh+QbEyTHZHRA6rY3pQqvRCOC8Rw3eIaAA+gDAUtm MpgdLJ0eS0Qk3XAKZyjAQDJOKSkDu2hc/EFVFIc5LmSt814YgFwbiySN1DnAVqqcK+FUIwPSLN2n YoznRA2AVnjWn42f2V0Tb3Z7D2FpQRRwAaMY+hrzmGlP1vGg9S46Lj8qQEPxzGBJ7dep3QgvpgmC AKI2cmwT0Adf3vEgv5baqY1cda9XUhk+60Qflsbr8Dj8FW401yfyYeiX8fwjhUR7xE4uM5Tt6jH/ mvhlpzKZT+mExutgV+WKxSslCpeyNHUnJTXigTOrE2BjcpRLH2TmY6AvQ1UuniUmDDhzpI3nIEWT uyegAa4xC9AB5xxm4Qs/TMOdAwHU7tZDq/5ueD3zEVxVQDEQsMc9HnQBacC7JiKRScHRooB0OADY SCQsd0p1DS6Oq+Z84pNoIPAN/SZAeHMTSVMsne+P8HQe4bjAsCbglwTMfNz/0Mc5nJlyF6Hw3Mm7 nLU6wM38ssQdFHgArzNDZaCcY+yX6+RH6OGAnCngK60kSDMWgA5en3zcBwn2j9YS8NcZlJuUiYAE CAmzwRN+AAFTUuFhhgBSxaaQjodVRgaPyFYR/3UbI7mGvN+hsa146Z4YIcc6gkQPUaMceynPCKmr tbb9jLcmD+lAxzIQAY0WhziyJ85oimX74iwHuoypze1IW5sLbBr4xA8l8DUqMHUi5QLeoNDBDraA bXQO6gQveLUn+IAN+F1Sw4qA8Yl//PHjrljBN37WGPb9CUhgKCR5PwSKQhKGMWwoRglPpfikxQVU TRoaPmpS2MOhUJUDpB72MVnKQAtIpAN+KMDjjBVZQc6MDIQBkNzjSI7huES5TMVYZc7l+EOWOM5A +APfeOAwxQfk+BwKDs7g5A+kGU+iTZ3BCcA97d3qSAP3EcR8XBGuBdIG8RqGXBJbmN3xgNqKmf9O AkidDNYEVbXTMS0A95kIBIQDcUAA9T0TOFEcq5ndmkRYZw3ds2ggNxjgEpbZytEZ91yDeRCGc4zD BgxS6m3MNVxhTbQJ3ngHhsgbZ4BhowRAM4QYGZZhSCgAP1hdHsWOA3SDnhDV7WSVQTCAwxDSfGkJ UJXVyFRgi3ggAJDZAzmiQdxVrPXIN4TY9QmiGdYVsGXfkMiOPhhQqxyFE6aPdUkDpvRLN7SLPayL AUyA3dwcXfDDuNAFBYTRBGgHBQCY6umVIZpiVRAiGl7Po8SIkJmJpoCERBnFNUSfNmaj7ZgfaYWD 0RndBBhLGGUA6YSGVJ2MAtSV3aUcQrhDyx3/0/ZxE2AMERQhSTcgAJOwUIJ0mc2o0II0CIMwiINA gHBIw3YZBJ50Xx8qoyoy2aktI9Zxz6MYwLMhjUzMjQPMw6FJSkdK2MNIpOfsnDrawzm0I/bplR6a E/exSQTonlTMjQH84IXIA2d9RACcQ1MEiA36BmiE2EMyWeS5HBFBFABIVHiwU7PRTTTxWu9Ihom5 w3TgpPWEjEqiJDPmkdsAgFdIRkZsj7ZQCM0dFRdpkRfhHAfoFEj8g7gYIVeyE2jp1Rhm5UqMlUJt ZR2FjQEsHH9kQF/6ZQYEZrEQy1JBwL0VBL0hHFAkydnolQOUIl1yJa0EZW9Ig1raBBSulNFs/yZn cuZIhREErMQ6vEssNgQNMSSi/OTsRKbxuAM3lBP3ZMUCcID/PI3THFbTMA1iVYA3QEAgNgQOUgAP fURillxBHIDonEw+qGRmsaYOblJCrk6AKFxiMJzDVSeBxRZfNkBzskQ3TAAdfgRbwiVnREDrNSQD pJpzFsQAPBJskhI5GAC8tIm90CcA/ouf3cTYKKFExKcBeNlHHMC2qeNaYGWwmchqKhRRgsSCQpFu 6dgm/c52oKaQgEZdUeaItedrsmYKzdE6GADaLSaF9shPPqMgTgmaRWapzJFNvWdBzJpbDkg+6AM3 GCdrImFPBlsKhadE/INO/M6PuBJPIJkXrv9nHSHIYQriArSDFkqYpvyO5USLSIQVPe0F0Nkoa3JE jvbajooISLkoQayDAkAmQWgMQW3FynEhS5QohhrpiBVAO8zROxTikV0RF2pacdQGBKgpS6hkm36Y WXGo0slIf7LLNvzcNSWbVPhQA5ApTZSogfYaVaUoXa4oQUROQ5iOAYDpO6wdF57aVESFeu3FjLLc nx5TgLROVTJjhxrEUrJJbBwmOQwhVEjGjzAISlpH6kTn1DlL6ziqDC4AeHbFk37EOhwNF8oHOqjQ AVAVSGGpie2km3JlgbKmsKqpAHwpoipJlTEiBqCDPqwFOnCHQ6mdRZ0qe5mIiKFbUpBFwRT/DFEh xVG8xlVAq0RQCYtGqLGewwJwoWc5DHJcQAMogD5IwAVI5JMZgL0y4wAUIrrGRQEYxjgQmDfEFmwd hjc0nCeyRKtGiwG4Q5NWRybF6CdNwKvlCQSMkQCQBJh+hAOF1bSqa+AYEwQMR1FtGAS0Q/RdwwOM hsbVYcoSa4jKiALYQ8gahAZORWYUz5SMDtokgMI+bGohYaQiCpFgRfykyT/ADzm0D+KgVQPIp6WE lKYcTQKEg2Y+CD8qSFLUaIIggD7wClUxQLPCCszU14K0D6wMETS5Q1kVk0E4kGICSJ15TmmWEgR0 wHDWIeyBn8KIg8MwDEXF3/RUwI0gRTpk/y6/bNLNlMTyfFQjtdgancPRuKY/sUWmhJCDQIgCPACF RIiorGpOsBOSSW3IdKA44aVNaMsFHBDZ+hOoSMg4LsA5rAWtTNGorBMVNQhbGAA3MAgDsAtdBGMw 0kU62IM7bC46SEAOkQ0EuAN0BMAG2q5Wjck7bOnJJO6IJhEGbGxBDA4e3Uw7aamS6RIKsRPojYkA 2BM+DQBQyQqtRIg+8AzPDOSDOEg/csMmlcsCpAOlnl2/om/B0VsSNuj19F2ZrZIA7VLH4mFsbI+S 2USSBi7hVEdDoBPtxizL/Sb3qK9DtEiVSkQy6ac8AOs6kO6RrdzRrli5HO6J2uNzfvAxuf/NlESA wO5aVnBQKEqEO0gAtQgAP4AvGXESaF3RVGalRgRJ6/AqHVESW1hsYQXR3OzHwEqJX8CERkiJRtiO TLzK5zneOYiD7mRFL8WogMyuD5fh4WRqI7UsEakhN3QDBhjFBnDABdjbvSpG7S1y7SHHaNCewxzW wVRMxlpSmZ1DA9xko9BDuVyxkZqIib6ONCiuAhhQAiwAWOSxwuVOUTDMPGwa/cWyX0ZuTzXA/31F GG1AKXqJPgCrj/SwBJNbw4Ia+YLEVppOO+HqRyxABrgJ33QEmgwT5bBgCsGwliLO4TBAIasHHaGw J6/nhGHMUraw1jHKpfZNQyTgTXQDBHD/MXu+xkoSER4Hc7CBxqqic1G2JAOXxYbKcAa4L0jYgxxZ UwI4qv6AVicXs0JFqTglLoRcAGx1QDhoMkGQ8UYgTiX+rbSomXeJG5spAH+qVg+PcFYKAKvcpdYJ QDeAxQGxDxR1TKUEI9nKp3ySD6RUWbGW2XVQtJCg8MKa4oTxabQ0CgRswDlcjgPw6QflX79I7/TW CyUR40r8wwGBqekMLNKKdL8qtDhNSSh7h5BcbXwAMd+szH7saTMNngLQzM7szKTg1s82hDnoK7YF UXVQFol6KlcfEwLUxV6zBARUw6JKSKokiN0ewC99zESgoJlAzjt8BeCsBO3EKgymww4v/xc70bOk vkX2ZV/EbgvyhRL9SQBZTMAGdMD/7O6DiueTIqo9kCRa/IRP/3UpbQN59oZmS4QDKAzEMAfE9DbE HAdyTMA59OTY5OvQdqHTmhpakEoeRyYKCfX1CIBFsG6CjNAI7Ux2j1AzsLBBdLCxVvVHvIM+2HVs /4T4FsA3O6eoVS2YHTdL/EOEzo2oFUAzkPQvZ/a04rOKDutKmIM7JPcSwdOAUIc30/Z+G9xBC0ih qGmL/lxMuHdIRAswT2uQ4ncebQ+G00ShXLYOfhTpHM4/BCV1pPd6syYCOPCN5TYAbC+PZiotGmhZ XTSAjHTMRpmgztE2cNhKRJqXsAWhLP93XHByCrvplDknnM6RAnAUZHqJArjz2Y2j5a7Phk9xkX9y 6nwYixPIoK6E9EBlmR2APXyqA4jDIJeEse0FCiPAltcZAvCDdBccvrLEN+BMLiWAeetYnLzKj0Fx N0g4ngU1kvs3SCAAh82NOQSyh+vgHQLAg7CWP9AFoNcZVU26j5BTM7jxAGxDpideFveEsM6RoTeq RGhgAbx4dcztPB2P/TgUFC+ApYcZ5CgUAyAH7zFyciTH7M0xDS/6l9cpnK/ENlTMBjQz6xaAOsUz TdCDfMY6RG5ElY9TzYYRtVe7tVM7Byxx+sgDqhdEnQt5SFzR7wSAAxzUS+YOj0wJubr/SLk4+435 aJob08qKz60bsfHZe1x1wHly7GobDyNx8Y+UHtEZxYO8ZDcABoYIeJm1e5uH2TdkOapOwDgUgD7K il/oY8VjfJ6s773WcFfQIhlqaV3GhBBxg35fDrLb8UG0+36DcsP3xjPnicobxAKMA/QdzGtUDW4+ jZmXRGrcJmIRynFw1LhoSiORraYUIkjpTHoqCOv6xQJ0gBw5iUUA8dmNDoLnUTO82svzBprIPMrA FrGMPdn7ZbFkAF8OS2AOi+WCBQWcNrFEAMO0w1DIX1FIgDzgfVFxUdkiTYuFCiXJQ4CTLZuHRLO3 fBqJEz3IQznfBJG0Q6osL/MK71ZI/z5hM4w9HPAB7KOTbD7PPH3hTaJGPN2+hBjSgMoDR/roRLsM 9nWcs00AMP7MF4Rlcnz6TMBv/sM1FMA4X2r7CMaWjD7hPQWbLEBI3+htlxI9QMA4bB02G3Nk7NIC cHOVPUBkl3qahkzh+Iu7z5jrK5TMTynSmF1RA3QSEfpHSM8CdOeajGzy8En3j5hJx79gXEMHJECd J8ft3JQMe9UujStADAAwkGDBbRQuJAhQcGCAcxMSMJQ4kWLFgf4KNBBokWNHjx9BhiSYz59IkycB TMCQQAGFDBQmQOBWUuK9DvcUDBiAQGdPnzohVEjQs9m2nDoRLOgwroEAiQIcQIiIMv8kuQYN/lHV upUrQwEDnHYVOxBCB24CuBVIsG0AOYoFqlWYMHeCBLoSpN1V2QHm3AsILwSmgEGDhgobCwpIgO7A WIsBGkhD7JhyZYYD7B1YaBmlgAkdGn8sS6EBugUL0BVYUEB16wYFKlS4h+7qVWkNIOSOULhCVq8D FITlTFDA1cnDkW8NsG0BA+HJP+aT14EBAAHX1617XrDBBnQgG0TQx5DmwAQZOjSFzlFAAXTH18cH qaCAc/keA8jbMDRjbmlTJYIAA35AsgmrihSYQJptyvNqs+SK0+i+CT8awACF8qHQorLOaSmDCiig oJvtBmqggwpyu+oaCGq76p7aMOD/oINuKvrnmgJItE4BbuCzLADaetRQSACaKUCBISsqS58BILgA AtaOnKgBGTGoMgMrI4hNyww24KCw7yhS4Em3JPqHgQYARK69A5FsE4BvChjPzYL84TAABVi67kGG ugvnnAQADVTQQAsgzJsCKmoGAnTMmYgcB9CJEkLj5kQSgQZCq9S6z3C8LsOBBAjguoKk2cCdjwL4 7J4g33wyR8UMYNWx4iTTVMgB0pG0Unog0ACD17rhh59uWCsg2HRYUmAeDhbY06IGKEDAIjELIPOy BIxcDzIJbaXwn6G6FaBXDWTswNxz0d0Agy45MKBBi+6hwDeKEHB1ogEYKEBWrUYF//XFebuVz59Q A37oL3EiQDjEeShgOMQIQgxHoY8eoEBXiZjE8d58L6bKWa+ADHjC63JsMwBy/tmpJ5JJfmcdlwf4 hx6QpKFgm2ntLdOBbqTl6tOKinsAYJGhG8CBjol2DFqkCcrY2sQSsIdpkd6VaNt9kx4LgWyztqzm nsN88mPrgBuaM1pL7tqxAdRSu7J4pyZyTKDji/Adt5FTAE28HYOAgmYqyucbsd0U4MV1+ObsUvsS 5yq8byxStNqJWO5IT60CeIDNxtdum/OtvrZocI2f0icBs4kbANv6wOqsgQfS/vwkXDWTnSpowZ5I 8hwRyJfVerXsYAKsJ8rnatvFov8vbuThjVb0nBmij+uJGDhRNQzEWb6idW6LnfkKudH+e4lqjpva pwlCgNipGcAAAgUSTMj1e1AfHyRRx7a/ItynnYD06O0xPYkkKDboGV5nIAC7OXkPOv742QL1QZsW NWA1xbIgA5A1gPyRz3kVQcAE1IOxfOUOYxCIwDz89y21MDAxryPeelhoGQHkZIMaqpeXOJDDclWJ h1a6EgXSxJHwyCpBIbwMN2IFtK3F6RxLagAIgwMSAXRPfyjBl/jus41wkCs2GLhSBTDQxQp8aIwa 6EA6CmQxiyCgHejIkYUEGD1xVGkC4pDMAA5QAOix5yr1qyJHtoZF+bSEAxBgwCH/EckAAxhAkYw0 AD8q0AEDgMRvJGRIvf5XEPosgFXp0MAGKNABw9wMAPXSSA2Jc5UY/lGTntPUP0JZnY9cowOI+gg6 KCCrjI0NXwxglT4qEKkJcEAcgBsIfdxBPAE8YFWsFIneguimAUQANJScEcE6Ai0iTmABVQNAAHaS NjPxA359LAgD5Ge5ByjQmSC5VDTbNIB5UAc8hTxkf3ADgQm0Q5+5gQCXYuJPgebmAmEMx0D9ORd/ RoZFLLpNHS9wjwlEgEVXKQAFOBABCkrwNQl4TtD82E6JICBS3WpGKKciAHLEDgIcaEdGJkABLalr XT3MYQd6mNMq5VCnPMzAlcio/yWhDjU2FICYTMMYIoQYdQKMGwj3rrHKdrINnkg6CD39wY3XKMCb ACgLVhSwDQSw5ACDAtQBJlABdxygrGVNQFv1UYAMQCQBpsPTW9ma1wMoYK963SsC4KcAwB5grPoI rGEBqwB9sOWjLhRphcBlq2mC5hsPgEA4YjKTiZRFlh6BFuIqQg4J0Igi+ZAqv6RxDVQO6bQew6am 5NmBBKSjAxLI4wbCMbay2NIjuJTVNkCIugDoIx2WtAw55hJS1ra2iiddSQE2gKhzYIACOYJANTSC HZflr5IWcQAGakkitMRRhu2bAHNhSJV+eUQxL5TPAELZxJj6zX05mhIGYmKXCf/II6ACxU0knSQB CSA0KLyBj9HI65gA6LEB93Cq/U6bgP90axvUjAgDIlClcGSKIb3iS5aGGsafjrgDHKBpT81VmAjA hz5JtIxOEiDTdKDXbatUwDU6WylzzNMB3wzsPx5YEAiM432J7eteycrXBGGgG29lyVvxxNYCLMWI BPmGAbgW5IJo2XIXnUA69CGcmT2WIwqYsK1aIltyMIAb92RaODpwDvDIS3QRmADStsYPrK32KenY I5k9cgBDdguWcW5JbBKWSYLYpAB8BsA9KmBMeoFwbArAsiBFYg4ai1TQcpZsKPXxQdIwwAFBaqlG BGuUmOkpVAIwngQqQMowkWb/bFtzMaArJegef1q2AFDAOSRNkZZSoFiRick1pPGie2iuASCKWwIo +sZL4zoxm95KIG2Vj2ZQszrvMMeYk6SBCSxyARBoxwQCE46lCoYC7KTIAaI9Eem5d3wkG5JprV2Z b2D0GglwAKByktjAHmWYDUCZTsT6DcAuHH4I4EkNFYCiHFm6AMal9sU5cqfdcACMYdRSBEAecqN6 KcdcgTYEeOc7jLtpHTnp1gBKZa4NdGDmG5g5utBVgV0nT+IT+ccB9KHclUNHAQ/YeaXyoToGnNWt ZU0kIh1wgHwXBNpVJsjAwK2m9Q5dk03lMtc1GW+KOHoruMK0SBMAgaODfSIn/38V/KYukXyYYwBG WYBQ2K5JtecdQT0XIQPO/hF/SBizYCw52NN+eL6bR+zRS02wxxKAA3QjHRnR1+J9DRHMD9COE8fy AL6unLsOxVn2xjg0N8+QqtNrWPQOid6qlJCP6mTlxots6o/p98sUIFc+wuVc7HyxmOF+8dC+x8RZ s5GWs3UboKXKAGJ6twVgQPFDNx7ZT6/7VnLNHRnGQAR8qZV3hEgBkKF+FZ3SWnMw4AChZ7vb294c gQzgARDDgDeAyK8C+OUCDdgG9ttJASSAHwAQ1yIO5dpu6QJA2yBgtEqFA9BIKwagATCgGoAo7pgn AZqK+BjP3RKDJwYC+vjCJf8wYO1MQgHQoS6koRsaZfHEpKr47gAZiB4cQBqe5JCSxf2AZv9ShAGE DtfSztOIr+rGZiGEo5cEYhscAAebIes8AvqqIYykAgNB5XMUoB1MEPNkcCLeoRnIwQinbwMALxxw BMPCQdY+QgAuwIy+j1tmxToSRwNhMO+IUN7Yz9UU4ALUJa3ObwKdBNOKo6j67wcBzew40Nc0issS oAHc4ToSpB3cYZg44FTMg9hWSQDSoQHSAQep0HYC4B060X5Wr+0awB4E4h/Q7RscwPCIg2McbR1y Iye8UAcPceUirgHCBFnCoqyOiQFa8CIWQBpAYvyER8Dc4RfzboZCcXygTQL/DOvJFEsB/EwtBk6w rDGwxmqMjoat8AR+9mrgBuCkxiGp3DDvUC8NG4fGoO+nKiACRuxDwEtdRswdEa0eQa4aOOBD5vFD Qm4ajOoeDkAaJEawNAjzNJAbLIdzrC0AFsOyBMoGZYoCBqq/UiQyrqKh/OMhbcOQDuAeJOBPEgAB lpFzxCQLa5Eg6MOjKGMBBQCdQqkCLq/4Bu0kKWK2ys9H2KYCfKX6hi5BePIkU3IkGWAwMuB9RrJx EuAjaZIigKMgKwP6ZMTBVHLx2EZOlpIhFnABZWgBIEYCGsAHMe8rjlKkBMAc1sHRaHHL9CEo8CuK Fg/frnKAlm4ZGZItjVI+/9JPZBRAauJS9dTibp6ySQAlMiAHL4nGJ78nLMaS6tAEGcfiICZgZmAD IQ1TZNJuDg/RIVboxexi6fTJKs1xA/uSIBwATejSAeYBvCjgwd5PNJ1pJBdxKp/SHtKqAdLSAEEI UHCQ9IAjUO7qAMzBH/5h9J6MJQTiKwblrqIIOaGRJcwhQ8CpG63ROEFlJwJLZcDCKYTzJ3xCO1OG O1tHVHoiZbpBGhwAMFeSJcghAXypAJ1pAHBJH8cIJjERjMbop6jLo4bSp35qA/AOFXvKfSJCTIAK HimAMuFTpiBmLmLDltgmptAtJkpDJTGjNNyDNVLj8hDMQi/08vJhEVMDNftCRDbXZgKOL+3Kke3A KR2QDTdww6P0wSEhANlMtBk+NJ/8SRrkQRqORAC6IaCA9ElsFF9sMDc8UhrkBCoWijb0SZYUAx1e JNleYy6tgwEWgB8eKViwrBsARzFY45FYYwHSQSAYsjWwjEW46sVgwjpqBjNHMzkGBn+sw1PoRFTI YQDW4R9WClS+4k7vdB0GwBxAsTrJwU9zwhw24ysCVSeawSmfUke5wQFWJPDe9Hu0siD25DZRgh5g Y+Zkr1JBdSvoQx7kwR3cM1RRNVVVdVVZtVXf9FRdtVLp4VJjtVatxlZxNVd1dVd5tVd99VeThlaB dViJtViNdSsCAgA7 ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image006.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAIUAAAE0CAYAAAACO/BYAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEG0SURBVHhe7Z0HtBRF1sf3+9wc3aCYlaggwYQC BqI8RJBowkiQnBEUXMGEKKCCoCvRTxREJSiiJEEx4S4IKIZVgq6RZAQD7mJ953fn1VBTM9PTPdXT r9/y/ufc0zM9PdM9Xf+uunXrhp+oMpTBwk/sHWUoQxkpypCGMlKUIQ1lpChDGkqMFN988429qwwx QYmRogzxRSikGDBggDr6qKPVUUcdrcpXqKCOPvpodfrpp6uzzjorRZo2bapanddKtW3bVl100UXq sssuS5EhQwarW0beoubNm5cma9eutU9bhgIhFFJcdvnlqlatWuqmm25Svfv0Vh06dEiTn/zkJ6HK qFGj0va5yM9+9jNV7pBDiqWcOqRcOXXIIYeoQ3h9yCHqsMMOUxUrVlQnnHBCTjnjjDNUs2bN0qS0 IBRStG7TRt1666327hLBt99+q7744gv18ccfp8iHH36oNm/erNasWZMmK5avUAsXLlQrV65Ut902 St12221qVFJGqdtG3ab69++vGjduorp3766aNGlcLE1U42Lh/c9//vM0splSWhDKldasVSs2pIgr 9jtSMHSUkcIb+xUp9u7dq84880zpcsuQHfsVKQDDx5gxY+zdZTAQN1Js2rTJ3pVEKFdaq2YtmTaW IdH4SIUKFVSjRo1UtWpV1csvvyz73nnnn+qdf76j/vnPf6rPP//c/mpsEAop6CnKSJGA3SMw1dX7 //Wvf6nt27fL9rrrrlN79uxJOTYuCIUUtWrWLCNFMWxS8H7KlClp+0GbNm3U+ee3V+3PP19deuml opcNv/561bVbV9W1azfVrVs39de//lVsMvyGlv/7v/+zfypUpF9pHkDRjAMpsDNcf/316uqrr07u Q9cZOXKkiMbcuXNFFixYkNy3aNEitX79evXDD4mn991331VvvfWWSBDYjX/QQQdl3O+CKlWq2LtC RShXGpfhY/jw4eqxxx4TkmrQGHfeeWdKoxxwwAEyhdYNBsqVK6eOOeYY9cEHH8j73//+9zLVDtqY 9vG8HzpsWNp+FzRtera9K1SEcqWxIcX1w9VXX32lOnXqmNynG8NsFBocsEajgSm+Z8+eKaQAQRvT Ph7zeKb9Tz75pPRszz//vAg91fz589VDDz2UUejp+vbtK0MOxC8kgv3jLIiSFNwUbnC+8otf/EK2 //M//yPbg8sdrP70pz+JQvirX/1K1jdq1qwpn5nb2qfWlkW+s88+O0UuuvjilOvTv3lwuXKqXLmD 5X2rVq1ki96g5bnnnk35XpwQCimiVDQhxZIlS+zdWfHvf/9b1kO+/PJL9fkXX8i6yGeff6a2vLel WN5T7xULr5HXXntNdIl169ZllLvuGidKIKu9NLYf+D0uDgjlSqO0U0AKutu4wG9j+z0uDgjlSqMY PrZt3aYmT54s3X6cSKF1hlzY/0gRQU+Bk06/fv3U//7v/8aGFP/5z3+SugpKKuD1L3/5S9FREN6b W4T/ohXaOCIcUtQqvE7BjcQvom7durEhBTjttNNki58FsHuEbLOPF154QX2zO55+quGQIgJFs1ev XqL9M0OICyl27Nghjd2xY0dxwgF242MTOfXUU9P2A/5PJqlTp4466aST1LHHHpsm5Y8pr+YW+F6n X2keQKcwrYOFRPXq1WNDii1btiR7Cg0sqiZq164t20ykyBelghRHHHFEYHNwUDz99NPqvvvuU+XK HRIbUqxd+6rYKkzYpPjjH/8oPUkmUtxzzz3yn2yZMWOGrG/woC1dujRFMMWXClJgDi40KQ499FC1 fPlyGaNZis4Xb775ppowYYIqatZMde3a1f44EPAw14omtg3QvXuPlGOy9RQQRa+zxA2hkILh48UX X7R3hwpuau/eveXJ27Bhg/2xb/A7s2bNEhK7eou9unatatiwobzWpKCxTc/u5s2by6Ic57377ruT sm3bNuvX4oNwSFGzZsF7itWrVwvx6Cm8vIZyAZM2eglu+Ax7Lnj11VelsY844sgkKbLB7inijFCu lIWlQpNC47jjjlPvv/++vTsQWDTDCwq3fxesfXWt6te3n707I4466ih7V2wRCil48gpNClYtEZ44 V1KEhVfXvuqbFMdVrWrvii1CIUXVatUKTgrd/br2FKySmuICdAp8MK68smNy+NCKpxbM8jpI6A9/ +ENS4jKDyoS8SPHII4/I9EiDP+mXFPgEcIMGDhxkf+QJ80a7kAI88cQT9q68IMNHv0RPoUlhT0mZ fezatUsdd1xqTzF69O0p7+OEwKT43e9+px5/fL4aOfJWCRIGNJQfUuBH8Nlnn8lrfA1Zhg4K154i TLz66lr105/+VP36178WD22QiRTbtm31rdTi5T3/8cfV/PmPq8eRx4u38x9XV111lerUqZOEOBYS gUmhp54//PCDmGLBb3/7W1+kwFS9atXL4tHctetV6vXXX7cPyYlYkWLtvp5C48UXXkh5T7wpPhzH VT0uZb8LuPeFRGBSaM+nAw88UH3x+Reyj5U/P6QAgwcPlsWtp556yv7IE2EOH2EBi2a7tu3Uc889 l0zCMm3atJRjTjnlFDVz5kOqqqVo/vW6v6orrrhCndP8HNWgQQPVoH591aBBfdWuOE0Dw+yIG0ao G264QWTuvLlqzpzH5FyFRmBSsOSLN9OkSZOT+44KOCV94403xJqo4x6GDBkiy9BeCEvRDBP0FNg9 GD60TtG/fz/5fwj7eADefvttCQ4yQaBQXBGYFPgw0kCdO3cWAxDwq1Ngz2eo4XvkfDCHD3wQvBDH ngJz++VXXKE2btyYJEXToiLVtGmRKmraVBUVNRUL59SpU8QSu3DhU6IPFFoncEVgUqxatUrdN2mS PNmseQC/pAAoS5dccol0nTYWL15s70pD+fLlZYyOA6ZOmyY9Rc0aNT2Jih/If7WdQgfaoBtojTsI KQDKaqZ5OumPcuHoY46xd5UY0B+YReXCps2b03SKOCMwKTIBUvhdj+DmmENBJvECOsVBB/1FfieT MCNq165dRsEDe+zYsZ7y0MyZosy99NJLaWJj/Pjx6uGHH7Z3p4EMOjjOlBZ4t4AHzPk4DUmYnR/o IScbcpHiH//4hxohGvmIhHY+IvH6hhEj5Lu8ZssxI0bcIK/R7BPbBqLp4w1FI9lkzEdsUtSvX1/V b9BA1a/fQGwUDHc44uAxlphlJK6BYKC4wrsFPMCf1eDm+B0+ONYLuT73gv4uja5Rp27iCa1Xr15y H0oyi2I0IIBoixctFiVaQ/9W+/btk/v8wJxFbd+xXbVu3Vp6UXo4E/rcLnjuuZX2rlCQdwt89913 MoMA3ECCbfwgV6Pn+twLKH36CdbQ74uaFqXtGzpsqLxHecZL3P4eT3e79u2S+/zAJAX35LzzzpOc FI0bN047Dh/PdevXy9YUZmXPPPOMmjJ1qpo6ZYqaOnWqvJ4ydYq8LzTyb4FivPf++4EaMtexuT6P O0xS7Ni+Q0IGmbK2bdMm5bg4I5QWCNKQuY7N9bkXMP/Sg33//ff2R5EhZfjYvkP17NFTvfLKK6pN 27Ypx+GY1KVLlzRhuGLIqVatmkTCZ5JCI/8WMBCkIXMdm+tzL/DdI488MuU3WLZmH1Nocx8+nyNG jJD3ONBiVLOHD5bWdZCPX+DI2xRp2lQUzkqVKon7/8EHH6zGjBmrxowdI+55RLthGY4j8m8BA0Ea MtexuT73gv6u+Rt16taVrdm4KJqM96wvAEjxzjvvpCiaPXokHHDH3313cl++2Lx5U9nw4QWOZRpn Cq7sOOMiuX6Lz8MU3ORIXsITzXumjwhPNtFomKdZCe3br6/q16+vpBq6//77k9eOtTIXEqRIHT7i DO8W8Alupl8wZhIxlUn4nVwBu0HOtX3HDjE/4/fA4hWCWz5udFowSmFhJcJt2vTpItOnTSuW6apP nz6StGzYsGHyWgvjP+P7nDlz7NOmgbACW6eIM/zfYQ8EaShXRHmuXCDkwDZeQSBTxo0bJ5ZSLK3E rSBff/11ynfihlDucBQNxRAzceLESM7lFwMHDkwjBbMPjFUIs45bRo6UNZIGDRvKvjffeEPde++9 Bc9w54JQ7nAUDcU5WLuI4lx+oYOTGPK08W5vBosmOkmbtqmKZhgWzUIhlDscRUPpc0RxLr+AFCQz Q8fQy/l79+4jBfoMPcmypcvSdAqceZnxsDzw1ttvq7fffksE/YN4UQKNSFdgy4MPPpjyO4VAKHc4 iobiHFriAkhBWKD28cD+8J+9e5Of43FFj1Cvbl3Jj1VaEModjrKhojxXLkCKwUMGCxl+/PFH8cQy LZr4m9BTLF22THXr3i3luyeeeGIK0RGd6SabYHTTaZ0LiVDusGtDcUNzgRyTOK+6niuXL2gQQAoz sPqOsWPTGjqb0IvEFW53uBiuDeUHnIOpneu5+H5YydIhhW5kLxfBZcuWyjlLC9zucDFcG8oPOAfd seu5zj//fCmARxBPLmfhXNA9BZ7ZXqQg4Yq59hJ3uN3hYrg2lB/oDLeu5xo0KFi4ohf89xTLynqK QiLKc+UCpJg0aZIYqcBXX34pU1RTdu/eXdZTFAr4NCKu59K/Q5DxIh8hBV6wFU1mIdgX1q1bq9at XavGj79b3XXXXerKK6+UXg4rJkINjwcfeijlt6IEPidecLvDxXBtKD8gNwXlGFzPRUpCfgdxrXum hw+uDZ9Pfm/v3n0zKYxNxLm0bNkybfjAiQbPcUIKcb9D3njjTfXDnj3iJPT117tSjo8Sbne4GEEa ijgJfBVwew8CnGJwsA1yrkKjqKgoqWiChL1in/EKUgCGGJsUGlu3blVbNm9RWzZvlhSMidcJ2Vz8 XrZbNsv/10NVIRHKHfbbUBdffLF028ReUibJSzmzMXjIEKmH7vdcUaBVq/Mk0JqZDFPciy+6WO21 SEHUOa532UgRR4Ryh/02FFY8QPYX8kVu3hSstwB+zxUFmhU1k+j5nTt3ynt7+EC/YJk8U0/R4twW Ej6pa4hdeOGF6sILLpDYU96z+NetazfxP6lUuZKqVLmyqlwpIYVGKHfYb0MxVhJmzxTtlVdW2R97 4qmFT0kD+D1XFCAXp6lodrnqKoku18LqaY0aNdRf/vIXSVqCDtK7V28JEmLYiCtCucN+G+rb774T d3eeHNzagoAbzFPn91xRoFmzZrIeYRrB8Cg3BWTqKeKMUO6w34biOCK18H0kdA5l8447xkrKxVzr HzxtVPjxe64o0KxZkdQYxZXQC488MruMFNlAviwaFmBqpkSTxm9+8xvjyHSQEsmuGljSgBRcj74m egbKNYh8sztZuoGeAttEaUEodzhIQ+mx1LYR8MQx18+FIOcqNNApuG4NwihRoCEBQikGdAuyB/75 z39O6hpHHXVkKAtyhUIodzhIQ+knS0uzoiJVs2YNmdbVqXOamIS9EORchQY6hU0KE9pOMXr0aPW3 v/0t5bMJEyamvI8TQrnDQRrKPlanQn7ppYSbPclIvWCTKirhCScu1BTsLV6kID0C/4mZx8Ozcuex 4NhcohPEFxL+W9MD3DS/yHVsLlJ4Qc8CdDkFQGHXFStWiE4CHnn0EdmSqExDJxTR1/bRRx/JtBkQ JwJ0iB/DH9+lDOZjVsyHTYrZs2eLMw3L9bbXd754bE5hC9UC7xbyiVwNbSLXsS6k+MPvfy8h/CYp brzxRjVlytQkKZYsXiKNunTpvtqm2qhmXhsmZ7DX8LnMBZsU11xzjWxbtGiR1lM0btJYjFfntmgh JSCwZ2QT1muYrfEa/aTQ8G4hn8jV0CZyHetCCsL5bh89Wp5QDWpr9OjRM7kyyIynW/fu6sLibMEA 5ZD66LVP2UemU2rXlvdBSUGCN4SlckIRiWFl+GDayn7sM6yY6llYHOHdQj6Rq6FN5DqW5CH/LdBD TssWLdSskIaPKODdQj5AbAMZX/yikKRYunSZJJJHJ9AwX5cUGD72K1KQfhgt3C8KSQp+mzgMrVOs WbNGFt+I4tI6BeO8nlFomO725m8huSytfpBJp4gzvFvIB95/730ZO/2ikKSAAAA/BwAp7NkHNgNg lnfKpGjqqWYQUjQ5u4n0mghE1EnUWLdBbykt8G4hH0Bxq1zZ/3KufgKzSS5S2MeHJZjg2bZu00ZI 0qhhQ1WtajXVqnVr1aZNazVx4gQ19o471AMzZqgHZjygZjwwQ8144IGUa7NnHyyDA3oKaqRoQFA9 u4kjnEnxfkBSuIKGK0kwa2Cll/zauOGZ+MtBB6W8hxSjRycqDdrJWUl/xFDX/JzmUsOjQ4cOElU/ cQIyQcpkyntDsIqyLTSc7zCK5v5EChP2sIkXlgndU5xQq5bakEdtk0zAe63QcL7DUZGC8g9IaSMF QwfXbJMCPYecGwi6D4FO2cT0Z73o4n32lULB+Q6//340wwe+jozFsSJFxUSeLH1NmUgBIMbKlanF W/KpihQVnO+wJkWhU/ZUrlJFEoDEihSVEtn0SJoGmHHYCiwmarbMSHiNIjtgwADrl+IF5zscpaIZ N88rfCTMniIb6CledyjFHTW8/40PRDV8aORqgChh6xTZQM5wv7nL4wDnO0xu7ihIYXbJcYFf8z55 Ov1WOYgDnO9wFLMPFpbw6dyz5wdnUmACZyWWOmbUA3EBPUDjJk1SFE1bp8CgxRbH4xrVa8h7Mv7G GW53OMKeAksnTjSupACUhQS6rmq+0NeinXvs2Yf+nO3OnTuS+4l/8ao5VtJwvsNkczvhhMTaQaGx cdMm57JLOrMv4prqiN/QpaiAnQTFJIWNRx99VM2cNUtkFjJzlrr22qGqU6fOkiapR/ceql27tuK1 ZUq+Oa+C6DTpVxsQkAJzbSFB4/GnKAFFzEhcYDe27RXlRYp8QfBRoeF8tShQ5557rr07VFCfDJ1i zeo1zqSgGNz4cePU+PHjxKroAlNnALbi6UWKww8/Qr5rysknnyw9IQ9Zxys7JqTjlWIEuxK5sqPz //eD9KsNCELjcS/zg88++0x9+umn8h0/2e81cH4l3P+SSy91vimZGihf6N+iLgiAFDfdfLO6+eab ZMvnLITpLb6hmK0pDV7oeuUucL5DmG/99hT4FRAgM2PGg+r444+3P84JSkO6kiJM0Njiy2k4CgNm Sy+8+IJ6dc2a5HGlCc5X+1wAUmDsQdEjgbldfc8P1qxeHTtS+IHf4+IC56t9+eWXfJPi888/l2p6 eFjjk+AX6BTM8xl340aKt958S72ZwzC135HiuZUrfZNi1sOz1D0TJ0oMA5ntgZ/65pCCoSMMRTNM 0Nhmzgyixs4555ykENMxffp0+ZztokWLJLjIT8xsSSJSUmA0wnGWDC86TxRTTXwrvRQvSEGsKTc3 bqQwt152CjOgmJnU7t0ll+gsF5xJwZNCQVY/+FnxHBvbhl0WqpFVzDUT1qxZnVb0tSRBYxNkrKsj e5HCBlbg6jWqqxo1qovJnf/lJWTZe+CBB9Szzz5r/1ToSL/agHj88ceTziR+Qa9gh+KTazIXVq9e owYNGmjvLjHYjW2TgqV1YB/nAnJjFRrOV7vyueeS+kEuYJnkBnkJT1420FNgC+jbt4/ktyAEj60W gngxSH3yySfqgw8+sL8eOuzGtknBwtvw4cPTjnNB6SDFypXq8ssvt3dnhdcNmjdvvgQEZwPRXtrn kTUAm1AlISZsUmTrKQiLIEYVIa5k748/ylZkb+qWY3iYKC6DBIlDyRfZW8gnHnroIanQ6weUSLJv kIn58+Z5ksILpAi44YYbpLapTh/QvXt32Z511lnJ4/T5a9WqldyHAkzRN+0+z+wI2GsZucC0mUrI WrB0srzOOdlqKXTMR5Cg6EzI3kI+gU7h1+cQS58XKfAzyJcUNKp+evXqJ6Swn2he9+rVKyVmAycY 0jLPmDFD3kMKTOv2Wka+yPafvWZcJYnMVxsA3Ei/pGDdI9sNAl27ds2bFK5ADzGBXQEJA17/OY5w vtogpCDtstcNQlksKVIUEl7/OY5wvtogpMjVU1BeMV9S4M20ePESEQ3iRCjnuGnjpuS+jRs3qY2b NqakawwL/DedAU/rEiyDs+3Xv78aMGCglLxaumyp/dVYIXsL+UQQUlAQxYsUVO3JlxQob0R5m/YO FEimhKZuwPnZZ+oUVAjg2JkzZ8p7VnAJLva61kywj/eafbh6fRUSwf51BgQhhe4pGCZGjhyppk6d miJY9vIlBRFXWPvM1EbaF9O0nuoGMklBqQnc46gwALTrflBF0278Aw44QIrA2PsBdUo5L3aHa6+9 VvXs0UNd3OFiSaNgSpcuXUQx1oLJv9BIv9qACEIKcFqdOuJdRM7M05Ki99XxXCCbNHmy3OCwBGKQ j4psv7yGDFwDU8m6deuIszDm6Lp16qq6deokpC7burJ2Y5eA4jdNMKvJtN8FjxopDQoF56sNSgoX QIpBA90Lw2EA2rZtW1ZhbQZ7hy0kOqEUFMVYKDlFVjsTduPT02Bhtfe7oIwUFiZPniy+GHFBLlJk 0ynoDTGw4Z5HRDnCa1NI/XjHHXeosXeMFaek8Xffre65996Cx+wCZ1L06tVb9IFC4vXXX5PEHtTd mjt3rv1xicEmBWsd5vBEwDH3htckOaFU1pSpU8RXNc5wJgWFTaigV0jggU2XfsEFFxSEFPk2kkkA L+T6PG5wvtrevXsVnBR0n6Nuu03VP6t+QUiRDz7++KNkT0GQjhcKTQrWlMKE89UyTSo0KbBvLF60 WJx54kIKvY6DlDQpwobz1ZJIpNCk0BgxYkRsSPHee1vSfD9ofBbTdB5tprS4GrKfLUYxtvXr10/5 XtzgTAoKpRWaFH//+99leZ6MMXEhBauytscZRfNM4H3OSqgd/4lfKuZ31yXuQsGZFL0i0ClQNEHf vn2dSIHpmikds4Sf/vQA++NAQPHVwwf1UoHpowEwXpF9J5dllERoEB9/Vy1E0ZnvtSxfvtz+euhw JkXvXr0kq20hASl0A7iQgui0Rx59VF6b9T7yAaSgp0Df0aQYODDVf5SeDXuEtleEgbDqhnjBmRS9 IpiSagwbNiwtSWkQYF3EPD1u/Li0Lj0oIAU9ADkudNG4gZa1FTLgoFy+fPmU/fRWKM1Xde0qgh9J 16sSr4kXaVpUJJ+zdoNQFwSHIcTl//tFKKRgMSkK9OvXN1mXq6ShewoTVBpmaXzs2DHqtttukyQm LPyR0H7M2LHSoHxuZ+qNG5xJQWzounXr7N2h4vrrr1dHHXWU+D3iKBwGCF90QSZSkJ3GFB1Zz6Jb aYIzKYi4LrTyQ91vvXXRKRYseFKVK1dOuueipolM//nCVDQvvzyhU2SDPXzEHc6kOO3U09Tq1atz xkdSJJ4biINsUODQyzoCeoALKcCK5W6JSjTMnuKyMlKkgrm5n+GDiHNA5R6MOrYvgh+49hRhAlIw tcWRhtpggOo/BFGzpegLDjF4WGGw0nEecbVNmHAmBT2FH1LYYYL5AFK4TiXDQiadYvDgIcnXGK0q Vqgo8Z8olk8sWKCeWPCEGjdunO/Y25KCMylOPbW2L1LwhGDFI5yP3kVX//MDzMkE5vBU6kCfkgbT W1IP0Bt89VUi89zQoUOTn+PIw3QVEtvDB8nnuRcI/pqZhCK+eL/bUioixPzOPniyiP3kqXn++efF eRZgCkbf8IJeY6CnIE9FHIDBjgpC+FBmMl6xYEaCdshvk8IFeK0XGs6kYPbhhxRM0Xr26iWv75l4 jzjvarRu3cozzyP6R/Xq1dUvf/Wr2KQzhhT0FIQlaFKYSjSkwHhFr7jfkaJq1aq+SGGCkDwb9mJS JtBTxIUUGNGYFa1dty7pIvfAA/ssu6x54C0G7JwarJKuXbdWej2+Tw3z6fffL3L/9OnFUvz+/ulS Oirx+v5krdNCwpkUDB8ffpAoYp8L8+fNlwRopAzUQu0sXN3ZjxnbC3EiBT2F7S9KcXqEasgY2/hP pGlgOn3LLbckJQo3fReEQgq/Xdqll14q6wSYxR9/fL444mq59957JYWRF4iR0AYjW9BV6KZr1qwp vgy8RsiQ07hxI1WlShXVuFHiNULQEJ+ZwhONjkBqBbam4HZIhD1VA4kPoVy1TYpssHuKuMOZFNj3 N/icJtJtrnpllb07CeIvcoGpHiZqclWYwrI6y89VqlSWLQJZ2FavfnzKvvnz54vpGY/pp59+Wt09 /m5xgMEznc/0MayqXn311WrOnDniz3HhhRcJMbWQ2CwXKOa735GCnoLlYz+gp1j1yiv27iT8kCIb xowZK5HjRJlp0LigQYN9nk56n44eY8qIP4PpUqcz6BLG6AruzX5HCqyTfuMiaRCcR7LBhRQor336 9BHRuPnmm+U9Ww093Oj1FIik92kD2+GHHy7vg5LCHtJsgWz8R1I/xhnOpNBPnh9wrOvwEWeYOS6+ /uor8UL/8KOP0noKXXY7rvDfolkQnBSF6SnordA3zOwwep/Zk/Fa55fSCGtNwowfYZqajRT5Ytz4 8Vmz3+ipahhTVv8tmgVBSfFKgXqKs89uKsqgWQ+D8zEU6BxWgM/Zh4cTQKdAWcaEbn4Pr6qgw0dq T/G1hP3h/xEWKUAmUuD2h6EMb/cwKhz7b9EsCE4K954i041p0LChbIli19DXZpICKyQgBBFACvJr 6/dAfy8oKQhO1tA9xUcfpvcUrJFgIs8kXIc5peY1+/X7TP+d/BrarG5n6MsH/ls0C4KQAoMOHs8o fxiq+g8YoIYNHSavhw0bmvK0ZgLKoam4acFxhh7A3p9LUPzIXUEKAlzmMDrRYHzG9JkeRa5t6DB5 CpmCmmKHG1L2SX/GEj9rIU8uXCikJFJ93dq1Mi2ePHlSyvdcwVrSkiWJDD5Nmza1Pw4M/y2aBdxA vyBzPwafTEK6Q8QLVM4hr3fYoPcyhet57LE5ydcIWQD1axb2Djv0MLFxZPodfRw9BxHlem2ktMB/ i2ZBEFK4AlLExcxNsLNNikz46KMPJa92aYJzi0ZBCp5STMzlDilXRooI4NyiUZCCczAmH3PM0bEi BRnwcLXzWuD68MOPCk4K8n3qlVrM8q5wblFXUvixhnKO5194QR1+2OGxIgU9BQt5JGEDJDdjSoj/ B34mrMcMGDhAlOvp0+8XVzxqfWzZHG4aZpboO3RITEWxMLvCrUVDIIUfoLxNmTxF/e53v5NqfXEA ayxHHnmkzF40KbRzMvjk44/VfffdJyvCdk9BUPYzy56RBblnnlmmnnX0JmOqyswOEobRHs6/EMZF +AVJQv71r3/Zu0sEXAvOMbt2705aQ01SkNSEZXamoDYpAAtlIrt2qV272CYEP8ytJGTbmkjKJq+3 bVXbtm5Vq1f/I6PFkhyiCOfSSedd4NyiUZACgww2Bc4VxvDh5frnF0VFTdMUzVRSfKyWLVum/v73 VzKSIl9kIgVTXnw+rr56kPQYrnBu0ShIoc/BNpMrn19goNLJylzH3gb164tTEL+TafggBTQ9SKae Al8OzOi2QH62GOJ4jfBaC8FQmUiByb5//wFiYAsDzi0aFSm0uAKrKZ7lrj0OTjn4YVCpWJPCvE5N PHo4thASIR7Wr/+JX+ALgrJJ+GaQytDZ4HyXw2gov8inwG0mhPE7kr+7WjXxMsfzKxvoKRYsWGDv DhWTJk2SIQSTfLt27eyPA8O5RaMgBauP77zzTiTn8gtI4WWf0IiCFEyDteSKofED57scRUNxDlY3 2bp0jzj3hjUUHX88vUQNCQG0C8iYQNEsNClMuP4v4PwLfi9CG6nw3A6aqV+fw++5okC146tJT0Hx XeqXEc5IOKApxJGOGnWrWBlRkJGtn261f8oZ+reRMO6R8y/4vQhS+KDgXXfdderll18WXwO/wOG3 dZvWvs8VBY6vVk18P/F1gBRYNs3Zhx5aeAjMngJzdNgrvdwfLWGU3nS+y34bCssePQQ3EaUon0Qn fs8VBZgu8p+IjsPxBVJgeNLA8org32APH8wUJJ6kc2fpRVqe11JiTTIJcTITJk5QEyZOVBMnZDZM MZv56uuvJB7l9Q2JmZALnO9ykIaie8PgQ4mEICBvFBLkXIUG12IqmpDCTIeszfFYPW1S5Isnn1yQ tlZEXEnFihXFx4PeGBdAVzjfZb8NRaYb6mkRREOkeRBwDmwCfs8VBbgWwgGxIKJoQgozmw+kIBMf rnI2KTZt3iT/J2jODmqM2KTgPKwg4wWWq8SnXzj/gt+LwBqHwQg3N9zH5sydKzkYWOSijJQX4qho ci0MFxiO0ClQOAkq1vDqKbyGTu2Rjik+k2QCxjHSKZLMNQwvL+e77Leh6P5vvXWkmH7xoFr18j6v buIgvIqbcA4tcQHXgmJH1WJIQbA0jaMFc3q7dm3luNNPryfkYUYyZPCQ0BOP0Hs8+NCD4voXxm87 3+WwGspPvfSwzhUGuBamnHPnzbM/SgHR6RiwCgnzodHhkC5wvstBGsq8eIShg8UcXODRM3QsRjYE OVehwbXY43smZBo+4g7nuxykoTg24ViSKgkX/2HS5XrBJpWXML6SfoC1iUaNGorS16hho+LXiTwS DRs1ktwYQ4YMUTcb+SNuuTmxfeCBGbKuQIISbCum+P3fkKKQQMnlHPzPsODvn3nA780BuY51Wc7W v82ahAaub0Dnydqxc6csab/08svy9NLYLGqx5ftsSUGAgY3XxIGQTjmT2Jnx8MRiaggR0TNMgpLt p16900XwjgoTOB2huOeqFBAE3q3kA7ka2kSuY11JwaKZSYprr7lGbAd28jSIoUEdUmBeG5nvQJAI MSK5zIx/j81JVDYwM+ZphJkLlEx6JgEpyuMK71bygVwNbSLXsS6k4OYjOMea+7AoMvW1j9M2BRKo k6XGdIThqUcILfALSGFOSQlJIGKsaoZleiyPM2fNEtuGvh5bmNmgY7Vs2VL16N5DhrmTTz7J/qmC wLuVfCBXQ5vIdWyusME4A1KYXlHoIgCv77DQvTinRtiwc5p6t5IP5GpoE7mOzfW5F0hBhJgBzHPm zBXLYRSAFGbw7/jxd0uayBYtzk05Dixc+GTyejNJtmvWwdGFRv6tUIwgDZnr2Fyfe4HvEtBr6hS1 T60tT6rWKQj81WPvouKa6ugUep/5WwhGKb+wewqqMALSP5krlyiFtsNvJvBbX375haxtYPHduWNn TstvWMi/FYoRpCFzHZvrcy/o75qkYMwGeqla6wi4zlNaGnS8MjGLMM+ta4oEIQWJ6G8fPVqEJKtn n91EGrFWzVqiDPJaS9yRfysUI0hD6ifQS7xgHxtEWHthiwc2ugvvcaJFuWXLZyxeYd/AQ4vXpDgg vzalnLpedVVCuiKJ934Qpk4RFbxbwQe4mVHB9Vx6XYAtazBYJLOJXpjSQjfOjGHWrJlq1syZvq9l vyRFLitkmPDbEFHAvhamuC+++KJ4XyFrVq8WGwk6BYt9LJMjmeI24gbnu4z1rtAwh4G4gGsxGxhF 00TLFi1ly3Bl6iaYpIPoKiUB57scBSl0KFzcSEFGXp062iYFs4+//e1vGa950MBBaubMmeKJhjk9 k+AI/PZbb4sDDVNU7ZgbBdKvOCDCiF3MBW4s081MN7ikoK+FyHNgk6Jtu7ayDVOn6N69MMYrG053 GbNuFKTQiBspmP7qtRObFPQU57c/P9RrHj16tL2rIHC64v2dFCZsUuh8lpkK006bPl1t2LBBbdjw upo9e7Z6+OHZarYW3s+eLVWh8eRGWO3Vr6OA013etn17JKQIS9Gkis+ra9eqZuc0kzQBLuBa+C3t i9m+fXvJWXHCCbXEvkG6RcpHcNzZZ58trxHqtscdTnf5k08/jYQU5LkErqTAl4HGwgeBhnMB10Ix +lx+DLk+jyOc7jIGnShIQQOQdMyVFHqmhP0gaJiBDVvRzAaK0pQ2ON3lqHoKDVdS6FVMloozpTMO Aq4Ft/oRw70Thbhec0nA6YpLGynChH0thC1QO9UUZgscx3b6tOnigl8I+HEgDgKnuxwVKcJSNM3f yTQrCAJ+45JLLlXnF9shKleunPa5udW46667Ut7HEXndZe3K9umnn/gmBeM4i1DEOvpJ9mGCoGSi sewbHBR+/Bj8Ql8L+auAfR/4XK++2qAMAzoSIQ70KGxNOeLwI2R1lhxW119/vTgSI/nUh88H6Vcc AJ8EIMXRRx+tqlSurNa/9lraU+UHO3fsyHiDSwp272Xfh2w9hQs0AQsNpytmjPQbb0B2t/IVKsiM 5dxz013U/CDMG+wK+1oykYL0yPZx/H88wVavXi3rG+TsQLB3kKVnO3kzt5M7c7t4nWMLkvfbtzvP mPzC6S5v2fKexEb4hU7q4beepwaGIcS+wSUJ+1ogBW53OgiYz3mvtwjDLlH3cYfTXX7/vfd9k4Jp IE8CVsWlS5baH2cFy8xYIIHdECUJe/igVgkFbE1Bj+LzVateEZ+KuKSQzgWnu7xp0ybf6QdRoAhU GTCgv2p+bnPZR5pi9Au61GzAMQXz8UsvvRQ7UoBcxqs4XbNfOF0xY6HfnoLEopS/pscgwMUEmea8 gJPtgicWlNgNzlSJkGsh0CjXNeX6PI5wuuJ/vvOOb1LogBOI8cqq1OJyrEXk8nL+Yc8PsbrBfq/F 73FxgtMVr1u7zjcpAIG2WqjygzaN9xJu8CfUOkHqZWQDClycbrB9LSiaI4rroCF8bm7JpEdII4lL 4g6nu0xmuCCkYEGKmAtiO23RmroX+DyT4K5PtjrbCIRQs5OVUS9BL/KSfv37SWypuc++1kxTUnOr gV8nZS/jDO9WyAFyWAUhxcE5lqvtG2iDoSeToOVDOLYos2xxUiF6nCeUqTDTwQ4dOkjCMHSBHTt2 iHBOtvXq1ZMtDi1zHntMXXLJJeqeeyaqqVOnqClTpqopU6dKykcy7CItW56Xcm2ZSME5M/0nZiJ8 lkn0dWHBNfdDJNflfr9Iv+IAWLdubSBSlCt3sL0rBZluoB9AAoJ4UAi1T6QuwDJmzJjkcZiKgano 0lMAErQBeix6s3vuuSd5jB9kIgXXk+9/yoRSYdEMSopcPQVlEPLBv3/4QfwlGSrISgPIQMd709uc stdUSTYrJfP6l7/8VbLIK9V39LAUBDYptJd3pt8haVrnLl1U586dVZcunVXnzl1k27ZtG7nm6jVq JPbJ/sT2oosuEuJHgfQrDoC169ZJHgU/4KnJRQoWvkorIMXYMWPV2LFj1J133ilkoA6I3jJ9pwRE VJHjLnAiBT0F/od+kav7a9UqdZz+b0CmniLucLpieor2559v786KXD1FhQoV7F2lHvsdKbBT+B0+ MF7lIoVL18oYzlRRK5o4s9i6AWO5vU+/Z+wGzCzsY1wQ1u9ECacrxk7hlxRMC/XNzibnnZcfKfC3 1Ev4jOdg+PDhsjXLJ2ml01zuJzseQOkDdYuDe8hyFwRk1Xt49sPJ+A0y/IP9jhTEOfolhSsInrFJ lE2wmLJlsQqjFv6TCLkotC9lUdOmkmeCz9mSj4It2v+YMWPVgQceKLGgkybdJymHVq9ZI7JmzWqJ KN+4aVPK9fGb+EggJFZnJsVrrkPvR1q1zo/4UcKJFNgBIiPF6xtkUS0TtHsfxjSyxrA1hQBdGoSn majvbEKhV7aDrh6krh50tdTi0MJ0lriRenXrJUlnAlKYIEUD6zn2cQDlHCMbGW/ooXhNRryBgwaJ k6+WGTNmSKpnEtCS5uCTj7OXpQoT6VccAKtXr4mOFMU9RRyAy4B9LTYpdKY/+zgXXH7FFfaugsDp ikksVmhS4Gvx9FNPy5NTIyaBNX5IwXoMObbs41wwrNgiW2g4XXEUpCBXA2M9PhVxmbJqUqCP6CHN JgWe3MAmxYQJE2TFV2e8MYXhZsmSJWr69GkShIxMnzZNfD3vufdeud9RwJkUYZVSzgZSDOLaRgbb k2Ji8TR7Cr2FFKayizBN1lstS5e6BTZHAWdS4CtQSOz87DNJro4iRixEHKBJocULuT6PI5yuOIrh Q4NcmHEjhR/4PS5OcLpiSEHaoUKCVMbDhl0n07YTY0QKHHj8YL8kRdAYjqBA0SSDC5r8SSe56RRM E6kQiPfTgAED7I99wxw+TjvtNNmHEkzaZ1Iksq1YqZKEM3AMvh1k5MXYt3v3vjKVcYUzKTDAFBLU 4DqneXMpzHbiifn3FDgH4/GEaf6KK69Q/Qf0tw/xDUhRvnx5ea1JYfcI2WYfUaUocoEzKW6//XZ7 d0GAe51rT6EbaMCAgap/CD3FYYcdlpUU9Eq4Ctr7weRJk2Rq2q9fP9WrZy+pN8J7ZOQtI1XrVq1k cZAhE7n22mtFVq3aV6GxkEi/4gCAFPhARgGSg8VJ0cTUbcKuVZKtp3CBTkBfaDhd8ZQpUwquU7C+ Qi4JApT9BjMXGuvXr08jhd34rH3cdPNNaftdcO+9wfxG84XTFQ8bNrTgpGDFkbwSs2c/7GS8okJg 5cqVREiL4JKTkp4CYxXdebbhI1tPQSpFUk3irb1z585AYlfwKRScSPHX6/7qmxQEwrRr316e+iC6 AbMPLIGsJZwY4HuZgFkaz2/EJXG6OXxoUrAUT2+mZyWYv7WPJsdPmHC36tOnj2el5rjAiRSMcX5J wc3hCenarWtKATa/ID2hq04RVm6ojRs3yv8hL2au2ZfdU5QGOF0xBWb9kgLoZKP5gMp9rj1FWIAU tk6RDfn+35KE0xUPGxpcpwg6LkKGn//iFzKExMWiiVMPRjBsHzoRSzbsf6QYNtR3JJUea7mZOhqL MZgCs16AFAlFc7aTohkmWN5GPxk5cqTq26+f7NP/TQuzD4Y79h9bpYpYPHEsnjx5sv1zsYMTKYYO 9T983HzzLWKAAdpZFnTu1NmTGJBBEyouPQUKJBZNegoMUMDuEfD13Lv3P2n7dantOMOJFEF0CtYE AF7ORUVFKZ/lygYDIEdcSEFPwezi8ssvV/fdd5/ssxuf4Y6a6Pb+r3d9rSZOnKBuueUWMfxNmDhR fsdL6FnxD+UeRAFnUmhX9lxA8yfnE6ue27ZtFROwhp7WeSFOFk1IQcolE3bjE/fJ9JNhJiyY9U0L CWdSLFy40N6dEaQH5AZRF8MWumLc74m3zAZiKbjxVY49VuTYY6skpMqxUk8cO0GTxk3Ueee1TKQK KE4XQP5skpJmExaoKEHNiiYyY0ZCEu9niPVy/frXJP/na6+tl2RueH23bbsvngTYpMC4hTc2+oUJ PMr1ubHdcA773JwnKZx7/XqJbXnzrbdSfqtQcCIFCzlmGWkvQAqvuFO6R4w82UCWvBXPPqueffZZ tWJF8fbZZ9X999+vpk6dKhV6unXrLmM8+1isYnvoYYeJO1+Pnj1kfaJnzx6iBPK+c+dOctwpp5yi KlSsqGrXPkUaly0krX1KbVWxYkWxgGq9RosZZATYh0leC9HsTz31lJR20PvwSPebOA7Qm3715Vdq y3vvqffe25Ix91Yh4ESKYUOHhUaKPn37iAKXD3B4xdln7ty5Et8B9AzHtCdoJ1sz5QH5OcHs2Y/I VgdBBy2YR8AQivQ1114rcSLkwNiyeYukW8ZrTGTNGidLalRwI8Uw/6Qg2sqLFPQU+Y6ZjN36CSZV EmDpWe/TgBSYy01S8J4ufvYj+0hRsUKFtOEgH3BdUWXJDRNO//yaIdf4JgVduCcp+vTNaQgqbcCV n+GptMGJFGeecaZvUtx++23epOhbOkjhlQjWBrmr9jtS4BXklxSzH344Byn65E0KdIpGjRql+FvQ /aPsmcMAr3Xhew2UTpRKXfaBocQedvxAH49eg/A7KLrMuHjP62nTpqXZaOKIYP/cwln1z/JNCnQK lo6zwaWngBRPLXwqmX4A6EYyFU29Tyucuv4IDrWPPJIwDP22OB9W0CIxNok4BxUNbZ3isssuk1nI li1bJN0RVlHsNiRf27Z1qww5OPfu2rVb7d69W+3avVvt3hWts68TKYIMHxACTRytnEjrdu3ay1YL jeBFCuwJ+gkOS2gwtuSiIN8W18F7tvQoK1eulP+HMHvAjsJi2GuvvZZUaDX4nglyju/Yvj3U4SNf RTwoIiMF+Sup762F6VuLFi1ShCcjGzD2BHHOscE5qbMxy7iGPr37pF0DwlB08kmJnBZayAyMvYI8 Ftge7My5NikYNpo3by52jrBQOkhxpn9SuIKe4iQHF/9M2LF9h73LFxgK22YwXplgVZThwe4pIBwx LAghlx07dvQUSNqwYUPVoGFDUVyjgBMpzoiAFDzd5LE68A8HxmZBDFLY1Y3oScyhid6E3JxYUbGZ aMnXQBclnEgRRU+hk7ijiMbFnwJS6MbHTTAbduwIV6eICm6kOMN/tt18ASlYm0CbjwspmLHotQ8v UnzyySdlpCgEMBXjE3n66afHZuncTMeoScFQYQoLc9glWAF+buXKYnkusDtiScCJFLZyVUhcddVV sXHcJTi5bbvU2iTYH3788UchMcvrlSpVUm+//XYake2qSHGEU6syvy90sTSGD/1UxkXRHD9+fJp1 Fr8NE9hdUJAhhwkUZ9IYMByadUnsGiRamjVrppo3P0d169ZVpvVRwIkUZ555RmSK5llnneWkU9Cl 4yLHbMCO+wwKFE10hZYtWySHD5sUPDBvv/2W6ENhoVTYKerUrSvOI4UEdTxZ6qanOOnkk+2PAwFv rDAwePDV4t310osvZiUF6ynnnHOOql27dsp+AqEwZSMMNegYmYQqizZKBSmi1CmY4zdo0MDeXSIg jzeWSiyi2lus45VXJj9Ht+BzymZiPqeyj3auoTpRPqCaMS55UcCpVSEFCzmFBKZvnpALL7gg6U1V 0ujRo0eaRbNu3boiFKPBUQfvdXw/MYtTkejWkbeqUaNGpXwnrnAiRc2aNUXTLiRYIyFCnFgRW5MP AtYhTIujCwYNGiRrG3Xr1ZNFs2xg8cwePkoDnO4Oq4ybN2+2d3uCCKkgjiphKZogrEx+DB/oC0TE exmvmJLud6RgWvXNN9lXNjW++/a7pMMLS+gnnpgaM+EFDEUsLvHdxo0b2x+XCCAFVZdJTeRFCpyV 9ztSMF76wa6vd8k0jrxVIKinNKCn0IVaShpcByUridvQwyd6BF5VSOMmTSROFr2CmRP7CB5iS/af uMOJFEHGZh2IjHfUokWL7Y+zgqGGbhoPKkLo4gBIYWe5w/FGg+kkvhfUErV7CjLZxB3+WzUDjjnm aHtXTjAEfPbZTnt3VqBTcMOJJKOAbBwAKbBYUiqStEkghRTf75HekJ7RJgUkJ7Apm7DOw29pwduL LfEs2DaigBMp/NYR/fbbb9Sf//xn6VlIMnpcsd+kLoTiBVPRjNPwQcAPvZ8Om6RIiwaRXZSkhDA2 KVxQKkjhd/jAeEMI/tJliQz2ZnlmvI+o3JMNeCi1aHGu+HfGhRSYzFnTgKiaDGZP8f33e4QUxI3a pMD/k/+CRzklqRA8v7knzOZs4VyYynHiKRVhg1yoX6BoAnQKyh+ZQCnLhTj1FEyNe/XuLZH0WC/B 3Hlzk59jymbtA13IrvAcFwOcF5xIgX3fLyjkYhqPMomX426cSIFepOuma9ArdOrUSfJ6IQRfY8Wk R+EzLaUBTqTwO3wASNGhw8VqUXGqIire9OvXV5xR+vXtJ12ql4s/pLBJhBQ1ZRrYNLHVr4uKpN4W fg933XWnuuvOO4u3d4nd49FHHxHDki3kzsCkjsOtKeSwZMv1MRTWqlVT9ezVy77ENNBT6GQtpQn+ WzUDgpKCfA3ZQJwECUezAcvp8hXL1YoVy9Xy5SskEwzb4dcPlzQEvXr1kpwQkIwhiiGJrptrZIsw jteqVUuWzo+repyM+0wdGc/LV6igqlY9To5n5qC3pkBczNt85qciEqTAe7u0wX+rZkAQUpADymt4 gBQ8hfmgT9++sjUz4hxzzDGyNa+R5W6gVypZxWSqZyZz08f37NEjuc8P6GmwSxAkhJDAFVLExQob BP5bNQOCkOKMM87wzHrDUnO+pKDoGk+kWXiO14hpPdVDTqfiasU0mt5nHoMiGXSJG6MUq6eTJk8S 3Ydei+V+8nnha4EQxwER4w7/rZoBQUjB1CvX8MHTVVqBPqLx7XffyhIAiVSwxZggVAEnGlzrCr3C nC/8t2oGBCEFx5J8PRvo7vMlBQ4oOluMBoG7UcL0Vd3z/ffJKalNCrDzs51iudz47ka1ceO76t3i 1+9ufFfe688IRGb5He826oBEBf+tmgFBSeGlU+Ckmi8p8JCmJBO/ocH5sJaa10hvhVLKsjcgbxZO MWa5bD2cMBQEgdlTfL/nexk2brzxpoykyAdLli6xdxUM/ls1A4KSwgt0t/mSokWx27xpGNLFY83z akWzc6dOsoUUwEx4qnNguZCC/0FPgUnfJgUkrH9WffH0xlSOtZL0iqYQK6JfM0NiaPW7Ih0GvFsq B3I1tAn9BHqJFymYRtrHZxM9bWTRSm/1a6aVJCphqZubzs3G14P3CB7f5LwiFQHeXgiLcZirURZZ HSVlIt26CX6XGRa/QY/F79AzcS3sO6Z8efkterS4w3+rZgA3OSpwLhpDg0UnFDbMzDjFsi7AkjVi e0azMqk9qG3BNsJWkoZkEJ5mW7gWcoabsM/J9WXTKeIOp1aNmhR6/aSkwbX4SYlcRopiz+uwgUe0 fjpNUtjdd5TgWh6end0NTwNS+EkxHTeESopCQJ/DJkVJgmvBjI6ew9I5QxD7TGnatEjqs2NUw9L5 1ltvybrKf31y1ahIgRseW78VAwqNRE8xW1ZCIcU/Vq9OmX3geZXNToHSGnc4tWoUpNCIW0+hBVLg dmfmFcfJhpkH9g/bJxMnGz3TIQd4ndPqSHXm/v37y3RYCw6+zFRMiQpOrbo/k2Ky4ZUNKVJ6ij0J iyauAXZPkS+GDBls7yoYnFo1ClLoZWxXUqCYHlKunPzODTfcaH8cCPyGDlcA6aTYI3YL/Drs3KFE lL344ksye1m58nkxZbNIxhbJVskgqDHNBU6tGgUp9DlcSYGBSsN1XOda2rRpoypWrJAcPlIWxL79 TnoKVkXtngJrZRBg0MP/kwSwUQBnIqdWjYoUOnGJCylYi7h11Ch5KhnvXcC1UJSGsR9SUNdD92ZY M7GSagssFk28xghZJE00BV3iDqdWjYIU+FiwCupKiu/37JEFshtvvNHTe9wPNAEQ07XfBj0F6QpK G5xaNQpSaLiSIkxIT+HDeIWLoFesaVzh1KpRkILFK/1U6sp++YBunUUuxE9IgRe4FhKz4Z292yOC np6ijBQFgD5HGD0Fw1AY0D3F6WecIQomVktzSDEF/aJevbqqfft2EgKg40TiDKdWjYIUREmxxB0G KcIC10KOzCZNGotOQRRXij/F17vE+pqpp2hnpVqMI5xaNQpSaMSNFOTfYqGOWBB6CpMUX+/apQ78 4x9l5mGTgmGHmRBhBUxbyQYE8XWogS2cB1fFKONHnFp1fyYFax8akMLM/UWVYqoT06g2KfIFCdWi glOrRkEKzkFyELa6pFNJg2vB9kC8Ce4CkMIMZGL4uOiiixLksUiBQzGZ/HMJjjraFQGHHdJQRwWn Vo2KFHqra46WNLgWzNTNmhVJI0OKRYsWqVWrVsny+JdffSVxIxx35513Jr9Hb4KdJO5watUoSHF8 9eqqevXjYzd8EAbJzAJSTJgwQXoGkphUP766CDVbOY4QRtY7EDMEIc5watUoSKERt+ED62guy2im 4aM0wKlVoybFihUr7N0lAq7liSeesHenoYwUBQbnikKITCdmRDvC2EKWO47bsGFf2SeKvSx/5hm1 fDmyXD2zfLnoFkw1y0gREchRjbZP3giE69Bb/CYQAprZMs9ne8UVV6hJkyZLTXOCgsaPGy9BzePG jxMTOO/HjxunipoVyWu0fbbjxo8XZbGoWTMps1BUlNhSV1QDRVPnteBc5M/ULoR8Fx8JfV1jxoxJ +S9xhFOr8qejqoDnBU1Ok6S4uAGKswAi3rWZW3f9OqLMtAFotzccXvyCEpUm8IFgjYXrsXsKyEZ6 AoxWEBbyaOnSuYtYQh988EGJXp83b16KRAVnUsQBWANZ5DIXuvT7wVcn3NgWL16cXAxbUBzoTOMQ yYVo6PdBSEGiVRNElNO43J+wUg+UmPEqaPa1uJCipGHWWAeQQq/u2h5T1PjQwx5DIO8RothMwWCF W59uEzLwRAWnVi0jRQKQwnygzJ7CBotnGtu3bRcldcnSpWrpkqUSWb5UJPGeRTesuUMGD1FDBpc5 7pYqUGGYdY7f/ObXck8QIsXZklaSpxwh7xbm67jDqVXLSOGN0np/nK66tP7pqFBa74/TVZfWPx0V Suv9cbpqPX7acuihh0gGFpxDbKHkU8OGDUSYpzdo2FCEmlx4KtnSs2dPdc0110iO7mxCLi2mfnGw mZjYL0lhg2kWGd9swdKnX2/avFkWkkwhEJeGzSZjx46VmMyEdDBeJ4QaoTYxoxJSUestZu1DkUMP FWF/aUTpvOoYAZM7sSlMQxFtg9BSGlFGijKkoYwUZUjD/wOnE+zpuKIYdwAAAABJRU5ErkJggk== ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image007.gif Content-Transfer-Encoding: base64 Content-Type: image/gif R0lGODdhxwDOAXcAACH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACwAAAAAxwDOAYf////3 9/fm5t7FxcXOxc7v7+9ra2ve3t4pKSnW1tZza2utra1jY1q1tbV7e3ulpZyMjIyEe4SUlJSUnJS9 tb1SUkoxMSlCOkI6OjpCSkIhISFSUloQGRAQGUKtWrV7WrXm1hDmWhAICBCtWuattXN7WuZ7tXPm pb3mQr3mc73mEL3m1pTmWpTm1kLmWkK1WhkZWu/m1mvmWmuMWhkZWsUZWnu1GUpKGe+MGUpKGcVK 3lpK3hBKGXu13t5jYyFz3ua1lN4x3uZjreYx3q1jra1z3q0Z3nsZ3jEZGZyU5t5S3uaUlN5S3q2t 5nOtQntKrWtKrSF7Qnt75nOtEHt7EHsAAAC1Wkrmpe9KWu9KWpzmQu/mc+/mEO+MWkpKWsW13qUZ WpxK3ntK3jE6WhlKGZwQYxmU3qUQQhnm1r2ca3utjEJ7jEKtjBB7jBBjOhljEBkQjOYQjK0ZjFoZ jBBKWnOlhHOlvd46GUopUkqtKbV7KbXmpRDmKRCtCLV7CLXmhBDmCBAIUlJaOkpjEEpKjFpKjBCt 70KtrUKtKeZ7rUJ770KtrRB7rRCt7xB7KeZ77xCtzkKtCOZ7zkKtzhB7COZ7zhDmpULmKULmpZTm KZS1KRkZKe/mpWvmKWuMKRkZKcUQreYQra0ZjHsZjDEQ7+ZzjOYQ761zjK0Z71oZ7xAZKXsxjOYx jK0ZrVoZrRDmhELmCELmhJTmCJS1CBkZCO/mhGvmCGuMCBkZCMUQzuZSjOYQzq1SjK0ZzloZzhAZ CHsxCBBKjHtKjDExreYxra0ZrXsZrTHm91Lm9xnm94yUlK3m973v1uatjJwxIRC1jK3Wzu+ctaU6 OhlCWlI6ECne9+ZjWkprhGt7hGu1pZyMhJTW5u8QEClzhITm9//O3r3Wzr29taVra3vFveaMhHNC OlLW3r3W5t5jUlr39+ZSY1q1ra3O1t5za4QhKQg6MSkQKSnv7961tZyEjITOxbVCSlJSY0p7e2v3 7+/ezt7/9//v7/eMe4zWxdZrY2vFtcUI/wABCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzI saPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6dPnwcWTHAAoSiECc8mKFW6oKnT BRSgQqVAgMCBAlezFvjJVSSFDBo4aAirAQEGCxguWBg71oLbsxjgZsigToGDu3gdTKBAdYDVqgP6 CiYwIDBhw34TE15cteo3do0fV02Q4IDVAwe+5cPMDrPnz5gLbO1acQHYC/42zJ1bL8MGCyKqVIk9 u7Zs2RyqcODGobdvsQjGZoCgLjgC48jHHlceXDnb5mbjqo1LPe7caRVUb9CeQZDq7Or8if8Xv8HB AdIVn7meUJUv1HXuI+RtR64dtm4QHHTLe8+ufwd2+WPAPRAIJaABCCIonjoMMBieOupsV4Frrk24 2jQZvOUWWm6RFRwHwPRGVm63lXibBhSgR9EDGbTzjUzpACDajDPGA5pnjREQzQLK7NjjM9Foo4Bd DvgT3njiZYCABccx2WRvKaooUTcWmCdljDLSqCVWzGB1wDY2HnDOOZj9BZlmj/mjwQJSSgSBBeIQ 0OZIE3DA5pwPvemAnHiCFMGafToEQQbivBioRxAAeuhCerKzaEcQ2DmTaCLpyeejERVwWGNX/fkA AN5g6RI+24jqUTvDMYOpRAusZQFdGzD/sIAD3ExQADNf4vOSqYhiMME5q0YEQRUYiFOUIGtK4A4E XkY12qoOWGBrsBBFeicAECAQzZ8TZEnBXgSgeSM7lWF2Dlbo8gTBBRKcR62gigJQZ5EaPDNQAd9A IJ444jggwQT54QWBNhM88NQCl+K07gSquqRpVHw+TNVoBSTwzVUC0UjQVrwyGq8ECAwVr0AUQPAA U1M1ZXBTfBFAwQAL+NOtToP++lI/0WCjDrMAsINNggMItMBR2iyw1QETaEPP0RQ8oMwC7jaU6Mzy SpvotRbFM40/OznAbsMtDS1BeTEuoMEGxX2azmsKEEqyBfA4sA0AFJzl1j95AnOtBBqI/wMW1hUd sAE5O705wdwuLfAAARBEIPSyUwuk2gIbVCAQARgA48BWC3CQGgfR5AlPAwM9g4B8KN57QGee5fMN YIDRA1gDQuUHuE2oShAPSVi5HNjLwN+ljD8MUPCPOBw4EIHnLltwgXoYUDVBBhgYEA4BDmhQFAcK 5OMYO/1QdkBlog67Z2EGIPCAA/BAMP4BMFMF2O9PNWB/UwDbBXXhGGgTdUgHwAYGktMcEYkIAbkR i26OIwIRIJADaHmgBjDwmipkyIEViNAGiBeeWLUjanXiAHV6oxoOZMAB9/AHBChQqnSkQzTp2IaW ZFiAbXwGcTpxgK+eFZIBvGYDCUoQXv+IJCDlFalI4nGAAY5kgPGIwwBK9Ic4kDQgf9xlA4I4CwSj BADG4QUb7SjKBrgnFGV8oWHeWNWg3EcSAogDG/97SDpCFap4zEiG5xINmeJBJjJ9JgEDKEo7LCAp j92OWjqUAA9BMgAV4nAlLzwXrT7lsXW8qyDrYqNICjABCyggji15gAUOWRC+cfGSAIgWw0KiqWhk wHOgZMkEEAABAsxNU4SRHwHooQ5ukOMffonlohYGLJBgDx0ZEIE/hKmSZ/QGA8yigJOOQ01gVAEe wcnA4d6lSrB5pG74qRIzU/IABCQRacRSogEwIAJ1TIMDgoBiBBbQj44damGP7Ag9NgD/AQmccJwo Mc0EwmEeCMDjWqIU2bXw5ZfGsON14YqdYgYgu3N1TVre7Ag77rEBDGjgkzIxaHncN4F4lVQtGgja QLbhALpoEG3bqRyGVjMXCk6LZhmQQDE/UoCoqGmZIdWAPxYwAHysYwNcbJUCNnBQgqSDAhL418mW ohRtGOWqYWTPRZWxSI+kYwEYsBJMCgCBDdBjIAOYQD8GMoF6zGpkWepSl261pX3gw64x6ulZc4iB BdhTI+moSjfMCVCTkHUDKu2iBAwFgAWYMwN6K0hUDkY7CoRDlw+dDDsakFictO2UHsFefhAg1omk IyhHIcBfGxLAs22zZFF7BgZ0hgDS/wnkAMq4bGEOU5jEPOYA/VjdDXcSgQysI40gaYAG1BEtAxQW IduoXWomsI+KkFUs/ljrAMTBHgL4bBolg8cEsjI0xmKqpQvQFUg6d4ENaAAbXXVIq4Y6NKMFbmHk I4A6BIEh7YwNGOIQyjMQhtxVFde+xryLPxDQjvg2ZAK6MdYJHdyQAgx2Awt40TbCcdUCUcAfHMAG YRrw3Da1FLQd8UYB4tFJnk2EHvWgYBYdsFqGHMABwCDtOK+GyoEMkpQd+Uo3KLyQfVimMFArsEQ4 yd0DVDchnbRtj08skgPkBywQUO9LkKYNIgstAwm7JHq9bBEKKEcELl7yLgvzD/NKhP8ZExiquzQV GMMQJloQ6C07aownKofkAdybwAXSHJG6UZO0ZE7IOd60gQecx7HLOTQ3qqABJxkgzHPC5UCiBeSC zMof0ShxY0WQATURGiLfcACGmnjTiXCSnxR4NAUThAEOTOhsd4FiNHbaJk0pjqhzW3CnQRUPxrlF AQRQskK+8qFTR8R1GbGyPx5wsX3QAwKMpVxUMsDFfuzPIC+UYTzE7SWrnEPLMCHA1oSigAnEQxxw NYg+orFCdnxrAczg80AsAzJnr4SsYxGHowiwTaEhdXqndLDE+MLwkt3l2zFJgF6wssF+ZG/Y+IAA OhxVAIKJ+rbDSTRJrGwBdNiXHfj/HsgD1EEPZUTPIX4EzTeahjCRl6SnUMEeHB2AgGHTzWQEWAA2 FhAPZSNkH697UwRsLhI4d+NSltmd0EyOcIJgBqKZJYD4xMR1GhaAjjM5ADnsBoFgx9sgmiKOzA6g D4cwmzcQkMk5JqAABCdgATs1zZW5SHAHTDFC6AgPFIlC1alovSYFaAAExFGPcAjEAKN0CNIiMAFH dRHFnia1mpYek44fB45d1KpAJsBPPze2PEo5Sj8LDx/4yO51B0D3WIFXoK2sU8oJOW1VJmDysq2Q mZ1rd8hjsuiyiOM8Hy4QVBzQaE6/sACzwjR6DuAPtKTGfRc3ekGsvBoNbE5GAk0I/wWAUwV/qwTO sD5AOnyYgcCrRmamdtnLPq6TAFLwAdtJwD3OXpBtzLIt1CUQ7EAOC1AqB2FlSwUMcQcTgRUt6rA/ BzBVBfMM6CMtq/MNTLcT6fAP0TAAA2ge8OZzAABnd9EOYeYyC9EAviITjbQkmmQQaTQomIcnSPMP 5yAUV+EP7iCCMhJ04ZBP+UFkdUM1LuENJVMgBogQ6dANGYA3mLIN/3Ae4SIQaiKC0Jca08AAxDMe YeEPnSVZr6IfRhFGRvEv0ZAUBgMkLNNQOdKGobElXXVtC9B2jIJYl1QAT6YO/FcQA1Br1FQWh6YB VUCEBaFuzFFpTMIWzjMXqoEWZ//hGkGEIA9yIERxFBKgekUxFcCzH3h3L98TLvnQSNpkGVahb10R FHxShQ3xFffQhrvFOMmTED3FfFqIJCB2NmNhAO1QAdxQFmIxFxoADwOkG75BjGJBFmNxjH8YFqP0 LI20HeiwAa3xGibkft3wD08WKAOgTQKhhyIoTYRIEGbWDgrRO4RBD4Uxc69CARWAIvliAdigDeYk FIKwMxkyHhvgDgggDgoAGxt0NgESRHcxAfkgKt8AMKn3GqkhVAADAffgAG6WKWIyEwRgRfkAAAqw hwShXOSIEGZDOBNRDxagDBnCORlAMBlwJ9gwbVYUKiWDABsweskTZzPYEA/gD9//wm0DEQ5xog/7 MBpPhg+isQ24UgDnwAw2VHQAkA6bMRPpwA7i8Q3wJn0G8ZEJYTbdQBHoIAJhsQFtZzZlsQGpyAEw eSeJIgLoIDRciQH+EJEPETPhoAwMcClGRpRXoSWrQw+TdTAUQDGmiBLfApUI8IUIoVwOcJUaAJIS QQEo5AB+BQAI6JjuMisG4Ggk83ACkQ8Bg2ATcZOK44Xgtg+88nydcTE4gjE6EQ8ZYnkLgZVXCQ+O Eygx0wA3yVhY8Q02JFzBxQ7es2a8hY6qxRPogABUKVneh5iHKSV0CCoLEGBxdikUsAHokBcOgA3q xAAYQh3UM0AbwJo5oQ4WUJwE/2GVHqk9E+ENzSlFD1Bd7FAkKzQaQ6EX53GDUPSY2GNFnMkQBBcB RqEaReIrDIcN/NQUz7AySqEMEyAfDmAfDEoU9LcSCyaeA+Ga5ZmcEjFGhJQBJDMW9QCRVMgNFoCT XRQtVRCTjSUcpcUQzzge2eEAxSEOQDIB0dCX1PIablmV5lmeC5gpZ9EqFmCSELAODuCESjQ0ttI0 nWSiFKAOBlN5D3GbmeE6lkEOGFYNXPKXKqIm3pkQDQAM6nAjBtg5FmoQCDiJ4aGFvaEmIrBBr7RB ryIeceEP1HMPERIt2qMN95AB/MlPlzUVDxVcMmSThdJjkhOeDdEAZlEUYEQOR//RFCC2o1W5QIEY HEyyIdDBFsHoDpiKiB2iAXPBJEriqX9nRUZBDuO1nAjBSf4goYsSoQ3BDuCZARdAUxkgkiLAAeE4 oczThlXRD5DhXbkUFRMgFE4TDU3KIzxiVe1AFGEkHxt0D02khfwInhjmZWQFmj2WDuB5owXRUxMg AQQTVVEVMBJwkeWZqwyhD+qaDuq6FfjwfGHyPmUCPIERDpVFOSn5LEHxFFTRAOJQAVBzANr3KMO5 pR+xD3UCqS2hD3THmUhDhkYRZ75CUf1wbgPbJ8XBqhbRUx/GARIQE+mgDI75LL3zOw3pD9MANUH3 ADQaLK4aEhVJjQrbEqRXavn/OUdfZQDiwABIpWKMs6o1agEGyxGdUwEghq4pwUmCgEDiEF8LAEVa mG0GQA+hIppWmw4/CYcasxMvu17wgA3PkKMvgbBEwQAQwGsZk1ZCB7QC8ZRgKnMO9Tp8kYEqoa2G +mcWNEZIixKcdEUOwAyPsZzQN0UbpLEAUF14WAAulLhgQrcq0bUfQQCvIYgfCxMMqxredwB8sTEL ECEZ4FwD4Q25VGf0+jLAxGYD8A/A6bgo4Q02ukmWESmV+xKchA7iYTSEsTHhoBR3wVjseGiHNk3T dGhgxhOQGxIlNbP/NhQLsGcAEEhnmhrTqCRbIx6RmCDicA9PpER+1y/eq0IP/6oSrzG0D4GqB6gU 6FArFXEOVYGlsqgNMjMAAksPC1YWlbYcwNCLgHgP+fQoDECcXmEBscIByut2GABerEsQLDIW9yAa pNiGzWkACEMY4csVr4u8npMoBdwQZoMBdCozrKuq7uUPaEsQc+duhAoAxxtkQoVjG8wQ9Luga/F9 rjYUg+IPFNYPEEAO5Lsq4+sVnypeFTEA3UABxWYV1jU9XSl14MYOAFPB6PG/hksROIcOBGxdBJDA BKEP+CfA0+IlnnE0RQHFpHHBdCK2plW1c2RdEFB3GENnL5NzmnsXfblHWmy8ABwSSMcOy/PCC/Ew vxN7FIGw2PAPuuINtLlb9P8QDUqBDdmxQkKxF3dcEaIpEt4Anj2cEW7EfMCwtwsxADpbFEXsvhtD euWxDvFQoOcCJiWzHTa7S4zZaFVxLnc5EKRcE2piuOjCdOGgAUbbPhVBAFA0VRRwsQuBDyTZhTe4 AAWGWtcXNUsKAfZDD65jFTQimnT0fJWsE+mADnf7x0ZqrvJFWjjmyeX4hnZkXe45YU1BEOESFAbw glghQ53BOqHxJUgpV2RiFdn4nXmsEEEHASIpYsbszhukDmgWE/uADd4hVEjTavYWZ+jQDSU2GjEi Ks/XEwvGrRmjL5RToo4Hcw8wKLjaedkSHGWnFFb3DOrgGhDAxL1DGQnwF1H/Si6cATsD8A39jBNa yhAuSgDkIFR9KXuyiDTc4MeGxXwrZEcP8AxalhkEp0KsCcr+kELaC6130S/1oUQXEqJTzBKu+83i l3pFrH5PSlYK2HkIMmdxhhc7ayz+gAHDUTv4oRSMrBQFejI7gj+NEwHyMV54rLFWthf00L8JERSM CcxjpdTy21gtLdc05SoKkB/8NMk5Ybcc7YmRnMmepk3J23nY0BzdIJQPnCNtzULMkABM7LIawNmN pWCuYTQUQHnGbDbKQA9o3BIFwHw/RWGMc7Yp/BoSWgAbYEFy2mgRGCvrkFHi2GifvdgyU2qr9duW 7RPVx6ogBjX0IJlYMT1I/xtYFGDFSH1zbxIW6pCNONu2A0AUCRDcCJDZX3UtCHMvK7QQ5+AAHKAN nRctVtSX9SV/+SEOr1FqKBRgl9TTDFEAqducSvNQ/9AAFICBCmE24807d+Eu8SCSK3OTn4qIn2oe 5nsoduvaPQMWZCHAcooW4tCyB9E5FT4SBSBFxXQArnGXQQHhcVbEvRkVZLwTw6mx60CW2dsvRcF8 MQVknSNUC2IkRhJFTcTkSHIkUC54SdREUi7lhPcvAGMBFeAuzFAP6FBgVJFqQ7UxWUwQ3lDavFoV OMgT4Kmx5Jkxh2sZ2HDFCMFsxgGIZSEbEpSM7gAP9isWa6EcveEOsVFpHP+gqc9RakgyDQ4tEOdQ AQygXl81ASSZrwuRAC/TW5ye04wzqFz7z8umAVnpkbF4dGouO1XhFguATFRxhLkV0FLx6tvRKrU1 AEnBFyxbFQ81AOFQOw2gXvGwHaOByHyxVPl5EC7UQjG0uDPSNIZdE2Y84RoQmy2e2w+hGgSADeKQ MU3R3kt55s+iQgCwAdMgEKGSEN6AD8xgUSDHNTs5AIvmD+FQYAdpifnBn0aBH6KcNABTccbb2hx8 nBV6nm3T1jEiduLwAFvha4pzHulQpLPa8MZTwgnBDHNxGaLFmCdJD5iRAMNjRamRHRTiytpx0K9R AV/NEsI98BtM4abFmJn/mEbSNi3ekAATEB58MivtqAACMQDT4CshDl3u9ZD7kQHTEC0IQChFoULv HC6QMdMzrRlap3Vo0hnVLRIrfBBmNqaeRvBL9qtA+Q01lzEE14kyQgEEEyVI45h/+VUmM2ALoOUK Kc27S5iLQtxCO/BeP57YDhG3PBL44ADo0ACBjx56D+dgj6N9L3k5zQwFttMr0Q4PKPnBMuwW8Fxm gw2I+eJOpQ3TgA7iENKMCcJpXySXdpn4eTniYc4J7qLJTi3pENcaq1wb3PUUoQ5eOmEAsMA4DACL liEWoFKhjQAWFCMD4BYOUNBmXhhjfisOUAFc1WMqphqaHzdXaeeZYu6l/y8aQ1N7AKDDUnEeBRAh rZIB1XUAEC5qZKUkTbIBNsgAFsDwhHoO/lAPmS0QQa7k4qGFR5IBAFHFAQCCBQuyg+DPnzp/DBYq 1MDBnwUNGxjUy1BhwwZ/Gyyoc6CQoQYL/iJCQKltwgQIEx5QgDlgAAGaBQoWUIfAgDhxCqY9KNAu wwSbALwVNZhU6VKmTZ0+hcqUGYMNB6ISyIBAAwKtXLdutbCg6QIOHEhu7UrSAgILa9mydQuXq9e2 GBDU62hxo0IID6ItAPxgQjexBA9k8JeOYAEIEggY2EChKD4CFGZ+y8cuwYECBw5sY3YuHuhzoQsU 2BdV9WrWAM75y0Agqv++A99ozpxJk2Y+pErJqtOdWzc7msR166YX/DgB45sTPO/nnF1oZttsKytZ lFmGDQYhiINgIQMFxQQpPPTnQP2EBQ/aR3vwzK/7Bex7t8afH0A82Fb1s15Agwn+IzCpAujBYIOi zskAHW8WQ2mBDGIz6BtlVmKPPQoq41CmATaEaQIH/CuwRKcO6Eg2E5k67QAIgIFgxQIL4Ogm7opi DIJwNlKxoHQKwAc1ANLxRrEihyzyQYIW8IcCGZ80CMUMSITSMJam4WDAKvGjkYHyDkOnPMbUQQee ChIwqADiZvKMmc4OGM00ZuIpislvtnzytXruxBMAAvyBwAFuYuxztQL/TPLHAAoO2MggliAQZAM0 b9rQNs8KOOe0ObehM1Mlv6Fgm0JNnKqCfAqlIAOU3JFgVNXiUWcriQ6oAAPLKFhgAwcoMGAomr7x 7IDyXCU2qdco7DPVDC7gQJtinzp0AwnVQbGKryKywCOzMlBHHAfWUfJZcfnLgJ1CD5hAAnSyFLcp RkuqqAAKsBHHgHu8hQCbDEpqbIJn+Gz3WSknHTVAQgM20B8OuHJgWAPF8YdKhMWVUmI8DZ7Y2A0q WNTimyy6L2NiX9ugxy1dhE2Eg0UuADGo0hGknpBFHrViVM9iV78CCMiNs/8Oi40AUQ/g2bLcFsAA gwduY2dmmp/kb89C/wlwYIEINFi5NQJyyhYb8nTeAJhpLCDHxa66aosDEcTLAAN1CnsazwPUqQpV xKYRoVX9zplAAwwgAMlpqA7DoBtg6EigAokMMEAdETQwSQPw1iNA8LgL3MYfQUyuEiutgNEyP8o2 WgCbdix3quXxMmAggUYXc/uAaTLojRl24Nyms876CTYf23wnAPjK80P9yQQYoLbQdNihpx0M4Mbv z7IseEZU/Q6DfIMHDutusZK4NzacBShYB6b6unFgpXYcqJf9eyfkPKoCHK7ZgbpH3QaCDKBvjW8I IoDAOQi0HQ28pDQZKcoBLqCOfGRAEPfZRrAOcA6iwYQA9MAVfQAjIf8O8G814VLeAULisRV5Ax/n OM/+CPQjTM3vP+e4gAX+8Y3OcKcgByjJN+qxAYftjB65SY5tvnE7CUoQHQhw0uWYIsKI9Wln7tGf Bw21wfGRUH54swsEaKWgxSywgRVITUFSlTQyZmAaHUlPO8jRDmyoxwERmN0AlMiUxxjAikrpDGsK 8IANvE+KqlmABdphGQIIUD/MwEBJuLEBHWpgfBSYAAc2sI4J8aYzD1ifOLDRDTa2AyUtYc9fFqAM wDxjApKZ41K+YYAmOsUbB4BJLO9okHRQwH4bUKF+JPTH1qhOQujYBjYE0RJMWkABSMMAPSZIgL6k 8kk7S5Qhm5IOCCD/4G+A4yUeD0APB+SSeASg3/UyIEkLOEAfEcwUAQBDtGwJSXfOlJE36jhLABig ClXYiTuyFhVlZOAZcStAOdzRjgnQIyksBEABLjCNMMITSumoozSbMgHuoERaq9lGZe7hTZHhkIsn ypZD8bTKVqaOJvUJlWpqmRW/ZfNZLbPAAfYhuHNg4IEihdI+IgoVTPUDG/5YQDzw4bPUNSAk6hhP 3BQYlnYAhQDpaok2XhIgDAwAM/TEaVTkaQAF0JMeECCHOBDzD4hSoB8gNBAkF6CADEQjbtvZX7Zc tECF+AMD4phAWxbwD3Z8ox8SzSp+ILoTwCrFG/oDKgQuuo17GCAe/00pQCC1coEk0uwACSJAglwX mwSACgFNykA9OFMAZgAmsP/xxgBYSc8NCGgbD0AAoRbgAAjEryAE6AZswgLQrDignN8QRAUK4o2P uK4e5ZGniNz4SeY2FyUvqVzxRFZLexX2oCGxyXngtjWXFmACTVLqODmyAO6VB5ERy0hSwrEs7ljk IQ5hCHzRYYC+LKAB0s1YAVTrAGYMzj8FoGFBvgHUp+hjtpVl2b4IkIACbMOMYWSQOIBLO4Pso6/R SQABDuA7om34G88h4msdYFslygsbELAetBKSnrr6ox4ayABtSXgOCWQAG8vRzTdyVyyFdg8AiNwA PggCV20gwMcFmv9AybL6DU8+Fir0KMtc6KIVGP9RHxLQgAamgTx1dJkhCqAte8b3IZnEpGhlNhqZ jZbmWLYZV35LYHoXUw+yGXlFFIAAwOC5MwdgI8VOWQA3GMAzmRyHSSNmkYREIAK1NboKZdEAMOCh AXdkWcpn80qmv5JpKl96Lhqogo8v+9HDNClBw9ox8bahD5zWEjz9hQrGlhJZCMhxiXh2I5jVo7l6 MAQd4hCPODAAOQNgoArc4UAGGJdlXFYgJ58tS6IYN21WqudrCcXA4gywrs9m2R8Qc0A48EuQcD6l oQgrgFEDGBWy7JMgA8gXiVXsjwmA0xssyRUDHhTJvlygMFQRX+X/+syoDJR71g5QiwUSmUhGJw3G CD5tL9Ut3QANZCmHlnfqYuXIJWmrewFCDMcBMBEIRIMz6hlAzFhju+Owgx0NULhwkGLwiLNI3VhV hjsisJR0TGAaiMYPMx6gHhX1YwJgXoBiXLQSCVjFGwuAwF5Pg6sJqAMC42bRR5aC1ppDi0kQcPJT Ks4UjKPbINvAVcZV0+Ouz2gB4JFu39qx9XBoUu08xrq7skXztvN0tlqMygPgQQ46QqAbtubSZ3q4 FCE/9AEGcGN6DE8SUo6PAGHvu9/pG3cN7HwpzCTH3WeNZ/IahgIBN/0jDbnNQg5pZzTBKkG2YewJ ZaUK2SLJJx/Q/4DYZz6yMo7KMzSADbL74/D5OQcEzqgiwDkAA/7Irttgsw6CdCNbTd+H/uxiAPwW oC25oUC2wnGBDACLgrfLvGq2sYB7XD3w8ECHcYYYnW/oD+i9nO0E/NMRpGWAIA/gANpyh8LwLXoD ErtygGRbDY/ykR2KBgRAh6R4Kgx5BviAKuZaCfmYAGWgh7wLmMgCD6wKEJ1Ij+USigxoBz1Lk236 EDeDJJSomg/JiAUYG5hwAIGAAG4Qh3/gJl2JulSRln2hANvoq+KwFKSYvY9qGQyIADszCFvStZZY n7piCH9QgG44sTBrGpyKB/ZzP6hIFRhLmgkRj0TSHqdhsriQsv8syzKzaEOzYLQ2tBYOqAJ3cDhu IAlkw71k24g+7MP0oAAl8ag4A62PWowikiBg8Z188IwI8gwM8kBxAUHA4ylIwhAJYLp0Ia9zMwgC EAcEmAZqY5z0ADMFuBdd0zVxuAcHWB8wAzdVXMVACYmQUIhSdIB7wEUFUIe/Ma8JKYptEAR1oIAL qIBIVIoDKD2R+r0vnBpsiADR46nTkMZpjAdElCB2yAxKUgBBDKnF4I4H6MbFOI19SAd9IBLFKAB9 2Iej6Aw3KY2MQiVl/Lre+w9407+4eQ1/aDwYorAfQwysMESa2IzPYAbPIKIDSACqE7MHeAB62Aa+ exp0SR9jlJ//A3gAhbjHpykABrC4H7MADkAHhRAvcAway6CH2xmN04gT0QCNb/iHW2lBepyYA8it eDyZ2cKAeiAKgMKlBlCmAvCtuWiL9FG4cKCAv5DJthOhcOPEJznKtZIWimQRD4yHDVgYBHCAzriN X8koC5CZFkq/BQyr+0qWqLOfB4C1J2nKwfGIAuQ62BGEt1yR01AidrA2qXQKiIqGCNCIB/izjCGA 8QIPg9sGrXOiOXIRA1gAvEwdZPQHdFAGzMsvxbGm0MGjbGm8sFyNx2gSiCwR73IAoIgb17EAvKoc EfmkyDMLN7I2zXyKA2ClQCyUzkiI7YkbAmi/j5GkjhgnbrAA/2DggASpPaLwzMz7BgcwgHCQSxPZ hq/CgLZKS5GhmtBhBoUgAGAJP2l5ThyTKddcIvRpgMzsnAY4D+35S9V4unB4LeskkMC0AHSYgATY hj77GAc4h9fxERcCgGDJsAs7gCIEUGBhzHOxtuLMj3SojwZQLNHkkg1ABwLABraAuNYYgAzIQ/JS D0FEDHqwIcjKsAv6FaJZjg/5hwHtk6W0ySoZAGAjiQmQzLWbiGhghwFIxgP1xKpRAP1Ll/Koyg1o gGCkOXIsEmmcqWk8DYhaAOtSIhQ10PxYP9iIjEhMh2gYr9lCvPwYAHUQBPR5hnMwLW/0hwGYBgVI CnTxFw0aJf8MmQBteK6/+IsUdaYDGMu1hBI8g9PVKC0FCBSOip5pEBtsGADGGJHQyKzI2IjRIprv Egcs7KQ2UgiIUQeNKMEImAB2aFKEYQf0ubZCOTCKfBOioch0GIBv+wZmOAoGGArAgAAYI4e2iAaa gIDnkyDS8Axg0bAMK6J0zKoESI9vWM4SQcZu2h8TJRBvYAdsgJt0UIYI+IsKJAdliIbnXJSXQ1bv bAqsGJE+QVDYeDhj1MrbCNU/EYdFsQlNyZRzEDJm4AhizarA9Ado1A8RwTN0eAAlHRyK4pYwbc9x qgheahl/sFbVoIczIirI+q7FZI19kABdwaUFiE49mgB0oK3/BzCXetyIe9gACDA4RkmMgIUKduij LUwd31LMmcCv86AIC5iA8zQUkS2QP6ka2jKKFqHLhKoAf/hVj/UT+pqlFqFRj8CG2EsHogkJBhUZ b+DQPASKfgAMXAkHcym1S9XMActWaFkMllAGmbQlhH2arbkr/YusCQC/lqCk2CCOBlganZXAMaXH ml27GWUccHoaiEqfm2gmgrjPjM0WCqCHBqCorJyf1AjchDpHo0DHhDqtwOwqqPAG6hCMccuVj7QV gDqPqvWuB1ASnECHBagHBjiHo/iTd21E3KEO0DgNfChSaQysga3aadqZFYu6153QNOkm+xFGqd2S AqDSCuiL/9MMHRSpLYcwiAZogEyhEyM1UsQtXDpVInelJ4vcxarJs62xI6ehJn9Yh4QgS5rZI0Fo kA1YWVNqvHhwiHU4I9xlCvGEJwKogNZlilfKl3+At9oqgAQgB0o0rFzZAHeoh9kNmAOgUqvTni6E m3dRh3J6kpylGawoKchijiHZkDAyUxJCRv2JDMpND8CoHJi4CQdAh4XtSABYp2C5jTTDIA+ByVNB 32epUPdNHXawjINERvC1HBFJyty1JS1Cx2iot5MClFGNGM94jBEbopOiIsBogCPW4MAKTPuUnwdA h1AcRfBQgGzh2qVQBgcYgBXOE6jj2gKIAG6hG7vQlaRRif+WWAAaUsd0SAdOOY3cabDTeMfR4GIW zljVoACkEgR7YQh1UICOyA6m6LnQEolCLkFsYFP1+KSVCDMMqQ8IUAk1fQbAEKUFiIZJvk7PwDNs +IcnbAyUQGTB4I5waEF2dSas0NioSLIY/JANwpW2kDcK8Ag2pOWIeAvx+EgEiJm22AA6c6CN2Yh6 iCHu8IdpuNk/ZAhEVokIAAn/TRNxIAcFDtjwgz6owAcIqIAFeEgTksY2xiUr0krzCQfixTNA8a1x nQC2SDJ/Og+QBDagYgmPQIdoqCYLwGZ+gYDGQQeG2IhK5SlAUVunwApxiDt/CIemmIgbZod6k5AB KYDtdAD/dRCgvjklVdmdJCOKfrCAaWAmg04AGKYi9xiep0gHgA5opqhQd1MKfVCs7VWKDcCAG0ZG SLrgfdgICiAHi4uk9LlgZDQAQZCjJYQ6y3wKb+gHepDfNIsGxLiVkT5pAAi/EHYKk0g6nktoG/0u 8AKAi1wPglgHDvDNQXMNheEAtxo5a7koGF1DNoQ0rsAAZTDlORo7nrLKP/IGmL7hhKLReISlKjKM CCjQhBKRZySIcFifjJQfwJk2KN0AtpA2e3EpzRwAyFENBtCAaJiZko6psOyNdEsOk06olsi7Nn5R ZwoQ4nuZ1noGucTrsHSYWhoAdqCvKPFAeXHmOn6SyRYH/9VQmKpWCs2W6fqYAEBdElXshiQ6gJ+q GqvwLgW4sSUJiXrTIyRs2vSQ5teUqR7i6kfK6xWZa3NrLV5q7ehhWAQw6w24vRhbEq2An/30B27g ACdJhwy4PQJDT7eNLMCwumFRExzbyh/imeRAjvMkAMlFqvuZGArQgHtQjVh5gKY44BuWZfa4AC3Z Fyap5gmvMbGApXvguH24cNE2FKSILJ9MD4NgElyaEBWvgNmZnedc8bZRWfUdNQpQgNtzZmJRcKlu CnQQAe0hT/uiAPKEuZgW5IV+iD5OFAvdIQ64gI6INopgCAvdiGNTCGx4MWlJZwRIMgYYH8uTIHQ1 CHzIMP8dg6WSYxI7ItRAuV/n+h+U8CRPgsFBOsaWQDsFExkK+CzVyCsLqID2YRz1+MQpaYoHsFCt oAi42Je1UENGZwuwcHTxoDOFS49hqz3IcwByEDPh7sDhogdlwJVHJiUGEAcNq40FgFfG3aZ+gOoU FJkFwErVQEY2AmXDk0UaZhEHuIDaOo7Y1jAcwwzm8G8RVacK3KBA0Qb5sHUelgCLugBtkKZ0yIfT Y4mC2qbBNKGZqpIjSajrxpPJNoDVGFr/DvB8YDWm6KZUF/dp3LBzaGPdIJrcCA/3LYDRmHYCSA27 JOqnXm8eh5J0RJENuNKMOQ/8bYoEqFt+TwpwrxlcaZv/HGdhq6MnhN9JhS+I787dhFjngU/wA6+t EwlNJ/IMw+h0gteJUbHQi5zcrkUHisgA0fxPYOkwFAKUAyjIh3ymdRLhUheZBtAAf5cRmKLSDDCo p6ncQBEL75LYfAaJPfWHv1gJAvD2wdEfoggPiB8VPQ/3/yCSp1AGBaixlaeZAdAIB4XrWlKJ9mDN m62MEFkA3sHGANOPqlwb/emgV4/12YSl5+R4hEEatsgA5SS3G2oPZbiH0NmjgiK0fyARIxETJMGH cDqAKtaV9s4YhneVQ8mAvg+YaUH1ojg3tDNKgkqT6hiNlEyHmUpd5P0Mw2p7PDP4zv955bGliagH db+Y/wzQm5tACliyDGzYd9FRXwDABxoFDIXobhPR+kLxBn+4PQ6wAKxvim+YiSF3yP+Q5c1tPW06 gAFwAGWIEjKr/kIjJJg0/4JdDH1JlA0Ajp6f/T7BhwunM+mftXZAC5Kg/6VIFbN4HiHTzyABiAIF wjmYAOBgAX8IEFhgaKEhw4UPI0JEAOEgRgAHxGXwd+/BgXQZR5IsafJkSQoIDKBs6fJgPQ7+HhJ4 aXKBhSoI/PkbYLNkuAwbNmQwWECCOp7+kvqbxlCpPwcG7omT6qAqVqlYqUr1t4DkAQcY/E048PMs 2gUIHKBFi4/cQm4b4rXN2CCDuAHnvNU9GO1CQQVfE/9q0IDA8MLCDxtmqNm3ZAEHG8j+IyDyMeaD AzSwzNyyADsCFTacy/xNHDZ8mCk8xFDva7oDBGbTpjBBQjQCAwiwu+wZ4YKlDhx0Y/f78QINbI+3 VCeodGYCFDIvwLBhwgKzJw9Q0M48YwEIRCs4WFfge1uVndFn5I7Tgve27AZQGGD/fN8FgAkcwF8y HQHhGMceQhNEpcAEBPhHoEsNKMcgQuJYsAEHjfUVmWIMTZffQxuQ4xhkAywAInvpFHDAAds4YCGE Lqn3E4AjLohSOhlwAEEGGHzTVzoLGGCAOECSmJZ1PFHgzQHRQLDkkhRQoGR2BWzjG4H+VPFViy2p tRz/SieeGI0DUb60D1ELbGDBNlnaFE1RC4hDQTwUSJZUUg8sAIED0aDIjEDfFUDAAvUxwKKaJm22 3nYQjAgBdtnZJB4D3FzATKEu6RdVBQuws0A4/SSQAH2yTaANPfh4Y+IB0P0Wnj8G+AOBZZXe9GBL 3yzZzmSMxofSAeFMgAAGqspa0q8bLPkNAQ8MiFA6DYhTFkYFTMDoMw9EMwG22Wq7QKBODrArAAWI OO0CfA1L0ost7fPPAuSMBgEFM6KEzzaCwHeuSRNocE8C57HzAIgFnLNNcBB4l84zDrSDzZIKKDAc xBFPYO0D8JKEDzvIchsSvnbR2hKSDUQjo01/PqBv/wZpdjySBBxEsM9ByQYc0gHY5oORN9sssw2K Pfv8c388j2guRgfwNAE2Yaq8crouEbAkWfKe5MA0EViAAbgdK8OBBQpI8E0+0ex4UDr9uInO1yPt I3VLu1EJYJMEiCPIkOdu6VIBFIiHgQX+hLQNPUtDlsEFFGyAAaUrZzSBCBpcrekE0LSHYwbaCC5b fyjpk5GJBIyN0T7/ZvfNBgj4pPihLtGTwT0TTBZNdw0IAgHbB+VIwEwJKL64BhG4vgA9sEZ7QAIU SPBAPxjpg6zUm+ujj0DR4yMlzCMdQJRkE37ecXJcnvTPWNwOt8A5BGAjzgNsF2Bj6RkIq7gEGiiA 6/8C/wyllDoMTDsUOdNKoGntzpMOmJ3nPKqBzAQcgKeybE5xTTOJNwpwp5oswAEgqqCCTAKBh1Qh A4nbHQAewA0LZCADAroHBhYiEXVsQANjUQq0mIOPmhWkO7UrlIO8dxITicRL0brThsBCAPBlIGv4 ggAHrjOBbcyQAPTYzWx6xagBsCMBKELP9Q7jOAcYsVIPRMkAzmeA4SiAYXeygDridZIz3VBW+uLi ByHjpC56RlrdiIADEERHNd3tJVbigAY4AMgJnakw/qhdBjQQKPp4qz72oYBu6jOb3SBrNt8Ijefy 0bMToWgbzDhH9ATijekBQB8RAEY0XLKN+rwPPfj/YIbgdpe6l1AIQRLQhgQmoAxs+INCWDuJlQyD mMMQc5gMKeFo6LQUdCRlAwZoBwRyqS1scWsBu+lHxvgjDg48wyW94hiBvMEMW3ERhAfp3kvScaaa hLIA+dDNQ4zYo27co1U/uicGqoCBaXBtONMw1nCYhCeeGEAdGXCAPzKgAGVA4GENjQqjsJXLB6gD Aw0oWgIh5qqlTEMBAl1AG89CLwKUrm4d++IaLbAskqhDpXVJzgToUQFlnHMB+CjfQfZxUyceAEfT 4gAX6YEdAlANAs+Y2MSOuqRlLSADJMyRFhUzlFxl8DexwcmN+BPSFuXwJd44UxfB+lJ4wCsDWDoZ /yczEkG+LEAQttEABPSxLgKcY0kHqEYB+LSNeGxDIL5RBgYgEJpvAHECgpFNAr7BHd0dhwI2qgLX DLY7lJoEHRYw6UHEmh5BRMUfGzIQvLQTpwSJhAAGwNMFsDSBezTJJg/IQBDFdYAHiGNIFBjRbaup W25NK5rYmVYQi4YniIF0d31siTrvBRnNouUcFcMOdIjqFYywI4HmAcA57qRA7WgjA+iIoUteiyWN iC8Dp8PINyjQAG4tSQLRfO9DeaLAhF7EnG3jjE3OtNKRMNctffUPJ/2TDmZk7iA37U/1QFPglzzD rBgB1KYYEFwArE1K8UjVJzPsM3b0DHfaoNJxtv/6E3TSUrkkKUB/z1KAeMSxT4US74OzE5whnYg/ muwZh1MFGQXatyWULck6U3qztvR0SY4CAAUioKfLHMA+GTwRFPFTvG/9RBkOPsg3EkTR4OatW152 UjggiR/f9NQgPT5JV12SXHmm2CY4yQALN4QNDKBjAWkKz2HUURMCqOMwGJhOOhRigfG6ZAKwxcg/ IEDYDYwXcNYsgIn8KpApFeBUBBTIOfqxR/v+mCRnimVGZrJfm4SDGwjCAJaUEaYMxoOh3SCHTw6A DgVkoAoPOIiBuoHZkhB1Ak6iQDc2AKiiRPoAGTuPuYh24nBB+sxaWkt+3fEMRv66Pg1gSBebXG3/ Rg5gmwq0gAPqQw4IrPcBevM1PRh6pw2ACai7wQ49nOQ5YwMNPMnCljLIYcHfVdjFzkbPLF3iDxG4 Ax4qVGFhRPBLkzjg4MQ8DAcgqwERAFID8CgMxhXTEMQA4zBVgAcG+EbCkHc0YhDTxvZM1NcLTyk4 QTzgv9FD4gZdxZ73/NH41Fdrddz8ng7A48MQeo+HiYMqXMkKalDTDnLgcTgLW5g2sPMAoTvgahMu iY92HfPfdBo9Z4rjuQjQACeJwx00HUkBGnhOA1x968yhwMdahGIMiJhAA0yHNxygSHv3h5P6cF04 EAIAZbs9MwOAdot85A8XbrpQE+DAeAng6wPs/wNAZamOmQEQj37UvfAoYU035E6hQGag8xCKnwJm k46/XPScnsUGN259EO5Q4BvtvD3uq+d5zWBAh+gJNKrb3LHHO64xTR2vnCagDlRm5BzAVSxtoh9F FCGrZ6COOQUC26J9ONXQF2i8muKHjhautx5BpIA4FqCNaUwYUATw5DkOsAx2xD8B8U8RLFM127b/ ewAYwEaWRMBBAQv4ZUn8LMmfyQ7yGcACGAj/oUV4TACIYZ/2tcgBvFOOFGCLPB4CZMA0DFsQDcCP 8M0Dqtj/7B6SYUDoFYplaSCEiFAGKIoEmdeDYcMEoAM8tB56EcAnyYZuSN8T5VY4LEDCEJrbVf9H fUGIbGQfBlxfyYgEipjeSECABsheCAXWJImH3sAV5nDYHJXPAjSAGAaKNa3XtGTLkmhdj7FGEjII NiyECHjQYwzRAODJAEghRsRPBOCH4XggVO2EjYwFcbFDn0QapFEaXwnMAeSfwOCh3VhAG7IHmXAG CbWSTTRLQSGUAaghSmgDByCIA7BDPNzJkmBDN2ALOsjEA5zMiEwgCp5FA0BiiwSaWQmfV00ACb1V 5rXFGzkAPHRTvgzaKzJHA1Qgg5AJIFUI2P0EijVGOuDiLqIFFTYgAhhhRlhZCQ4jLF7ACkKInCgA 4/UFPnBLzEzAqP2EvryKhJ3EA1hANmqjm8n/YqF8mn21jLEsQDyABj38g5N9g4pwwwRICczBY1vg RCRCiC2eS8tAAJ8AAEktRkNcAASkIgOYm+0xiCMSCBJmiZv4gzvUwzKWjIEohQU9Rst4xR1GAwJM A8RYAAckkHJM3wAQXma4Ir7g3UHEYgScxYLZhDpUwcS5z4U4AAeo0J89BsosBaAUTh72jt5FHqfU h1TSB1U6En8ATUaqyQFt5GfMXqA020skRFEQTki62QRUxgBcZF/ETy7BVlMF0dYEkgYEkTf0g0IA C16mUENcjVD0jzYI1DuujO7hRDduRwLpEjZoQ91RAD2gmIm1hakcx+MJAoUEijDiGgdQJuSN/0Q0 jNFwJI3JDQd2gJltxKBNnll1SICLaEAVCIIIboALrs/32dcziIDBCQJhoRpGTOM0joRI4CRf4CRJ EE0+9A0KNtVBkgQBRNwG2Io6uCA+JOSwPN6HGAdgjVf88NLeDQ+KnAMzJGKfBOcoWRoAfMNY6J7b NVg0lgQNNcA+3EndSZ42aEAR2RcV/sNuXiYAtEw7EOVgOORZ7gkofed/TY9OpQP0wMw2+NpxXoeK 3ZaIpYN4LN5jKs7jiQM99AYSXmU7DBoV0o5A3Mn2EKRLeIOZrOd23FasvISKGMAAlJALMsjWuAOw 8AZCYcPS+YM4fEPL7CEnUR6JnsU6xKA3Tf/AwiBUNISoxZxEPLTKQ8YogejLUGym2OkWAejDfEJA 5flbkKZTU6lmS6wDIEUAjjgALEFABcCKTRZAN/jDa82mOVGhe1XjSZADPFhjl3pVg4Hp52kAA6RI HpVGPJiWAzghANADt8QTbVbIBWymSXgiMObpWfSIg7ZEdTkGomYEBaTPSUgJAWBAythnEtnVSfSm pKZFpeKNxgTKD9KHjKjP19mXvljhn1hf9RHlEuFYVu6etKRqS0xAOZRQjvDlNAiCUASkSawPmtjX fI6XmRhAtvhD71EIWTyAqt0DJ+apBAkCn7aEArjDBuCRqxQdcVRdfS5XFUwGA/jDujKFA9T/01W4 CkINR1SE5hhBQH8uSUApEJ4wCikyiY2cHQBMgDu8CWNuQBUMBwfcw681YFWdKgL56knoA1EYx+2l wzY4lRG9BUMI02E0BDwApVxaQMaR0MaRbPEFEgkV32J8rAWgQ0JFFVAGHq4d5UFQ4VsZoY6V0mWI BAEBwGUIUK3u3jhKLDBlwJABmQUkLUlsg27YB9TOht4VhLHoDQR0Q0GwAwXoaHBsACQRpQNIQAxW UAQowDT4QwR0g75KhlN1IIg8g37qSwNuJ0ZMTwGYytqsDbMJxD5UGIUNgLHsapbMoBXSSEIZkT4I wsKlhTtGBgWkAxSBxEHYycDWFy4SQD54/61DNtnkyQaHSUc1UcDSTIBF7eZcyu1vEAACqAOvPsAG dCtKJNQ5Dt6ZjKibrcUD9EQ6UMAubSKuKUpSnMeWuM5FNZk2lOSa6CauVeMz0O1BlA/xRC/1/SAB WFHPFE/fDGTM9SqKksQ+HK5JqFMTvhTJ4sWOUMDyIUDrmUkg+YNILAA3dJyF8FlhBOZBSIAF6CDO om60GEho5tHhdERoqsO+8OoCoEPhnoQ3JNSuJRTT/gQzgAm8wEyS3MMpjA0NhcnsQUBVFFfNlFG2 4ppyyJs6iEDFwFX0SB6jKAPFPEM0uPBwTcwC2MlvkZsBT5eage+O+U2QGk6YWEtCLUA3oP9wf1QQ lA6jBBmtSSRU8miQARwxCHESXxFYf0CA2YnE9IATxEYsng6nDp+YA6hDWXapqW4x3vhIpBruuZbE PcBmXfzJbmTOn4hZTqVXdyDED4YEkjiZ4CJRGptxpwZHKr2EQXURQlmii6TQQRVxBmjIQTyDU6zF eagEsNDOAdyDn9kvSpQxIAcyDn/GBohABfBEUrSrP6BDBhgAHh4eQFEe0iwellTdTGTAOdGnq8jG VDnqS9BLJc3GeVDhIHdyp+ZuF6MdXDycMJHsSk6A9g5PtTXSADQcNlQQt3iF68DKAFiA+Q0Ff0AA BviaNZsQTgRk9ADtSUheo9xJWVChUXD/EnoKcwFEwye3xDhJn/Rx3nYYgMMVEwc0Dsk+BDfwjeOo QwVwQxKRrDpgQwvxnAUwQOkMx05UU4ZmE3+AEkYYZCRJa8JwIYrsUggHqbTMM4QQgEvyXM8lBUJN RquwK08U3VJMFcymtAIUFCk3xQWoA8RAEwREgDg4tAM0MQCwM6YZwEtigwZIwImM1l82SraErnrJ Wxz3pNtJkEgzCAHkCF2gXQGB0l7FnyKiiBMNwBNRpZOJiDU9g0CltQM4dMSNF/8OrCJNwC9mBD64 jtdklE5ri51wi5PxR+tWNYGQdOk9hkicimH3EN7hA96BZ38cAMsRD0npsjbo5/46L3Zp/9oi/own ScntldnuHcACqEMxh9imuAYUf0cEuINb062+GKllD+UEqN3W9RRgH4eJ2AaOoIPgekY6OAA3OECG 1jUCBNGv4MlcgseM+Mb0XNiJgBIoSd5o21fNiDaEeMPTMMpQnDZzIBE3aEA9fMMzIEAwS0A1zip6 LYDuhFK/ucducYudfPTK0JAmt0Xe3APVMsBuZ0ZkcAA6VAAH3BYHXADMzkS6NmpHyJcymAWk7cMo 7e0lQZJYRxIV5bcSVsx8owXcQFNHaLdVtYM74AnkEUA9ONxDRBxiaIA/0IMwW88ERMB5EQjgTN0F HJI56QMENE4gxYsP0kZoLB42fwtNdv8yDUW3ZyDJAlTAc5pTeMShR3XRW684WEhAbdv2DC1APdB4 FOvdO3IylLdHAhE5ZuQNBMwED2f5a5MEMHc5ewIXhPzJBBTdWDhiSHNR3kAxUeJF+vQUw1wto2yt yxyAYlG424G28DDI7opmRyCymnWoeIfDktI3Eh1GY1wbIZ0JJCoAUEWfVAv5bcA3BDZAL52JKr/x HC9ABLSK7ZaM1dzGBggVNxjMpzzlfJIz5ILXih8AQ704epxIA4qFP4xxS9TMA5xDd+lZX9g4AmwA KhOAMqg2RvzKetEt7TkJb3FLw44Ko/grt6hl4c0WBOg6gzSVPyj6Z/BEAdBDO9i6iiH/EX1y0Vtv UM6qFT2sIp6QqaJEw8loonwpEHYYao/VzKMnHpxldV0Qz+CV8xtvEKwcwN9pQOb9SjgogwYEM0JI yc94JydZb45dYKA0s7P1w7R4OlrUTELJj6APJaGU8Xx2AziCOd4wqOddt4obOu4Uhkz4e5f4ID1o 1YVsEEhRXsusdi/RrQ9dYrTUx+5VkGC1eQP01lgQvIqZVshhgDog6xs3nC79tL5E6qyWsd6wE+6F ffRYtOeFA2pwYozgCYJsVd5Ihr34A86fhHlWAUSpUcKn1gP8mUq8kELEtcOfw23p0tiIvXpLzytS QGKm+kiwQ0oXBu3YhGkhAAfAgwI4/+I+BInghocFsDADeI44pJBEeK3eTQAzPEA3rMNpbnEdagMn qoQDgDo2bHr4NtkGMQCwt0T8rQoSVcDCmMU2fENf9wsE/KJAyH4nA1uho8Q3/OWcUfxPkNS4K3kE oHjtvXNGQADzqflIUMBphbDcYMAff4bWYkPfQP3KhMeVbfKdav9IKL3ilwSyxH20NAABwwMHiMPJ X71+lqqzsz9GNABA3OtGAEBBgwcLHujmwAEECBQKLHBwACHCbQvuodtgwR/Fih9BhhT5kZkDDv4W QCQAwYABfw4MNMwgYgNDBxMIFBi5k2dPnz8lQiA4koCFKhwsIJgIIcMEnSCZLXDoAP+Dv6c/sfI8 4E+DPwjYtj04msECBg4cMFgQYUFQhgzonGaVO5euQQoGhO484CCDAwr+Nhw4IHEBM5ARp2nQ4M7f ubqPDRboZgHCgggHJnBwQICzAw0SIGjQ9o2zVHaQUaeuKLHbt50EvG7bWoGivqBXD6Y7IMFfBgTi cKvGurcrhAnMJmigYHACAgkKlEemQCFcg5QUHkzQvn37swkOUzoWPh5A0NNEHYQDQAAbhKviMngE qW9dPQbByWvlmgFCAwDJH2Cuqw00WCC3AR5QZoIFooHAgQgghLChdrBxwB+vFugnP+HCcUCCfHYq QLBtEiBAPgDu2UA8kLxZJwOrNvz/iZ17LFAmnn0AgIAbAwuawAKpCkSogG3iYeYcZgRLUknB2PlG sG/wi3EuCtqZ4ESRJvBHgfZs4qurcKIEICILGOuGnHbOJKch7iZ4wLsHUmognOnmnO46zg4wMYE8 D9izgAL2SecpAhzYYCgAtHEnwIKUsUCCbhDwryBvDhjguibZOeCbfpr801MAcAQASSlRWwCbBcJE iIANOMhggw1c3aCCDRDgoJ0wC6CAQAsywMDXtMq64IIMBJmm11jVuVCdZJdVlgEDsDHTJmwoNG6B 7h7Aph5DDdJxgm41cACdHwHwJp2VyHEIzpTiTMnEPkv8ZpshUyXVJ8KuBCkBdQSh/4CAEvMhbTB/ JognpMG0U3A7CLrxh1d01CHHHwQuRCCDe9TRAAFaNVDHAN94LQsBDSywQOMMhB3ZHXg04EaDDVzr EZiJBPPMAXE0gEAwZiCoJ5oDjpzXU6HN9VTEA5gpIB17H5MIop3SmdGBpSs6wDhmvJkPUE/3+VOw ZwxoB052JshggQUs8Atts31LiZx6qhQHgg3gUcABbuCKwEEF+HbgnsquakCdm4zbaAJycuaMgOwM 86nrP5mGbIFuUOUJNn+2+eiACCZY8SdvBkh2gtN0hUAbC74FYKMHfNWJAkEmmG6fdRBwSINFeSrg n++mgoAdbRDovNPIiV/toXoLCv9rAwMMroi9yuVawB0OAltPnZE54HEDETSgvqAFWGZgOQpK7p7H nrwR0Ugj04GAXFCLj9+ubsLxHKR4IKgq86rbWQCfuTbXEJ0UYB0MicB5KBABu/HoAGoaDQAw0w4F 6AwyPjqf/OQ3Ab8gD4JUcUDzVHUqDJIqf8sZofzmBj2RWO1F+VpPZUJ1wtz95HQXlCHTUsjBiPTF hd/oH10IMIEI8CgBELgQNs4jkZfwiFBeoYjV/CEOcpyHJxSAQAJ0Q4Br/QUBoyGApRbgwhuqZgIb UGFICFiTKFntjD+BjQbuURAKcEAx2SvIBqrQvQwUZAAj28ByFqAYDYjAhiJJ1AP/QDcArrhEA934 h3X48rRADVBMlfxfJQFAtTHuJIchypJ7PvK8uUQtS9rIWmY8ZIFnZJIsCxiWTgYgxQc0wBsPyBk2 NJA6nkCAA8oQUwFwCZMfeSpLCziHiIYUD6MpbR+B+uUmewKBCjyAg1bDAH/OtqCzNaBnuqxIrozo j2QxQJz+0Mg0ykJOo7gKLReiI85OYqFk+W0BCuCA7SSgj2VmMn0ICQ3uovGjCWDAhAA4h7+WuUx9 ZK0gOvGGPsTkTGh+BAKCaKPmJnABiwFmA8V6lQU4IIGD4ZKOIxtZUhCQlJKplKXYqyMw4HEWDhzl ZCBNCjcYcC1lZGcBylgAnJ5W/5DQrLJHF9AGVQr6mKRNFCRMuajmHuCQ7xgAVm6xwAW8iZBztEMD ZlPcVznDjq/mQ6xilYo2hNieCKCjV8FC2bBUSiy3XABYGvPHoSAAD9w9o6u9SipdvBGP/THVn9N4 6kdElI880eNszzhbGNHoPgfQhUhDYoZstPhYzT4jGt7RhnEcordCWQyvwJAUAKLRFX9gYAAGwQwF SkSBa2XnGdmx7QS84xBy4ISwFLUoB+uim790Bbg9KW5FFOmPmP2HA+KgwAAo4IDaOYAyTQoiwQhA ge90ibsUshBgNtPbijj1uFkpANk24A5uGKC8G7qLOg4FPg4gAHvUM0sGFCAOf/9ggwIHENTRlhTg b4j1AO3F4NyiYWCf7GYCEqgHY+yHQXpkjD8EwQxMXLImAilgO//QpHghw5Sg5ocCcBkujGToDV3N 14ypct9fQZyauR0qP9/QSAa65w8QjjAdf7GobMWYIwvAOMaQkViEhXORuQFDBMAZIwWuhyERfYfK D/CXw2x0AHYouMgVwcYGNGQvAqgDwmNcAKvc8UcA0ANWF9IIwajiOwLQgwD9YGiX57IBDCxXSlvR gJNlWIAHZKAeC/gGjhaAkgGzpykiTkegohFePM9FHEOWUkQKBVIdm3kDDBhsdA+ljI31pqBNvNCp /WEAcdzsHquOSTscUpkgTzT/klJaVcm4wQH2yqUAnIEuBfiMlR735gEFBgAFsHEoW1a1oKC7Xll8 VZZjoeyaGNhAqr1CYxBXNMExogfBFmAWzMnlGwag78gALZfhXuAh6RiApMtDGRHnJgED+KK9CUAa xek735oSzDE/3FsITOMZ6bjzeAZwba5wQAEK3kZyOnaPCUBULulogJ6l/A9stLZHqq0AxyEDuSKT N0Ys7N5JuPyfiT9mH9FwS2Ua4O52UJGvvMoAyM8bD3Pxc1J6STnT0rERbY8nsFrEsQNSLvK6FEAC F7CAGU/TAAfQwyAPUIoD6lFQCpBjKAen2sEN8jg8cwXkfVaAUmbNNH1kNAMS/4gZBeqhjq9gnTLU 9Ytsz5b2w1C8yOqwwD+khA/ZnDlcCi5AP+b8D2DzHSsFKNsGnjEvACjyVfVwC8EqTTDtlH3SWWlH BoismgNElSon0ftHElBpjf2Zy7a5AFqEIihNBazOsuGLMS/780ljA/RYyYlPYDMBFzFcwZgZWaon AHafOF6jG+hPmNqn5s5DhrqnFUmvZQuBYgP33Qt6PYqjh8jHrP3leZ/PwKk+/cfomfMgGYBvqjIN pGtlbmrRTNJ1L6amc6Qyg0VISTJg6NQPK8QBAwTQeTZiA6JBECzgABEiHfIhS0YmAvKP5cqGV2KP ACKgG9DqsyoEx7xCXYxtAP99YrWCDSS+QUFqRkV+ggJ6JS4CTQJcRQIIIGsoAAMq4NQsgBvKoqvU 4VWciARLsAF5Iir6YTAe4pJyZwHIApRkCB8koCYIgGoGYwASIFNwCQI+bwISoB8SYAIMwAGFECFW i4pEIh0y5xwIZsFSojmcowKXju0coHKUDgCUAQMcAsxcK4wSymgCTEngUEo+Rgwjo0QegAF0RlBM JFXGzMpoxQlPiPwUwx+WowCghDkQ4B4c4OMQYucoqQD04b+IpMBIUTDqULxM0HJ8IwO0Yb+2YR2C ECT+ogEIoFckIBDngule5W8goteuwkccovdC4usKAh/wQZ/MJRQfBxfzI2P/CLEg2CxttsIC8oQl KCDgXGsqSuYWb6gAmKJYNsgXmQMD9KYCCioiyMElLuRm7MZuuItzjoqCusxhzDAkyAZVtsFCdMLi YucwBoApSGYCYmiECsAzLAYCXINENGmgHGQa0u/YyALaVoos2oosnO7a2uwZx4gvNPIcnoEd4kEq woGhtgEdpkGM0JAJMYAbA80z/GEdtgGiDmqwnkHepK88NgAnFEesCIAnezKsviEBSoQdsLG3eiMB 6M8Bni3VbIIDRMAf2s8g+mEDsGqMCsBhIGBFRq9NJkAZDGAajKgp8iSzmJGpuEIjiYN7Tq4K2HKm qgACQqIWu+K5nusf6Iwd/wJGsQQmSTzlmIyGLrxRGqXDQSgkXSZgXCBgAKDr9MYwk/wOLWnE+SAg AsRlGjZgXO4pLjPgLBTDpDAgWZQlNBtC+3ArO3BrAd7lD5GJFD3F2LZCKUAkMpBkRHrNAOphHf4E yRoTJCYGLS3ESoZksfxFAmoHVw6zqjAgpTIAncqHZPRMY65qOd3iVyoANMkJNNWRWcxJOwvlLMTh BIXky6JyN0ViI8DTeV7iAF0QLtFoLA9AtuytjOTONyDgGSisHuZLAcbl6UbGqiJyORGgClJqvnyF Ilfq6WDwYNqBATSSPA2iN3liADBgatyP3X4iUPTJdAhAATaAKNFGAiRAM/+0LIo0zgDsRBk4pwtN ojLggt/CijPyARQjI0mORCcaaAPG00Erwhses4r6IkwaAA/nQircxx+WpgE2hlWIymEMQB1S5wFg hT0noAo2gBzEgTFf6CawYyHmBgNOJTtGTEcrAkJfYwPUYQCK8gbZMyuuKwPIIWsIgK2uyYSwIaWk z0c4Qo7IQh3aAUsJhcOuZTPL4ukcpCGMqSCKcjfToUd3gnxuEiHUlC7OQcv2h1LqzL+Sp9+eYhsQ TzwS6wB0zifOId+2wUgioKtepb8EQyoIgl7E9EERQCP7iKDcT0jHsA7RRoq+07X662iMpACOKVhX U7AqhR50k6nMcye8IRz/4IE2QCLc1nQ46EG2TCge/EVTQmUstyyTeo0ePAL7TOQnkIk52M2Ihi43 +9BohCYqoqFxioxMR4ICNEABlE+OMKAb5kKDyghGbvAlMIBHJmNWJm4fHiAxxGFpyAcBMIAcsFRE DgJtagK+KmJp/gcUQREfLDYUjdFcsgtLT4hW6vFZ3SFaEUJCSdYnKJMAGEAdvocDqIUDUkcB+MMr xMSKNgAb5IhiVi1kr+8gnmFCjUg+2IFhtGMBnqFC/Ia7ugQCksVjRwheRWKOcHQ66JIuIcAdJusw vohquVZXNuABemMB6MEB4KEhTsIuXwUjUOJs6KEdHMDemOIBoFQnrYsv/yUqIRYgHL6IAAygKxRg GiZAMVdiWF5CG76MLNIiLYYlca1KYotsUYmwUTnz3DTGpJxSG0LCBc9tc+vr5FYvjzSgCuAB19wB A7ihdEsmLRTWN+AhLUimAojFMkczdvwPbRTWVwK0jnjlmnKSHhSLSX6SJxdNcfJhEccuVnliGyTA b1qieVviJZItJBZABKogA5o3WTLsZhgiityRIezmJVYNfLskfB1AAVpte4GFVxgAVsTnKghFHKgl WrChNywAHR7EAR7A/151UhiVVKQnAwBvLnbuf3ZuHzyRa/DB4IIIAiSgwYRIMahpJLbBXPd3JKA2 RiiAG1hLfjwlaZiBHf9MJkGhAgJ2tYJBAnIPZR+FQ0TuolXOMVFJpQBwLPQO4hwKpUF1FGoHEjW+ wSH8wYUb6hx2OHJkWDN6FQC2gS6hy0QIxWwwyYQRIlljBG20o6tomHiYYSbo6K7ibfUUdr9+MIxM EYoP4oLHYwGoNAJcGIaJmFU2Qh0gItGctwnnBjf/hB46h4xVBwHOMzVc8FWA+IYOAMcUwB/u4bkI wHOiAQG+N9QqDN/yLVMi2USOSbCUqQDqlbDMWDj2QTCSg6CGOH4KAI+6ZxoaQE5w4xnUiyOWS1dK xi2AEE1u5kIqg1qpdcfEC3J5ljwIgAMu4IojZ5BFAL8+0vwMIrVIxh//qAictLDKziYauBI1vwqa 3TXGzvLSSkSNQY+NR+I9jzgXMwAYxG/ywujOnsFiru1cBYWfHo3xIDV6u0zobA3HQvdRh6NvKQZN ASgD4KHgvudQq250a0I+em3ArjXAomQB+vR4cTh6ugodXDiT0SMm7iEDuoHLitgfKOcb5EQJ4+3p 7kE+KEAcwoiSZ1Owlio3cqXYmCbleDRyNyQzIiC1hDErMgMC0udVuGyQ7csfTtmnnksx78bmUJM0 vuwhc0dTJC+G9RcrNlk15NXahvka5WIdXibf2qKafyKLEYAcrs1fcIlkeKV7qkAEWiWKru2wWAR+ 8AyFpSQfHAKiBSFH/7t5AuyGhCeAm0NiGwQBLRBgGiggicWh1bCBMr0kbbSjMvS4IJ56PNahdal6 LsjmAWoQMKeBezjiAPUhCi9jsaPYAvpYOBYAGFhLoncCY5WmLrKYAyIgkWHYrhcglMm4sVHDavhi qudiJcCXwzB6M+UxJDQImCuYVkJbcs4CAWhCn7Pi/RQjKRxAtvViJryiF7f216a1Nx7iX0ZQj2nb uG+idCnAtIdxawngH5z2IPg6ZxAxiHDMpOjr5NT3QhZAvBXV73Y5NRagVdCBGzIAqUcoHtKijEzU YdThHlKNqnzjApxPO7IDN7lbAxqaTdEBA0IXsKGbiI/uZhNtIg6CUP/S+ip0JXCDuroVU4mfi86+ ucjkOUbQcCWAoaZPSJhfBDVjwnMCiQPM8SASLi3cosevCdp+hXcv77zlp7tTgwAgW69jeDNRAlgt 5EQo4PUsIIIbKhwmwG31hmHORMu9qyE+y6+67KUjvPFMJDNubowGOWcK7Cp3zSD4Fh4uQK0BgO+W pl7nbR6RF4OtVxyAAczom1SYAY/6or/8xv8GAB3WQoXSx0hU80iOCSHKiK43ya1j5AFE4CbgoTHG 6Bw2E2JwwiUSILUnLwOqoEY0SYsIwJIvq0hK1ZKDQ4uOdaKMvC6k57vVgcjHg6vnZjO8uoGjoQFk i5R15k+slaXJWIr/3Ut1RQAdprAbcWwj7koiOuqaXiRjNIAc/mHfmnp/Z52yFkAbWAXGR2i1L6Rg kvhaJtNaTGY0ziFT3NmEiZtp5HUDytK8fPv3DoPCY9uzyzjPSaUB+hzXVxjHRLgisrhA/lxHdZlp 0Jh6yunhY4Ipy+m71PF5U00cIj4m1HHVbKJQGUILHURjaEw3MsUUBxkB/IffHxTCmYYAmJNkRuZz 84gtNWamZIoD4OEozqIteV7nbZ4zBenk3CF0A5BXq9Zf4A51QvW/FnvFY3gs7206GCulygZmCcUC 9CZtpMn5NtFVSoZjDFnPNOLpbGIjFJa+OFxMokVeEmDAEm2+JiAf/9YHyB5c0pnGMgvSAgxjpE3E L6KCAvTpbP5iM1LERLSLM2KH9jLLsVLiKQogWQwDH/YBHzJDQIHzTxZgGryisNlkQZQYrLY7xjLG 7mOYAQcKA1ynArQPKnssJSylwAqFCdFhaVYCNTF1J0qSQg0ikKrgl0EcMH5wA+zGsA1VsxTzpyAL z0mfVMSBjoYZlpr7Hkjnerp6G9rHZKjHBo/vvoVESw4ONpAiqXRDKLswwH51mdKhjIR7jJx+hFTM SuewIHpYbqgaM5aoIFaCIXjEhySOMbfCAAAiHYCBABZg4JCBAMGFDBs6nJCBgsOJFCtavEjQHwKF GDt6/AgyJIAC6v/8MVygoYogdgsLEDhQIKbMc8y2xbNp89y5AwcgZBggMmjQdOosfBOKNKlShgc2 GGBIQR2HDQIJLnBAb2CBnQQoDBhAgd4/sBQWTNDmz8GBpWwpauTYNq5cigX8WfCH11/JDBw0OOhG rh02CBNYAsA38kCCxewONP5GgOwCAgXmyvW2wYJhy5znFoCIwQICBBYs8NWQYcOGaRsmdH790Z8G uLBrIy3gGDKB3QQsYPiX71u/fpVtG3dYlPbx5UILYNjAPHpDjUelW/944EK9qteZZ97cPfzEAxY2 6BO/3F+VDHhLlsTrIL78+RDq268/4dkEs/z3LxjwEk8J8ETgAefUFIfeQPtkkAGCCcIGgWgajKZB hb6FhuGFDKpWgWobdFiSAXmNaIADhOFn3wT3TUBBiy6+CGOMMs5IY4tffUUAShmc92BtBbDDGwH0 UNBAAzWWtUCSDyg5QZNONvnAAxA44M8GDFSpF17oZAAPMBrAM1qYYo5JZplmnjnahRhggEAVGzjY Y5zpyJTOPjFtwwxNuNXEEzsULLlANAssuWQ0U1J5jz8GLMpoo44+Cmmkj2Ypzj3ilJjWAnFuyqlc cwKQjjehctdpqaaeimqqqq7KaqudBgQAOw== ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image008.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAYYAAACKCAYAAACuNe0qAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADYRSURBVHhe7Z0HuB1F+YelBKU36RA6RJqAQOgt lIQaQkeI9F4UkSK9iIAgXYoIgmIktNCkdzBSlA4C0ou0AAoIov7P/3knfJtvvzN7dvacM3tv7p33 eebZPbOzM9+ZLb+d/rVGIpFIJBKKr1mPRCKRSPRvkjAkEolEIkcShkQikTC88sqrjeuvv9454e67 73a/X3vttVzYvkgShkQikTDMPvvsjZEjRzaWWWaZxrrrrtu4+eabG9NNN11jl112aXzta33/tdn3 /2EikUi0wdixYzMR2G233RqXX365219zzTVNyL5HEoZEItHv+eijjxoHHHBA4+OPP875r7feeo1Z ZpklCUMikUj0J5599tnGDDPMkL344etf/3rjt7/9bePKK69sTDPNNI1Rvx/VmHPOORtXXXVVqkpK JBKJvsy7777bGDhwHuvd+NOf/uQE4I477sj82Me99dZbubB9kSQMiUSi3/L66683NttsM+vd74ki DChtJ45iHNspp5yyMfXUUzcGDBjQmGSSSZwfv8WP7Te+8Q23nWqqqbJj4iaffPImP5zEQ/w27Toc turfk046qfvP1s4iN2jQoKY423GSP+zbNGI4m34rR57INRdbbRhxxD3FFFM0pTfllBPuCd/xEMf9 ZdMTJ/YRt9yPOPx992MsR28Z/ZuqD7bYYcPGdNNOO22Tnziqamaaaabs96yzzpptv/nNb7r/IH51 Oq7TZJNN5mzARmxox9l463AxiSYM3/72t9320Ucfddu999675Qttu+22awwZMqTJP8QtscQSTX4h bskll2z83//9X+2OtPXvu+66q7HBBhu4uk6O0U/a2qrdU0891RRnqHvppZdyvykayz7XjAflf//7 X+PNN99sSrdTZ23Rbs8992zye+aZZ9yWc8eMGdN0/B//+EdjttlmbwwbNqwprW65tddeuyld7a65 5prGQw891DjiiCMyW+nqKOfbj4DkkuuWi0mU2GMbnUgkEv2VOsZSRIk9ttGJRCLRX0nCkEgkEokc SRgSiUQikWOttdaK/o6NEntsoxOJRKK/wvxNsd+xUWKPbXQikUj0V5IwJBKJRCLHpptuGv0dGyX2 2EYnEolEf2XzzTeP/o6NEntsoxOJRKK/knolJRKJRCLH4MErRn/HRok9ttGJRCLRXxk6dGj0d2yU 2GMb3S3++9//Nj799NNCx9w3PzjwB+7/4P7zn/80vvzyy+z3tttua6OsBHMS6fT4jQPSxs8yxxxz ZJP/CT09R7zMEYRbccUVnd9WW22V+X3yySf2lMqQ95999plzQN7Ivo9zzjknS19gnwnvBg8enAtb Fbk2oQ5OPPFENxEgk+2dffbZzg97ZC6lnkDSn3766d3vxRdfPJvAsif41a9+5SYtZAJFQWzccMMN c2Hr4tBDD3WTEsK1116b3VP33nuvDVobO+64Y/RrFCX22EZ3glzYEHfKySc3FlxwQXfeiM02cy/g Cy64oHHDDTdkcXUC57M6lE3X5773ve81zj333MaO3/te44033silLbN8dgubdiuHSL3//vuNn/zk hOxcWHjhhRv3339/4+WXXzaxV+fOO+9s7L///k1pFzlYaaWV3JYXMZMD/vGPf2ysvPLKzp5//etf JoVq2PTKHNx88x/c9sADD3T3kMC0z1tssUX2uxW33Xab9co49thjm9Jt5eD00093+cH9A/i/9957 Wd51Ch8xNt0iB/PNN5/bLrnEkm67/PLLu/wBCdMJNs1Wbpttxn/0afvYXn/9ddl+T5G6q0YA2y68 4ILGhRde6F70RRBOXiDy0I0bNy53fNgGw9QZ1VlkkUUaq662qrOllTvhhBOcMAi6xMCUwY899lhX 85y4WL1K0r/v3nvdlplER48ePcG2X17oprbW5y211FLZ/nHHHee+QP/617+q2KuDMIT8v+OPPz4X btSoUe73I4880thrr73c/gorrBAUVys4f555mhd38aHTIh/mnnvuxkorrew93gncH8Qljv9Z5HSa 7MsX8YILLdh0vBOIx97L2iGQfOzo9Lhn+P3hhx9mcXSrsZU45Jm+6KKLnA1jxlznBJf9X35lF/fs X/7ylyxNyR9rV0+RhCEC2CbVNa2Qm0j+y8iRI93U4Ouuu25XSwxbbrml9W7ixRdfdA8+1RFnnnmm 85O02YpjvvtuUOV/IVJMA/6Tn/zE/ebc5557LhfHYYcdps6oTjvCoMPPOOOMjZNPPtkJLFCC6ATi rioMc801l5s6XPvZ/U7g/vjud79rvb2Q5nLLLde4+OKLs996y7U866yzcue0A2schGDT32OPPbK8 khd5N/IpNI6FFlooEwZxyy67rKs65qMSQuOKQRKGCGBbVWEQx9oSt9xyS/abdQA6QW64MkiTB/+m m27K0t5oo41yYbqZ51XiQhhYF0HskhLD/PPPn/l9/vnn9rRKtCMM8pWpz5PfrMPRCcRRVRiefPLJ LH2pXkPoaYvpBlJiCEHCiT0skgNUm9o864TQeCTcwHkGNqUvv2+++WZ1RnuE2iPCIMh5jz/+eGYP a6j0FEkYIoBtVYQhJqQRIgysP6urkmJT5fohDLFpRxhiQgeEqsIQm3aEITah6YSG65TQdBY2wtDb SMIQgd4kDNdff32QMFCVtM466+T8YuZxlbitMDz44IO5392gE2H4wQ9+kPvdDahKbFcY6C0Vg06E QUoM3camU4QNd+SRR+Z+dwubThG2xECPOFZV7C0kYYhAu8IQ4z8dcsihQcLwwAMP5EoMY8eObay+ +uq5MN2kyn/VwnDppZc2Tj311NzxbtCJMNjf3aCTEoP93S3aFQY6YND9MQbt2ANLL7107ne3sOkU YYXhrbfeatx66625MD1JEoYItCMM9M2/4oorbJCOqVJi0MJAv+6YVLl+WhiqnFeFdoVhk403DrrW VWlXGGiM1T3bugn3B+06IYhN9DALydd2CY1bh5thhhm60sXZR6g9CMP555/v9hmzwviT3sTw4cOD /0u7RIk9ttGdgG0MbCuDcOJY6D0Gw4YOCxIGGp95YGabbTZnD18wMaly/QZMPnn2Qv7444/t4a5Q VRg23nhjt6WkFQPiriIMEp7xJ7GoWmLA7bDDDvZQV6liD91Wp5122sY777xjD3eNUHsQBga2rbD8 +K67zz77rA3So6QSQwSwTb4in3766cass86aOYaayz7hGOwTE/pLMxK3jNtvv73xm9/8pisjiEOo cv3oChrbLhEGGVUNXCPSHTJkSOYnwhDbHtJgUJi+d3yO+6xKXnYCwsCoYcHaol1dNoWmU8c1g1B7 EAaeuTpsaockDBHAtlAXu/HZptfKMRy/LmzarVy3xk60QoQh1MXm3//+d1OaRS52tZ9gB7iVuTqw abZysbn66qub0mzlUq+kCMQ2OpFIJPorSRj6EbFLJ4lEom+QhCGRSCQSOZIwJBKJRCIHs9/GfsdG iT220YlEItFfWX+99aK/Y6PEHtvoRCKR6K/026okFlRh4Bdup512yvzFTw8K034MbPL5d8rzzz+f dWPTM3Pym/j1/z3ooIOysHPOOWcurITvFFllCydTSL/yyiuZn7aHQUPiRz9/wRe2U3SeP/zww03+ 2C3o9JkkEC655JKu2qXj2mLzCYvhzDrr+IGC2CRrRbB6mO+eoU+7xPHCCy9k/u3AzLOzzz67i/+O O+7I/BkTYdNlUKP4HaXmDtI2nnfeeZl/u+j49tlnn8yfdSPE/91333V+zCYsfnoqdfHbfvvtM792 YcQxeb3AAgvk8oNnSdI57bTTMn9tv6zop/06nXySkc/Ew5T7I0aMyPxZr2TXXXfNnKDTFljvweff Lv1WGDif+dhxOi7x9/nhWLTG+ndqC9x4441ujQGcrOgGxI2fvvkQsjvvuLNpTYJu2iPpMppWlo7k BcfSjL50n3jiCWejFQYW+AlZDyIU+Y9MCc4U4cLmm2/uFs1hVTcdFlvXWGONbCAhL17J527mE33S F1tssSb/VVddtXHPPfc4P9YgYD0DXrY2/+DHP/6xm168EzbZZJPGn//8Z/eC0YtEcQ3sf/7Zz37m fiOw1h6Zfj105bdWIEqkzZTS66+/fuYveTRo0KBsAjn8WAmP+0gva4s//4s1J7744ovMvx2OOeaY LG37v7m3EAXWRrH+bOVZED+cHhTZDnrZWmtPkb99zvnoWHvttZv822WZZfIfozGIEnunRhfNvyP7 2k9/hTJthCBhjjrqqMyvCm+++Wa2z5ce4sCc8D57vvWtb2WLnugSji9sp3kDEgf/neUPf/3rXzf+ 9re/uZesPg4ycyYT3PEVJkiYww8/PPPrFJ0uI0cF+bpkZC4vEB2W+YMeeught3/ZZZc1Vlllldzx TpA46ApshQFkLQnQi9MgGDYsL0LWVOgEhAH4MtfC4Ls3EAaZkFAveKPDfvDBB5l/u8j6yoiyFQag 9C5TeYgfaxFYYQBEhBdpJyAMUhLS+SH7TGZnhUG2WhiEbgiDPEM6XlYEZEVD6++7lleOHt3Ye+/x pTHt3y79psSgF3Wpw5VNrGbDx3Zl4mXDx3ah2PNiuzJs+NiuDBs+tpMlKFthz4ntyhg4cMLiPHW5 Vhx88MFN4WO7qvQbYbAZFduFCANfh8yV4nMyj0qR23TTTd0XHy988Tv956c32SEuVBiYjZVlD6lL lfpUkOI7K6WRFlM24Me+Rvw4V7YysI7fnE86oRDW/vdWzgdz3YNd5U2fd9NNNwbZRZi77747+286 Dsmbqq5o4CFp6WvgI8TmTpH/SR14yNKe2NTOpHDcU+KAGWa5n8gfHDbI/SUu5P9TMp9tttmzczQy 2SVf7Tbudpy0X5RBGGY0lvPefvvtxk477uj8hw0b6ra0K8hzWfU5wFGNa2sgQulXwhByU3cD0goR hpdeesl6R4G0KD63gjB1zZVU5dpVCdsJd94VNrtqSJhuQVoiakUQhhdoHdCGtPXWW1vvJrBJGtxj E3I9EAZedHUQOqkhYRCDOgixx5KEIQKk1duEIaTE0K+FIXDabcJIe0VsSEv3jvFBmG624bQidNpt wvQ2YZhjjjmsdxSuuvqqIJsIk4QhAlWNJnx/FoYx142x3jkIk4ShPC3C1CkMK6ywgvXOIVNz10EV YZDuwbEJsadOYYAQmwiThCECVY0mfG8SBnqr1CEMLLiDPU880bq3C2H6szD8/e9/D0qLMHUKQ1lp gDC0CdVBFWGgV1EdhNhTpzDwTIfYRJgkDBGoajThe5Mw0K2yDmEA7Hn00Uetdw7C9GdhgJC0CMNg xDogrbISA2HqLDHoMTZFYFN/rUqCEJsIk4QhAlWNJnxvEgbC1CkMZRAmCUN5WiFhugVp9TZhCPn/ hEnC0BrCJGGIQFWjCX/yySdb7yiQlgiDHsnKsPUDDjjAdSMjTJ3C8Ic//MF65yBM3cJAXvjAX1zV 69wu0sag0xbkNyNy67IHSIs1uElbBqIJOn96gzA89dRTzp6zzz7bhUnC0BrCJGGIQIjRer4fXJ0l Bu0Ehqxr/zqEQdoYfPYwvYf2r1MYfPaEHo+Bb2lPwfp3YzRwCDZdYcMNN8z51y0M1h6wttYpDNrJ cpnM76X96xIGZgjQ6c4777zZMWtrHcLw6quvNqUbQp8XBoHwdQqDlBi0nQiD9NbAvw5hAG2D3rfz PtUpDL59n5/veAyeeeaZwnT1/owzzlhr47NUJWkbEIZHHnmkyT82CMORX022p6fQAJtfdQqDbx9k nqc6SwwiDMCAOSsMer8OYQCbbgh9WhgGDBjgwomrUxiWWGIJ57SdPVFikN424oaquWpSiWECVUoM dVGUri0x1EWrEsPQoeNH64obO3Zs7ngsmAFAP2t6xDW/8Wd+JZmLqA5Il8km2c4400w5f21rp/Ni hUJa9IKcb7753D5znpWxyy67NF3jbhMl9hCj33nnncwRfuedd7ZBokBaVOGQblG1A3POHHLIIda7 6zByFntuveUWe8ih8+eUU06xh6Mw1VRTuS3TEfjyx163uiCtspHGa621VuOcc86x3lFgxtGyxmfG MVCKqQM+HOR6cG2KYELI4cOHW+8oPPDAA04o5X7Ro8DF7+mnn679PmKKeptH2Kbva6n2ig1p7bbb blnaIfRpYdAQvuo57cL6BDIHSxFMZ12XPaQjVQBFbPfd7TqeVz4UGlRDZ8isK48gJK3eKAxTTz21 9Y6CFoZWfOc732lss8021jsKCANTrreCDiAhdncL0iqa/0qoWxiKOnoU0eeFQQShbmEgLRYf0Wky 7XJP2NMqTX5TX8y2LmHgRVZkDyy66KItj8eiKJ+Yxlv71yUM1h6Z8tkeq1sYuK9xuo3quuuua7K3 DqTEIDbpEoP4UXVSlz1AWjT6krasAwLYJjYRpk5hoMQgaZeViqHPCwNzwUt9X+g5nSLCIOkKej7+ uksMVN9gzxRTTJE7xhen2Fm3MIAvD/BDHGz+xYa0qAKQfQFhwBagxMCiKHWADdJ4SePpsccemzsG PVFiIC8QBSsMVGmde+65bvAmv+sAYaCTyUwzzeRsu/zyy7Nj/NauLkiLdg3W55h++ukzfz4otD11 CoN2/b6NAe699163ZZnD0HM6RVcl6TR7UhhkEj1euBrpXcIyj71FGAYtumjTwi11QFoyqlmnizBs sMEGbr/OqqTf/e532bKqv/jFLwqFoa7uqrYqaciQIdk+y9Huvvvubp+qpLqum65KYgW8K664Ijsm NvRkVZIVBnkfEaZOYRDWXXfdJAxAOO3qgNXWfGlecMEFPWJPqzS1f93CwJenfIlrWLMWf766rL0x IS2WBrV20ZVV/LCdF3YdYA+9SSRtvSKb+BGm7hKD7z5COLVNdZYYtE36Zav9rb0x0WlaYSiyNSY2 H5IwKOq8OUgnpPG5ju6qgD0h027XKQyh1HXNICQtSgx1jWMIaXw+44wzKuVnJ9gSQxGUGOoUhom1 8Zl2iDogrdT4XEA3hEFWliojhjBI3beG6rEQui0MT5qZWv/y5784W0IXjKnyIqt6zZi2QuDFev4F 5zeeeOKJXJgiQtJCGK6++mrrHQVKJmXC0GkbA9cNN27cOHuoiSrCUGXMkL2P+S3rdpcRSxj0PcN4 A8mnkIbbUGFot8QgtoRCWlWrP/u8MLA8nl4iL4SHH37YhT3xxBPd79GjR2fnL7fccjZ4E4TjIeKr icXnBUZFij08zLQ5hHDEEUe4OI8//nj3m77/1O+G/h/CMZKR8+2XHL9xDFAKEQbGXmC/hvg32mij YHv475IPP/zhD+1h93/FrtA44aSTTsqFZ//CCy9szDXXXLlwRRBe7NL/8aOPPnKNmvjRCHzjjTfm ziuC+4c49UAm9kP/E8I2yyyzZGlrxMZJGEQVOI5hhx12yKXN0rBcT/KIcTdliDDItWEZWIH5v8Qm 2q3sfeaDvJBBVwL7hx12WHAeIQwrrbRSZhPXSuA64Tdq1Kjg+OCiiy7Khefelvv7VxeXdzwg3D// +c+WH4eECREG7OcekNLFb37zGzcGSno4hkA42qiq0KeFgWH5vIRQf8JzcUOwwsD+Pffck+2XQRjc mDFjcuFpHGN+/eeee849PPPPP3/uvCIoWXAziDAAcYTYAoTbcccd3X+Yc845c8fopSR2hgiDL138 gB5gIUgbgy8uwI+H0+ZfGffdd19T+EsuuaTJrwjCPfrII03p8vXKVzBrPTNqlYb6EOT/yb0D/N5o ww1z4YpAGGivIh5d4pORz2KnnZ6iCJvf7IsLGYUrwkC6ON0rid5IW221lUuD3jj8DsFnEx0kQpfi RBjmnnueLC+60cbAFPU2PGuwW78iCMcL/Morr8y1MdA4r+0JEQbpNCPCQK0Fzyx5tOaaa9rgXmw+ pDaGRqMxwwwzuG3VXkmE1cIgRcuQOAjj65U0fLPhuV5J3NShcINpYYAQW4BwZb2SuJFDhAF86U4+ +eSNW2+91Xp7QRha9TpacIEFWh5vhQ3PF+T666/vvkLL0OfqfR5K3SuJTgShbLzxxpkwUNrgC32/ /fbLevC0AmEYOHCg29dffCNHjszsW3HFFd1HQyj6f5HHfNlSqg0RF1uVpIWBUfPt9krSYelWjV2h 59teSVYYoJ2qJBuenoYhL3Lg3G72SmJqHxGG4449zt3LL774YpONRRBO2hjI3yQMX4UTN2BAvg9/ K+gNIsKw6qqrZg9OSLoPPvigC0f9rw4vVULahUKXxE6EoShNblzxb1cYEAXmogktAUmJwWcPEE+r 463Q4dk///zz3YvzmmuuyYXzUZRPnQxw47+KMBz0o4O88ReBMOjwtruquCptDDpd9slrqqIQmzJE GGScjm4jsz3u9HiCMqxNwDULmb5BeiXJvF9U1wr85sNQ7vEq2PD2dysIS5qStjDzzDO7MR74EyZU GAYPHpwJw49+9CPXaw9CbSIcYz0k3SQMCsJXOYewIgw0qsr5n3zyiQ3axLTTTOO+GCj2FTXIUmKQ KpgQeCnYxu+Qr07A7rLGZ17uocKwySab5H7z8iVfQvIGpp5m6qb/UkSVawbaBq5B6DWDkLQoMVSZ II4ZPm1dM91fQ0AYll9+eeudg2qFKsKgS4xcA/JGj6huhS0xFFG1xMA6JcJnn31W6ZohDCNGjHCz GduGYf4f7v33369kD9j0t6/QmE5aH3/8cZa+wH0gfoQJFQbuAREGppKhVxzVSFWeoX333TdLO2Q6 miQMESAd+zKwIAy8jOsgRBgIEyoMncKLrEgwLXVdMwhJC2EIrT/vlJDuqlBFGDqhijCEND53g1i9 kjqBtGL2SqoKaR100EHWuyV9XhhEEOoWBl+adtrtOm8Mnz32WJ3CUGQPtLI3JkXp2qqkusYxWHuk KomvWe1ftzCIe/nll7Nj9GzSx6pUJXWCVCVhy4EHHuhKHAJ+uJ5YeY9nm7T1WAWmwBebJEwdkBad TyTtkI+yPi8M0vhM+M0228wejgJp+Rqf9UI9VccxdAI20DVR9jW67aROYRCsPdbPdzwWRekiDHT1 hDoHuGGDlBiKpsSg/rluYYD11lvPdRMVKCFI1WvdJQbq3Lm/6XFnG5/Jv6pVW51CWlT/kLZtfF5g gQWcP2FYDrUOSIsqRElXOna0os8LA409TAFM+NBzOoV06D5HP2+dJsLwnWWXzeypUxjoZinpauil IHbWKQykN3zTTZvsAfxYgIUqAt/xWMg9Yu+V3lJiKDpWtzBwH9G2oQexrbb6ajmb6hSGueeeO7u3 6VIsiK1b9MB9tOWWW7m0tTDssccebvyR2CoiFlLn3wmktcgii2TpUnIpo88LA4vz4Ai/4IIL2sNR IK2ddtrJpfv9738/82eCNukDzsNcpzBsvfXWjWOPPc6lrdH5U6cwSD5Ye4CuxXIs9Dp3A0nr888/ t4fcw0Rpb4kllgwex9Ap2MOiN3QpHTMm/6KV/OHa1SkMPEN77bVX06JX5I/YRJg6hYFBcnIf6wFu 4uf7IIoJaTE6nry46aabMn8+MPTzFtoJoVNIi7Elv/zlL13atmHdR58XBoHwVc9pF9KRNZ+LoMtf ncIQ0vjsG4UcgyovsrquGYSkRVXSZZdear2jgD1ljc/03a+Sn52QGp/DIK2yenzC1NnGkOZKMpAh uLqFQdoY9AU559xzXFGS+mqK4nUKA3XRkhcanT91lhhWHDzYfXkyRsTCcH9tV12QFsV9m0+vv/56 5sd4jTqrkhhjYO0B8WOAW93CQAmG/vQaFoARmxhzw8C+OkAYVlllFeudwy6YFRvJo1bULQw///nP 3UwQ9j4qok8LA4071KHTQ4LwMno1NqTFSGJe/tpO2hhoQMQeFhapUxhoeJd80DCQSPzrFAbS89kD +J199tmFx2MhNtl0qQJgOVL8KZLXuVAP1TJijx7wpfOvbmEQJ2tFwJlnnunub2xi0Nzqq6+eOzcW dtptBpcK2r/u+0icbXzWx+oUBu3SALcOpsToBNLpbb2SpCrJ5oH0SvrpT39aqzAI1h7r5zsei6J0 e2qhHmzQvZLsMVhnnXVqFwaBRV8Eqo74KoWeqkqiWk2LttjaE1VJIVNi+GZMjgFpSUmB2ookDF+F E8fkY3Wg09R22nEMdQqDzx7QiwrVKQxF9kAre2NSlG7qlTQeW2LQUGLQx+oShksvvTSXrhWGIntj otO0wqCPpRJDBKoaTXi6rtYBaZU1PvdUiaEIwtQpDKFUvc6dEJJWT5UYiuh0PYYq2BJDEZQY9Asx Jr218bmsCyph6hSGqvQrYaAvfx2QVtmUGITpbcIgA5RiU+VFVvU6d0JIWj01wK2I3ioMdZUYdtp5 514pDCFTYrz99tvWOwqkFdroLPQrYSi7gbrFxCoMPPihE3N1QpUXWdXr3AkhadEDJglDa+oUht5a Yih7jgiTSgwRqGo04VnovQ5Iq6wqafjw4bUKQ9kUxvSgOu2006x3FKq8yKpe504ISYsSgx5dG5Mk DOXQA6o3CkNIiaFOYUglhgIIT5fDOggRBsLUKQyhJYY6qPIiq3qdOyEkLYQhdGnPTgkVhrrq86sI Q0i4btBbSwy9TRiYdaEK/UoYqp7TLqQzsVYl1cHELgypKqk1dZYYeqsw2LUhLHULQyoxFFC3MEyM JYbUK6k8rSQM5XmUhKH3lRiSMBRA+MUXX9x6R4G0UomhmCovsqrXuRNC0krCUJ5HSRiSMIQQJfaq RhO+ThciDHW6y3/7W2tCjtlnn73pHOuYH8f6tetCsefFdmXY8LFdiDDYc2K7MhhNb88JcUsvvbRb +H7XXXdtzDHHHG46EPZx66wzJNvXjvPKhOGDDz5w4fQ5Pkdec3yhhRZyW9ZUsOmFOOIKEQamqZFz 9txzz8ZZZ53lBJX1s9laZ9MJdaSVhKEApsBl6mm2++yzT2O66abP/Ihrm623diOjualZBg8/jslx 2Z/E46+PiyurSrr11ltzU08Tx+mnn94444wz3FoE2p8tcz4xuRz7XGxslOMMuNJhZSvu4osvLl1f WoeXOMT/97//vdtnEq799tvPfTFz/IUXXsjCUvphSt/tttuuyXbyG6fjD8VnF9uNNtrIjbYVf14O bHmhCPIf1lhjjcZ7773nVq/CZvma5bhMUQJ6vwjywGfP6NGj3aBF688kgSeccELjlFNOcesGsyg7 82jpayR2MsUE/0ngWAjaHl5mrMGtbdD7bLnP2D/ppJPc74MPPjg7zlxe7HMPM+Ej/0nf14cccohN vol77rknS/d3v/tdFvcll1ziPkBYaU2eG+bEYp8eg2wHDfqWW3iHNY3FDv2MMSvxlltu+ZX/Nm4r U3EUISWGgQMHui01BxKfTYPSjs9/yNpru5IZMwX4jss+dtPj8IsvvrBm5GCOMs6r4uR/S3rir/eZ usWeh/v1r39tTWhJvxEGC6s9MT85TuJiFk1WpdJ+wP64cePcV8Bkk02W86d4Pddcc2V+7UJcfJHz 4Onpr/HHHj1qm7Ue8Hv66aeb7MTGTvMGJF1eViNHjm974KXIClS+/MFvxGabNY4//vgm/2233bZx 3333Zf6dIOnaL6Bhw4a5re6SLOkzA6me+953jduFOGhoZDZNPSJa4uah5UUJCDsPtz4u+7fddpt7 6Tz55JOZfztssskmjTfffNNNJrf22kMyf0nP9szDX5aa1H5wyMGHNLbYYgsVuj0mnXRSJ4aw/vrr Z/46TT44gPuf+/qtt97y2oTI+9bLqMIxxxyTLTJk05D1vGUOMR0G0f70009zfna/HRglLXGwlQ8X Zh++5pprMn9B9pkOBFGHK0ePdst32rDt0m+FgdlNiQPHFwW8+OKLmZ+9EOKsMNiw7cKNKnHpr0Zf GixjKH4rq+UVfWHbBXv2339/56S0wVgI4qaIv/QyS2dhWUFL0tWL2Gh7JI87peg/ip8WpgO+sh+n 1wIWP1ynaHsQAZ+/Fgbx48NEhx00aJDb8kLsBIRB0hCxBG2P8Oijj3r9tV+3hEHis8IgToRBurri WHXMF7YbwlD2v4v8DzvssCY/HbYdRBjEaWHwpaH9RBgosfrCtku/FYZEIpHo7ZRVSceizwmDVk3r WG4vNCyNQZoll1yyKYw4ircaqpZsGO3skn72uHWhYVlkRmDBb3u8KM4nnnii6XhRWLDHtdNf7GVh bdx8Wdvj2v3WNKDb40XxgtRZ+9xyyy2XC1vWEG+xx9sNa8O/9tprTce106Uwlta0x7WzX9n2uHYW e1w7W4169NFHN4VpN25bT0+PMBtGnL73BRsGd+WVV7ptWThxtA1pjj6mO/+PZ86+9CnVXnXVVW7r cxYbZ5EdpGOPi5t88slzYYU+Jwz0aqCtwELjqE8YfDCyVYq2AsJA7waLvFQ1Igw+6PlghYEGySJs PPa3QB2uFYYibBz8h0UXXdTts37uY489lh2zYYv8gDUd6FmhKQoL9hjCYNcdEFh0yS6pac8XfOMx aEgtwicMRStw+dL0+YFe71soCgv2GG0FRb2SaGS31XP2fIFr6hMGH76JFIvCAo3BGoThkUceyfkJ vnh8fnDXXXe5tikNwvDss8/m/ARfPDScM2UGkI/kw+233970Iec7V6DKWUNHAl8ega/b8KSTTOrS tW7KKads6q6KHTacOJ+N4idTjW+11VYuLD3VNDw7RXH74oU+JwwoYKfCgABII6GAMBRh46ksDN/w CwMN3jYe+1vwCQP1tT5sHAjDeuutl/MTbNgiP0AY6FWlIawtRQg2Hr4QWwmDNPwJ9nyhNwmD7VlU FBZ8x3q7MPhKDL1FGIrmB6siDPZYK2GwYaFouhLaf3zCUITvmM+viCkGTGG9HEWT/fU5YaDXTKfC APZYK2FA/TWrrbZa0/mCVxgilRh8X6xg4+imMEjXVoGwocIArYTh448/zvn5zofeJAx89WuKwoI9 RvVBEoYJ9AdhsNdU8MXt84ObbrrJeuUa8jVFyx33OWHAv1NhePjhh5uOtRKGRRbNZ3rVEsOkqqeT hcE2mqJ4fcJQhI2jm8Jw/fXX5/wI2y1hsFV5vvOhNwmDXS2rKCzYY7QxdEsYbH19UVjfS68oLCRh mIANC1WFoQjfMZ8f+Kq0itai0et2a/qcMMwyyyyuCxddA7Vj8JVPGGw43DbbbONtY2BNWRtWuiBq RBg4tu+++7p97aww2OPWhYbVwuBLtyjOSy6+2NWl0kWVMRLYTT76woKNSzs7kMYet07z6quvNh3X zvbxt8eL4gWEwYYR5xMGG6ZV3Pa4dqNGjWoKS17r+4c898XdzcZnnzAMHTrUrS+hbfGVXglr73m5 733CYNPWziJxM7jUxu0TBsTW2iHhLXQtleOMo6Fh1zetR9H/w7GmtoZnbPfdds+FoU2yyAbyk7Rx fMnfcMMNbn+ppZbyCoOEtc4Xt9jNxxTvNuK+5dZbmlaqpAqWLuUSF2M17rjjDrd/3HHH5cIKfU4Y +MKSRsz777+/8eADD7iRoJdffrkbp6ChP/7YsWPdSFDGDhx++OHu5c/ITDvnPr2UCMeaBWxxjKBk a79AZI1gjkkaXAjwfQHSYE4YRoGyxdGfna0t/dD3/t1333W9K0D6VTOy9/HHH8/C8SJYdNCibsAb o5GB/wcXXXRRFg4++ugjd6OSHouFs+UrE7DfInlPOA0lBsudd97pSi+0l3z44YfOT+YauvDCC03o hhvRDUyPAGPHjh+NTInBInacd955bitVer4Sw6mnnuqqZnTVzmKLLe786C9ukdIJff2BQXHAgD8L djDIjfuMe4yBgCJylssuu6xx7TXXZNcZJx8K22+/vQ2e5cMRRxzhtvKy1CO8BcZCgIxOlvR9duBH 2vTWYktJj/Yh2xsPmLqBMPQKu/nmm90+pUD633Ova7jWvCjpwMBzKP+Ra150L3Gc51XnCeNhGKWu YfzOXXfe6Y7zvLKlioQtgwMtvPR4BmecccbGvffe21hsscUaY8Zc15QffAQRB8/FtWOudft8LLC1 bWb8D8aKcIz/w8t43nnndVWoNl7gJY0Ns846a/beEGffRwzExJ9G5L333tvtEyeDOX1xYyNhVl99 dbflg5Yta6touMflfSTnUKo4+eSTvfHCRC0MFI+sm2666VwPG162vLi5GfDnBrJhmWaCLcUpHjge fvmK4rd2ZCgN0mS++PG1xJaeDzY89rHlxiANwrLl5WXtoBcB2xlmmMFt+WKlrcSGw/G1yXaeeQa6 LTc1W2xHdCQcA5NIe8SIEW4wFTczDwg2cUNzXGzlfxEv++QXW/KReHz5LH72GKNq+TKXePGjvQU/ vgiZxgJ/REjyxuYb+cyWfOIBoaTGb+pCbVjJY6YXYMtAKtIkHyU8X5mkzRcTLzi+AOV80iB/qK6z cePPloeMLb1vdJo+O8R27c8IZPn9+1Gj3PQNvFz5LWy88cbuN2Js45brImnINfTlHWEQQPIAIZFz eAmMvuKKpueHl5qIyT333uNegif+tLmaRAZcUkUkHx8IPc8CJXFrxxVXXOE+rpgaAoHFD7guFnn5 6JHsiAKjny26NDpy5Ei3XXnlld3W98ElVUkymJBpWWCqqafKhePeAHr3MAIduG+Ba2WRqqTBgwe7 LS908L1IuV5ACd5il/aUwWoaWTzLjvQH+XiTHoVMfQMyAlrDNCMgH5LzfPWffTYD75OiY90iSuwY nVw9juKw9UsuueT6votJ3NgNfOn58E1xbauABIaXW4oaRYEh9ha+2nz4vmy+4anXLaLVNA66KgmK uqvaaaOZCbao8dlX/Kc04cNXlWTT0viqQ4ryuVVVksVXlcS8MkX4qpKKGp+lOk5TZIftrQaffPKJ 9crwVSX57hfw5Z2tQhDky1JTZLOvYVVP0WLxNerr6T40lDAstg5f4GtfvqDZp1cV1XPc4/ymOpWt OEpI+jeO/Ld+OP3cU/KhGtYivbgkn6iSff/99935lMCoOrTxcu9aP0oc1k8cYyr07zffeCMXB1VN tKuxTy0C6PDYRvuBjdfnaN/gHWj9qQq0fq+//ka2HxP/HRiJnhCGddZtvrmLHjzfCE1bl6qxk8/x grQjgAXbPbVoVKOvPraoO5uPojwG30yXVXol2YZggReBhaomHzI3keXAAydMTqjxpWmL+QJVU5ai F7K9HkLRi9bXfmEbdwVE3/ZKkrakEGRSuxBazTrrs893XcF377eaMluqoDTUvfuwAyvB1zsHfM99 0Yprvv9iB/UJtnML+M4XEAbNl19+6dpCfTAzrKVV3BbaRHx5VDSOoQ7Cre8StsFW8F04Ggp92F5J 4PuyAN8FsqMPBV9dI42/RUijtYDA2cZjwT54PrvA90XnKxkU0UoYfCLg8wOffb6XNHRDGHylDvCl mYRhAggDDc0+fPb5rivY+xN6Qhh8JfxuCAO9+uzz6jtfsA33EFMYfPQrYaDBz4dPGHxVBtwkNJ5Z ima+9H2BFAmD7+FAGIoW9qBXj+aVV15pnH/e+Tk/wcZddOP4/H1+QPHZwhz7dhQy2AFoAo35Pmgs tvCStnPIQFGxlnUtNJyrZznVsI6FhfC+6pqi/FhllVWtl1dooUgYZJoGDfdcUVdRHwiDvXcRBt8L zo7/gKrC4KtiAp8wFJVUaai2tBKzWMJw5JFHWq/Ce9eX/0Xx+kTOV50o2O6qUEUYigTKB8JAicTS r4SBnjq63pj9ESOaLxrwtbfrLrtkv2WqWx90S9PH6OLHb1+987nn/iL3gHATUNfLYDIfsniIQK8A 6S1hoSpJh6VXArbZlzhf2TocDze/fS9ZHgxuNCne0msJm2R+egv+Om56zxSF5cVCjxR5kdF7qSiP +drnmtCDSCCs76setB3ETy+bokFQXCc9bTrXuujhoreLtlH6khcNHKQ3l55GhbC777ZbLoxAbyAd N92U6bHlg/EJ9JrS7Te8JJjMzSJdZPV14HfRkrYc06Uo9n0iCQgA8Qv777d/8TW8+253DfmIEQhL t0ofvDx1Va29tzRcF+lCDHygcB19H2f00tHxUMJicSJfrx3ySN83/Ffi9QkoPb8OPXR87x7guSOs 9GTScIz7XVcX03bAPE528CMwIM6WbAk388wz5/yA6blJVz/3fAQUlWDndtfwtZxfUT7XQY+krBvc 9KIbPnTmHHroobljFn1TthoNDdy0Mre67+vAIl3wQPrNF6FtpitqEXoksi1RWFhhSwtDGdqGoi85 Qc8ZZBeL8eH7Ei1CC0ORKAi8GISyh0Ifp29+GYiDIN0ei9Bxh6yKpoXx+eefzx2zMBYnFG0Hed7q C5KVBYWyvANmEAiFjzmh7F7SsOZzK6gCE8Gm8buomhn0fyr7f1qoy8KCDrPzTs0lJw3CNW7c+DE/ dPm1g0Y1NE7ba+grGQjEJ3Ae42p6ivJci4AWhllmCRcGmamwCF1UL7shdHVLEoYJwmBnrPTRrjC0 asgH6XMOZdevvwmDnX7FElMYdHyUoEIJEQap6vP1itJoG8r+n26bLAsLOgwjsFvBwE8Z5a9f5EXo xY98bZgaHV/Zuy425bkWgVyJIQmDI0QYhKrCcP5Xo4+L0MJQVEeraVcYyth9992z/bLr19+EQQaA FdHXhcG3nGcRnQiDr9FZo2cECBGGZb8zfvAaVBGGonajuijPtQi0W5WUhGE8VYWhSomhJ4Whysst CUOeKnkH7QqDbxxKEd0UBmZCEGQqkiJiC4N0OgkRBh13FWGocp/EoDzXIpCEYTz9TRh8vVM0zA0k lF2/JAx56hIGmeIhhBBhkPm3yoRB27Dwwgvnjlk6EYai7uZC1RJDFWHQYX1jjuqkPNciMLELw8oT mTDYGWMtdQlDGanxOU8VYRgeURiYG0zotjBIiaHVIFXQ/6ns/8UWBikxtBpcKFSxu0rY2PRI6hO7 MFQpMWzaRWGQ2UerCkOVEkPRHPWaJAx56hAGXZryEbPEoMdw6K7KZVQRhrIv5CovzbqEIWaJIcTu mPRI6u0KA1PStqI3CkNvKDFUEYZUYsjH3VuEoSw/YgqD7qcfq8RgF5GyVMmLuoSh7JkFHXfRPGZC lf8Ymx5JPdddtYIwTIwlhm4Kw8svv+z2qwpD2c1e1ziGMpIw5KnyoogpDPp57Q3CoKvNfHQiDL6l NzV1lRgOOMA/Mr8uynMtAu2WGPq7MAhVhaHbbQy++fiLqCIMxx9/QrZfdv2SMOSJKQx6Cpmikdo+ QoRB2i/Kumfq/1Q2eLUTYSj7iEIYGD0OMYXBN1VKnZTnWgQmTmGY0E2vLG59fGIQBj0HTIgwFE2B 4UPsCBEGPbiuSh73FmEgbCxhKGt8jikMTBEhdLvEIAvqMMdXK/R/0h9pPjoRhrLRxnX1SuqXwqBX i/JNM63RmVU04ZsQVxj6bolBxx0iDCG9MYT+JAzMrtsXhUH3SiqaU8lHiDCEjmOoSxi6PY5Bj3ze LwlDa9oVhp4tMUy4GWVJwCJ6gzCccsop2X6ZMOiZNbstDKy1DD0tDMOGDcv2YwkDC9XEEoay/Igp DHpwWbdLDKHCoCdUjCkMIVVJQogw6LhTiaGEWMKgJ+EquyE6EQb9oPjoDcKgbehJYRA7eloY6igx MOtnLGEoWt9CiCkMurr3qKOOyh1rRRVh2NuzUp+GtcOFsv8XWxiqlBh0m0wShhJiCUNdJYaJoSpp 6NCh2X4ShnqEgTUlYgmDb7lQTUxhqGOAm2/xLY3+Tyy604pOhCFmr6Si5XyFJAwTuTCUxd0bhEHb 0G1heOyxx6xXIf1JGCCWMJTlx8QuDFW6q5b9v6rCsOGGG2b7ISUGucZVhaFKicG3GmGdlOdaBLQw 6JvOh86sHXbYIXfMUpcwlK3BPLEJQ9XuqqnEkEeEgXxJwjCBWMJQVnqqKgw6TIgwtFtiqCIMIXbH pEdSRxjosoorW8+YDGK5xfnnX6Bx3HHH2cM5fn7aaV+Fnb80YxEGwrGSW1mXWUAYJG49PbQP0h4y ZIhzZcIgcRatViYgDKyQRZxaWIuYkG/zN078aes+4tyw9A0n7kknnbCKWhH6/5UhYcumdIBlllkm i7fs+nGce4dV4UIG5SF4xEv3yBBhEDtYfa8MCc8I4TJh4J4n7BJLLGEPNUG8Rx99dFB+6Onrfcuy WpZffvnga9gbhGHAgAHZftnzGlsYZHniJAw9CEtg8hK3S2MW8d5777dcJUkTqx6P5TnFFa0XDZRw JFwIElaXjHqC9957L9huwrAEZkhYrnNovNBO2JDwhKEhme2HH45frasVn332WaW4Q8NSynrttdfc AkcsfdkKwrGADI78LqPKNeTZIxzdcfmvZYgdZQMhEQYJK4vfFMESmhKubMEnng8J61ui06Lzriyf x40b517a4srQ/69oXXqBJWQlXpar7UnK/1kiKiEvnkQi0bvQ69b3RZIwJBKJRCJHEoZEIpFI5EjC kEgkEokcSRgSiUQikSMJQyKRSCRyJGFIJBKJRI4kDIlEIpHIkYQhkUgkEjmSMCQSiUQiRxKGRCKR SORIwpBIJBKJHEkYEolEIpHj/wFh0lxyZB418gAAAABJRU5ErkJggk== ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image009.gif Content-Transfer-Encoding: base64 Content-Type: image/gif R0lGODdhSgLPAHcAACH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACwAAAAASgLPAIf///8p ISkxMTHW1tb39/cAAADFxcVra2vv7+/e3t5rc2vm5t5ze3vOxc6Ee4Q6Ojq9tb0hISG1tbWMjIxa UlqMlJRaY2NSSkpCSko6QjqcnJSlpaUZGRCtraUICBAICAAZUuYZGeatUrWtGbVKUrVKGbV7UrV7 GbXm1hDmWhB7UhB7GRAZhGOljO9j76VjpaWtUuZKUuZKGeatGeathBl7UuZ7GeZ7hBmtUhDmpb3m Qr2tGRDmc73mEL3m1pQZUkLmWpTm1kLmWkJ7UkJ7GULm1mvmWmtKOnOtOnN7OnNKEHOtEHN7EHNK zmNKhGNCUiG15t5j7+Zjpea13qUZ72MZpWOU5t6U3qWthEpK7yFKpSF7hEqtUkLmpe/mQu+tGULm c+/mEO8QzqUQhKUZCDoIUrUIGbVK72OlhHNKpWMQWnPv1r2t5hB75hCttRB7tRBKEBkQzuYQhOYZ zhAZhBAZWhClvd7mpRDmKRAZOhDmhBDmCBBCWnO1WnMQ76UQpaW1jM5zzqVzhKWMWnMxzqUxhKWU jM5SzqVShKVKzhBKhBApUrUpGbWt5nOt5jF75jF75nOttTF7tTGttXN7tXOt5lJ75lKttVJ7tVJK MRnmpULmKULmpZTmKZQZOoRKGULmpWvmKWsZEIQQ7+YQpeYZzjEZhDFzzuZzhOYZznMxzuYxhOYZ 7xAZpRDmhELmCELmhJTmCJQZOmPmhGvmCGsZEGNSzuZShOYZzlIx76UxpaVKzjFKhDEx7+YxpeYZ 7zEZpTHm91Lm9xnm94ythJQQKUK1jKXm97331u+UhK3Wzu+ctZxaWntzjHOtnJQZCABrWnve9+YQ IQghCBDO3r29tZzW5vdCWkrFveYpIRCctbWMpZRKOkLW5r1rWmOMe5SUpa3Wzr0IISFSWkoxKULW 5t7e9/9SQkKElHP39+aEe3O1ra3Ozt7OxbVzc3v37+b37/cAEABaY1rezt5ze2s6QkoZCBBaUmNr a1o6Okp7c2vFtcUxITHWxdbv797/9/8I/wABCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzI saPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fPn0CDCh1KtKjRo0iTKuWJIAEC gk2XSp1KtarVqx0RdNBQQQMEpxAmTNDQAKvZs2jTqhVq4AIGChgwTOhwQAAFuwnW6t3Lt6/fjgnE UuBwoMMECgo01MNQ7q/jx5Ajr41KcEIEBhAYMGg84cACyaBDix7tU6sGawQbYIjwdkK/dJ0/k55N u7btkQ0Y3NPwNHeHBhM4PMN3oBkECuTy3l7OvLnzhNQYYKA3TyCEDNwqLLt3D9yBCxqu4f9T/ry8 +fOgkTGgsM5aOoHvwAkQsCGB03bgOkAoi76///9pIWDBAQdJwBtB/zxlHgINNNiAAQY4KOGEE7JD TYMWNpChgxt2eGGGHmr44YUPGgCBiSieqGKKLK7oYostNgjhihNGKOKNG84I44s8stjAiRJC2A6I I+JYJJFGPtjjiTq+KCOMFCKZJJJUFvnjjihC+GADJFY55ZFgfilmiF6WGaaZY4Y5z5lspummhR14 g48B/QwgYj8JsJNAA3aW08Cee1rYT4g3FkrooV0m6qCCP2kQwaOQRirppI8KEIAAEcyH6aURZDDf pZqGKiqoovKT6XyUpqrqqqtmQCmmror/Kis512DK6q2Z5npqrLL26uuvqOIqrKSuegosqcD2iqut mgZwarLQRpssstJWa62o5GiKwXz1CECOp9xcK26vAYjDgQCeZvAANxlgkIG66D7wgKfdYifAtuPm i2oGGgTFQAEFxFOAqwJzEI/AByN8cAEGA+zwwxBHLPHEEl9zAAMKYKxxxhxv7HHHIH/ssQAFCKDx AddIE8E1BTxzDQcUP0MBAwfQE/LNHstzAMcKyIOYAhQAHM/F5FBs9NEz44zpzvRgfAA+0glMQc0b 0yPO0VhnTZgCTXONcdNwuStAXVmXbfbZaKet9tpst+3220YzENQE8dxLAQQVYHAxvrM2/10XtM/O F9cD4x5A3kkdYCBBag6QtTM7DPx6ADUVIcAoAPYJVI48ArjzFATb8qOvqAdcXhAEy5geDQANTE25 QRpggM81oo/uaz0TrI6QPw1C0AEB8t1r+/DEFw9s7cYnfyqyyIcaePLJRgDwBP5G8FsC6TTlVALz JNBPOWvOM4B92g9gofnUrIl+A+UkkP6F4++55qDU0P+niGvef/hJ8CTwTkGWA4A18uKP+WUof6gB STnwJJB07KkcF/IT+24kQT9lqII32l9B3mE6ggwggQZBQPesQY31WZAagrLQ/Ca4Qj/lL1DUQMZC CAAAAtDwHe4D1J8e2IAW9rB+LASiC/+F+MN+TJCHPDQgCuEXRCMO0YlFbKIUh9jDIOqPfeF7X/7U R8EGnXCCE7ygF7sYxgiO0ULsSOGFsjiAOv3wjfkDHxOpuKc+vbGOVsQjHfnEJ3ZogGRyA8oBIsAf ABnykIiUiAEEwAEHVA8CiYykJCdJENAVIJA/GSQkKcnJTvqnAwJ4BvWAwoAIbNKTqEzlckB5yaDQ w5SqjKUsR6OBq43yJ6U85Sx3yUu+aMAeBVBHUAZpgF4a85hoqcD0qtcBZDrzmVLRAMww6ZNX6hKa 2MzmT8AhvVv6JJfaDKc4ddIBfrRSkLAcpzrXCRNWerMn4GSnPOd5Eglw45w/sSY998n/z49wswDv 5Ek8+0nQglJEmsEcZjoNytCGLqSWAH2kUgJzgMIIpAEVZUAHZIO4jB4Ic2PpYEcvBoGmaKCiE9Ag SRAAgYoeCAGdIWlKEtABd1ysA++wxgSIA41mpgSmGS1pZiraAZGORCsKgEa/MKcAb2hUpUcNy4Ey Q4GUtgQCD8BnNRdKk6ZAoB37MJF+OiCBsZb1K7nBFAfuUQ5/VCACortAISWCALBCAAISuKuL7mqi +A1Gehh4ygIYYA9y+CMjDAJrilT0onY45QAceJThOlCuAIzHIu+AB4N8p1ey6pWvXIJHSyMgDutZ ox0BONfdKtc7s7rWd2dtgAMj9ygG/yAjAXeJQDyoiZAEGbUpEmpHhIYr3C3t8K+XTABkI0AYeFzk HwnAkov+pJW7cIACTZkAqjBwTYkk4LOL9RGXMBc0DCCDGpAVAO6gSpINBECU1VucTRAwSFuxqqp6 k8ABvEFWrrSjlOCoSAfq0SlcUaArF/ujAD4nPW7o7iLt6NawDtAPcExgHXFpwB/VoR+jOoQADegA bW91jwQs4wDrOEDJnJG4uzXAwwxJgDyE5SwMxFACGp4ZNRxoAGdgQB3/WAg86oeQwKymUpJyVqQm gAANjCUCB2jAOMgRu9JdBAEjvhUDEqCbDlgsARUoTAPUIY6lUuQdWWZV56LRAMCWw/8yDGjHHwNq EoTylieavEkCpKetndHszxUtWQf0I4G37NAaiRNAdx/SAQ8UQBromo+xNOWpTqnjRx2ARgQoQFMG 4GNlQcZIBwrgAWPFxVPuMpanSpYA3jEgAJxmAD/EMgEQToQABriLPDK2M545jWQRmMePcFsACoCj lHJBxz4q0gBpMAwxDICGzdwhbQVQWwGPWrZANEAOCsg3N+DoB0MQYA2OFqR1ZyMQPDowmC1TIAOy JtBF/IGBArAmVJNGl/Swi1cI2KUcmWGABqAxDTNPBAH13tkB0hUXfK2aA+6g9dgScA8OsAMAEuDA nU1SAUfTWScDpUkCPAUOA/xGpMj/aFc09vTHa0BAT/5gwDS4WxEJBCAbPb0rWcfK2a1czCkNuIbM cHsZAfCjA+x9iAQ2Ldb9tOOuT+93B7JVDgZhgAPjwTbNKNCBw1IE166qTkII4AxxCODF1DDAAcYh mADEReMVSQDJksOQXLKZplcPZCnla5Fcq0xwOpuaBSygMwtQIB4YeLG/kztICkDZKRUhADJWY9a8 8tzyrPGHn/44DnFD4AIo40AFLIKAcQggLywla4SePtZ7dYAbEVjGXdh9dgBAYBobL0kFpulKrs5E 7hjwhw0TUo4MUGAeF8vNORRwAHT08JU+nUgtI1ABBKTDhtjHfjrgkRuBg6MdEiCH/zyo4Q17c8AD NL8IOLIht+sLZPg2vD4B0vFunYMOA7TnkgQmMFeJ+Pv0CkEAjiIA1FABcoV340Az6wBKH9cQbVYA 15B0AhE5vnNgNAVlAnEA2bBoEXEccsEl9hGCIvhdjHRg5QBKUTYOGNAOFaAAHWBrElEOb9EYAIAA 86d9NiR3sRZlndFMDJIAZGZwdIUB3KAg2wd/w0dfFyABLMMPHMABcSEPv9MB4tCAI1EBwGSFN7F3 evYAGMAQyPAA8tAAJIMPcaEZbiEdAhB9ErEBMKOFAEANDnAx54ABCiAA9xAN+0AzMBNlohYBcJiB itYM3PBKGLAPCvAM9xBxvxF5qv9BSAqBABWQDeQwD7V0AZqhDhXAblMDiBVBDdKTAeK2EKUUIXdR Mz3FOvWHEbnmiQuRDqvBAOMgD9BQAIZDAdIADaAHAV5HEQhHAf8TiddAAegGF8TYFOigGwfAgQ6B cAC4ENDAXUN1fgywAc0gfveAD8w4EhrgaMKETtvYEv1gFzCGOcY3ALTVOf3gDxNgKg+wZRWhAQDD AM6VEAggAQowAS11KVxHEBVVjg5BhYFIAHABHKDCGwOWKWxlEbg2H6+DEE1mdtzzN94gQwlgepvG hhExD/cgDRgwigrxSsVkALRzDWWRDhLAABNAg32XcDE2ce6QKRnwgto1H7kHEcD/V47RwA0R+EeZ 0gzWIToU0A5XhgEPwJIIkQ4KkH4AAA1Wtg7zsVosgYURRUq+JxPlcC/lmJWMcV4NohxeiSehNhGN dkkwBg8GAA0ptSfURRCZkxEd4IoMwTkJwGYaYoND9iASyBAg5ikXZ48aMA21V0EC8Q8VBJAKoVzk QJSkGAHyFSjvQQBNgZgM0Q4sQwH1mBA6CAAS9GLZQyLm5oteWI7IwA3BhwAZohwIECHlQEMWAQ/n 8AASCA8HgH8D0T4CwSDs8x4s0Y1a1RP6ZBM6WI4J8ADnQJkU0QD3cBkeZkMNoADNMJYdAA7ICREb EAGOxBDw8G6H45ocsUgEGIkV/2B2hTSZWVGb/XcQeTYQ1fkQ++CSC6GDvIlxGpkRxRlYC1EOiyFD ubmXQ/gA/JkQ6XAA3HBN8wkTwVGVuOSYXXgN5egPWjkQ7pMViWNlCoFRDKAgCCebHyGQDUGQz5gO D9KeM9QOGRAAfwmRGpANtbdtk8MR/0AN71ZMjXlKmZGerDgOxUacAnAN9ZgAb5GZGoEAo7kQCNAu LCkWJGqkpoeUB0EAB1APEjCf/bOkH+GbN4kT61kTAyAA5/CS+AkA0XAB0HCgGFEOkZOhCpEOasdk AmEAb2GlC3Gd2TlD3FmDeFNUHNGQAjAA4ikO/PCQB4CiHQEPS8mYIblQkUOjHP9hSfKWmHaRmx3A dkJqn0WamESoof+YFUYZmgZBm0zpQF8hExOQhRIlnJeqmfXwpSCFAfS4EZKnAQ9goQgBYgInEDIa Z3KqEHE5kBRQD3kxD9egAA3gnRkBYt2Co+wZmM+Ij1bVERNQD9qmEKV0khqgYx6Ra89QpvEZqQAw Aa6qrBaxAO4SoBDphf/DZfegpxyBABfwjGN3hxrgmuCgAAawqxxRdr/JE8FZE8NppPNxV+DqAP4J EeWgAdygpmOHUcuYGbYJEtcZiOnAOe0AHAIghMcKnkmHDG8VAB1gAN5RnxjRFHDxkAkhcxUAshiA DmP5nS+Tpbl5L2XlFojKEff/WY7kKpu58bCcyg0SiAB3iBk/EqczAQ4BoKDfxKDCGaGReHWV4ocd gVFQBmMEAAEvYykXwK4dehkOMUjSgX/4+qQm2qIqykhxIQATYK4agVsc8AApmhB08yjnUAEwuBFB Z4vGehD0Zg8rw3+VOqSpCpHnAIgUwHWemhH/UCt7GTk74ypRZqYugVDfmElXGRObmZvOoJJiYRgT UEoRYAH0wH9b6wEwCwAGADQ7E2AicZ2j1xAWEAFOFogUYQD1wAHNwJ++g5qnxE3i4A7qILoeAQEC cxm0VrxioVH/EByu+lEf4agCERiaq7liAQ3ZEAAHUAEFOxHFyaoLsS3LMBYh/4FwGNCyCBE5E1AB mlGzMVGqSAtPlQsTcqdod/VWDhNZDxOmIDFqgvZZeiUBBrAPhpGyf9uh9qCNjHXAJnJX2/K2HgFi 9VYA9go6gFgXy+A7B2AP2SCu9llxWAO7jheOGdEO9YYBJqJiRmMBKzUfH8u//BuXD1C3gPEAsadX CXzAoMMPGxCMNoGlvQfCKzFy9vYozkYxFDAS4AAwz6ArkSIApVVb2XsRGecBSsYqUBi2AQinABNZ ulUA5mJvzgIz8AoSypU15hKoJLEPQucBjwIzRvOoIUGuQawqmFJsOvwRLAVst3IuPjyVpmqVfEcT 7yBi9EAP7sAADqCSDKAOhv+MyBJQxx4RGJ2rAJIsyRjDfPRwMRplxQ0BZpU8yZ48yX+mtWJsGJpx AIWsDphMD9CQMQKnyReayIisyJ3rAM3gAKgscGr7Edawf06zyJ0ry7A8FyTxDxJwyzjDfJohshyR DhWmyBcDyp7MAE2jAU+cEjwMjg5FT5CbzQiRoLI7EyHHzeLMUNecT+87zug8T8rUvgKltOn8zvsk uQq1x/Bcz8i0e+y8E+Fsz/ycTf9UujXRr/080NDkKPkMcu5M0Ap9TPgM0DSxpRKhYZ07F/yhYSr5 UpyrkuvwFFoxAeigjxhBUTLFOprRNBV9UiiFehrwZ/SMEMCRUYXhXHuYUfz/UVMV5QAlVYM2fQDM axEJ4GQqmdOYA9RxJhAihlIn+dIutauB4ZRQk9M/vcr6yNEQANRkcVHNkFEgeXDHdgBzoRwU5QDA yyAiNhfuwTorPRYQEA3kGxEWLdYaIHbAYcjUjKdp7RVUXctXTXovHdQXhb6bC9YaANcX9w9hMdEv uM0OYdgakB857VVl9RvO9dOdqwF/ySB3rcENQZXfLBP7/BDLYCkYkC1LtQxw1SmQJCCCuS2JV4PL mVoKy2yOZy70sG1abD3bhgHTIA72IA4+VW/2QBi72gFPCDPUR0PS9IQFsFT3wDCRxQCvEzQcYA8Y UM0uvRo2qRyPGAH20Loq//aEa1hDEPC6fKbZC9Fm8QAphoM5jKQy8GixlsIBoxQclaLMDrEAjucs yzjZV4cpgdRkmIIBF7ABRg1XmCKVAjYfdXgNS+UooOKDkSMA4cIAZYEA3sAa5OCmcZegzGVlcTkN GdBtHRBk/gYpzZQODHAu2zKUF6EA1Ts2TxEYd9EtamoAsIcpSwVm2eIsGBsRv7SvOyHQEeEAhCFi GAgADgBlqwFJcge7PgZL8VtKRezTsFUBD+ANAhEc0FABxAgA6VABuyEBFDANPrg0rLGr0nQPpaQO T0EAFRAAfNi6qzEB0cgAYheLm/qHrnoOFH5RxLGcS9Vu6ImrvkNZEWDdlf+UDfjXARfAabbHGhXA 53nxnFMzGAqQgdS30uadmE/D5cv4Hsq15UeeANAAhe1Y20guDgdweOFtEVpODeBQVVmucQzADQFG rgHgZK5Tg/MBrrSqvYR1sfcSZODAAQy+Hq1bS1MjegKh2xOwAbX5x3RlAQ6Dn20GM8+Afk8hAeJw DpDVurmRAZcs3xcxAR4XXxVhGc00AJuW5dZjGanNkzQE715ufP2gkhfRAMYBAP2AAfewbY45ADy9 ba0bl6rr79RQh1DssexgF6PaARbwI7kuEHDRFPTQ5QDwbtZQ1RrRDszZABKgHNGgj6ATSBbADdYQ HvyRACUHAHeI6LfJtd//GoGYA4jIMDXv8WbNMLSjFDnWwLEmS1fV2GQMQKMIQAHUbHzPOwFZO3JY /q2mFJgHAMMQMZ6LswBeDfAn0o8AwJOWQzN3zmmrfmV5U1RuUeCjBwGhax2wG5etexd5IQFLeBEH wA+R8wAxfoY1+RQer4+u+NNRtnQOnRD4PLk+AdELwTsSMmNkEZfESH4RcGzZUAEhdi/Chm1ksXQu Jxb74SA/W+gnIuUaQA96rHYaZxkYoAEScA9RhlEah1eskWidX1zl0NbsKSMnAg0e0AwJOjYrfbEp 3rAqnDiv728eiw45x1eQN25KclcpToxyVgF3dVJOpsfX4cG45/z8MA7g/3AOZaZXXGL7t/8jAguF P3IXGmAAwSEPb3WIYUEB67oM3HAPJqLbGoAOCUvDshWJ81DDseMOANHhAIYJEiBo4HBNQ4QMEA7K owDOWQAMEAxQkFbhAAcG7RxCaGAgAQCSJU0CQNDgIwR89hg0qMCNgkUKHCcIYAChg7gHOgdO0Mmw AwYMBh02GHnyZEoD7fYdpHBPQ4cAERwesHegwQQMB65ydMDB2z4JESIYvJnzaAMESksiSNBA5UcB GTpQsNrg7oEOBjBE6LCPAQdoFTjMNKDBm8IJh58aAFnO7WSSFewVmEBZ82bOnTUzsOoZgIRrZs1y KBAhgIAC8QQEQB1hWv8BcWYLcIggAHXtCLcjZDNtmkFbyh1em0bNQRzqeKcLTOv9rDYHac5x97YX wV5zswIiYNCQ1C2EDKYDSPNdQD1uDtnF+Y7wLHUED/Dlm60enALxzQ1Kmw3gPQ4E8C646wrwwLkI OPAgv2zUW3A+0ygQzy1q8AJQQAUDTA833Ti4jjoFxUkwuGvY0SwBeYLTjj0QVXsvO98CfLG3EFPb rUDTJvhHM+MM9C0bD24UR0joojtNOu8g5OAZFhXgb7y/dBSnugC2s+48e26MQEP6muNHmiFzM60D ypDR4D/TboONuwWlWS22LuOZRkMacfOyO2dEI0mD+hjgM1BBPaMnNM//JlAvUUUXZbRRR9WLJ1F5 NkNUgAMUOAAaBg44wJ1NL7hHAQYUEHVTTzEAMYB6KNi0JkcJq/AkDRItjxwGGPB0Alw13fQAB3q9 NdhbLx3WHU/p2XTAWCfroACc6OEUV06nzVQBaBTQdVMGfg3WnQNu/dXTA6C9xh5x+tFsHwblwfQA dYDt9Vtvh+XUWmul/VbadxlAVjYINGuguluRvdXTgulxZ19uERaW22+5/fVbejCQhqPNGHC2YQZ4 vVXUbIN1d+Nuo1WHV2IpiAeDKJWixh0GLdh0X1F/LXVTTdvVlFN17KVXU3quvQY1DSiLpoPeKCBV 1HtQU5Rp9TxgNV+p/zk1VmdMKcCrAED5bAyzQb8G+yTQJBAN0dQIRDtttddmu20C49lPswkiYIAA ktI5CZlyVgagRwAaYKCCqZICnO0hmxmguCEpkKCDDt4BG2/KEMBAgGXdMnprkwiwO2ylGiCwAc0M iIBCk/zerPO7OwPtX8oaCOAAz0WDwBvwKOUgs9k58+cBlTdLAIO4dz9JcpLm2Uh3yvAywKQEuCJn IAwYuAftA/wpyXgA8O4RdQDKKWcCcTT3zE+tiUefswMM7QzRCDQoByl2qJknfvuRQor++OPaH/8E 5q9fA+I3AAkEgALaU4r4hkYZBCoFGQiAoEkQwI64JIAa7DCAbhiwAP/KaEAcFUEJPNKnFApYrjNG U94IT9IOcgiAGpopiwJUOBnQNO91EZDdDJWyD3lgYAO4W6AO3yKAc/DtJAmgwAEaOMMKiCOFSoHH NUwowQEkwIoJWMD/Lni5zqwjAuoIVAXk80Qhoq91ZXOW68pIud9RpgLTICOfVMcZChTAHVwEwAY4 gA88oi8dJexjScrigDKWpAEZEIDoKEO6AxhRhYOZQDQoQ43QeU+HF6GbJU8iPkIW8h/R4EYbJ0kB CzgyfQiYABw1g4ASqrGMEKBboMxHvkISr1CuvJizzFTIBAhgHCKkzAQyokkVUo4DDsCjB01XSHhU LpAk2UkcR0gA8iT/UjOwvMYzd8eAZ2BAkW5hhwa16Tm/FMAbm1FHBHhUy16KcjLsEJ4p0ZeAjQTR LQi4Bj++WcbMhfEy0qwl2MaGRgHssoztlGcFItDJQiLgHOLQgCk7MA0K7FOHf5ziZrwIxlqCzpo3 xAC6aqkO2tjziKzJgEVn2AAMFGB4k2nMcGq5AKIgYzP9iGct/+FBgALgHSVsR0BhSUvOzDKg6Vsf LuXmLLLxUgAvdcvcejpPbgRAqSZRpmSY6cwTLjSg1KjcCykDSwokrpYYe8A6XseaZZaxnDkMJkds ykvfyfNvOa3lGyugmSh+tJBG42jZUDPVo/LpjIcqQAAMKkSEakah/xOAXCHByj636LGitcSoNstC 1BnCAy8ookw7vjNOz3EThJPpZQEUQFqwtWMcBWik3Dii1TX6DnuaGQAGxmFX4olvqpWzYSGHKss/ FdaWlKUUU9n5VHnOba+1tAY3BBBctyjTrGXsqzZRGFAClFClJoGlPDhYSwekZrEnoWQBMMDar+3j GtPgrEkc4MSAJqCu/cFrIRfSU8r5lZ+x5JMYvWbc2Q0UsREAx3LdqZTHEnOElEupZsBB0e+O0LMZ vSaAa3kAF44Oh7zd5m1MKkFypKbC6WMpB2LbQThGtrYYmCtlcgtVIU60p3+MAHWFOFw+GZXAnksq GjGgVqdS4J4RTP8lYXe3gAdkQJ4d4IA82DsoynEjGv8wIlwQYI39BpSVEdiHlokDlyvzmLy3qQAy rixBa7QDpSdGHwSuAdvJQBABDKDvcsfBmQGMg8Y6BMf7NiNFOKNvkP4c8I8FilzZYiCodL0Gf4iT gA5MoAHqcCKIPedQwJhyA9K4bCExOo+D8A0CDkDHBC5wzID6R8W6msA+SHLqnCyEHkc12zUYoIFv IsAZ6IAGavyrwwZcwKX3hMAENEABODr4lKGk7WRwSoHb/jV3mvnHBaYrVA2Xr7iKBtstNeMPDRzA Gxbgh0uvOkL7TuMASWTASBCgAXLkRjcjnmHwPGCpb4kuHR2ABj7/LMANDxxArNjFSAkFAI19IqAZ 2hHHMzyA7xGmYx8tHRJulkGSCWRjQALwQHwfqR5zCWCBW4FNfZxV6N2VE4d8ectNXERxdmPA3fD+ FwIEwil8jEPFmg7b8+xhqVB1QITl6BUFeMLy3UHZUt44QEQ50zUlg5uGZ6HMP8qhGwL1pqAzRRWB QGSmfzy86xx4Li/DvqShEeACrlnSAUBbRgIcYN/liUfaSeKNfZMjAIkuYwPqKIB6/H1rCui7AJ6x 4kKaLQLpzuFQItDCIVng4DteX25gO2nWYKDe4qgAMNd4jX0vKTPw0ABscgObewAdbA2wQMl1EzcJ gEjsEa6l0cRB/6B9s7wC37a6oIL8OorIRQHKdao3Yc+BHyLgABfoADsGUwFnz7NyxufA0BDQQpAw QBreKEf1d4dPfkhgK/FIIT6tMoAKZOSrf+lAAxCytXsApgHLwOGUB4Wx7BsthxogCGowmrZ6JYhw nKcqiQT4jgaghgOYBppLHyZ7gHZoAAVAO5J4HvDQCwEopY6qiZeAgHr4HQ3ICrkInYAqC2+Qi/J4 pgn4p+DbP0ZzHrNggGbAgH1LMLpSp2UQAHtIMOd7KgZAFb0TIpqiGyFUrO1BlVtZNQtgutlZGlFp KVqigMVjgJpgqDKCJxVrhjpyB5I4gAKQB+r5uYDCGJcKQyMDAP9wCKVkEbkRggAKqAdOOYxJwwsG mAByyB3REyIE8AYBAAcATDQIEACpAI0/U6Hw4QDwYIBsWC8A6AAPIAcNWIhtqyVYygDBiQBpWDeT MJrzgcFAETfKSID6ew3UGDJ24gb10jZvAgB4qIDKCYBpQDsXE6J5aKls4AecQBF4AI04KbgnDBsE kIcC2EUCITKSgIdmqArdmLhWq6PHI5AFuonVWBAG4EMhWohUMTmSaIfq4Qf6OIB5cL2vaQB5iIfs wIm3AMAAqAppiLdamjcM4IfKeQBn6JwOqIenqodn6MDcUw5uyA0G6BEIqBwKuEEB6MT0gaWzKUSW kwDWqLpQLAn/A5skyIAAC3iGr+OlfQQJkBizAZALTMMAWSskI2QAA6iikogfA2iAYKuIOdIhCyio BqDAasNAyAAcVsMsC3gfuWCHMaMGuRiKmSjHQUGGZYieBghKkngHaxhKo4EaYQQbf2iMenDJCoGL oZwAfuCGHCykfhBCS2sHa+gcBDAA88O/BdOhAdTJpIAHanBJCYC/gCKdgusLtuCMEHyGN6RIpRi+ zpgV0FsufNgMWIKvWkIGmzsv9KqcDpDJYsIaz4ClifSc6onMk3i3ZTjKQUEisHSLeiiAbNCxGUIA w4CrycigbqwlqzyAR0MtAWDLGQq0G8OLhYyz6oBApTAOwPvL/4uRwaWQizNMTR0KnnpoAAKIy5AM ia5BxFMaBw+wgPjTS2WMygsgiM7kEyCUAANwSUmSoPnZim4ro/XRAO+sTpSIHwDEgA7Qzu3UgAx4 zQYATwzUC6+jyq+ZN3FQw+VUxrjYCu+ALHaagAMoTZNABt/RP0Gxsc3AC8i8xADRgMxklin8TUIJ TqzKDaYpznw7h2fASgB0HQjIPPQoAAuQx5bykIYoCUJ0xwHRgGxUoXQIQzLhSJKYt9cQAGmwh91E nxo1jY17xQ6otwVpTxlVIcPYErNQHiSyDWc50AdLpQMCAK4wSaTDD+A7qAlgHOVUnXSABwRIB9CZ TRVaCAZIB/8CiKC3+J6/wE3iQcwKSAACSFPOiEjfvNCra6rPWJQOlUz1kKJnyMEOuAb5pID6eE70 YaVFCaJmSZQAqIAlGqHjUy8LNYkwVBQiFKKNwAB3mLMvfMWFeAB5qEcJeE/RcAf1EJ4BgYC2aACz 8EkTk8eFiABr6Y1dGoAqrI0C4IbGzLe5qQcL4AutAhwLsICgKaKAWgdx4IdRibq2oKYJsAC8EAAJ oND0IR1j7AoGiLbJgABy6Ms8VZ8MLQl6u4YL6A2/3J3gGRC8EIec0wAGUCsIeA/G0yF8So0SAoyS AId2JbwYZSZMBQl1kqAw7Ard0FQdwgvRedUcmkf3fLdWraX/ueGADogGaMgAqXvVZlhMZ7m8e1Uo /nyvHIOmEorXCLiHKGU30Og6regTh0yIUxWNicKhmvidaGhHrnvT3YElaaic3HhT44iHLBRXtzis FIm/56Eo8Zud4PGmBFCAaSC7DmAAMzGAB0lU4llUrdCABwBL44i3cpsAmeWMulOPvmjWk1AAcugA ZGgiot1UrGtYHL2LdbCGd3PPWmIHBQgADfgHgZgAyQAdbm2pYTPNhbgGuZiAa8g50BhHWOIIsuWM 56GAqei3yuAIlajHGOMncVAAufC8kUiACigIgyyoa40zHJKLgXjTbw3XoqWMUfSRe7iVQ5UhXiqh W9GNXeqA/wsgB4RUDypdIwwAUQVgzHJdRGmlgAlA3d0x2wK4BoywpzsLgMBhtoSdoTTswmtDCXDI AArAhwBgXMndDCL9DuqJOhGiJEsRtrkTIrdVjVsBCslgpUW8QmmYxPpiAH4TgAlIilmZngMANfIt 3wh4AH5ZROwZXaRh2Z2dnbIgiP3tCc7ogAzAU9itSKzbDHDwDg6Vx5pwR8IzycIRgIgbn+adnUVd UTUySNhIDamju42gCAy4B1xyhnHQLX5Av6NyB9c4B+ExqHY4gGsgh2wwytxbEIoYh5ewG2RQB6JY EJJtqIXYyOp9iwrAGgqADf+tr1TaPZMjjhb2DnsoUzgUB//oeA13aAsEWIcSCgDXgAAUnp1s9ZBQ 8xFLxWDAJFeSWIDVVQ91bdoMqAgGTADiIAAAZYAAUAfO1SF/aCm+ECBJY4cGaIYEmdCGaqV+qCIE QoB5oB/fCqh0qL8O2B9JS4B+IFR3uK6DigkFmId+8IfOIYBomIfxNFwVigaF8qZ2iJKtRLr+XdBA SQB0uABe25u3kIsNLOP0cQZx0AoGtIbIQgCRNF2VZciKgQaXHABJNYk7tUyKPFrOWAb18FN2Q0AY ygBwkOPJQQDxM6Y3hABzCT3OAFPtgQvP+CMM8AzRCqzOWFOUQAoQwwcBsIZV4pQG4Ob0WQeFkBuz sGbNsAb/K0IAJJUg1NyMdsAAxhWNfwaAQgax0YWGedCMdCAK1pK0cijkhCaJDRA0zcCLPQ0ULaPM 3PDVsQJXQL5Q2aWMd4AL4vTnCpq0jyhkzaCk3+lluBhmftAAlX5FBNCJ6owLDZAAlV7MrAizyEwH cAAOfFylBNiHcgAmp1a2DkgAii6JvhKgQs5GCIIHeKhNz0iJZVAk+RMcCGDq+pMAiY6SMO1dr/Bn uRjqBExPUpwAbhiOY36LBGjIWxZOpMDRBdAJCJjTzXDbOkQAmUTqCqjHmpYgvQgPlFDsDtAAk9SM d3geeZhqyiiHegQxuDAIvEmAdaDEChjs6iJYl95j0BYg/xyVP6n+6r3kCdg8IQv+5lC0yNd5l5ai M85ABnQQgM/taNAwC2j42JOIrprsAAgAT/nTlQuQhpRt3nSIQ0uxIUz6x8mg08FjAHCQWBzdh3aI RXKoAHka3WctCQX4jtjpVihanwNAh8CxKAiogO7jSc5ogAPgB93Z3yu0gGfaCArYFzVyao0oHQPg rXloBpwQD3pyRTt9qg0oCHZMFlntj/XZmgTQgHch5eadNw6oh+50iDHrgF/5C5ct8d3LOXyYQ0vh rQycAAPYh7LGUYw0GgzAycmp4LipQAqoN61I6H5ioBXpAJVGJfBoi+d5qgOoBx+FpWpd59EQTZz+ zcCsM/8hPIBzQLPOKIeW8iZ/2F8KoAfvWEj7cvEKuELR0TlOcQBvUA7CIgADmDOFJAlqgIaUsato YPN3oQcWtgBdyY3dRHEOHDNdodVAMtuCO4AHWCxfJAgS5V7OuJACaAZowsPccHAVWzbWdGpRCV8b B54wzACRRgluwrCxWpVlcIddYoeb6ArUyIDqZpk07JMuMaA3zWWalgBMUSQIuEIHKCEuHmkUjw8z sQbWWJDzJsUFv8JlAKY4zIAMeOOsZccBuXLRfuRAmrADiIsJ2IA1ptoDuAcc5wx2wIeCw1FEwQ1p AE1v3cSuOAA5pWDFE/O/DOd7coezoIrb3gx/gIZusiL/AhkJheJsAGAy9aLaadg41Gv0BAg0dQIx w2hPQxIAbrCrrZU/fhDSNaQbZ3gAMAaeFhIPMBU8ca+7Z7AqKC+JmgiPucFpeGiMLDTd9qYMn5QA 1JMGaFDGoSgIUjIApgYAskJoazAOz61tKWGAedgA1/lEvhBNxj4JsoImAWh5nNjvk3gHXUYKC/AA 3u034wh5zvgH0PjBsKMb3rKGJ9aAtCCODmgORCJjTQMdcqjPAwdECkZZaiDER8RysVNIFg+L2EKA iCQQctiT/qCPDd3Xwyyx4oZBnb6nRG4HXyRP9G6GRXx4J6tSaYBppWgnWB6M5rvCiKKKcSyfD1Kj aLiv/1Ui3uEAhwf4oWHXAGvg0vneDAT49oIuCfeiAANg8RICh3fYiSwEwjjGv4kMNPJBAHo4YJFa HmvaCc25i/ibVmvtjHNcLQDo2nOIlqDFAHRAhuwmiTuNN29YufIXgEnpaJAQiP6tvso+IAIACAYc OgCA18ECgwUQBHCAlg4AxIgSI04YCGABNwwayFF4OHFiugQOKLTbp0ADAogVGTRYiCHlx5jlMGRA BpGAggfOYMaMqCECg38IMDxYAGDeBAYQIGCIAKHnxJ/uIEJgoAAcOn4ToEaEIE2cAwjXAjzlCqBD hgJbzbJt69YtgwgS2E4ogIEBBQ/e3rWtYO/avATX7P+h+1eBAziuCDQcsMrPA0EAEwQI8IaBgwAN Hs12mPYgMgAEAmqaRUChgAAKlzVE7PyAHgUKE3j2HCogQWsBBaShZGuBAz5o3NROhMaBwgEM9ta2 XcdhKgCsEOhFgEbNrAIP8qCdK3DgZocI9SxEwNABAQG2A65RaADAWYQIDO01YwuBX2oMFgy8s1Yx ggW6RWBAWwlEQAFVDCh4GQObxbRYfNAc4A0DuBHQwTgHUoDZMm5NYA9r1gggDzLj3MZWApNdIw83 LEGkgV0TKDDNS269Q1k5EKVDzolshScAAwdw8ABuDYxzVzPydZCeWfsACRGGFMyzjzTQsNVABM9Q wAD/P+KABhUEaTHwFplllnmAU2xpQBkHBRQwZlsOeIBBPwhUEIE4FThwQTtmNXBAAAKU5x4AEBzA pgcRTMCkWeAIcAChACSAAQW0xRTNBQVwIB83ZQGwzzX8tBkBa6XRZFRoB4iD32ylHVBAfJR9mc4y lMVXQKltMVUql6pRcJ5Zr8YqQGQXYiAoB9dAwChX7aSWYzkMcBNrrmBGII2g8gC7AAWCuinAdVcC +CJ+D3BzgKc9RXPnphE0w1MD0AgawXHpclUBOU/5g9wy9yhgaUwJMDBNBIFOgBsAEvBImQeVuoXA AQfANFSNPoqDGWUM8NUABoEyJIC9PYnlwEP7QDPO/zIaaGRfBLBS1p6PujFnJs01TxRXyB8hUM6f bn7XVkUY9ImAOwVMAynAEiVwAAUQNNBAAhPz3AADASjAjlvtMAAsRAiow0DSEpnmgQUdNFAOTwgk IPCmvXH1TpA2AfCPBhM4XQ48ZsEToATUQG0pMlNPANRbCDSA6gKDH0BN2BKhCU4DfqedQAMdYACp W+Xcs9Y/CZQDgQTtWMOWARRY1wA7PJXDTnio7VPgNT/zDIEBf5uFzE8YPD16ROkg4PfgHDCQ95Ud ILwAAwIc3HhEKV6jATvURA0RPH5XLgAGObb1DzXzwASPOhK31RmkTyOMwABPt8Pjl2BumXdIHbij FP/zEBlAr1JQOygyOc/AaTMAa0adnH3kH2dx0//MAoEJdIB3/fjaXPwUAXkoEHvtg0rgLBU5tlgj AxyY2UcgwAFxaMCAZinJZqb3sGtggCuMwhIIyZS417ElHd3a30Qghi5mYdAA4aJZ6ToEpmMRiC0I 6AAB2bIuDvwMKg0QADmq5ULaNOBgbkmRO+ahmAxUzEwEeBoOYwIORZmFAnIpkNkYdcR1uCU8Ebgg V9BCnADSsUxxiaBiGrCPV3mnjmaZiQAkULsGTKwBBjBARYRXPzqapgC/ehpP0vE0BtiDVIsM4DsA BY591M5SPKvdwBLox56gSQOHJGREDGcAZ1BKApf/5GGZyqGBDHhjkBOj3NMOlcRRvqMC4sAABNqB sK4lAJQCaMYwRxkwByiLAOgJmAC4gSplxqQzMZyIPN4IS2p+Ck+aeYsE6vEmbpLTcWkyy0+u5bNy SmQBD3hGfCJwjaFNIAPxuRg0BsDOiPgjUyMMQAY8JQFBiQM1GiAeO+EhLEERayJJiqcHpMhOYQVA PqU6YlMi4AF8RGqfGhDHM9qlrZQMIEMR8KAAirhP3EWgkkBCFTwMAI14ZqNC+2weoDTQAOhFhADR QEY0XHJJOoIjG//aGV+65g+1NWWXo4QAvSaQumdyRgD+uyk3ccYWgVjAn9ek5qSAkrxnJAYeCojA /wEmcAFSYTU0ecGAOjBQgApEBBwcGMeGIlABhJYTYkBh5jgjAg8K+K8ZG/oqN1WVVnkUwEoF6YAA LKCARyWTnQxw0z3wcpciyScuqFEpOyEEJEFZEQANoAcGmnEPoGgRq8gLAAMqcA5weCReaRVSF/e5 DnEIwAHNgEZvELBABckHj/u8nyODxADtcQUC4kRsW2k2wK0SqwKwkig3EyCAc0CEAV5K1a9SlJm2 dlB4KeJArjTAjw5IoG3bVKZpAjmAiswsHU3ZRwI+Cl1leuON+6hAPOC0GNl04Bo2xeplhdeOpAAL S786jQA6Ws51HagBCuCA7gBwIQUoZTKlvalIMv+QnAigAxnp0UA8nlGPljkMq53BDD/skhLxFuyz bYWqywoQgD5VdY7RreMd6SKO2CAQq9oN6NLeWJDJbukye8XqO07zAGmhtzUBcMAExEFCvpZTAc8I QHI8AEILaGcCytnvKC8rn5bVJzSOKhgHvJGA9yqzLi4DCkzK8TFpwAq05UTGnQSgAFHd4zoESN40 kHVgEE8gAB1rSDRe5IHjpAUD/rjxxVRjF9wI7FiXCSSdR4lc7MHKqQBYh1xF+WObocnU6vVWARxg 5MsoYAIZKUsHoIGPQ7EVq0PR8ZFqGZFwquYZ/DjoTRFA5kdRAB/pIoAGkCMtD9C1rULaEgPUEan/ BjTDG+TggAXKYcJ9XtYu3rjGBprHAAzwCDMSJudiGBqApuXNIMnJ6KL3KTD5UAbZCXsZBrQ01ABu gAPkmAA6vDEBvuSXAkeyB8gwXQARU+rdH4Gsj1cNQK36aQJmLoA9VM3NcpAjG9BIijMQFhKeuUNR XIb3NbRUAbPxJAEVQEdeAuDvhOIjkNaLtESs4bd+ZBkd0UVTZSfCFHQN3GYO0FQJ1xaRd1AOkfHx M7wdxY1m2E0i/fGbOqacdHKKlwLoqECkypGUCeC26TYLjzyeBoFhJqADDojLOW/ajgA40hkacAZz hxhYjQNwumbxHQLKLXKwYm9t0Xj5OwangVD7/xEZtJ4Hl4XiHw4EYEnJvgY3xg6S8Mja190SPUQa II+mhZGaCU5MbX6SUqwC+kDW8Md7wfEAdaBemSmigASQQdXQIEBtQm3rT7ZCAB4iwBoDONaysCqB qD7+kpB9BpoJb5Ygl6YlfGwiO7WLoNTDJAEQAMdB9Er5OjYSA8ugXdoaoLVNgePl1CRAfxnYAXC0 tnktqQoHlB5WzQgDSAASIcw/RIMBQMCaxF1b2dkBrMPc9VRLdMCFzV6yHcZ3AFUOLUVcNE1bpQg+ lEOoYQAG9N4obQAZcQU+KBlW3U8ASEDn4I19kMPgaR/NtFppdABy6MYNlpN2XQPlsB2BXIivCP8K do3cOKCGN1jAfnRFxAwHqaxfABHAq3DABXRL+4CDtClHtWHVATRMkPwKRPyDoayeOGAOgrnJ5VBA rghMD3oABu6TLGGYBnDYPHiENTBGchBMBbSe7yWP3TQA0IWGITFgBJyD29VMwd3DAkINk1hDP7TD QgRSW0kAb01ABRyAO6DgWaRF9uFgT3AcVCQeUJxGr+nbAzxAtF3LUyTe5bTik90UPGQKBkyAGeUK ZN3Db1jSTVmhm1iAkNQXmigAD37Q0QlPB6CJgEHWlqQGBCyimdgZhaAVTPQDF3nWHIbWT2wKB3CA PGANAbRDcoQPnoRiACFPuygPTIRJPNlDbrH/EwRczLz8S2jwYHzIoQRQYQDtnabQS8RxRqqJogDl XW0cigT8CeGA2HaVg+5xwFxADEnAw2QkITVFg3JUyGGkVwQsQwOoxiyG1mpJlX5JBDw0hXt8lADu Uzqslnt0gPB0jcroFD5cA9eQm6ZsANW0immhleqhhsVRk51EgFZUwLG8DgFUxcFowAMAH1Z1jgOQ A4fdRT+oRAFcQ1JIQ4vd1AbQyAQkyQlKigbIAwM0A2VgHTnNIxbiBQWg5UQMVMYR5FtwH1cIxAQ0 ADqg1ayBDDnaQ2JADAZUgAEkT0iG1mk0jUB8YXgoBV7w5D4FiNk4QMhNxIYg0QRMAzoGEJq8/19F /Aw8sNLWUEo0YpU6aEoBOgBoUEN5LGOfQZkvYcA+NEAFMIChaY07dMBkoIMn1tE84JwG8CA9lMVh QAMl8kNYupg0HIAB7AM3nEiKTIAENlVb3U/IQYBhQQAgQoQEDMfiySVX6KBZ1MWaHZuRPQDnMQQH vCLe8YM0pOJKXcM/ioM9gMZArePkJdurUIY0RJTYWIDLgNQX3hRFFdRawEM60Ysa3pSdEcwKAgA7 MAS9ACXtdWPGmJiGScCGBIA4RIADWOg+fZGQFIxPSlo2UEY8bOU+YWKiCUDDpMRiNMXHuCU14dia bWNPYFxmeicAkKITfY1uICOIcYM4KAA0MP9AaS0YA7hDU+ycYaLGlkhVRFjDBqzbdUkjmaTDAUyD MLrDXSpdUiQHkGKVcUibi0CE2jHAarVldvpRud2FUqSSM6Bpm9govKUTJ35J3SnIBWBGBfAjAAlM aiiIBGhPiliFBdCIlZLJP0hANkilOzQDsEjSlyqJn9oMVN3F/GiAJzrXVenoWxheXxQZQ3YEV6hX gLJTOZyDIkFFwUUAOIxbOcEDC13SOizkTaWDPAhA4H1EAqzePpKmpsARRGiXhN7UuhyNAgVATN4q 1SgnV3RQPJbTR1kkRFwAWbRVeIjPW+Cop87lGbkFjMSakaUGOrmcrw1GQkBFexFLorZFelD/ADlc Gsus5D6hSVVCxdIoQANUas3UBQlBhT/Y4IBM6JBxRj2gS1uBwzk4IMA+AAZM0z6p4H5lk4wqE1QJ ABu9hXP9YLdCBXgCzXWN6zUkVU/QF7/SzFA8AzSgngZgYVDCl2rsZnjkaM0QQLf8UEx8pALsJh29 HlToGWrg7IRVwNGEmspMwK7CGwQogLPiq8PKzU39BL3mEBFdojy9bDXJTMe2BY+Gp9HAnr5hj/35 RAAsiq9hgDRMgLyK0dWuKR3hao+YxfR1JzUBCtZSA3KQIFY93TScqtLohgDQ0D71klZm5wbAFcSy EznKwy4lgMMmLTlJbBlpE1ZB1QHwLFX0/w/dbi1EgCpdaArNmon4MU+BdcDYKpPlRRidOYM4cMO+ 0mLMjk+Dfmi3YC07UIC+tlWCpVtPPFGxrpQveUOo6Z4DYK7NIIACgBnWapciJixmKsY1GCQ7TR+x nO7FgSLnbt+3gizHZhf2MM8G5AOT9lVT3ORHqCAGGMDJlokNxW0c2aqARgDW9oM8IA1W1UWV9QSx 0ik3LcY0UECorQNlTACskpOBUkrFOq6lYSv8xgQFdN76lsnF7oPbDps4bS7nfuzndi/joehHZFno mkmqekC+RcWQGW/NyOrDyu7UklM6BIjQTgQ13AOkVHAA+WxPAG2EYdW6pGGodYCoYHAdpf9I0+ov 9kCtR82uzkinix0I5EIFt2YvVHQtV0BgeUarRNCX9frRUDAR6nUlzHwoAFAAkbTF3EaXBQSA7dav 3t5UadqD3zaPgFQsFx8GBVgvWlgABJAsO+0h43KFAj8xNW2AOOyXGXneTcGg+SrQQEpxT3iu1/YR Q44DH39wIbfVUITcF2NG9O2TaRwnZygxO9UuV3wkA+jTGnIA7+Ys4MYwNwEaB9xDo3CDY7JTSLBd 425Xu74FfEAXAoSKccmjOEhDBQzc9YWwKNLlBgtxACGAw1ov0SLzlebF5UKFXTUUVvXcbu6WNJPJ Wd0tPpRwOeFvHA+rbgQA1twqOBQuV4D/JgrXDAJMgB4DssPuchs1MEiYUTCXE5bo1cBBgA0yc7dq cCR3c1vMQ2owz2WWs1CmGuo5A4ZhLRdTQD3ILIdGlxkJsoNuyTvTDA7HBDUArkSzH9FaQKM8QPGG IBEC8vcm7EVDhaxKbzlBQDbkSSXHEfY6ckxQMVTY2aNETJAAdVA3BlEHtYIANVEXdVJHTLIwD4qh VcQsdVQjtVRP9VAb9VR7wzdOQOJGxKKOEHIQKdMiR1RXwB0CtQJI21RPtTsw7VoLifuq66ZY9Vuv NdPew66tNT7gNdNEDNPu9QG0J9Y+USJG9VCv9WHTdVWvNQ3zHfbhK99dpV9HNTS4dVLT/4OEGDbT DrUCYHZRE2lyOFKowceBRLU7KPZSz8/a4aaRol8HOINrG2AHdMCUpkYCly8DHrVyAfVv1k1va4AB yrZss9dsE/dsr8MwmsU9CI8ENDcSQQ3lrI10J0A0NIBwz3ZwY7dxO/cCbUoxa6yY6HRMQHKpcoA9 fKM9uMk3ugl7t7d7vzd8u/cBFPBEdEBFfWObqHebTFp+c4AH6Pd/r7d6p7em6Pc3tu4iSwRA1/Q3 xsNuIMuq0IOqTEObVFJ+R6gHhFR/+7emHLg3XJKT0Ms3/neBd7h5xwOHb0oA/HeExlM8WdU/Csq8 aXQDRC9+k7iATxqB9zeJu8kz6LebRP/oN65ZeSRRAqxWfKw3fzs4rLB3fqN4fre3gMe3aVbVtYjD NPg4SMF3fsMTrDRFSHHDPXRLflAKBdzDZYAj1s7DAzhpy8R3eTQFOXQMpZjgBZhgnZu5nY+5GXEA Q7sVrGRAPXARBZBlUtADliUFluHFNdy5auD5nUM6C815U8CKM2yxRECWmIn3RyizWbDDBFxDZi13 nCVPAcgheh6L0aj6M2DPqKg65/049lAGOwJy3TCAAxhlAbRIclwAA6iMI1EAxCmIamQWhCXFXOPP bN6dTp1ufk0AlhllyMnmrz+NBijcAZyoBPyHxwnAwerJxTAANGDANZwcliV4TCwAOKz/XQUQ1l2Y oIJUgHAwdfk0RZxqxD7MtgaAg1h4gAJwUuWMZinulJFWgDfEAz9UQAUIygH0C2YwgKDTMD7wXT0s dwAofEVpwEY8z9N0gE4xz+dA+2xmjK050jIYx6NcTFrhhQfQCMIT15drVIlmQDStDCDjZqKLkxu2 nDicw2XYxQHUwzS0bnzgR0GNyGWUBz+UB3tcAPZ8WLrL1YjnN4xjj0ZxQEZ8I6UwhNFjfUZhgDx8 W2qwkHFmrMe+N3+bN35vijQQDAZ4G2Zww6uveKt/WwH8OHtjgARgele0uUB7KkG/jfkREjWkMdq9 SkBBgAW0CAWkLSLWQy4p2E+QQzOQ/4OyLAUEGI/ewIM1FF/iHUcHbCJKwENcJIWiLEB+HYDx0BcC POg9fCQ5RE3xJUDnT9HtFV9FFO8EuEPGHgQ4qMO/JkA9gAwPKkU6WMM5rJcGVPvsD5VQLIDwLUYh J07KFd/SLkU9lIoZLdA9MJfHf6T8SgQVFh8ypMNivghL/MNiLoA6uAMEUIME3EMGIJEA3IPvBEjl YMAGmBAB8H1oRA1ANDjAAAECBRggAIAQgUG/cxTYFewQQR64ABQQJPAmTgOEAwIUQBDZoUECACdR pgQAr2DBBQw4MACQgMKBdvsoRHCGAIICBh0YHOhIgcMBCBoiYHBGQamEDhIkQGiQTv+lSgQdHExg wICCgJ8YApA8wCEAuHUYInTw6EHBBm8/NQSIIBUmhafOzJqsijKdBK1a1UVgKKBAPQX3BJBj4CAA x55FJUATQEHDBHIZKkzgQK6ZAwYT1Emwtpc0gA4Cnk0ovZp1a9erGcx9vRcphqACVAOYMFkAh4TR BAggeY+DBAAIBEQ4EMEb1dlVnYmLQIHCvQ4nwT3LUI/DdQAVKLhbRmEaOADvMAjQICADgudVJ9rG cM48AKTnMHDQcJIohWvc0DEpHQrioY4CCAh4by8IOPCmAwdRMoACBjTAYD8AYlNAngNRqsA2AerR S8EE90lKqgo0cK+B6TqoyaQG6MH/TQNxDjgJGg4s6GqDBBU8KYEDDthgPAoamCkADJYRoMaT2AkA wOlOgmmCDvC7sMeTKniGnA46wEcm3ThQwAAIGNipggOWgYC46+AJDpya3LtyJga4+QnEdwAAh4MI NuiAGwzc04ADd9b5CR4A0OqgHQY8qEBO/srKb78EGJBHLbBMkoADeSCYQCh4/JnggsrEUacq516D oJ4CvnzUVQXpke1KDezZU704m6nVgwgMAAAZATwITpoIikQAg2fEKcrVBjCYhgMciwTAGQ88eKa4 k1rcUxwM2jnp2GQxerQB6oDUQK8KOLAnAgGMA+CAAp4VAJx/+IO3QBEfhSDZCMSp/w8AAwTzKloN apqwHJQ2KBidOK9ckazgKlAxArI4uMckdpYTbBpHAWimgIllvRIBBuQS7ICDE+gtAlZRWmhPD+jB 8uOJt3RVA3gjCICcCzXwQJzgKDAAgQki4Kc3AfYBIJ38ApDmgEPlRACdkjnA4KR17Nm1NwqwfVYu byJ6N7iJ/b2SwACmCes4BpJDrR739OVAgG2vGznnCJ6x8srTCsjt1b9fi63dHtmZwPCy2dEARQ1G I6CDCZqZoIIOoD7K8ISWBQdFzI+r7DN2Ws5sAs473cq7R8tpp4EGGC58AnAggLocxScX0S/JT3cV gQoYcKchvh7XINqZDFBrgJTSWf+9gdEeRUCDzyYQHiUJnv/JPZ4qm2AZveYBR/EO8CXcGcOlx3Yr BjhHQILMyk/As63MdRUZzcmPtvCspmQy+9ejOUkC6JPmqnk8z3eYQ4D3DFcBzFmDd/BTkeI+owF/ uAoC6tjKMkAHj3ZoxXTuWUADpxSnBGRPA6B7VAcwwDLArZA1y+EcShLQAJHMUCQGMIA1UDWTBtwE AmO6iQEigip4xHAfBihiDw1QEobpUIY0nCHrVBJDA7TDhmOqYTmgdpwG2HCHq0NiAhj2jyY6USoJ QNU/YiiSLdawAdTI4kmQsUaRFHEfDYgInk5CgBjK0YplDGMayTgmMKbEH02sIhf/qVEVQB6yHWXk EQDKMUYn2rB/KUHA6mzYwx6WRJENqKMmVedIS8rRiZxMSQypWMQ1NuB4yEvAmLZYRFiG75JjsmIf G3AwlFyShlVUXTmWqMNMQuCHENDlKbfYR1sC0yqYlMrqyhFDhr2DHTdJZRUhkAA8nuQfqTPi6uiY xGDuMYnlhKKr/tEPGRoxiezIZTCtsToqmtMAzFSJBAjjNxbuUyWxeSG2BBNQgQqgAsjY5UfGFrDg WIhh4wpOchQ6mdMhoBkCtWhwUnTQdT10bMnBwPAg0DaOBtQoMFSARQUKDYYhIEkQjSg5BneSZmQg oRw9xwSYB4AGXCOhKD3ZLjWQ/wGUBpQew9NNwDY6NosRkm1Ibdu6GFBJ+/QUpXrLE0chCrSczkQe I03qZI75r5wMNQITmGYFsJrQj54yY1gVjD5N41KU4oYvELCAXJO61pSw7aFfNVVK5qEAmiI1oHZ5 pELwipsJXINz7ajHV/t6AKM2QDJpbVvu/lHRoZp1LwmYRzBJM4CuZPWh/NiASohG2MKGTyHkeEar +BlbAMTqnwBQQAFsQw8G6JYe5UrkSVZEI5/QQwEKgMY4MOAOEVUgKcVlQHGNi4F4LGkmKSwABXyy FeJKKospKwo0igve4hLmdBXA7QGM69wDZMBCJ3nHCJuh3d0yAB8eaM8u3VG1FP8qp7gZKIDejFUA efgEugephzpaaZoCeGW3ww0KWUSUgAlgYEK8fe5hGLCOlFBAwNAV72TwZQAM5BYaxA2KAkCMkhtd Q77aTaE7VIKP6yoAvQTGwDjwxaAIQPe54I0NBwII0AzMl7cEOsAS34WBAvtEANl4ITuyIY4Lq5eu ey0Aiwn83EpVbJfgGXCW0UveU/amxgW+xwHAh5LTYKDM2V0OQVJys48tpwCsWs7pbgaSAgflALbZ Zgd4it0lpxDAF6hzAeJR50SXFV+UuvFADlBiPmdUzfFQEgY2JI1Dw3YBHD70pwsgjXnAx79wlS0L BVcVdYgjdyhpgASGlzKuKVL/K8OrUG3/xQ9AnQQBHJZGbVEYMRhy4xo5RAlSrITsqkTDGQcQ9kzK YVCrYCADIhoaQgSiAR5tQBz6RI8AQEumCvRDzQwxNgAI0JUIUy/BpxRJnAYkANZqoBn4asA9nEGa ZlBg1CcRrFFdrRyVLAfgAJAAOs6pU4Hv5aQvlJCpE8DmJfqzKmiN6QAmU5WrtNoBEdCwIusRrs5V oOBHzV3KrEbrkmKLMvSaNrhTAoH0pAiFFNgAwQYHjghYFSX4ySlQJsDaiejzHxawRwaYcoFrXAAt AoAAqiDgrBFPfeoLznFZCdCOgoAnOCcn0GRGfA2mKIm1IVXhqfnpwqrEptU+/4J1wKmrEg1ItkPc 6iyUfMRhcRQchRrobshJMwFxnPYkgv+4JTcgFJez4zOnGjHDkDGBoKUjGgwbuiUxwI1woyPoahbH OUrOU3unWZGDzCNPt4odByDjkQawVOAp8Ft36VUlK4ItALoi+5a5owM5BdjtURKbXrlaHqaeRwaO nBKCV2XCL2yAAPCh8Q3EFEMhwzw+eOS8CrDW5GOedRQlP7wW8fw4Atj1Lld3vQGAsUWDY27Z+IKB ByyAm0AXegQ4xuuuGCAB/e+/QA7kkZahKBpAnfqhHfrhAMlB3lLi8rLP/5ao15zO//zPlFSiA1bF 1NDubygOtUyrKuCBGiRg+P9mIuP2ovmODSE66wGuIU4Q4F2uRSU2gKGGrQVPcOc6BAdVYgHAwdni RLSSD/MeQESigWCuw+VOwhnKCvMYUCXIJH78J23g7zzU7ZSWoeAyIqxwTwDITe4YIKzujfwwhAJE hB7IoVuqYiHizl2IBT5+YoKAa+GqgrZSohwmpCqo4QGCMEqsr/DYJSWowQQtSQNajWjarrosAGrg oTKmgvkioGwSgL1Aqxw8hQQl4BooLSUWQP6W6Nz8xy5QQgk10FjmT80OYAL4bgn5gilAqwIsQAIe ids0EADwQQCMSgIY4jX6TAtnAgLC7QHObgNXiA5VAh2EYy/Y4e3iUB5IgwH/pqG87E6RKOyg4AXY RqW7kI40kILwus8qEq8CXC4B1KIq0EPzdmkCOKUqdC7/juPx0nBKRKQDfgbXqhCGNqDfosgfwmgc BAAO48wB/PFfKgL2RKTPdC/gbu+ueBECHMCoFiJm9sIdeCUlJIQdfYQb9rD6Cu7WUoId+IEZvZH6 OtAqzuEAeKQIt+8GT24yzk3CVs40LmBeNO4Bzi+PQMs0KGBwlE3j5E/a4OF/Ok8ldE6fEOAaahIl 0BFByu2vqkL0GlAVT6l8UIIeLoD+VKIZDkDoUGMWhVFOUq2f+ETjyoEkYEgQLQkfWC0FcW0BxiEI EeAeqhE+MODZZuJPbtIZ/2oGS3QwJazBGbyB0sDo3EjR2gimtkTRks5hCOHDAUjP4KZBOIztH5wS hsABC/tvibrChOKMAeyNAvJtL/ZNM9mm5ABmDdXuAhlgH1BlRdYQJRou5q7B1BqgHjLyK1NiNy7O LHkNHDoACQEgMA4x4izAORYRFd+o8MISJRaAJo8TAOYBKy1xVEALAbjhAZaIABDg3CQgJ4+NI/YC ARLzmDrgFAtuA6ByJSiAG2gpKR9pIhyANOrRf3LRCTEArhjgAljLHa6h4FQlGLvyVU4zJTrOHcio AzSgMlEiEJ1OkzSpQi7A1shhdG5pdTSAH4Iw4uAFFYECSA6AGwLA71CiHP/QgkNJ9ADI4deOzR7I gcZItCvaayaqp0QPgALsoSYbAMUUgEsg4HFMVD8sqT84tCbkYcQ0QNpMwwNwyxuAxAKAhCia8CQg YByu4QB6K0gpY6XwgQNqgkNvgwK2ihoogDY51BsUwB0OgB/woSCrhkPxAb36rADQYeA4YEpLdD7A gWEMQBoCYEr2QSSoJ2NuMThklCj2MB0Y4BnYjEsR6oUUNHrUYiRuqp9iQpIMgGCUhdc04B7otET5 IQZ9pOs6AHZG4iPuYXgkAAOg4VHZqDa2aSagQiqowRr6bzfwjDn6dIaoqObg7U1+QirKaB7Ggh0l kHUyYh76r8+ezvPcoSD//CEB9DEj0gNf5JFI2qj/ogFdYAsB3OGjMoKVEGABJsABQItvuPI/FUT4 qgIpKANFUISDOuCYrKEeCEp0IocBLMAb6PIsig964msrnOYcOaAA7gErs0owyqbXZmag1oX2FuJu kiNtgAZzkIG5KEZhD2CbKCUpgMRTpKMxWs0CFkykxgYDJGA106OjCjYjO4Af5MID5Eah6NJddiWg AlYuMMAqT8IamkqknsVkLI8bBMBo1iUCPCAbOtUiGaAA+MGiAoADpIGzfKTpKER0+iwCyEH3nu9u cmZPIsAeFAC1uFYwAjYCssH6rGFryIECoqcCoEE53oi5KCAz0EF0ugL//2LOGwRKHKZBbMXhhYyF IQ7AG+b2ebghAujhmCCAArzEcAzHHeIrAi5giRpgyvqEECnAO0/CPOdSdDhI8qDWNGaUAZrBJySn QjhAWOVh5wwUL7hkQ14IAi6CS8DBKQ50PbgwJdohAB7gMyrAe9Yhv94TJd5hOUaHhOwvDVMI+Mz1 Sg4gAEgwBadkciCAeqIn4QbgHMbBQA1nKzY2WaF0YxlXHSiMTmBrXKRBSb1iAzZgcjHg8I6Dprb3 QJ+CN32xZRRgGTpAgZYhValBhvQieTDgAjoAvCCgMyAAf31TAxRj7p6HHzRgPXLHWBaUJNqoAQxn q8TxUbnoUZcBHFr1Rv8NVGDUong0kz/SwkBljh8ehwFwFkaFZ5MkZEsMx9qSaUcNABxsY/wGjk+A YgNGAiz8VgMcQAOiYkefCR2UCxBto1AI8R5eZ8hUwgHq4YHRJyc0oG2ftx/MDx3RjHr2zao64AIU 6ECdInpgKSWiIX9r94HBYSmc7pQe4AEMlIj99EATzoIVyECXgWD+ks3eyIIZADEqADw8hQP8xTwZ gHqIuAPO7IE74JHmAR0rwzbQAQPUYSOIISXgIScCuT4fmHc0QPdkDh8mABpOccL0MAKqLSX2YXxr wgHcQfLOEx7ejB4mhCnoBAO0sm+W92/UYVMqg3YIRgDObEK41xt8J3r/FMcYuaEZTLlJZ1QBCBEq HqcmLIgB1MEdBEAP2UwtdPRyxW46DMcZ2EYo2pVoAkAdNhZ/yOeTn4cCHACU0XFK8ldyeheFMKAD aKwDCkgreNMpCoXB4PkjtoIf4naQKyMACEorlsEpBlgouIR6UeQpHjVUK+gAZpei505z6uQovJmi HboewoJ3WqSs7nNyDJRHR+cpkkgepljy/pmle8gvOsAZbKNC7gEqnELmVPcnHhUs+I9L+G+OrhC4 1IIrpvkpNOABeG8gxrNMaNIpdrorogJ9YkMDTgrAJGog/iEajiI1VSJxzKgA3eOVikeqKVoq2qFP MgJBUOiF0OMcrGF6/3ktmowtGiTAJN5hdn+EM7dCkT7ItNrBKJDidCCAHHZCJCqvt2S1hHVqAtgB As7Bh+ljIqwKWZvBAvaBApHhjRJAHcCBGmBpHhjAQYJCJcCUiG+qATqiRVqNARCiAprBI4SDAgKg 7AhDeXv5PZIWXlxWV+Dl057FZX+bWjgASV3WVgZqAUcqOOIYaONlGn4mOOQ1G5R2ZYLbA+zBt4/7 uAvAZessYAvAWo7buJEUXrZbvF1Wb6VhbCeGYvbEHuKBH7KBA4wmMYTqGdblZce7zqylVrLGv+tM u6klHmxlAZOlYzlqWHrDHhQ6OBZwaOFlbiArMXojWI6bHzTtGXCmp/9mJjhoatHI9sHxW5VXZk9m ZsI56rgDQC7wuzek7CMuwrkOAn0MAMXEVmcgXADU5cQDwAOkoTfsm7kz4FlGLBvQ4mP0tiIa6YDX ZTkOhJ8PQB4UiIaeR6mlt4DJAQPkNTgU+h6C4kgqwAEoYH+zgQF4aEeTQspHIp5hjUGvfExqIozt ggLOYYZw6aSi5x7AITDQp4diY7aD4inmg0s6ooYMYBl+Yjckhxu0ggOgwZamt+uCQpMy6Sn6tFLv geSIyYbQwQEqKFVnaB924zNAYh1eh2AYwJASNwOcoQIIpStQKBs04FY16bZ4ebcfZQJArdd9/dc/ rVrqbLsT7bsPDUn/A/a8jZ3Dgb3Znf3Zof3Ziz3aqb3ajx3Rnv28p73ZlT3atT3bB9zXt/1ZBvxZ UNxWNM3YE23dpR3bD227+1u4LSq9XbYxzH2opOOisDvY4SVZxjsCNE0wCuBnkKoA1KVnkyNshyrh paNne1bfV6bhG8NlIWoaZmZf3ltrLWpvxaHHU3xYBMplxXZo24bgafarAmpuynZo+WVmkEWgFF5s FT5dJiZhYb7OmFLXe2RytcIBOuMz0uOUF+MzgoIB0GExPMX8FuPoib4miL4zonkrfD4rtoI6OuMv MABNP8MztCInJqTnFYADSoXo/2Lry54CkK/ny/59qJ5tFMMzuP58/xxg7o/eGwTAAsq+6z3gGuI+ Nhgi77kCA7KiMzzjLQDfM5YWm3ueKw7g05Gee6WegyZmIPI+PXxHHd6nJvJeHbreNojeM35e7WEZ A95i6tmmKLbeAY6+U42Zg6ABm89nIDyjK2B/7j9C8NU+KMThAeae64GFAkJfKx6gaorelj8G9ove RDFAt+aL6Yx5viBN6d8Htu3hArbi8mF7MgrsI1Z0K3wsKIKeRZuUSYHEG8DrHuoB0zgUxRbsmMEL LM7BJ9Crdw4gm93h9R+sKIoLSIBlyPgMvACCgsADBA9YKFjw4EGBFBQSxPCAwgF5AylEiGCBAb6H zwQwYIAwpMEDA/8Jejug4MC9kQQPykPJYB+AmTRr2ryJM6fOnTxzdlDQ4CYCBDb93VN3M52BoDUb gPOHE4GGDjad1YNws8O9djURUHDXc2aCCUxvNphH8x3BdGbLzoRAYd1NAwew1vQ2jqhNCOui1Xy3 wNo7nAfOWauZQIPbmekE2zzALUHWCXpnIlhaueYGBlBr/sM51i5NaAEWA2CAwXTmmh0YSKaZgMKE m/POMbA5QYDpDgf6IcZw22Y6CYv7dVht+QDSmhoEiKYJgYFbBAzQ5YRAFgBbAOUaNBiKAB5bf+Cc +UXAtkIEDQDeiWfbgYJoeINxwsNAzi9NZ+vbD2XbgATUEJAOegj/rNOBNfCA9185BiRAIHgQdBAN AUMlMNQBGEgWHgAdRBAcgyIOBQ81EDSAIQIELBhNAuIZCN4/yIVFY4028tQBNK/ZhIxN1uAz2037 UGPTAB30KBQDFdik3nNvMUBkU6bNBM+OACAQoJU0dUAVlRhQQMBNH9kkwTVd2qTlaQzUh+Y6WkLg 5EzjCJBZA/ic+ddNExyAHDumDYcnTXsiyVMCByxjkwICpNkacgnECYAGB1hZDnA3xRbclgeUI1Sa GkCqnU1YbieqbbhFECcE6KBFEzwMBHlTdIstEygA8HTgpAYB1CqBfDRigAGbAIAjAHs2RQPBYTQR QNKMWHJaE5w4/+GDQWYSRAArT8h2kOaN3n4Lbk8JcJtUOQnsiIAEEiBXzj4QVIYMNeWEieaXnwkq Tq0GSCecTuVAYOW4tSIwQQV6IYABnaJScE5mHXCzQVj/qMPAjA1M4GQHGqzm1aLRYmCsqPcKqgCh sCVAKk0GHCcmBVGmhVMDsiUagQE3rTNBmhBo4OkBbjXADT2XUlAxa/z2hMCJNFpDzci/UYBbNuDE erRlFDutqc00IeDABPDYRIAEHXxN0zIBhKyyAlrzhMA5Dyg7Uwf8LInmBAlujUEE3WK5mgHv2gSP hlZemylP1uzzYLiKL854VzMq7ThOEAAVFjIZUJCyOhHItVczpv+RLdTfljnFlZ6UiSVAsKJeUy1z AUyN9ASnX9qBW/BoQLdNCVsJAchR3YR7mg2MfVN3ODFAAbSW7ZMmNRTkPtMBet8kQc5ZGaxnak2B OPSazOkYFgK107gAiqDTZDmfNTEgDufRel6TNQdkG21dXU2gAb3Lqnu+erU2UIEpCSVhnZmJBvpj kwbMD10Jm1E6zGUTAxggZQBg1oZYIw4H0GgAL2ucBz9YIxTd5FZr2xrWABCdDl6JXfKAhv4AMIF8 UW0xQ8mJNdoRsA1IQCiyO1g9uMExiFgJHAgUVWbSAYENIMdCKrIJSLT0jzkN4GNo29pqStQA5RkQ HXCjyQYqoJ//9VGAVTMxQD3oBwB2zGx9usmKA9I0AQqYhgECKGEDBHCAS42DAef7yZQ4JoES7gQB +/jUpa4BtZo4IAK1ktVfXnVCDx2ghASrwPlsJbYXHhB2TQmgyAb4ACt9CHpv8UYH2NSxvX2nJgQw gAQuqZYL0mQdAdBgWBLAjheyEoS8BGECQAKB7RRSMWGM2wF4JhZJSSczBCPaa8RHgXFUcR0YOAcn x8KAjc0FJF0ayzEhVJN/McABTGnNq8oCTcoBIAEVIEkHnNYAkEzAN+J7FcviZxz8fe1inszKARhg l8lJxBmZGQsFoLGMBRjwHuqsCTzAQQ9tsmMC7tiAsAx4Afut/1MDH1lHZiAgjfXoJTGyWQx2qgOB ryXAAcBRqE06cA2NJo2jyKRJOfakjnW9RUNVZEcFgMQUg1pvWeys2kZ32JUGXMN7M7nYP4NZvwto 80oTyMA5ptOOPd0zaR/pgBYRQBBwJvMeXqvJPijgO5pQYwJq64oGpioWZ1BAHeeDCwN8Q5MGKAAD geINQN06AQMcESRavJIQm8IAepQur81wUtLQgVSagGOovays4gwVgUldCTWuuQmxENiAe3BPVAyI gHPeQgE80lAD3DgAVJBIAQWQ8WMcoABRICAAbDmKAhxgT+A4gIE4NQdRAKCmAGp1JW9kgCoyE8A9 NpAm8ZnWL/+4pYAgqdQcYymgABGIbFMUYFqk0jG4I1xHBAIgGbjMzibskF6QOiAAfjjjJshgAAci wBSZXeO6APAHaTTbgITBtVUV4EAeARDPAyA3Ul9CqgaAYxqlFososcmsaZrT2StpgKxYQwZBDPA1 BKAjAuRY7Md8lpwIQEOFHuIGX8WCDjzyUDr0IkA8n/dC8X0pKAhgR2uyI8anzKQf4MgmO47VGm1e pp0HkMlexoHiKxngHhYwDUun2iIFapYm6QAgA8i1zglwA40yg0Yur9SAcwigsJZts40GoKGgBJgC 3VrABgJwYAl82aWsFJhfDDVJlAklQPsYinfYbBm7xg0DlO3/in2nBlY59kkDR0ZABRjQjktu6a8G kAfPEBDJcvBDYRDAxzJmlEbFaOcex9UlbHJDtwR4h4JiwQB61ymBKeLkHfv4cvQYiZzG5I3HE0rA RWFDESJJRQLIcDUKDRw3jKFafNcIUgMgoGvhzEMD1iMANbKInAXANzgPHjBjihqUBJBDezhJx6Oo EeIBZDEqEsDAgaNTUzQJuoLdSUA52IylZZCTGg7owDzKQcGxCCBiCMDHOeB9k38g461h6sAZz0Vr LH2JUxfjGa3H9VcAbOCYzAONA8hhLORRKClrnQCnDCBgVLt55jtpDlYSIOOcICB1TTW3Te6Fc3mw rRzhYTHw/957ARPb5IDsScerdG6AHr2jYDrpMjiCCQGN5iQdqZVMPJ0clcQRwBvX0HRTBIDGnKSW xzXMyS+7RIFb50R6PE7cTiaAgUrPo5gJxEi0ZU4AZBCNMTJH4QSOjLQAYGAmEwgAqDxk3XUKYBxs Y0fht+ZiolysizuZ9056J4F9KFgnGrDHbNJBDoXhxMZO1sAz0l6TcUxvrQIEgDXwF544ejcraJ9J M2wbSRgCWDaXp7nxa1JVm5XjAQeOmQASOTzOu/35OyEAvaJh+UE+fVgXeLx6fMsAddB6nRDgFDwK dmzo1K6VWo8KBjKg+QrwVywAqyBau7WlYtGo61fCkE5kZv8sqYVoM4EPbZQ0A0gTDPBwV1JyOdEA mTUT1YN/M+E8QYIA+yY5jfZ/1AdD11B7vJFuHKgT1tAPBbQTOIcBnzE8eMUT8NAATVNzAkAcCgB2 wCMOvlUPGdBsOREN+gEOHEBKogIRRIEM5acTCbAB70IAbFV4MgM7zoA9ObEnklEO43N8V8gTVXVz zHeEHDg8E4gYAnANgEcvCNAPhUcwQbIB17B7NfF9APAPHzEj/yIZ/1ABZbV6E3Jbo6cT8HABHpMY tfcvnEIA8uAxOoFbsCcca3clPFEOCtAlFlAzOiGJdVd7jHcBlfaC/weBHqKBNlEOg9d/ZheBFWB0 N0ENHNj/Gh9oATaDc2O4E/6wSuLyAK0zPNnGE9SAeDpBLLWjAI8nN+yBMBmAgIExE84gDop4JV1H IA3Ad4jRAVozARmWEwZAAcYyWRM4jZKBDMswf1gIjrkhZxnQfGYhAEKHYGCWE2QzDyIYFfSSANRQ eL+kht2nExMQAZA2TjPyKJyShqiGREg1OW3YFRjADX4BQEqHGNi2jLLkEygXFgSQWqeYQL4GAAKo ExN5JRBAkTOBGmhxGRNoABGgABH4iU2xRtaAgdRzkjfBDhwIAeqAgOCAYgPgjqAhj7f0fGxhAEDW guwwD+NHE80RSG2VE7oCaQKBav+QAC5FRMqIMA+gUPBQ/w4mgyZJGA0E4w58hhPwFSTOMAHSJyid dVOPB45XmHzrxHyolgARAH3qeIKpg4aWMQ9oKDufER8EORNvODFFcyn1B0PrBTYQIAFhknULZhm7 g2AMoJfcAZiGCIaJGJGGWGn+54DeYCx0pxOamTSzhRPq4IFStotm0Ykd0JIUKIoXSIqG55k5YZOJ 5Eg+cQBcgXN5sRPIkH1IkzoVN0k08m04woZ61ZhE1HQEgYDncozYshNc5zHR4Hmg0QHggAxTt2U5 QTgGNAFciRt0tk4VYJZnaXziCAADQI46kYro6BQmCDY2dZOsVBn+ZpU2sQDbBw7n8Hj4KIzhZ3b9 SFU+N/8TYQMBhqkAjWlYGKBQ8fR4C8CQXuGQXVkPVZQTEgmIVogT1hiAbaR2AqBsBtCRp3EBHGJ3 FdqJErgTamQdALAAYtWVp3l26NgaEwgO3uCKz+dsNjWLhcKBD4aYDsUOKooTvdYABkCDpBcBS/IP 9yAPMteUMwEO0wChBfkAPTIuE4iE7WB90xifrBEByzFZ2rk1BSgZifGd4DlzeHdzrZV+kveWYAiP cqkTFjI6z3g/70UBiMmXcogTdMh4gslKrrRTBAoPahamEnCcgEkBofR5vRcW8oBf6yRCOVEOFqmZ OWEBAWAzSTOaOOEAoYkltfeAB2aaYDgAFGBLFyhz2IH/gIjhlm/hk/4Ugra1E91RfOv0JV+zDOSw ozWhizW6UwAjf0S6JFzXoJ5hjCKXjIOEkQkADrW3AFdHXfdknaPlDuPQmjQhWnJmAU9KpsenDvVg M9RADuWYQF4Il+s5ZDupE+9pmTkxn0GiARTQmPioj3QFGkb4j1unLmwhAQM6SMCiUFhCpQwprGAI X0EYFfwnlDSxbU6mkRlaaUa4E+pwAf5oAAg4kiUJACT6f6npIjpRPdVqji5qVEvXmziHOYN0oyc4 DhaAUWNqK+yAizjRHNzSAZnqhkVqKzmIagSwpADAH1D5fgo1LrWXAM4ADnUZpAnrIRFgS5CBf8wp GR9S/zjbioVaSKsHUKOv2FTlCqliuJpwimZo2DV4yYY6oR5GSjH8CAEK9Q53uLPqQl0HQKDpoGYH +quQ+piHeB2K2hMayavJpDWGWHucuRRZqD0I0A6eWposWoGWsZJkYophkYqJBA748I28MaNltxNM M6sJ8CVEIQEW4LLpMADsoLS9aA0bQJH8sSTvcFjs+hpPiawTSpHWoDEoM1lyShPXCUMKMIGVSiQQ 0IlUG45tBK7ienaJZADgMIH6Y7JvWhnmgob0aY9SGAHzRR0OoLZ1eJcRqi57SKAIQw5E0Q6/qBMK SiTwcH87YXHaKhzXQA6S8bfcUQEMq6ERyqjKxpE8wf8AEytlIjmiLKpGzTATyFAOq6mxPPGSiZQb j0eTQSFqYLIT5dO5ERE3vhIWDRCzwHNc4jOBZ3slDyCVOcGUr/Gz/Rql63S0R2i0GIKl7Mu0M6EO 1Qk2/CcBHDC1xBue5JUA5Ji1XphvN+G8bpquowN4yCA7F2yn/QEPaZun9ZcOPeS9r4RCfBih50CM i/l4eiqRiIqIMRwWjGh9J6gBWiOJNksTB2CABoDGyHe4EBsziyuqpDoTLbKa2NHGRcKBpYWYG2C5 kgeLOiGLs7oAiEQUGlAPuUoT7DAg7IurhDSBB0Q3DPO01uBSG3CsVZesFHoTzeoM8/AO4IAO8+Kx oxX/Z5sZAUeGWzmswzOHDtwwo8ibVxGAnly7S+PZnsvyngNQeOWADhPwGfV5n/m4WfT6l+bnthE6 IYcxkP0KROu0DMxaf4U4rC+VAQY7Qvy3mjNRDt45E4IboRbhj/u7EwrIIZtYjSRpkmAoMxb4uKzB orOMjnysEyM3o4l0hCl7hBllQC+GNAcXfAZ0XPAQojcBwu+gAH6JEwvgUiecrkFre4AJGhvAvAQz CIX3IbbEUdPGf/GkyK0MQlY7D/aWpuVwOVsLhrDxAIG8egejz6RFp415pwodToApxau3Dx0AFVkX vtcAiI9ar9CyvkeoAQq5euA8xkTNFIw4d5PYmTyx/6l1B7IIJsc74Twh0rHX4XJhQZ6JpA4y5BNV pqaF55yEjAHX8BkPRqC62gDb3AG4arsIyLoeqT67ppJMqpzpyn8LkGvnuwE807a+uxO8uwGnyahS DdJX6AD1wBXHy4noSA0SMIGV0Q/Pl6aNyM3rGhVd08+IiY/YG37Oxp/3KsRhU5goxK8PzQ3+qNlo sr9ekQFeGj9wXH0+Lb8KDFnffL8ZWncdqoAUa7EBDIZqNBv+5iI1+rEZHAH4wHj84MDekG5uqbSy VsEXYEDcsNZU0qM8odZFm8cg/A8EsYML3dB5rXMQIbScfJVHsoQ0nRXisBzctrMN20SJHZ71IBM9 LP/LqAN9zKuTmhuhLi227vo6ZnuDcOjEf/mv8q3Mp32YO+G6AvCvrY0YEsAqhwqG7XAAERPGbZTU ObEPYzYTlTq4jYqpUB2a8NAOefyp0QaGFSg+PMOrEBC54qKK9PCBJSuGfxsvs4oM9jIsieybL80a dSo+tXdAQUIxuht4sWveB0u7RxiNYbKNnwfG3DaBlMkY82vfHkRHrmhvGyiylzhSufyf0cvLOxEN nA0AFSAA7qMnAQDa2luvHFIwb4tU+xq+3CAAPWKqR0ioDcnOGBM+1zA9Spuxo4WRR32/B8i/5+CP +xDcGJvAOEHcSSPZ7BvPTeV3KFQBkYxizxuruVn/KBLBFs5AXj0BD9u9E+CAAW7STzKLs/9w06Bh wpl83insnGIpFlc3FNMo29CRVl0azhjaIV3uyqeVALaBapNrTJcIG0Ssc0asfWUVH3Z64HHo3txs 03y6LK5kmHK7E/BgAcnTf8epahept1EBQWHRv4T4t5IJAJOKEyQuZdAeR0GhFIoLqiw6qgxQID06 44enk4nEG8DYioBceIN8S4jEpPDqm6bLvselV48nyXsKkHctck+eFBiJDEB9E9bgDAkSxe4QmVKF nb8bAETCRMg+c3R0c0ulEwv8Fp/O1eja0jThD6SOE8jQDHTj5p59NsW8n/aKflMc7nOLO2zx5w74 /1cDi7Kz+g8a02zzi1sErO61p5HIktJ7kr4FHUHC3XnyMBsAy6uVzoksexqnlRMPrKaGQ+SX8iWd HRarvsFLRw4zaPFDT+vbThMMbUAcL4SxzR22PBNGsg9sQVHBHoGKym1Zqh2LXt8ub1kNvE4ZFXyv yc2Gv0JskQArvc1EEXg5ma5srh6cZNBMnOCuzbbJnIenbQAWsNYMAA1EkQ5nqBP7AnfrPmgpPZbw nqhN26iUWhr3noUUkEvpMCSc2O9zzAAWYi4JS+PQToEnzWDA+Mc4dwELH/fyeTm3NaQ9QQDzAHE6 4QzLhaD1PDdXgg+w2m4avwGC3xX8lwDRLOXv0v/3YCgBilrYCGjvLQ8QAAQOJFjQ4EGECRUuZKiQ gQAIABJQYJCwgQB5Aht0SJAQAQJ4EvlRSEgAwcBo7E56ZDBBYIUHHRJOiAAOAAIGDlYWTACh478J E0IeJCBBgkAIB456pHCtI7xyOw0aYBCRAAUMHT02KNcQwQUBXYcmhCCgIgAKAqgllCegwU0Iax2O YwcAnoGuCA1EUCBQwgStCKlRcNnAQAICCTtUCKyQnQCSAMAdaJcQnLe3CSAnTpiggdTOGCJDmPCW IQGu/xSCE9CBGgPTBzUE0GBXdN6DCxYI1BChgkIEGAQgk9hhXmdwGhIgmHAAdEEIGX4DqMDgucD/ q2EFwuPc0Pt38OEZooMo8RyDdwjLRYi8sXFBAkM1Y7iOfSWCzwr9BVXd4ZxMhCqIoLZ/GLDuoHJ8 AoCAoK4jIB0DJEgsKQARwomCkxBI4D2CGmAAQAoy4JAg/PzxjoII3iKgu4PKcgmAtmIz6IAU4apL IQeueQsBA248qIEIDhCoA8AUmmiCaDRgjEXoKpBrIWogE2gCDCJCqIMDDJBIgGvqE8gaarwkaKID 0gGgg2sqXKicBsY6qANyOmBnAi0RAsc3gRhwDqF/FrBGoA0ieBEhAs4REQBr9nnSoAQ6UI45BkYc SIIA1BHIAQokhbHGm5gU71NQQzWIAX60TOCa/7N+xEijDqJpSDMKzLRwoAQGENMadV6sgJylDqLJ mZsYsPSgnrpiToP6ipIQAAgU6PUgBA7A8KblyFIgonRC1PQmav5kCIG0OvIUOkEFSmtRgrJbi0d0 Rz2nIx413UtIAP7atgHCEIBAQcUqOI6hxyJTJwIrZTsgMykVWiA/hiaygDdyCgauAcQU0gCiBJaR sSABf3vngD0P+ieBBVTrbVBoFaDAxAQk0DSBDTr4aAJ3dlNMHAempEfS7LpKAJyNRRV66O8mEEDL rw5QjdiE2dHg34UQ4NJN+DhLp9qE9nuxt9oQoskmANQ5kFEIVtJggmQlsNIApYATLkOsf6TT3P9D PYp7obS6GpcgAwR4kUYfDWqrLgIMgNprDPRuIOiBgKSXtG0He1FDLyFgrKEBEqZJzYKwNFWAccSk vKFyKIhMAww4T4gdavYeUoBl8NPUGTz/EU7TBbS6E+WD9HS1UcYFWgAcCRB4Z4JIFYIggrPO1pTG t9rBgHeiq7d+1FIlwsAdiyLI6EzYSmp8M0J3imYeMZFpibfWZooAWHgMTI9seCtAm1Cj/GrbI+FM HB2hRumNAvXYFn7ENBAEXEMAx3Hd65phLrckBEXrggBuEMKAcxyHRxYsyF76cqbLrY4iN+GKQuzV ECB9jwEReFZBJlOZcoxEVgBk2EIWQIHvoU7/ddAawDwaqIE46YuDBBGQS74yLZFtSCDOEAf1SISV 3fwseBJxxgas8Y4K1EwhHYjAsMAxAeJAK1zMYt71zHjGPD0DAwywwDQOMD9GCYADBjqAO4YokHRY QwLo0FMB6KM8PVHgYMCZwAUYoDIK7CMhFfCj/c5zHQR0gI8MCEDIDFI4+1UgLWBDyDswUIB7GEg5 naEZ8jgggHtJKyhTNFcBDjABZCmkb9yoQAWyIY4pHgCUgeTkBTnwyglwpHu+qcA1KMDKzJlFHkVK COoO0JJtJSACremAADywwymVR5r1oBp06NGSUYbmdAHApkFY98MAgAMe7dBUBTjwIgzUzSB5/9SK BuyRM48IIALHAR5yZAYADSRPMXNcIgPuaK4IuGofv0RjQ6vXgXoIAAMT7RqxUISBB1CgA8jYWwIK SY4M+G0hHcBABNhTJwuBAysZDeFB1vEAbtyDAhbowNIKoi9vCECnY/uRJgd4DYkZJH4CyIBowkks n4bIki0KKQ6DOiqJUkRM5TgABqQlgANoiib1wGgGyplN0dDUS9QQjjewklUjpSUtzLwSBs5h1cMx qikOOIBEp6gBCkCAAKWjx0IggJVzQKNdBFmA/AjQAWig1EIfodhINYqAfbiqrRvoE8i8hIxy/COS GNgAcKS1nEbhbjEbSIo3bIYQCdBSs46qT/86aETaCghgOg6lLagQMIABLA59CqGGASBggM+4Lo8N aMfitoWodkCgAWGKmmcodlCB8Oi3BuiHt6DVgH01NiFXM4ABintAf+R2ucgQkz+4Qg2Kic63yoWu QHry2wY0UEPYBW4CZmgQBFBjX8o9rXp+q9wDYhcCya3hQeDRW9+yElH/NcAB0SvgAvMEuPPQLzsa WI7uAveAuUWANRLA3JIggxqeqVhCEtQA1oXxIMj47Tx6EmGCpENDnuFXQno7gH5syEsjo1EEOJAV hURDbeUgsZcuZtIMsLW2S2Zyk814X6I10MlTpnKVvbMi70QjGio240dsWhIERMMa/ugmgj7LImUE lIPMDIGHjr8TjbvxqQMXiABnxaQaDV1xIU7T0wT6a2VAB1rQhHrQoA19aEQnWtGLLog1NKBgRkda 0omW8qQtfWlMZxrRB9R0pz39aVCHWtSjJnWpTX1qVKda1atmdatd/WpYx1rWs6Z1rW19a1znWte7 5nWvff1rYAdb2MMmdrGNfWxkJ1vZy2Z2s539bGhHW9rTpna1rX1tbGdb29vmdre9/W1wh1vc4yZ3 uc19bnSnW93rZne73f1ueMdb3vOmd73tfW93BwQAOw== ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="us-ascii"





Desenvolvimento de um Índice de Infração de Patentes com Apoio de Inteligência Artifici= al Multimodal

Alaydes Mikaelle de Morais&nbs= p;; Cleber Gustavo Dias

 

ISSN 2237-4558&n= bsp;   Navus    Florianópolis    SC    v. 16 • p. 01-2<= !--[if supportFields]> • jan./dez. 2025

1<= !--[if supportFields]>

 

     =             &nb= sp;            =             &nb= sp;            =             &nb= sp;            =             &nb= sp;            =             &nb= sp;                

 

ISSN 2237-4558&n= bsp;   Navus  •  Florianópolis  •  SC    v.9    n.2    p. XX-XX    abr./jun. 2019=

 

 

------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/image010.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAmrWHvV9wB /v///wAAAAAAAAAAXwAxADgAMgA0ADgAOQA4ADIAMgAxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA40sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb9iXb76z v9mZc/bM7M4/e35z+3zee11Vt+4ru7fqDQ/hLuVUgJYR/kZEEJAQ7u4fIaD8VRrin/whOAgID/78 f3d/f/+X5Pt/y/8pgQMg/zmGf+HXmKMCoAE8AkAHeAyAAYAJgAWA/XsKIOAC4AHgAxAAEAIQARAD kACQAoAAyADIASgAngBQAlABUAPQADwFoAV4BkAHQA/AAMAIwATADMDy53v+W/51ooJgC/ycgLGQ RLAB7g4Ibn/rCv5bIUJ4+J9r/pc/0NqUNQofS2yQtGBVuNjpjv/rsjikXwxhGnOISMBz23/6FEWE dwim/5TNvxZ0hAeIf92ef1SP4M87EmDfCMEKQQZovRnQE/+s4AH2Ef+o57fv+0d0fpX/i199hSCB oAL0vSvQ96Z/jIDjP2Wf6M/2I/8T9n+NE86fz3+97v8t//8J4u/p8L8QpP+3J/gfCHUsCAEiioRw ZEuNkDv2v6np3/I/kVcIJoDPfwV4vl++xxDBEribAimqf8QCUyDl/X+rTwdMn7+eT/+IzYcAMwr/ irf/Lf+s/X+1/F+2rySHhAzEQjQ0hHkFOxnr2fdXmUBoqhD6vYsztrVxMrVxYjcxdDL848LJBlz3 teXfkUkSeLuAcKmKck59cRI8s5kIZfDp5WW08gOmnuXTOoPo5bWr0SObIyNu8a/osUSD0OyXxmkC oq8dEXIcxFZ866jsw6PrcqQDyaioxdoD0QKK6gIuFvZcfVacm6wLg7hseQQruW1b3E42BmY19xXQ ZUkSl2lPjXrEMN5kY0jyQzgHNSLkGFvRHiL0rOiCuKaYokp4pJco1h9/msiLLFFNvGMiT7/55kBc 7v3IA19o0GuvvS6iyhst+dadts+0WkIg8bV5lRpLUo/FK3oEz7feOBJMn+UUVSmoL5dqkQ5P55EO MbqkIDA1FT6fIpy7ts8RfYvLEehH83DXz7ufI7ntCAQbwj3LjJoSWB6kLxQpTTfGm890J1O8xcam FJmrZeSAzeMkd9wP7GSgH8kVw470+kYRc6GF/TfPN0TrjxULAhh7WWZjhD5jl10zLNB4x0fMYKfP FV1ynm0LHC3fdi5/KYNt8m41oRIdf1+Ig8Gt7+brn3gKTGEdmr1cQ4pCWWp2FC6nhDou+d9wPw0l mLa8WhStCdrgq7XVob92kfjksG1jOPi2axHTq1dZq3jojRmdPr3eDKe0e9FjF2puFuW0z2x2E3YX 3xawdaXCtUJdAhrESyYJ+36AXm6gaE7ufoNcun1ZVuUNn6QVme+77chou3mIJk6JYbzXOMQaPGPw 4UwmlkhsaDVAE9fF9N2rdia6bIFiBUJnNwFwhkr7p1pwUUb5TRnYZKf2axuWDcMVF9S4AU15gc3S tUw6hkYylIBRJf/vHtSyMime+ySmwNfPB87aYE/PnVivpvGtzUurynRdCx0fhEYHsbwTf4QeDeFf YLy+V0Eziv4eHcSlJYHw6apfHc/dkGhMneWxoTxiu9sGMhrvuNUDBwtttdR1fWdZzNpwB11Ebeue RdQVDy0sf4jpSmGeZtMGbkEtWJekpCH4ikQu+7vcWzARpZ+kq/wm0tZIgT04czUrvItzww3Dobmp p45xg+2NlCQ/c4/6S5EfJKvs3qez41xG8nY2j3bNl51ZRt7h8demf0+lkZO4luW+eGDFGtGQyx4u 7sPsWiYmOUls+dKiuagWLblL8pj9yHyRpGa/Otw83eMMomKGOVjOA9oFr75gpQq99PpqMpIieMvJ ot85+kBbCgtP3eOI5r10rUyEuc5KXRJTeKXM0/5vpq5irinOsRC+5MqOr3kpMZJO+4VTd0lChmhp oScCeHMI8CfKse8+LzU4G7useb9TrjlFf20URnLfJX2WRCIKs0R5tkKeONZ3ZraoDKUXtpbTgvIk dbDqTTZHbiiBBs79pVnZl73jB7alXU2+6gjue32Yk8l0LmG8N++2KLmozOXbvCl+qyecRdjZvFhZ YzuxqznSdCnE/JEvSuNx3gjhu/ezTLbmku8XJn92OdaG7pOYjjumf3je0awyv14vaTmnrTU7cZJg szk3VZloJ2kiFFHgvDARaQ0d9d2tifDQqqRHW7IRHLgZRaY5Pdb1+7A6dn13wZJrak9feqR40/h0 3KpWdfYMJ3dPH13oow6h4imF2ECfrjOu9rkBuTmFsignHDMP+jS71tctE1c80kiRUxcCjvnxlmzT Hs0jrBybIIiM5t1Q/hmeznD3T1loGBtHRG0YBw07LJp1Ci8/7ElMDx6eUJAZT15mcYa3oXCXBi5k OWDXm+1ohqqZDrQVd03mtJfXFmQy+q62SrvnkHz9SyVYyJRFrlwfo41AuzhZMiQWfCq2Zy59L/YB 5t63I3xWvyUjQkbThN+3tUDbsSvasitQYbw+tRnzgctJp9jf7knHjS37vWXaz4vwZ5nsy9WJbrpr Tj5bPExIUhuD1G/Cu199QyTv5m+/DAAZ6CcPd0dv6MS/z8sXfR+WqIkDu+Csofz8dFpFep1o9hFr h7fwkJ4Lilz34TRvcE5aFl9hRTGZ3LV9iRJoDbSCZgRac4PxllDiuoOg0692waZ6XsJNNB8Zzk48 5hRrOh3xJfvDjmxUhaSi8nxAbc7CeznYxl5CJNytjkIxX2o60AkyXepsSKy+bDKO6+U2NNqFPRU2 tJ6sl5j/TLlMOL9KKjIhM/rQ6wM1rcjxRJwdvAJefkZ/UD54Vz1P2uASj1Uuj+jllT3HODz0Xqg0 a/aSYOLTDsX+VW5aaV6t6EWrUl6Nx2AFUqu9S9GiB+qYKNw1OLJmWDlhRIPuaqvPcWnHFc/LxY1s DRfH3Ysjy20aZE80oGV7UPLiemuSCDu0yNnfITXs+pTyv0a0yBYu8WsgkpE++P0N4r9EtPeGjk6m DkqG5qa/wtrNxf29Dx0KCgrOHarJ/dM2GOooy0uWBx2gl1CkDqKXe4gdIi91sDqonrMnk5KwlXNz CA0bGzCktrdFt47vcITNycOeKb+/DYdciM2QkoilavrhIN8hcTYiIGEttUf3RncDDqtHCZrdHz2o hL5G/6DTPPeFFE6Yo5mR/WCEV6BqmIbUtWIzPhPVh/gBnANyuiJHX6qHtY5YXASc+Q8ostuiH+QT ksj63kpAaKkGEQW4KIuM2FLb6yr437ERBT0Cp2aezaat1Saduczaa7ajhdsJuG7hZNo5oAoirzCQ pAxFY2CU6VCxY28pRa+qvYSIU9Aj/fyMQIj6Ahn5bzYBoaIxyppUwNEQDfHvNwF2QGf93gRkPNKJ /3lxj93OxYKEkbvR5WtmsZHqEW+UG8tsxmZZGuxhVWerLy/PMclD6NhbZvnps6aVldkKaCNV1mY9 VnawnWv146E65KRx8wk4vmi5f/fs+d0du6uXY9amyEX9UMbyVbrjZnrQO4n0kSlSG2xm7OmVzXeo Z4YISyyy9spMoUY4BZ8YcnIDQsRvFLcRS9+gBuux7Vjrv1gyahi2kp8kbVGoLh02XJJArQ+1vRZX PgVfhpU1FZ442jWciDbVWnQk2dZqn1pL5W1Ha5dIFY6tpyt4nsF3xwbwO59tOiU4lpb6MSznVhGZ vlZI0x5UzHS5qohz7muq4DlFug/WlKG0abnR1zO1JkF7ZYhwCsFVwrxuZ1CGsdYMQbnJe8z5uU9I sZpmzmUb1/m0S1NqmgdNneDwofaU0QNbyEnTVhNfuD9DMIQq+wVLazbG1OLDr0P8L4q1OzltXiCV pYwxY16zKjcEcwWjsMqGMoxPxOkRKUeu6WDo9sBYO7P95A4kMPHHuDG+vMq3oMyo5JOIf6SEeB1i SUbTwtzG/E1ERafdzp5QrYyqSxnxSygXWMFF/8rnvvtcPtYjKKSXkvE6u1k5yj3X+Dp0HynTQvRR Ka8IfjnTtsPLsvSY4fhc1xK5R6M1Ky9sBS7S4euFPotzX6d+dp3vPpp9bjnhG8KaOrXbXvb+blB9 r7XhcLEBL+Pj+XStbeoTtEmoAEf644DPck5Yu/DOtV3HjVaswzKlDuMTH+Xw3W8MwpKN0spFzeYK HmPGZZ0Z6ZM/7iQny6U0oqdLE7hn2w2qPCkxiQM3nEwyNfxrW5kXbEdWLj/lwnGUcx21ngfyHvJW 4bEKiqNaoNiGZlmJvNnpu7cOuXfrj1v8iX6pumD7ZBqN80Cak8i9jMDG6b6/QjJUWSIElrMCbV+X 3j/p2yx5ukl30cg03j99cQFzkirTsL3S5l5TbFWPlIrXvgwWyR3wTV/s3IhqTsrcq6wV0jCvyPK+ mQnJQ+ltOYnsFzmgXgleHpa4JWCtibhSjUJasyY9S2LNXXNN7dMDr03zSVcVHrWcJV0kNF2gZVbg vjgxpHQs6daTcd+MincUPh9ZaIJlz70Ig55geeJrte0efnMt2b1bbzz0OcHaYy6z9sVZNjS6ddO3 t3lVpiNawQfTUbxNI5KXiNjMi/L0AQufM72+DfvhNcIJ7wy+O/C8qma8Jb0ijHI/FRx/MSSYfWBc dvxy2rEq3r10enZqUTuvw00qVNhJPyIeFup3fHCSv+K57EjXlkaw7KY4tRcP6UA6UR2JX0I82/1k tD8I5ZU5iL0RcQqCn6SMZ9bRCmBqh8EJFfJ7zyUEMuuUT6Vu9uFkK6uFs/edM6bZVt1u7GCdevK2 59bGl7Nlc/BI028EPOXbTV9rSj68oF7uyVt1GS+7zfrSredBGwdvmmQNJr4xV2+IGXa22paatVYz I00XzDQdVtbtzY+VeRYnS5fwWsSa64WLT3mIiYMWcaIwTa+JWaJeX+7mu40T0xS58waZFFqVG36x 2O/oRqK9NNX0o0cSO1Hnszc+O1zTk+vPC3/0mUwSrVN3aKDeoCQEYfGlk08Ynz6M6+3NHeEBptxf rDClsPRxkTpxTanJzwUGzZ/4h5RZSHs2t0Lkyq6+J16BavQ7WYQD6wX7sGONeG6/xVF6nrBjfjg9 9r+efx5OuoOqAOfxtE2lDMDGPXsGxXbhHluFZ7+m36hdBpmhudh+Wt5R9o6m2gIdoPrrG5338OSl Gdw/Njvd2kbVh/HmUSem1KVejSqIllPwGs/6e9utEnMPCnZ47gZTVoXyGYujVGo2UOrwm3XlrDQM 6prx1r8H35zxTsFQic+geGygCfx32EKDLzTNmli7fJh/hrPyXX0//Wq2h9t9Gml6rXjon2G2IUN2 YvcCU7H40L+GsL51d2gzk777NZrHg1NVEjj5XR0hp/CtZTIu5hs6EnRrMMlOfJCYn8DUXJ1QwIKT w1t95Ze2HjEWtWrxhH2zg1JfEkhzoGimYAbuXIYU3E0fLN6rsEa79BDTpLcONZBPJqtPZ2rx4Trw NngqpPYA9Mx6gUt8VJPuyXh5osGMCyZ9KLx5wrquqzNKM9aSEUZ/gf8ZjiEmcFcZO1fGWehz44Yh rn+PaB/hUo8cSKihT3Gz9PPrIf1O5I7mw9MRWAg4JdeEkVKYElF15UuHeshXvMlc2tKCSJQ0PdwP y/WzERwFzZCOFJgVyVUJbupjyqZlLKLpLeyUeaOIwxs76lBOaL4M+PLU6/t38Ha7ou1AunbituFZ 4ChSMqH+8LAqB5Pm5VJnBIdHFmmrxeBtNd9Jxgj4cqeONEzx+Y9PzGav3cJNFTi+FvOuhviB3wrp X64tQ6ufJ0/Kki2383MvcJHkTDFxs33gEi+wNytetw0oCwpd/UJGbe9LegHh9tnpTxdKuMDWMwog haUdtYGfkt9NhVd2ejbVJ2zTenreCCXg7C+yDtz26LefwcgM88Xai3vBJEyeR8erEYe9wtzgUHuQ TUqFEb2Zg67ZZii4nu7l7Yu37WwfI2h4br/k4DZgjdvp0ZvdUEMxRvSV+DBvFHG7FOogZB1XfYGW DpkLttD856g3dRhRt3fdiYjHbBhCltVCkrOm6f0Q8Vm2MQVUmdl8hzfRt7dtysIlvo+RZHIz6GRT tUgux+Y1p9n6XJRrwr7phibux9azTqkpzAV2N+8yv484Bb0mJtafmsuq/0oztt9AGjVxmrB74+ef PMic4qFw80OulTNMfcKujMprAafJ74YsbawVLnQWdCl+aoDpATXuKjkMVEzjlukPieHlFuEbI2bR GHB9x8Fd8fykE9JSzpt2pTQloY5cVjN8aPL4YGihNUOxlFUIngBhZFtFL5kwPkcRSzkWkBbCo03a pviJ9LhoYijExVTykZpVRhQNU/Ubq5Jxrc/Oyiq7iEff6fAScK291ri8+q50zvmspWf38/cdNOGW Pdrhcq456yXz5C68MK/+wU95DQ7ghCZGN9XjT2v7mnG1dUh74XRJhzEKRvcnC7HGvO5y5vHSgwwx 6SOTbK5ym45inJS9IwMpz+kupX9lWMiLOYBXF9a89+Gz9Tl1UU54ij/N3UO9e0ifxXLL0po7mbFS bnvyMg2+izlgrb9NrXUCh6yFl+LQmleF/NQ+rxX5tQ7uLM3HH3o/ZinWutjqtfJ8LyCYFrkjW5Kg xfxHo641VXcRPd6WwH24pM0dI1mTvMgsYnMiePbi3vsmc2B6fdeGJCran0GSGi0uM1r50vG/kKuk TLOEk84NkvFKcHhMmKm0MhducOXn0NXbp0OkGisThg8JzbpVoAYZfBhZ+cv7r/1v+b3lUCq1GsS8 MUSp/Ka3ghE/RU5Gl/oPKpIPR6asSmw+QhqKQGXfsZqvE/lqb5BERULlaS51lvZQbXdRotE6d+7v BiFD0F/etFP38mId5VKoM3yTmMQAysqtd9eGoG2bXPFTeuPxfkrtLoj/u2x51qGfMfJk1ShHczXi J+xhE4+Vc1KoY27rZQtoQtvM96qZh7ypCwHfiGeOyNz3IrAvEmeTWl2PdICnpaMYZuJ715wSHy3J M8+zOsOEwnDRTPoKldMnvYuH9XkPFd8tFOExVtqIt7Ci64ih4nzB+ceIQKLtZj2WH2NWFWiCX4iZ DWjrCy3WnspyEspkRuEwxbyhKZHQCnFSxtu+hPnLi62w3c45swf7KLSrfbdZ5xGya5czY8QvVB87 zDboLwUJZJzG0rh78TpqMpv1EzcbvOH7dHHyGu+sAVdPRUKQxcD7mvDkOkpPRa1b5/AjnhQ0+byS OABN2XkR9lAqLsD+sDpJx46yJX7anIW7Oo04f4FzNUnXrenc3pbgTJjaKB3mKqPRMkrFvu1eOGTC O9ujUznwmKjqZ/l3XhtbUTbb185TcXLripIjYd8DxJmvayeRvg/l+xOKNKEdFC1U+dp8CLaYfBv/ qW9/UOp5Qi6zpEZoKUEzA6P75YJBXFDdY/27LlU2ug8Kfetf9S3581omn7o0MEx1n+BaClKYFwrn Mu9ZSjonQBIDE9v8yJAKxrT2nbKdtCh+Jqh+pVWSyY59+cxvKBW5i75c1WO0XVUgyFpYuEBV8Hu/ qkC1hIMVPXqsaiPzvH/GdAkUa+S1bkCQk1XI2jhe72d5in3qjLdlutDBVo6kAjfpwhrI8CMHq0lT d+lC3rtEoFzGkIc0fY2DUCW0EFqtKpyvSnbVEkRe5jXnJZmRPhYyJpSv6mHaEuRkxPfecEaBe7F+ jTpDa1cS6JRSBv5qMaWG4VARVw7mGnvl7PB2FzWNGH3Zkd8dcFfMeD24T36VwD+TQSk+Ez09O6vb ZYnPqJAmHaq1TfiBNEnYHrlyU8BsW3/eNJ03ZqWqH00l/Xy8ZC6r2UdQ9Mk622pha5jxws3cX9Ts Z54S1fXX7fXlJVcLcJo3HbCtVoUQFFI8BXLYqzfviDZObUWHRCkKdR/ZpKB/ndAVR6Kezfe/lH5j LHV2dPBQdddiRKGJ/FuzinXBxO9lz9ZnRXGjWh6ytjPo3OzZRBjzhPrJYaXelx32k2RmCOcrwZ31 px3WPJP9UsFBElvAs7DHVoHAYtREvxSEzCj5iT5X9/sRIBOfcdCjiUpYvEklXk9E/Lb92v0KzZ5G WDxdOgona/YNe4nflXGyLbuBjWZhUhSOaLM6OyWFnpHgya1Csw66LRz1pAez2TOAX5f4t0qtPuxC f3c9rznktK58/uMpmj2IXrIugmC1UCo4S6c0KQrjXhhyNUKyESv2pyEhhegn1AuGkXrgYmWfqkhD UUUYrjvJTQEEE7xjOI0lr6eRRskjxBdCKhIhc3IxZoNpX/rEKtRFOGnLcIQvN0vxbNi2ElLNx+F/ zuVzJYNtfG6B9rGW3drV8fFY0sZNPISVb2d5kBMzQ9ScTadz7ugR7AP8LfbqkNXlDgsnNrEruWGr 5WUn/8ZHho1RNncLb7X2MNsT56myzVZ3nmtR8kgNCheCGYdrjauX/BqyqMKvprgc1DR2yfscVBLj vqXHr58WayogORyPpO25+DOJp4TEc06Ym7IRSx25CF40clFamL17AkNhT+db/ZFnw6H2lqEaf57K OIuUb9EujkhBC4VbeYhoKBXPvQjuT/oVZSunyWKyPl1PZMvJU0b49DXXKoOo8FyjZZfSh40VD5vY SdV5gx2KDVl2+dgux5F8HwkQ+/vaSluhqLjSMH/0476zsTDuIiRHIBTWjtCKOjMQt9kjR+7sPyYx P4RYjIPjz5kGqSgl1f7wwNUqu7n5ExoXyGlMIY12RhBmp+vecBmb4po7RBuuJ0sGuma3BhuFFTYO wn5vqfvDnZHTEkfsoCR8DOry7RDbBr9FZlCNBZVaw2fI7pfG73t8yZRORtdSVpcRU4q7lKbanP1O 5pkeSep1BxZ8Kbi19qFk0JTSZWiMzbBrIiTJo773LNGMNUXTNHngfanSO4JKCY+NXhRQl1tjb11Q badzMXvOclGNzbH9trlAxU+xpjTDrsqPJwFnMcMz8t47ynlPTg5PXu9sfjBUrxqtR9QCMrj1r4R6 hPaG0jJDxXAewAhmqLa8Ex+KbvnJoLfkNaALqaH4caHFi2VjfDQfoNr66YeEra1nl4DoKbbyRsEv 6OKh5fdMab8gCXShYq8edXS7EEsovnxy3ANd0yXqGORkIAsptVH2lRGY5eRUy6yXUsd0aRkSV8p1 WO758SuGkKdpIXBNrxpUh0h68kbVWzBwb8lrkLq6vvjYbU15QahciPADoyLrAXbjuUOCHyShkKO7 1Ozu23d1lCdYC237+92EgW3tn5QqhkO9PVMetXBsZ09z4hcTh+4X6VX4huop8KDjFeSqnHqqqTI2 qDgVbMmOhMXmZhGH6onNBQqa1LV55fQ0Em/EPiEk9mBIOlVK7qDUWZO6gHntPzi741g9Tnjtpb8x WdbwUs5W/psX2XLfY4GhsUM9UeIrZU/4UPLnI6iXuY7BHR2mfuPBg6cik4ftPMR17irtUaX1LxMq QS6iezSi4vpw0kovR7PohYcNJSN2jWmP0y16MTBGh7XmHpYKc+RpOBNbIqZjfvBj/GGE5jb5sAHG mef8ovLa26w7je04h88Jbtid4gSHlDf5FO5lHc5o/5j3/WF1u/xkL2EofVCvPq/heCahizlCA1TG c6c5dlmRMWWdBY+pPPW+YbFL1PPwDxwctaaPnVSgLfMapzXfLviAZQii3KK9yByTKcuQ1hOMaTrH nBbYLqAPEJC7vjBwId1naT5fIzHfrpZSsE/Uu+lYBipYnB3TtDodIII6focuZAIJ2MdLRzPdunrj vTc2S+uAxnpBekGSSDniSWMpVCXml8p40OxsFDO6ngcyOWNVLuVXs1ifhHeW9HEYcY5qlOovJX00 eNwV45VlR06U5X8Nza8wwi4bmnn4pnz7mT2xC2lZnE9G+JRhFeRnNyd30HY2DBV0txCRcCNuvOFM aUaRg3V6MSRKSPvYVzoqGPN0tLe8Hq+My6N5gAe8S6XJ4Lrvs22C0NptsrF34cxluNRZlkzBu7u2 +CqrLoQVaaXw3nCm23IzFtis+WCudtT5ewZ0cr5B5RYKSBIVR9U9SD16w55BPtn+BsrGzjkmu23y AzFmFIv14ynD/KBRq6SORusEVJ8mJUFqx0CSGPMi7A4WYFmnlg57WQQZXLm1hXBklWUJsr1aaFVW +Fnus4cd9wFSJ06GOWCLKs3no2rPi07+0xjdguc1UcSnELy8cIhngCYpZp+FEtifCxQaO2KwT/Du C93Bj8fXAr0sIjSmrAeWMNqIjyPgDes30U2paFzWR2uG0ZphSQp+UK05O1KTiZWVRqq8Y96dDNrJ 1g4W3X4ZM1Y8RuuKcCpT1jtXfJMJo4QMqkqikPhq6fzizh16MRDZc+6Ue8YNWlLlaaAseNI+diRw dperm9cpFizl4LPRxkCfUi09KakZJtGnVaVvW5uUYcJLHfONKMREYpgfqNpVHSjAz9ImA+JTnU+p 7nANPosT8z4VA+pH+Rhf7To5C9Sr4mPyenroRN/0QhiTO5f+lKmKlHPNyff1iHUcHtUAspRzwo/C 32dh8RTcoVRS3NlA1cvSQN/Xzk9V0NPZOJII8hWBQ4aBO03B4bPAj6+Xv86DTNAXUyKp4tBnwBV7 QxT95IT9GNoYXIGwKfRoRk/SfrFPhwmaD7gCyzoeRDN6aBinnIE5CzEfpvyQyicQoYkwvy2szz8a dRFkDBzy1r13QtcnGGeu0tKf/qHQvBmCcDUNOD7ZZdW/uHtzhRJBB/TFoorg+NhzMQyaz/sThMGn pF5rtVA9Rij4CVWGNfBqGc6oKT80uPBjVC4Hs8D5BC35GcHxPyZvmSVkl4GGUALpMzDx/E7feamU RXgXeQZEeifN9Vey1qOQbIIW4jFcxkDb0ecSWp51V/iO09/Sr2l/q+rHUhUc/swKk65AS5kFCpVd ygAZYSJB0m9QAXUwGlDkfjU4/tuHY22zcRDd2StGz15VoOCQiL4kQ6AtWh3RDBWaJi6C/wPnw1li xOOhVf4vZQzZNy3SVdpMfejrLZtPG/qolH47eqV4jI9XMOS0207dOmsyCa3n9LE3HiVObPuzIebW Txv0xw770aEez3DjBrmOqLjfN0JyjHzKzkBYRQN7i+H1zz9e4H/2ckWmVLz53Mr9Aj479MrmQrSc VwQvMom5uK6Fmwdh5nLL4BiPSFHqzP4hweSFRKNybrjqSmqUL6O9+h/fI6yV8SZVxHW8gCNOxM60 yuuz1cqC4NLFnvRb31pFwZ6mY03eUWN4UAm0K9hIHDnJbPVlBqSrc7ruqOZQRdTM3atjln1gsGs+ l2JwadVGyl70/ERYq3LDtbqQOh3fwC0nsNKIWw/S8jw4KYfip3poKp7Cs3RZ/gQ7EesfbtXMhUUR LGkRx2Ks699iVMY/PvgWY/QlOD4XGNDqg+t39Sxzl9HyXI4gR11bMpVQUExiYAhBcAvVBF1Sbe1t h+clKjfBL73B6/9g3Duj4Xq/tiNadFGDIBLdDMKoCRKdUaJEG9GZYJSooydEF73XECX6aKP3bvTe Re89+uDx+//fd73r+X16v9zrnLPO2fve17rO3vde69rmr3J+V530yyqqhbobSSmqQaBIppxs+vuk q3aqDTrGuUj18Xnq2TX4/mquaE4yNrCcKee3sqGNlKKCdXNG7TUOubqNPIdVqHpN421NVmTWubg0 td7IoQT1oxglUXaavpKSB4qqaTw0HZ8eCttfqPIIeZ1jiN7FRUX27hs4hHt38im+t++VjAPVKKaF lrnFcp1iWxU2XTpliW1YPZHQp9ertIZ0Jaqk+Pt2Md1DRFAcUJXxxC8LfQqTdo1ei72zciJ+T9A8 OpqoUHPEXusnEbnh2PAYKoDCSyW7GeZ6/WDJMm95XFYwVfxrkiR3rVFxFe1BgXW7oavVpR5C+C4y AGkiiBZXa8/gK7ffKqWdFO9N/Ssw5qVGxWpIOvWqpGKUR+nGuU2LKPCwr22q2jLR6QVBns0UolV3 Y9KJ9cfuyWb/eZnS9U80Xdn9yRytRaqFuo+LenOAXKulDz6vD18dehuA2SEZ85BPp1JwWvtlB+09 dNymJw02EbZfjEDzZKuKT9dJRth1KVA+xqDnaNwwnJsfPBdIHXCQUaNcdWdC5jcjr+NipSfmkuzk kkmk9z6JpE/bvv/mOejlR4e0RnPmy+vP8WFX/z31G6COGVkaYq/1KH5/YkxRAXPENHtr1PU9W74k Oe7lhd188ss58jkK/jbW1p82SqraEkE1HdmnbngHBx1K+lEh5C50TA6GnE0aSW5uyRFmpmx2vfcg wXcVVpbRBiVUni/goDC3lTBsw9tqjLopxMo3ebtn0zMhM4zuUvcGWns+w3QGW3YyvNctUL/imuwU ksQAyHHMoedP10pKsYIrRW6vhCRQNzVrc6tSD0Lefa/SKHX63iRVBsnmTb7/SqQjIuk2VCgbiDTK wFzkXTYlGPSYopu30LO/3V3k9WaP6QKjE9J1HQ1pkwU9/L6Y01Ldt8iV76Bkew8XT2Oyp3Jc6Df6 DdCiI2iadJAKA89V0ZdpVzE+bULl+8AypynXH1/MSpz6uQUz+uP8jWkCGYW0RfX5FByZQcJPDuS2 nk+6Ug7rX+mBZrn7uM1LhEF4sbVZ/ZTmJeyOOexJXG88sFKsgj3KD3dLSFehMibBQsXTFRGFsftr E/3HU0k5YvNGO7xctheufquYxfCydLr+HdvO1mVbI3xzdQkpLO0J5bgOFAcclpECMrSAjYEPijaZ BhJKJsRYrGFH33G0k2zock0u9VSfHFfLp1uZtBovubcVigHhlw1sSgywVu8pscxBDyr09AIBWk7v qNg+1wdweiDKc1mGGXNdWzkCPgenjnFjq376G2tB/cNPmG6BxSYh0Yss8dM579SekcvcBvEAlml1 XXsQQa+ObdkbT29xGg8lJ1ySVuTtvHFnrRlhsH2gqG+pkAMu6Z5WjO7VRyEFxtdD5rPZ8qM1e6d2 8LY2+OjJE5TCOkpo8MjHEg74dmpOUK9yYn76KHFkmqYSixxkXeyo4wr8uWxMfrrFTFvH2d6eWcPV LkXD0Hf0IUBOje/tfD1OinyRIHNtyxRlkfzbbXPKtr3HXW+oAK4t2LJserxO8eRmiypdPiTOvmp5 0ccGdGzTSCGawqaeMAdjb3tMo/1es9RXtneMOtHHlzC60WMWuZnIa+u3wwHjElGDcoCZgZDSzpmj H6+1PM/EHT+ewXrB9BVRhKlrrTPw3GLKG+0vvnw0HDoXufwfxNCZFaCvuZr2GFb3ctq59yqsn0jO 7Jqb3u7in3d49k7nMa1wGX/KlGn45KBbK8rLA3jnnbj827u10ejlXcXnBHb8Ku2XJdL6wTVkX1hW 7g+D4Oi51tzzlXQ0QpvqOgwssxK7nQ/XOZr21dxjgd9XaFb+7W87mdM4BrYqyqm/zpWjctdX7qRf qDiKuMnXUTwKh9J6n6pQxXMlBAxgbUvh+bS6MSlNUVlenmYq9S5tvoY493bUleYsO35LenZhQnsg nPJNOczyclmbRmcmmnNmh/fUALiBX63ZkJb4bcw2908mflLNuTR++k5kMF2TamtcBX+UFlsBPbSr yiOoUnS5wV/3flDq70yML09Cf1shm8Yw/1sC62SNNWce7qEp1VP7n4FEF/68HrLZRn4DuvKFuEPV buwip7DctfXJ/tpNvqOYh+7NzQwn3I0Ju1vvwLTxN0VDzbG4wVJ7qv6rj+XTTBsBXZY6Auvi3BDW DdMPOIuiGQHU5HyIqnrsTVCf9OYLgkWxvuwrl6f6lFH+p7+A8KNRKbR5EnbMEcapeIV0H6Y+UPiy DxPGfrmwjQvfIycQFL18ZI1vsHT96FWC3rDh0S9hgpUNXHnGUU9keK2TyBgVau9t0NUXyg3BIdya l+kKhfRz2JZVwedjO2RVbA9dTqbZqiNJmbQhFwMequ0LsAhOCrvUes11QH2qt0MQuqbypfH8ShDd KQeKIL2B8gMyAlklFibiqnjrhgN0r7DNs5cF2MqKQA3PJya6Rft4NQKS+Ppjjc9hdBbtHqfdolCp w1cyMaQcdcysW00gYQYDhQRC3U6nlMhwRx9w1/v2seOz3d7pBmXRUc6+yUinBlP5qGzvIDFOXea8 BtPWq6ZtHbtybMhhTSDBJl67yYKYkr5Rq+HmQrt6KKDGfloM1jztC5xdaBcBAy4P/3iMkupEe2uX a9y+iY5K7+8UsjWFjgy6bwnaUndX67vSeUkgja7n5y575aj60+F09YOUtw1wOpsYABy3+NnkjytJ BDa/jZbSsUrcnvtbbPAnZNZSLsVeeXRtNi5/eSbloWecr4RW9crsPofwqFEn5EYdsS5F0OTsr3D7 fQZwOXBK1TsmyuXOiFBsX1uyOZQfdZb3M1evYx44VYSy/ugWvw9o0OpdQv8dX1HYKkQEdCOer34j 9AvJggera8R+UGtzOM8YrYgibXzecrhf1z13sD3mErGbQyOBM77z8geO3+UQJVz65vwQt/G4lHvv /l9ihL+AN1H/zI38MyPy7F9iBFlLmLmSpaPTP3IEsAJAATT+sC73KQO4FYD48kqq2I4EXwkR/5Y3 KP0aTBLBfvRoj/G/Kvj/a9HBzu4/lopnDJUgH5/jHo3x5eQHfxOPDFJ6ES3yQJ8N6YRa1pSWFUK6 6PcgsrvYOVj98CyVPWtICg6zhUswTnc7frtubswyI6BdIhZXmozlGAPUJWBhIWWotWnWIUP9NuG8 L9Nz5pDhL2ugh+N1Y3P6kEh1dU7x9Cd1B46UsrR6TsW4SVk7WlNYlB1Vk+u87YrPmE7h1FTRRUrC 9cwoEnoRE8fQZHdcIDJbxu9ddLIBDpVLTAPamdz/ajM1ub9tcHt3r7XoG2xarXq8ddvu+Y4f5vb2 1PPQSWgNJMDOLXbqQGxamtsRIbYoK3PI02O0F94g3by0O3VTdesXAZiab7/ow5gopYd2RtDBHXeu RBcZyE+szSUlLUI3jgq9XUMNJ/grGnJswc9irnmYr73Qz72Agk8cCyeK1lDr+Y4CnAUoNovn/U76 qPGp+oyxa2W8X021u7v3+0NPGcasDP54JNTf/XTZ+9NttWBs5+DFxZ9Gus8p8d75ze7fZIzFkO/J 1hNlpM7u8NBnv09jtyedVU60bPRqDXpp9struM26KiaTIUgT2wHr/mKa/uLks6UNrcLtO8YNrdIx 65/hcWWQyZHJaxXjxeeuq6Jhv8dyimM+bA4piWsbqA4WiMZfxrIO3bPyp98XB99RZVToFpFrHuha qtIOfVw8T9E24PcuWRnIh1q5cSnoDioBxO5bJ0wF+QloHdmxI0RSfbvnucJqacNmOg/HllgGP6Jx NRsN6w2QEEtwTGRUlRKkjMWqM14cMz5FC/YldyxeyD+syFycHiI4jVinMN5WWr+gpkOmNoYi0exm ZsA5vrL1YyXYNhuA7arueV8HFZjbhoOKrzyevHbagZUassgK8Dl1TurrjA/2nOXjefgiDnt6BdAS P/adpWtqPe4x7Fj8HeT6wUcnrJsqhR6yyASYmTepNkU1mcw6SPf06HFTmaIOO6fJ+BDc2ySmqBXi WfUtnWaWPy3xBrhIwmcI6efTfDqKkCxJ2cnyRkJIOnt7PP/3db5qUJwxWEbERoTzwadEgimqygHm loCYvvTqR1JDTgo+g3MeoiXUNkZJUyIb5HRcTpxrNf2BFxPD8ZxMr6xp8lvjS60Q60XfnK9ycCC2 oNF4T/PbeG5siDsFzG2pxdpHszX+G+vsSeODlbfjYcCcgWk+eZ30zaEVq6740OJKlkab23joHGJd /gEtfgR33iyC5eilTfATGl2wyxskBdIURWo8023Is74/PTr1HtJE+QBalgrsi5MJChfH4KYqbXrF Kw35l4Bme8gUA1aG/ZDG2qK7geePkHuHuUD6h3D5pn4ACRamT6K+OffCCSCCuJbgqofdpJKYoDRJ IeKsAOD8iTUpJB1vJN704XUHlu9AIalpPtgfn7UfmNMO189tkp4+OAVKTZdbP4GIv7ZXdSF+wCwR +ZySbzQD2D7tAAwDGmNemM09QYLCRuKFvocVrUe8hikEG6GCvh1yH/wwQl0mVK4XPDjdS+uIn1WA iajqEDuiwDHTDqt0s9ESjd7gKRDyr5Ip6vc3j5MtENJTTApyR/bgNA9atj4MQHpa/UlHzwKQCHYb jn8er6rBtkNNUNDv60K2NBEmqGHz2ZN/WLmX2B5/IgK7SkWEOYR6EEMEuz//E6v3UoQxSpMQ0vQC UG15ePMaVuuQhoTp6zSv+2PDRJBfgabf13HvAH4E06Nl8pC2BxCiW5WGyzlGMmDBz2q6FMk2S65L eCak9fCBKBrcmPtijcJftyXU8uNXuP87zR6VvJ0cfkivhRj/HRY0tYPZOfD8Z+WG28D8I4cIfHkp ug/f37eT+opmr79/MklcjCCOYl922wFrOfrZSN9emAfr4KQxHN6IL10QaLDEsl5S/o6mskX2vixW 0X+00jkajOpnYiXW/lyd2er5FEtjKc20lOAOMbLj/aVnRFk/VjLgtwkVPkhlVAr0Xvu+VGJ8z9aB tYXJ2lytp0b6DvZ3rFob+4m6KqzPDqP7BcGwfnz95pfR6GdYFWh8ngBtI4GhsgtlAbHZCFiS292f yDSm6oDURN6vjaplFjvHXr8LJzU9tBj345JleuyP/lVjyObl6OlwHj0CUf13ItLG3Mn4v4rD/3Px DwQLOmDHFWHSpk3tmoaqj/W4vCSB32KPNR8zSSkbYPdabLAjHu1Px4PjMfdKl+LNwmx6k4pFbIm/ uO5qFE5cM1cdiTNmDbt3A1hADHMLLt1I+4ZcjOBq05sz80na2Unofdsbffos5rbnusNMKqXEpnTY Tv6l76gsus95AJenOohaPSWoCGFlWePq21qH1FvvpcWLuVibtIPPIAdRsbwpa4ysOAbTcOJi4Vvg hTo8ecVpQL6NSRS89VmGXxxps95kT//rSR6e3up5Mt/ztvueJKz+p1HYQb+iIdvusqbpTbnCv2dD je2GJx2svFIDVBaxAtBg8+FDYlH6IQ5IwXTpZU0eQN5riKODcyXKAZA8UT17LgkPylT2KrSZollS 22jmtqNOj+H62MEHuf0x9fw6I/v6bfSrV3Np71LXOS2+LQWnxu+K+Ov7z/+K1fbloLHCiHoUjbfc Y+flL5nEclacs5zYAwhSrTJnwNXtm3mqR1AWArcA9Ux6MlwiVKCdT9yxtK5MgO3bK9cD14Ls7j3x encx2Yq+0ZkhDb3yz95ajODz+2ydi+XBfmOTvWzKBES3pq/p1W3TYtDU0VO3oeJmk6MGLCR/fV/W lK54h0j5LvWrcfaMygTf6Eu6JJqZIyYkHKfQ2CPtQ5bcxIdNcMPAMDKxTaE4K9dJLOMaQ3ZBGVpl Wdu6Ub5O/Gme1oXnBriGk5CmxqtXu1CyyQ6zgZiP8MOVvT7zmBE5RIQjzERYta24HtMvybe4epfO PfVB8PorBHq3OpCfyWYMTs/n+uUxt5XphGgKVxNTOVVkyZ9xCuyIJawxAkTc9jmdjIfLVMOMhG1r zQokE5TPbtNHecmJltBNie9mhrFuDQK9S8esKkZ0fz3+HsY2LLtYtuapMNFaffyG2PJllH9Re24Y K4p+XssDA2Ap+pe1o4y5iIxQikEY9VjAhJu2wShIxj3KlzixxeUnzen6x0xpKc4thgoFebKkIMnX cAJLwCt1X+Ia3JUgl6uJFMNnIcsnZvaHjNhFWXSjCuoqSWsh8pu6hZ8SumTOw3AD8P0cKK69hEni sl8dPBsga9VlecYX9fpFiH0mM30Z6VT6msXtdcyA0Hc5eda3CYSET4wp1Tu/6o+/JxFeGJBnV/jQ k8tCHAGJ64757Zd+YOdcCKtlOyZxbtqIptESDxqAIr6LdH1rqCe03YxkD0ijpK95K8tllZgDS10h CsZL6E4wUlYQcE3s5pA7pgVf6r7+vgAqufAlcSher5ZVOW1k0eWPEBoHNcLiXjSBb5uKMmKL2hks HxnXtYf//vPYtINk62cylhpBDpWRFLuIFJ0JBaWahiRdn56AnpRcLwJ6quRzUJl5amlHw8qmVWBs NRSUCZTqPags+Oi3uExLnBMbc4ZnOOJ8GRbM9r3oY6zZ9JVaWwRUX/f2xWIlGUwqOk6OZeur0JXS o5aUO4PIr73E6NLa31odAvaThH7r6xOlxZ8doWo/B36KyjzHCfDVm2gRMP2Bu7F+Ho9+Rhv42TMp yR2+0i9w+ME5XiyZBzWV2MMJgQ3GwH4SDPw0elnGaes444llTpihwsSUbPsttlC7pO4JvnKg93vP RnJ2lsTPbOrFtrH6oDhGJoEoKcENBcFqqqDIy5jAQ0MxNu3+plRZaNbRa1wMjSevpxabzi77sWwO doHkffeojoHwFPf2nV3QaTofg+Ceea9oazHONdBSfk25GKtdXGpbZWH9gZmhritITeo7BcG4/Ddk uHl8Odk0WWRDfVCA28ceVncyF05K/KupS6hBwD2BZT/WsfQ3Hk4Nrg46ceQyoTPuAdvcCohm7tfy n/KpKuBVRf/0gTOPnNdUVTHleqqsab3AnqvcbXgxfQQflsbgswXSVQWuFOq5CdzAr576uaH1dNbe b2ic5PzeF05RHVrsj7ilO/+SsyOj90HDEFPn5TaNy3ECmUGrLdemV+d/0XlnizfwYYupo/R33Zr3 rdKM7oq1zrhsDRO76Lvjz4w1sRIMNGTpFXUW+gRzmJoBK42OWgUv4FnYiVHwNxEib/9gV9oWNN4v H4dmkrZZJrHspHLfjhckx7q9TruiTtdA3+0aogn+dzXxC6CsoXooo1WP/1VNnMzhTpa2Fnb/VJOc aDVVP17S7qUrCuULQqEjGXnj4GgxoFU/+tEnyFNMoGWh09Ji+VNf2w7pm+G/B9f3CxK1r+imBLc0 PmtwJa0K65kyM2s0xH8MNzyfO6L6pfyUNKEWae2f00OQ3asfzqGNG3V1EYmjj9XDmHVlfa5v220n 3necUvUJZ/jCa3xJWlGbNM8SfxcrmvmvhKRjbHzdh+QJ+ST5HF6lqbSzg2HSMb9rhEgXFP09vpIy 95eStJLlyGW9v0eJsX1Xfg7/Ht4tHE7dL05YcBiXf0xfzM2lUZUfmlag2VHDysvKLWJPKW1U9mZm 5NfwfXmVKNMHNC4EPNBLXtzBk0uKzgYG9RgIQ66j+imh4ArdiHqsVb6rWz9LjNA//wLSoa1b4uoB SAy8/w6A//dMYmZn+sEYZu7kZP4PjlVavbZzvKSN1FsSpG9TTuRfVj1C+mkGMqhjypJgeK5ZaH+L /xod+iJjXHVLQELL6stL7KoYgkw/qs8bAw1uEWs7G/mAYTub5IaSyemLR0uwJm9dsRPJ6mLZbo2S SR02dWxj5p73bE8zX1A+pTCRJIl9vGmZZR6m1glu7Krnjn6VE1Wwnj/+ESIEr4h2VkuxMCVnPLsM MKvomnHxcSUekHw3l5jZSPL14HGAWop28S1eAykadEL9pxPkbzQihk04isUjkUQoLn8eLM1R4eaL cmsBd3sYNbfHzTbRGPReA8eymnkLlL37uQz2cM6bL9bAHHEZiu8/U/BLiowxPw0hx5Z8MijTRmJP s2OQon7PmWvkPVVGjpjb1Hifze00tqPdkm4Avb0tohNnGf2FmUqOSBvZvym7UoksT9U+i5WEYlkE xwn99DL6xCegMMp0rmQwFp88MJOEcGduA9s6tU6YYS3UpGVawH6yeskR0XktiXh7NqSu4VZb+CRa gxy0Tia5Sz+ioLauOakLKMNTOB85QoUbulwDMfpOxePD+nPkj3v33c/7M9xGweuiOXeky830kEk9 9mvPuGG5LAlarhu36lVOuYW/c9T0nV4j74ULRUO+sax6SkmEte/GJHfUaRhbFFaJ0yPdEmfCgLJQ 7kCN7hPPJ7rh3XQeo/8+vpanJSajSB89ynn2+D9UcXRyg5k7/sMVZxtzWyduUzNHx/00m5isLtqA 5k1tHa00u+RoHM8Zu4M9WLRoRVJxmgJSRT2fAj/MjBLQsadS3msnQfQE8y/Bb15R+JBmefhtD2ps /nzsYmJraclJdEH5qKayrlTUZ0xiK+NegXFUAgat7UcrZ+AxTBnba2+fp6f/vatEVx3WvJ/m60EO Q7UD7uHrQDEJWIP7RfP9uXdd/d0wnXRz34s7O8TNtuNdAtqsuj7pJn59sbjYrRJcx6Ic8ctd6lrb lfpK9SS6pJooPtx6XVXWcz7ghpQlB1I+tSVEx1dBFW7d9ONUy7OqrFJctHXF5TxQAHpBwzAwqqPq tXTT3wQ3vqRq7nUY4DJtNE6/b3ecv/nkuk4r/sYCYaTqVrFIHxc9dNb3xHMTPB75V+8uddP5osQS RmXX8ELZCWljOfM+ObAUnWv5LgKOJCoS5jDkb56BL7npBCHPxrW+mILyteD+XmusrutY8T6rwz5t rGJTynPKf6YH5588H/ph2KPf6Dh705Vq+9Lnlu+E4ommS74Q2+gO30BqwbsCFmhLnDVLqyILhHuW bEbRnyu+RLrh5ZUilv77NqIgHW7T/MiLhHL9ftyeWqVhdQWwTFrzZAKoBWiwjaQ2XJuq+JDob5uV MNa18imQbrN0y2oETy3W91oCsnwVWCwFXFrB6hpddh6aFNh2pt+N9Og9TREE1WcAOI2baNMESlvL 9zUh8yCvmuanLJY7b7rUE1+Zg5pSATMBPjawx2q5BnQYXhkUeSFK3GwfwZutpGFV1qLj4pdd7lGM 1qtgxAdjGU4fs/Q8v9h1w5HxxeIftVKOg0Q1mY1MRJdbVxas74wJcuBvQF9OEEnmHk1n6emJbwcR 2xv4xv7qRyiSVMdXe7la4TeYm88DYH9sY/zfxWmcdhcfFhktJ/VnYjuRZgwKLkY3VTnSLQnTud8O /eq6M3vnE/r0ggB611slONLzczu5hPrlRoaZR6IP50InWsOWUSlIBHIX2yP99ICLmmUJyq3p7T3z Qd1yibnazlzJx/8NW06vs52r3eNRAyXf8noGsJB2pnbh3hUHZ/Uuk5j1S0Lg/j7zh9kZyw+2Q3tF HOS6sxMK2ZV5Yz/nw7d12dt6TmybwIvDObepsuauxbISbcP4Yp8sN5MQ84tny0bswcD9PZD67Jyq Wm1aRNevY51nerNLlr8r2zOyym9YV+032z4MNsW8F7h2Fap0ybMrqT+K/wNshfhWY9nl61eylMfh awM+BcNlTuKe1Ph+pyMt0+9SZzrkMa9NJIl0TPqZEx0fUvfFToFl9X3rB7dtlXe3k+oEMeORFeNt ShO2gPXcN7zxRoBWHd8yLFO8LnVWhQRbQGPz3bHtrP+DB7xFsgYWOHg9CxhVrFljsq3YwRVdKt1C yTz/NWidLx7fzYcD1en5NRWFBYyr1Bz/4QE246MhmTPHGT8EVvEqELmBgf0U/1j4f5sOJp/4Wu0k 4EUCzX+VXNCm61uBBcUbJEtlEQZv7gI4Qkp2gBCoenPVeBdAYA1Y9frjkI/c86fCUjeiSkVimIEc Nv7tWIHBdHiBeMQas6/tE1U2eZM+TYMRCUY8rQa+jZr/nz/EArqNxUaYQ+nKsI5muKUt55wlP98f vI+ioOJu1fItxoLgIclgLNOKqb9xYDnV4c14ohcqkVf2douEVDjkhKzPlHgTjXjXwwkebnI9L9KO NBI0P1kmvRpuyeOu4lFQ9tpRv+H7GNEKmuNO0DoSVLEzv2W1pLduX/5tpTfE6XHsplqL7TB/frvQ VjZzLWiL1p18piwlibmL696VWv42vM5Z5k2utvAQbSikfV9WgzWdgNou0dDNDEdfQXZRMeT1iL+8 XK1rwP0fBBsFkY6v4Jt+9S0AfvkaJOXPJDGmoG+QF9Xi2cemito8KdF8s8jyQbwpxo/GERuvjCLa GPzF+gh8xa7xz3+zVzLvdwHSmc/lVV9hytB4E7F1XBv9jDxi2v6x5axUWbrs5P42F8OvDWUH8GsK NmtlEHpRrARw2eJFfru4XXU3rsXZ7IA2mXvW8U2qLd8mmAdIjQTMqFEIfOK2NKKNnOt/OdP6ppvo lS3ggonbjUJNB96fMjXyR59BqMr0UJH0vJEavdLJUiQp23mBswQZw9yk8AqtmScfF87MFbpYpLs+ 2eJcC+u287JztvPq1a53M0VvXDfdpAZccuwffYVSMR5GbZKwaM82vij1BPX/iLNHXdkE1q37/236 3Ix+Pu+QHg9WKawL5lav1BxbL+AeqdKcMbEBjwMnq6WXKUGLX/vWRRM4vXyKURPeXxdRlDwTDZpn A0ukSrFqc+Lwpm90vpDEnFzbJ7bGBVaGlUmFeV+kjrjJJpmLFHRiEKzGyrkKdc+t+Wh0f/mQ++2k LQ8RjZ2+0RI2zMxJGe18PAjmzzvJI7YOmcOxLvgEFpnbkqSMwSDBZ9DUDzss098zF8Y5g3wAKqlL EWsS8J/ph4pKiB74KdzPjUfOVCga2eyKUmZZvVJRv9CZy7d3WeyfVYl9yS6jpx8Sy6PMunfm4tvr L3ChX4GXy+B2xYVyCmsJEWRw6S9NClpyWEZWO2OuKjz33ysiGlOadxNY+rveh+/qbD1X31qtih94 0iNNITqxUHLwOJRrOg560rETaF2kvmlgTOcjGD+35e+ufGiDLqtGOu9JfRxqdnOcKudXuymClmLQ /E875xnV9NnG4RADQgJSZhiykSV7FCFUAyigYYQwFIQEkGVlL6sEQSyrKhIiASwgU1CrhIAilRHZ M2JkgyCyZCQyWpCC0gD1PSGt73lPP7//68P94Tnnd315/s+H+3nOXXaOO8V2COwJ8my8CdIGap+C cbS+D3s4eF5N6BEp2bFcwBUh+eDcoUslvM1tDb7Em1JUMb1LRyRtUhPapZ1N+Y456upFHaR5rp3J Loy0D8sXEgylFi379bgjphLyifWoSw5i6eppiiNEHbTKyxQLKnsSiIHnEFzWWBY2tazGR7Sv9+BD eKryk463CzWOxGRNxRJOXY627fCKiiF2FKkJVdqPSuO2UewStJjEcRmxJdknPl7OHQ/WRUmQ4pR8 5dtxCDVzsSKcVG2kVdh3s1Ze8Mueub3NcvMjl5XxCz9W03v5OHXL1QzGVC3fk7Dl3S3cY6pZgqb6 EJrQW++rJX0A/d62Sk+jVxwNbXSfirFIxWjsfhqIZulsDDOGVeFys3Ozz7fERMRGTCfzVJSHV9jR YiO20fbfXsoOWSdwnlFxL0s8pC3M5SQ7BfYIgFNCjBGHaupKpkhH4QNTVMJPZ1UCu60ZUPDe4IqV VtDTd7WIXu/rSOXZxhm8t/MDe6U4D127vIPou555hPyHMGIcOA7fO/PirnnnkbkFhJvWF6zrrzbF /MU7s6PCDcUpEcftHLs1dyCu/H4H3qBdCuC5oFML4NnHAHYX9DQ2ftzOotw1GTVJReDMXvQnKULJ aDLaJl2HCCVCNfgHIAOHaSJuGm6lI2VskU/YI8flNGD5yoe3V7epVvjBiozOuiA5MN+ZClpw0LMj o80VvhmAFHGewhHSZNOv1ZwJeyL1hwftoPqGRwOgDlBHehSD2SWWwrEJZNBOGZ7/EfMR1Jjs+w78 kX2XFq5kgbfQmTv7Nw3L5dmuOHQJvu3HcYE2TZRjUYVeRa1TZI0D1UP4K1YcDvRNjwZ4HZyRnIvZ hZH8Ccig3XpkPhez9rr/4huFF/0bs7fWKo+h197X1Y3V1NUUnz7rspCa5y8qUFQqdu9Nv3dBcLQ3 4+9XfPqIYpXGreBIv/09G6aal76fZ2Lfz86XMszG7v+Gvi0NKHMVw/B/8/BkcwLFiR3OPdaAO3/f w1or4CRttSfYJB3hqrL6aUodusmWqgGtsV9Fjesnt1fI2IKPbiB8xH8vIAkr3Jex76u3/A6qMjEL zbLse8YrN0F7JmpGMDZJvdEqbTpxd8iRPtxASvDi7ZAkfKcaeUVeNfLMKrAj5zddbeTtcUqWlJI8 1uJy3r7tYxu7fWwH9a4Haww4YGChpaESlw+H3UkKFPhJve36MnWlOBmGeOaf7ls4QeEfJVD6tTQU 9nUYuKe3hBL73oBjYIggnzZIRUewD1cd30VCrqCxckhAkYXBbzL/OXnsntJMKw/KZKV5GZq5nRDn hU33WzYGVgUND/96dUk+2SSiL/68AtKsSz+qilTv+mZoNWCRhq/PM9Lmi7MOr3z4nPwOHDGVaVT2 R150GlA8zn9z8ExAAXROr6ZyqQWNLRWwcKeCUZyo1psgZZCyJYyj8Bv9tclkHhGSqwj/GL2HL22Q nLLL4ue3n9hMQx5fcmvVQfBrevZasplKZpIF3Czi3qvcEpFMkO2VOZsIPJF/sKonpNBWcH38ef/x fvyoPUehOYezvyaJ8igd2GbNOY+WeHFMZzi1oav+R3WIPiSqk9xVf1LLt7wbfdVPOOh7Hk+7bCyi WcBfM2vhitlGzcXllou51rmUQqESgRK8OFcPV09mBDdSEelDH4gxHI4zXHJFS+BOsPVw7RLINyqL VGTs3jkjxu4Nd+wSRM7guPyaJNIfdAnnoTqTbGwpFfb3keAm33smBtVH2/jVTpy+aA8RAis+9Nli x4SvHsoQ+YLiuJvHF4LlEpLGG8xh+esqSJEdBtbFrODumacBcU8yXQFxbAyybYBnr9YvjhcMqpsr h8wWWRT0zDfiIZoamqXFHaKdkM7rUK5p9um0CO4MaMZp+gC52vlF9eLJdIlXWCHG6g5mAjcUNDUo erzT4d4ngSsP7ihrlsoJcE7HoUBFFh2ncB3uaNXKoVuRZegDUGyZuzRGGjPomKKxi7HPNexVBl4z tCc4Deyiu7nuBfZ14A6xb0DPuSavh3Zdw2Y7pcJrH3iDJ+dbQbHYPMbOo5JQkyGt0AQXWlKtwjWV NUYyHANnJOdq7GLssy+KjYGXIj08tzSa51gu9KHOrdqmtTH6Z+5ftKhN2NClJYycS2zTR5eSHIMM o42qRqlbhmJZwbrdh9dnue7CwYmJvn2uF+5O3Qpc2oi/MLOp/AN67vsOibMZQ+4/WQZ6h9+r1Soo lmkXrKaZ1I6iRP2N1vJCoRnZvO+q7zs/X2muXoJY+mcc0JRwMySHxcwCXsvgCzu0JD6u4KvKXKjQ 252Q4SPsqr+gJyyVmq/lCGdqJWS7JFfUzB+2Vzh+OjLKQYrPan6kWy0igFqM98l8hqk9MMsr+m2Z h/VIaUv2xvUcc8mQOR9DXI/F55r1IuH1l1o4P/fHOV6yg4TqpRbz105O9OYllxspM8dMvL/NxqTH voIWBC4bmWFu1IpEvVQL3HylvxwMWVzQbkajjhAURL3mMvah7kUCChvfExB8Zvo3AvbP3Ly0Uhl1 Li1KXLkp3XwsumAOHzxln3P0XM27+/1BWzzFuNAPNx/g89rNQgiBWmtjQXTKScdmK7+ntSmj0XhR O3kn3BsyceviiyDhrZmhqvnPTh952g/8Rc4HKHJ11W7VL5lYIYXYEHca2up6nH+dJ56i8IOL2Vpv s5d0tkl3uybxyhapvS++AlEQMPrk3vMFscGzoTp2yQmPBITE4/NLziHkPr0acPxjaET6U5m76CcD 29kpGOlm2R18oriN/68fGiREJV7PdZNeOV3+eXE8a7Ut/oPp+nCR1+r59F+M+pMOTPeXjFcuhtWt z2ztbX6IboQk6gMAAD3A7gBQv/MBF0K3m2PlZaWtXbZKCDUVSufLcgftHh0kyqILQbFp60RUOoB5 gl8/QaKIlROktrbOjtVORMfp7soJIACJYAOqAb42ZkqeZSTVPw+dAu+MC90enigCmKmsOQaAU9lY K6tn7/APZg+V47+OAmGWiarV7oSzVlbZ3rEZzDJ2zq8N0fg3nr0vYpg9qUpffx/DbJLNIe8ks1ZW 096XMsymSaW/v5v5N4a9l8TMBoT6366MmQXkgMadQNbKKth7EcsssND4yrUss2Z5YjeWtbJq9nbo mTUEva/065k1AtpNO7GslVWzt3/NrBn79p+72cyWMmDbTiprZbXsbX0yW8AG/9wIZbbUK++mslZW y94zhtmy/xTTicMcbfO6cyeKtSIR7DvjVCEMMCAAwOsU4P/f//j9CRRY29oAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DC57D6.3C2A5F60 Content-Location: file:///C:/2669CA93/2133_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DC57D6.3C2A5F60--