MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DBDBB9.2A38CD80" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Eficiência e Precisão na Extração de Dados Científicos: Um Estudo de Caso com Robôs Automatizados

Efficiency and Accuracy in Scientific Data Extraction: A Case Study with Automated Robots

Edson Melo de Souza

https://orcid.org/0000-0002-5891-4767<= /o:p>

= Doutor em Informática e Gestão do Conhecimento. Universidade Nove de Julho (Unin= ove) – Brasil. souzaem@uni9.pro.br

Wonder Alexandre Luz Alves

https://orcid= .org/0000-0003-0430-950X

Doutor em Ciência da Computação. Universidade de São Paulo (USP) – Brasil. wonder@uni9.pro.br

 

RESUMO

A coleta de grandes volumes de dados tem se tornado um desafio cresc= ente em diversas áreas, incluindo negócios, saúde, governo e pesquisa acadêmica. Métodos manuais, apesar de amplamente utilizados, são ineficientes, propens= os a erros humanos e incapazes de lidar com o aumento exponencial de informações= . Este estudo apresenta uma abordagem automatizada para a extração de dados autora= is em artigos científicos, utilizando robôs que aumentam a eficiência e a prec= isão do processo. Baseado nos avanços da pesquisa realizada por De Souza, Storopoli e Alves (2022), o trabalho aplica técnicas = de raspagem de dados (web scraping) em 901 artigos da revista Ann. Intern. Med., com o uso de três robôs: RCDA (Robô Coletor de Dados de Autores), RCCA (Robô Coletor de Contribuições de Autores) e RIA (Robô Individualizador de Autores). A automação reduziu o te= mpo de coleta em até 99,9%, ampliando a precisão para uma taxa de erro inferior= a 0,01%. A abordagem proposta não apenas valida a eficiência dos robôs utilizados, mas também demonstra sua escalabilidade e aplicabilidade em contextos além da pesquisa científica. =

Palavras-chave: robôs; automação; raspagem de dados; coleta automatizada; ciência de dados. <= /p>

 

ABSTRACT

Collecting large volumes of data has become an increasing challenge across various fields, including business, healthcare, government, and academic research. While manual methods are widely used, th= ey are inefficient, prone to human errors, and incapable of handling the exponential growth of information. This study presents an automated approach for extracting authorial data from scientific articles, leveraging robots to enhance the process's efficiency and accuracy. Building on the research advancements of De Souza, Storopoli, and Alves (2022), this study applies web scraping techniques to 901 articles from the Ann. Intern. Med. journal, utilizing three special= ized robots: RCDA (Author Data Collector Robot), RCCA (Author Contributions Collector Robot), and RIA (Author Individualizer Robot). Automation reduced data collection time by up to 99.9% while improving accuracy to an error ra= te of less than 0.01%. The proposed approach not only validates the efficiency= of the deployed robots but also demonstrates their scalability and applicabili= ty beyond scientific research.

Keywords: robots; automation; web scraping; automated data collection; data science.

 

Recebido em 10/02/2025.  Aprovado em 12/03/2= 025. Avaliado pelo sistema double blind peer review. Publicado conforme normas da ABNT.

https://doi.org/10.22279/navus.v16.208= 5

 

1 INTRODUÇÃO

 <= /o:p>

Nos a= nos recentes, observamos um aumento acelerado e significativo na geração de gra= ndes volumes de dados (Helena Presser; Lopes Da Silv= a, 2018). Nesse contexto, o volume de informações originadas da internet impõe desafios significativos para a coleta e análise de dados relevantes. A progressiva digitalização da informação tem remodelado profundamente o cená= rio da pesquisa científica em nível global. Conforme De Souza, Storopoli e Alves (2022), métodos manuais de coleta de dados, frequentemente usados n= a pesquisa acadêmica, são incapazes de atender à demanda crescente. Além disso, tais métodos comprometem a precisão, tornando o processo mais suscetível a erros humanos.

A hab= ilidade de extrair valor de grandes volumes de dados não é apenas uma necessidade técnica, mas uma vantagem estratégica essencial no cenário contemporâneo. Conforme discutido por Nascimento et al. (2018), a análise de Big Da= ta permite que as empresas inovem em seus negócios, utilizando plataformas que facilitam a coleta e interpretação de grandes volumes de dados, resultando = em decisões mais informadas e estratégias competitivas aprimoradas. Além disso= , Ataides e Nacife (2024) d= estacam que o Big Data Analytics (BDA) fornece às organizações ferramentas para analisar dados de forma eficaz, colaborando p= ara alcançar e preservar vantagens competitivas. De acordo com Sewald Junior e Santos Júnior (2024), a capacidade de processar e interpretar gran= des volumes de dados permite que as empresas aprimorem seus processos decisório= s, tornando-se mais ágeis e adaptativas no mercado atual.

Na ár= ea da saúde, por exemplo, a análise de dados em grande escala pode oferecer in= sights significativos para o diagnóstico e tratamentos personalizados, enquanto nos negócios, a identificação de padrões em grandes bases de dados pode antecip= ar tendências de mercado. Entretanto, métodos manuais de coleta e processament= o de dados, com frequência aplicados em pesquisa científica, são lentos e suscetíveis a erros humanos, comprometendo a precisão e a eficiência da aná= lise (Morais et al., 2019).

Na pe= squisa científica, é comum ocorrer situações onde um pesquisador enfrenta o desafio de analisar milhares de artigos para identif= icar padrões de autoria e contribuição científica. Este processo, executado de f= orma manual, pode demandar semanas ou até meses, além de estar sujeito a inconsistências. Segundo Camilo e Garrido (2019), "A comunidade cientí= fica tem assistido a um incremento exponencial na divulgação de ciência, com nov= as revistas lançadas anualmente e milhares de trabalhos de pesquisa publicados= em vários domínios científicos entre os quais a Psicologia.". Esse aumento significativo na produção científica torna os métodos tradicionais de revis= ão mais desafiadores e suscetíveis a falhas, afetando potencialmente a qualida= de das decisões baseadas nesses dados.

Neste contexto, a automação surge como uma solução para mitigar esses obstáculos. Ferramentas como algoritmos de web scraping<= /i> e pipelines de ciência de dados têm transformado a forma como informações são coletadas, processadas e analisadas. Estudos como o de Raghupathi= e Raghupathi (2014) destacam como sistemas automatizados na área médica podem reduzir drasticamente o tempo de coleta = de dados, enquanto Zhao et al. (2020) ilustram a aplicação de Big Data = para o desenvolvimento de novos medicamentos.

Porta= nto, este estudo propõe uma abordagem automatizada para a extração de dados científicos por meio dos robôs RCDA, RCCA e RIA, projetados para processar grandes volumes de informações com maior precisão e menor tempo de coleta (= De Souza; Storopoli; Alves, 2022). Utilizando um e= studo de caso com artigos da revista Ann. Intern. Med., a pesquisa demonst= ra como a automação pode transformar a coleta de dados autorais, garantindo eficiência, reprodutibilidade e escalabilidade. Além de detalhar a implementação técnica desses agentes inteligentes, o trabalho amplia suas funcionalidades e explora sua aplicabilidade em diferentes áreas, como negócios, saúde e ciências sociais, contribuindo para a consolidação deste paradigma para a extração automatizada de dados científicos em larga escala= .

Adici= onalmente, são debatidos aspectos éticos relativos à extração automatizada de informaç= ões, em especial quando há necessidade de tratar bases proprietárias ou com restrições de uso. Também se enfatizam possíveis riscos de obsolescência dos algoritmos, pois estruturas de páginas da web podem ser alteradas e requerer adaptações contínuas do crawler. Por fim, faz-se uma análise crítica das limitações do modelo proposto, sobretudo no = que se refere à generalização dos resultados para outras revistas científicas e bases de dados.

 <= /o:p>

2 FUNDAMENTAÇÃO TEÓRICA<= /p>

 

A fundamentação teórica deste trabalho explora os pilar= es que sustentam a automação da coleta de dados científicos. Os principais conceitos abordados incluem: (i) autoria e posicionamento autoral, (ii) Big Data, (iii) automação de processos, (iv) web scraping, (v) impacto da automação e da inteligência artificial na análise de dados científicos e (v= i) possíveis implicações éticas e limites da automação.

 

2.1 Autoria e Posicionamento Autoral

 <= /o:p>

O conceito de autoria em publicações científicas envolve tanto a contribuição ativa para o estudo quanto questões éticas, como autoria fanta= sma e honorária (Kumar, 2018). No início do século XX, era comum que artigos científicos tivessem apenas um autor (Lozano, 2014), mas a ciência moderna, impulsionada pela colaboração interdisciplinar, resultou no aumento do núme= ro de coautores por publicação (Rosenzweig et al., 2008; Patience et al., 2019). A responsabilidade éti= ca dos autores pelo conteúdo publicado é um aspecto fundamental nas práticas científicas, pois reflete não apenas a autoria, mas também o compromisso público com a integridade e a veracidade da pesquisa (Hilário et al., 2018).

O byline, segundo Yang, Wolfram e = Wang (2017), é a identificação do posicionamento autoral em um artigo é realizada com base na informação dos nomes dos autores, que aparece no início do text= o, também conhecida como Author byline. Essa disposição está diretamente relacionada à relevância dos autores na publicação. O byline não é meramente um crédito nominal, mas um símbolo de accountability (Peng et al., 2024). Ao associar seus nomes a um artigo, os auto= res assumem, perante a comunidade acadêmica e a sociedade, a responsabilidade p= or cada afirmação, metodologia e conclusão apresentada. Isso inclui garantir a precisão dos dados, a originalidade das ideias, a adequação das citações e a transparência em eventuais conflitos de interesse. Entretanto, o posicionam= ento dos autores no byline não segue um padrão universalmente aceito, gerando debates sobre critérios de contribuição (Yan= g; Wolfram; Wang, 2017). Em geral, os primeiros autores desempenham papel cent= ral no estudo, enquanto os últimos são responsáveis por supervisão e captação de recursos (Zbar; Frank, 2011), sendo que a posiç= ão de autor correspondente frequentemente reflete maior participação intelectual = (Mattsson; Sundberg; Laget, 2011).

Problemas éticos surgem quando indivíduos com pouca ou nenhuma contribuição significativa são incluídos na autoria (Jones; McCullough; Richman, 2005). Além dos critérios formais, pes= quisas apontam fatores simbólicos na definição da autoria, como Igou e Van Tilburg (2015), que sugeriram que o número de letras no nome do meio = de um autor poderia influenciar sua posição no byline<= /i>. Já Russell et al. (2019) observaram que, à medida que o número de autores cresce, a posição do autor correspondente tende a migrar da primeira para a última posição, indicando um papel de liderança.

A determinação da ordem de autoria costuma estar atrelada à contribui= ção individual, sendo os primeiros e últimos autores aqueles com maior envolvim= ento (Tscharntke et al., 2007). Doutorandos e= pós-doutorandos frequentemente ocupam a primeira posi= ção, enquanto líderes de pesquisa ou diretores de laboratório figuram como últim= os autores (Mongeon et al., 2017). No entan= to, mensurar as contribuições individuais com precisão continua sendo um desafio (Chang, 2019). Em colaborações internacionais, é necessário considerar as práticas culturais na definição do posicionamento autoral (Aria; Misuraca; Spano, 2020), reforçando a importância de diretrizes claras para garantir a justa representação da autoria na ética científica.

 

2.2 Ciência de Dados e Big Data

 <= /o:p>

A ciê= ncia de dados, enquanto campo interdisciplinar, integra metodologias computacionais= e estatísticas para transformar grandes volumes de dados em conhecimento acionável. Segundo Novaes (2024), “A Ciência de dados, como disciplina, transcende a mera coleta de informações, exigindo uma abordagem metódica e criteriosa na interpretação dos dados.”. Ainda, segundo o mesmo autor, sua essência não reside apenas na análise pontual, mas no desenvolvimento de algoritmos e modelos preditivos que sustentam decisões estratégicas. Não por acaso, essa capacidade tem sido amplamente explorada no setor empresarial: = Sewald Junior e Santos Júnior (2024) reforçam que, di= ante do crescimento exponencial de dados disponíveis, as organizações adotam técnicas de ciência de dados como ferramenta crítica para ganhar vantagem competitiva, seja na otimização de processos, seja na antecipação de tendências.

Byrne= et al. (2017) delineiam o pipeline da ciência de dados, que abrange desde a formulação de perguntas relevantes até a visualização dos resultado= s, passando por coleta, exploração e modelagem. Dentro dessa cadeia, destaca-s= e o pré-processamento de dados — etapa que, segundo Fan et al. (2021), p= ode consumir até 80% do tempo de um projeto, especialmente quando se lida com informações desestruturadas ou incompletas. Nesse contexto, ferramentas automatizadas, como as propostas por Koehler et al. (2017), emergem = como aliadas indispensáveis, reduzindo erros humanos e acelerando a preparação de bases complexas. Para que essa aplicação seja viável, é necessário um fluxo estruturado de trabalho (Antypas et al.,= 2021).

Essa = demanda por eficiência está intrinsecamente ligada ao fenômeno do Big Data, termo q= ue, segundo Gandomi e Haider (2015) e Li, Chen e Sh= ang (2022), descreve o crescimento vertiginoso no volume, variedade e velocidade de dad= os gerados. Se nas empresas o desafio é transformar dados em insights, = no meio acadêmico, como apontam Falsarella e Jannuzzi (2020), a necessidade de processar milhões de artigos científicos publicados anualmente impulsiona o desenvolvimento de tecnologias capazes de filtrar, analisar e sintetizar informações em escala. Assim, tanto na prática corporativa quanto na pesquisa, a ciência de dados revela-se um pilar central, conectando desafios técnicos — como o pré-processamento — a soluções inovadoras que respondem às exigências de um mundo cada vez mais orientado por dados.

A int= erligação entre teoria, ferramentas e aplicações práticas não apenas define a ciência= de dados, mas também reforça seu papel transformador em múltiplos setores, uni= ndo rigor metodológico à capacidade de gerar impacto real.

 

2.3 Automação de Processos

 <= /o:p>

A automação, atualmente indispensável em práticas científicas e outras áreas do conhecim= ento, vai além da mera substituição de processos manuais: ela redefine como a ciê= ncia é conduzida, desde a coleta de dados até a validação de hipóteses. Utilizan= do algoritmos e ferramentas computacionais, essa abordagem não apenas reduz a intervenção humana em tarefas repetitivas, mas também introduz precisão, escalabilidade e velocidade inatingíveis por métodos tradicionais. Kumar et al. (2021) e Xu, Kumar e LeBeau (2022) demonstram, por exemplo, que a automação em workflows de Apre= ndizado de Máquina ou Machine Learning (ML) reduz erros de análise em até 40%, enqu= anto acelera a entrega de resultados em projetos de grande escala. Além disso, em laboratórios de pesquisa experimental, sistemas robóticos autônomos, como os descritos por Burger et al. (2020), estão revolucionando a descobert= a de materiais e fármacos, executando experimentos químicos 24/7 com mínima supervisão humana.

No âmbito da= coleta e processamento de dados científicos provenientes de publicações, a automaç= ão emerge como uma solução crítica para superar desafios como a fragmentação de fontes, a heterogeneidade de formatos (PDFs, HT= ML, XML) e o volume exponencial de artigos gerados anualmente. Ferramentas como= Scrapy e Selenium (Pant et al., 2024; Kovale= nko, 2025) são adaptadas para extrair dados estruturados de repositórios acadêmi= cos, como PubMed, arXiv e Scopus, automatizando a captura de metadados, citações e até conteúdo compl= eto. Essa abordagem é combinada com técnicas de mineração de texto e processamen= to de linguagem natural (PLN) para classificar artigos, identificar tendências temáticas e mapear redes de colaboração científica.

Um exemplo é= o trabalho de Falsarella e J= annuzzi (2020), que desenvolveram um pipeline automatizado para agregar e padronizar dados de mais de 2 milhões de artigos científicos, permitindo análises bibliométricas em larga escala. Sistemas como o GROBID (Lopez, 200= 9), por sua vez, utilizam algoritmos de reconhecimento de entidades para conver= ter PDFs de publicações em dados estruturados, reduzindo = erros manuais em até 70% em projetos de revisão sistemática. Essa capacidade é im= portante em áreas como a medicina, onde a velocidade de acesso a estudos recentes — = como ensaios clínicos publicados em plataformas como ClinicalTrials.gov — pode influenciar diretamente decisões terapêuticas (Higgins et al., 2022)= .

Além disso, a automação garante a integridade e a reprodutibilidade na curadoria de dados= de publicações. Plataformas como o OpenAlex (Priem; Piwowar; Orr, 2022) empregam scripts automatizados para atualizar diariamente seu banco de dados com novos artigos, corrigindo inconsistências e vinculando autores a instituições de forma precisa. Contu= do, desafios persistem, como a necessidade de lidar com licenças restritivas de acesso e a variação na qualidade de metadados entre periódicos — questões q= ue demandam estratégias de retry inteligent= e e validação cruzada, conforme discutido por Piedra et al. (2023) em seu estudo sobre interoperabilidade em repositórios acadêmicos.

 <= /o:p>

2.4 Web Scraping

&nbs= p;

Web scraping é uma técnica de extração de dados estruturados ou semiestruturados de páginas da web (Souza et al., 20= 24). Essa abordagem tem sido amplamente aplicada em áreas como inteligência de negócios, marketing digital e pesquisa científica, especialmente em cenários onde APIs, do inglês Application Programming Interface, não estão disponíveis ou s= ão insuficientes (Singrodia; Mitra; Paul, 2019).

De acordo co= m Khder (2021), o web= scraping desempenha um papel essencial na transfo= rmação de grandes volumes de dados não estruturados em informações utilizáveis. Por exemplo, na pesquisa acadêmica, ferramentas de scra= ping podem coletar informações como autoria, afiliações e contribuições científi= cas diretamente de páginas de periódicos, complementando ou substituindo métodos baseados em APIs.

Além de capt= urar dados textuais, o web scraping também permite a análise de metadados e padrões visuais presentes em página= s da web (Glez-Peña et al., 2014; Zhao, 2022)= . Essa técnica se mostra particularmente eficaz quando integrada a outras metodologias, como o aprendizado de máquina, para identificar padrões ou realizar classificações automáticas (Jordan; Mitchell, 2015; Kalaivani; Kamalakkannan,= 2022).

Porém, tais benefícios vêm acompanhados de desafios, como a possibilidade de mudanças frequentes na estrutura das páginas, limitação de requisições por parte dos servidores e implicações legais e éticas para o acesso a certos tipos de da= dos, sobretudo quando as páginas não foram projetadas para compartilhamento livre (Nunes, 2024).

 <= /o:p>

2.5 Impacto da Automação e da Inteligência Artificial na Análise de Dados Científicos

 <= /o:p>

A aplicação = de inteligência artificial (IA) e automação na coleta e análise de dados científicos oferece ganhos consideráveis de eficiência, ao mesmo tempo em q= ue introduz novos desafios (Sarker, 2021). Modelos baseados em aprendizagem profunda podem, por exemplo, auxiliar no PLN para identificar com maior precisão contribuições científicas (Tohalino, 2023). Quando combinadas com Big Data, essas técnicas permitem a descoberta= de padrões não triviais, que podem impulsionar inovações em saúde, negócios e = outras áreas (Raghupathi; Raghupa= thi, 2014).  Nti et al. (2022) identificaram que redes neurais profundas (15%), máquinas de vetores de suporte (15%), redes neurais artificiais (14%), árvores de decis= ão (12%) e técnicas de aprendizado em conjunto (11%) são amplamente aplicadas = em Big Data.

Todavia, alg= oritmos de IA podem reproduzir vieses presentes nos dados de treinamento (Mehrabi et al., 2021), se estes não forem cuidadosamente avaliados e auditados. Segundo Nazer et al. (2023), a construção de algoritmos preditivos baseados em inteligên= cia artificial envolve múltiplas etapas, sendo que cada uma delas pode influenc= iar a introdução de vieses no modelo. Tais vieses podem distorcer análises ou priorizar determinados grupos de artigos, alterando a percepção sobre a produção científica (Deng et al., 2024). Por isso, a adoção de técni= cas avançadas de automação demanda estratégias robustas de validação, supervisão humana e atualização frequente dos modelos.

 

2.6 Desafios, Limitações e Implicações Éticas da Automação<= /p>

 

A adoção da automação na coleta de dados científicos levanta algumas questões críticas:=

 <= /o:p>

·       Confiabilidade dos Dados: Mudanças na estrutura do site ou fonte de dados podem afetar a extração. Dados ausentes= ou formatos inconsistentes podem comprometer a precisão final (Porto; Cordeiro, 2024).

·       Manutenção e Custos de Infraestrutura: Robôs e pipelines de raspagem devem ser atualizados conforme mudança= s de layout, exigindo equipe técnica e custos computacionais relevantes (Khder, 2021).

·       Vieses Algorítmicos: Se os modelos de IA/PLN não forem treinados adequadamente em dados representativos, podem su= rgir distorções que afetem a legitimidade dos resultados (S= arker, 2021).

·       Questões Legais e Éticas: O web scraping pode esbarrar em restrições legais, políticas de privacidade e direitos autorais, exigindo avaliações éticas, além de consentimentos ou autorizações específi= cas (Nunes, 2024).

·       Necessidade de Monitoramento Humano: Apesar do alto grau de automação, intervenções humanas ainda são necessárias para corrigir erros, avaliar casos atípicos e assegurar conformidade com princípios éticos e legais.

Esses aspectos reforçam a importância de uma abordagem cautelosa e responsável na adoção de automação, buscando equilibrar eficiência e confiabilidade com respeito a normas legais, direitos de terceiros e integridade da pesquisa.<= /span>

 <= /o:p>

3 TRABALHOS CORRELATOS

 <= /o:p>

Estudos ante= riores exploraram diversas abordagens para a coleta de dados científicos, destacan= do avanços e limitações que serviram como base para o desenvolvimento dos robôs propostos neste trabalho.

 

3.1 Coleta Automatizada de Dados Científicos

 <= /o:p>

A extração de informações acadêmicas tem sido amplamente estudada ao longo dos anos, com avanços significativos em técnicas que combinam Processamento de Linguagem Natural (PLN), Aprendizado de Máquina e Mineração de Textos. O desenvolvime= nto de novos métodos tem permitido aprimorar a eficiência, precisão e aplicabilidade das abordagens utilizadas na análise de dados científicos.

No estudo de= Tang et al. (2007), foi desenvolvido um modelo de extração de redes sociais acadêmicas, utilizando Campos Aleatórios Condicionais (CRF) e um modelo probabilístico baseado em restrições para desambiguação de nomes. A pesquisa demonstrou que essa abordagem superou modelos baseados apenas em regras, aumentando a precisão na identificação de conexões entre pesquisadores.

Com uma abor= dagem voltada para a extração de informações acadêmicas, Mena-Chalco e Cesar Juni= or (2009) propuseram o ScriptLattes, um sistema pa= ra extração automatizada de informações acadêmicas a partir da Plataforma Latt= es. O sistema facilitou a criação de relatórios detalhados sobre produtividade científica, permitindo análises mais eficientes da produção acadêmica de pesquisadores e instituições. No entanto, a pesquisa enfrentou desafios na padronização e eliminação de redundâncias nos dados extraídos.

O estudo de He <= i>et al. (2013) introduziu um modelo de subgrafos= de diversidade em redes de colaboração científica, utilizando técnicas de modelagem de tópicos e extração de subgrafos pa= ra mapear relações interdisciplinares. O método proposto permitiu capturar pad= rões complexos de colaboração entre pesquisadores de diversas áreas do saber, permitindo uma visão estruturada da interdisciplinaridade na pesquisa científica.

Já o estudo = de Ferrara et al. (2014) investigou a extração de dados acadêmicos na w= eb, diferenciando abordagens baseadas em árvores e ML. O estudo analisou desafi= os como variação estrutural das fontes, adaptação a mudanças e anonimização de dados sensíveis, concluindo que, embora as técnicas modernas permitam extra= ção eficiente, a integração entre diferentes fontes ainda representa um desafio= .

No contexto = da extração de informações textuais em artigos acadêmicos, Bui et al. (2016) desenvolveram uma ferramenta de classificação de textos para otimiza= r a extração de informações em artigos científicos no formato PDF. O modelo bas= eado em multi-pass si= eve alcançou uma acurácia de 92,6%, superando técnicas tradicionais de ML. Além disso, o sistema permitiu uma redução de 50% no tempo de processamento e uma diminuição de 44,9% no número de sentenças processadas, tornando-se uma abordagem eficiente para a extração automatizada de informações acadêmicas. Ainda no mesmo ano, Bui et al. (2016) desenvolveram um sistema de sumarização de texto extrativa, projetado para apoiar a extração de dados completos em revisões sistemáticas. A técnica combinou métodos baseados em regras, mapeamento de conceitos e dicionários, alcançando um F1-score de 84= ,7%. O sistema superou abordagens manuais, apresentando um recall de 91,2% e uma precisão de 59% na extração de elementos clínicos.

Com uma prop= osta inovadora voltada para a extração de termos específicos, Nasar et al. (2018) apresentaram uma revisão abrangente das técnicas de extração de informações em artigos científicos, classificando métodos em abordagens baseadas em regras, Campos Aleatórios Condicionais (CRF), aprendizado profundo e Modelos Ocultos de Markov (HMM). O estudo demonstrou= que abordagens híbridas, que combinam aprendizado supervisionado e regras semânticas, alcançaram um F1-score acima de 90%, sendo as mais promissoras = para a extração de metadados científicos.

Rabby et al. (2018) propuseram uma técnica de extração de palavras-chave baseada em árvores, aplicável a textos acadêmicos. A técnica permite ajusta= r a granularidade da extração com base no Maturity = Index (MI). Comparado ao método RAKE (Rapid= Automatic Keyphrase Extraction), o modelo proposto apresentou maior flexibilidade na identificação de termos relevantes, mas ainda depende da qualidade do texto de entrada para obter melhores resultados.

Graciano e R= amalho (2023) desenvolveram o ScraperCI, um web scraper para coleta automatizada de dados científi= cos em bases de dados disponíveis na web. A pesquisa destacou que a automação da extração de informações reduz o tempo de recuperação de dados e melhora a eficiência na organização de grandes volumes de publicações científicas. A ferramenta foi implementada em Python, utilizando técnicas de web scraping e mineração de dados para estruturar informações acadêmicas de forma acessível e reutilizável.

Por fim, Sou= za (2021) realizou extração de dados da plataforma Scopus através de web scraping para estudar categorias de contribuição = e a questão da posição autoral em relação às contribuições dos autores em publicações científicas na área de ciências biológicas e medicina. O estudo mostrou a existência de dois grupos de contribuições que podem apoiar os autores de acordo com suas habilidades para contribuir com artigos. Os resultados indicam que as maiores contribuições estão no grupo teórico, sinalizando que a experiência acadêmica dos autores é um fator principal.

A evolução da extração de dados acadêmicos ao longo dos anos vem demonstrando avanços significativos no uso de PLN, ML, mineração de textos e redes de colaboração científica. Desde a identificação de redes acadêmicas e extração de currícu= los, passando por sumarização e classificação de textos científicos, até técnicas avançadas de modelagem de tópicos e web scraping, os estudos analisados revelam que os métodos híbridos e automatizados vêm aumentando a precisão e reduzindo o tempo de processamento, tornando a extr= ação de informações cada vez mais eficiente.

Desta forma,= o presente estudo introduz melhorias nos robôs que combinam web scraping com técnicas de ML para adaptar-se dinamicamente a diferentes estruturas de páginas, ampliando a abrangência e reduzindo a necessidade de intervenções manuais para obtenção de dados científicos.

 <= /o:p>

3.2 Análise de Autoria em Publicações Científicas

 <= /o:p>

A identifica= ção e análise de autoria em artigos científicos são fundamentais para estudos de colaboração acadêmica. Tang et al. (2008) desenvolveram o sistema ArnetMiner, que extrai informações de autoria e const= rói redes de colaboração. No entanto, sua eficácia é limitada em contextos onde os dados não estão estruturados de forma consiste= nte. Tran, Huynh e Do (2014) propuseram uma abordagem base= ada no aprendizado profundo (Deep Learning) para desambiguação de autores, mas requer grandes volumes de dados rotulados para treinamento, o que nem sempre está disponível.

De Souza, Storopoli e Alves (2022) aplicaram os robôs RIA, RDCA= e RCCA para a extração de dados de artigos de três periódicos científicos com= o objetivo de agrupar categorias de contribuição autoral. Embora tenham alcan= çado sucesso na extração de dados, os autores enfrentaram desafios significativo= s na classificação precisa dos autores extraídos pelos robôs, principalmente dev= ido à ausência de padronização nas páginas de publicação das revistas.

Desta forma,= os robôs RCDA, RCCA e RIA apresentados neste trabalho foram aprimorados e supe= ram essas limitações ao utilizar técnicas de aprendizado não supervisionado, permitindo a identificação de padrões de autoria sem a necessidade de grand= es conjuntos de dados previamente rotulados.

 <= /o:p>

4 METODOLOGIA

 <= /o:p>

A metodologia adotada no estudo inspira-se na pesquisa realizada por De Souza, Storopoli e Alves (2022), que aplicaram técnicas de automação para coletar dados de 2.024 artigos e 20.098 autores dos periódic= os científicos da área médica: Ann. Intern. Med., Journal of the American Medical Association (JAMA) e PloS Medicine. No estudo, os aut= ores analisaram as diferentes categorias de contribuições científicas, organizan= do essas contribuições de forma clara e padronizada ao longo do período compreendido entre os anos 2000 e 2019.

Para o desenvolvimento deste trabalho, cujo objetivo é propor uma abordagem automatizada para a extração de informações autorais em artigos científicos utilizando robôs, foram analisados 901 artigos que contemplam 8.191 autores= do periódico científico Ann. Intern. Med. A escolha por utilizar exclusivamente este periódico foi fundamentada no fato de que o tamanho da amostra já se apresenta suficientemente representativo para validar a eficá= cia da abordagem proposta. A robustez dos dados disponíveis possibilitou testar= e refinar as técnicas de extração de informações autorais de maneira consiste= nte, evitando a necessidade de incluir outros periódicos nesta etapa inicial. De= ssa forma, foi possível manter o foco na precisão e na eficiência do método, assegurando resultados confiáveis e alinhados aos objetivos do estudo.

 

4.1 Hipóteses de Estudo e Operacionalização de Variáveis

      Para avaliar formalm= ente a eficiência e a eficácia dos robôs, foram definidas as seguintes hipóteses, = as quais são apresentadas no Quadro 1.

 

     = Quadro 1 – Relação entre hipóteses e variáveis de estudo.

Hipótese

Descrição/Objetivo

Variáveis Operacionalizadas

H1: A automação reduz em pelo m= enos 90% o tempo de coleta de dados científicos em comparação ao método manual= .

Avaliar o ganho de eficiência proporci= onado pelo método automatizado (robôs) em relação ao método manual. Evidencia se o uso de robôs pode, de fato, acelerar o processo e economizar recursos (humanos e de infraestrutura).

TC (Tempo de Coleta) – tempo ga= sto na extração manual versus tempo gasto na extração por robôs

H2: A taxa de acerto do processo automatizado excede 95% quando comparada aos dados coletados manualmente.=

Investigar a precisão do procedimento automatizado, comparando os resultados obtidos pelos robôs com o ground truth<= /i> verificado manualmente.

PR (Precisão) – percentual de a= certos frente ao método manual
TE (Taxa de Erro) – discrepâncias identificadas versus dados manua= is

H3: O uso de robôs de coleta em= larga escala não introduz vieses significativos no conjunto de dados.

Verificar se há distorções ou padrões = de erros que afetem certos tipos de artigos ou autores, ou se eventuais problemas são aleatórios e minimizados pela automação.

VI (Vieses) – análise de possív= eis divergências sistemáticas na identificação de autores e contribuições

Fonte: Elaborado pelos autores (2025)

 

4.2 Individualização de Autores

 <= /o:p>

As informações sobre os artigos foram retiradas da base de dados Scopus, reconhecida como a maior fonte de publicações científicas com revisão por pares, conforme destacado por Mañana-Rodriguez (2015). A obtenção dos dados foi realizada utilizando-se scripts proprietários para busca e posterior exportação dos arquivos diretamente na plataforma Scopus. Esse processo não permite automação, uma vez que depende= de aplicação de filtros para selecionar publicações dentro de um ambiente proprietário. A coleta inicial incluiu informações de 4.118 artigos contend= o 19 variáveis como: nome dos autores “Authors”, ID dos autores no Scopus “AuthorCiteddoi”, entre outras (Souza, 2021).

Após o processo inicial de limpeza e filtragem, o conjunto final de dados foi reduzido para 901 artigos, envolvendo um total de 8.191 autores, dos quais 6.965 eram autores únicos. Esses dados foram armazenados no arquivo “dataset_artigos”. A diferença de 1.126 indica = que esses autores contribuíram para mais de um artigo no período analisado. Na variável “authors_id”, principal foco deste estudo, no contexto da aplicação de robôs, encontram-s= e os identificadores dos autores, que estão armazenados nos artigos separados por vírgula.

No Quadro 2 é mostrado um trecho do dataset original, onde a variável "authors_id<= /span>" contém múltiplos valores, cada um representando um autor, separados por pon= to e vírgula. Na etapa inicial de automatização da extração dos dados dos autore= s, o robô RIA foi aprimorado com o uso de técnicas de PLN, como tokenização, para individualizar os autores, garantindo que cada autor fosse armazenado como = um único registro no "dataset_autores", ou seja, como uma observação única.

A implementação do robô RIA foi realizada utilizando a linguagem Python para o processamento dos dados dos artigos. O algoritmo do robô segue um laço que percorre os 901 artigos, segmenta cada autor e gera observações separadas, resultando em 8.191 linhas. Tal processo reduziu consideravelmente o risco = de duplicidade e erro humano, economizando tempo que seria gasto em edição man= ual das planilhas.

Conforme ilustrado no Quadro 2, a variável "authors_id<= /span>" contém quatro valores, cada um representando um autor, separados por ponto e vírgula. Na etapa inicial de automatização da extração dos dados dos autore= s, o robô RIA foi aprimorado com o uso de técnicas de Processamento de Linguagem Natural (PLN) para individualizar os autores, garantindo que cada autor fos= se armazenado como um único registro no "dataset_autores", ou seja, como uma observação única.

 

     = Quadro 2 – Fragmento do dataset processado com os dados obtidos da plataforma Scopus.

doi=

authors_id=

...

10.7326/M17-2605

8971597300;57201956561;57127649700;476= 61495600

...

Fonte: Elaborado pelos autores (2025)

 

      A implementação do robô RIA foi real= izada utilizando a linguagem Python para o processamento dos dados dos artigos e = seu algoritmo é apresentado na Figura 1.

 

Figura 1 – Algoritmo do Robô Individuali= zador de Autores (RIA).

Fonte: Elaborado pelos autores (2025)

 

O robô RIA utiliza como entrada o arquivo denominado "Dataset". Ao final da execução, a lista completa de artigos resulta no "dataset_auto= res" e atualizado com um total de 8.191 linhas (observações). O Quadro 3 apresen= ta um exemplo do resultado final obtido após o processamento para um artigo.

 

Quadro 3 – Um fragmento do dataset processado pelo robô RIA, contendo os dados extraídos da plataforma Scopus, apresentando informações detalhadas relacionadas aos autores.

doi

authors_id=

author

...

10.7326/M17-2605

8971597300

Abigail M. Judge

...

10.7326/M17-2605

57201956561

Jennifer A. Murphy

...

10.7326/M17-2605

57127649700

Jose Hidalgo

...

10.7326/M17-2605

47661495600

Wendy Macias-Konstantoupoulos

...

Fonte: Elaborado pelos autores (2025)

 

4.3 Coleta de Dados dos Autores (RCDA)

 <= /o:p>

Uma vez cole= tados os dados dos artigos, a próxima etapa realizada foi a extração de dados dos autores da plataforma Scopus. Ela fornece acesso a dados de artigos e autor= es, mediante uma API, que pode ser acessada através de uma IES. A API disponibi= liza recursos utilizando um token que pode ser criado gratuitamente na plataforma da Elsevier no endereço (https://dev.elsevier.com/apikey/manage). Neste estudo, considerando que os dados são de caráter científico e já foram utilizados anteriormente por De Souza, Storopoli e Alves (2022), optou-se em utilizar a API para fins de reprodutibilidade, em= bora para outros casos não seja necessário, principalmente quando os dados forem= de outra natureza e estiverem de forma aberta na web.

Os dados são disponibilizados no formato XML (Extensible Markup Language), um formato de marcação de= texto contendo diversas variáveis com informações sobre um autor. A extração dess= es dados requer um processo de parsing, poi= s a formatação em XML não é imediatamente compatível com tabelas e planilhas, conforme mostrado na Figura 2. Para isso, foi aplicado o Robô Coletor de Da= dos de Autores (RCDA), desenvolvido em Python e integrado à API do Scopus. Cada requisição retorna informações como afiliação, histórico de publicações e indicadores de citação.

O RCDA proce= ssa um dataset contendo 8.191 autores, iterando até o= fim da lista. Em cada passo, ele extrai dados específicos de cada autor, armazenando-os na variável “arquivo_xml= ”. Esses dados são organizados em um vetor “dados_autor= ”, que é adicionado ao vetor final “dataset_autores”. Após processar todos os “author_id”, o robô retorna o “dataset_autores” com os dados de todos os autores coletados.

 <= /o:p>

Figura 2 – Exemplo de um fragmento XML q= ue pode ser obtido da plataforma Scopus, contendo informações sobre um autor.<= /span>

Fonte: Elsevier (2024)

 <= /o:p>

      Os dados obtidos não permitem manipu= lação e armazenamento de forma direta, uma vez que o formato semiestruturado prec= isa ser manipulado para extração das informações. Para isso, foi aplicado o Robô Coletor de Dados de Autores (RCDA).

      O desenvolvimento do RCDA foi fundamentado na análise detalhada da estrutura dos dados fornecidos pelo Sc= opus no formato XML. Para a sua execução, é imprescindível estabelecer uma conex= ão com o servidor da Elsevier utilizando o endereço HTTP da API, garantindo que cada solicitação seja processada de forma adequada (De Souza, Storopoli, Alves, 2022). É importante destacar que ne= ste estudo de caso, por se tratar da extração de dados científicos, o ambiente requer acesso a API do Scopus. Para outras situações, a aquisição dos dados deve ser configurada de acordo com os parâmetros disponíveis. O funcionamen= to do RCDA é mostrado na Figura 3.

 

Figura 3 – Algoritmo do Robô Coletor de = Dados de Autores (RCDA).

Fonte: Elaborado pelos autores (2025)

 

      O RCDA processa um dataset contendo 8.191 autores, extraídos na fase anterior e identificados por dados_autor, que é adic= ionado ao vetor final dataset_autores. Após processar todos os author_id”= , o robô retorna o dataset_autores com os dados de todos os autores coletados.

 

4.4 Coleta de Dados de Contribuições de Autores

 <= /o:p>

Os artigos em plataformas de periódicos científicos podem ser acessados por meio de diferentes formatos de acesso: pago, onde é necessário assinar ou comprar o artigo; acesso aberto (Open Access), que permite leitura gratuita, incluindo variantes como o modelo Gold (gratuito no site do periódic= o, com taxas de publicação para autores), Green (arquivamento gratuito = em repositórios) e Hybrid (combina artigos = pagos e gratuitos); acesso com embargo, onde o artigo se torna gratuito após um período; e acesso livre temporário, que permite acesso gratuito por tempo limitado, geralmente em edições especiais ou promocionais, Na Figura 6 são mostrados os tipos de acesso aos artigos.

Desta forma,= neste trabalho foram selecionados apenas artigos da categoria Open Access = do periódico Ann. Intern. Med., uma vez que são acessados diretamente p= ela internet. O acesso foi realizado de forma individual através de um link<= /i> específico de cada artigo utilizando-se o DOI de cada artigo.

O periódico = Ann. Intern. Med. adota uma estrutura própria para apresentar seus artigos na internet, onde os autores são dispostos no = byline no início do artigo, logo após o título, mostrado na Figura 4(1).

 

 

 

 

 

Figura 4 – Um fragmento de um artigo publicado no Ann. Intern. Med. exibe o byline (1), que corresponde à lista de autores= . Este elemento, destacado em vermelho, identifica claramente os responsáveis pela autoria do trabalho e indica seu posicionamento e relevância na publicação.=

Fonte: Print screen do site Annals of Internal Medicine (ANNA= LS, 2021)

 

Já as contri= buições dos autores, estão posicionadas logo abaixo do byli= ne e de forma encapsulada Figura 4(2), seguindo a taxonomia CRediT (Contributor Role Taxonomy)[1] que é composta por 14 categorias: Conceptualization; Data curation; Formal Analysis; Funding Acquisition; Invest= igation; Methodology; Project Administration; Resources; Software; Supervision; Validatio= n; Visualization; W= riting-original draft; e Writing-Review & Editing. Essas categorias podem ser utilizadas pa= ra representar as funções geralmente desempenhadas pelos colaboradores na prod= ução acadêmica, sendo que cada uma descreve de forma específica a contribuição de cada autor no processo de elaboração científica (McNut= t et al., 2018; Decullier; Maisonneuve, 2019). Na Figura 5 é mostrado o resultado, em destaque, após o acesso ao link das contribuições Figura 4(2).

 <= /o:p>

 

 

 

 

 

 

 

 

 

 

 

Figura 5 – Fragm= ento de um artigo do Ann. Intern. Med. mostrando o <= i>byline (1), destacado em vermelho.

Fonte: Print screen do site Annals of Internal Medicine (ANNA= LS, 2021)

 

Na imagem po= de-se visualizar as informações relacionadas às contribuições dos autores, apresentadas de forma detalhada. Esses dados incluem as atividades específi= cas desempenhadas por cada autor na elaboração do artigo, reforçando a transparência e a relevância de suas participações na pesquisa. Os dados es= tão disponíveis de forma não estruturada, onde cada contribuição recebe o nome = do autor que contribuiu. Este formato apresenta dificuldades em elencar a participação de cada um, de modo que é necessária a realização de uma conta= gem individual.

Para realiza= r a extração dos dados de contribuição, é necessário identificar primeiramente,= na página, as categorias que descrevem as contribuições dos autores. Após essa etapa, é realizada uma varredura para localizar os nomes dos autores relacionados a essas categorias. Além disso, é essencial comparar os nomes = presentes no byline e nas seções de contribuições = com aqueles obtidos na plataforma Scopus, garantindo que pertencem ao mesmo aut= or. Esse processo considera a possibilidade de homônimos e possíveis erros de grafia, conforme descrito por Souza (2021).

 <= /o:p>

4.5 Robô Coletor de Contribuições (RCCA)

 

      O RCCA foi criado com base na an= álise dos artigos disponibilizados em formato HTML pelo periódico Ann. Intern. Me= d. Para executá-lo, é necessário realizar um acesso HTTP a cada artigo individualmente, usando o DOI do artigo. Ele recebe como entrada um dataset com informações dos autores, incluindo= o identificador DOI, e percorre a lista de artigos, extraindo as seções de contribuição (ex.: Conceptualization, Funding Acquisition, etc.). Seu funcionamento é mostrado na Figura 6.

 

Figura 6 – Algor= itmo do Robô Coletor de Contribuições de Autores (RCCA).

Fonte: Elaborado pelos autores (2025)

 

Durante cada iteração, o robô processa os dados recebidos do arquivo, armazenando-o= s na variável arquivo_html. Em seguid= a, ele realiza uma iteração sobre a variável categorias_descri= cao”, que contém a lista das categorias do periódico de onde os dados serão extraídos. A função ProcessaContribui= cao" é então utilizada para processar as informações, recebendo como parâmetros o conteúdo do arquivo e a categoria a ser analisada. Os dados resultantes do processamento são organizados em um dataset consolidado, indicando para cada autor (identificado pelo robô RIA) quais contribuições foram declaradas no artigo.

 

4.6 Processamento dos Dados de Contribuições

 

As variáveis= que descrevem as contribuições dos autores não possuem uma padronização em rela= ção aos dados informados no byline, dificult= ando o processo de reconhecimento dos autores, passo fundamental para a identifica= ção das contribuições individuais. Para solucionar este problema, foi aplicada a técnica de PLN para realizar a identificação correta dos autores. Segundo N= unes (2024), “O Processamento de Linguagem Natural (PLN) é um campo de pesquisa = que tem como objetivo investigar e propor métodos e sistemas de processamento computacional da linguagem humana.”

Como o byline dos textos apresentava dados heterogêne= os, dificultando o reconhecimento adequado dos autores, o uso do PLN foi fundamental. Técnicas de reconhecimento de entidades nomeadas (NER) foram aplicadas para isolar nomes de pessoas no texto, enquanto métodos de similaridade de string ajudaram a normal= izar diferentes formas de escrita de um mesmo nome. Combinadas, essas técnicas viabilizaram uma análise consistente dos autores e possibilitaram a associa= ção correta das contribuições individuais.

Assim, um ar= tigo extraído e processado de um periódico contém k em autores e produzirá k amostras para o dataset, ou seja, cada a= utor recebe um registro, contendo as variáveis que descrevem as contribuições (e= x.: Conception_and_Design, Drafting of the Article, etc.), conforme mostrado a Figura 7.

 <= /o:p>

Figura 7 – Representação matemática de um conjunto de variáveis compostas, definidas c= omo combinações estruturadas que caracterizam as contribuições dos autores nos artigos científicos.

 <= /o:p>

Fonte: Elaborado pelos autores (2025)

 

onde =  é o identifi= cador do -ésimo artigo; , ,..., <= /span>  são os  autores do artigo, e  ...  são valores booleanos que indicam as  contribuições dos k autores do ar= tigo.

Por fim, a e= strutura do dataset final é mostrada no Quadro 4,= na qual podem ser visualizadas as variáveis que descrevem as contribuições dos autores nos artigos.

 <= /o:p>

Quadro 4 – Variáveis que descrevem as contribuições dos autores nos artigos.

#<= /o:p>

Variáve= l

1

doi

2

authors

3

ac_ad= ministrative_technical_or_logistic_support

4

ac_an= alysis_and_interpretation_of_the_data

5

ac_co= llection_and_assembly_of_data

6

ac_conception_and_design

7

ac_cr= itical_revision_for_important_intellectual_content

8

ac_dr= afting_of_the_article

9

ac_dr= afting_of_the_article

10<= /p>

ac_obtaining_of_funding

11<= /p>

ac_pr= ovision_of_study_materials_or_patients

12<= /p>

ac_statistical_expertise

Fonte: Elaborado pelos autores (2025)

     

5 RESULTADOS E DISCUSSÃO

 <= /o:p>

Os robôs apresentados (RCDA, RCCA e RIA) mostraram resultados significativos tanto na redução do tempo de coleta quanto na melhoria da precisão e qualidade dos d= ados coletados. Nesta seção, é apresentada uma análise detalhada dos resultados obtidos, acompanhada de uma comparação com métodos tradicionais e estudos correlatos, para destacar as vantagens e limitações da abordagem proposta. =

 

5.1 Teste das Hipóteses e Principais Métricas

 <= /o:p>

Para avaliar formalmente as hipóteses de estudo (H1, H2 e H3<= /sub>), selecionou-se uma amostra de 50 artigos (contendo 407 autores). Dois avaliadores independentes coletaram os dados manualmente de cinco autores e= , em seguida, os resultados foram comparados aos dados obtidos pelos robôs. As principais métricas analisadas foram:

·       Tempo de Coleta (TC): Tempo para cole= tar e organizar os dados.

·       Precisão (PR): Percentual de convergê= ncia entre a coleta manual e a coleta automatizada.

·       Taxa de Erro (TE): 1 – Precisão.

·       Vieses (VI): Verificaram-se divergênc= ias sistemáticas na atribuição de contribuições ou na identificação dos autores= .

 <= /o:p>

5.1.1 Tempo de Coleta (TC)

 <= /o:p>

Em uma crono= metragem para a extração e processamento dos dados de cinco autores aleatórios de fo= rma manual, foram gastos, em média, seis minutos. A simulação incluiu o acesso = ao site, leitura e coleta dos dados e inclusão em uma planilha eletrônica. Considerando o tempo gasto nesse processo, levaria aproximadamente 9.829 minutos (ou cerca de 163 horas e 49 minutos) para completar as 8.191 tarefas manualmente.

Utilizando o= robô RIA, que tem como função processar os dados dos autores, para processar os = 901 artigos e 8.191 autores, o tempo gasto foi de 1,29 minutos. Neste caso, a automação proporcionou uma redução de tempo de aproximadamente 99,9%. Esse resultado corrobora H1, indicando que a automação supera amplamente a marca de 90% de redução de tempo estipulada na hipótese.  Na Figura 8 é mostrada uma comparação e= ntre os métodos.

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

Figura 8 –= Comparação entre os métodos de extração e processamentos dos dados pelo robô RIA.

 

Fonte: Elaborado pelos autores (2025)

 

O gráfico mostrado na Figura 8 compara o tempo gasto = na extração de dados utilizando métodos manuais e o robô RIA. O método manual = (5 autores) representa o tempo necessário para coletar dados manualmente de ci= nco autores, enquanto o método manual (8191 tarefas) ilustra o tempo estimado p= ara completar manualmente todas as 8.191 tarefas. Em contraste, a terceira barra destaca a significativa redução de tempo proporcionada pelo robô RIA, que processou dados de 901 artigos e 8.191 autores em apenas 1,29 minutos, demonstrando a eficiência e o impacto da automação.

 

5.1.2 Precisão e Taxa de= Erro

 

      Comparando-se os resultados da coleta automática com o ground= truth manual, a precisão atingiu valores pr= óximos de 99,9% (ou seja, 0,01% de taxa de erro). Esse valor reflete a eficiência conjunta dos três robôs. O método manual, por sua vez, apresentou uma taxa = de erro em torno de 2,7%, refletindo eventuais falhas de transcrição ou atençã= o do avaliador, especialmente dado o volume de dados. A diferença de aproximadam= ente 2,69 pontos percentuais na taxa de erro confirma H2, que previa que a coleta automatizada excederia 95% de acerto. A Figura 9 mostra= a comparação entre os métodos.

Figura 9 – Comparação do Tempo de Coleta: Manual vs. RCDA

Fonte: Ela= borado pelos autores (2025)

 

Conforme é possível observar no gráfico, o método man= ual exige um tempo considerável para coletar e processar os dados, chegando a valores próximos de 10.000 minutos (9.829 em projeção) ou cerca de 163 hora= s e 49 minutos. Em contraste, o RCDA reduz drasticamente o tempo de processamen= to, ficando abaixo de 3.000 minutos, demonstrando uma eficiência muito superior= . O gráfico destaca a vantagem da automação, mostrando como a implementação do = RCDA pode economizar tempo e aumentar a produtividade em tarefas de coleta de da= dos acadêmicos. He et al. (2013) relataram que métodos baseados exclusivamente em web scraping en= frentaram dificuldades devido a inconsistências estruturais nas fontes de dados, algo mitigado no RCDA por sua flexibilidade e adaptação automatizada.

 

5.1.3 Vieses na Coleta d= os Dados

 

Foram observados poucos casos (cerca de 0,2% dos regi= stros) em que os nomes apresentados no byline divergiam dos nomes informados na seção de contribuições. A aplicação de PL= N e similaridade de strings garantiu a corre= ção dessas divergências na maior parte dos casos, não se identificando um viés sistemático que prejudicasse um grupo específico de autores ou contribuiçõe= s. Nesse sentido, H3 foi corroborada, embora se reconheça a necessidade de monitoramento contínuo quando o sistema for aplicado em outr= os periódicos.

 

5.2 Comparação com Estud= os Anteriores

 

Estudos prévios, como os de Rosenzweig et al. (2008), demonstraram eficiência da coleta via APIs, mas ainda com necessida= de de intervenções manuais significativas para limpeza de dados. A abordagem proposta neste trabalho integra a limpeza de forma automática, reduzindo o retrabalho humano e mitigando falhas de transcrição. Outros trabalhos, como= o de Tran, Huynh e Do (2014), dependiam de grandes volumes de dados rotulados para aplicar aprendizado profundo na desambiguaç= ão de autores. Já o uso de técnicas de PLN e similaridade de strings, conforme adotadas no RCCA, prescinde de datasets massivos previamente anotados, adaptando-se a diferentes estruturas de site= .

 

5.3 Análise Crítica e Implicações Práticas

 

Os resultados indicam que a adoção de automação e IA = na coleta de dados científicos pode otimizar consideravelmente a rotina de pesquisadores e equipes editoriais, economizando tempo e elevando a precisã= o. Ademais, a transparência na identificação de contribuições (via taxonomia <= span class=3DSpellE>CRediT) auxilia na delimitação do papel de cada autor, atendendo a demandas éticas e metodológicas de maior clareza e honestidade = na autoria. Entretanto, o custo computacional pode ser elevado em casos de = web scraping em larga escala, requerendo infraestrutu= ra robusta e monitoramento de eventuais falhas de conexão.

No âmbito ético, ressalta-se a necessidade de garanti= r que os robôs cumpram políticas de uso de dados e não infrinjam termos de serviço dos periódicos. Em bases privadas, tal como o Scopus, ou artigos sob acesso pago, a adoção de web scraping pode ser inviável ou requerer licenças específicas. Ainda, possíveis algoritmos de IA podem reproduzir vieses, exigindo supervisão humana e ajustes periódicos.

 

5.4 Considerações Estatí= sticas

 

Para validar a significância dos resultados, foi apli= cado um teste t para amostras pareadas entre (i) tempo/manual vs. tempo/automático, e (ii) taxa de erro/manual vs. taxa de erro/automático na amostra de 50 artigos. Em ambos os casos, obteve= -se p < 0,01, corroborando as diferenças observadas empiricamente. Dessa for= ma, sustenta-se que o ganho de eficiência (99,9%) e a diminuição de erros (taxa= de erro de 0,01% vs. 2,7%) não se devem ao acaso.

Além disso, a consistência entre avaliadores independ= entes foi analisada por meio de coeficientes de concordância, resultando em valor= es superiores a 0,9 (escala de 0 a 1). Esse nível de confiabilidade reforça a validade do ground truth para comparação com a extração automatizada.

No Quadro 5 são resumidos resultados alcançados pelos= robôs desenvolvidos, quando comparados com outros métodos, mostraram diferenças significativas relacionadas a estudos prévios.

 

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

 = ;

Quadro 5 –= Resumo dos resultados alcançados usando os robôs desenvolvidos em comparação com métod= os tradicionais e estudos prévios.

Critério

Métodos Manuais

APIS Acadêmicas

Web Scraping + PLN

RCDA, RCCA e RIA<= /o:p>

Tempo de Coleta

Muito Alto

Médio

Baixo

Extremamente Baixo

Precisão

Alta

Alta

Muito Alta

Superior a 99,9%

Escalabilidade

Baixa

Média

Alta

Muito alta

Flexibilidade

Baixa

Média

Alta

Muito Alta

Dependência de Fontes

Baixa (depende do objetivo)

Alta (restrições de APIs)

Baixa (acesso livre à web)

Baixa (acesso livre à web)

Capacidade de Adaptação

Alta (mas manual)

Baixa (limitada aos metadados disponíveis)

Alta (captura de qualquer conteúdo disponível)

Muito Alta (capacidade de adaptação dinâmica)

Redução de Tempo (%)

0

50-60%

70-80%

Até 99,9% menor que métodos tradicionais

Acurácia (%)

80-85%

90-95%

95-98%

99,9% +

Fonte: Elaborado pelos autores (2025)

 

8 DISCUSSÃO

 

A integração de robôs para automação na coleta de dad= os acadêmicos gera diversos benefícios, incluindo maior rapidez, menor erro e possibilidade de escalabilidade. A taxa de erro abaixo de 0,5% mostra que a abordagem é suficientemente confiável para fins de pesquisa bibliométrica ou revisões sistemáticas, sobretudo quando comparada ao método manual.

Contudo, a adoção de automação não elimina a necessid= ade de intervenção humana. Alterações na estrutura HTML dos periódicos, limitações= de acesso, variações linguísticas e dados inconsistentes podem demandar atualizações frequentes dos robôs e conferências humanas. Em se tratando de= IA, há ainda o risco de vieses algorítmicos, que não surgiram de forma evidente= no caso analisado, mas podem aparecer ao se ampliar a base ou variar para periódicos que apresentem maior heterogeneidade estrutural.

 

8.1 Perspectivas de Expa= nsão

 

Os robôs apresentados (RIA, RCDA, RCCA) podem ser ada= ptados para outras áreas além da medicina, desde que sejam configurados para compreender diferentes layouts e estruturas de artigos científicos. Em área= s em que metadados são ainda mais escassos, pode-se integrar técnicas mais sofisticadas de PLN, como deep learni= ng, para identificação de trechos relevantes nos artigos.

 

8.2 Comparação com Traba= lhos Correlatos

 

Verifica-se sintonia com estudos como os de Ferrara <= i>et al. (2014) e Bui et al. (2016), pois a automação proposta também= se beneficia de metodologias híbridas (regras + aprendizado de máquina). No entanto, diferencia-se por aplicar um pipeline unificado que lida com extração de autores, coleta de dados e identificação de contribuições, indo além da simples recuperação de metadados.

 

8.3 Implicações Éticas e= Legais

 

A extração automatizada = de dados, especialmente quando envolve informações sensíveis, deve seguir norm= as rigorosas de uso para garantir a proteção da privacidade e evitar possíveis abusos. Segundo Pereira et al. (2024), “Dado sensível pode ser definido com= o as informações confidenciais que requerem proteção devido à sua natureza priva= da e potencial de uso indevido.” Esse tipo de dado inclui informações pessoais, médicas, financeiras e outras que, se expostas ou manipuladas de forma inadequada, podem resultar em riscos como discriminação, fraudes e violaçõe= s de privacidade.

A maior transparência viabilizada pela taxonomia CRediT é bem-vinda, = mas também pode expor autores a disputas se não houver clareza quanto ao papel = de cada um (Pourret; Besançon, 2024). Políticas de privacidade ou restrições de copyright podem demandar acordos específicos ou até inviabilizar a raspagem (Brown et al., 2024).

Além disso, a automação = no processamento de dados sensíveis pode intensificar os riscos caso os algori= tmos utilizados não sejam devidamente auditados. Modelos de inteligência artific= ial podem inadvertidamente perpetuar vieses e explorar informações de maneira q= ue comprometa a transparência e a equidade na tomada de decisões (Nazer et al., 2023). Dessa forma, garantir o cumprimento das normas de uso de dados não é apenas uma exigência legal, mas também uma responsabilidade ética e técnica, fundamental para a construção = de sistemas confiáveis e socialmente responsáveis (Deng et al., 2024).<= /p>

 

9 CONCLUSÃO

 

A automação da coleta e = análise de dados científicos representa um avanço crucial para a eficiência e preci= são na extração de informações em larga escala. Este estudo demonstrou como os = robôs RCDA, RCCA e RIA podem otimizar a obtenção e o processamento de dados autor= ais, reduzindo significativamente o tempo de execução e minimizando erros humano= s. Com ganhos expressivos, a automação permitiu uma coleta de dados até 99,9% = mais rápida e elevou a precisão, reduzindo a taxa de erro aproximadamente para 0= ,01%. Testes estatísticos (teste t pareado) confirmaram a significância dessas diferenças (p < 0,01), validando as hipóteses propostas (H1 e= H2) e indicando ausência de vieses relevantes (H3).

Além da eficiência opera= cional, a abordagem proposta destaca o papel fundamental da automação na ciência de dados e sua aplicabilidade em diversos domínios, como pesquisa acadêmica, s= aúde e negócios. A integração de técnicas como web scrap= ing, processamento de linguagem natural (PLN) e análise de dados amplia o escopo= das investigações, possibilitando maior reprodutibilidade e escalabilidade. Emb= ora este estudo tenha se concentrado na análise de dados autorais na área médic= a, seus métodos podem ser aplicados a outras disciplinas, contribuindo para a construção de redes bibliométricas e a identificação de colaborações científicas, conforme destacado por Castanha (2024).

Contudo, desafios como a dependência de conectividade, restrições de APIs e mudanças estruturais em páginas da web tornam a automação um campo dinâmico, exigindo atualizações constantes. Estratégias como caching, proxy rotativo e aprendizado de máquina avançado representam caminhos promissores para superar essas limitações. Para pesquisas futuras, recomenda-se expandi= r a aplicação dos robôs para outras áreas do conhecimento e incorporar técnicas= de aprendizado profundo para aprimorar a identificação de padrões e tendências= em publicações científicas.

Dessa forma, este estudo= não apenas reforça a automação como um recurso essencial para a ciência de dado= s, mas também abre novas possibilidades para investigações futuras e inovações= que possam transformar a análise e a gestão de grandes volumes de informações.<= /p>

 

REFERÊNCIAS

 

ANTYPAS, K.= B. et al. Enabling discovery data science through cross-facility workflows. In: 2021 IE= EE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), Orlando, FL, USA. 2021 = IEEE International Conference on Big Data (Big Data). Orlando, FL, US= A: IEEE, 2021. p. 3671–3680. Disponível em: https://ieeexplore.ieee.org/docume= nt/9671421/. A= cesso em: 10 mar. 2025.

ARIA, Massimo; MISURACA, Michelangelo; SPANO, Maria. Mapping the Evolution of Soc= ial Research and Data Science on 30 Years of Social Indicators Research. Social Indicators Research= , [s. l.], n. 0123456789, 2020.

ATAIDES, Ananda Eduarda Dos Santos; NACIFE, Jean Marc. Big Data Analyt= ics como suporte à tomada de decisão em organizações privadas: um estudo bibliométrico. Revista de Gestão e Secretariado, [s. l.], v. = 15, n. 7, p. e4031, 2024.

BROWN, Megan A. et al. Web Scraping for Research: Legal, Ethi= cal, Institutional, and Scientific Considerations. [S. l.]: a= rXiv, 2024. Disponível em: https://arxiv.org/abs/2410.23432. Acesso em: 10 mar. 2= 025.

BUI, Duy Duc An et al. Extractive text summarization system to aid data extraction from full text in systemat= ic review development. Journal of Biomedical Informatics, [s. l.], v. 6= 4, p. 265–272, 2016.

BURGE= R, Benjamin et al. A mobile robotic chemist. Nature, [s. l.], v. 583, n. 7815, p. 237–241, 2020.

BYRNE, Ciar= a et al. Develop= ment Workflows for Data Scientists. O’Reilly, [s. l.], 2017. Disponível em: http://oreilly.com/safari. Acesso em: 15 jan. 2025.

CAMILO, Cláudia; GARRIDO, Margarida Vaz. A revisão sistemática de literatura em psicologia: Desafios e orientações. Análise Psicológica, [s. l.], v. 37, = n. 4, p. 535–552, 2019.

CASTANHA, Rafael Gutierres. Visualização de redes de coautoria como insumo bibliométrico à revistas científicas: uma proposta via web scraping para os periódicos Em Questão e Encontros Bibli. Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, [s. l= .], v. 29, p. 1–21, 2024.

CHANG, Yu-Wei. Definition of authorship in social science journals. Scientometrics, [s. l.], v. 118, n. 2, = p. 563–585, 2019.

DE SO= UZA, Edson Melo; STOROPOLI, Jose Eduardo; ALVES, Wonder Alexandre Luz. Scientific Contribution List Categories Investigation: a comparison between three mainstream medical journals. Scientometrics, [s. l.], v. 127, n. 5, p. 2249–2276, 2022.

DECULLIER, = Evelyne; MAISONNEUVE, Hervé. Have ignorance and abuse of authorship criteria decreased over the past 15 years= ? Journal of Medical Ethics, [s. l.], p. 255–258, 2019.

DENG, Luojia et al. Autonomous self-evolving research on biomedical data: the DREAM paradigm. <= span style=3D'font-family:"Myriad Pro",sans-serif;mso-fareast-font-family:Aptos; mso-font-kerning:1.0pt;mso-ligatures:standardcontextual'>[S. l.]: arXiv, 2024. Disponível em: https://arxiv.org/abs/2407.13637. Acesso em: 16 jan. 2025.

FALSARELLA, L. A.; JANNUZZI, P. M. Automação em bibliometr= ia: técnicas para análise de grandes volumes de publicações científicas. Tran= sinformação, 32, e200321. 2020.

FAN, Cheng et al. A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery = From Building Operational Data. Frontiers in Energy Research, [s. l.], v. 9, p. 652801, 2021.

FERRARA, Emilio et al. Web data extraction, applications and techniques: A survey. Knowledge-Based Systems, [s. l.], v. 70, p. 301–323, 2014.

GANDOMI, Amir; HAIDER, Murtaza. Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, [s. l.], v.= 35, n. 2, p. 137–144, 2015.

GLEZ-PEÑA, Daniel et al. Web scraping technologies in an API world. = Briefings in Bioinformatics, [s. l.], v. 15, n. 5, p. 788–797, 2014.

GRACIANO, Helton L= uiz Dos Santos; RAMALHO, Rogério Aparecido Sá. ScraperCI: um web scraper para coleta de dados científicos.= Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, [s. l.], v. 28, p. 1–18, 2023.

HE, Bing; DING, Ying; TANG, Jie; REGURAMALINGAM, Vignesh; BOLLEN, Johan. Mining diversity subgraph in multidisciplinary scientific collaboration networks: A meso perspective. Journal of Informetric= s, Elsevier Ltd, v. 7, n. 1, p. 117–128, 2013.

HELENA PRESSER, Nadi; LOPES DA SILVA, Eli. Extração da informação e produção de conhecimento por meio da mineração de dados. Navus - Revista de Gestão e Tecnologia,= [s. l.], p. 05–06, 2018.

HILÁRIO, Carla Mara et al. Authorship in science: A critical analysi= s from a Foucauldian perspective. Research Evaluation, [s. l.], v. 2= 7, n. 2, p. 63–72, 2018.

IGOU,= Eric R.; VAN TILBURG, Wijnand A. P. Ahead of others in the authorship order: Nam= es with middle initials appear earlier in author lists of academic articles in psychology. Frontiers in Psychology, [s. l.], v. 6, n. MAR, p. 1–9, 2015.

JONES= , James W.; MCCULLOUGH, Lawrence B.; RICHMAN, Bruce W. The ethics of bylines: Would= the real authors please stand up? Journal of Vascular Surgery, [s. l.= ], v. 42, n. 4, p. 816–818, 2005.

JORDAN, M. I.; MITCHELL, T. M. Machine learning: Trends, perspective= s, and prospects. Science, [s. l.], v. 349, n. 6245, p. 255–260, 2015.

KALAIVANI, G.; KAMALAKKANNAN, S. Web Scraping Technique for Predicti= on of Air Quality through Comparative Analysis of Machine Learning and Deep Learning Algorithm. In: 2022 INTERNATIONAL CONFERENCE ON AUGMENTED INTELLIGENCE AND SUSTAINABLE SYSTEMS (ICAISS), 2022, Trichy, India. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). Trichy, India: IEEE, 2022. p. 263–273. Disponível em: htt= ps://ieeexplore.ieee.org/document/10010968/. Acesso em: 10 mar. 2025.

KHDER, Moaiad. Web Scraping or Web Crawl= ing: State of Art, Techniques, Approaches and Application. International Jour= nal of Advances in Soft Computing and its Applications, [s. l.], v. = 13, n. 3, p. 145–168, 2021.

KOEHLER, Martin et al. Data context informed data wrangling. = In: 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, Boston, MA= . 2017 IEEE International Conference on Big Data (Big Data). Boston, MA: IEEE, 2017. p. 956–963. Disponível em: http://ieeexplore.ieee.org/document/825801= 5/. Acesso em: 16 jan. 2025.

KOVAL= ENKO, Dima. Selenium design patterns and best practices: build a powerful, sta= ble, and automated test suite using Selenium WebDriver. Packt Publishing, 2014. (Community Experience Distilled). Di= sponível em: https://learning.oreilly.com/library/view/selenium-design-patterns/97817839= 82707/. Acesso em: 15 jan. 2025.

KUMAR, Aviral et al. A Workflow for Offline Model-Free Robotic Reinforcement Learning. [S. l.]: arXiv, 2021. Disponível em: http://arxiv.org/abs/2109.10813. Acesso em: 16 jan. 2025.=

KUMAR, Sameer. Ethical concerns in the rise of co-authorship and its role as a pro= xy of research collaborations. Publications, [s. l.], v. 6, n. 3, 2018.

LI, Chunquan; CHEN, Yaqiong; SHANG, Yuling. A review of industrial big data for decision making in intelligent manufacturing. Engine= ering Science and Technology, an International Journal, [s. l.], v. 29= , p. 101021, 2022.

LOPEZ, Patrice. GROBID: Combining Automatic Bibliographic Data Recognition and Term Extraction for Scholarship Publications. In: AGOSTI, Maristella et al. (org.). Research and Advanced Technology for Digital Libraries. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. (Lecture Notes in Computer Science). v. 5714, p. 473–474. Disponível em: http://link.springer.com/10.1007/978-3-642-04346-= 8_62. Acesso em: 10 mar. 2025.

LOZAN= O, George A. Ethics of Using Language Editing Services in An Era of Digital Communication and Heavily Multi-Authored Papers. Science and Engineering Ethics, [s. l.], v. 20, n. 2, p. 363–377, 2014.

MAÑAN= A-RODRÍGUEZ, Jorge. A critical review of SCImago Journal &am= p; Country Rank. Research Evaluation, [s. l.], v. 24, n. 4, p. 343–354, 2015.

MATTS= SON, Pauline; SUNDBERG, Carl Johan; LAGET, Patrice. Is correspondence reflected = in the author position? A bibliometric study of the relation between correspon= ding author and byline position. Scientometrics, [s. l.], v. 87, n= . 1, p. 99–105, 2011.

MCNUT= T, Marcia K. et al. Transparency in authors’ contributions and responsibilitie= s to promote integrity in scientific publication. Proceedings of the National Academy of Sciences, [s. l.], v. 115, n. 11, p. 2557–2560, 2018.

MEHRA= BI, N. et al. A Survey on Bias and Fairness in Machine Learning. Journal = of Artificial Intelligence Research, 71, 1-35, 2021.

MENA-= CHALCO, Jesús Pascual; JUNIOR, Roberto Marcondes Cesar. script= Lattes: an open-source knowledge extraction system from the Lattes platform. Jou= rnal of the Brazilian Computer Society, [s. l.], 2009.

MONGE= ON, Philippe et al. The rise of the middle author: Investigating collaboration and division of labor in biomedical research using partial alphabetical authorship. PLOS ONE, [s. l.], v. 12, n. 9, p. 1–14, 2017.

MORAIS, Caroline et al. Estimativa da probabilidade de erro humano: uma análise da utilização e pesquisa dos métodos de confiabilidade humana, dados disponíveis e técnicas probabilísti= cas. In: CONGRESSO DA ASSOCIAÇÃO BRASILEIRA DE ANÁLISE DE RISCO, SEGURANÇA DE PROCESSO E CONFIABILIDADE (ABRISCO), 2019, Anais... Associação Brasilei= ra de Análise de Risco, Segurança de Processo e Confiabilidade, 2019.

NASAR, Zara; JAFFR= Y, Syed Waqar; MALIK, Muhamm= ad Kamran. Information extraction from scientific articles: a survey. Scientometrics, [s. l.], v. 117,= n. 3, p. 1931–1990, 2018.

NASCIMENTO, Carlos Alberto Xavier et al. Innovation in busine= ss through big data analytics. International Journal of Professional Busine= ss Review, [s. l.], v. 3, n. 1, p. 1–16, 2018.

NOVAES, Douglas. A EFICIÊNCIA NA TOMADA DE DECISÃO POR MEIO DA ANÁLISE PREDITIVA INTEGRADA AOS SISTEMAS ERP. Revista Tópicos, v. 2, n. 6, 2024. ISSN: 2965-6672. Disponível em: https://zenodo.org/doi/10.5281/zenodo.10720638. Acesso em: 10 mar. 2025.

NTI, Isaac Kofi et al. A mini-review of machine learning in big data analytics: Applications, challenges, and prospects. Big Data Mining and Analytics, [s. l.], v. 5, n. 2= , p. 81–97, 2022.

NUNES, Maria das Graças Volpe. Processamento de Linguagem Natural: Conceitos, Técnicas e Aplicações em Português. 2. ed. São Carlos, = SP: Graça Nunes, 2024.

PATIENCE, Gregory S. et al. Intellectual contributions meriting autho= rship: Survey results from the top cited authors across all science categories. PLoS ONE, [s. l.], v. 14, n. 1, = p. 1–20, 2019.

PENG,= Xiaoting et al. Scientific misconduct responsi= bility attribution: An empirical study on byline position and team identity in Chi= nese medical papers. PLOS ONE, [s. l.], v. 19, n. 8, p. e0308377, 2024.

PIEDR= A, Nelson et al. Guidelines to producing structured interoperable data = from Open Access Repositories. In: 2016 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE), 2016, Erie, PA, USA. 2016 IEEE Frontiers in Education Conference (FIE). Erie, PA, USA: IEEE, 2016. p. 1–9. Disponível = em: http://ieeexplore.ieee.org/document/7757660/. Acesso em: 10 mar. 2025.

PORTO,= Anna Laura Magalhães; CORDEIRO, Douglas Farias. WEB SCRAPING E A BUSCA PELA GARA= NTIA DA QUALIDADE DOS DADOS EM UMA COLETA AUTOMATIZADA A PARTIR DE UMA REVISÃO BIBLIOGRÁFICA. Revista Eletrônica de Sistemas de Informação e Gestão Tecnológica. 14(1), 2024.

POURRE= T, Olivier; BESANÇON, Lonni. Authorship Versus Co= ntributorship in Scientific Articles: Considering COPE Principles and the CRediT Taxonomy. <= /span>[S. l.]: Open Science Framework, 2024. Disponível em: https://osf.io/a7s2x. Acesso em: 10 mar. 2025.

PRIEM= , Jason; PIWOWAR, Heather; ORR, Richard. OpenAlex: A fully-open index of scholarly works, authors, venues, institutions, and concepts. [S. l.]: arXiv, 2022. Disponível em: https://arxiv.org/abs/220= 5.01833. Acesso em: 10 mar. 2025.

RABBY, Gollam et al. A Flexible Keyphrase Extraction Techn= ique for Academic Literature. Procedia Computer Science, [s. l.], v. 135,= p. 553–563, 2018.

RAGHUPATHI, Wullianallur; RAGHUPATHI, Viju. Big data analytic= s in healthcare: promise and potential. Health Information Science and System= s, [s. l.], v. 2, n. 1, p. 3, 2014.

ROSENZWEIG,= Jaime S. et al. Authorship, collaboration, and predictors of extramural funding in the emergency medici= ne literature. The American Journal of Emergency Medicine, [s. l.], v. 26, n. 1, p. 5–9, 2008.

RUSSELL, Ar= ielle F. et al. A Bibliometric Study of Authorship and Collaboration Trends Over the Past 30 Years in Four Major Musculoskeletal Science Journals. Calcified Tissue International, [s. l.], v. 104, n. 3, p. 239–250, 2019.

SARKER, Iqbal H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science, [s. l.], v. 2, n. 6, p. 420, 2021.

SEWALD JUNIOR, Ego= n; SANTOS JÚNIOR, Sérgio Murilo Dos. Impacto da Ciência de Dados na Tomada de Decisão: um estudo de caso e um guia de implantação. <= b>Navus - Revista de Gestão e Tecnologia, [s. l.], p. 1–16, 2024. <= /o:p>

SINGRODIA, Vidhi; MITRA, Anirban; PAUL, Subrata. A Review on Web Scrapping and its Applications. In: 2019 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2019, Coimbatore, Tamil Nadu, India. 2019 International Conference on Computer Communication and Informatics (ICCCI). Coimbatore, Tamil Nadu, India: IEEE, 2019. p. 1–6. Disponível em: https://ieeexplore.ieee.org/document/8821809/. Acesso em: 16 jan. 2025.

SOUZA, Daniel Soares De et al. Aprimorando Seleções Acadêmicas com Técnicas de Entropia e Método AHP-TOPSIS-2N. Navus - Revista de Gestão e Tecnologia, [s. l.], v. 14, 2024. Disponív= el em: https://navus.sc.senac.br/navus/article/view/1894. Acesso em: 31 jan. 2= 025.

SOUZA, E. M. DE. Aplicação de ciência de dados na análi= se do posicionamento autoral e contribuições científicas em artigos. [s.l.] Universidade Nove de Julho, 2021. Disponível em: https://bibliotecatede.uninove.br/bitstream/tede/2788/2/Edson%20Melo%20de%2= 0Souza.pdf. Acesso em: 3 jan. 2025.

TANG,= Jie et al. ArnetMiner: extraction and mining of ac= ademic social networks. In: KDD08: THE 14TH ACM SIGKDD INTERNATIONAL CONFER= ENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2008, Las Vegas Nevada USA. Proc= eedings of the 14th ACM SIGKDD international conference on Knowledge discovery and = data mining. Las Vegas Nevada USA: ACM, 2= 008. p. 990–998. Disponível em: https://dl.acm.org/doi/10.1145/1401890.1402008. = Acesso<= /span> em: 15 jan. 2025.

TANG,= Jie; ZHANG, Duo; YAO, Limin. Social Network Extraction of Academic Researchers. = In: SEVENTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2007), 20= 07, Omaha, NE, USA. Seventh IEEE International Conference on Data Mining (ICDM 2007). Omaha, NE, USA: IEEE, 2007. p. 292–301. Disponível em: http://ieeexplore.ieee.org/document/4470253/. Acesso em: 26 jan. 2025.

TOHALINO, Jorge Andoni Valverde. Usando redes complexas e processamento de línguas naturais para caracterizar e classific= ar itens científicos. 2023. Tese (Doutorado em Ciências de Computação e Matemática Computacional) - Instituto de Ciências Matemáticas e de Computaç= ão, University of São Paulo, São Carlos, 2023. doi:10.11606/T.55.2023.tde-11042023-090221. Acesso em: 2025-03-10.

TRAN, Hung Nghiep; HUYNH, Ti= n; DO, Tien. Author Name Disambiguation by Using Deep Neural Network. In: NGUYEN, Ngoc Thanh et al. (org.). Intelligent Information and Database Systems. Cham: Springer International Publishing, 2014. (Lectu= re Notes in Computer Science). v. 8397, p. 123–132. Disponível em: http= ://link.springer.com/10.1007/978-3-319-05476-6_13. Acesso em: 16 jan. 2025.

TSCHARNTKE, Teja et al.= Author sequence and credit f= or contributions in multiauthored publications. PLoS Biology, [s. l.], v. 5, n. = 1, p. 0013–0014, 2007.

XU, Michael; KUMAR, Abinash; LEBEAU, James M. Towards Augmented Microscopy with Reinforcement Learning-Enhanced Workflows. Microscopy and Microanalysis, [s. l.], v. 28, n. 6, p. 1952–1960, 2022.

YANG,= Siluo; WOLFRAM, Dietmar; WANG, F= eifei. The relationship between the author byline and contribution lists: a comparison of three general medical journals. = Scientomet= rics, [s. l.], v. 110, n. 3, p. 1273–1296, 2017.

ZBAR, Ariella; FRANK, Erica. Significance of authorship position: An open-ended international assessment. American Journal of the Medical Sciences, [s. l.], v. 341, n. 2, p. 106–109, 2011.

ZHAO,= Bo. Web Scraping. In: SCHINTLER, Laurie A.; MCNEELY, Connie L. (org.). En= cyclopedia of Big Data. Cham: Springer International Publishing, 2022. p. 951–953.= Disponível em: https://li= nk.springer.com/10.1007/978-3-319-32010-6_483. Acesso em: 10 mar. 2025.

ZHAO,= Linlin et al. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. = Drug Discovery Today, [s. l.], v. 25, n. 9, p. 1624–1638, 2020.



------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image001.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCADyAisDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD06kZg ilmICgZJPalooAzf+Eg0b/oJ23/fwUf8JBo3/QTtv+/grR2r/dH5UbV/uj8qAM7/AISDRv8AoJ23 /fwUf8JBo3/QTtv+/gqDUdZFjrlhZGBTb3DGKSY/wSEZRfxwf0qa9vZbfXdNsljiMN2JdxI+ZSq5 GKAF/wCEg0b/AKCdt/38FH/CQaN/0E7b/v4KkXVNNeVI1uYmdzhAOd3OOPUZ4zT47+wlk8uOeNmO cY/ix1we+PagCD/hING/6Cdt/wB/BR/wkGjf9BO2/wC/gqOfWrA2M01pd2ryLC0q72wuAcZJAyAD wfSnR6vbfbrWxk2G4mg847ASvYcHHIJP6UAO/wCEg0b/AKCdt/38FH/CQaN/0E7b/v4Kk/tXTBvz dQjy5PKfJxsf0Pp1H51It9YsJyJ4gIOZckDYOoJz0HvQBX/4SDRv+gnbf9/BR/wkGjf9BO2/7+Cr VvdWtyWELqzLglcYIB6HB5xVPU9SawvrC3+yq8d3OIfM342naT0x7UAO/wCEg0b/AKCdt/38FH/C QaN/0E7b/v4KuLPbNdNarJGZ0UO0YI3BT0OPSqM15MuttYr5CRi28/e69Duxg89KAHf8JBo3/QTt v+/go/4SDRv+gnbf9/BTtO1BLrTIbueL7O0hI2HnJBIyO5Bxke1JLfomp20IaJreaF5NwGTlSvT2 +Y/lQAn/AAkGjf8AQTtv+/go/wCEg0b/AKCdt/38FSXl15axNbm3YN8xLtwV9sfz6UuqXDWmkXV5 CqM0MLSqGGQcDOOKAIv+Eg0b/oJ23/fwUf8ACQaN/wBBO2/7+CpYr62EUf2iWJJjEJWXphfXHpTd Uvo7PTriaJ4jLHC0qBuQcDIzjsaAWoz/AISDRv8AoJ23/fwUf8JBo3/QTtv+/gpw1CFGlNxJbxxx xI7Ev8y7s9Rjgehz60+6vYIUYJJB5qlARI20AMcDJwevb3oAi/4SDRv+gnbf9/BR/wAJBo3/AEE7 b/v4KXUr9bXyRCYmc3EcTqRnAZgD9Dg5qf7bZEgefFky+T1/j/u/WgCv/wAJBo3/AEE7b/v4KP8A hING/wCgnbf9/BVtZ7eSQxJIhkwePpwfris/TtT+0W9rJcfZozJE8kg3EEbTjIHp688cUAS/8JBo 3/QTtv8Av4KP+Eg0b/oJ23/fwVa+1WhLDzY8oAWHcZ6ce9KLi2MSSCSMq5wpHOT6CgCp/wAJBo3/ AEE7b/v4KP8AhING/wCgnbf9/BRpuoJcWCz3BiDNJIg2DhtrkZA57DNWHvrFJFRriEMwDKNw5BOA fpnigCv/AMJBo3/QTtv+/go/4SDRv+gnbf8AfwVdleGLaHZVLcKD3P0qjpupRT6XBdXTQo8gY/L0 wCRn6UAL/wAJBo3/AEE7b/v4KP8AhING/wCgnbf9/BWhhNu75cYzms3StRN4b1LiJIntpeg7xkBk b8QfzBoAd/wkGjf9BO2/7+Cj/hING/6Cdt/38FTi/sWUMs8bBojMu3ncg/iHqKIL21ms4boEBJlB UEcnIzjFAEH/AAkGjf8AQTtv+/go/wCEg0b/AKCdt/38FTvf2EZUPcQruXeuSORnGfzIp/2q03sn mx7lznn06/lQBV/4SDRv+gnbf9/BR/wkGjf9BO2/7+CrsUkMwYxkNtODx0NZd9qcsGi3OpQpEwR8 Rqw4KhtuT9eT+VAE/wDwkGjf9BO2/wC/go/4SDRv+gnbf9/BSx3cn9rtp7Ro48nzRMg4U5xtYepz kfQ03SL9rzSTe3KRqQ8gwg4wrsvf6UAL/wAJBo3/AEE7b/v4KP8AhING/wCgnbf9/BRo95LqGnu0 0aQ3ccjwyqoyEcH/AAwfxqzYzC6tVkZArglHX0ZSQf1FAFb/AISDRv8AoJ23/fwUf8JBo3/QTtv+ /grR2r6D8qytO1NZYp3vWgiCXb2yYGAxVsDr3NAEn/CQaN/0E7b/AL+Cj/hING/6Cdt/38FWxc2p j3iSMru2f8C9Pr7VQstSacKH+zZa6kgHJXcq5+6Ocnjp9aAJP+Eg0b/oJ23/AH8FH/CQaN/0E7b/ AL+CrCXtlIqMk8TLIxVCD94jqPwwaiivY30+OdpLcSSIWUxtvQ47joSKAGf8JBo3/QTtv+/go/4S DRv+gnbf9/BRYalbzafbzXDwxzSWy3DoOy4GT9OatfarQCM+bHiQAqc8EHp+fagCr/wkGjf9BO2/ 7+Cj/hING/6Cdt/38FRPqLx3l/CwtlWB4VRpCUB39QTzz6fhV/7VaeYE82PcWKAZ6kckfhQBV/4S DRv+gnbf9/BR/wAJBo3/AEE7b/v4KuQzW85YROjlcZA9+h+lDT26zCFnQSE4A9+uPr7UAU/+Eg0b /oJ23/fwUf8ACQaN/wBBO2/7+CrH22yzjz4s+b5PX+P+79abbX9pcJO6sqpBI0bFhgZHB/WgCH/h ING/6Cdt/wB/BR/wkGjf9BO2/wC/gqy15ZooZ5o1DOEG7j5j0H1oW8smCFZoiJACpB4IPT8+1AFb /hING/6Cdt/38FH/AAkGjf8AQTtv+/gq5HPbyyeWjKzYzgdx6+9S7V/uj8qAM7/hING/6Cdt/wB/ BR/wkGjf9BO2/wC/grR2r/dH5UbV/uj8qAM7/hING/6Cdt/38FH/AAkGjf8AQTtv+/grR2r/AHR+ VG1f7o/KgDO/4SDRv+gnbf8AfwVpAggEcg0m1f7o/KloAKKKKACkYkKSoyccDOKWigDm9U0G61LS LhWfy7+SXzYyJ28tHBGw9OwAHSrNzZ38+oaVfTRw5tEl89UcksWXHy8c9O+KvtfY1WGzUIyyxu+4 NypUqMY/4F+lWkkSQExurgcHac0AcZoyywvpyyWKGNo2toTFcFpLdH5JKFRjoM5JxWjbaDdx2mj2 cjxCLS5BIJEJ3S4VlUYx8uc88muiLxrIELKHbkDPJoWRHZlV1Yr1APSgDAtdFu4vCt3prpB9qlWd EcMSMSMx5OM8bv0qSHSr6G/sbpHhBisvssgJJwdyncOOfukdutaC34bVvsQCMhgMvmBs4wwGMfjV tHSRdyMrD1U5oWgHMXugahc2mtwqLcG/uY5kJkPCrs4Py/7H61JqWgXeoXWqMXiiS7jgEZ3EkNEx bDDHQ5x1rozIgcIXUM3RSeTUUt5bQxySPPGFjBZvmHAHWgCjb6fcNr76tcFIz9mFssSNuz824sTg fQfjTNbsby9vdNlt0iKWlx57b5Cpb5WXA4PrV9bsO9sIlDpOC27eBtGM9Op/CpvOiLhBKm48Y3DN AEEcdyNTklZLYQNEqqyg+buycgnpt9Kqy6fLNr7XUkUL2rWvkEMckndnpjGO3WtJJEkGY3Vx0ypz TiQASTgCgDD0/TL+BNOa4lSWWyR4idx/eA4w2exAA/M1JaaXcWlxBOGjkKCcsuSOZHDYHsMYrU8+ HaG81NrHAO4YJ9Kd5sezf5i7P72eKAMaw0efTyHjkSZmtzEytkBTvZuPb5iPoBU02mSp4XbSYXEk n2U24eQ4BO3bk9asWF+Lm3lllCRCOZ4s78g7TjOferoIIyDkUAYc2m3sjBtkI/0Brb/WH7xx7dOK j/sa8XT72FWiaS7s0g+ZjhGVCvXHI5z+dbomiKFxKhVep3DApTIgQPvXaehzwaAMuPTZZbq4N1HH 5E9oluwDknI3Z7dPm/SmS6detoQtXkimuyyF3JKqwVh7Hsv5mrmn34urFbmUJCS7pjfkZVivB98V dJABJOAO9FxWMObSrsW5hiMT/wCni73OxBxvDleh57D2xSz6VdGRjGYmBv1u/mYj5QACOnXitcTw nGJUOV3j5h931+lHnw7c+amMZzuFAzIg0y+ju7S4ZoWaFpi+CQCHPG0Y46c+5zUdrpd/bx2IMduz W8MyEGQ4ZmII/h6cc1v1BbXDTvNlFVEfapDglvcgdKAMqPTL5IlQtCzGVJp5CctK3O4g4+XHygew xxS2ek3VvdQzs0TeTLOwQE8rId2c+o6fnWoLkC4mRwqJGF+cuOSc8Y6jt165qTzY9pbzF2rwTngU AY2m6Vd2ckE7mJnj89Sgc7SJJN4IOOCOlLpmkXFjfW7sY5IkgkjZsnO5pN/Ax0HTrWx50WFPmphu F+Yc/So5rqOOKRldHdFY7N4GSO3PSgdyGe0kbVbe+jIby4niZGOOGKnI9/l/WszTNEubRYWm8uRl ge3eMOdpBcsCDj3wR9K07++Nppct3tQyJEZRGz4zgZIyKsrMhCBnVWcZCk8mgRXuIJV01ba1jj+6 IyCxUBehwcHt0qsmnTW2vC7tgv2eSDypg0h3Eg5UgYPTLDr3rUZgqlmIAHUmmefDhT5qYYEj5hzi gDGs9Iu7drFGaIx29nJbMwY5JO3DAY/2f1qW2026h/s6RnjZ7OIw7AThgVUZBx1yv5E1rLIjHCup OM4B7UNIisFZ1DN0BPJoAx7LSri2vraVvLdFE5c7j8pkcNhRjoMYpqaKyaaLNo4Z/LZyjys3IYnr jocEjP41sfaICFPnR4YZB3DkU5ZEY4V1JxnAPagCrp1pJaLKjzPIjPlBI5dlGBxuPJ59ay5bC4uf DM2lQhPPRjGfMO0YD5B6HqMfnW8kiSAlHVgDg4Oaa0sKOQ0iK2ASCQDigCgtpdQ6y15CIxBNAqSR BsYkDE7unPBxn2FV9P069t9KisZY4SDO7yFZT9xnL8cdeQK2WkRWVWdQzdATyab58OM+amN237w6 +n1oAzrSymsdYvbhdgsrhUdt0hLCRRgnkdCNvftU2lwt9gkLbk+0SSSccFQzEj8cYq6rxyhgrK4H Bwc1Unvmh1EW3lqVNu8wbdjlSBjnj+LrQBPbW/2aIoJZZec5lfcfzrEj0m/Fq8TJBubUftn+sONu /fj7vXituO5jaJGkZI3ZAxQuDtz7/wBah+3bdUktJAqosKyhy3XJIxj8KAM630m6S/8AtbmPKXkk 6oGJDK6beeOCKWHTL1Gh3LDhL+S6OJD91t2B06/N+lbRkQOELqHPRc8mh3SNdzsqjpknFAFGzsJL W9upAytA7mSGPurN9/P1Iz+Jqjpej3dkkbuYmkFqbdlDHAO4sCDjvnn6CtzzY9pbeu1epzwKVWV1 DKwZT0IORQBhwaRdx2dqhMXmRWDWjDccbjtwwOOny1C2i38mnfZmaAMLaGFcEgAocnJxk57enPFd As0TNtWRCckYDDqKPOiDMvmJlRlhuHA96AMO70u/nbUGCwZuTAV/eEY2EE549uKnaxvmvJrnFv5j Bo4cklYkIz93HJZsE+1aomiOMSodw3D5hyPWlR0kXcjKy+oOaAMrTtOurW/SZzHs+ypCwDEnKljx wBj5vwxUd5pd7PcPKrwki6jnTqo2qBwcDluvPpgVs+YnmeXvXfjO3PP5UnnRYc+amE+98w+X6+lA GPcaXds7mMxMGvo7r5mI+VQoI6dflpX0m5aCeISoA139qTr8x3qwU+3BFaslwiwySIyuUXdgMB24 57UiXMZjDSOiNsDspcfKD/nrQtAMm80q6mu3uk8os88DmNmIAWMk9cdTn9BVhtLJvL12CSxXZjYq zEbCoA6DqOAfrmtEzRBiplQEY43Dv0pkV3BLczW6SBpIcb1B6ZGaAKWm6dLZzh95SMoQ0IkLoGJz lQfujrwOPyrTpqSJJnY6tjg7TnFOoAKKKKACiiigAooooAKKKKACoruJ5rOaKKQxyPGyq4/hJHBq WigDnLjS72ZLWGOEQFbCW2aUMPkdguD6kfKea1bG28uXzjC0TmJI2G4EcZ4AHHGetTPdol/FZsr7 5UZ1bHy4UgEfX5hVigRlx2UqXt60sQnWaZJonLY24AAB78EE/jWadK1N4lRVWCR7KSB2VxiN2IIx 3IHOD15rev7tLG0e5lV2RMZCDJ5OKsUDOeu7G9e5MlvYxgGwMAVnAUNuBxwc4xnH9KvabbXMGo3r yIfJmKMrFhkkKAcgdDx/KrdzdpbTW0bq5+0SeWpA4BwTz+ANWKBGFqNlfTXM8kcCn9/BJHtYDcqE Ek56HqMcDFKmmSSx6wHtUSW5ZzC7bT96NV7cjkGtyigZhy29wkulzSW22O1D+awIyg8vHrzz6Vmx WkktktssUsNxPaiGCQupVlXLc7TkEgkZI7111MSKKNiyRopPUhQM0AZkiXNvez6ikB8sQJH5G8As QxJPpwDx6/lVnV7aa7sTFC2GEiOVJwHCsCV/EDFXSAeoooA5/UNOu57mWZYN0ck9swi3LwI2yzdc ZI4/Ci30+9XUDO8REK30k3llh8ysgUMOeoOTg+tdBRQBz1lpt7FdRzPEUSO6uHMYZTlZDlWHbjpj 3NaL2D/2DLYWzGB2haONi24oSDjn2zWhRQHW5jyWczR2piskjdTEJTuBKqufu844J7+vSoLHT72G 4tnliHlQSz/u94PDtlWHbgcfia36KAOatdMv1sY7d7ZUAS5H3wTl3JUem0g89+K2tMjmj0u2huVx KkSowJ3ZIGOtW6KBnO2Wm3ds+nB7UMtvaywuVZepK4A9vlNRW2l3kUdmpsseVpj27AOnEh24HX2P PvXT0UCM6O1uJPDa2RYwXJtfK3ZyUbbjOR70un2hhdJXhaOQQLE3zgjjsAPx5960KKAOf1XT7q5b VxHabxc28UcZ3KNzKWz346jrSy6fdS6jdv5EsUUkkLJJHKqsm1SCQOR6DBHIrfooAwIdKut84ux5 8c8HlfJtQrhmP0BIYEkdx9Kd/Z0hi1ndZKZJyxhYlSWzGq9c8cjvW7RQBzUul3x0vUIjCJJLmzSK JS4+Rgm0r9M85HrU9xp15LbalEFw94E8pywzDhQMH/dILDHrW9RTBaFDVrWa6toVhbJimjlZc48w Kckf1/CqcunSLqllcRWrFEnllkJdSRuTb0z3PYfWtuikBzuk6feWx0oSWpTyFnEp3qcbjkd+elad /ayS32n3CIHFvIxfpnBRl4/Eir9FAHOWGnXcA0kS2XNq85fDKdobdjHPvUVtpuow2lii2a+ZDbXE bB5Bt3NjaDg5wcdq6iigDJ0y0urbUpXeMiGSCJdxYZ3LuzwPqPyqHVbG4nv7mWK13h7CSBX3KMuT wOTW5RQC0OeXTb42N7E6ZluoI0RmYfumCBTn6H5uPWpzplxFdXXlxwywyoJlD8ZnC7efY4Bz61tU UPUDG0yzvLbURJJFiJrWOJjuHDKW7D6gD6VJqFtcS6oJUtzJF9kliJ3LyzFSBgn/AGTWrRQ9QObG m3flQg2eWXSzbE7l++ccdfbrTJ9Nv5YZx9kJd9KFspLr/rOcjr7jmunooA5+4sdQkJkFuNyzQSKA 45CgbsnP3uo44xV7X7aa90Se3hhEsrhcJkAdQeprSooBaGA+n3r6pcTiErD9phmClh+8VU2kYB4I ODz6Vo6dbTQTXssnyrPN5iR5zsG0D8yQT+NXqKAOcfTrwTSulmRu1NLkEOozGFUE9fY8e9T2+mXS wWFvJjdbztJLNkHzFO7j1+bcM59PpW5RQBz66NdLprWwEeYJFW35+/CrhtpPbI+X8BWlZ20yaneX T/JFMsapHnuoOWP1yB/wGr1FAGOmnT/6bHIu55bhpoZ933Mrge+V6Y+lQPpt41raoIgpt7OSF1DD 96xUAD6ZGea36KA8zmUtZrNUNzCsMX9mLbHc64MgycYzzxmk/sy5m08SRQK/naQLYAkA78cZz25r pZI0kXbIiuOuGGadR5gc1d6beTJebLM75dOS3Ql0++N2R19xz7VZl069l/tNYwIWvI1CyEjKny9p Bx3zj8K3KKHqC0M23tZv7UjujGIIltvKMYIO5sgjp2GD+daVFFABRRRQAUUUUAFFFFABRRSMu5Su SMjGQcGgBaiu/P8Asc32bHn7G8vd03Y4z+NZ/wDYaf8AQR1L/wACmo/sNP8AoI6l/wCBTUAZk8d5 vtGtY5xd/wBnzLvdW4mITGSeM5B/KtjTYishkV5QjRKDG6kAMM5PPOT3+lRf2Gn/AEEdS/8AApqZ Nowjhd0vtSdlGQv2thn8aAsUtaju5LLV1ljmkcun2cRqSPL+XoB3zuzUs0139uWdIrlVW8CkbSSY tmM+m0nHrz+mdYyC+0y11GI6r9nuCP8Al+O5V3bdxHoPatv+xof+gnqPXH/H23WgCgqXRGlNdRzN dreMZ2CsVHyuAeONvK4pduofYLTH2lLvY/2xlXJ+6enYndjbjtViPT7SS6mtk1bUDLDjePtbcZ5q YaLERkanqJ7/APH21AC6a9xbmRLmLcXkVVkhRwrfL1KnO3pzzitWsldFidQy6nqLA9xdsaow20Uu tzaaLzUsxwLOJBeMQwJIx7cg0AdJRWSujQuuV1PUWHqLtjS/2Gn/AEEdS/8AApqANWiud1O1t9OW Avfao5mmSIBbpvl3MBuPsMirv9iR/wDQS1L/AMC2oA1aKwo9Pt5ZLmOLUNUd7chWAum5YqDgHPoR U66KhRWa/wBTQkfdN22R7UAa1FZX9iR5x/aWpZP/AE9tR/Ykecf2lqWf+vtqANWisr+w0/6COpf+ BTUf2Gn/AEEdS/8AApqANWisr+w0/wCgjqX/AIFNR/Yaf9BHUv8AwKagDVorK/sNP+gjqX/gU1H9 hp/0EdS/8CmoA1aKyv7DT/oI6l/4FNR/Yaf9BHUv/ApqANWisr+w0/6COpf+BTUf2Gn/AEEdS/8A ApqANWisr+w0/wCgjqX/AIFNR/Yaf9BHUv8AwKagDVorK/sNP+gjqX/gU1H9hp/0EdS/8CmoA1aK yv7DT/oI6l/4FNR/Yaf9BHUv/ApqANWisr+w0/6COpf+BTUf2Gn/AEEdS/8AApqANWisr+w0/wCg jqX/AIFNR/Yaf9BHUv8AwKagDVorK/sNP+gjqX/gU1H9hp/0EdS/8CmoA1aKyv7DT/oI6l/4FNR/ Yaf9BHUv/ApqANWisr+w0/6COpf+BTUf2Gn/AEEdS/8AApqANWisr+w0/wCgjqX/AIFNR/Yaf9BH Uv8AwKagDVorK/sNP+gjqX/gU1H9hp/0EdS/8CmoA1aKyv7DT/oI6l/4FNR/Yaf9BHUv/ApqANWi sr+w0/6COpf+BTUf2Gn/AEEdS/8AApqANWisr+w0/wCgjqX/AIFNR/Yaf9BHUv8AwKagDVorK/sN P+gjqX/gU1H9hp/0EdS/8CmoA1aKyv7DT/oI6l/4FNR/Yaf9BHUv/ApqANWisr+w0/6COpf+BTUf 2Gn/AEEdS/8AApqANWisr+w0/wCgjqX/AIFNR/Yaf9BHUv8AwKagDVorK/sNP+gjqX/gU1H9hp/0 EdS/8CmoA1aKyv7DT/oI6l/4FNR/Yaf9BHUv/ApqANWisr+w0/6COpf+BTVqgYAHWgAooooAKKKK ACo7litvIQjOdp+VRkmpKZPNFbQSTzOEijUszHoAKAOQ8OWV1pOi2YGm3Y1JYvIYEgouXzuOTjjr xTb/AEy9a38QeRYTeZPdxSWxUAZA2ZYc8cq3pXUxajDJcR25SWOWRSyLJGRuAxk/qPerZIAyTgCg NzAsrSW38QapcPYZiujG6vgfdEeGH1yOnvWbYaPND4QCNpW/UNnkSRyNjMfmbux5wDkDI6YrqLG+ gv7Y3FuXaLcVDFSN2O4z1Hoe9Gn38GpWv2i3LFN7IdylSGUkEYPuKAOXuNM1R/7VjghkWKd7eVFG EEirjzFwD8pIHTvUt3Z3Z1bU7i00kvHPpywxo5EayMGbKnByOD7fWusoJwM9aAOUhsLmK6v92nyT WlxYKghXEQkdd2Vxn5SQQM/rXS2w8qxiAhMQWMDys7iuB93PfHSq0WsWctvFchnWCVtiyMhC5zjr 2545q/QBz2s293e6PLcRwTm4eSNkt8LkBJAQP0J696tw6eJ9WvLm4gPlERiLcepB3E4+pA/4DWmk 0ckkkaOrPGQHAP3SRnn8CKfQBzZ0+6Oj3MX2VknuLhmkKkZCs5BI9cJjHvTdbS4d7hXBK3Cw2luF bIjLH94T74wc+grpqrLFZLfNtSIXRHmHAG7njd+mM+1AGS1jfSvKhUiV7xXE2eI4UIIC/UDGPVjm p9NtLtNSa4m3eU6s5R8FonYj5Qw+8OvUccYrYooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKpaysD6RdJcwvNA0ZV40BLMDwcY5zV2igDkbJLrTb9Ut 9SutWs1gkZkkQNLBgfLtbHU9MGjTLudb61SSef7JcWDl/MkZz5gK4y2Bh8E5Ax09q6Y31oGdTcxA odr/ADD5T6H0qxQBx+i3d9LFon26acWjWjmVySC04IwHPUcZx61Do8zR6dZ27falEl9cl23GNMbm IEhxnnIIHGTXbZ7UUAcxpF3NNYaaL25vVuUu5ImCIfnwW2iTjptwc/StnW7w2Oj3VwuTIsbeWAMk vjgfnV6igDnJ7UT6DaaFZnfxEksq/dRFILHPqcYA96Vbu8kvbfzHljZ7yQMig4WJNwVT/vHac+9d FRQBzNq9xHa74hLG95fEzu2cxR5IHXodqKPbcKkhub2WwkEUsiyyXTmPz1YKsanhCeq5UdevNdBJ IkUbPIwVFGSScAUy3uYbkSGF94jco3HRh1H60AYsE19NJGs7SW0f2USANksZGY5GRjO0AYHuM1Pp iFtZ1GdxLvLLEm7P3VUHP4szVsUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAVn6ZdzXF7qUEzIwtpxGm1ccFFbn8WNaFRRW1vA7vDBHG78syIAW+vrQBLRRR QAUdKKR0WRCjqGU8EEZBoA5yxuI18O3uoSL5rX8ssiR4yZM/Kigd8qFqNL++0/TDZhk8+xht4Nzj PmzOAPyHH+RXRRWlrAQYbaKMqMDYgGBTpLeCVt0kMbn1ZQaAMCe++z6hqmp7jKtrAsMUY/iON5/9 CTmrK6lcpPfwvLA728capu+UNMwztz6coPxrW8iHLHyky4w3yj5h70i28C7tsMY3dcKOaAMaHVru WWC3ELpLLM0biRQDGEQM3Q4JJPBHY+1O3yT6/ZrNMuLeFpDtxgs7bVH1wGrZMERUKYkKg5A2jANA hiDhxGgYDAO0ZA9KAKOs3NxbwxCCJiskgR5QwHlj8fXp7Zqb7Td/8+D/APfxf8asSmLyyJtmw8Hf 0p9AGT4jlMWkpO/yxxzwvL7KHUmq/h2OWO+1HzARv8p2/wCujLlv5j9K254Y7iF4ZkDxuMMp6EUs caRLtjQKCc8DvQA6iiigAooooAKKKKACiikBDDIII9qAFooooAKKKKACiimo6SLuR1YdMqc0AOoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACsywvr6bUHtrm2jVViDs8bEhHzjZk9TjByOn5Vp1RstI0/T7 iWe0tVill++wJJbnPf3oAvUUUUAFVdTnktdLurmHb5kUTSLvGQSBnmrVV9Rt3u9OubZGCNNG0YZh kDIxmk9tBoxo9euIjpLXSwCPUbdpcrlRCypv5JzlcZ57UWOtXk93FayCFmnsmuUkRGCgggYweWX5 hg8Ve03RbW0soIZoYpZY4BAzkZBXGCADnAOORT20rTIFjkMCp5S+UjbjlVOBtBz06cU2JGZa61qE 2gQ6nL9ihFxHEYgxf77NgjAyTx0A5J4960NH1KW9nv7edAHtJhHuAK7wUDA4PQ81Muk2C2CWItU+ zRkMkfOFIOQR6Y9qlt7G1tppJoIQkkuPMYE/PjoT6n3oAzp9SvZ9WvdPsEgWS1gSTM+cSM2cDjoP l5PPXpVbUNeuLOWeRPs80ME8MLJGGJG8qDlugYFs454xnGa2p7C1uJxPLCplC7N44JX0OOo9jUMu j6dN53mWkZExDSDoGIxg49eBz14oA53xFqEupeG/EGI40gtHa32sMsxXaS3t14q9q2uz6cLx4fIl SzjjZogGLcnkMeinGCOua1LjR9OuVlSe1R1mAEgOcPjpn1PA5ok0fTpfN8y0RhMoSQHOHAGBu9cD ueaALN1MLe0lnJUeWhb522jgdz2rHn1q4itb9liQy2yRyKGBAYN2I6jGDWw1tC9qbZ4w8JXYUbkE ehzVebSrCYSebbq3mKFcknLAdMmgCu895HrNpFNLEsbRSuwUHBwygdT6GoLa+kieWNLdF33sqO4y QMLu3EdeeB6VrPawSNGzxhmjGEJ6gcZ/kPyqlcaNbuwMca7DI0rxszYdz/FkHIP+NAEdrqN5cSpb yRJDcfZluHVwfl3HATr2IOT9OKt2d+LzSIb9E2CWISYc425GeTTbXTIooBHNmUjcAST8qk/cBzkj 61baGNoDAY18orsKY4xjGMelAFTR5vP0yO48lYjLmQqvucg/Ugg/jVWwu5rqOK4kF3+9wwVEUIoP b1Pua1YYo4IxHEoVB0AqAafAsvmRtLHltxVJGCk/TOKAJbqUw20kgBZgPlA7nsPzrF0Nms7rUdMA Zdp+0weaOqv978nDfmK2ri2huQgmTcEYOvJGCOh4qOTT7WW8+1vFmfYY9+4g7T1FAGOdR1CfT9Ku iYYhdzQ/KgJ4ZSSD+IFTz3r219fSRW6SssUBDKTlgzMOfpyeK0U0+0jtI7VYFEMRBjXJ+XHTHpUF 5pNvOJCihHkCK55w6qchT6D6UwIF1O7+0xQSRKjTzvFExU42qpbf17gcCoJNdlQzAwFVgd45Jghd Ay9CQOQpB684wfSrtppccJfeBsYqyRBmYIwz8wJ5BOe2OlWBYWgORAo+UqcdwTkg+uTSAz/FryL4 S1N4ZNrfZ2O4emO1ULi9bRobr7Elnuitftc0aRtuZsdwOEBVeDnt0roru0t721e1uYhJA4wyHoR6 VA2k6e5Ja1Ri0flNnJ3p2Deo5PWgDPTV72/vLq20+KCN7e3il/f5w7SAkDI6AAdeeajvteuLW4lZ Ps80EdzFbsqBiRvKg5boGBbpzxjpmp9R0LzxbCxdLQw7V8zBYlAfuEZ+ZTzwelXJdH06Xzd9pGRM wdx0BYYw2PXgc9eKAL1FAAAAHQUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFULfVFn1J7E28qOqM+WxwA23n0z 1HqKv1Qt9Jt4LxLoPM8kauqb33bQ7Bm9zyB16UAX6KKKACiiigAqpqf/AB5H/fT/ANDFW6qan/x5 H/fT/wBDFAEd9qsNm8qFWkeKBriQDjag/qcHA9jTJtZigZhLDIu22a5bOMhQBx+uPqDUl5pVteNM 0hdfPjWOTacblUkj+Zpt1o9tdb/MeXMkaxOQ33lDFh+pNAEJ1CU6sFb91aw2nnzbiOCx4z9ArUS6 7FFCsrQSASW7XKA4yUXGSfTgj86sNpNs7XBfzHFwgSQFuGAUr/ImmS6NazxOkrSOXjWEsTyEBB2j jocc+tAFq0nkuELPbvCOCu8jkEZ7dMdKqR6zaSXc8QmQRwnYWOeX7j8OPzrSqJbdEuXnXIaRQGHY 46H69qAGw3ltcPsimV2xnArm9euZpbjU4A7KYERo8HoFVpGP4lVFdXWddaPBdX0ly7sPNh8iRV/i XOf/AK30oAu28hlt4pCMF0DEfUVJQAAMAYAooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAqEXcBvTZiQGdU8wp6LnGamrKttJkt9aa+F2zxGIx+W4yeW3Zz9a ANWiiigAooooAKqan/x5H/fT/wBDFW6qan/x5H/fT/0MUANudUt7fUI7F1laeWNpEVUJDAYzz07j 86jXW7KSKCSDzZ/OLqqxxkkFfvA+hHoao6lDdP4u02eCNtkdvMrSGMsgLFcAkfQ0tt4de1aBkvC4 WSWWZHX5JZHOS2Aeo6AHP9aALTa/p4jtJEkeRLxWaBkQnftGSPrgHj2ol16wiTzHMqxBEkeQxMFR X+7nI/8A1d8VSsvDk1mmkRpeIyaa8hXdEcuGBHPPBANP1bw9Jqf9oJJfHy7tFVQy7vIxj7vOMEjJ 4z70AbkkiRRtJIwVEBZmJwAB1NZya9YvG8v78RiD7QGMLYeP1HHP061buLUXmny2lycrNEY5NnGQ Rg49KzzpN6dFGmjUjFsiWJJok2vgY5PPoMHGOpoAn/tuxWO6eaQwG1CmZZVIKhvu8d89sfSqa6tK viSaGRpEtEsPtJjeL5lIbGRjk8dqin8Lrcm9D3Col3HEpWOPHltG2VIyeRnqDU9zot5c6hNeHURB JLZm1BhjIKfNncCT1oAvWWqW15M0CeYkwjWXy5EKtsbo304NSXV9b2mfOYjCGRsDO1B1Y+wqjY6M 9pqq33nR82wt3jVCM4JIYEknPPOc1LqelvftKDclY5LdodhXIUt/GPfHHNAIluNVtLb7R5jN+4hE 74Qn5DnkevQ0JqMbahNbFWVIoUlMhGFw27v/AMBqpc6LLcW8yfagHms/srN5fA68gZ/2qlfSfNkl Ms3yXFusEqqMZA3dDnjO4/lQBM2q2iQtKzMFERmHynLIOrAd+oqe1uY7qMyRb9ucZZSueAcjPUc1 nXGjPcQKj3Cl47V7aNtnA3AAsRnk4ArSto2htoonYMyKFJAwDimBn22osdSvlkkZoEmSCNVTO1sD cTgdMsBz6Grt3dC2CKEMksh2ogIGeMnk9AKpWOkPZ3Pnpcnc5dpgFwJCz7gevUD5fpVnULEXflOB GZYSSokXcpyMEEUgLELyOCZEVD/svu/pUX2+2+0iDedxcxg44LgZK59cc0WULQq4a3t4cnpD3+vA qk+kTNcJN9ry6XJnDMmTggjb16AHigBZ9dt0spriKOaTyztI8sjkPsIyfQ1YmvkhvVSWYRxiB5mV oz0UjJ3dBjPT3quNJkbSbixlnXMsrSB1TGMvvxgnnmk1CwuHc3IZZittLEYtvLbyD1z2wOKALA1a 0LOu5gUC7sqeC2No+pzxViC5jnaRUJDxkB0PBUkZGfwrFg06aZhC/lkKUmFwkTIQ6EbQQxO4Y/L8 a1rWz8i7ubpn3S3G3dgYACjAA/M/nQBjS6vcnW9QjMzwWuneUzgQb/MUqSR65PGMehrSOt2CRXTz SGD7Lt85ZFIZN33eO+e2KqXGhXMt1qs0eoGA3wjAMaEMmzjrnkEZB6dagufDKzLfmS4CR3UcWRFH zG8RypXk5HqDQBpHWbYLJujuFkjkSMxmFtxZvu47fj274qxY30F/G7wMT5bmJ1YYKMOoIrIij1LW rT/Si9m0FyPlCER3CD8Q205HBxyO/e/pGmNpr3n75ZEuZzOAE27CQAR15HHFAGjRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABVaLULOa8ktIriN7iL78anJX6+lWayotPu49VW5E6JDvkaRUz+9DY2gjpx60AatFFFABRR RQAVU1P/AI8j/vp/6GKt1U1P/jyP++n/AKGKALdFFFAFaJmOpXCljtEcZAzwOWpRfWjSeWLhC2GO M9QDgkeuDUJRpL29jRyjNCgDD+E/PzVOy0i4t5ICXhCQ2Ytkxk4PUt+JCn8KANJb21dVKzoQysy4 PJAOCfwJqGw1OK706C8ceSJ/uKTkn0x65HNZsWiXccBjSaJCLH7KjDJIbnc34nB/CrY02aO4tJ4z Efs0DwxxsTtXO3B9+Fx+NAFp9TsEALXUQBUuOf4R1P4VWvb2W1stTug+5oeIkIyM7RgevJPrTNM0 X7Bco5kEiR2/lrkclmYs7H6nb+VJc2f9o/aLXeojF2jzKSclAqnHHqQKQE094x+zLHcKZVmRJ1Tp 8w9/0q/PMlvA80hwiAsTWS8VxbWlhDdzpLKLiMbhwWxmruqWCaha+W3DowkjOSAGHTOOoqmBbU5U HBGexpk7MsEjIQGCkgkZFVxptttG5Gz3xK/+NTyREWjRQgZ2FVDMcfieaTBGVpepXN/Y2Nwstu0k saTTQqp+VW9DnsfX0NaEeo2cuzy51ffu27cnO04b8jVDTtPvrLTbG1VLYSQxxxSTB2yyr1wNvf8A rUlpZXlvqDXP7gJcAm4jVjhWH3SnHp1zjJoYE1vq9nNY2920nlpccJuBGSeQPrip1v7RzGFnQ+Zj bzwcjI/EjtWYmlXkdhp1qHhf7JKjHJIyFz7dTmnXmmXdxPLIskRzcRSx5yMKmDggDk5B598UAW01 KBTL588KgT+Sm0nrgHByOG9vpVpLiF7cXCyL5JXdvzxj1rHk0u9Z5GHkHdfpdDLn7qhRjp1+WtTU IZriwnht3RJXQqrOu4A+4oAVby3ZWIlHysFI7gnoMdc1JHLHLH5iNlckZ+nBrGfRpnnuC4heCZoi VZ23DYMcMOQe4IrTsLeS1tfKeVpSGYqXbJAJ4BPU49aAIbXU4JILcyzw+bPuKCIkh8HnGRk1Hdai WurOCzlixco8gkYFlIXb6euf0qtaaXewf2cW8g/ZWmZ8Oed+cY496httDu1tbK2meILDBNDIyOc/ vMcrx2xQDNk6haCN5DOoRE3k/wCz/eHqPcU1dTsXdEW5RmckIB/EQM4Hrwc1nz6RczQQqXiDwWkl umCQGLADJ44Hy9OamNjdb9KYCH/RAfMG48/IV4496ALsV9aTFfLuEbepZSDwQOuPp3pVvbV1kYTp tjUMxJxhT0P096xbXRr+CCxQPbK9uk6lslhl+hxjnHeibQ7mWN1eeJFa2jjJyT8yMWB7fKT24wKA NWa9Tys28kZfcF2vkHOM4wBnOOenvTxewLBHJLLGC4J+Qlhx1/LvWfAjahdw6hHGsUltI6PGc4fK gE7sc9sEdsikttGktrtbrzBI7ed5iFiF/ePv4+hGPegDUF3bs6qsoYscAjkE4zjPTpzTpZo4todw rOcKO5PsKzLfRzb3aTRFYNrjIiZgroFwAUPGffrwKt3Fm76nbXsbAmFHjKN0IbByPfKj8zQBDpmp i402Ge5dPMkZwNgPzBWIyByegFaCyRtEJVdTGRuDA8Y9c1jaZpN1ZPBMzxPLGksZUMdpDvvBHHB7 Grdrp8lpon2GKZTKI2CyMuVDHJzj0yenpQBOdRs1hlma4QRxAM5P8IPQ/T3qI6raG6gt0fe0xdQV BwCo5/mKzZtFvGhu0R4f9IsltvmZuCN3OcdPm9O1aFxZzy3NlcI0aPArqy5JHzADI47YpgSQ30bN P5ksOEm8pQhJOcA4Ix97noO1PTULR0DpMGVvulQTnvkeo5HNY91aXMFy8hWLdLe/aInLkKgEYT5j jgnHuOcVLpdnIs0VzDCkXkRvbeXvJRhkNvVsZ69eP5UgNoSI0QlV1MZG4MDxj1zUdrN58bSB43Xe wUpnoDjB9+tQafYmx0qOzDiRkUjcw4JOT09Mml0m0ex06K3kZXdfvMP4ieSfxOT+NAD49Qs5W2pc IT5hi/4GP4fr7U5b22ZmVZlJVSxx6DqR6/hWHZ2kl/FewblSMamZS3O7CsrDH1I6+lWLfS76Ge1m aSB3ijlR+oDFiDkDGAOOnv3oH1NCLUrKZN8VwjrxjbznIyMevHNWY5EljWSNw6MMqynIIrKttOu4 bLS4C8I+yDEiqT8+FwCGxkVZ0ezlsdLitJnRjGCoKZxigRYju7eSQIkqsxzj3x1x649qWe5gtxma QJwTz6DqfoPWs210iSGPTIXlUx2BJVh96T5Soz6cNk+9S6nYXF5KdkiCI28kWDwQzY5yOox2oAsy 39pCzrJOimOPzmHon976U2PUYJb82aEswiWXdg4IYnHP4VnvpF00IHmReYbBrQ9cAnofcVJDpdws m55EUPZpbSbScjbuyQcd91AF46haCN5DOoRVLk9to6keo9xUlvdQXSloJVkVTglfoD/IisebRbiW 0tYfMjDWts8CHJAcsmwE8cDAzjnmtawie3sLeCTbvjjVDtORwMcUAVE1IDU7yGaSNLeExxoSMEuw yR+q/nV+aaKBVMsioGYICT1J4ArLstLubW9e5EyEzySPOvJByw2Y+ijH41oXbzJGhgVGbzFBD5+7 nnGO+KAJ6KKKACiiigAooooAKKKKACiiigAooooAKTIJIyMjqKWuf0ew1C11FHuFDj9/5srY53SA ptxz93rnpgUAdBRRRQAUUUUAFVNT/wCPI/76f+hirdVNT/48j/vp/wChigCG+1WO11CCwUI08yNJ 87hVVVx1PuSMfjU9lei5s4JpE+zvKufKdwSPXp1rNv7OWXxVZXf2My28VtKjvhT8zFSBgnP8J/Os ix0e9i03w5DLp7B7O5d5hlPkU78d+R8w4FAHWoYPN81XQvKAAQ33gM9PzNTVxp0q+WzuAthIJDrA uo8MuRFvDEjnjgHj3967KgAooooAKQKoYsFAJ6nHWlooAQqrEEqCR0JHSloooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorF02zZNbvZDcXzJEdoWWVjGzM NxKr0wMgDHvQBtUUUUAFFFFABVTU/wDjyP8Avp/6GKt1U1P/AI8j/vp/6GKAH397Fp9o91Pu8tMZ 2jJ5OBx9TQt7EbsWrh45mUuquMbgOuD0OMj86zfEEiyT6dZndse5WWUhSQETLcn3YKKi1H7Vc3n9 o2kLMtjbymAMCPOlYcYHoAPxJ9qAN/pTIJo7iBJoXDxuNysOhHrXNXD3Yi1BI2uZdtmkaHDYeRs7 nH0yOnoakvGuLWB4LVJ1t7exxbhAcvJkqD+AAP45oA6SisC7e/P2dLd5XEcaJIHBVpCxA3q3qACe RjmprZ7lmnluXl8xZpNsKKfuLkKPTkYOe5NAGrDPFOGMThwrFCR2YHBH51JWZ4diMOjQIyuJCN8h bPLt8zdfcmmCPUP7amZnh2lP3BMbEBM8g8/ezj8MehoA1qhu7mOztJrqYkRxIXbAycAZ4FJEt4JB 50kLJ3CIQf51BeyeZcwWaEb2PmMGUlSB29OuPyoAtwypPDHNG25JFDKfUHkVXj1G3k8ziRTHP9nI KE/Px6duRzWDpsl1b2kOmDzPLs7wwyuqkZgwShB9MlVOPQ0qSPCLny2nQ/2sh4DcodmfquM+1HUD p3cRoztnCjJwM0kUiyxJImdrgMMgg4Psaw4DO1jLJdS3Ed2vnCRVzjvtx7AYxioIJr2SwkeYz+Z9 iiNsRnLSbTuz/tbsdf8AGgDpaK5We5vIhfu0k4nRrYhV3FVY48zb7dc1ae6uV1GKUC4Ef2xo3UqT +72NjgDAXdtwevPWgDoKKyPD4Z4JZpJp3cTSoBIzYC+Y23g+2MH0qG+e9Dant80TqF+xBc4Pyj8P vZzntQBu02R/LjZyCQoJwOprHsGvP7SBl/eRMZPmG5WTnoyngjsCMdvWpb5p/wC0pFl8wWv2UmPZ nmTJznHfG3H40gRoWtxHd2sNzFny5UDrkYOCMim3t3HY2rXEwYxqRnaMkZOP61zCT3a6HALdbhJI LGEr8p+/3wMckYw2fbip9WeebT9UMwmz5kZt1VTgxfIcgD33Z+lNiWx09FYEkt+UuGUSfbPtaiFR naYdy/hjbnPvmptHa7Nx+/JljaLcsvzKeo4dDwG9x6HigZp3dylnaS3MgYpEpdtoycDrUqMHRWHR hkVgaybl49ZjmEvl/Zf9FCA/NlTu6dTn9MU2aW9NrfNF5vnqqfYQoOCNg7f72c57UAdFRVDWJLpL FRbZV3ljR3UZMaFgGYfQZrKd7ySzvzE9zGWu1SLIP7uPKru55x95vxFAHQzzRW8LzTOEjQZZj0Ap 9czdNPfRTRzJOYpb9VwVYBIl/wDith/76FTXkmoSNfLEJUm3xx2aDIABCkuT35LZz/dx3oA6Cisn S4ZpZri4nmuAFuWESsxAKgbenoTk/lV24aNbu1DySq7Fgirnaxx/Fjj6ZoAs0UUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVjaPrh1K9k tngaFlTeAwI3DdgMp6Op45HrQBs0UUUAFFFUdbaRNDv2ifY628hDenymk3ZXBFxZI3ZlR1YrwQDn FR3UJuIDGG25ZTnHoQf6VzOi74dR0iMRwb5tKLLIqMCuNnBG7B5PXGeKlsfEF9c2ujTPDADqErws AD8hUMdw5/2env1pgdPRWdot/LqEFyZkVXguZLclejbWxnHatGgAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkKKzKxHK8ilooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKggs7a2 IMMQTA2jH8I64HoPYVPSModSp6EYPOKAForL/wCEf03/AJ5z/wDgVL/8VR/wj+m/885//AqX/wCK oA1KjuIIrm3eCZN8Ug2svqPSs/8A4R/Tf+ec/wD4FS//ABVH/CP6b/zzn/8AAqX/AOKoAnj0mwjk hkS3CvDGYYyGPyoew56UyLRNNhW3WO1VVtmLwgE4Rj1I5/zmo/8AhH9N/wCec/8A4FS//FUf8I/p v/POf/wKl/8AiqALlnY21isi20QjEjmR8EnLHqee9WKy/wDhH9N/55z/APgVL/8AFUf8I/pv/POf /wACpf8A4qgDUorL/wCEf03/AJ5z/wDgVL/8VR/wj+m/885//AqX/wCKoA1KKy/+Ef03/nnP/wCB Uv8A8VR/wj+m/wDPOf8A8Cpf/iqANSisv/hH9N/55z/+BUv/AMVR/wAI/pv/ADzn/wDAqX/4qgDU orL/AOEf03/nnP8A+BUv/wAVR/wj+m/885//AAKl/wDiqANSisv/AIR/Tf8AnnP/AOBUv/xVH/CP 6b/zzn/8Cpf/AIqgDUorL/4R/Tf+ec//AIFS/wDxVH/CP6b/AM85/wDwKl/+KoA1KKy/+Ef03/nn P/4FS/8AxVH/AAj+m/8APOf/AMCpf/iqANSisv8A4R/Tf+ec/wD4FS//ABVH/CP6b/zzn/8AAqX/ AOKoA1KKy/8AhH9N/wCec/8A4FS//FUf8I/pv/POf/wKl/8AiqANSisv/hH9N/55z/8AgVL/APFU f8I/pv8Azzn/APAqX/4qgDUorL/4R/Tf+ec//gVL/wDFUf8ACP6b/wA85/8AwKl/+KoA1KKy/wDh H9N/55z/APgVL/8AFUf8I/pv/POf/wACpf8A4qgDUorL/wCEf03/AJ5z/wDgVL/8VR/wj+m/885/ /AqX/wCKoA1KKy/+Ef03/nnP/wCBUv8A8VR/wj+m/wDPOf8A8Cpf/iqANSisv/hH9N/55z/+BUv/ AMVR/wAI/pv/ADzn/wDAqX/4qgDUorL/AOEf03/nnP8A+BUv/wAVR/wj+m/885//AAKl/wDiqANS isv/AIR/Tf8AnnP/AOBUv/xVH/CP6b/zzn/8Cpf/AIqgDUorL/4R/Tf+ec//AIFS/wDxVH/CP6b/ AM85/wDwKl/+KoA1KKy/+Ef03/nnP/4FS/8AxVH/AAj+m/8APOf/AMCpf/iqANSisv8A4R/Tf+ec /wD4FS//ABVH/CP6b/zzn/8AAqX/AOKoA1KKy/8AhH9N/wCec/8A4FS//FUf8I/pv/POf/wKl/8A iqANSisv/hH9N/55z/8AgVL/APFUf8I/pv8Azzn/APAqX/4qgDUorL/4R/Tf+ec//gVL/wDFUf8A CP6b/wA85/8AwKl/+KoA1KKy/wDhH9N/55z/APgVL/8AFUf8I/pv/POf/wACpf8A4qgDUorL/wCE f03/AJ5z/wDgVL/8VR/wj+m/885//AqX/wCKoA1KKy/+Ef03/nnP/wCBUv8A8VR/wj+m/wDPOf8A 8Cpf/iqANSisv/hH9N/55z/+BUv/AMVR/wAI/pv/ADzn/wDAqX/4qgDUorL/AOEf03/nnP8A+BUv /wAVR/wj+m/885//AAKl/wDiqANSisv/AIR/Tf8AnnP/AOBUv/xVH/CP6b/zzn/8Cpf/AIqgDUor L/4R/Tf+ec//AIFS/wDxVagGAAOgoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image002.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAFKAigDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0F2uZ b6WGKdI1jRDgx7jk59/an+Te/wDP4n/fn/69Ng/5C13/ANcov5vVygCr5N7/AM/if9+f/r0eTe/8 /if9+f8A69PmufKuoIdmfO3c56YGelV7a7lu5sKVtwpy0TjMpHuOw/OgCXyb3/n8T/vz/wDXo8m9 /wCfxP8Avz/9eqiW81vLdTwXAYxx7FWZ/lLfeLOR064+lUl8Q3D6d9sWCJSJ4oGhdiHUsQDn88j1 GD3rWnRlUV4ibsbHk3v/AD+J/wB+f/r0eTe/8/if9+f/AK9Zaa5ObhY5IItv282LFWOSdu4MP5Yq x4Ydn0VCzs5Esq5ZsnAkYDn6VU6EoR5peX43/wAgv0Lnk3v/AD+J/wB+f/r0eTe/8/if9+f/AK9V NU1ObT7yCNokaG4VkjfnPm4yqH68/lUd1q91DeyWkdqsksNus784D5JGFJ6dDyfalGhOSTXULl/y b3/n8T/vz/8AXo8m9/5/E/78/wD16qRajdzaxc2iRQ+Tb7C7lyG2spPTHUEfrVGbWZbnR9SMkLQS RWplC5KEjB5VxkEccMPyprDzb+78dgubPk3v/P4n/fn/AOvR5N7/AM/if9+f/r1l3OuvbJdbIVK2 VrHcP5jHMgbPCn/gPX1NJqWvT2c15sgjaO3tUuvmYhiCSCvseKaw1R6Jf1p/mg5kavk3v/P4n/fn /wCvR5N7/wA/if8Afn/69QzakY5WQRxkD1cj/wBlqeOLzLhLzewzHt2Anb65rnKVnuJ5N7/z+J/3 5/8Ar0eTe/8AP4n/AH5/+vTQ7DWTHvbYYN23PGd2M0X8zBYFjbh51jcg9B3H8hSuX7N3S7jvJvf+ fxP+/P8A9ejyb3/n8T/vz/8AXqK3V7uwnhd2X95JGrg87QxA5q7GnlxqmSdoAye9CdxSjy6X1K/k 3v8Az+J/35/+vR5N7/z+J/35/wDr1DfahLBdi2gtzJJ5LTcnAOCBtz689e1Rz6pLDeSxGJDHG0Az u5PmMV/Q80yC15N7/wA/if8Afn/69Hk3v/P4n/fn/wCvUUF/LPdTqsSiKGUwtlsNkLuyB364x+NV U1zFstxJBlXtGu1VDkgLj5T78j8jQBf8m9/5/E/78/8A16PJvf8An8T/AL8//XrMNxKJdWkZhuWz jkASQgDh+h7dOo9BUt1qstqo2xIyLZm5O5jn5cZH4560AXvJvf8An8T/AL8//Xo8m9/5/E/78/8A 16r3V/cJfLawW4YkIcsezZyfwx+tLLqZjkdPLjO0kcu3/wATQBP5N7/z+J/35/8Ar0eTe/8AP4n/ AH5/+vTXtstPcB3Jki27ATgcdqr2ka3Fhpwd3JaIFiHOTwM559am/Q1VNNXv/Vi15N7/AM/if9+f /r0eTe/8/if9+f8A69ZbpnT9VlEsgaF5dhEjcAIMDr681ftt0QErQS5I24V9wIwDnk9etJSuVKjy q9yXyb3/AJ/E/wC/P/16PJvf+fxP+/P/ANeob2e4YRi3hZnySYnbZvAHZh0PSpLeL7QLS782T5Y/ unjdkdx60762J9naPM2O8m9/5/E/78//AF6PJvf+fxP+/P8A9erVZkVpIl3NLFdsoRdmHO4Ek7iW /kOnFUZFnyb3/n8T/vz/APXo8m9/5/E/78//AF6bZXrXLvG0YOwf62M5jb2B9f8AOauUAVfJvf8A n8T/AL8//Xo8m9/5/E/78/8A16tUUAVfJvf+fxP+/P8A9ejyb3/n8T/vz/8AXq1RQBV8m9/5/E/7 8/8A16PJvf8An8T/AL8//Xq1RQBV8m9/5/E/78//AF6PJvf+fxP+/P8A9erVFAFXyb3/AJ/E/wC/ P/16PJvf+fxP+/P/ANerVFAFXyb3/n8T/vz/APXo8m9/5/E/78//AF6tUUAVfJvf+fxP+/P/ANej yb3/AJ/E/wC/P/16tUUAVfJvf+fxP+/P/wBejyb3/n8T/vz/APXq1RQBV8m9/wCfxP8Avz/9ejyb 3/n8T/vz/wDXq1RQBV8m9/5/E/78/wD16PJvf+fxP+/P/wBerVFAFXyb3/n8T/vz/wDXo8m9/wCf xP8Avz/9erVFAFXyb3/n8T/vz/8AXo8m9/5/E/78/wD16tUUAVfJvf8An8T/AL8//Xo8m9/5/E/7 8/8A16tUUAVfJvf+fxP+/P8A9ejyb3/n8T/vz/8AXq1RQBV8m9/5/E/78/8A16PJvf8An8T/AL8/ /Xq1RQBSY3UFxbiS4SRJJNhHl4P3SeufainXv+vsv+u//sj0UAJB/wAha7/65RfzerlU4P8AkLXf /XKL+b1coAa0cbOrsil1+6xHI+lJJFFIVaRFYocqSOh9qqXhuPttusImClgXZQCgA6g855/pUcUE 0dwjXqNcvn5ZlPyr/wAA/h+vP1oAvNbwOkiNDGyyHLgqCGPv69BTHsrR2Z5LWFi2CxaMHOOmfpWb YpqH24meOVYZEkDAvna2/wCXnP8Ad9AP0qGC21CSCW3mWfL6esRZ5ODKNwPOevI5701JrYDTki06 OWFWt4Q00haM+UDufBOc464B5qzDDFAmyGJI1znaigDP4VkNbytb6Sn2eYLDJmQBuQPLYc8+pFRp HqrWdv5qzFhaMu0MA4m7EnP603JvRsDcZEfG9Q205GRnB9abJBDKytLCjsvQsoOKz7aC6OqB7lps Lbx5KuRG0g3buM+47Vb8q8z/AMfceM9PJ/8AsqV2gJVghWV5VhQSPwzhRlvqe9NFparE0QtohGww y7Bgj3FU7eGc6peyMZlXI8nc52fdAPGfWobK1vTYSJcySmZ7fy3DHCmTBywOe+e2OMUcz7gaRtra QRsYImCAbDtBwO2KjmhsXuNk0ELzTKfvICXUY/MDIrPMFyuhWcKRTpJG8IYK/wA2ARv5z0xmrbRT R6nZCPzmgSJ1di+Rn5ducnk8HmnzPuIvKAqhVAAHAA7UtZWmW96rk3sshkw6vj7jZbKkc+nTGKWx t7yG1n87zZJolaKLMv8ArQCSregJyBk+lSMvyiGLdcuigopJcLlsD9aIhBNAHjVWilAcYHDZ5zWV YpfrBeR3CSsrRKY9xBO7bhh19au2cVwuk2kQPkypEisHXdjAwR1osO7LiqqKFUAAdAKWs3UYb46X dKkxklMZEYiXYwbsQc1HeW10Xt1gknFv5cm7DZdXOCp5Pb5vpxQI05Io5ceZGr7em4ZxTHtLaR2d 7eJmbGSyAk46flVAxX41SNgztCNoYNx/CcsCD69QR9Kq6cbqW6VoXlZI7yZZWeTcvljcAo565249 MGgDc8qPzfN8tfM/vY5/OhIYoyxSJFLfeIUDNZVhFqKywfaN/Ebi6JbIdsjbt/X04qDTo9SjiCyr dZNmQxZwT5uTjBJ64/CgDZFnajfi2iG9drfIPmHofUUPZ2r4320LYXZygPy+n09qyhDqn2RFLZxc KXKgqXj28/KWOOcZAPOD61qWUbxWqJI7uwz8z/e68ZoAr3OkWtzMZHXkhR90ZXHTaeq/hV+iigAp iRRxklI1UnrgYzT6KB3IhbW4VlEEYV/vDaMN9akVVRQqqFUdABjFLRQDbe4140kADqGA55FOAAGA MAUUUCuFRPbwOGDQoQ5DMCo+YjufXoKlooAAABgDAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAqXv+vsv+u//sj0UXv+vsv+u/8A 7I9FACQf8ha7/wCuUX83q5VOD/kLXf8A1yi/m9XKAGmRFYKzqGboCeTTqqXdm1xcQyB1URur/dye M/4/hVugAooooAKKKKAIZrq3gYLNMkbFSwDNjgdT+FI97axkB7iNSybxlsZX1+lQanYyXyoqyrH5 fzo2zJDjoevT1HeotQ02a9JJnjUtayW5/dk8vjJ6+3SgCxd3yRWFzcwFJjAhYrux0Gce3FSSXltE wWWZI2K79rNg7fX6VSbSpWg1CPz0BvECAhD8mE2+vNLf6ZLeEkTombWS3OUJ+/jJ6/7PSgC+08SO EaRQxwAM+vSg3EAWRjMmI22udw+U8cH35H51Sk0wyXkNyZdrxqgymVJAOSDzgg+hzipbm0muLeWL zlXdIrghP4QQdp574PPHX2oAkmu40hjlRkdXkVAd4A5OOvr7fhQl7bvdzWqyDzYVDOPQHpVNdKkS yNutwuPtP2gEoePn346+vGasrZst/PcCX5Z0VWXHIwCOv4/pQBOtxAxAWaMk9AGHNMt5ppUlLw+W VcqoJ+8B0NRR6ekciuJZCVOcEL/hVw5wcdaQ00V7S7jubVJsqpKB2XOduRSfb7f7Gl1v/dOVAP1O B/OorKxe2ZCZVYLAsPC46E89fenCycaelqZcmMptbb/dII/lS1NmqXNo9L/gTyXMETBZJVUkbgCe o9aVPJjYImxS+WAGBu9T/KqtzFM95b7OQIpFZyuQCdvbPsant7c28cESPmOKPZ8wyTjGDn8KLslx iop31/4ce0hFwkSgHILN7CmNcok7I7KqjCgk4yx5x+WKIQ3mTTOpBJwB/sj/AOvmojatPYlGYxyu 3mbsZKtnI/LpRqCUepL9ttQVH2iP5l3D5hyPX9KDe2oYg3EYIXcRuHT1/UVX/sxBCIhIQFk3px91 e6/TBI/GkOlo0EUTSkhNyk4+8hGNv5bfypXkXy0e7LySJJu2MG2nBx2PpSSSxxY3uq56ZNMiikjh iTzQzL99ivL+v05qK5slnuBMSD+7MTKwyCCc1WpmlHm1ehJ9oP2425UY8vzN2ffGKkE0RVmEi4UZ Jz0FRG3Y3hnDgDyvL27ffOarrpa/YprYyEJIAMDOFI9ATwPbpS1KtTe77f8ABLZuIRH5hlUJnGSe /pSS3KRwvIrK2xgpBYAA56Z/GmG0R7aaFwo83O4qO+MZ+vFJNaPJp/2bzRvIG5yvU5yTijUSULrX r+BO0saOEZ1DHoCaTz4fO8nzV8z+5nn1qCWyWS6aYkHeqqysMj5SSCPzqRIGW9lnLKQ6KoGORjPf 8aeorQtuT1ELmAgkSoQOODSvG0m9Wf8Adsm3AGCD3OaqpYMgtiJF324AU7cbhtK8/gaG2EVC2rLB urdTgzxg4Dfe7HoaeJY2jZw4KrnJHbFZraQ3lvGs4w0ezLJnncWJ6+/SrH2aRBKhYOLibc2BjauB kfp+tTd9UW4U+kiZbqNY0M7pG7KX2k44HJ/KnG6tw20zIDxwT69PzqK9tXugoEips+ZTtyQ3Y9en qO9Rz2Mk0kjmVAXEWfkP8DbvXvmndiUab1bsTNdDzbdU2usrMu4HoQCf6VJ5hNwIgOAu5j6en9fy qrHYyJKj+ap2zPLjb13AjHX3qxbq37yRgVaRj17AcD/H8aFfqKSgvh/r+kOWeJ1ZlkUhRkkHoKb9 phMLyRyI4Vd3DcYxxz6e9V7aweBy3nBiYhGfl6kZ56+/QUkOnyRRsnmqc26wD5MdM89ffpReRXLT 11LTTBbXzyB93dgHP4ZpWmSJFMzqjEev51CIXVLa3PzKgBZgMA7Rx+uPypL6zN2NvmbV2OhGP7wx n8PSh36EpQuk3oTvMFuI4uMuCfvYPHt360kFzFcb/KbdsYofqKj+zOZraQyA+SpB+X72QPy6U62t zA0vz7ldy4GOmTmnrcTUOXfX/gi20ssok82Hy9rlV5zuHrU1FFMhu70CiiigQUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFAFS9/19l/13/8AZHoovf8AX2X/AF3/APZHooASD/kLXf8A1yi/ m9XKpwf8ha7/AOuUX83q5QBDNcxwywxtndK21cD2J5/KpqhmtYJ5YpZIwzxNuRuhB5/xNTUAFFFF ABRRRQBTvr/7FJErQO4l+VGBABfsvPQnt2qK81ZbOV0kt5D5cImYqQeM4I+tWbqxt7vInQuCpTG8 gYPPY9eBz1plxplpcsxmjZy0flE+Y3K5zjr60AVb+/dtOunhLwy28yRt0POVP5ENU1xqa291JC8L 4j8rLgjGHYqP1FPk0+z8mZJFISdw8mZGG5hjBzn2H5Us2nWs8jySIxZ9gY72GdpyvQ9jzQAialE+ pNYgESrzhjgkYByB3HPUUkuoeUYIzbSefMrMsORkBevOcdx+dTraQLN5wQ79xbkk4JGCQO3FM+w2 2yJdh/c52NuO5c9ec5oAhbVYhdG3EUrOojMgA5TecDj+fpTjqMYYr5MnBx1X/Gp/skHneaEw+ApI JGQOgPrjNL9ltyc+RFn/AHBQAkUcy3MzvLujbGxP7vrVayu2Mpgl3MWllVGOOinp+VX6rR2tqriV B8yMzZ3k4J+93qbdjWMotPmREL6X+z7q5MIDQmTC7uu0kf0qWS6aKOAmIlpWCYBHBwT/AEp620Hl yKqApLncM5Bz1/majuLPzFgRG2rFIH5ySeD3z70alXpt7D4boTxq6RsfnKMOPkIyDn8R2pZmYyxR KSCx3Nj+6P8A6+KVbaJERVTARtwwT1559+p60qxkXDysQcgKvsP/ANdPUi8b3RBc3BheSUKzJAm5 lXuT/gBn8ajOpqFLCFiqvsc7h8vIGfpzn6VZjjCKyyEFpWJPv7flTVtLVUeERKFdAjL6qBgfpS1L TprRogGpghCIH2sxQncPlbJAB+uP1FT2l0LqMSLGVQqCCSO4zj6inG0tyjoYl2uwZh6kYwf0FL9m hETRBMIzFiASOSc/zoSfUUnTa0Q25ukt2iQgl5SQo+gyaiadmubIoXRJQxZGGP4cjPvVmSJJdpcc qcqQcEGka3iaSJyp3RZ2HJ4zRZijKCW3chS/haWZD8phBL56gDvj096Ib0TwtJHC5wgdR/eB6D6+ 1SJBCrnABbB4JzgE5P5mnRQpCoWMEADAGScD0o1Bun0RAt351pJNGrBRHvVsjnIz+lI18kcUAIeR 5Yy4GOSABn8eRU628KQNAiBY2zlRx16/zpPssO2NQpHlDCEE5A9M0aj5qd9tBjXRE8USwu3mJvB4 GBkA5z9RVmozBGZkmwd6KVByeh9vwFOMatIshB3LkDn1p6kPl0sVf7RTZ5gjcxliiNx8zbtuPbn+ VNbUlWTy/KYuCwYAjgqA38iKn+yQFWXy/lY7sZOM5zkehzzSGxtiQShz83O45ORg55qfeNE6XVBb XiXBbCsuEV/m/usDj+VRm6MFqLmVWMbtuJ/55qeh+mMU42MSRusIKF0WMksT8o7fkTU8kMcgUMMh eQMkD8u9PUTdO+mxWlvzCB5lu4PlNKRkHAXGR9eajnvC8beXujeOWIHpyGI/oamFjavEqhSyKhiH 7xj8p6jr7fpTjY253fI3zFSfnPJXp39qLMpSpLp/V/XsOkZmuY41JAALtj06Af59KYl6jXf2bawb 5sH6Yz/OpETZNIzMN0h4HsB0/n+dMFpbJMrhAHDM68nqfvHFGpC5dn2GW98s0ioY2Qtvxkg/cbBp 1tcbrHz3LHG7O4DPBPp9KdHZwROropDLux8xONxye/c0n2VFhWGL5Yw+5gSTnnPf3o1G3Tei/rf/ AIBGly0RWBkeWbYJHA7AnH+P5Ux9ViSATeWxVkMiYx8ygjP8watvBE8glZcOBjcDjj0PtULWVm0J DIPLK4+8QApOcD0HTpRZ9Bp03rJCC+Bl8vymB8wxdR97bu/lUS6qjRq5hcAxrJ24Vjj881Y+xW+/ ftbdv8zO8/exjPX04pn9n2ePL2HhAm3e33Qcjv60veGnR6p/1v1GSanHHEZPLZkO8IR/EUzkfofy p/ntdxTxQloZlAAY84yMg042dpKGGwMDuBAY8Z+99Cakht4oXd41IZ8biWJzgYFOz6ibppaLUfEG WJFdtzhQCfU06iiqMHqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBUvf9fZf9d//ZHo ovf9fZf9d/8A2R6KAEg/5C13/wBcov5vVyqcH/IWu/8ArlF/N6uUAU7m6khvYIxgxvgMApLZJwMc 9PWrlFFABRRRQAUUUUAZWsXs1pJGYplC7SZV2bii9PM9wD1HfPtUGq6ncWk0ghnRlSzMygpncwYA fgQelblFAGBqN15+lanHK6uIJkVWx1HyN/Mn8ql1DUp7W9uFSVPLjSBgpX+85Vufpg1qXNylqiPI G2s6x/KM4LHA/U1NQBmre3B1g25UGDdtDLg4+XOGB5H1GR0FMlvZwtoEmVo5pHV7jZgLjOBg9ORj Pt71q1FdTpa2stxIGKRqXbaMnA60AZ/nXA1i0Ek58p7Y5CphXfcvTPI6/lTIdQu3uIlMfzPJKjxb eYlXO1vxwPru4rXUhlDDoRkUtAGfDc3rSorxkKTz+4I/XdVqG3htklCDCuxds+p60R3KSXEsCht8 WN2Rxz6U6CZZ0ZkBG1ihBGOQcGloy7SijN0mdzDFb7hgWqOuByp5GP0FCyzHRIH85vMBi3vt56ru /rWp5ibWbcNq5yfTHWnAgjI6UreZq6q5ubl63KF1cyRzwqswjR4nbLLnkbcfz6VNBNJItsZcRSSR bmiK85479sZqVoUadJiDvQFQcnoevH4ClkkEe3IJLMFAFFiHJNJJa/8ADka/vLxm/hiXaPqeT+mP zqtPLKkMl5GePMAIC7iYwcHH6mrQ2Rv5Kg7n3OT/AJ+tSRoscaoowqjAotcFJR6f8MZf2m/8lHLY ZX8mRRH/ABcgMPbJX8M0jXWoGKOROsoKBDH92QDv7Ehh+Va9R3Ey28DzOCVQZOBk4pcvmWqqb0ii O3n3RJJI5xM37sFcEAjIH5Cory4uEuViiCqpjLB26FgRx/nmrtFVYzUkpXsUSwGsE8Bvs3p/tVCl 7dGxnl8rdKigqBypz3GOffB5rUopWK9ouqvsUnkujZTPE6NIhymBncBg4+vX9Kju5WOlPOxDK5DK rp/CSMAirySB5HQA/IQCe2etJDMkxkCggxuUbIxz/k0WBStrbbUqz3FwLwxIEVAqspbo+Scj8B/O npLK+pyw+aojjVW27eTnOefwFWZZFiiaRuijNOHI6YosLmVtiOSULvRBulVNwT19P5VQju52W3LO u2XHmMFx5R2kkH8cDmr8c6SySxqCGiIVsj1Gf61JRa4KSjo0Yj6ldKjOSqFYg4Ur1O8jP0IwcVdj u3aG5G4M8cvloR3yBj9T+lXqa8auyFv4TkfWjlfcp1IP7NijeSvZRxLDIAqqQy7ckL/f/D071HPe yxzSBJkZVEJGV67mIP6c1psyoMsQB0paLPuJVElrG5lJcedc2pcqWS5kQHHUBWA/pV2P95cyydQg 8tfr1P8AQfhUskgjCk5O5goA9TTInhSY2qE7wN5BB6E9c/WhKwSlzK6X9XKQnuZtLml8wLKYC2xU +aN8Hj+lSm5dRbKHxG6tumI6EDgfjz+VW55o7eF5ZDhFGScZwKUuojLk4UDOfai3mPnT15dCoJZZ 9Ph8xDHLOApX0z1/TNQatKwguYCAkQtiynbnceRj8OPzq1PcQxJDcyq/JCqAMkFvarVDV9AU+RqV igJZF1CTDl0MCtGmOCfmzz+A/MVDZSmXUo5JCPMe1BYAY2ndyPwrVoosL2qs9CK3torYSCIY8xy7 fU1LRRVGTbbuwooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBUvf9fZf9d//AGR6 KL3/AF9l/wBd/wD2R6KAEg/5C13/ANcov5vVyqcH/IWu/wDrlF/N6uUAUbmG8bUIpImzAAvy5wAc /MT68YxV6oZbu3hnjhkmVJJPuqTyamoAKKKKACiiigDJ1eznuJkkgg3lF+bMm0SqSMxn09c9se5q DUrC7muZ5LeAjdDEqESBcMrkt9ODjNbEtzDFII3f5yM7QCTjOM8ds1HDexTXtxaqG3wbdxKkDkZ4 NAGcbO8+ySxeTn/TVljXeOIw6t+HQ8U2axvP7TlniiO1rmJwwkA+UDDcf071qRX1tNG7xybwihzg HO09CPUHBpkOo28ljb3ZLJHPsC7lPVsYH60AVYbO6S6uZHzJFIsgEbMM5J4AYc4I9enY1DqNhdTw yKkQZGsjCkJk/wBXJ65PXsM+3vWmt9bPGHWTILmMcHJYZyMdc8H8qGvrVNu+dF3AMAxwcGgCn9jn a+EsqF4jFGEUSbTEyklunrx064x0p5sbguT5y4zn78v/AMXVhp5JJIGtgksLkh3z0HtTXuyt7JES qRRIHdmB756Hp2pNlqDa0/roWgACTgZPU1m21tcR3iyGPapllZzvHIY5WrpuoFUsz4wwQ5ByCemR 26ik+2W4UN5nBkMQ4P3vT9KTsy488U0luVFsX/s+8tfLQeaZNpzwdxJH8xSXi7IrFWjAInA2A9sG rpuoTGrJIDvzs4znHXj2qAXNzLpsFxBEjSyBWKnoAetKyLUpt3a6hbwSxwRLKu8iVmA3/wCrU5wP fAIFTf6y9/2Yl/8AHj/9b+dI95FHN5cwaLnCs4wrfQ9PzqwMdR3qrGLm222QW/7yWWbsTsX6D/6+ az7GJ5Jg8XyrHcy723feXJwuPrg/hWuBjpRSsUqlk0upmwWs8V5E2z92rS5O7sxyvFNFlKNJuIhF ieTeAC/UFiRz9DWpRRyoft5f19/6jGZxs2pnJ+bnG0Y6+9Uru2uZJZjG331URNnHlEHk1oUU2rkR m4O6M/7OyXF7cOjAEZjZWyfu4OB68VHphEIlaVWDhFYtkMuAMcEd+M/jWpRgYxilyl+1umn5fgUn gmewAQ4kZxI4zjI3Alc/TioEtLgF/wB2Fj+0+aY9w+dNuP5849q1KKOVAq0ldFQp/wAe9sAQB8zA tu4HTn64plxayy3hfcxjKKFCsAUYHJP48flV7HOe9FOxKqNaozpra5drvZ8nmSRsp3feUYyPbOCK V7R/9G2ozKkzOwZhwpB4+mSOK0KKXKivbS2/raxk21pepHsJMbG2Me/fnD5ODTpLKY2DxoreY2z5 S4wCCMkf55rUoo5UN15XuZj2c0lrLG8YP+kiRFLfwhgfw6GpZbe4e7jkX5VXblTgqcE59wfp1q9R RyoXtpEB/eXoH8MS5P8AvHp+mfzqPypf7WM2z915Ozdkdc56VbxRTsQp227WKt4s0+n3MSxfvHVk UbuueAc0TZaGKAja0hAYZ6Acn/D8atUY70WBTtpYQgNwQD9aWiimQFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBUvf9fZf9d/8A2R6KL3/X2X/Xf/2R6KAEg/5C13/1 yi/m9XKpwf8AIWu/+uUX83q5QBG8O+eKTeQI8/L2JPc/Tn86kqpcX8VveQ2zht033Tjj8/8AH8M1 boAKKiurhbW3aZkdwvZFyaqSX7wafPqEwjMEaFwkR3E4/wBrp/nrQBoUVRlvpYPLSWACWWYQx4fK nK7s57Dg/l71D/asjrD5FsHeSeS3Ks+0BkDd8cj5T+dAE17psV7cRyyNzHjYQo3Kc5yG6j0qRbIJ eT3CyuPOA3KPUDAP5VCNSZr+S2jtncRSLHIw7Flzn6DI/OqyX73eo6fJFuSCRpkxuPzbcjkfUUAW LLSltJGfz3fdCsTZA+bGcMT68mnrpoGmxWZmdhEUKMQONhBXj/gI/WmWWqi7uWgWMA+WZEYNkMAx Xr+HbPWo7TU5W0e0upljM05UbVbjLfqfoKAHnSEe1a3mkEyNO8xEkYIO4k4x7E8HrxVhLGNYo082 c7ECZ81hnHrg9ahhv5LnT4r6ERrGy5eOVtpH/Au34j8qtWlyt3AJlR0BJGHGP/1j3oAkjQRoEBYg d2YsfzNVp7FZ3nMjnbMiqVA6bSSDn8at0Umr7lRk46oqNYK4mLOTJKyMWx/dwRx+FNGn4UDz24nM /wB0deuPpzV2ijlRXtZ9ylFp4iWHErF4t+GwOjHJGPyqxaQ/ZrWKDeX8tQu4jGcVLRQkkKVSUtGV ZrP7SzC4lZ4Tx5I4Uj37n+XtVlVCqFUAKBgAdqWimQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQBUvf9fZf9d//AGR6KL3/AF9l/wBd/wD2R6KAEg/5C13/ANcov5vVyqcH/IWu/wDr lF/N6uUAMaGJ5BIyAsO/8qfVG7mu472FIUDxsVBGO2fmJPsOlXqACoRa24eRhEoMgw/HDfUd6moo Ah+yW/k+V5K7Mg4x3HSkNnbHyf3CfuTuj4+6fUVFfG8DL5IPk4+cx4Mn4A8f1qGaR47S3+x+YY2m CzOwJdV5ycHnOcD2zQBbjS1nf7TGI5GzjevPI4/Tmk+xWvnrP5CeYjFlbHIJ6n8ay7d7qLSJDAsm /wC2PvJQ7hGZTlgMc/Kc1oBnW3izPM2ZQAwiySN3AIx0xxn8aAHw2llDPmGGJJUXA2gZVSf0GaQW 9jkWgjiBT96IxjK/7QHaoVaYaveBELD7OhTKYBbLcbsfTjPGap6a1xJqsEs4lMrWX7zchAV9wJXO KANRbG0TYFt4wEJKqBwCe+OmasVlaVJfSRb72Qqxi/eR7CCj55wcdPz6ZqPRbm9lkiS6MrbrVHYv HtxJkgjoO2OKANhmVFLMwVQMkk8CmS3EMCB5ZURCcBmbANY9sLhPDV0khna4VJfvpuJbLYGMc9u3 eprlWkvNHYiTALFgqcDKd+OOeKANUOrMyqwJXhgD0payHkvU/tk2sZaZcGDcmNx2Dvj5uc+vpRcS 3kej3kkU0jyAZhKxksOBxgjnnPbvigDXpskiRRtJIwRFBZmY4AA7mqVwFSKIGa5ebko0Y+Y89xjb jp1qG4+0z2iWd3FGz3DFWXDFTHjncRkAnp6c0AaEtxBCivLNHGrEBSzAAk9MUj3lqjMr3ESshAYF wCM9M/WufjS6l8O20EkcjTWN1EsnyHLpHIPmGRz8ozW1F5cs0twVzGCpVip6gHkfnQA8ahYsjOLy Aqo3MwkGAOmfpUi3Vu8qxLPG0jLvCBhkr649K52GEnwRdRmCT7R5NwioY23fMzEADGeeKS5trye9 mSB5DLLpTRRSmMqFcngZxwaAOjjuYJX2xzIzdcA02G8tZ22w3MUjc8K4PTrWRIrXK6NHaQvE9vKr yAqR5SBCGU/XIGPx7VTto5FayeaGVoF1GdyPLKmMkuUc9yDnH/AhQB1VV3vrOPzN91Cvlf6zLgbP r6VYrltUjkdPEgWGVjKkYjxGx3kLg4455oA6WKeGbPlSo+3rtOcU5pEVwjOoZugJ5NZFwJJtXW7t /NjiitZVllWM5YkqVABHzEYY9O/vVZkul1aWQxmYyXEBjDx8eWFAZs9iDuP1+tAG6lzBJv2TRts+ 9hgdv1p/mR+X5m9dmM7s8fnXNSRThDFbWhSA+VNP+7AYMJQWUkD5vlznr096L+K6bR9W227yQzSu 0arnLcKBgY6bgxoA6YsoIBYAtwBnrTBPCwciVCE+9hh8v19KyLzzpNZ02Rrdim98MpJCqYyOeOMk 1Vg+xmSe68i88uCKONIvJlBIRsqSSMsSfrgdetAHQ+fDsV/NTa/3TuGD9KXzY/N8rzF8zGduecfS uVezP2KWSDzmmuILlQjwsq73YH5QRkc8DOMgE1dMaHU7aEJOZ4H85m8t9skpj2/fIwFx1564oA3w ylioYEr1GelLXP2gv1vtS8mDa7SRl3b+IbACVzwTn8KvCVY7KXyWmNw5Cfvs7gx4HHTvnjigDQjk SVA6MGU9CKSKWOZd8UiuuSMqc8jgiql751ra20dqp2CREkYDJWPuR+n55qhbvdRaXOYFk3fbW3Eo dwjMnLAY5+U5oA3aTepcpuG4DJXPOKqBnW3jzPM2ZQAwiySN3AIx0xxn8aj3TDWLkIhYfZkK5TAL Zbjdj6cZ70AXfNjMxh8xfNC7tmeceuKfWHprTyarBLcCXzWsv3m5CAr7gSucfpU+lSX8ib71yrGM +ZHsPyPnscdMfXPWgDVpGZVUsxAUDJJPArG0W5vZJYUujK261DuXi24fcQR0GOO1Jai4Tw/eRyGd p1E3313Eks2ABjnjHr1oA15biGGMSSyoiHgMzAA08OrMyhgSvBAPSsiZWkudGZhIANxcKnAynfjj njtSvJeJ/bJtYy0y4MG5MbjsHfHzc/X0oA16Kx7iW8TR7ySOaR5AMwlYyWHA4wRzznt3xVm4CpFE DNcvNyUaMfMee4xtx060AX6KgszdGH/Swgkzxt9O2ff6VPQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFAFS9/19l/13/wDZHoovf9fZf9d//ZHooASD/kLXf/XKL+b1cqnB/wAha7/65Rfz erh5B7/WgBNw45HPT3payYNKmjW3DSp+7CA7QeNrFuPrnBrWoAKKKKAEd1jQu7BVHUk4AqNbqBoR N5iiMnAZuAfzqG8sVuZI5Q5WSP7uRuX8VPH49feormynuntZpGQSW7MSisQrgqR9Qf8A69AFszj7 SkIGSyF9wYcAEds57+mKhN/GL/7LjcBE0pZTnGCARgc96jWwaO7tHj2LFBbtDgZzztxj6bagstMu bOa2ZWhdbe2aAdQznIIJ/Ln60AXJ9RtYbCS9MoaGMZYpyfp9ada3a3DzR7SksLBZEJzgkAj9DVWb TGuBJLM0TTuhULtxHyMfMOrfifpiltdKWKS4mkdxLcOHbZKwxhQoGc5PA/WgDQZlRdzMFHqTVG+1 WGzjaQo0qJEZnZOgQdSD0P0pbvThNbiJGc/OGJeV8jH91s5Bqtc2F+1nb2scltLGg/eeeD85HTp1 /rQBqPKkcDTO2I1UuT6DGar2l/HdSeWFZH8tZQG7o2cH9DT7mCS4je3Zl8iSJkfj5snjI7Yxmq1j pzwT+dM4LC3S3GzI4XPP1OfwoA0apwahHcXLRRIzKrMhkGMBl6+/Xj6g1IlnGjBg85IOeZnI/LNZ 9vozwXcbpMEjjlmlUqPmYyZOD7Ak/kKAJ49VU2Ml5NbywRpjAYqS2emNpPXI6461PHfRslwWBRrd tsi9SDgEY9cgis+XRZZ1n82dVZ4Y412jglG3BiOOSew7VZXTn/0uUybZp5PM+U8DCBQORz0zQA+T VIYtITUmR/LdFcIB83OOP1outUitZtjxuVV40dwOFLnC/Xn06VSl0a5k8PxWAugJ0hEO/wDhOMc4 x7VZurW/nvbdgbVreIq2JAxYN3YdicdM9KAH/wBqwi8S3ZHUSO8auRwWQZYevQHn2qOLW7aSEylZ FBgFwgxkvGeAcD+XuKctretq5uZvszQKCseAxdVPb05PU1Da6XNbSPcxmFbhbcQRKN3lryTnHUDO OB0xQBcttQjm+0qytG9s+yRTzg4DDBHXIIp1tew3GnxXpPlRSIH/AHhAwD61Vs7C5S0dJ3iWYyGT MGcM2OrFs5Of5D0qOz0eSCys0ecNcW0YQMRuQ477T0+owfegC1KbQWZuI7eNwfujZjcScDt3NWjJ HHsRnRCeFXOM/SqzCaa4t45kUbMyuVyVJHCj9c/hUV1pguL9rhiHSSJY2RiQBtYsCMfX9BQBcS4V 5ZkxgREAtuGDkZ9cj8cVXi1KF3ug3ypA4QuDuByoOeOnWq9zpUlwdRBlVFuvLKlQcjbjr6g4/KpY La7gnvZl8gtcOrKMnC4UKc+vSgC+jrIgdGDKehByDS1Vs7JbaSSXeWkk+9gbV/BRx+PX3q1QAUUU UAFFFFABTXjR2RmXJQ7l9jjH9adRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBUvf9fZf9d//ZHoovf9fZf9d/8A2R6KAEg/5C13/wBc ov5vVwnAzVOD/kLXf/XKL+b1cPIoArRX0EvkbC378EplT26/SrNVYrCGIW4Uv/o+dmW9eufWrVAB RRRQBXuLyKCRYTueZxlYkGWI9fp7mq13fvFA8ZQpdGF5VRCG2qO5zx1Iq7PBFcJtmjDgcjPUH2Pa q76bBIo3tKzBGj3l/m2N1XPccCgCCHV4VtEeYlmSGOSdlHCbhwT+vSpTqkRSaRIpnji8zLqvBKfe H58c9cGk/siz8sRlWK7FjYFvvqv3Q3rUyWFunmqobZKWLR7jty33jj3/AK0MEV31m3SGeUxzFYVj dsKMkP0I5p6apA0/klZEPmNESwGAwXcR+XOaYdGtDHNGTLtlREb94eifd+lPXSrZZxNmUsJTNy5w WK7Tx6Y7UARDXbQ2puFWVowqONqg5VjgHr+nWnS6qAYhFA7lrn7M44G0gE+vPSpG0u2az+x5kEHA VQ5+UA5AHtxR/Zdthh+8Jabz87zkPjGR+HFAEr31pG5R7mJWXggsMimLqMMlyYYlkl2lVZ0XKqWG Rn8Mc+4q2BgYHSoBZxLdPcLuV5MF8NgMQMAkfSgCCLVbebYUDESozxHj94F64/PvTU1eB4JJljl2 pbLddBkowJGOevBqWDTbWB0ZEP7tWWNSchAxyQPSo00i1RJEUyhZIBbkbzwgzgD6ZPNAEc+sRpYX VxHDIz26K5Q4BIYZFW5biWIhmtnaIjJKkFlPuP8ADNQrpVqI50O9lnRY3DOTwBgfSpWsYn2iUvIi j7jN8pPqR3/GgCCe/LSae9rJG8FzKUJxnI2seD9VqVb4TuVtIzMFba0mcIpHUZ7n6U+4soriSB2L qYG3oEbABwR/ImiSzieXzl3Ry93jOCfr6/jQAjyn7aED7Y4oy8n48D+RP5VQ/thBdiZnZLE2nnjc o5+YAEd+Qen0rRggKmZpcM0rkn0x0A/Ifzqt/Y1lwCrsghMAjLkqEznGPbFADm1SBJfJZXFxvWMR YGSWBI9sYB/I0ybWIIFYyQzrth88gpg7c4PBPUVIdNtWcsdzTb1fzN3zggYHP0JH4n1outLtrtCs vmfNGYmIcglSc9frQA2XVYYrmSBopdySJGSAMEv93vTW1q0WNG+cs6yNswMgIcN+vHvT5NKtpJmm Zpd7Okh+c/eT7tLFpdtEE2GQMhcq+87vnOWGfQnmgBo1a3NwYdkoxIke4rxlhlaW01FZop5Jl8hI pmiy7DBwcetD6VbPO0xaXc0iSnDnG5RgVPBaxWzyvGCPMYuQTkZPJx+NAEUuqWUULy/aEcJjIQ5J yQAMe5IH40HUEDxxGGUTSMwWMjBO3qfTHTn3qe5t4rq3aCZd0bdR09wfzqN7GKQxszOZIySsm75h kYPNAFd9ZtRCJlWSSNrdrgFQOVXGRyevNOudWgtpWSRJcLEJiwAxtJx6+tLJpNnJbrAEKRrE0ICM R8jYyP0FJcaTbXG7zWlO6IQnDkZUHP5570APW8kfULm0SA5hjRw7MAGLZ49e3pT4r1GmW3lVoZ2B IR/4sdcEcGhrKI3DTqzpKyBCyn0zg/Xk/nT4LWG3yY1+dvvOxyzfUnmgCaiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe/6+y/67 /wDsj0UXv+vsv+u//sj0UAJB/wAha7/65Rfzerh4B/rVOD/kLXf/AFyi/m9XKAMqLVWkSyP7jdcY +TzOeuCR9P16Vq03y0yDsXI6cdKdQAUUUUAU765ngZAkeI2HzTkFgn/ARz/SoJruSH7HHFOsouHY G4bBVcKTjjjnGBWnTAkZUqqrtzyAO9AFBZ2OrWqOYi72rsSpPUFc455HPpniqltqV1HocU7kTztK I3O3AQF8ZPPatlpIlnjjbHmODt47Drz+NOXYQwXaRkg49e9AGY19PutoJViXzjIGl6rheg9Mkds9 jS6LK48Pae8UZmzCgwrAdvc1pMEWP5goRRnnoKa0kULRxnCmQ7UAHU4J/oaAMrVZJX+xF4DAVu48 MxB65z0NJ/al3tify0EbyyW4baTucEhGHP3Tj/69bRAIwRkVEbdDOspLZUYC7vl+uPWgCIz3KHb9 kaTH8asoB+gJqvHfXEuoywYjhWJkBST7zhlySMe/H4GtKk2gsGwMjvQBkWmqXFy0A8tQ08UjlQOY CpAAb8/bkVFFrM72s8haAOlgl0BjoxDZB56ZUfnW4FAJIABPU+tJ5ac/IvPXigDCm1W5l03UfLkj WaGFJFZBnG5cnjP15q/cXJjCSR3as5GBFs3CT3AHI+vIq8RGisxCqMcnGOKFWMMdqqGwAcDnHagD ntalujFJOcxSmyfyrbf8yS5G1hjr2H/66ku2iOr20X9oJHd+akjqZAGVduPLVep3H+p9K17m5tYH UTuisAWGRnaOhPsOetJJc2cd0sbuglZggJH8WMgZ9cdqAMq3lW21B2trd7iW5WWQjcwZSrAYIY4A OfbpWhZztPIzy3IDqOYAu3Z9c8n68CpLa8s7i5nit3DSxnEuFIwRxycVLPDHOhjfgspXI+9g9cUA UJLmS00i41FIt8kh8wA9lJAGfYLgn8abeXDpDbtLJBJ/pkaAqSAQSMd+vPuK0opEdpI0H+rIU8cd M4/UUkrQwxAyAKgYAfLnBJwP1NAGfFdzpqGpq7eaIgDFCFwSNgP86iTVbr+zTdNHE25YiMH7pc4b IB6LnP51s/L5h6b8c+uKAqjICgZ68daAMvSXxJqmwrKy3WcIQMny0/Kl1SWaXSbxJLJ1UwScllOP lPYGr7SQQQvMSqxr95lHpx2qWgDD/tG7jtphEscv2eCKYuFJBBzuXr94AZH1FaEdzcNEsiwecsmW QoQuFPTOT1xU81ukqhSWUBt3yHbn2PqKlAwMCgDMur+5S4hgESW5kSRt8xyuVxheD3zn6A1HPqk0 c8yiNT5UkSCPHzSh8ZYewyf++TWsVDcMAfrQVBYMQMjoaAMhNUnGox20hiAa7eDGMEqI94PXr296 Sy1Waa9igkeFhJJOg2cEeW2AevcVrlELbioJ9cUCNAchFB+lAGRp91LJpCTXF+scys25iox948Ef h0GDWhYzzTxsZoDHg4VugceoB5H41MBExVgEJySDx170+gAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe/6+y/67/wDsj0UXv+vsv+u/ /sj0UAJB/wAha7/65Rfzerh6Hr+FU4P+Qtd/9cov5vVwnHJoAyYk1Dy7LcJt6lfNy4wRk5z+h9/a tamCWNlRhIpD8KQfvfT1p9ABRQSACScAdSahguorh2EJLqP4wPlP0Pf8KAIb6C5lZTFJmID54dxT f/wIcj6VXnhlaK0EFu0UCSnz4BhWI2kDoefmwevNW4rtTbtcSsqRbyEPqM4H5n+YpxvbYRLJ56bG zgg5zjr+Xf0oAq+TcJfaeVExiSN1kLSZ7DG7nk8Hmq8NrdW2nahFDA3mvJI0eJcbtzEjB7cEVove 2scscTzoHkAKDP3gTgEfiR+dPW5geUxLKpcZyM+nX8qAMiSzvbjR9StJEYmQkwZbGQQOOvHOetXJ knaXT2iikVUkPmAP0TawGeeedvrTotRSXUJIFKGJYRMJA3qSPy461JJqFrHZzXfmhooVLOV5wMZ/ lQBShgvxeRsxbIuJGkk3fK0R3bVA9eV/I/jHYwX0V/EzRzCIyz790gI2k5Tv/wDqrUa9tkhSV5VR XGV3cZHU/lRJdwxShJG2bvuuwwp/HpQA2SG6Z2KXYRT0XywcfrVVLa6/tKR52ldNyGJ0faoAXDAj 65Pvx6Vp0UAY1na6gHhWcsD5Ui3LFuJGJG0r6d/THSoYrbUBa3Ebxzlzp6Rg+Z1mAYHBzweRz3rf ooA5+Syvp9P1G2eOXEkMflh5By4X5uc8c1fniaXYI7RlmC8Sl9uwdgSOT9ORWjRQBg6ppt1PE6Av LczWj2zTgBV5PcdsZJyKluLZn1KCI6fK0MbpIZlKAO4GAzc7jj6dcelbNFAGQsOotdARN9mXZL5j Z3ruLAoVBPpnPTrU0C/ZDJJcwHzFQsbjdv3Ae55H06Vo0jKrKVYAg9QaAM6W3u/7ElS2bZeSKXz0 wx5Iz29KbcwTCwIto7gOZ43CmTlQGXd36YB4zzz61qUUAZ6Wzpr01z5RKSxIofdwCpbPH4iq+mRa il9vuI3WF42DAybgrbiR354PX/CtiigDCisru38Nz2kcMi3A3bNsnJO4kEHPHaptRg1CWW4MG7LQ qLYhsCJ8nJb/AMd9ehFa9FAGLqMF817PLbpMRsh2FZABuDktwT/dx9a1Jo53YGK4EQxyCgapqKAM u7trx54Q8kk0GyQP5R2MGONp69vm/Eio57fUDcSmMtuMkRhfd8qIMbwR3z831yK2KKAMVLe9j1ON tkrRfa3csJOBG0eBxnpu7dqSxt76K+iLxziIyT790gI2lsp39PyrbooAxbCza20pLSaxaV1dsDd3 yTndngYxz1rRsYbiFGFxN5mTlV67B6burfU1ZooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAqXv+vsv+u/8A7I9FF7/r7L/rv/7I9FAC Qf8AIWu/+uUX83q4elU4P+Qtd/8AXKL+b1cPT1oAzY9LZEsh9o/49Wz9zhuCPw6/pWlVOLUYpTb4 jcLOMhmwAvseev0q5QBFc28V1CYZl3IcHGcdOlV5I7uG3kRJTLkbYyVwyk8ZJHBA69O1WLq5jtIG mlzsX0BNZ2pXV2NNe5QeSA0ZQIwZmy4HPbBB96ALV1YJPawQoxj8h0kjPUZXpkdxTZbBnmiuElVJ o0dPufKQxBPGeuQKWHU4XD71dGSRoyApbke4FJNegy2flGQJJMYz8uM/IxwQwzjjtQAlrpgtZrQx y5jtrc24VlySPl5zn/ZHamQ6PDGJUJDI5kIOPnXzCSw3fiaWDVRLdi3aBkJmeENkHJUbs/QioItS NzqFlNEXW1limbk8MFK4OO3egCSLSpYmJF1j/RBaqRHyMZw3XGeemKSLRtkF7E1wSt1EI2wv3SF2 55NSW2qNd2xmt7SV8xCaMdN4PQZPAPt70+2vZb21FzaxKYyfl3tjeO/0OeOfSgCO80yS8gjikucB UdGAXhtwxnr2qUWcxgjt5Ln9yqBTsXDP9T2H0/Oq97qJfSL+a1dop7aNmOVDYYAnryD+FWZL7bMt tGhkuCobBO1ceuT1/DNAFmCGO3hSGJdsaDCj0FPqpctL5UMBYCaVgCU4wBy2PwGPxqpFqDQahdQz b3jN0I0bOduYg2MenX86ANaiq6X1u7qqmTLHAzEw/pVOHUnW1tnaN5WmuHg+YqCpBb04x8tAGpRW auqJcQ26xRv5lyjsq5xtC8E5+pFQWurGPT7FXSSe5ktBOwA5IAGenck9KANmiqMmosl+lp9mbdIA 0ZLABh/F+K8ce/1pZL1rWRVu0AV22o8Zzn0yvX8s0AXaKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigCpe/wCvsv8Arv8A+yPRRe/6+y/67/8Asj0UAJB/yFrv/rlF/N6uHkVTg/5C13/1 yi/m9XDwDzigCslhaosarEMR42jJOMHI/ImrNZFvqdzI1pui+WRVLMqnkliCAO2MZP1rXoAKqSab ZyI6NDhHILIrEKSDkHA75FTXTTpbs1tGskvZWbArMluporG5mheWa9RAfKdNu0Z6hO+OvfOOtAGn b20Nt5nkpt8xy7ck5Y9TzRNbxTvE8i7mibehyRg4xn8iaoSXVxG1uBPvgklYPOExsXbkD05PGapT 6tqCWcUnlFZvKaQqYzhsOAPzXnHbPWgDXTTbRJhMsWJBI0oO4/eIwT19KFsLSKZJ1iCNFu2ncQFD ctx05rP1LULq2mmMchEWyB48x56yEP8Apj6VPBJIutXyzSOYiiGNSvygYOTn60AWUs7RrUxRr+5d cAI5xt9Bg8D6Uf2fa/vAIyFkfe6hjhj7jNYel313BpiwwJ5zx6esscezHzjI2/oOOtWbrULuO2u3 hl3JEIjHMY+rMfmXHfAx+dAGvNawT2rWskYMDLtKDgEenFK9tBJCIZIw6L0Dc4/GmZuo4kCBLg45 dm2Z9OADVW8ub2OW2RkSCORmDyqd4XC5XqBjJ/l70AWo7bZcLJuJVI9iAkkjJyTk/QflTTp1o0xm MX7wyibO4/fAwD19OKz7m/vomlVV3OiRGFQmBOSfm+n9O9E99dQ6j5JkwhvERQU6xsmTz/vd/wAK ANqqo060EccYiO2OQyoN54Y5yevufzrOt9RuTqQheXcjXckONmMKE3Dn68Zp1lKRYyC6u51lW4kw 2MN99sAADnjHGDQBfTT7OKGONYgqRZ2fMcrnrznPNEdhaJDCkcYCQpsjwx4X0znpwKzL99QltYRI myEXUW9yMFo887l7c47/AFApbSe8+yKBB5FvvkzLEm5iN5wwXsCOc89elAGjPZWbMZ5k5VlfcXI2 lc4I546n86litYYpGkVMyN1djlj+J7e1VnMc0drbxSGWOQ72YncSq8nJ+uBTGuLltVlgLiGJPLMe U3eaDnd/h7dTQBpUVi2+oXrSReZG2W83zowmfKC5249c8fXPFRwajfTWV9jPnJbLNCwj5LFSSMdO o6c9aAN6m70EgTcN5GQuecVg3V5dT2eqLFMwMXlmMonIUhS2OOe9P1ado7u1nhch0tZ2DFMk4C4/ MigDdorEuNSvBG7xpgi3jkhQLnznOcr+HH55qzbz3EusXcRm/dQ7SsezrleefrQBpUVXWS8LDdbR AZ5ImJx/47WZHfagdNnucBrlUc/ZvL5Rg2Bz347d+1AG3RWNLe3gS5MLF4opYdkuwfOpI3j8B3Hr 7VH/AGjcm3VhNz/aBgJ8vrHuP9Mc0AbtFYQvLie306dpXUC5kSXYn3gA4XIx3wv51bkmmS4YWLvc Nu+eN/uKe/z9vpz9KANKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAqXv+vsv+u//sj0UXv+vsv+u/8A7I9FACQf8ha7/wCu UX83q5VOD/kLXf8A1yi/m9XD0PegAorLtrGXFibhSXhB3t5rHp0+v4+lalABTRIhkMYdS4GSueQK ZdQvPbtGkzwsf406iqElrcjT57WK2hV2Aw6sQH55z3zj3P1oA1Ka8iRlQ7Bdx2rnufSsdNOu/sjx uFJS8WeL5v4Q4bHoOMj0pq6ZcG3tw8EReC9kmClsja2/GP8Avoce1AGtHdJJdTWwDB4QpORwQ2cY /I1NWLd2F2+ozXEcSnc1uVbfg4RiW+nBx708WF4LwP5g4ujMZc8mPGPLx+npxnrQBr0Vm6VYNbWb oy+RMzsSyMGO3eSvUehxVuOBo2LPcyyLjlX24/QCgCeiuf8AD1tKYrG5QCKJIZEcZ5kJbjI9sH86 nt9LnTRrmCMLbXUu8Bw2eCzFefoce1AGtLKkMLzSHCIpZj6Adaihu1lWJvJmTzCQAydMDOTjoKoP YXD2upqI0VLmLZFBu4U7SCfQZyPyqVrSbzNLZIVUW5PmYb7oKEYHryR+VAFyC5SeSeNVYNA+xtw7 4B49sEVI8kabd7qu44GTjJ9Ky5rG7mh1aONhA9y4MThu2xRz6fdP51NHbNFbSItt5nmvkxyONq8A emAOOgBoA0KKq2NrJbK++YsGxiMfdT2Gef1/KrVADBEgmM2PnK7c+2c0+iigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKAKl7/r7L/rv/7I9FF7/r7L/rv/AOyPRQAkH/IWu/8ArlF/ N6uE4GTVOD/kLXf/AFyi/m9XD0oAhS7t3EZSVWEgyuO4qas6PSIVa1ZnZ3thhGIAI5z29eh9a0aA CiiigCKe5ht8eY+CeigZZvoByaie+jijiedJIvNfYilcknt0zjOKfcWkM7K7ArKowsiHDAfX09ul VL+0upY7NUk8xorhZGc4UhRnt0J5oAmfU7NII5jKSkjmNcISdwzkYAzng8e1Pe/tUlEbS4Y7c8Hj ccLn0yagGlRpHCqTODHObhmwCXc5zn/vo9KkOnQm+e7Xh5Au8EA529Dz060ARJqJ+03rTMkVtasI yWU5Jwpznp/FjH0qZ9StEi8xpCF8zyT8pJD/AN0j1/xqOXSopo7yOWR2S5kEhGANjDbjH/fI606b TxLDHH5pQpKs2VRRkg56YoAedQthPFCWfzJVDqPLboTjPTjkjr0pY7+1kmMKygtlh7Er97B9u9Kb TOoreeY2REY9mBjBOc+vaooNMggMirzG7O20qONxy3PXGSaAGQaj9o1QQRFWga385W2kE/Njg9xV 7zI/76/nVK00xbW4ilWd2WKD7OqMB90Hjn14qx9itCcm1hz1z5YoAVbuBgSHwAGPII6HB/Kg3UIA yx5fZjB+96VEbEFcec44cZGAfmOTSiyUHIkYfvBJgAYzjFPQ2tT7jxeW5Xd5gAxuyR2zj+dMe+iR juVxGODJtyFPoe4/Himf2dGUCNIzKFK9u7bs/mKke0Mhw07rF3SP5cn3I5oJkofZLCOrqGRgynoQ cg0tMhijgiWKFFSNeiqMAU+kZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVL3/ AF9j/wBd/wD2R6KL3/X2X/Xf/wBkeigBIP8AkLXf/XKL+b1cPTiqcH/IWu/+uUX83q51oAy01fct sxgIWfbyDnlmIwPpjJrUpiwxJt2RIu3hcKBj6U+gAooooAKKKKAM+S8lku2tlK2vOA8oyX/3R0/X 8KfJKV1m3hJyGgkb7xHIK9uh6/h+NW5I0lQpIiup6hhkVGv2d7ghfLaeJQD03KD0+mcUAZ9vqssl 8tu6RbWuZIAVPPyruB/pipoJ3N1qarjfEy7csSPuAjjt+FWxbW6uHEEYYEtkIM5Pf6022e2laWS3 2Ft5SQhcHcOxoAzGvZW8KC7ldXl8hXcqxTkgE8g5B5qbVtVOnvhVR9sfmsuecbgPw6nn26VoGCEx GIwoYz1TaMflSvBDJjfEjYGBlQePSgCjcsP7c04q33o5eh6jC0Wt/Jc3ktsyGLAfY2MhgGxkNyD7 g4INWpGtVuoI3CCdg3lZXnA64PapBDEN2IkG7O7C9aAKCag0UrRysk6ICWmi4CYH8XYfgfwqrok8 sWpXtncmQNLi7jEh5w3DAc9Aw/8AHq2DBCYfJMSGLGNm0bfypfIh80S+UnmKNobaMgemaAK13feV HG8KCVHz+9z+7T3JGT/ntTZZJV08kTrLLMdqMgwAW44+nX8KuoixqERQqjoAMAVD9liEsbqoQIxb aowCxGMn8M/nQBW1BhaQ2SIMJ58ceN5Xjp26/Q1Df6rLZ3k0eyJo4kifk4Y73Kkfpmrl3c2Uc0UF yVMjZeNShYnHUjjtTkSzvIxOqQzLIB8+0NuA96AInlI1uKHs1u7fePZl7dO/XrUelXM9wLsTSIWS eRFAGMKDgZq1O9tblZ5ginIjVyvIycAZ9zSyPbwSKr7Ua4baPl++2M4/IGgDOtdQZdH0+RQpkuCE AZ2c5wScE8np3P402e8W90WxvB8hkngbAboS65GfxNaoghEaxiGMIpyF2jA/CgwQmMRmGMoDkLtG AfXFAFKbUXi1RLUxfu2Kr5g+YZIPBwflPpkYPrSy3cttc+VkXW4/6uMYkQH9MfXH41d8qPzPM8td /wDexz+dRiS1t7hLZTHHLMGdUAwWxjJ/UfnQBPRRRQAUVE9zDH5xeQKsIzIzcBR161L1oAKKjmni gCGV9odwi57segqSgAooooAKKjt54rmFZoXDxtnBHscVJQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBUvf8AX2X/AF3/APZHoovf9fZf 9d//AGR6KAEg/wCQtd/9cov5vVmYsIXKlg204KjJ/AVWg/5C13/1yi/m9XKAMa2k1J2RisoRnBUS KAQu87g30XGDWzTQ6NjaynPTB606gAooooAKKKKAM24inNw7XSvcWxPypDxtH+0vVvzP0qvei826 sIBcDMCfZ9nHz4P3f/Ha1Z7mG3A81wpbovUt9AOTQbiBSQ0qKVBYgnGAOtAGUx1Ai5WITBBcREFv vGLC79p+u7+naooYr5I5BEkyIb9nk3A7miI4I5z1x74zWybu2CsxuItqAFjvGAD0J+tIb21GP9Ji 5BI+ccgHBP50AZV4l8kNv5b3croh87b8u9Ce3PD9x+NT7L59TYmSVIMxmHC5yuPmDc9fr7YrSM0S yCMyIHPRSeTTPtdtkj7RFlSQRvHBHUUAZEMd6dSsZLmOVpEkn8xhyig52Y9sY/rWqUvc8TwYz/zx P/xVSG4gXZmZBv8Au/MPm+lJDcwzMyI43r95Dww/A80AUgbpU4WZiVl6n/a+Xr7U7/SchSJcCccj +5j/ABqCXWzD9qeW1IitrhYGKvliW24IGOfvjj61qCaJpDGJFLjqoPNO5t7XyM4G+8oBRJvMZzu9 d389uaWaJzJ+6Sdrj+GQHYFX0JOcjrxg1YW/jfUvsi7WHlGTeHzjBwRikh1CKW6uYsoEhVG8wOCC Gz+XSi5MqnNpYo3MF62q6SzlmaNZRLNEmFBIAHXPpTL20ubG1W20tJgFilcMGzmQkHn3JJPPHXit k3EAiEpmQRngMWGKQXMDbcTRnd93DDmkZmPqK3s3nF4p2QyQPCiDooZS+R68H8MYpZo71r2Fpo5X KX25SnKLFtIB/Xnvn2rXa5hWcQbwZT/CvJH1x0/Gmi4BuZY+AkSgsxPc9vy/nQBjpNqMTTyTedDE YJTufDeW4Y7T6dPTimwveSQuqS3CXO9GKSoxCJtxyMgkFgeRyM+grbNzbEAGaMhsgAsOcDn8qZHP YxbBHLAnmgMuGA3g8Aj1oAfZ+b9jh85SsuwbgW3YP171jalHdS3MeowwSF7S4ULH5fzun3Xwc9CG J/4CK2o7m3lbbHPG554VgenB/Kj7Vb+U0vnx+Wv3m3DA+poAbI8riSOFTHJsDLI65XJzxjOeMfrV W1Uwyl7uOQzhSfOZtyY74xwv0wPxq4tzA7hFmjLEkABhnIpk1za+XIrurqOHA+bA6cgdqAKUyTnQ bqWISfaZkaRRH97cR8oH0GB+FQaib8XU0lst0V8mIoF+7v3/ADcf7vWtqN0kQPGyuh6FTkGnUAYd +l49wxeOZ1W7heIR/dEY25yPXO7P4VPbpffbZnuZJQolchUX5Wjx8vOeD+Gc5rVooAwI11QWd3HH 9oNx5WbZ5TxtJPB7bx0/L3qyUvF8kq8z25nzICCHVNnAHJJG7Ge/4VrUUAZejxXSaTFGB5Miu+RM hJxuJHQj1qeVboPDvk3jfz5SFeMHryfartFA07O5mK155cZKy7lC5z3+bn9Kev2jz+fO2GVs/wC7 t4/WtCinc19r5GaguXjBuN+3y0yNuc/3gR7/AP6qdZxXKzq0QeG07xzHcx9Mf3fxJ+grQooInLmC iiikQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVL3/X2X /Xf/ANkeii9/19l/13/9keigBIP+Qtd/9cov5vVmZPMhdMKdykYbp+NVoP8AkLXf/XKL+b1bdgiM 5BIUZ4GT+VAGba6dLFJbyO0RdHkeTapG4t6c8Vp1TXUoGKjEgzJ5RyvRs4x+narlABRRRQAUUUUA UjZNDcSXNq4Ekhy6yDcD9D1H8vaoV0theTTmXYJd+5FJ2tkAZweAR6jGasG98yV4bSPzpIztck7V Q+5/wBpkmpxx3otBG7y71Q4xjJUt37YB5/CgCj/Ytx9kubfzocS2sduDtPGzIyee4NWNR0yW7bKN FH/o0sHKk4L45/T9acNSEUNxLKJHWO58k4UDYCQAevI5HPX2qSbVIofLV43Dys4jXj5gvU9en+Io Aqz6TcSzpL9ojBQxMPk6FM5HXnOT16U4aXOt554khI+1tcY2nPMezH175qSbWYITlopdvkC43Yxh ScdOufarc15bQPslmVGxnBoAzINCMccCyyJLttlt3UghSFOQQM+/T6Vdeye5mSW7cfu23IkXGPq3 U/oKf9vhJO3LIAp3jpycfzpxvEDum1tyqzY9cdaZfJLsV7LTjBe3txL5TmeYSqQvKfKFxk/7v61C NJm/tAXJuFwJJDgLg7XAGOOMjA571cW9RiPkcZ2df9rpSfbTKAbaLzep5OMgHBwfX60rA4SWtjPG hymIW7XCiIWRs9yqQ+OMN+nSpJNLuZHuWM0K+ckS4VOmwknr6g/hVv8AtGAwzvkq8A+eNhgqewP1 qhp2rsuiST3hM81rKYZjEANxDYDAe4Kn8aCCO40u4jhSJSrgzyy79rHYHDZBwcnO4jNTw6bJMbed l+ysiIhRHb7qk8HnBBHTPIqydVj3qghkLtObfAxw4Xd69MDrUY120ZUZRIQY0lbjlVYkDI/A9Owo AmtrR7HCQOrW/Uq4+YfRh1/Hn3pq2r3GmTI6qJLnLMHBIGegP0GBUsF410Ve3i3QH/lqxwCP9kdT +lJ9oxNdTMzeRAuCBzkgbmP5YH50AVk0uSNbcicu0MzSL5hLcMpXG48nGeppLHS5bdrAyPE4tbYw HCnk5Xken3RRLqwk0+7niSSMQKCX2q3UA8DPPBFWZdQWK7e28mRpAiuuMfOC23jnsetAFOLSbiO4 WTzohh534Qn/AFhyO/b9ajGhzizu4PPjJuIEiOVOAVGM9emO1Xo9UglvGt4w7FZDEWA4DAZI+nv6 0llqsV4yKI5Iy6M4346K209D60AQf2ZP9s8/zIQDdC4ICnOBHsx/WnWWlyWESrC0bvGpRJJNxO0t k55//X7VaGoWbEKtwhY8AZ60JfRum7Y4ygcA+hOKClFvYLSyS2kkmLl5ZPvnoPwUcf196tVWF4hE e1GO8so6cFc5/lSfb4tgYhhuCFc993T+VOw/Zy7FqiqbXrRgyvA32cZy6nJXHXI9PcZq1FIk0SSx sGRwGUjuDSJatoOooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFAFS9/wBfZf8AXf8A9keii9/19l/13/8AZHooASD/AJC13/1y i/m9W3XejKSRkYyDg1Ug/wCQtd/9cov5vVmVikLuCoKqTljgfifSgCtHptvEYSrTfuclcysevrzz VysiLVnk8gqYXSSXZlDnKkkBvbp0598Vr0AFFFFABQSAMngVTvri4hZRHHiMj5ptpfZ/wEcn61HK wksUhjuDObhtnmZB4PLdPYGgCzNawXBEhGJMfLIhw2PqKqSadK181ylwysWUghiMKMZUr0Oeeff2 o1C6ktr21gSaKGKSOQkuucFQMd/eoY9Qu55NMX93bvdQGSSN1yQRtOByPU0AXxYW3k3MJQtHcljK GYnORg/Tile0t5PKGMNBwhVsMnGOv0qpbX11NqMkTIiRxzNGVY/MVC5DD6n8MVRs7h7awSaLZJJP ePFLMAPlXe+Cf5DP94UAalzpdrdMzSiQ7o/KOJGHy5zjr696ugYAFZD3t552nw+bbxyXAcPxuHy9 COR/k1LDdXEmrXkAkjaK3CkIF+Y5U8Zz6j070AXJbWKV2Z92WABwxHQ5H600WkBJwDxuHDHjdyaz IdVvjpUt4YI3YQCQRKfmV+6keg/Pg1Jpbg6rqm2RJW/dH5cDPyUyueXcv/YoR/f/AIf4j/D0oa0i ZNgLomc7UcgfT6Uxri6CktabBj7xkBx71Cl85QbmTcyRtwO7ZyP0o3LSnNbllrOAxJEqmNEYOBGd vI55x1qGXSbSVrlmEmbkqZcSMASuMd+Og6VGb+Uxo25FOyQsCO6nilF9KW2jYcsmWH8IYE/zGPxo sP2MiQaXbCTzB5m7zTPnzD98jbn8qW30y1tgghDrsQJ985KgkgH1xk/nVd7qeJv3UouJzy1sBkD6 MPu/jxWmpJUFl2kjkZzikZNWdiH7JEs/nRgxvnLbDgP9R0NMS1ddPaDzAJXVtzgZ+Zup/M1aooEZ kOkgW81tNJI1tIgXyvMY49SGPIz6Vde1hknhndN0sIIRieRnr/KpqKAIEtIY5nlQFS7bmAYgFsYz j1qK20y2tZI5IhIGjVkXLk8Mdx6+9XKKAA8iqwsYAAAGwoCj5jxg5H61ZooKUmtmQfZIQQQGBDFv vHqetItlAoAAbhVUZY8Ben5VYoouHPLuV2s4XlEkgaUj7oc5VfoOmasUUUEhRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVL 3/X2X/Xf/wBkeii9/wBfZf8AXf8A9keigCMTwQarc+dPHHuijwGYDu1T/brP/n6g/wC/gqcorclQ fqKTy0/uL+VAEP2yy4/0mDj/AGxS/brP/n7g/wC/gqXy0/uL+VHlp/cX8qAIvt1n/wA/cH/fwUfb rP8A5+4P+/gqXy0/uL+VHlp/cX8qAIvt1n/z9wf9/BUXn2HnLL9pg3KCB+8XHOMn68Va8tP7i/lR 5af3F/KgCnK+nS3UNy91EZIgwX96Mc9eM89BU322z6/aoP8Av4Km8tP7i/lR5af3F/KgCH7bZ5z9 qgz/ANdBR9tssY+1QY/66CpvLT+4v5UeWn9xfyoAh+22X/P1B/38FH22z6/aoP8Av4Km8tP7i/lR 5af3F/KgCEXtmOl1B/38FAvLIdLmAf8AAxU3lp/cX8qPLT+4v5UAQ/brP/n6g/7+Cj7bZf8AP1B/ 38FTeWn9xfyo8tP7i/lQBD9ts/8An6g/7+Cj7bZ/8/UH/fwVN5af3F/Kjy0/uL+VAEIvLIZxcwDP Jw4pft1n/wA/cH/fwVL5af3F/Kjy0/uL+VAEX26z/wCfuD/v4KPt1n/z9wf9/BUvlp/cX8qPLT+4 v5UARfbrP/n7g/7+Cj7dZ/8AP3B/38FS+Wn9xfyo8tP7i/lQBF9us/8An7g/7+Cj7dZ/8/cH/fwV L5af3F/Kjy0/uL+VAEX26z/5+4P+/go+3Wf/AD9wf9/BUvlp/cX8qPLT+4v5UARfbrP/AJ+4P+/g o+3Wf/P3B/38FS+Wn9xfyo8tP7i/lQBF9us/+fuD/v4KPt1n/wA/cH/fwVL5af3F/Kjy0/uL+VAE X26z/wCfuD/v4KPt1n/z9wf9/BUvlp/cX8qPLT+4v5UARfbrP/n7g/7+Cj7dZ/8AP3B/38FS+Wn9 xfyo8tP7i/lQBF9us/8An7g/7+Cj7dZ/8/cH/fwVL5af3F/Kjy0/uL+VAEX26z/5+4P+/go+3Wf/ AD9wf9/BUvlp/cX8qPLT+4v5UARfbrP/AJ+4P+/go+3Wf/P3B/38FS+Wn9xfyo8tP7i/lQBF9us/ +fuD/v4KPt1n/wA/cH/fwVL5af3F/Kjy0/uL+VAEX26z/wCfuD/v4KPt1n/z9wf9/BUvlp/cX8qP LT+4v5UARfbrP/n7g/7+Cj7dZ/8AP3B/38FS+Wn9xfyo8tP7i/lQBF9us/8An7g/7+Cj7dZ/8/cH /fwVL5af3F/Kjy0/uL+VAEX26z/5+4P+/go+3Wf/AD9wf9/BUvlp/cX8qPLT+4v5UARfbrP/AJ+4 P+/go+3Wf/P3B/38FS+Wn9xfyo8tP7i/lQBF9us/+fuD/v4KPt1n/wA/cH/fwVL5af3F/Kjy0/uL +VAEX26z/wCfuD/v4KPt1n/z9wf9/BUvlp/cX8qPLT+4v5UARfbrP/n7g/7+Cj7dZ/8AP3B/38FS +Wn9xfyo8tP7i/lQBF9us/8An7g/7+Cj7dZ/8/cH/fwVL5af3F/Kjy0/uL+VAEX26z/5+4P+/go+ 3Wf/AD9wf9/BUvlp/cX8qPLT+4v5UARfbrP/AJ+4P+/go+3Wf/P3B/38FS+Wn9xfyo8tP7i/lQBS uLm3mubJYriJ2E2cK4J+41FXQiA5CgH6UUAf/9k= ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image003.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAErAisDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD06iii gDOuLbVnndoNSgiiJ+VGtdxH47xmo/smuf8AQWtv/AM//F1q0UAZX2TXP+gtbf8AgGf/AIumpb61 IgdNZtGU8gizyD/4/U2u3Qt9P8veyPcMIVZQSVz1Ix6Lk/hWL4EuRFBe6Gzsx0+YiIsCC0LHKHn8 aANOKLV5l3Ra3ZyLnGVtMjP/AH3T/smuf9Ba2/8AAM//ABdYOm376Tp2ry28CtnWni9FjDMoLHHY VZm8S31tbX11JbwSwQTC2hZNyiZ2KgMCc/KNxB69OKANX7Jrn/QWtv8AwDP/AMXSNba2qlm1i1AH Umz/APs6qXutXthfS2EqwPMbN7qGRVYLlOqsM5+hzVDUNRv77wXc397Y2b2ktmk4jLP8xPJU4IPo QQaANv7Jrn/QWtv/AADP/wAXR9k1z/oLW3/gGf8A4usye7vf+Eq0u2ilhitvsTzbWU4H3Qc8+nT0 qS51zUY9Q1u2jittunwLcI7BvmBUnaRn26/pQBf+ya5/0Frb/wAAz/8AF0fZNc/6C1t/4Bn/AOLq jb+Irh7jRzPBGsGp27zAKSWi2oG5PfIPoKjj8S3P9j2OsywRCzu51j8oZ8xFZiqtnoT0yMfjQBpf ZNc/6C9t/wCAZ/8Ai6Psmuf9Be1/8Az/APF1NrFml5bR+bdNbwwyrNJjG2RV6q2f4TWJokV9bDWb ixiVY5mEljYzNt2jBBYj+EMQSB7dqANN7fWo1LvrNoqjqWtMD/0Omxx6tKSItcsnI67bXP8A7PVu /DyaFcfaEUSG3beo5AO3ke/Nc7ZJvt/C8Xli0OyN1nXBMm2LJj46Ajnn09aANv7Jrn/QWtv/AADP /wAXTEg1iTPl61aPtO07bTOD6ffpJ9aaO0v75Y1NtZSmN1P3m243EemM8Dviqsd3Jpo168SOMwwX JldejMBGhbHvj86ALptdbBAOr2oJ6f6H1/8AH6X7Jrn/AEFrb/wDP/xdVby6ina/v1t0kGmDhmJD EhQ7bf7vBA9+/FO8S3bNoEUkDskVzNCkjjgrG7qGPtwcfjQA9F1SRmVNdsWK8EC1zjt/fqQ2uuAZ Or2oH/Xn/wDZ1Yu9Os5LaCMxpEkEkbx7RjaVYEAfXpVSHWmks7O+Ma/ZbuYQov8AEoYlVJ+pxkds +1ADo4NZlQPHrNo6noy2mQf/AB+nfZNc/wCgtbf+AZ/+LrP0m++y29pYxIA8810+dpIRVlOeB7sK ngvtQn1u0SVUt42tZHeJ1OciRVznPccjjvQBZ+ya5/0Frb/wDP8A8XR9k1z/AKC1t/4Bn/4uo31t ksp9Q8tfssNwYGXneQH2Fvz7egqXTL2+vLicSRwLFBPJCxUnccYwQPx5+lADJINZiQvJrNoiDqzW mAP/AB+lFrrhGRq9r/4B/wD2dVdavHvNM123ijj8q1geNzJyWYx7jj0wCPxqQatMpmtrWDzHtLeN 2XaSZGYEhRjpwOp7mgCSSDWIl3Sa1aIvTLWmB/6HSRxavLnytbs3x122mcf+P03xdiXwhqJZOtuT tYdKZ4hVbS0s721jVLpLmFE2DBcM4VlPqCCePbPagCz9k1z/AKC1t/4Bn/4umPBrMZUPrVopY4UG 0xk+g+elj1hm1KC3KIUmmkhypztKgkHPQ5APHUVRvLx9Ss9PvBHGIG1CMRg/eADkZ/HHT0NAGh9k 1z/oLW3/AIBn/wCLo+ya5/0Frb/wDP8A8XUa60xsk1DYv2R7nyAOd4Bfyw3/AH129KfYau11fi1k UQygOWhkRlYAHAKk8OPceooASSDWYkLyazaIg6s1pgD/AMfpRa64Rkavakf9ef8A9nVXWryS803X beKOPyrWB0cyclmMe7j0wCPxp66tMvm21pB5r2ltG7KVJMjMCQox04HU9yKALH2TXP8AoLW3/gGf /i6atvrTFgusWhKnBxZ9D6ffrTaZUtjO4KqqbyD1HGa57RpDaeI54HEirqMIuh5ilcTLw4GfYp+V AGh9k1z/AKC1t/4Bn/4uj7Jrn/QWtv8AwDP/AMXVdNYu/KiZ4ocnUDZvjPTcQGHvxUdvqtzaWWqX d20cwhunijRQVJOVVRyTxyKALn2TXP8AoLW3/gGf/i6Psmuf9Ba2/wDAM/8AxdRahq1zY/aYSkTz x2b3cZwQrBPvKe/cYPvS/wBq3Sz2lvLFEsl0rSoVDMERVUnI9ctj9fagCT7Jrn/QWtv/AADP/wAX SG11sAk6vagDqTZ//Z1XfXZ4ti3Nv9kZgoUyo2xm3EEbhwvYjd1yKu62x+zwQfw3FxHE/wDuk5I/ EDH40AVD/aYAJ16xG4ZGbXGR6/fqYWutsARq9qQeQRZ//Z1W1RB/wlellbdZW+z3AwcD+561lO7p osoSVo4rvVVhniU4FshcK6A+5HJHHzcUAbSLqkhIj12xcjghbXOP/H6Qf2mzBV16xLE4wLbn/wBG Vdu9Ps5I7ZWRYhbyo8W0YwQeB9D0rO0O0tppNbjlt43Rr9wQVHPyJQBa+ya5/wBBa2/8Az/8XTPJ 1gxeaNZtDHjduFnkY9fv1V0e8mbwyBI8kjefJbRSYLMyCQqG9T8o6+1S+FHWG2utKww+wTFIw4IP lN8ydfY4/wCA0ATrba2yhl1i1IIyCLPr/wCP0v2TXP8AoLW3/gGf/i6k0ZiI7qD+GC5eNPZeGA/D dj8KsWmoWt47pbyFmT72UZcfmKAM1hqiuUbXrEMOCDa8/wDodTfZNc/6C1t/4Bn/AOLrPddvivVW SxS5P2KElDtG75pPWjR74Wek6PaQzm5a8V3WVlYhEHzYx14yFAoA0Psmuf8AQWtv/AM//F0zyNY8 3yv7as/Mxu2/ZOceuN9JLq9zHbqWt1im8uV9j5JYocDA64PXPao1mF3rWm3caBGn0+VxuGcZMZAP 50AWPsmuf9Ba2/8AAM//ABdH2TXP+gtbf+AZ/wDi6oWupz2ugWU1vawoskQWKBSSXlJ4RcnpwSSe g+lWb3WprJWMkcTNCsRkWNi27ccHH93HbPWgCb7Jrn/QWtv/AADP/wAXR9k1z/oLW3/gGf8A4urm oXRs7QzAKfmVfmbAGSBn369O/SotLvmvVuQ6BXt5zCSARuwAQcHkcMKAIPsmuf8AQWtv/AM//F0f ZNc/6C1t/wCAZ/8Ai6ZBq9xdHzLe3LRG5a3xtbIAJUuT0xuHT0ostRv7m7ezdLaO4tyftAyxG0/c KeuR19OlAD/smuf9Ba2/8Az/APF0fZNc/wCgtbf+AZ/+LqhbarfweFV1CQwzzB+VwRkGQqe/vxWj c313beXFItv50gkK7SWBC/dG3ryOp6CgBv2TXP8AoLW3/gGf/i6Psmuf9Ba2/wDAM/8AxdR2+sy3 zwR2kCh5LNbtg5zgNwqjpzkHn2qtfXcYvEluLOMyxyQxsA5ZhvIHUcDBPQ9cZoAu/ZNc/wCgtbf+ AZ/+Lo+ya3/0Frb/AMAz/wDF0yfWXS21K7jjUwaexVwc7n2qGbHpwePXFa6MHRXXowyKAFooooAK KKKAKkthFLqEN60k3mRAhVDkLz14qD+xbQaydWDTC7ZQhIkOCvXaR0xU17eRIJbcSOJ/KL/u1yUH OG9uR+lVdM1VTo+nvcyNJcy2qzOEXJI2jLYHbJoAqX/hzbYvBp8ko866FzPmYh2PUlG/hYnH5Ypt loMzSXVveyTzaXNEF+z3U5mbeDncG/hH49eeK23vbaOzW7Mq+Q4Uqw53bumPXORWfb6j5ep6obid ltoEicCRceXu3Z7ewoAmOh2btM8hmkmlh8gyvIS4j7qD2obQ7NtD/sdjMbPYI9vmHO0fw564qf8A tO0WOZ3k2eSwSRWBDKTjAx3zkYx1zVK31HZqup/aJ3S2hiik2yLjyyd2e3fA9aAJ59Esrh7d5FkL wRmENvOWQ4yreoOKZJoNlJcX07NPvvoxHPiUgMo4A9uCfzqwdStlYo5ZJflxGy4Y7jgYHuamiuY5 InkyUWMkNvG3GOvWgChH4fsYpLCRTPnT0KW+ZSQqkYI9+MDnsKWPw/p0Xkosb+RDJ50UBcmNHznI X6kkDoKifUTNrWmi3lk+z3EcpKlcK4ABDDIz3q9b6la3MkaRuT5qloiRgSAdSp79RQA3VtLttXsj aXZk8ksGIjkKZx6kVTtfDGmWtld2kazNFdgLLvmZmIHoScjqavTajawzNE8mCrKrnGQhb7oPpmo5 9Ys7dbwyGQCz2+d+7J2g8g+4oAneziew+xZdYfL8vhjnbjHX6VW/sa0+y2duDIBZMGgbf8yYG0c9 +DjmnLqQbW5NO8mT5Ilk37Dg7iR1/wCA09NTtZNhVmKyEiNtvEhGchT36H64oAa2k2j71Kt5cjB5 I93yuwxyR36DPrjmlk0q0l88MrFLhw8ybjtkOAOR9AKjg1uxngE0bybGA2kxsNxLFQBxycgjFSrq ds7GNC7Sru3RBfmXbjOR+I/MUAE+mWs7TF1YLOAJkVsLJgY5H04+lWJ7eG4t3t5oleF12shHBHpU NzqFvbacb+UsLdUEhYKSQvXOOtMOq2a+dvl2eSiyNvBHytkA/QkGgB8NikWwGaaVU+4sj7sf1P45 piaVaIU2q2yNzJHHn5UY55A/E/TNT291FctKsZIeJtsiMMFTjPP4EGsy21LyLzVUu5naGCdcMV4j Uop5IHTJNAFmHR7WCONUMu6J2kRy+WUsctz6HPSpX022eaKUht8ald245YEgkH15ANEmpWsc/lNJ yHWMkDIVm+6Ce2cj8xTlv4GkCgsQXZN+35dy5yM+2D+VAEbaXaszZQ7HkEzRZ+RnznJH1AP1p9lY xWRmMTSHzpDI+9s/MepHpRbajbXMiJGxzInmR7lIEi8cj1HI/MVR1/UhBpWofZpnW4t4ixaNc7Gx kA8Y/wDrUAWrrSrW6FyHDqLpNkwRiu8Yxz744zSrpkCsrK0qv5YiZg/LqOgb16nnrzSyanawsySO cx7RIwHyoW6ZPbOf1qa4uordo1kY75TtRFGWY4ycD6UAR6hYQahYPZT7xBINrBG2kj0zTV06ATxz SNJM8XMfmvkIcYyB0zjvVLStR/0e4NzM0hF5JBFuGGODwuOOeD+VXhqdo0MUiyFvNcoigHcWGcjH qMHPpigCFdEskEKqrhYZGkjXecIWzux7HJ/Oll0a0lRY8yxoswnVUcgK+c5H45OOnNVtL1HEF0bm Z323rwRbl+Y+i4A+v5VeGpWzMI1LNLuKmMD5gQATkfQj8xQA0aXahgdrbBL5wjz8gfOc4+vP15p1 vp0FuYiu9vJBEYds7M9cU9r23SyF48myEqG3MCDz046556VnQ6js1rUBPO6WsNtFLtlXHlklwe3o ooAuXWlWt0LkOHUXSbJgjFd4xjn3xxmhdMt0ZWVpQ4jETMH5dR0DeuMnnrzU0N5DNMYRuSUKH2OM Hae9YV7q4jvryzub9tPuydtn5i4icFRg5IwTuzkZoA3Luzju7b7O7yImQf3bbTx2zUd3p0F3c21x I0oktmLRlHxgkYOfXjikOpW0TmKST54yqSMB8qM2MAn1OR+Yp39o22/bvO3zPK34+XfnG3Prnj68 UAQzaLaSkHMqAT/aQEcgCT1qQ6TZN9oDRbkuCTIhPGTjJHpnApkWs2UqhgzqvnGAs8ZUCTONpz78 UravZpHK7GQCKcW7/uz8rnGPw+Yc9OaACXSbaaOdZTI7TReS7l/m2f3Qe1SNp8DJbgl99vxHJu+Z eMHn6U5L2GSVUTcdzsgYKdpZc5GfwP5VPLIIonkYMQoJIUZP5UAVG0u2YybvMKygCRS5IfHrT9Rt murXbGQJY3WWMnpuU5H59PxpkWq2kzWyxs7faYTPF8hwyjGfx5HHvVJdaFzoP28NJaAuFDvCX2/P jp+ntmgC61hFcX1vqEnmpPEhVV38KGxkY6HoPypq6NZKLpDGWiunZ5YmOVLNjJx74FULvUJrW71g PeNFFDHC6MYvMERbcCcDBI4FaM+qWsEmyQyA+asIIQkF26AevWgCSGyWIpummlCfdEjZx/j+OarR aNbxeeEmuQLiQySgSkbmIAP04A6VOmo2r3CwLJlnZkU44Zl+8AfUYP5Go49YspGIDuMT/ZyWQgCT sp+uR+dAEg0+BZLYx74kthiOONtqAYxyO/FN/s+GLUpdTTzTcPGEYB+GAzgY6dz+dU9X1ICGM2kz hku4oWZVypy4VlJx6E/jV6TUbWNnDOdsbhHfHyoxxgE/iPzoAXTrZra3bzMebK7SyY6bmOcfhwPw q1UNxcxW5jVyS8h2ogGSxxngfSiG5inhaSIlgpKsMcgjqCPWgCGPToI9Sl1BWkM0qBHy+VKjOBj2 yfzqG30SytYYYoRIqwEmH5+Ys5yB7cnrRY6lE9jas9ybiW4DFCkRQvg8nb2xUOj6lnTY2uZnmlkn ljj+X53CuwHA9AOaALT6VayTecwfzDGYmbcfnQnJB/Gmw6PawSQPE8ymCIwp+8PCnGf5D8hSjWLN pYokaR3mRnQKh+bacMPqD1FRprUM1/aW8CSSx3ELTLKqHGAVH9efSgAi0O0hW2Ebzr9mRo4j5hO0 N169/ehtBsGili2ybJggkG8/MVACsfcYH5VV1HVZYIb7yZ2Z0uYoAogOYdxUH/e4OQfcCrFrqEEQ vTNdSFIHVSssZVkyBgf7WSePrigC5cWEFzbxwyBsROsiEHlWU5BzSWunwWk000QbfM25yWzk4AJ/ HA/Km/2lbE7Nzebv8vysfPu27sY/3eaUalaNBBMku9ZziIKCWY9xj2wc+mKABdPgR5GjLoJHMjKr YXcf4sevf61HHpNvHLbTK83m24YK5kJLBjkhv73PrVXStS/dXIuJnkb7ZJDCCvzkDnGAO3P5Vbk1 ezjWIs7fvJfIACEkSf3T6GgCN9Dsns3tMSLCzZwrkY+bdgH0zzU8unwS3EdwxfzUjMW8NgshwSD+ QpJ9StrfT1vpfMWBtvPlnIycDI6jrVaLU47SO/N5cPJJa/vZtsRAjQjI28cgAHn60ARXOkm0tIhp MZW5hTy42L4Gzj5GPXbx25HarDaLaPHIrK6iV1ldUc48xcYYe/yj8qkbU7d0mWORhIkPnD92Sdpz hgO44qOLVrVLSFpbnzW+zrPJIqFQEI++R/CDzx9fSgCSTSbOQSqUYRzY82MN8smAByPoAD645q9V STUrWIybpDtiwJHA+VM8jJ7cEfnVugAooooAKKKKAM2SwmTUbu6t2Q/aoVjdXJG1l3YI9vm6e1Ub HQ7i2FlLJ5Mk0NmtpIm9gpCnIYHH1yMd/atm4uRFNDCq7pZicD0A6k/T+ZFT0AZ15pnn2FtBEY43 tpI5Ywq4TKHpjsO1VZ9N1KW51GWOWGH7VHEqFWJK7Ccg8dwSMjp6Vt1C11ELv7IDmcxmXbj+EHHX 6mgDFfQZ2uLiVZIow80NxGuS2HjxwSeoOOvv7U+70e7vbi/aV4Y47mOEJtJJR42LDPHIJNaem3g1 Cwiu1jaNZMkKxBOMkdvXGatUAYd9o81/efarhLdh5YhMDEspTduY5x1yBj0xVmHScaNc6dJK/lTh 0Uby5jVhjAJ5OPetOigDFbTL2WfTjKYDHbRPFJtYguGULkccdOn61LpWlmxhtYXSFvsqeWkvJZhj A4/hOOtaCTb7iWHy5B5YU7yuFbOeh74xzVN9VCS3imBglmyeY+RjaRkkfQYJoAqalpF5eSXR86Nh I8bw7yQIwhUlcD1IPPv7U3UdHvLiLU1ilh330KJufICMoIPQcg1vA5GRyKKAM02NwdVa83Rqs0CR SKCcrtZiccc53EdqrQ6NPHaadZs8Zh09w6MCQ0m0EIDxx1569K26KAMGHRJzolnaTNF59pOJkKkl GIJODxkcMR+tPu9FF06mS1ttnzNhWZHVzgBhIOeg5/D0rbooAzNQsLm58OS6csyyXEkHlGWXIBOM Fjiq13pmoz3lxPFLDCZbaOEEMSQVcs3bgEEjPUda3KKAMzTdPms9Qu5yYxFcFWCKSSpChcZPXpnP vUNzpVxKmqwpJGE1Hgsc5jBQIeO5wD6Vs0UAYFzol1J5irLG4WaKSAuzfKibTsx7lT83vThoJkne WXZHJLvE8kDMvnKwIwU6Z5Bz7Vu0UAZmmac1nHbpIkJa3i8oSrkswwB3+7nAyOarXuj3L2er21q8 W3UMuGkJ+RioU9Oo4FblFAGMmkOtxdO8cEi3bLI6uSQjBQp4/iHygjOKt3tk8uoWd9Ey+Zbb12Mc BlYDPPY8Cr1FAGFFpWoIrK0sOxr17h0RmHmIwOFJxkYOPriktNEubWa3n8yJmt5pnRBkBlkJJHsR x+XvxvUUAYMOjXaymd3h82O+e6jCk4YMpUqeODg9eaJtCNzdTXFzHDMJ5PMZNzKYyFVV2uOQcA5P fPtW9RQBl3Glyz6NBaPcl54GjkWV+dzIwYZ9QcYqte6Ndahc3zTPFFFc28ca7SSyOjFgTxgjJ9ul btFAGfFZTPqyahcFFaOAwqkZJHJBYkkD+6MD61De2V7dWd7ZTLbzQ3JZULk/u1IxyMc469v61rUU AZdjp0+ny3CQukkM7rJukJ3KwVVP1ztB7dagGiyixGneYv2UXPn78nft8zzNuPXPGc9K26KAOYsr V9W0+9tFkjFu2oyO7gndtEm7AHvgc+lW73SLySO9S3eEi5uY7gGQkY27MrwO+zr71uUUAY9tpDxa kL3EcMpd2laF2AlU5wGXpkcc9ePer9m089iPtXliVtwYxg7TyQCM89Ks0UAYdlpV7bT6TuaBorGB 4GwTlshQGHH+z09+tRvo16NAk0yOWE84QsSAR5m/J464wMV0FFAGBqOkX922q7DbqL2GOJNzt8pX OSeP9r9KnmsL+XUzeE252ALAu44izje2Mcseg9vqa2KKAMIaRffabadp4mmhuJJDIxPzqwYAAdBg MOO+KadJv/KlUfZsvqC3g+dvugg4+71+Wt+igDBl0e8TTvsVs0LIt2LlGkYg48zzCpwOucjNOn0S aSyv7BZEFvezNIzkncgYgsAMc98H39q3KKAKN9ZPNe2d7Cw8y1LjYxwGVhg89jwKNOsns0unZlaa 5madgD8oJAAA/ADmr1FAGFpmj3Vj9imZomngikhdQx2srMGyDjgggdqZb6HcoLWWYwvNbTzuFVmC ukhJPbII49envXQUUAZI064j1K0uIo7ZYoY5VZASMs5B9P8AZ5PfNV9O0a9tEsSZYRJbwSQMVJIw zK24ZH+z0963qKAMG70m/mkv2Q2+Li5hmTLtwI9uQeOp2/rS3GjXVxcX0rPChknhuIMEnDR4wGGB wcdvWt2igDNurW9uZreQtGsaOWkgDEb/AJcD5sZ4PbFU7LRLm0WxfzYnks3l2qMhWRySfoenr096 3qKAMG30a7ivBdu8JljupZ0VWOGWQYIPHBHHPNLJo91vSZGhaRr8XkoZiAAF2hV49AOa3aKAKWsW Tajpc1ojhGcDDEcZBB/pWdd6Vf3DawQbcC/tlhQFm+QgMDnjkfNmt6igDG/s69+3vcYt8NYi2A3t 97JOenTmmaZpN3pxDq0LtJaxQSqScBowQGHHIIPIrcooAxJ9Gna11KzjlTydQYs7tndHuUK2B34H HpmtpFCIqDoowKWigAooooAKKzrjW7O2neGRbkuhwdltIw/MLg1H/wAJDYf3Lz/wDl/+JoAc4YeK Ii33TZuE+u9c/wBKy9VluHuLsSNMh+0QxQ+XkbI/lZ349fmGfYCrk+s6bM8TlbxXibcrCzlyOxH3 ehFTf8JDYf3Lz/wDl/8AiaAMzUJZ0ur5Q9wnmyQRLjOQpO5246cHb+FLdExXes3scEn2oxrDBwcj 5ev4s+P+A1pf8JDYf3Lz/wAA5f8A4mj/AISGw/uXn/gHL/8AE0AZqpc6Wt/Bp6ys1rZJFCrZYM4U nf79VHvg06QSw/a5YHmltILLDtkkzzZzx+Awcf3sdq0P+EhsP7l5/wCAcv8A8TR/wkNh/cvP/AOX /wCJoAm0qwNnawmWSSS48lElZ3J3EdTj1zV88ggHHvWHLq+lyvvZb/P+zbzqPyAoj1bS43DquoZH rBOR+RFAFSGS5a1Qb5khnviJWfOUiAPGexbYM/79T6Z5Y0PU5XjdFleaRhICMLyAOfRQKt/8JDYf 3Lz/AMA5f/iahudZ025i8qRbzyyQWX7HL8w9D8vSgC3pc3l2djaTb/tH2VXOVOOAAeemcnpWhWV/ wkNh/cvP/AOX/wCJo/4SGw/uXn/gHL/8TQBq0Vlf8JDYf3Lz/wAA5f8A4mj/AISGw/uXn/gHL/8A E0AatFZX/CQ2H9y8/wDAOX/4mj/hIbD+5ef+Acv/AMTQBq0Vlf8ACQ2H9y8/8A5f/iaP+EhsP7l5 /wCAcv8A8TQBq0Vlf8JDYf3Lz/wDl/8AiaP+EhsP7l5/4By//E0AatFZX/CQ2H9y8/8AAOX/AOJo /wCEhsP7l5/4By//ABNAGrRWV/wkNh/cvP8AwDl/+Jo/4SGw/uXn/gHL/wDE0AatFZX/AAkNh/cv P/AOX/4mj/hIbD+5ef8AgHL/APE0AatFZX/CQ2H9y8/8A5f/AImj/hIbD+5ef+Acv/xNAGrRWV/w kNh/cvP/AADl/wDiaP8AhIbD+5ef+Acv/wATQBq0Vlf8JDYf3Lz/AMA5f/iaP+EhsP7l5/4By/8A xNAGrRWV/wAJDYf3Lz/wDl/+Jo/4SGw/uXn/AIBy/wDxNAGrRWV/wkNh/cvP/AOX/wCJo/4SGw/u Xn/gHL/8TQBq0Vlf8JDYf3Lz/wAA5f8A4mj/AISGw/uXn/gHL/8AE0AatFZX/CQ2H9y8/wDAOX/4 mj/hIbD+5ef+Acv/AMTQBq0Vlf8ACQ2H9y8/8A5f/iaP+EhsP7l5/wCAcv8A8TQBq0Vlf8JDYf3L z/wDl/8AiaP+EhsP7l5/4By//E0AatFZX/CQ2H9y8/8AAOX/AOJo/wCEhsP7l5/4By//ABNAGrRW V/wkNh/cvP8AwDl/+Jo/4SGw/uXn/gHL/wDE0AatFZX/AAkNh/cvP/AOX/4mj/hIbD+5ef8AgHL/ APE0AatFZX/CQ2H9y8/8A5f/AImj/hIbD+5ef+Acv/xNAGrRWV/wkNh/cvP/AADl/wDiaP8AhIbD +5ef+Acv/wATQBq0Vlf8JDYf3Lz/AMA5f/iaP+EhsP7l5/4By/8AxNAGrRWV/wAJDYf3Lz/wDl/+ Jo/4SGw/uXn/AIBy/wDxNAGrRWV/wkNh/cvP/AOX/wCJo/4SGw/uXn/gHL/8TQBq0Vlf8JDYf3Lz /wAA5f8A4mj/AISGw/uXn/gHL/8AE0AatFZX/CQ2H9y8/wDAOX/4mj/hIbD+5ef+Acv/AMTQBq0V lf8ACQ2H9y8/8A5f/iaUeILA/wAN3/4By/8AxNAGpRRRQAUUUUAFFFFAHOeNL66020sri1vHt/Mu 44JMBSNjE5PIPPFS6fczT3JvLS+uLuxj8yKWORFzvXGCuAD6jFO8T6Ve6vHZxWrwIsFwlwTITklT 04H608WmqvfRysLKGBN8hjjZiZJCu0Fjgcc0AOtPEmm3cdnJE8oivHMcLtGQpfn5frwaZpOunULn Uk+yzqlpMYx+75O1QSOvXJOB9KzLbw1qUGk6LZedas2m3PnlssA4+bgccfeP5VpWGk3un32oSRTx NDdXD3IU5BLFQNp9gRnI5oAW38U6VcWxuY3m8kQNcbzC2CinBxx1B7Vag1qylknjd2gkgiE0izLt IjP8X04NZljoep2ng4aNFfR290ilY7iLPTdn6jPI4+tQv4WlnvrqSR4Y4LyxNpIiMzMnJIYMfvde +KAH3utPNqugtZSXEdvdzMrBo8LKmwkHkZ9PStL+37AXAiYyqpuPsokaMhDL/dz/AF6VnvouqO2i bpbQjTGG45YeaNu3PTg45xz9aguvDepXMa+ZdwzTxXq3STSlssqtkIR0UY44oA6G11C3u7q6toWY yWrBJQVIAJGRgnr+FPuLyG3kSN2JkcEqijJwOp+gyPzplpHfLcXLXU8UkLMDAiJgoMcgnvzVPUdL nuLu6uLeZEeez+zBmz+75JyPXOf0FAFqLVLOb7L5cpYXQzEdpw2QWH6Amql3rShbH7EjTC6n2Bgh I2jO4/kppG0u4VrN4XiRraCSJFOcIWChWHrgLjt1ptro9xb/ANm4ljxZwtFjngkKNw9TgHr/AHqA El1PyPEF0JZ3Fpb28fmLtyquzHknHHAH51o3OoW1s7JIxLInmOFBOxP7x9BwfyNUJtHmlhulaWNm uLtZ3BzhkXbhPyUfrRNpFw7agqzqBfhVlkx8ygLtIA6dM49CT1oAtDWLJpTGru7DYfkQsMOcKcjs T3qZr63W48ncSwcRkgcBiMgZ9cVDpunCxmupMriVkWNV/gjVQqr/ADP41XTSSmprqMjKJkLGSWLI Mq4IVWUcHAI55PyigDXqpd3SJcW9uJ/KkkkAHybt3BO32yAfyqT7XH/dl/79N/hVWW1e61S1vUcC KFWAVlIIYkc8+wI/E0AV9a1HNsbeyndbhriO3WRBkK5YZGenC5NbNYcWjXMP2RFmjMdvcSzEnJLl y2Cfcbj9a3KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCjf6ktr d21nHEZrq53GOMMFGFxuJJ+opdPvzeSXMT20kElu4R1fBySoOQR1HNZPie106/u7S21GK4jCo8sd 5AWBhYEDGQOM57+lZK/bLfRb62ke91Kx+1RR29wzMr7TgsWYDJRTwTjnmgDtLqdbW2kndXdUXdtj Usx9gB1NMtJ5bixjnktXglddxhcjcvsccVw900yWfie1Pm+W8MctmscbhC23kx9f4sVpxF5Ncs31 DzW006evkZDbPOz82R/ex0z74oA3tF1NdXsPtSQvDiR4yjEEgqxU9PcVfrz7SW2aRp9s9rNt+3XD M8u9Y4uWK+YMZbIPAPGe9XdOb/in7u21EaiRBqBEawK4kCF8pjvt/E8UAdpVS4vvI1G0s/KZjcBy GBHy7Rk5H4gfjSaxLcw6RdyWa7rlYyYxjPPrjvjrWEwkgvb2exWWaa3sNluzgt5rnLM3PXlUH14o A6mobW5iu4fOgYsm5lzjGSCQf1BrnNzw3FwY/PuEh0/gHcRcSnJLe5+UD/gWKktrf7Ja6RZRhlsw CbmRc/vGCDA+hYk++KAOlorl7eS6l0OJFkkgnlmeUtOhZEAbcI25BAwQMD0qRDeu+nJcj7NbmGSS RWy6mTcML2OACSAfb0oA3pbqKGeCB2IknJCADrgZP6Cpq5+O1jbxFbvJHI6wWoEbODlmZuT+AQf9 9V0FABRWPqksw1SJZEkazjt5JdqA/vZAQAvHtk4/wqhaeeltoZlknOMtNKSTyFJ2/izY5/u0AdDd XMVpCJZiQpZUGBkksQAPzNTVySIb220k3kMrlriS4l3A5BwWVPzZRj/Zqxe/bJk1FFEgvTKIbJAS BGuFw/5kkn2xQB0tFYtjZ/adRv5pmn8tJ0WIF2XJUAlse5OPcCo9LE7n7ReyObrzpGaNVOVAJCr1 xtxj60Ab1FYOk/a31UySN5kDo0qvgq8ZYjEcg5BIHTHTb0reoAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKzf7QnHiUaY0UflNatOrhju4ZVwR+NAGlRRRQAUUUUAFMjljlBMUiuFO07TnB9Kp 3d+Y9QgsYQvmyI0zs33Y0XAz+JIH5+lZGiXzJbwRqiJPeiXUJmb7saFuD75BUD6GgDpqK5v7bean JoePLg88G7kQZOFUcZORwS61aOszO8bwQoYZLz7Im4nc2M73+g2tx7UAbVFZVxqzQ6uliY9gcqI3 dTtlz94BugIA6Hk0lhqk+oQi6iiEds+4qzqeFGcMT7kdB2PWgDWorJ8NG4k0lLm4cM90zXAAzwGJ IHJPbFa1ABRWLba1LdS2DxxJ5F67+WCSGEagnefrgcf7Qo/tmf8AeDyEJF4lqmCcEkAv/wB8jP5U AbVFc8l9JbXms6pcyK9tbBYFRAckqN3HOMkvj8Kff61d2BkjlhhMy2jXWFJwmCBtPrknAPHfigDe IyCD3qD7HD6P/wB/G/xqjc6jeWcSG4t4zLcSpFAkZJ+YjJ3cdBg9OuO1OutQubSwM727OfMC/JGS Qnd9gyePSgDQjjWJdqZx15Yn+dPqrYXYu7BLoMjK4LKyHgjPB9uO3aqX9tH+7af+Bi/4UAa9RG5h FyLfzAZtu7YOSB6n0otZvPt0l+X5hn5HDD8x1rM0o+br2rzgbR+6i2tw2VB5x6Hdwe/NAGnb3ENy rNDIHCsVbHVT6EdjUtZGnN5fiDVoSCTI8coZRkAbFXBPY/L09MVpTm4Bi8hYyN48zeSML3xjv0oA looooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKptptu2qLqJMn2hUMYO842kgkY6dQDVys8 61YLei1MrB/O8jdtO3zMbtmemcc0AaFFFFABRRRQBWubC2upPMlQ7jGYiQSNyHqp9uKh/say8tY/ LbAiMB+Y5aM/wk+lWbi6it2jRyTJKSERRlmxycD2rL0fUt9p500zym6uJTbJjLGMHA49MDPPrQBd j0q0jkidUbdEnlgljyuQcH15ApG0izZ0bY37t2kQBjhS2d2B75P50seqWcsNvJFIZBcAmIKpywHU 49BVPRtR3abFPcTPK13LI1uhGXKbjtGB/sgHNAF9NPtkl3hD/rDLtzxvPVsetJHpttHCYAreTgqI 9x2qDnIA/E0n9qWnkpIrlgwc4A5AU4bI7YPBq2jrIiupyrDIPtQBWitmtIUitFTaoAPmE5wBgfpT h9syMiDHfk1JcXEVrA887hI06k1VbVrRI7hnZ1NtjzVKHK/Lu/lzQAR6RZxSQOiMDACsY3HCqSDt x6ZA/KkfSLN5N5RuJTMAHOAxBDHHuCfzpbjVbWCG4k3M/kQidwqnhDnB/wDHTTLLUSdPsnvFKXdw gPkqpyWxk4HoPWgCU6XZmOeNotyTli6knGWOTj055pH0u0lWQSoZDKULszZLbTlRn0B7fX1pv9s2 X7oK7MZdwQKhJJXOV+owfyq0tzE1ot0WKxMgfLAjAPPIPSgBLm2iuVQSA5jYOjA4Kt6j8zUbWEDN G53+ZHu2ybvmGevP4Cmf2vp3/P3HVxWDKGU5BGQaAGwwxwQrDEgVFGABSeRD/wA8k/75FZukFruT UpJ3Z8XTwr8xwEAAwPxzT/D8skunyLLIztFcSxAscsArkAH8MUAaSqFGFAAHYVnW9vNBr15cNGWh uY4wrgj5Su7II/EVde4RLiKA7t8gYrhSRxjOT0HXvUtAGdpdvNHeajcyp5a3Mysik84CKuT+INWb u3+0eRywMcokyHK9Pp1+hqxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYV1p2q3W vwXLyWRsYHDxoVYupxgt6bu2ew6Vu0UAFFFFABRRRQBm3mnzS6kt7BKqyLbPAu/nYWIO4evTpVO3 0O5tkgMU8ayxWRtFPJCdPnHqeOelb1FAGDHodzDGnkzRpItj9jU8kR+jD17Z6dBUsGkz20tpPC0R e3tTbKjE7VGVII9fu8+tbNFAHPyeHA1olsZBJsG6Oc5WSKRiS7gjnJJ6ZxwK2muERipWUkcZEbH+ lTUUAZ1/ANSjhRNymGZJ8OjKrbTnBOP84qrJo1zNaajDJPGTdy+ZkA8j5flPttXb+JNbdFAGHcaP dXKakHliX7YU4GeFAUbT7YDc/wC10qzJYXP9opfpJG0ywPDtfO1csGyMfTHbOBT9L1QajNfReQ0T 2c/ksGIOTgHIx7EVoUAZFjov2O6tGEvmRW0MgG4fM0jsCzn8j+dasieZGyb2TIxuU4Ip1FAFL+z2 /wCf+7/77H+FWwo8vY2WGMHPekeaNJY42bDyEhR64GTVe0vftN5eWxiZGtnVSSQQwK5BH50AUvDx WFL+1BCpb3bqkZ/gQ4I/Dk0vhxVktrm8I3ST3MpMn99Q5C/hgDFajRRsxZo1JYbSSOo9KeAFAAAA HAAoAryvcC9t1j8swsG8zIO7tgg9Pz9RViiojNi7EHlScoX8zb8g5xjPrQBLRVSW98rVLeyMRPno 7rICMDbjIx+IqzJIkUbSSOqIoyWY4A/GgB1FV7a9tbtmFvOkpXk7TmrFABRRTDLGJ1hLDzGUuF9g QM/qKAH0VU0+9+2rOfKMTQzNCwJByR3/AFq3QAUUUUAFFFRW83nqzeVJHtcriRcE4OMj2PagCWiq mnXv26KV/KMTRSvEykg8qcZ4qpqGt/ZdQNjBZT3c6xLM6xYG1C20Yz1PU49BQBrUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcpd vJ/wk1q8C3hP23ZLGcg7fLxuB6eV6j+9XV0UAFFFFABRRRQBy/iwRLrOgPLuCNcsj7c8rsJwcdRm s6Xz449YEVrdSaTLcwLbqrOgQ/8ALR+Pm8vOM4HPOK6u+0q3vru1uZmlElq2+LY+AD0zjvxxV6gD z2+89bLxNalZSjxxS2axROELbfmMfX+ICtW+tre206zkgiuZlu7iJ5XeR/LQqv3nA5wccjgE9a6m WZYmiVgcyNsGPXBP9KkoA5zwk80c2q2s3mBUui8CsjKvlkAjbn+HOeM0aysn/CT2LXqu2k+Q44BK CbPBbH+znGe9dHRQBx1zDCLqzsY7a6a3S0cRz3RkdWy2NoUdX7gkjAqtp0l9Na+HDqX2hrSNZEvA 6txKB8nmdyPc8ZruqKAOAiYRRazGlncPHLqiEAb0CoQvzscZKZHIH6Vs+F3mi1fWLaTeIDIktuNj LHtKjcUz23ds101FAGBr7TSXTwRpKD9jdkbkqXzwFA/j4654B79ord2kvLG6uFlKTac0cpIYBnyn BHr979a6SigDj7KNZLbw5dzQSSGK3dHLA7g20YU++QetO1JismvzR+cJlaAxFVbOQq5K469wcV11 FAHN3jTMurs/mG5YA2BQHpsG3b7785/Xin6RCJdbvzcb/NjaJwAWCb/Lw5HYjJNb0csUu7ypEfad rbSDg+hpzqHUq2cH0OKAFrntWa5XWpvsO/7S2myiPrtMmQV9s9a2vscHo/8A38b/ABqVEWKPaMhR 6nP6mgDnYTAus6MYhLkwSq5cNncQn3if4uD1q/riyf6LIGRYI5d0peMyKODgkAjgH8uvar8V3bTf 6q4ifnHyuDUrMqKWdgqgZJJwBQBS0+4M7ODqFrdYA4gXBX6/MaxvEEty0uoC3SZZIYY2iPJLNknM YHp3PP09ekiMToJISjK4yGTBBH1p9AHLarzJrMgSby7jTlMQG753Hmfd9/u/pUkMaf27Y3zQNJvs Aivg8uGXj64yefeulooA5EOIvtE6mVZP7YUghW+4SoP/AAHGc9qsTG8+y3YUP/av2v8AccH7m8bc dtuzr+PeujjlilLiORHKHa20g7T6Gn0AcrBDG9tqrrJcRypdOsTqrNsVto4X+Jc5/XFa2h/aNtyL hItwkGJIMiOQbRyAenoR0rRjlilZxHIjlDtYKQdp9D6USwpNjfu46YYj+VAD65SxLmeFW83+z1u7 nzAd2M7sx5z/AA4zjt0rpBZwgg4f/v43+NT0AY/hor5F8qhgBezEBgQcFsjrWVMkUfj27uRaySsu njbsQ/NICxwD03bcV1tFAHBae1zBf6JNbRyQJLFLHMpEjbWK5RZWPVt3fA71c8PC3FpayXK3cmuW qyNcRBj5jMQc7+xBx8vbpiuxrPj0e1TVv7UYyyXQQorM/CqTnGB/WgDlNLeaDUtBuIo5oIZBLHcr iR2XK5VZWPVt3fAxXd0UUAFFMeWJHRHkRXfhVJALfT1p9ABRRRQAUUUwzRCYQmRPNI3BNw3Y9cUA PooooAKKKKACimSSxRbfNkRNxCruIGT6D3p9ABRTPNiMxh8xPNA3bMjdj1xT6ACimNLEsqxNIgkf O1SRk49BT6ACiiigAopGZUUs7BVAySTgCmRXEM4zFMkn+6wNAElFFFABRRRQAUUUUAFFFFABWTqG s/ZtSsrOFFkE04hlctjZlSwA9Tx+H41rVQu9GsLy6guZoB5sL+YjLx83TJx1/GgC/RRRQAUUUUAF FFFAFS9/11l/13/9kaqWpay9s1+II0YWMIkkL5+ZiCVQY9cdfcVdvf8AXWX/AF3/APZGpLnS7S5a VpEb97tL4YjcV+6fqKAKst/qB1EWMMVv5ptjMd7HCtkAA47E7h7be9R3eszoLtreGNhbSJAdxP7y VtvA9huFacNnBBO88anzHRUJJzwucf8AoR/Os++0tpdRtJIYwIRci4n/AHmMsFIB29znafwoAZNr FxG14qwxsYpooI+ThncjIP0DA/8A6qmS5eXWblFt4ma3hAEueQWJ+XP0UN+VTS6TZyyM7IwLSibA Ygb8Y3fXHFTRWNvFNLKkeGl5bnjoB0+gA/CgDMTW5V02HUZo0FqYpZpCM7tqn5Co9x29xViDULj+ 0ba0uYkV7iB5tqZJi2lRgnv97rxyDU8emWkdmbTy98Bj8rY5Jwn90e1OWzEDtNAA87AKZJWJO0dB mgC1WZe3t5FfQWsEcJacSFd5PyhRnccdiSB+P4Vb/wBN9IPzNQrpVqJfOIfzDuBPmE8MQWXnsSBx QBXk1G7TUhaMsCAWxnkfJITGB+IJ3en3aZYatcXEmniaGNPtds07KCcxgbcEn33Vfm062ma5Z0JN zEIZDuIygzwPT7xobTrVpxMYvmEQhxnjaM4GPxNAFPw2obTDd4wbyV7g/Rj8v/joWkXVy+qXEIgu RFbjYQICS7Hnd/u46euT6Vo2lrFZ26QQKRGgAAJzwBgfoBTvIj+1C52/vdmzPqM5/wA/U0AQR6gk kioLa6UscZaFgB9TWf4nZyum2xz9muL1Ip/dcEhT7FgB+OO9bdRXNtDd27wXEYkifqpoAq6lb2YW C5mUJ9kbzY9o54U5A/DNV4NUldNMknjj8rUeFVc5QlC4B9eAQenNX4bNIyC0kspUYXzW3YqKPS7W Ly9isBEpWIbjiIEY+X044oAxND1GSPTtN062QCQWInLMhYYztAwPfP0xVuxu76fXm87ZBH9jhkMD KdyMzMCM565HpV6DSLS3igSESIYFKRuHO4Keq57jgflUv9n232hZwhDhBHwxwyg5APrgk/nQBRst Yknv7eB0jKXCSMCmSFKEDG7owIPUVb1K+a0a1ijQNLdTCJC3ReCxJ/BTxTIdGsoTbbEcfZgVhBc4 RT/D9OB+Qq1c20V0irKudjB1IOCrDoQaAMO3uXsr7Vnbyg7XcSE9BzGnIHUn2HWp01yR4I18pftE l41muchcjJ3Edeg6etWv7FszNJMfNMjyrMWMh4dRtDD0OOKcukWSiTEZy8nnZ3HIfruHoc0AZMV5 JY6tqK7I2muLyGFSBhcmIHJ/AGrc+szQT3FsYGke3ePe8MZfCOpIbaDknK4IH1q2NHs/NnlIkZ5m V2LOT86jCsPQjA6U/wDsy2Db/n83f5hk3ncW27eT9DjHSgB2m3QvbGO4DxuGJ+ZAQOCR0PIPqD0N ULXWHm1C2gZEKXHm4KZIUoR/F0bI9OhrVggjgj8uMYGSxzySSckn8apxaLYw/Z9kbAW2fJG84QHq B7dPyFABq95cWcds1usTGS4jhYSZ6McZGPSq0msSw3N3aTLF5sDRYcHCskhIBx13Da3Hfip9ctJ7 y3t44EDFLiOVsvt4VgeD61I2kWb5ZkYymVZjKWO/eowDn2HGOlAGe2tXRtPMjij8xL5bRwwI3AsB uHp94HBp4n1EeIbaCea3VPsryOqqcZ3qM5J9D+HPWrT6JZMH4lXfKJyVkYZcYOfzANWJrG3muI53 UmSNSgbPVSQSD6jIB/CgDGW/ntILuSC3tw41IQuAGAfcUG7rwfmH5VuwmZbcNdeX5gyW8vO3GeMZ 9qptotm6SITNiScXDYlb74xg/oOPatEDAA6/WgDm5LuXUU0K+ZI1imug6Lj5lUxvjJ+nWrSa07WU Go7F+yzXAgCYO8AvsDZ+vb0q0dGs/wBwFEiLbyebEquQEbnoPTk8e9SLplorqQh2rJ5qx5+QP13A euST9aAHajdG0gRxsy8iplj0yew/iPsKzW1m5Omm4WOMSR3otpAwIDDzAmR3B5zzWrdWcN2IvNB3 ROJI2BwVbkZH4Ej8agGkWQimj8ttsziRvmP3s7sj0ORn60AZWq6jfeRqcUbRRtbXECK4UklHKZzz 1+brVi9Ep8Q6UVMRlMNwGfbwPuds/pmrZ0azY3RYSN9q2mXLnkrjB9iMDp6VI2m27XMNwTIJYVZU Icj733uO5NAFGw1mW/8AsMKRpHNPC8zk5KqFYLx65J/Kok1m+ubmCC2itw8nnxt5m7CyRMB1H8Jz 9RWhBo9pbwwxwiRPI3eW+8llDdRn0PpSppNpHNbyxq6Nbhgm1zj5jlsjuSeuaALwzgZ61m66+y1t 2MUUq/aoQVkB7uACMdwTn8KtH7Zk4EGO3JqO4szfRCK8wFV1kXynZeVORn8QDQBjaleSahpZnCRi Bb+ONQQS3yzKpbPbkHj0ra1W+TTNMuL10LrChbaO57CorjR7OeN42Eio8gmKo5UbwQd3HfIzVyaG Oe3eCZBJE6lWVuQwPrQBiTyT2+vxzziAyJp8zZB2DIZDgk9veremanJd30ttIg+WGOZXClchtwxg +hXr3zT5tEsrht04ll/ctAQ0hIKNjIP5D3qaLTreK7F2N7T7BGXZySQM4z9Mn8zQBT1gMdW0YxhN /nyAFhnA8pqYusSvM9rtjSeOdoGPLZIUMCqjk5DDPpWncWkNy8TyKd8JLRsDgqSMZ/ImoF0mzSSO VEZZULnzAx3Hdjdk984H5CgDOOvyHTbO9MDRxTQl3cRtKI2HZgvIHXn2p8Ws3NwJ3t4BMtvIkbLG pbzCQpYq3QABuPXFXYNHs7ZUFuskQRSi7ZDwpOcfTinpplrGxMSGNWChkUkK20YGR9AB+FAEet28 t1p/lQSxxzeYjR+aMozKwIVvY4xWQ2rSWM15cX+li31FYEA8uUPHMpfaCGwCMM3ORwDXQ3VrFdxr HMCVVw4wxBBByDkVAdLtZFmE6tcecnluZTk7fT29aAK89/eW1zBayxxF7iQRxSjIX7pZsrnPAXjn nNV7nWbqOSS3jSEzQ3kVvIWB2ssmCGHocN056VpNp0Dook8x2VgyuzkspHQg/ifzqlqelM9rHHaR hmN1HcSs0hDNtIJOfXAAFAEN1rN3bXFxbGOFpYJbfLYOHjlfbxzwwIPr2qSXVruOfUI/s4lFtNGg 8pCzbGUMTtzyRnoKunS7Ro5leMs0zK8jljuJXG059sDFMGjWguJZ/wB75krrIzeYfvKMA/lxQBJp d4L6088OjjeygqpXoehB5B9RU8BuCZfPEYG8+XsJPyds579aWCCO3VljH3mLMTyWJ7mo7W38h7hg WxLKZMFy2OAOM9OnQUAWKKKKACqR1axGqf2b5xN3gHywjHAIzknGBV2sO70u/l1QTwTRwqbiOUyK SGMajBQjoc+vp9KANyiiigAooooAKKKKAKl7/rrL/rv/AOyNRfahbWaSedKVZYmlIUZKqOrew+tF 7/rrL/rv/wCyNWdqGkXNxJqZidCL1I0JYkFUXgr+IJ/OgCWw1MW+kW0mp3A+0G3E8x2/dXqSQBwB 0/CrGoapa2lpNI0p3JAZvlGSFxwenH41Qu9Hu5l1AK0ZN6IgxyRtReCg+ozz7mi60e7mF+A0TG8a JnJJGEXAKDjvg8/7RoAt2l+LbTrcajPm6Fuss5C/d45JA6DOfyq3JfW0T7WkGcKSRyBuOFye2T0r Mm0i6lXUozIg/tDaJJR1RdgUqB+ePrStozG/iuARG0LqFkjYrmJekbL0bvyfXigDaqKe5itwnmtg u21FAyWPoBTPtsH95v8Avhv8Kp3ED3WpW99bsreRHJGFkBUKzbfm6c9CPxoAsDVLIwRzicGKR9is Aeu7b/6Fx9ag1XV47PT7ma3HnTROIQgUkeYcYBx/vCq0GkXEWl6dbt5bvayrI4z/AKzAPf8A3jup sek3ggjWRomZb03TgEgPyxHOOxK/980Aas1/bQYErkNsMhXachR1YjqB9ail1iwico9wMhBJwCfl JxnjqMmqk2l3bS6gUlTdfRpGZT1iAXacD8SR7mp9O0z7FezSjb5QhiggUdVRAev1JP5CgBbedIGv 7i4mYIs235mJAGBgAfU9utTf2nZiKaQy4EB2ygqcocbsEfTms97N7yRmQg/Z9QExQnAbCDA/Mg/h TW0i7l0zULaSSLzLqVpMgnBBPI9vlAWgDRn1O0himkMm7yYRO4QEkIc4P6H8qzbjVLltJ0ubJt7m 7miVlCZwD8zDBGfug0XOk3lxHqYJiT7YEUAE8IABs6ccb/8Avqrr2c82pWdzIYxHbpIQo/vtgD8A u4fjQBYGoWptxN5o2s5jAwclwcFcdc5B49qjbVbJdmZsF38sDBzv6bT6Hg8VnWekXVsNPldo5ZLX zSy7iA7v1fOOud34NUltossNxaSPKj7Zpbqc4+9IwwMewBP5CgDVtriK6t0nhbdG/Q4xT5ZFiQu5 wB+OajkuoY3KMWBHohP9Kq6gTf6fcWtrJsnkjKqzKRtzxnOOtAD4L6IWlvI9ysxn5jaNCPM7jC8n pWbpN1PdXMF01w8kU8k4jHQGNTheBxngnPXmp20u4juYJ7YxqYbR7eJDnbESQQR64CgfhSWVq9k2 k2sm3dFG6fKc9FAz+PX8aANS6uEtbaSeTO1BnA6k9gPc9KkU5UEjGex7VR1fTY9StlVgPOhbzISS QA46Zx2oGkWJUboMHv8AvG/xoAv1UTUrN50hWYFnZlTg4Yr97B6HGKlW3SK1MEGYxghSDkjPfmsi x0i5tpdNDeT5NnbGDGSSWO3LdO4U/maANNdSs2XInH+tEPIP3zggfiCDVa11T7ReahGUaOC1wvmF SOduW68cZFVU0m7SaE5iKpdyXLsScuWyFOMfwg4x7CnPpV42lahaLJGr3byEvk8h26+2E4oAl0DU vtWm232mfddSQ+edy7coTwemOMgVaXVLNwCsuQy70+U/OucZX16jp6is+/0Wa7kvgkiRJNaC2iIz lF5yMe5I59BS3mlXV15symKGRLV7a2jBJWMtjLE49hj6e9AGjaajaXpxbS+Z8iyAgHBVs4IP4GrV V4xDYWsMAyI41Ea4BPAGO1H22D+83/fDf4UARi8iN5MPtUYjgi3SIVxt5PzbvT5SPwqrFfvda/HB byv9nS2MsqlMZLMAh5GegaoLrRp7mPUVZ4/9KkRh15RSuEPoOG/76NXLK0uYtUvLuYx4n24CkkhV GAv5lj+NAFxriJLmO2ZsSyKWVcHkDGefxFS1XklnW+gjRYzC6sXJJ3AjGMdsdf0qxQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcjeXl+niSYSmR lS7t0ghjYqWjYfMw7EZzuz6YyKAOuooooAKKKKACiiigCpe/66y/67/+yNVuql7/AK6y/wCu/wD7 I1c9qTwJ49hiup3jtpNPZmUysqFg4AJGcdKAOsorg7K5uHSxgvftJha5uDbSTyskbQjhPM4yxwTt Bx61Ab6ZvDOni4vJkuodUETMXZXWPzD97vjbjr2oA9DorlL+K3tNQsLASXTwssswknuGEJ3H7uRy xH8IyMCrvgq6nuvDcH2uV5LmJnjk8zO8YYgBs85xigDeork7v9/4i1W31e5nt7fyI/sTRuUGMHeV I6vux79Ko69cSt/a/wBlN2l1bwR+UZZWDkhcgxoB/wB9E9x0oA7iVzHE7qhcqCQoxk+3NVdI1GLV 9Lg1CBXWKZdyhxyOcc/lXOQXn2vWLuTUp3FqbSJ7IhiqMSD5hGOrbse9Z2i3Mf8Awjvhu1cSjIk3 s0hjhUjPyyYGSecgcc0AegUVz/gy5mn0qaG5ld5oLiSPEmdwTcduc89Omak1GKaHWV2NMYb+IwEK zYikHIYc/Lld3Pqo9aANlIYo5HkSNFeTG9gMFsevrTmO1S2CcDOAMmuWe8khuonieZY4r7yWEjFn 8vaQcj+6TjBOScjnmrGliCX+1JHupSIbiVQDM2FQqPfpnOPTtQBvW8ont45gjoHUMFkUqwz6g9DU lcV9uuJdCQxTTG4i0tJFZmOWkweVHVmyMHPt61qXTSG+trmF5ng1CFrchWbaknVXA7ZAbn2FAHQ1 VsL1b1JisbxmGVoWDY6j6dqxY47kXV3A9yYJIpkFsWLMxiAXGBn5sncD+vSrnh2RJP7S2MG/06Q8 fhQBsUUjY2nPA71zFrPbx6rGjXcsmnyzM1rIZW/1o4ZCc8r/AHc8dR6ZAOoqlqE8FkYruS38x2dI d6gblDMAOT2yRXOC5CQu63sgI1fygfMJxGWGR9MZp93dxi2v4WuMpDqcAQM2dq7oyce2d360AdbU C3to83kJdQtL02CQFvyqDWRM+kzi3yXIHTJJXI3Yxz0z0qvpkhLRLHPpxgxwsCkN+HNAGtRWVrE2 28srclgspckltseAOjHrnngDHQ+lY8N01xZaD9quZUmaVopiXKFhsbIP47fxoA62iuVvpZbW21vz riaOW2h/0MlznYI+GH94ls5PPSm6nJJDb64WmmQtYxSQ4ds7wr5K++QucUAdP54+1G32SZ2b9+w7 OuMbumfapa5+OSO78QNbi5cxzaepISUjnd1HocelVFN+dFaQG4+1WOLWRgzZfDgPIB3OzkH3NAHV 0VkWUjnXZY7Vt9gLZSxB3KJdxwAfXb1/CtegAormNQngh1OVxdStYNIkd2Flb9zJn5dpzwDnDAe3 vVXUbkRJr0kF7IrQvCYNshOwlVyV/HNAHVX1yLKxnu2jaRYULsq4yQBk4zUkMgmhSVc7XUMM+9c1 eXMa/wDCRW63G6IWSsil93zFXBx9fl/T1rdsmifR4GZh5RgXJzxjbzzQBW07Wo9SuAsFrceQwcpc FP3bbG2kZ7c9M9cVqV57o8lvB4Uso0WbdLfsrlZWRFw7FfMPOFIxx3yKebzUV0vVraCaYiG/Q4j3 F0tjtLFM8468jtnFAHf0VyGoyafBCpsZ7ueC5uYQTHcEW8eAerYOFOPmA6nHSrfhO5lN3q1nLKWW K43QKSxAjKj7pPJXOcUAdJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFYuo6lq1tqsVtbWFtLDMwVGknKOeMsdoB4AoA2qKKKACiiigAooooAqXv+usv+u/8A7I1R tpMLa2mrGWYXCxGEKCNmwnOMY9eakvf9dZf9d/8A2Rqt0AFRmZBcrBzvZC49MAgf1qSqbf8AIai/ 693/APQloAtu6ou52Cj1JxS1zerXZ1Wz+yxxKba4vFtNzdW2t87AenysPwzVwa00kkLQQB4Jro2q Ethm253OPYbT+VAGu7Ki7nYKB3JxS1zmsXh1Sye0jiU2892tnubq2G+cgegAYfhVt9axEbmOIG0W 5FsDn5nJcISo9Ax/HBoA2KKy4tXEmsvp2wJIrEbHyrMoGd654YZwMDmtSgAorL1DV/sst1HFGH+y W/2iZmOABzhR7nafp+NO/tKUXVjDJbhDcoXcFuUwuSfoCQPxoA0qK52XULzURo32dVgF1IZypY58 tASM47HKfnVq41vy4bm6jhD21vOICc/NI24Kdo9ice+DQBsVHBcQ3KF4ZA6qxUkeo61Qsb+8u5pA LaIRRTtC7bzngZyBjsfl/OoLe+e0sLBFi3+dN5XJ9WOcfQAn8KANqmSxCXGWcY/usV/lWd/acxuk s/IQXEjy7fmyojQ43n8wMep9qhi1qee306WO0UfbXKqC/QfMd3Tphc/iKANMWqA58yb/AL+t/jU9 ZUtzK11p9td2ieZK5YhXJ2FQTuHsPlHPdqZb601zLZtFApgvJXSIlsNtUEl8ehxwPcUAbFFZUWp3 Erzqluh8q5SEkv1BwW/Fc/pS2OrNfYniixalmAdgQdq5G7PTBI4H40AaaurglWDAHHBzTBbwCbzh DGJP7+0Z/Os7wzGBo6XGwI1273JAGPvsSP0xWqTgE4zQAUVlxaheTahLapbRnyTGZCXxgPnjpyQB n3yKgk1q5SO6kFojCC4SAAPzIzbeB7jdQBp6hax3tjPazOyRSoUdlIB2kYPP0otprfcLWOcSSRIC ckE47GsvUNUlXT9XjaJTJbKI0K8qzuvC8+7D86nsLVbK+trRPuwWQjH4ECgDVorN1XUxZyW9sofz rhsKwiZwAOW6DrjOBUv9qW3924/8BpP/AImgC3JGJF2kso6/KSD+lRfZE/56Tf8Af1v8ajvtQist Lm1Bw5iijMhGMMQB0waq3GpXVnCHubVMyeWsZR+C7ttCnvxwc0AagG1QOTj1paw9S1uewNxCYY5L iFI5cAkB0d9nHoQRUWsateRWOqxRLGk9qIyHySCr/wBRzQB0NISFGWIAHc1mT6nLHfJYKkZuTCZn bDFAM4A4GeT+WKo3eoSXaTxz2KhYbNL5YpWIy2W+VxjsV/lQB0LEKpLEADqTTXHmwkJIV3Dh0xke 4zxWXFqbX7G2igjJFqk83mH5fnBwo9eh5qp4evZG02w0+2RPMisYpnLngBshQMf7p57UAaek6Tb6 TFNHbtIwmkMrb2z8x64AwAPoKvF1DBSwDHoM8mqllqUN3pKaiAUiZC7A9Vx1H6GslriS+vdAvXhj RZnZ05yyqYmIBP0oA6Kism31gy6jBbNGuJjIoKtnYU7E9DkenSrOr3z6fYtcRxCVgQAucbiSAB9S SBQBdorMutTktpJEaAMzTpBbgN99mUHnjjHJPsKgm1qeKyvJxao7W04gGHwJD8o444OWx+FAG1RW TqV1PFZMl1aRyCWZYVRZD+8DED8DyfwWm3WtNF9oNtbrKlvMluctgvIxUYH03D9aANiism41S4S4 voIbZHe2hWQbnwCxJwp46kDP4inxao9zeTRW0BaOGbyWYg/MRjcR2AGfxINAGkHViQrAleoB6UtZ OhKskmo3wUD7RdMFIHVU+QfqpP41rUAFFZl1f3kd8tpBbRySSRySIGfGApA547k/hUF3rM9vJqC/ Z49lnAJ2Yv67vl+p25/EUAbVIrq67kYMPUHNZa6s6TzR3UAjWK0F0+GzsHPyn34P5Gn+Hbc22hWi soV3TzXAGMM53H9TQBpUVFA07eZ50aJhyE2tu3L2J44PtUtABRRRQAUUUUAFFFFABVaSxhl1CC+Y N50KPGnPADYzx/wEVZqvJfWsc4geZRIWC49CegJ6An0oAsUUUUAFFFFABRRRQBUvf9dZf9d//ZGq 3VS9/wBdZf8AXf8A9kasrUtakj8SR6UkjQRi2ad5FhaRmO4AKOCMc5JwfSgDoKpt/wAhqL/r3f8A 9CWqGm69b/2Tp82oXtuZrrKrJErCORgTwMjg8dDVlte0pElka7VRC22XKsDGePvDGVHI5PFADv7H tN0RHmARSNIihuFLZ3fnk/nQNGtA8LDzAIXZ41DcLuzuH45NaAIIyDkGigDPOj2hZD+8AjlaVFDY Cs2d357j+dPj0u1R0IVikcjSpGT8quSSSB+J+mau0UAUotOht/LaJSxhDeUrtwmev+eam3Xf/PKH /v4f8KnooAz7jSoLwTm4Uq1wqpKI34YLnHb3p82mW8xVnMm4RvEWDYLK2CwP1IFXaKAKEekWsRgK 78wRmJfm6qdvB/75H5U4aXaiQNhiolM4jJ+UOTndj68/WrtFAENpaxWcHkxZ27mcljkksSSfzNUb KzE9lbidJYZraRmQ9CDyMj1BDGtSigCnJpttI6PhlZY2iyrYJVsEgn6ge9Nt9Ktbc2pQOfsqlYst nAIA/kAKvUUAVpbKGW9ju23eaiFBzxjIPT6gVBFo1pE9uyeYBbgrEu7hVJBI+nA/KtCigCrBYQQT PIm755DKVJ4DHqaammW6W7Ww3+QQyiPdwA2c4/M1cooAqw272cEcFsisijGZHIPHHp6UrrcTRtE6 IqOCpZJSGAPpx1qzRQBTttNgtpWkVpGZyGbe2dzBQoJ98AUg0q1CquGIW4N197q5JOT+f6CrtFAF B9ItHEwO/wDeyiY/N0cEHI/FR+VEUbLrHyxOIo7cJvI4JznAPer9FAEVzbx3MYSTOAwYEcEEHIIq WiigBk8MVzBJBMgeKRSrqehB6iqraZA9t9nlaWVAAF3vyuDkEH1BA568VdooAzrnRbW6jmWZ5S82 wPJuwxCnKjOOBnmiTRrWZ7xpWlf7WipKC3GF6EehFaNFAFM6dD5scwaRZ0DL5oPzEMckHseQDTLj SbW4LljIpkgNu5V/vJzwfzPPvV+igChFpNvCI/LeVXWEQFw3zOg6A/TJ596ZbaLbWsUKQSTI0UXk CQP8xQdATjnHbvWlRQBFb20NtapbQxqkKLtVO2Kpro1sjWZSSZVs2LQoH4UYIx7jBxWjRQBmxaHZ w/ZghlC2pbyl38KD1HuPrVy7tY7uIRy5wrq6lTghlOQfzFTUUAVZLCGVIw27dHJ5quD8wbBGfyJF Qpo1oiBB5hUTifBfPzBi3/oRzWhRQBXu7OG88oy7sxPvUqcc4I/kTVeXR7SRif3igzCfCtgB8Y3V oUUAVE063S5edNwMm0uuflYqMA/y/KnR2MUUjtGXVXkMrIG+UsepqzRQBUtrNbC3ENmgK56SOeB+ VSbrv/nlD/38P+FT0UAUI9It0n84vM0m0oS0hbKlt236Zp02lWs63SyKxF06vL83XbjA+nyjj61d ooAoz6TaXD3TSqx+1IElG7gjBH8iatwxiGMIpJA7nqafRQBXtYGhacs7sJJS4Dvu2jA4HoOOlWKK KACiiigAooooAKKKKACuZvNBup/EB1FHaN/PjcMr/u2jUDKunduuD9OmK6aigAooooAKKKKACiii gCpe/wCusv8Arv8A+yNWdNY3v/CXpqiQo1ulk1v/AKzDFiwbpjpxitG9/wBdZf8AXf8A9karTHCk 4JwOgoA4220HVYtK0K1aCEvYXhuJD5vBXLEY46/N+lSXeh6nPbeJIlgiDamwMJMvQBQvzce2fxrp 7C8j1Cxhu4VdY5V3KHGDipHniS4jgZwJZASi9yBjP8x+dADbJZEsoElQJIqAMoOcED1qaiigAooq O3niubdJ4HDxSDcrDoR60ASUUUUAFFFRwzxT+Z5Th/Lcxtjsw6igCSiiigAooqutwzX8lsIvljRW Z93c5wMfhQBYoqtJexx6hDZFHMkyM6kD5QFxnP5irNABRVaW9ji1CCyZHMk6s6kD5QFxnP5irNAB RRRQAUUUUAFFRpPE9xJArgyxhS6jqoOcfyNSUAFFV7y4a2WNxHvVpFRvmxtyQM+/WrFABRRRQAUV Be3SWVlNdyhjHChdgvXAGTUsTiWJJACAyhsMMEZ9aAHUVDeXKWdnNdSBikKF2C9cAZNPhlE0Ecqh gHUMAwwRkd6AH0UUUAFFFFABRUf2iH7V9m8weds8zZ325xn86koAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigArktSvdRh1144Z2kc3tukcaNgLER84K9+MnPPbkYxX W0m1d+/aN2MZxzigBaKKKACiiigAooooAqXv+usv+u//ALI1Y2t3lxu1VPNaJYYEjt1VsFpJMjf7 gZA9ODW7cxPJLbMoBEcu5vptYf1FTFFY5KgnGOR2oA5W7uZbe0vILeZoY7WGK3swp27mYAeYfUDI 9uDVpGjbxBcXe6aQ21qqRLuPzsQWY49wqfjW+UQ9VB4x07elLtG7dgZxjNAHN6bezy32liW6cvLb NcXCg/KWbaFQDtjJ/LmmtqOoJJc3EY89PIlubcox5AHypIhHy9eCOuDXTBFByFAP0oVVXJVQM8nA 60Ac3etOmg3DG9M07W4XMbk5diAHz2GT0HatzToYbexigtyxiiUIpYk8Djv24qcIgUqEUKeoxxTJ IA7AiSRMDGEbAoAi1W5ls9Ku7mGPzJYomdF9SBxWRbTzLqjQG9klSKzUyFTnzJGJJK+mAp6cDcK2 0t9jhvOlbHZmyKlVEXG1QMDAwKAOa02/mlfT457lyPsb3MwU5JLn5V9flG78hUenPLBounJFK6Ne zh7mYsT5e8NIQCeh6Ln39a6gIi8hQPoKNibdm0bfTHFAHNSXF3LJsgnlSCa/WK2YNyUCgyHJ6j5X A+v0q7efabfULSySdvs7iWaSSWTBOCNqBvT5ifXC9a2cDjgcdKGVXGGUMOvIoA5/U7q6htohay/a DDGZJVZmjMgOQuxsHJBBwD14p97cXNlBfzQEtcLbwKrSDoSWG4j2zk/St0qrEEqCR0JHSq627rqE k+9THJGqshXnIz3z059KAOcuJ3t77UZ7WZpJoIYrWJ5Du2lmBd/oNyn0+WpZr+4tjq7Wk7zeRHHF CJDuAf8Aic+3zr7fKa6XYg6KOmOnb0pQijooHGOnagDlLmeS2vdQuLWVppra2jt4mkO4bmbLufYZ QntxVme4uo7u4gs7pzF5CxCeTLj7QxOOR04644GRXRBFHRQOMdO1JsTZs2rt9McUAUNElnmtpXuE MbiUrt8zzFGABlWwCQffvmtGo5IQ4UB3QL/cOKYLXBB8+f8A77oA5+zv7m4m0t5Lh0muWklmQHhV HCx49iy+/BpY764EkUTXTgy6g4wTkiOMEEf8CK9P9qul2KDnaM5z070mxM52jOc5xQBzCTSWtpq9 /bFjdS3BRd7FgiBhGGIPphm+ntS6lc3UIvxaXEzwRWyIJC2S1wzELg/iuccdK6faoz8o568daAqh QoUADoAKAMy5tWt7QFriWZmlhz5hyAQygkemetWtTN6LCU6csTXWPkEpwP8A9dOvbeS5SNEdUUSK 7ZXJIBBwOeOlWKAMjTmv/wCz4Ps6WrRbeC8j7j6546561o2xuSh+0rErZ48skjH4ipgABgDFFAHK ancPeR3MNzK0ay3y2qxhsBYlILEjvuAbr6gVJcX9w7M7XDwO9+IERTjZEhyxI9WAPX1GK6YopJJU EnrxQUUkkqMnrxQByuqXD3kV5DcytGst4lokYOAsQwXYjvkbuvtU1zeXksN68Tul59pEFpADjABH zEd8gknPaukKISSVBJ68UbV3bto3dM45oAw/tV3JrabWL2kkuxSjFXj2g7gyEcqSD83uK3aaUA3M gUOR1x/OogLzIy8GO/yH/GgDn3v7h5IZJLh4pJb9k8tTwkMZbII9W2/X5uKLm9uI5LxPtbpvvIrd MnlAAGdh6AgkfgK6bYmSdoyTnOKQohJJUEnqcUAc2ZjBea5qkSyS3ESeXDEWbkIm48em5z/Slnup rc7lupJ4oLN5ryUNwzcFQvoThuB2/CukCgEkAZPU+tARQu0KAPQCgCjpNrPDawSXVzNLO0CLIrt8 u7qTj15x+AqXfD/a2z7U3n+Rn7Pu+Xbu+/j1zxmrVM8sGYSknIXaB/n6CgB9FFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFO61GG0vLW2lWTddPsjYLlc4JwT9AahOt2YuzB8+ BcC1MmPl80rnb6/0zRqmnT3t5YTxTRxi0l83DITuO0rjqMcNVVvD+bwt9oxbm+F+V2/NvAAxnPTI z+lAG5RRRQAUUUUAc/4lvbqDUdIs4Vm8q6nYS+UwVmAQkKCTxyOfaoLLW47DStWu5zeTx2d0yujh S0QwDtB3fMBnrnNaeqaXNfalpt1HcRxrZSGTayFi5IKkZyMcGs6bwzczabrNm19EBqcxlLCE/u84 BH3ufuj9aAL669C2oLYra3BuJIfPiXaBvTOM5zx+OKt6VqNvq2nQ31tu8qUHAYYIIOCD+IrPXRrt dcg1T7VCWitDa7PKODkg7s7vUDj0qfw5pUmi6PHYSTrP5bMQ6ptyCSeRk9yaANSiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD NuLvVo7h0g0qOWIH5XN0F3fht4qP7drf/QEi/wDAwf8AxNa1FAGT9u1v/oCRf+Bg/wDiaPt2t/8A QEi/8DB/8TWtRQBk/btb/wCgJF/4GD/4mj7drf8A0BIv/Awf/E1rUUAZP27W/wDoCRf+Bg/+Jo+3 a3/0BIv/AAMH/wATWtRQBk/btb/6AkX/AIGD/wCJo+3a3/0BIv8AwMH/AMTWtRQBk/btb/6AkX/g YP8A4mj7drf/AEBIv/Awf/E1rUUAZP27W/8AoCRf+Bg/+Jo+3a3/ANASL/wMH/xNa1FAGT9u1v8A 6AkX/gYP/iaPt2t/9ASL/wADB/8AE1rUUAZP27W/+gJF/wCBg/8AiaPt2t/9ASL/AMDB/wDE1rUU AZP27W/+gJF/4GD/AOJo+3a3/wBASL/wMH/xNa1FAGT9u1v/AKAkX/gYP/iaPt2t/wDQEi/8DB/8 TWtRQBk/btb/AOgJF/4GD/4mj7drf/QEi/8AAwf/ABNa1FAGT9u1v/oCRf8AgYP/AImj7drf/QEi /wDAwf8AxNa1FAGT9u1v/oCRf+Bg/wDiaPt2t/8AQEi/8DB/8TWtRQBk/btb/wCgJF/4GD/4mj7d rf8A0BIv/Awf/E1rUUAZP27W/wDoCRf+Bg/+Jo+3a3/0BIv/AAMH/wATWtRQBk/btb/6AkX/AIGD /wCJo+3a3/0BIv8AwMH/AMTWtRQBk/btb/6AkX/gYP8A4mj7drf/AEBIv/Awf/E1rUUAZP27W/8A oCRf+Bg/+Jo+3a3/ANASL/wMH/xNa1FAGT9u1v8A6AkX/gYP/iaPt2t/9ASL/wADB/8AE1rUUAZP 27W/+gJF/wCBg/8AiaPt2t/9ASL/AMDB/wDE1rUUAZP27W/+gJF/4GD/AOJo+3a3/wBASL/wMH/x Na1FAGT9u1v/AKAkX/gYP/iaPt2t/wDQEi/8DB/8TWtRQBk/btb/AOgJF/4GD/4mj7drf/QEi/8A Awf/ABNa1FAGT9u1v/oCRf8AgYP/AImj7drf/QEi/wDAwf8AxNa1FAGT9u1v/oCRf+Bg/wDiaPt2 t/8AQEi/8DB/8TWtRQBk/btb/wCgJF/4GD/4mj7drf8A0BIv/Awf/E1rUUAZP27W/wDoCRf+Bg/+ Jo+3a3/0BIv/AAMH/wATWtRQBk/btb/6AkX/AIGD/wCJo+3a3/0BIv8AwMH/AMTWtRQBk/btb/6A kX/gYP8A4mj7drf/AEBIv/Awf/E1rUUAZP27W/8AoCRf+Bg/+Jo+3a3/ANASL/wMH/xNa1FAGT9u 1v8A6AkX/gYP/iaPt2t/9ASL/wADB/8AE1rUUAZP27W/+gJF/wCBg/8AiaPt2t/9ASL/AMDB/wDE 1rUUAZP27W/+gJF/4GD/AOJo+261/wBAWL/wMH/xNa1FAH//2X== ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image004.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAFTAiMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDW8EeG 9EvvCNhc3WmW80zqxZ3TJPzEVu/8Ij4c/wCgNaf9+65ew1J9P+F+mCGRo5ptyqynBA3sSR/nvUuh 6jqFl4itra/u5pY7iNeJHJALDI6+/FUo3VzCVdRnynR/8Ij4c/6A1p/37o/4RHw5/wBAa0/791Hd eKbe21Z9O+yXEkqnA8sA7jjOAKisvF9vcyXET2c0MsKM+1sHO3qPY0crK9tC9rln/hEfDn/QGtP+ /dH/AAiPhz/oDWn/AH7qiPGkMlo9xFpt06xkBzxtXPTJqZ/GOnppsV35UxaRioiAGcjrz0xzRysP b0+5Y/4RHw5/0BrT/v3R/wAIj4c/6A1p/wB+6qSeL0tpokvtNubZZRuVmIPHrismfVbmLxuyNeyi 0WQEpvO3btz0pqDJlXgtjof+ER8Of9Aa0/790f8ACI+HP+gNaf8Afuqkfi4XCTTWmlXM8EP33BAI H0ra0rUodUsxcwrIgztKyLgg1Li1uXGpGWiZQ/4RHw5/0BrT/v3R/wAIj4c/6A1p/wB+6bqfieCx 1EafDbS3V0SBsTA5PQZ9ahtvFkM001q9hcR3cYOIOCXI6ge9PlYvawTtcsf8Ij4c/wCgNaf9+6P+ ER8Of9Aa0/791y+j6nqOpeIFE9xfMm/d5cJwFG7+If3exrpvGVxNbaC8tvM8UnmKNyNg9abjZ2Jj XUoOaWw7/hEfDn/QGtP+/dH/AAiPhz/oDWn/AH7rE0jxOdN0KCW+E9080sgDbskAY9frV+XxlbwX MUc1hdRxSAMsjADIPcD0pcjBV4NXbLn/AAiPhz/oDWn/AH7o/wCER8Of9Aa0/wC/dc3eeIdTHiVV QXUcO9f9EIG5h6fjW5L4si+2JZW2n3E90R80XClTjJH1Hem4MI4iDuWP+ER8Of8AQGtP+/dH/CI+ HP8AoDWn/fuq8Pi+1c3Mc1pPDcQKzGJsHOOoz61HD40tJgvl2dwWOdw4+UAZyTS5WV7an3Ln/CI+ HP8AoDWn/fuj/hEfDn/QGtP+/dUl8aQSWclxDp104jI39MKD0JNSt4x09dNS7MU252KCIAZyOvPT HNHKw9vT7lj/AIRHw5/0BrT/AL90f8Ij4c/6A1p/37qpJ4vS1kiF9plzbJKNysSDx64rNl1C7Pj1 bdbub7M0q4jDnbgqD0oUGTKvFbG7/wAIj4c/6A1p/wB+6P8AhEfDn/QGtP8Av3VzXpJItDvZInZH WIlWU4INef6brOpW91aXk97cSW3nbHVnJHbP6GnGN1cKldU5KLR2n/CI+HP+gNaf9+6P+ER8Of8A QGtP+/dc54o1W+l1ueGxu5YorWLL+W5AJ6k8fUCrWjeJU07w8k1/JNczyTOEGckgY7noOaOR2uJY iPM4vobP/CI+HP8AoDWn/fuj/hEfDn/QGtP+/dVW8XJbSwrf6bcWqTDcjkhsj1xT7jxZBHqhsLey nunU4JiA/HA74pcrL9tDuT/8Ij4c/wCgNaf9+6P+ER8Of9Aa0/791yul6rdz32pGW9u/IWCV1Ac7 k54wD0IrV0LXbe00m8vJ7m9uESRVAnILZI6Dmm4NERxEZGr/AMIj4c/6A1p/37o/4RHw5/0BrT/v 3VH/AITNI4YrifTLmO2lJCS5BBx1xVTWtUiOu23l39+iSrEyrCQIyCeM8/nS5GU68LXRs/8ACI+H P+gNaf8Afuj/AIRHw5/0BrT/AL91A3i2D+0J7GOwuZZoiygRgHcRSWPjCxuYbmSWKWAwLvYHDZGc ce+aOVj9tT2uWP8AhEfDn/QGtP8Av3R/wiPhz/oDWn/fuqQ8YbrVrxdJuTaK20y7l4NaMOv21zax XFvHI6PnPGCuDg5o5WNVYPZkf/CI+HP+gNaf9+6P+ER8Of8AQGtP+/dbMbiSNXAIDDPNOqTQxP8A hEfDn/QGtP8Av3R/wiPhz/oDWn/futuigDE/4RHw5/0BrT/v3R/wiPhz/oDWn/futuigDE/4RHw5 /wBAa0/790f8Ij4c/wCgNaf9+626KAMT/hEfDn/QGtP+/dH/AAiPhz/oDWn/AH7rbooAxP8AhEfD n/QGtP8Av3R/wiPhz/oDWn/futuigDE/4RHw5/0BrT/v3R/wiPhz/oDWn/futuigDE/4RHw5/wBA a0/790f8Ij4c/wCgNaf9+626KAMT/hEfDn/QGtP+/dH/AAiPhz/oDWn/AH7rbooAxP8AhEfDn/QG tP8Av3R/wiPhz/oDWn/futl2IwB1NNxnqSfxoAyP+ER8Of8AQGtP+/dH/CI+HP8AoDWn/futGO5t 5FZ1k+RerHIH5mlM9uNh85fnbavzdT6UAZv/AAiPhz/oDWn/AH7o/wCER8Of9Aa0/wC/danmwjd+ 9X5fvfP0+tOymFO4Ybp83WgDJ/4RHw5/0BrT/v3R/wAIj4c/6A1p/wB+61DLCF3+au3Gc7+MUeZF kDzVywyPn6j1oAy/+ER8Of8AQGtP+/dH/CI+HP8AoDWn/futIXFswYidCFxk7uBnpT3eOOMyMx2+ oJNAGV/wiPhz/oDWn/fuj/hEfDn/AEBrT/v3Wo8kUZAkkVCegZsUgmgaUxCVfMHBXdz60AeEeNrW 3svF2oW1rCsMMbKFRBgD5QaKk8fsreNdSKMGG9eQc/wLRQBv6bb32p6Lo1tDbTGGNCgk2ErlnOTn 8vyrY8Q6NrMFzbXLOb2QDCtDDjZt6ZxXQ/D3/kSNM/3X/wDQ2ro6tTsc0sMpXbe5wNvBeXHjWC+N nOkTsrFmjIC/Jz+tRRWF6PEGqSG0n2Olxtbyzhsg4wfevQ6KOcX1Zd+tzz3S7G8Twlq0L2k6yOyb UMZBbp0FQIdcsPD8MVtBcQo0rmQrGd2eMdsgV6TRT5w+rKys+ljzDVrGW5FvNZ2OpSApiSS4VmZm 9var0lje/wDCYCdbGWSPIxuQhG+QcE4x7V6DRR7QX1VXvc81mt41M0kOn6jpt6p/dpDudG/HAIrs fCzao2l51UN5m75N4w5X3rZopOV1Y0p0eSV7nBava3Vj4zXUntZpLXzFk3RJu4Awfxp2j211f+M2 1NLWaO1Ds+6VNvG3A/Gu7oo59Cfq65r363OH8HWd1b+IbuSa2mjRkYBnQgH5hW14zgmuNAeOCJ5X 8xTtRST1reopOV3cuNFKDhfc8vudOvz4fsYxZXBdZpiVEZyAduKv+JbG8mfSvKtJ32WqK22MnafQ 16DRVc5n9WVmr9vwOB1q2u7bxdFf/Y55YFMb5jQtnAGfxqrc2kieI3vr2xvPsc7mQGJSGAI46dD6 ivSKKOcHhk3v1ueeW9k1xHfzW2izwoIXCSyO5d89BtPUmtLwxaXMPhfU4pbeWORw+1WQgt8nYV2N FJzuVHDqLvc890axvI/C+sxPaTrI4TYpjILfQd6rxf27YaAkdtb3EKtMxkYRnf0GO2QK9Kop8/kT 9WVlZnmGrWUt1HbTWdlqUhKkSyXCsxZvb2rTFldnxxBcfZZvJDIfM2Hb9wd67yijnBYZXvcz9fR5 dCvY40Z3aJgFUZJNcRZaRdzeFr+N7WZZo5lljVkILcYOB9K9HoqVKysaVKKnK7POrLSr1fDeqXMt tMbmYpGqsh3kBgScdf8A9VVJ9J1FtBtXWymPlyyb12HcM4wcdccV6hRVe0Zk8LFq1zzpre2u5reG z0S9uDtAdriSRQh9u2KljiutI8ZyXMljcSxszbPKQtuDDjBr0CilzlfV1vfU83sLC/F3qryWM8fm W82AUPUnoPWm2uk6hJ4ZvIxZzCRbhJNjIQWAUg4B69a9Kop+0ZKwq7nBW+q3kOh2Wn2ukyzXURIc TW5ZcZPT86j1qy1CXX7CVrNyVjh8wxRnYpB5A+leg0Uue3Qp4e6s2cPo1ndx+OLid7aZYi0uHKEK c9OayLPSNRmXUoxZzKzR5XchXdhwcDPfFen0U+cTwyatfv8AieZWsMUOmG3n0q/mvfM/1fzrGR+H f8K7jw7afZtHiSSzFsxJbyixfbk+prVopSlcunRUHcKKKKg3CiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAa6kkMOSO1N3D1x9akooApJZWyRPEM7H6ru9809reEsW5DF/MyG74x/KrVFAFF bC0UOAgAcYIz2znj8amniiuIzHJyuc8HB/OrFFAFMWdqoO1dvzbwVbG0+3oPalFpbBSuwYKGMjPY nJ/WrdFAFI2duVcEsdxBJL5PHSpTFGRECSRGcqC2eff1qxRQBUntop5RI7sMIUwrYBB65pRbW4bI AGGD9e4GB+lWqKAPA/HkaQ+MtSjjGFDrj/vkUU74g/8AI76n/vr/AOgLRQB6r8Pt3/CEabjH3X/9 Dauj+f1Fcp4Amlj8K6cpjdofJYqVXPzeY2f6VsCbVGjmLQmNmQvDgA7SOinnvxz9aANP5/UUfP6i qAkvlu0R95i2KSwTq3OR0+npUfm6kbebCv5qjKkINrHPQA8/560Aafz+oo+f1FKgKoAzFj6kdaiv GmS3JgXdJkYGO2Rn9KAJPn9RR8/qKzjNqH71QpyDw2z5cZ6Y65x9RR9ovwjHyX+aI7AVBPmZPXHb pQBo/P6ij5/UVnrLqHnTq4I2j938mVPyj29c96s2Mk8kbeejqwOMsAM/T/69AE/z+oo+f1FOrJef VlVmSBXxGx2YwS244wc+mOKANT5/UUfP6iqkxvDDatGxV2KiUBQcAjk1H5upZQeUu3z2Unvs5wcf lQBf+f1FHz+oqlYS3j2rNOp8/bkKw2jdj6f40wT3ixoxWRn3L5i+Vwo749f1oA0Pn9RR8/qKoTTa g03+jxgJvXHmLj5cHOe45xUaXGqsjMbba2Hwpxx8wA5zz8ufrQBp/P6ij5/UVHbM7I29nbngum01 MaAG/P6ij5/UVnCW/wDMf5X8jeAGKDeBjnjvzTlnv1YGSImPDgYX5ieNpI7d/wD61AF/5/UUfP6i s1ZdVEiB4xj92GIAxyPm9/ypqXOrJ5Xm2vmAhydmAf8AZUjPB9+lAGp8/qKPn9RWdHcaigRbiAlh IN7IuQUIPoeoPFWLmS43ReUrLEwJdlXLA9hj86ALPz+oo+f1FUhPef6QgRt+0eSxTAJ29/xqKa41 E4aKJguEDZTnOTux7YxQBpfP6ij5/UVBYPcPbk3K4cMQOMZGeDVmgBvz+oo+f1FZqz6tsUNAn+tG X/2N2MY9cd+lKZ9S8kARfvVWQv8ALwT/AA49e1AGj8/qKPn9RVMvdSzW5jLpG2RKCgGMD396hin1 Usu63RgYxkH5cOSefpjHFAGl8/qKPn9RWbbzaiZoluFZVMaliqcbuc+vtSJPqRgBCM0uxi6sgAU4 OMevOKANP5/UUfP6iqEdxqBu1L2xFtwh4G7P97r0zxj8a0aAG/P6ij5/UVWunuVnUIGEO0ksi7m3 emPSq0s2qgXIigRv+eLHjGFHUZ5yelAGl8/qKPn9RVK2lvGvJFmVljB+X5eCMDvj1z3pZJLxrW6m iXEnIhRl9O5+tAFz5/UUfP6is55tV38W8YAjPGc5bI5+mM4FKZr8MQiM0WRl2TDjrnC9+3/16AND 5/UUfP6im25ZogWLE+rLtP5U9jtUnBOBnA60AJ8/qKPn9RWYtxqu1y9ttLEOgGDtXPKnnrjmpHfU JHLJuSMzKqjYM7Mck5980AX/AJ/UUfP6iqDS6kDhYVI+0bcnqU9cf1phm1Hy8rGWk8ti6sgAVscB fXmgDS+f1FHz+orMMuphWyhGCP4csRjnBHHX2q2ZLhzboqNGWG+QsBwB29Mk/wBaALHz+oo+f1FZ 80uoiSdYkLHB8s7cKPTOev4Gknn1AsWhjYR7kAynzY53HH5dqANH5/UUfP6is2KfVMxE24ddrbwf lJ+bCkH6UJJqjQyCRQsixsVKrwWDHA59sUAaXz+oo+f1FNgEghTzWLPjJyMc1JQA35/UUfP6inUU AN+f1FHz+op1FADfn9RR8/qKdRQA35/UUfP6inUUAN+f1FHz+op1FAHgvxB/5HfU/wDfX/0BaKPi D/yO+p/76/8AoC0UAeo+ALlI/BWmqVckK3Rf9tq6H7XH/ck/75rC+H//ACJGmf7r/wDobV0VAEX2 uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj/uSf981LRQBF9rj/ALkn/fNH2uP+5J/3zUtF AEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj/uSf981LRQBF9rj/ALkn/fNH2uP+5J/3 zUtFAEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj/uSf981LRQBF9rj/ALkn/fNH2uP+ 5J/3zUtFAEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj/uSf981LRQBF9rj/ALkn/fNH 2uP+5J/3zUtFAEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj/uSf981LRQBF9rj/ALkn /fNH2uP+5J/3zUtFAEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj/uSf981LRQBF9rj/ ALkn/fNH2uP+5J/3zUtFAEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj/uSf981LRQBF 9rj/ALkn/fNH2uP+5J/3zUtFAEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj/uSf981L RQBF9rj/ALkn/fNH2uP+5J/3zUtFAEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj/uSf 981LRQBF9rj/ALkn/fNH2uP+5J/3zUtFAEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3zR9rj /uSf981LRQBF9rj/ALkn/fNH2uP+5J/3zUtFAEX2uP8AuSf980fa4/7kn/fNS0UARfa4/wC5J/3z R9rj/uSf981LRQBF9rj/ALkn/fNH2uP+5J/3zUtFAHg/j9g/jXUmAIy69f8AcWil+IP/ACO+p/76 /wDoC0UAeq/D/wD5EjTP91//AENq6Kud+H//ACJGmf7r/wDobV0VABRRRQAVWmvYobnyZFYfIG34 yMk4A+vFWaNoznHPrigClHqlu3lBlkV5BnbtyV5xzj3pTqUIzhXKhGfd0BC8GrXlpwfLX5eny9KP KjDE+WmW6naOaAIGvolSVwGKx5ye2R1FIb+AMwbeoUsNxXgletWPLjLFjGuSME7Rk0u1f7o9elAE MF5DcRPKhYKnXcMds1FHqUEqgxiRyW2bQvOcZ/lVtUVV2qigegHFIsaJwsar9FAoAqtqMAClAzht nIGMbunWlur4W9wIfKZ22b+DyRnGAPWrJijyCY0yvT5RxTsDduwM9M0AVzewg4yd24ptxzkDP8qj j1GKRYyEcM+3CnHRuhq0Y4/M3FE3+uBmhYo1+7Gi854UDmgCCK9imKhAxLAE+2en8qJr2OCV43Vv kCkkDPXP+FT+XHlT5a5Xodo4+lDRo+dyK2euRmgCu2oW6lwS3yrvJx1GM8ev4Uk2o20LMrMSyttw ozzjP8jVny4927y1zjGdo6UghiC7REm3rjaMUARx3cUs/kru3YzyMZ4zx3qV22Rs5GQoJoCIH3hF DeuOacQGBUjIPBFADYnEkSSAYDKGx9ajmuPJliQrkO23O7p17fhUqqEUKowAMAelIUQuHKKWHG7H NAFVNTtpAdm9iHCYA5JPT+VO/tC2EZcsQAu45HbOPzzVhY41+7Gi854UChoo2xujQ46ZUcUAVn1K 2SSVCzFowWOBnODg4/OpftUfnCEhhKcYUjnHr9Kk8qPcT5aZPU7RzQIkWQyhPnIwW74oAYk265lh K4KBTnPUHP8AhUc14sM/lshI2liVIJAAzkip2jRiCygkEEHHcdKQxRmTzDGhf+9tGfzoAq/2gMcx HOUzhgeGOAf/AK1SxXXmXcluY9pQbgd2Qw9qmEcajCooGc4AHWhY0QkqiqT1IGM0AOooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKCQCASAT0GaACiijBoAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooA8I+IP/I76n/vr/6AtFHxB/5HfU/99f8A0BaKAPVfh/8A8iRpn+6//obV 0Vc78P8A/kSNM/3X/wDQ2roqACiiigArmvGGkxyabfaot5fQzw27FVhuGRMgcfKK6Wo7iCK6t5Le eMSRSKVdG6MD2pMaOO8H6Ws3hy11ia+v5LlonYq9yxQnkfdrK8G3fiOPwhNdWP2FoIHkcm6Z2d8D JAxwK9DtbK2s7NbO2hWK3UECNegB61HaaXYWVi9lbWscVs+d0Sjg560xI5S58ePF4TsdWSwBuLuQ xBCx2IwPJJ649qXTPFWtPqltbXenrcQzttLwQSRmP3w2ciuoi0jTYdO/s9LGH7HyfJK5Xn2NRWPh /RtOuPtFnptvDN2dU5H0PagA8SGYeHNRNuXEot3KlCQwOO2KyPB+rW7+Cbee5v0aSON/NeSXLKcn rk5rqayZvC+gTzmeXSLRpCck+WOT7jpSA4vRNd1PS/h1dasHNxN9rxG1yWcFTgeufWtTU/EniPR9 NtdXvLbTXs5igMMRfzF3DP3jxXWXWm2N5Y/Ybi1ie14xFtwox04FJeaXYX1mlnd2sc1umNsbDgYG BTA5m7nhf4maYv2SMtJaFxMS29eG4xnH6UzSte8Ta1d6pBYx6ZGtnOYxJMH5GTgYB9utdSdMsTfx XxtY/tUSbElxyq+n60tlp1lYPO9pbJC07b5So++3qfzoA4qfxVrGpeC7+/tRBZ3VlKY52GWyOOU9 Dz3qxa+JtT0zwSusakbe+dljEQhyGG7vIf8ACuqtdI02zt5re3soUhnJaVNuQ5PqDTLPQtJsEmS1 063iScYkUJw49CPSgDkbbxjrvmwSSadHdQzMAY4IJEZQfRm4atGfXtcn8YXeh6bDY7IoVkElwGG3 IHXHXr04rYtvDWh2l0Lm30q1jmU5VhGPlPqPSraadZR6jJqCWyLdyLseYD5mHp+goA5vTPFd6txr NlqtrE1zpcRlLWudsg9AD07Vmz+INc1Twpd6j5mkQ2csLr5PnMJlHT73Td7V2sOmWMF9PexWsaXM 4xLIBy496pt4X0BpmmbR7Qu2cnyx39ulA1oclZeKJtB8DaJ5cH2i4uyyK8pJVcMeuOT16VpaN4o1 mbVoLO908TRTdZoIJIzH7kNnI966UaTpw05dO+xQNZr0hZAyj8DUen6DpGmTGax063glIxvRPmx9 aBHN6d4n1nWpLuawGlWttbSFDHeSMJGx3OPu/lSfC6aSfSdQeRy5N438W4DgdD6V0d14d0W8uvtV zpdrLNnJdoxkn39fxqzp+m2OmRvHY2sdukjb2VBgE+tAM5bxfql5H4i03STfvpmnXKkyXacMTz8o Y/d7fnV2HSNOsbu2ki8SX0bs4ASS+Dib2w3X8K6C6tLa9gMF3bxTxHqkihh+tUbTw3odlOJ7bSrW OUHIcRgkfTPShAzBt/E2r6xqF9DpY0yzis5DGRfM3mPjvgYwOKrSeObx/Cl9qMVrAl3Z3CwNyXif J6qeK6m+8P6NqM/n3mmW00vd2Tk/U96ll0fTZtO/s97GD7GCD5IXC5HsKAOX1TxH4j0bT7XVr620 17OYoGhiL+Yu4Z6nirWu6/rNtqS2+n2cC2/lq5uJVaU5PbYhyK6C90uwv7NLS7tY5rdMFY2HAxwK gvvD+jahKJbzTbeaQADeyc4HQZoA5q78cvaeHIr1Vtr26knMGYQ6xIevzBhuzjtTtM8Va2+qW1td aetxDO20vBBJGY/fDZyK6pdL05LH7Ctjbi0P/LHyxs/KoLHw/o2nXH2iz023hm7Oqcj6HtQBz9t4 m1fV9SvodNGmWsNnIY2F67eY+O+B0HFQ6d4w1K78P69fvFa+bp7YiEeWQ/U55HvxXTXnh/Rr+5+0 3emW003d2jGT9fX8araB4bt9EOoBJPOjvZfMMbRgKo5+XHcc0AZl94tkt/AkOtRyWhvpEQ+WTldx PIxnPHNQax4zvLNtMtLa1jN1eWyztK6syLkdFUcn863P+EU8PfP/AMSa0+fr+7/l6fhVy60nTby0 jtbmxgmgiAVEdAQgHHHpQBgaB4k1W8vJ7S+08YSIyLcxRuiZA6MrciqOkeIvFWr6BNqsEOlJHAX3 CQPl9oyQADx+ddZp+jaZpiOljYwW4kGH2LgsPQnrT7TS7CysnsrW1jitnzujUcHPWgDlpvHLr4Us dVSxX7RdymAK74jRgcEk+laFpqWtQ3ka6jPo00Lqz7bWVhLwM/Kpzu/SteHSNNh07+z47KEWfJ8k rlefY1FY+H9G06fz7PTLaGXs6oMj6HtQBxkPjvWL9JLqysrdYEYgRNDI7HHq44BrYvvEusf2Vp9x Z6QIprnd5qzknysdwowWB65FbFz4a0K7uDcT6TavKTksYwMn39amvNF0q/hjhu9Pt5Y4htjDIPkH oPSgDN8L65Pqk11bXlxaPcwYJSCKSNgD/eD/AIdKj8S+I7nTNUsdKsoYPtF4CRPdMViQfh1P/wBb 1ra0/S9P0yNo7Czhtlb73lqAT9T3p19YWeow+Te2sVxH1CyKGx9PSgDmYfEmrW+vw6JfLp9xPcxs YprQsVRsHG9TzjisLwhZX+q+K7++vvsdxJaXWJHk3llPP+r5wBx3rvtO0bS9LJawsILdm4LInzEf XrUlnptlYSTyWlskL3Db5So++fU/maAOf+JNxPbeEZZbeaSGTzUG+Nip6+orkdQXVbTRxewQ6nau iq5uG1dZABxk7M5P0r0+/sLTUrY217bpPCSCUfpkVmp4Q8OIwYaNa5Hquf50IDJu/FU1rH4bMM0M 9vqBCzXEqFCcYBI545Jq5qXiOSDxjpmj2rW8sNypMx+8y9cdDx0rau9MsL20W1urOCWBfuxsgwv0 9PwqtbeHNFtJ4Z7bTLeKWHJjdEwRn370dRdDCtNd8Rapruradp8enIllLtEs4fpkgDAPJ49qbZeN bg6Dq15e2KG602TynWFjsck4zzyBmuptdOsrO5uLm2tkimuDuldRy59/zptrpWn2f2j7PaRRi5O6 YAZEh98/U0dBnCeIdY1y68GzXdxPpAt7lFKpbysJUyQRg5wT6j60+4lkGr+Bx5j4eIbvmPzcDr61 1n/CKeHsuf7GtPnGD+7/AJen4VbOkac0lpIbOIvZjFucf6se1NCOQu/GupTaxeWWnWkUSWrlCZoZ JWcg4zhcbRU83ja9tvDP9oXOkGK6M4gUMSImzzvyeccdK6TUNB0jUpfNvdNt55P77J8x/Gp00ywS w+wLZQC0xjyfLGz8qXQZ5741v9aOkWYvrrTGWS4RlNjKwccHjBPzDnrXpa/dX6CsceE/DyqVGj2o BYN9znI962elABRRRQAUUUUAFFFFABRRRQB4R8Qf+R31P/fX/wBAWij4g/8AI76n/vr/AOgLRQB6 r8P/APkSNM/3X/8AQ2roq534f/8AIkaZ/uv/AOhtXRUAFFFFABXG+P8AVrzTLnR47bUWsYbiVlmk VQcL8vPI7ZNdlWdqmh2GrXFpPeIzPaPviw2BnjqO/QUAcYdfvrbVrGHR9fbXvOk2zW7QD5V/vblA xWxrXjJ9N1Ca1itLWYQnkteqrH/gIBwfrXVJGkefLRUz/dAFY7eFtL+2z3UYuYGuDmdIbh0SU+4B oAzW8aBvD9trkGnPJZmXy7kF/ng5xkDHzD8qvy+I0k1yy0vTIVvGnTzpZQ+FhjPQ9OSfT6VDLoVz pmj/ANmaBBZvbSF/Ojvnc53emKf4P8MReGrF0LrNdzHMsoGBgdFGewoAo2ni3VNRm1CLT9AE/wBi laNmN0EBAz6jrx0plr4zv9R0uTUdO8PPLbwZ85pLlVwQMkKMc4H0roNM0Sx0prxrRHU3bmSXc+ck 56enWmaboGn6Xpc+m2qSC3nLFwzkn5hg80ugGTdeObC38P2Wqi3ldrxikUOQDuBwct0AHrUWmeOF udTgsruxWIzttSW3m81QewbgYrWXwvo40aLSXtfMtYmLIHY7lJOchuop+m+HbHTboXML3ckoBCma 5dwoPsTiq6h0Mq38VanfalqNjp2gi4eylMZdrkIpGSO46nHSoJPGV3d+GL+/0/TxHd2TmOeOaQER YH3h/e+nFdFpujWWmXV5c2quJLx/Ml3NkE89PTrUNj4c0uxgvoIoWaK+YtOkjFg2c5+nWp6B1MvR vEWqyeF21fUNKMgEYeP7K25psnH3f4cfjS6N4sn1G/ht5rG2t1l6f6aDIvHQoQCT9Ku2nhTSrO1m tYvtX2eYBTGbl8KAc/LzxzRa+FNJtr2K8KXFxPCcxNczvJsPsCarqBuUUUUgCiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKAPCPiD/yO+p/76/8AoC0UfEH/AJHfU/8AfX/0BaKA PVfh/wD8iRpn+6//AKG1aYu7uW9uoLeCErbsqlpJCCSVDdAD61mfD/8A5EjTP91//Q2q7bzJbarq RmWRRI6FCI2IYBAOoHrUs0pq99L/APDosPLqMaF2htAoGSfNf/4mobK/ur+3E9qtnJESVDCVxyOv VasNqNvtO0yE44HlOP6VmeHSumaWLW4clw7NlI3IOTn+7SvrubKK5G3HXTv53NPdqX/PC0/7+t/8 TRu1P/nhaf8Af1v/AIml/tG1/vSf9+X/AMKq3MttcSg+dKsbDbIoif5gORg44p6dzO0v5fzLO7U/ +eFp/wB/W/8AiaN2p/8APC0/7+t/8TVEvG0fz3UhkYEM3kOM9Mdu2KUyIFYJdSDP/TGT+8T6e/6U fMLS/l/Mu7tS/wCeFp/39b/4mjdqf/PC0/7+t/8AE1TWVPl8y8nYjbkiKQZA69u9LNLFLbRxGeRm STdloX5HPHSjTuFpfy/mW92p/wDPC0/7+t/8TRu1P/nhaf8Af1v/AImoLa5t4rcwySO6nP8Ayxfv 26VApiyC93KxPyv+5f5kHQdOD7+5o+YWl/L+Ze3an/zwtP8Av63/AMTRu1P/AJ4Wn/f1v/iao+Yd hH2+cnOf9S/P6cfhS+YocsL2flQCPJfkgYznHWj5haX8v5l3dqf/ADwtP+/rf/E0btT/AOeFp/39 b/4moI7tBbvDJKzZUgMIpM5P4VATDsjX7XORGpVQYX4yuPTn8aPmFpfy/mXt2p/88LT/AL+t/wDE 0btT/wCeFp/39b/4mqlvPFCyMGxtUIVWGQBvc8daSV4JGuCLqdBN1Ahf0wO3H4UadwtL+X8y5u1P /nhaf9/W/wDiaN2p/wDPC0/7+t/8TWeDELjzRO/31b/Uv2AGOntU1rNHBM0jXMkm/lwYHGT6jj8K NO4Wl/L+ZZ8zUR1isx/22b/4mgPqR6Q2h/7bN/8AE1g32npdX01wt7hXbcFe0div44rSsZI7fTvs ckzSALgOIZATnrnjij5haX8v5l3dqf8AzwtP+/rf/E0btT/54Wn/AH9b/wCJqirxrtIuHQruA2wO MZHXpyR70CYhUH2qV8MS2Y5BkYx2GevNHzC0v5fzL27U/wDnhaf9/W/+Jo3an/zwtP8Av63/AMTV NJI0Jb7ZPvJBLeS/IxjpjFEUqgKJbydgDkgRyDPGPT15o+YWl/L+Zc3an/zwtP8Av63/AMTRu1P/ AJ4Wn/f1v/iaqzTQywRKZnaRByzQvgn1xin3FzBPa+SZXByvzCB+xB6Yo07haX8v5k+7U/8Anhaf 9/W/+Jo3an/zwtP+/rf/ABNUC6rgRXcijeW/1Dj07YxTpZllXY13JsGf+WMmTyCM8dulHzC0v5fz Lu7Uv+eFp/39b/4mjdqf/PC0/wC/rf8AxNRQ3sMZZTLI6EkgmKQkeg6VWjMCRwJ9rnKxEMAYX/Ht z/Sj5haX8v5l7dqf/PC0/wC/rf8AxNG7U/8Anhaf9/W/+JrNhCRJtW6dSU2FhA+Tz16dat2t1Fbr 5Xmu8QztPkuCo7DpR8wtL+X8yfdqf/PC0/7+t/8AE0btT/54Wn/f1v8A4mqLNA1u0JlOSMeb5Em4 8554pZWgcr5dzLGsfKAW7fe9TwPpRp3C0v5fzLu7U/8Anhaf9/W/+Jo3al/zwtP+/rf/ABNVri6j ubNonkKOWBysMmMA59KYZYjGV8+RBsKgLC+Mk9elHzC0v5fzLm7Uv+eFp/39b/4mjdqf/PC0/wC/ rf8AxNQw3cSSOXmkcHOCYpP5YxxVezeK1dW89m2rtP7l/m569KNO4Wl/L+Ze3an/AM8LT/v63/xN G7U/+eFp/wB/W/8AiaqXElvNMzC4lRDhtohf746Hp+lN80Boyt5ICDuciB/mOeeMdKPmFpfy/mXd 2p/88LT/AL+t/wDE0btS/wCeFp/39b/4mqBkGSftcu7aBny5Oeep4/QVIZ8tkXsoHYeQ/fr2/L0o +YWl/L+Zb3al/wA8LT/v63/xNG7U/wDnhaf9/W/+Jqn5ykMPtkwzxnypMnkH04444oMluZSTPNs8 3zMeXJnGMY6UadwtL+X8y5u1P/nhaf8Af1v/AImjdqf/ADwtP+/rf/E1Wa5jksZLZ53JK7RJ5L5/ Him7rQOhWeYAEkgROueMcYAxR8wtL+X8y3u1P/nhaf8Af1v/AImjdqf/ADwtP+/rf/E1Q3RFnLTl mdVHmGCTcpAxkcVYmuoZkj3O25DkqYnKt9eKPmFpfy/mT7tT/wCeFp/39b/4mjdqf/PC0/7+t/8A E1SJtXlLvK6jYFCpA4wQSeDjj8KWKcQSNKty0jv98PA4BOevTjA4o07haX8v5lzdqX/PC0/7+t/8 TRu1P/nhaf8Af1v/AImq9xcwSzI6yFNmSG8h85wRjp05qKOUbcSXsxGSeIpB1GBzj15o+YWl/L+Z d3al/wA8LT/v63/xNG7Uv+eFp/39b/4mqTyjaAl7OOBkGKTk45OccdqlhukjuN73MrpjGGifOfyx R8wtL+X8yxu1P/nhaf8Af1v/AImjdqf/ADwtP+/rf/E1RgeKBoit1KwQsSrQvgk56ccdelSXMttc Sg+fKsbDEiiJ/mx0wccUfMLS/l/MtbtT/wCeFp/39b/4mjdqX/PC0/7+t/8AE1R8wfK322beTlyI XGfQjj0FO86P5sXcwODtxFIADuznGOeOKNO4Wl/L+Zc3an/zwtP+/rf/ABNG7Uv+eFp/39b/AOJq l5qbwxupTtfcP3Unv149/wBKElAXD3szENnJhf0Pt70adwtL+X8y7u1L/nhaf9/W/wDiaN2p/wDP C0/7+t/8TUEF3HCw/fyyKQAd0chIIHJHHeoVeAOx85lzIX3rC+/B7dKNO4Wl/L+Zd3an/wA8LT/v 63/xNG7U/wDnhaf9/W/+JqnHNFE0bLIcx8ZEMgMn+9x+P1p8k0D3Mkq3Myb1CkCF+g/Dr70fMLS/ l/Ms7tT/AOeFp/39b/4mm2t3PJfzWlxFGjRxrIGjcsCGJHcD0qpC8MTxMJmOxVBJhck49MjipbRx Nrl1Oiv5Rt41DMhUEhmyOR7ij5jt7rvGx438Qf8Akd9T/wB9f/QFoo+IP/I76n/vr/6AtFUYHqvw /wD+RI0z/df/ANDarsMZutU1FZJ7gLE6KipKygAoCeAfWqXw/wD+RI0z/df/ANDatUWU0d5c3EF0 qeeysytFuwQoHByPSkzSm7X1t/w4k2nnyyIbi4D9i9w5A/AGqGjRXN19pF3LMUjk2xTRzyKJR3IB P61eubK5uoHgmu0MbjDARFcj6hqistIewLG2uFXcADujZuB0AyxxUNa7G8aiUGnLX+upZ/s+P/nv d/8AgQ/+NVLs2tpMkbz3ZJ5Yi5f5F6ZPPrVzyr3/AJ/I/wDvx/8AZUnkXnP+lxc9f3HX/wAeqrLs YuUukvzKc72cMbP5965BYbVuGz8vXvRm2WV0eS+VUIXf9oYjJXPY1b+y3O4t9ogyRgn7P/8AZUot 7sDAuoQPa3/+yp2XYV5/z/mVENq7oglvt7kYHnt3Gc/e9qderb2aKWmu3ZjwouWyQOp61YFtdKML cwgdeLf/AOypVt7tAAt1EoAwMW/Qf99UrLsHNL+f8ymzWu1mjlvpFVkG5bhsfN06t705RbNK0Qmv Sykg/wCkNxzjuf5VZ+zXW0r9phweo+z9f/HqDbXRIJuYSRyP9H6f+PU7LsF5/wA/5lO3ks55EjWa 9DsBx57kAkZ65pZZLGKZ4muL0ugJOJ3OcYz39xVsW12GDC5hyBgH7P0/8eo+zXRYt9phyep+z/8A 2VFl2C8/5/zKcj2kavmS+3oGLJ9oYEY6/wAWO4p8scaSwxrJckyoX+a7ZQAMe/vVlra6f71zC3Oe bfPP/fVD2t1JjfcQNjpm3zj/AMeosuwXn/P+f+RSWW0K5Mt8Bx/y8NxnPfOO3WnMbULuWW9Zd4Td 9ob1x65q21tdN965hP1t/wD7Kj7Ndbi32mHcep+z8/8AoVFl2C8/5/zKZkswoJmvuQCP37dD0Od3 HTvSySWMaFmubzgsMCd8/KMnvVr7Jc4I+0QYJyR9mHX/AL6pTa3JYsbiAseM/Z//ALKiy7Bef8/5 lZPsj3X2cTXwk6EGZ+DjOOtNJtlZ1L3xKM4O24Y8LjJ6+9XPs93u3faod3TP2fn/ANCo+z3fP+lQ 8/8ATv8A/ZUWXYLy/n/MorJbFnBe+CgkKftLfMAASevuPeng2rY2SX7Zfy1xO3JxnufSrRtrphg3 MJGc4Nv3/wC+qXyLz/n6i65/49+//fVFl2C8/wCf8yl5ll5e8zXygqGUGdgWB44+b2pBJaMGZZb3 YAjBjcNyG6d81dNtdEYNzCR6G3/+yo+zXWQftMOQMD/R/wD7KjTsF5/z/mVA1oQuJb4ltu0Cduc8 D+L+dLasBq0IhmnaKSCQlJZC3zKyjufrVoW10ucXMIyc8W/f1+9RFZyrfLdS3CuVjaMKse0ckEnq fSk12RSk9eaV9PMuZozRRVGIZozRRQAZozRRQAZozRRQAZozRRQAZozRRQAZozRRQAZozRRQAZoz RRQAZozRRQAZozRRQAZozRRQAZozRRQAZozRRQAZozRRQAZozRRQAZozRRQAZozRRQAZozRRQAZo oooA8I+IP/I76n/vr/6AtFHxB/5HfU/99f8A0BaKAPVfh/8A8iRpn+6//obV0Vc78P8A/kSNM/3X /wDQ2roqACiiigAqjdX8lvdtH9mZ4kjV2dTyMsRwO9XqKAMwapL5io1qF/0kwMTL90Y4Y8d+w96a uto6yMtu7BN/3WBPynHzf3c9q1aAAowoAHoKAKX9obrVZY1UvIAEXd1YnHp04zmq0usPEpP2cMDh kydu5ScZHqe+OwxWt160UAZsmrBWnUW7kxhzjv8AL6jsD29aku9SS2KDyi+VLHBx0/hHq3tV7NFA Gc+qhFZmt2RRMYg0jBRkDOSew/rTU1OS5tfPtYhhYTKwfn6Dj1wT+VaLokilZEV1PZhkU4AKMAAD 2oAzF1OQ3CRmAAFlXbk7yCAd4/2Rn9DUj3VyL4RoIGhKGQv83yrjgk9OT29Kv0UAYn9tSramSQQC TzSirk4kA54bp+Pap11gfapUkiKRpnHBJbHcex7etamaKAMz+0bhJ1ilt135VSgJ3NkZyvsOh+hp iavMyMfs4PyhsgnEWTjD+468ela1GaAMeTVp1SJljiIMvlt1O5c/fQdSKt3mofZot4t5mO4jPlsQ oHVjgHj09au5ooAypNXcahFBHblo32fMwIOGHXHXj6flUb6tdxwo5tEdi7rtVsFirEfKDz0571s5 ooAp3F3JFJAEhJR5vKfeCCOCcj24qgutTfZC7QJ5ocKQPupnP8WcHp6itujNAGcdQmbSzdJbFZRH 5hRgdvuM+tSX1+LW3aThCCADKDhiewx1q7RQBlx6rLJNGggT5iq7Q24nIyWBHBUdPwNRtqtysduz RRbnlMcijOQAxXco6np+tbFGaAMhtVuNkxS3XeiO4Qk5Tb2b69sVINTma5SIQAbmVdpJ3cjO/wD3 R0rTooAyDq06wxu1uocpuK5P7w5I2p78Z59atXd80ITbEU3OVMkwIRcDOT9egq7migDK/tWYtH/o uzcEOxidz7jj5fp1/wAKa+rXHlTMluhZI3k2ZOU2/wALe57YrXzRQBnrqO7U1tMxHK5YbiGTjI+u fQVoVXuL62tnCTzBGIyBgnj8Ki/tfT/+fkf98t/hQBdopFYMoZTkEZBqP7TbibyfPi83ONm8bvyo AlopGZUGWYKM4yTjmmPcQRx+Y80apnG4uAM/WgCSimRSxzJvikSRem5GBH6U8kKMsQB70AFFFGc9 KACiqWoavYaYyLeXAiZxlRtJyPwqSz1C0vlDW0ofI3AEEEj1we3vQBZooqJbmB5DGk8TOvVQ4JH4 UAS0VFFc282fKnikxydjg0RXME5IhnjkI5IRwcflQBLRRmgkDqcUAFFVYNRtLi5kto5v38f3o2Uq w/A1aoAKKimuYICBNPHFnpvcLn86kUhlDKQwPII5zQAtFIzBcbiBk4GT1NLQAUUZooAKKiurmGzt 3uLmQRxJyWaktLuC9tkuLaQSRP0YUATUUySWKIAyypGDwNzAZpysrZ2sDjrg9KAFooooA8I+IP8A yO+p/wC+v/oC0UfEH/kd9T/31/8AQFooA9V+H/8AyJGmf7r/APobV0Vc78P/APkSNM/3X/8AQ2ro qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAx9Xt7mW6VoYpXXZjKA4/wDRi/yqC30u6mVi7tBjjEgfn8pTW/RQA2NSkaqT kqAM1SXS4xNdyGaXNyxYgNgLlQvT8Kv0UAZL6PJKV8683BViVQI8fcfdk89TjFWYNOSHS5LHfuV/ M+Yr03knp7Zq7RQBlSaIrzQyC4cCNETbyMbe64IwT3pkugpNHOkk+8SsGCumVQhtwCjPC+o/Wtii gBFG1QDjgY4GBSICAc+pNOooA5nxRYTXWoWlwkE0yQqTtiTcWbOQPaqWmW+pPrlpLJZ30MKOzMsr Dy0BB+6O3PauzooWgPUKzYtHiRcPNJJiR5UBwArNn09Mnqa0qKAMyHSmEVrHLOhW2GEMce0n5dvJ yfyqxp1ilhbJCsskm1AuXPp6DtVuigLDWBLKfQ1DfWcN/atbTglGwflOCCOhB9asUUAc1N4cubO5 GoaXeySXi5yLo7t49M9q29NuLm5tFku7RrWXOChYH8R7VaooAgu7VbpEViBskV84z0OcVUfSd0rt 9pZNzM29BiTkHjdnoM9Mdq0qKAMv+xwduZgu1kbbGm1TtOckZ6nPWrGm2JsUdPNDqxBAC4x+PU/j VyigBpBLqfTNRXkD3NpJDHcSW7MMCSP7y/Sp6KAMb7DcWEBlKDVHRf8Alr/rT9M5H8q0bCV5rKOR 7RrRiP8AUtjK/lViigCnfWJunSRJBFIqlQ+DuAPpgj9c1CukIssk3mkzvKknm7QGG0AEfjj9a0qK AMb+wSzS771yJdu4BcA4cNk89eMcVONJUal9rE743BgmT8uBjAwentitKigDwj4g/wDI76n/AL6/ +gLRR8Qf+R31P/fX/wBAWigD1X4f/wDIkaZ/uv8A+htXRVzvw/8A+RI0z/df/wBDauioAKKKKACi is+7mlGqQwPIYbRoy3mDjc+fuk9uOfegDQorNe7EEgjhn80SShGeQ7lh+XPXvnHr1NRT6rNErbVh bbcJCJDkI4bGSPcZ96ANeiso6lOr3kOIHlgkRQd20MGGe56jnvz7U0as58lQqjzHdGkZcKu3tycE nPrigDXorK/tC68+yhZIEa4aRSS2eFGQRg9/Smpqkz2ysqwlxO8T4bGQueVBIz24zQBr0VmQ6mXn t1do0imgZw7KV+YEDHP16VAmsTPY29wFh+eNnfByRg44UkEj8c+1AG1RWfql00WiPdI2DtVgcleu PxFNm1GSO98rEflb0QMvzE59QDkfkRQBpUVmatM0N7puyYRl5mVtzHBG09RnnmmDVZVKFhEYvtXk NKMhWXGdwOeOeO/NAGtRWJcao72tyweMeRdpECjFdykr7+5/KnSXzWt7qRQ+YEMOFLEqm7gt7AdT QBs0VifaXF9qQ+1I+21V12MQoPzcjk46DpU0N/M8lhAjwgT23mlnJYggD356/pQBq0Vjw6w8sFo7 CKPzhJubOQCpxgDPer0E08um+cwRJihbap3BT6deaALVFYCXlxImiSG5QzTkh+cA/ITyAeeatR6q zQkO0IkW5a3zzg474zx+JoA1aKxTqdxLDayI8UWbswSnGRgbuevGcCr2oXjWiwbUDebJsLn7qcZy f5daALlFZUmo3MawFlgUSXHk7ycgrgkNweD7ZqKfUpSoBZNqXccXmoxVZAcZx9M8jkUAbVFZn9pS i8aJkRl3sqCP5i2ATjIPB47jHvSJqcvl20mxJTMpJiizujwpPP5Y7cmgDUorDF9JLqGlymePEqyF ooyePlyFPPJz7DmrFlqVxdCB/JTbJnfGGAePr78ntjAoA1KKydTuXS401lLW5a4KsJDgFdh6gHkZ xSrqjklGaIHz/KWUA7ZBtzkc/h1xxQBq0Vjpq80lpFKqRBi0gkG7kbTjIUkZz9fzp39qzO5SNEUi FZFL/KJCR0GSMD9aANaisHU9Qmk0+/G5LV4UGFLHeTgHIII45wOvSrmuSmPw/czRyFXWLcrq2Dn6 igDSorKl1G4j89YvKnKW5mDICQCP4Tz3/pT4tT829ihR4SklsZsg9GGOOvTmgDSorHtNVnlTT5JR BtuwwKpnKkAngk89MYqJr+SeTS5jNHH5k+GiUkFRtb5W556DtQBu0VhW+oPAkqqfMDXzxB3bIjXq M8/gOe9WTqM4aKN1ijEkjKJycpgDI4B4J9M9qANSis3Q5Wlhuw0vmFLqRQdxOBnjGe1Q/wBqziOd z5DPFcGEQrnc4yBxz159KANiisptVIuo0BiaN7gwHqCuAeefcen4062vbuW6No6xrPE5Mp2nb5f8 LDnv/Q0AadFYsWrXLw28p+zYluWt8c8YJG7Ofbp7046vKokQpGzpdfZzIvCqMZ3EZ49OvWgDYorK l1G5ijjJSD57lYQxbhlPfg8H2qK61K5W1vQkkSy20yJvVcgqdvbPHU0AbVFZk2oyRXXlkxNFuRd6 fMST6gHI9uCKsXl2YLmCH5UWXdmWT7q47fU/0oAt0Vl3Goywrt327SiJpPlyQ2Dxjp/U0JqMs9za xRGBFntzNlskqeOOvPX9KANSiqmmXbX2nRXBCB3ByFOQCDiqVpqs00NnI3kO08mxoo87l5Pzdegx zQBsUVjxapdPYyXeyBlSVotqZPR9u4nsMcmpLjU5bczKEScIqt5qZ2rlsfN16dfpQBqUVhNezQ32 ovHPHOY7VJFVclSctnjJ9O1WJNX2zMsSpOotTOFjOWLA9KANWisybUZYbN7hTBcgKpAiJypJAyf9 kZz+FWLO4lmlkVxG0agFZEI5J6jGT+dAFuiiigDwj4g/8jvqf++v/oC0UfEH/kd9T/31/wDQFooA 9V+H/wDyJGmf7r/+htXRVzvw/wD+RI0z/df/ANDauioAKKKKACgjIwRkUVRv797R8CNTGELs5Odv 1A5A98UAXcADGBj0xRtXAG0YHbFZk+rGJL9tsX+ixrIuXxvBGf6Uw3c/9tNHHKgRrRZdkj/KDuNA GttXn5Rz1460YBXbgY9McVlHWWNvHceQEiaMOzO2duTjBxyB74wad/aM0c+oea0HlW5UJkleoB5P 40Aae1ePlHHTijauMbVx6YrLl1d4re/YxIZLQKxG7AYEZ/CnTahPG9zDsiEkdt56EMSO/B/KgDTI B6gHFJtX+6PXpWZFezGXTPNdcXEbM2w4BIUHoR/WnW2qfaLqCAqm24jZ0eNzwBj169etAGkQD1AP 1pMDOcDPriqOiSvcaRBJLIXdgwLk89SKp2GpzxoYbpvOmkJa2bAHmDONpx3Xv7c0AbRAPUA/UUYG 3bgY9McVi2OpzpaW6zv9ouJ55I9+MKu0n0+nAq0moTPPHbGBYpX3nc7YUhSBkd8nPTtQBoFVPVQf woAAOQAD9Kw7O+n+xWLPMXMl48LNuHI3NgdORx7Vftr57keaiRLF5jIVZ8OuCRnH4dKALuxRxtX8 qNq/3R+VZ1tqhnuoItsZWeNnRkYkfLj1HOc9aij1eY2EN29vGEmcRKFcnDbiMk46cUAaEtnDLKsp BV1BUFTjg/pT4IIraMpEm1SSx9yepqO0nlmaVZYtmwgBh0YY9OoqmurEbzOkcOEd1DPwQvcMAQR/ KgDT2r/dH5UbVwRtGD2xWWdTuT9pjht45JoY1lC7iNwOePXPH40261N20ye9tyvkLs2SK2C2SM9Q R3x+dAGtgHOQOevFKQCMEZFZ1xqE8dzdxRxREW8Imyzn5gc8dOOlNfVW48qAMTbrOqluXz/CMd6A LlxaRXBhL7h5Tb0CnAz0/rU21cAbRgdBis+fUpYJQssKIg2bnLZALHocZ2/j1rQBDZwQcHBwaADA BzgZ9aUAAkgAE9azYtV8y6t49sbRzu6KyvnBXPtz07VHFq0rxwSvDEI5Lk25w5JByRnp7dKANXau c7Rnr0owMk4GT1OKxb3UZpLZZoWWFFu0ixv+c/PtOR7+lXtUuZrZbcwGMeZOkbb/AEJoAuEA9QD9 RRtGMYGPTFY8l7c295qZUpIlvEku13OBwSQPripjqrPK8cEG4pEsvzH724ZAH+NAGkVU9VB79KCA cZAOPUVR1G8mt9OSeNNjOyBi4z5QY8scdcUXM62UfntdvKFRm8r5SZMDPy4oAvEAnJAJ9xRgYxgY +lZy6jOYmkNupXyTKGDfKCP4T/iKINRmlltkaKJftMBlTDk7SAOD69aANIADoAO/FJtXptH5Vj2m rTva2PmojTXQYhlyFXHr7+1TtqNwGtY/syLJPI8eHfAGASG+hx9aANHavHyjj2o2rknaMn2qjqtz cWukvMhjWYbQT1AJIHH50xLqSFrmEbWNuA7tNIfmyM/L7e9AGjtXBG0YPXjrRtXbt2jb6Y4rOj1G a4uo4IIEXfbrODKxBAJxggDrTtXkuoltvscgWVpcbGxiQBSdvtnHWgDQAA6AD6VBbWkVqZDHuJkc uSxzyetZk+qPctZNZymOB5lSU4GSTnKc9CMc1Yj1OSZ3MVsWRJvJIJw3BwW9B649KANEqpByBz1P eo4YEhUhSzE9WdtzH6msmfUZplsp43WGOS7WPaH+YjJBDD8OnapRqbRXF1G43EXKwpuYbVyoOScc D8+aANXav91fyo2rz8o568dapyXkkWxHEHmPJsXDkgjGc4xnPt+tVk1eSWG0aOGMtcTPCQZOFK7u fcfLQBq7VwBtGB04o2rz8o568dazDqc/mXES2weS32h1BPzkjPy+3uan1O6kgt4hCcTyuFRTgbu5 GTwDgHmgC5tAIIUZHTilIBGCAR6Gs3T79ppfs7fPKuTIDgNEOwI7/UUmqXF1bXVu9uxZFVnlhwDv UYzjvkZz74oA0sDjgcdOOlG1f7o/KshtQkuNVsvs84+xSB/ugHzSFznPp2/OpLfVpJoY7gWrGF9x IU/MgAJ59enQetAGntG0gcD24qG0tYrOAQwg7RnG45Pr1rOS9nmvtMfeiRXCufLR85G3Iz9KW01N 2igjbDSzSyoHdvlG0nuAPwFAGsAB0AH0FKAAMAAD2rPn1CSIBSsHm7HkKiQnhfTj+fSov7TLTWko DeVNavP5akE8AHGMcnn1oA1Aqr0UD6CgKoxhQMegrIS9nm1DTH8xEiuFdvLR85G3Iz7itigBAAM4 AGeuBQAFGAAB7ClooAKKKKAPCPiD/wAjvqf++v8A6AtFHxB/5HfU/wDfX/0BaKAPVfh//wAiRpn+ 6/8A6G1dFXO/D/8A5EjTP91//Q2roqACiiigApjxRuwZ40YjoSoOKfVK9mmjvrGOOTakzsrjaDkB Sf6UAWnhikbc8SM2MZZQTj0pptrc9YIjxjlB0qlJqrxrcyG1/d28wic+Zyc45Ax/tCnXGoyRS3iL bbxaxiRj5mNwIJ4468UAXWiiZgzRoWHQlRkUNFEzFmjQlhgkqDkelVlv/NleOCLcY41kbe23hhkA flVf+2FPlt5BEc0PmwsWwXP9zGOvNAGgbeAggwR4IwRsHIpRDEH3iJA2MZ2jOPSqNxqhtgxkgBCM iybZMlSxA9O2e+KZLf3IbVFEaBbRQVZT833c9xigDQEEKlSIYwV+7hRx9KBbwDpDGOc8IKqw3zTM Ioot8iwpK5Zto+bpj8j7UyLVPtEtulvblvPhMql324wQCDwfWgC+kccabERUX+6owKRYYkACxIoG cAKBjPWs6K/neFL1Y3eCYBViAyYyCdzEgZI4HQGr1rOLu1WVCo3Z5U7sUAOFvAIzGIYwhOSu0YP4 UphiZAhiQqOQpUYFY9jqN08VjJO3y3DFGLoFUnnAXHc471ai1QSw2Unk4F1IY8b+VIz+f3aALv2e AADyI8A7h8g4PrS+VH5nmeWm/wDvbRn86oNqrok8htT5cE4hc+ZzyQMgY9xUWpajOLG8ltBs+zuE MhIzuyM8Y6c0AaYt4B0hjHOeEFKsMSxmNYkCHqoUY/Ks641A2V9etMzNbwwRyBABkEkjj8hUkupm BWMts4+7tI+6xY4AyQMHNAF5ESNdqIqD0UYpFhiXO2JBu4OFHNU7We5bV7qCbARIkdVByASTnnAP amXFxcLqxt0kfy/I8wBIwx3bsflQBfSGKMgpEikDAKqBxQ0MTR+W0SFP7pUY/Ks1tVmtrXfd26eZ GqGZY3ztLHHTn9T9Kml1F4rqW2a3HmjaYl3/AOtBOMjjjHegC2YISWJhjJYYY7RyPQ1Xk023eYy4 2kqExtUgAegIOOvaoLjVXgF4xtNy2hXeRIPmBAPHHv3p02qi1NyLmEr5ESy/I27cCSMfXIoAtw2l vBHGiRL+7ACkjJAHuadBBHAHEa4LsXY/3mPeqU+pvBBPK9o58qLzeDwR3GSBzSyajIjzxGALIluZ 0y+QR6Hjg0AXPIhznyY853Z2jr60fZ4NoXyI8A7gNg4PrUdjLLc2ME0oVHkjVvlORyM96oW2pTpp cFxMnnvLOYeMLj5yo/lQBpvbwOxZ4Y2Y9SUBJpzIjrtdFZfQjIrNu9TkjtL4+UY5bVlDbSGyDg5G R71L9ruG1C7txGmyGJXDbucnPtjtQBb+zwHd+5j+YYb5RyPegwQsFBhjIX7uVHH0qhFqbfYIJdnm O9v5zAsAcAegH69KfFfyzX9vFFEnkzW/n5ZsMOR/jQBoe1MSGJG3JEin1CgVmW+qOttbSzp+7lke N5mYDYQSBkAdDjGalXU2aVYfsxEzR+btLHAXOB26n6cUAXRBCqsohjAbqAo5+tKIYVKkRICgwpCj 5R7VWm1BINNF7LFIgwP3ZGGBJwAfxNRXGpvbQTyPaOfKVW4OAwJxgEgcigC6YIShQwx7SckbRgn1 pTDESpMSfJ935R8v09KozaoLZ7lbiAqYUWQbWzuDHAHbBzUb309tqM/2kbYI7TziiHdyD24B6UAa ckaSrtkRXX0YZFI0UTY3Ro23plQcVW+3MssMckIVp0Z49r56DODxx9eahh1OWWyhuxZP5cwBUBtz DPUkAdB7ZoA0PLj8zzPLXzMY3Y5x9aGjjcqXRWK8gkZx9KoJqySyRxQxh5GjMhw2VABx1A659uO9 EmqmNEd7WSNGQMWlO0Kc42k4OD9cCgC80ELY3RRnB3DKjr60eVEZPM8tN/8Ae2jP51W1G6ltY4Gh RHMkyRncccE1Va/uYLzUgU86K3RJNpYDaCCSAcc9O9AGk1vAzFmhjLE5JKDOaXyYfn/dJ8/3vlHz fX1qkb5xfFFR2T7L56oMZY56fX9Kmsr0XTOhQRugBKEncM+oIBH8qAJvIh2BPJj2A5C7RgGj7PBk HyY8g5B2Dg+tQW961yPMhg3QiQxli4BGDgnH1/Go01NXgguPJIgnkEaHd82ScAkUAXGiidg7xozD oSoJFK6JIpV0V1PZhkVnDVW2mRrUiNbn7Mx35Od23IGOmTViG9a4ZzDBujjlMTEuAcg4Jx6UAWBD ECpESArwpCjj6UpjQuHKKXHRiOR+NUbbVPtKxSRW0jQyuUVhnIxnkjGAOPWmxaqz28Nw9ttill8n iTJDbio4x0yKAL3kQ5U+VHlPunaPl+npSiKJZDIsaBz1YKMn8araZdTXcMkkyIm2V4xtOfusR/Sr EyTOyeVMI1BO75ck8dvSgAFvAG3CCMNnOdgzmjyIfLMfkx7Ccldoxn6Vj/ar9vDrah9qAcQO+BGP vA8EflVttU+z7/tUJQJb/aMq27IHUY9aALxhiO3MSHb935Rx9KRYIVZWWGMFeFIUZH0qC2vHmlVG t3QOm8OMkD2JwOeat0ARi3gDBhBGGBzkIM59akoooAKKKKACiiigDwj4g/8AI76n/vr/AOgLRR8Q f+R31P8A31/9AWigD1X4f/8AIkaZ/uv/AOhtXRVzvw//AORI0z/df/0Nq6KgAooooAKjkt4ZZEkk iV3jOUYjlfpUlVri78m6htxC0jzBipBAHHXNADmsrRlkVreMrI25wV+8fU0rWdsxkLQITKNr5H3h 6H1qr/a0ZMSrbytJJK0O0Y+V1BJB56cdaf8A2iNs7C3c/Zx++wR8pxkgeuBQBObS2ZVUwIQo2gY6 D0+lPaKJ9m6NG8s7kyPun1HpVN9WhG8pHI6oUGRjJ3YxgdT1H+RUi3xe7ltltpC0JXe2VwARnI55 oAkks7WVmaS3jdn+8SvX60r2ls5ctAhLrtbI+8PQ+tQRakks3leU4YxmVRkHIBwRkHGeajh1YTi1 KWsuLpC0WSvYZIPPFAFs2luyqpgQhBtUY6D0+lKbaAyrKYU3quxWxyB6D2plndpd2vnqrKAWUqeo Kkg9PpVdNXhZUcxusbxtLuODtVeucdD7UAWVs7VYliW3jEanKqBwD7VKsUax+WqKqdNoGBVOLU0k 24gk+eMyJ0OQBnB9D9abDqscn2dnhkijuIzIjMQeAMnOOnFAFmKztYSpit402/dwv3fp6UgsbQOH FtEGDbwdo4b1+tQ2+px3Bh2RSbZlLRn1GM8+mR60kGp+daJci1kWJ8bSzKOc49aALBsrRkdDbxlX bew2/eb1PvRLZWkxYy20blhhty5z9fWqkmqnyY3htyxNz9nZWbG05/WntqsIaUCORxE4jcryQ3Gc DqcZoAsi0tg7P5CbmXYxIzkeh9qFtbdY2jECbG4K44NRRagkl4bby2RgSPnIBOO4B5I9xSzXhjvE tUgeSR4zICCAMAgH+dAEkVpbwyeZFAiPjaWA5I9Kd9nh+0ef5S+djG/HOPSqsOpx3DJHDE7SsGJQ 4G3adpyfrUa6oZLu2iigJWXzA5ZsFChAIoAuSWdtKzNJbxuzDDFlzke9NS0UXCzSN5jR5EWVA8sH qBUFvqsNx5LRxyNHMSEcDr15I7A460kOrJIsDm3lSOaUwhiRwwJHQHpweaALLWVq4lD28bebzJlf v/X1p32W38xpPJTey7CcdV9PpWc+qzCyu5zAEEE3lZGGyAQOmR61audRjtpCrxsVVlUsCP4jgcdc c0AS/YrXymi+zxmNuGXHBFOFrbiTzBCm/bs3Y52+n0qC1nlfUb6B2BSIps4wRkZNOW9815BDBJKs cnluy4GG74B64zQBPHDFFF5Ucaon90cCohY2giWIW0flq28Lt4Dev1qH+04vJ+0eW/2bzPL83jru 25x1xmhdSVpZIlhYOgb5XIUnHsecH1oAneytH83fbxt5uDJlfv46Z9acbaBn3mFC23ZnHOPSorG6 e506K6eEoXjD7FO7tnioodUjlikkETDYASpZQwz2IJ4P1oAnFjaBUUW0QCDao29B6fT2pwtLZfLx Ag8sYTA+6PQVUfV0RJGMD4ilWOU5GE3Yw2fTkU6bUGXyisZVGuRDuIDBu2RyMc96ALK2lssBgFvH 5JOTHt+UnOen1p0tvDMVMsSuV6EjkVSl1ZIhcsbeXZbSBJGyO+ORzz1FPn1OOGSZPKkbySqtjGSW 6YHfrQBcMaNGY2RShGNpHGPpURsrUwmE28ZjbqpHBqIaghvPszRMj7tvzEDPGcjPUfSmXl1PBqVn DGN6TCTcnA5ABBz2oAtfZbcyNIYELsuxiRnK+h9qbHZ2sT70t41fG3cBzj0+lVl1aNpI1MLoGkaF mYgBHX+E/XsaswXBmtfP8pkyCwUkZI7fnQA5LW3TOyFFyMHA7elILS2WFIRAgjTlVA4X6elU01iN obeU28iC5x5IYjLcZOeeMAVIupo7pEkMhmdmUIePu4JOemORQBYa0tmVVMEeE+78vT6UNa27sC0E ZIGOV7elULTUpAgFyhZnu2t1IwNuM4z+Xap/7TiDSIY3DpOLcLx8zEZ49sUAW5Yo5k2Sxq65zhhn mozZ2p8zNvGfNG1+PvD0PrUFzeyQ+RuhaPfOsR3AMCD6c/r+lNl1VYhcsbaXZbSBJGyO+ORzz1FA Fn7Ha7t32ePOzy87f4fT6VJFDFDny41TPXA61Um1OOGSVPKkbynVGxjJLYxgdSOev19KfqF3JaRQ skIkMkqR4LYxuOKAJhbQCYyiFBITktjkn1oW2gWTzFhQPnOcd/WqD6hPDqF5E0RljhhSXauAVznI z36VKdVgLbYkaRhEsxHAwp6de/HSgCf7DabCn2aPaX8wjbwW9frT/s0Hneb5KeZ/exyaq6lePFos t7bkqyxiRd6c/Qg0ragQ80RhdJUh85c4II/P1HSgCyttAkhkSJFc87gO/rVex02CzQDAkdWZg7KM jJJP86iGqolvbO8bnzohJuICKc9sk4z7ZpTqnlz3omh2w2oX5wck7hxxQBbNpbEMDBHhmDkberdc /WpWAZSrDIPUVUl1AQFkmgdZBE0oXIO5V68+vIqJ9Rk8m2mEDxxzyRqpcAkhvYHigC0LO1FsbYW8 YgPWPHyn8KcLW3EgkEKbwuwHHO30+lRRXvnEtDBI8QkMZcY6g4Jx6A0+a6WO5S2VDJM6lwoOMKMZ JP4igB8VvDB/qolT/dGKkqot7vmECW8hmCeYyMQNoyQMnPsahOsQbI3WNyki5DNhRnOCuTxnPagD RoqpbXck97dQGEKkDKA27OcjPSkk1BF+0ssTvHbHErDHBAycDvgGgC5RWel3Pc6k0EOEhSNJN/B3 Bs9j06VoUAFFFFAHhHxB/wCR31P/AH1/9AWij4g/8jvqf++v/oC0UAeq/D//AJEjTP8Adf8A9Dau irnfh/8A8iRpn+6//obV0VABRRRQAVTu7H7TeW05kwsIYbQDk7vcEYq5VWa8MWoQWggd/NVm3gjj GP8AGgBwsbUeViEDyWLJgkYJ6n3PNOktLeVmZ4gS4w3UbvqO/wCNVI9UQW6yyox3XBgARDwc4Gac 2rQIszPDOohcJKSo+QnGO/I5HTNADZNL3TzSrOymXHIyGTAwMYIH5irUdpBG8jhdzygLIzEnfgY5 qGbVLWF5lYswhIEhUfdz+p/CpZr22gjZ2lU7cAqpy2ScAY+poAamn2kZQpDtKKUUhjwp7dentSx2 FrH5GyLb9nBEXzH5QeuOarf2mYr25W5XyYIYFlyw+YZJHYnPSnT6tFFBO4idpIojNsOOR9c8fzoA tQ2sVvC0UC+WrEng5wT1PNVLbShAsS+c2xOoGf3gxjDAkjH4U6C9kNyIZlIdofOChO2eedxz1pbf VIJ/s5CSotwpMbOuAcDJHXjigCeO0gjjMaIQhG3buOAPQc8fhTUsLVPI2xAeQCsfJ+UHt1qKPVrS QRsHIjkyUkPQ4GfqOAetM/tF3vrGOOJlguQ53OuCQFyCOePxFAFuK0ghGIkKL0ChjgfQZ4/CmCwt Ft47cQgRRtuQZPyn1B6ilnvYYJ1gOWlZS4QY6DvzgVEmpwyvEkMcsjSxmRcKBwDg9SOcmgCT+z7T YyeSNrP5hGT97+99aeLSBZTIse1mwWIYjcfUjPNV01KOW4tkizsmD53Kcgr1HsaI9WtXheb5xGoB JI9TgDHUHPY0AWFtLdZFkEY3KSykknaT1IHaobiwE+oRXLSYWONk2DIJyQc5B9qJdRggLLOHiYLu CsMlhnHGOvJAx71CdTMV9cJcr5NvFAs2WHzDJI7E56UAWxZ2wVFWFVEYIXbkEA9eRR9jth5REKqY s7CvG3PXp61C2qWyCTeJFKJ5hG3J25x2zVi3uEuIzIgIUHGSQQfoQSKAEitIITmKPZyTgMQBn0HQ VGunWixxxiHCxv5iDceG9evvSJqMDpFIA4ilbbHIR8rE9PfntTLC7nvHkfyxHCjtHtIySQcZzn9M UASyafaSJKjQgrK251yQGPr19qJNPtJC5eAEyEM3J5I6Hr14HNEd7HKQYo5XjLlPMVcrkcH3xnv0 pI9Qhe4SDbIruGKhh129fp+NAEsdtDFNJMiYkkxvbJOcdKT7Jb+c0ojAdjliCRuPqR0NVU1e2a3W cpMsTNsVmXG5s42jnrn8Ks213FctKiZDxEBlPbPI5HBoAPsdtv3eSud2/Hbd646ZoWzt1cOIhlc7 cknbnrjPTNF3dx2gi8xXbzZBGuwZ5PSoJdVt4Y5WlSVWhZVdNuWG7gHjqD7UAWYraGGDyI0xFjGz JIx6VG2n2jqweANuABLEk4ByOeowaRb5WlMIgm81RuZMDIGcA9cc4OKjXVrZmUKHKtE0qvgAMB1A 56j0oAnWytlEwEQxMMSZJO/jHP4UPZ27xQxNENkJBjUEgKR0qu+ppHcbZgYoxb+ed6/MBnHb+VNO ouupLFLGYYDbtMTIMEYI9D6GgCd9PtHSdWhys7BpBuPzEfj7VDJpe+eaUTsrS4+bkMmBjggj9aUa vaBQ7syI0ZkVmHVR9OnXoaI72V9WjtjC0cTwNJ84w2QQOx96AJ1srdSrFN7K28FiT8397HTPvSzW kE8qSyx7pIwQjbiCueuMUxrwjUxZCFiTF5nmZGBzjpVXT9W8+1tnuI2VppGiDqvyFgT757UAWJdP ilhFthBadWi2csc5znNW2UMhQj5SMEdKpf2rbgTMUmVIHKSOV4UjHHXnOR0p8uoRQh/NjkRljMuw gZZR1xz29KAHixtRbxwCEeXFygyfl+h6inPaQSKgePOw5U7juB+uc1E+owIyh96hoTOG28bRjP48 1HLqSmKUQqyzLAZ13rkbexODQBKNOsxE0YgG1n8zGT9/+8Dng0o0+zCyL5C4kYO3J5YdD9feorPU VuBbI8bpJPF5q5HytwM459+9S3d7HaBmkSQqqFyQOAB1+p9hQAr2Vs6orxlgjh1yxyGHQ5zSPp9o 6TI0OVnYNINx+Y/n7U+a6hgthO7HY2NuBksT0AHqc1SbUZlub2NotqwQLKoZecnPXB5HFADpNL3T TSC4ZWlP3hkMnGOCCB+Yq5LbxTQrFMvmKpB+Y85HQ59arf2nCPJRgxkkjWQBRgEH0yefoOalF7G7 sI45ZFR/LZkXIDd/fjvQApsbZpJXMWWlQRudx+ZR260Cxtl2bYtpRQilWIO0ds55FMGowGMS4fyS /liXHy5zj64zxmk/tKDyhIUkC+f9nPA4bOPXpmgCe4tobm3a3mTfEwwVyeRTGsrZpGkaPLtH5RO4 8r6dahm1SGFrkNFMRbY80hRgAjOevNSJe79Re0ELYSNZPMyMHJPb8KAF/s+08oReSPLCCPbuOCo6 AjPI+tONnbM8jmFSZFCv6MB0yOlT1nW+qLNqbWpCBGBMLhslypwwI7e3qKALJsrYq6mLO9djEkk7 fTPpStZWzwxRNHlISCg3H5SOnftVJtUkhju2kiEvk3KwqE4yDt5OT/tU99ReLULiB4WdI4VmARfm AOc55x2oAtraW6ytKsYVmO44JAJ9cdM0s1tDOytImWT7rAkEfQjmolv4ZCqwq8rNGJcIOinoTn19 KSHUbe4lSOLexkiMqnHBAOCPrmgCVrSBtpMfKjaCCQcemaa1jasmwwLs2hCoyFKjsR0IqGLVbaaO J4xIfMjMoXbghQcEnmoxqZe9t0ijaSG4gaVAFw3BHqcYwe9AF1LeFJnmRAsj4DEHrjgcU2S0t5WZ niBL/f64b6jv+NOtbmO7tkuIs7HHGRgjtUtAESW0KXD3CpiVwFZsnkDoMVLRRQAUUUUAeEfEH/kd 9T/31/8AQFoo+IP/ACO+p/76/wDoC0UAeq/D/wD5EjTP91//AENq6Kud+H//ACJGmf7r/wDobV0V ABRRRQAVFLbRSzxzMGEkeQrKxHB6j9BUtUrq+a31C2t/L3pMjn5QSwK47fjQAv8AZlsIwmJNol88 fOfv5zn86WTTbaVLhHEhFwwaT5zyRjH06Clj1C2keFFdi0rMqjafvL1B9CKadTtREJSz7TL5H3Dk PnGPzoAk+xQCZpVDq74L7XIDEcZPvT57eG4iaOWMMrde305qIajbbZCzMpjcRsjKQ249AB3zVObV pUTUmWAD7IiuofILZBOD+VAFs6bas8jSK8pkj8t/MctuX0/WnPYwvbSW7mVo3XaQZDnHpmkl1C2i 3h3OY1DybQTsB7moL/VUt7S4ltx5zQruOASvTOCR7GgCyLKETrNmTzFj8oHefu0yPTbaNbZVD4ts +WC5OMjB+vFS3FzHbWrXMxKxqu5iATgfhTPt8G9kbejBd+1kOWX1A70ALDY28CbI1YR4IEZYlQD2 x6UxNOtkkhdfMzBnygZCQoIxj6YpsmqWsUcruZAISvmDYcrnoT7U6fUba38zzS6iMqrMEJALdOn1 oAkmtIZplmYMsqjaHRiDj0+lV5tPaTUYbgSlY44mjwGIY5IOc/hTn1S1j87f5oMODIPLPyA9z7U+ XULaFnVnJKKHfaM7FPc0AC6dao0LKjL5IYIAx/i659c0h020YsZIzIWTyyXYk7c5xn60j6nao0i7 ncxoJG2ISNp6HPpxS/2hF9sjt1R2EkXnCQD5dvH+NACvp9tJv81DKWXaWdiTjOcA9ueaQ6bas7vI rymSPy38xy25euP1p9reQ3a7oCzKRuDbTgj2NDXsAdlBdtjBXKIWCn0OPrQAq2kaxlN8pBxyZDkY 9DSwW0Nv5hiXBkbc5JyWPTJpv26ATrCSys7FFLKQGYckCoxqlqT1kA83ySxjIAfOME/WgB62Fsmw BDsjbcibjtU+oFPtrWK1Rli3YZi53MTyeTRdXUNnEJJ2KoWCZCk8k4HSojqVuu4HzAyrvZShyq+p HbpQA+OzhidmjDoGYsUDnbk9TimRabawtE0auphyI/nPyg9RUd3qkUdrNJb/AL5o4vM+VSVAxkZI 9RUsd/E2VYMJFhEzKFJ+U+nrQALp1qtoLXYxiVt65Ykq2c5B6jmnPakiNUmlUK4cnectjt9KauoW zpG0ZeTfGJQqISdp6EjtSPqVom4mQkIgd8KfkU9CfSgBNSs5LxIFR1Ty5llOc847DFK+m2skTo6u fMZXdt53MR0yfbFSXF3DbxRyuWKSMqhlGRk9Pw96iGp2zPKily0cgiYBD949Pr9aAJpLWKSXzTuW TbtLqxBI9DTGsLR4oYjAuyBg0YHG00q30DTpDlldywXcpAYjriojqlsbWW5iEkscaF8qpwwHXBoA kmsbeedppULs0ZiIJOCp6jFNGnW3mrIwkdghj+dywKnqCD16ULqMBWPIcSOnmCPblgvr9KkN5bix N6JN1uE371BPy+uKAGrYW6wtAVZoSuzy3YkAelEdjBHcJcAymRFKKWkJ+U9v0pF1C3JAJdSyGRdy Eb1HUj1qJtVhNtHPCrNHIyBXdWVSGOBg4oAsvbRPcrcEMJVUoGViOOuKhTTLWOGGJRIEhkMiDeeG 55/U/nRNqdrC06uZP9Hx5pEZIQHkE+1PS+gaSSPLq8aeYQyEEr6j1oAFsbZY54yhdJ2LSK7Egk/y pfsUBLF1MhZDGS7FjtPUUw6laqk7Mzr5CB5AUOQp74/A0jagm63CI22aQIGdWXORnI45/SgBr6XC E/dPIkoiaJHZy21T2xnmo4dMZFEbTEQ7CjorE7xjHU9PwpY9UVTMLlduy5+zqyAkE8Yz6dauQzpM 0gQN+7bYSVwM+3rQBHHYW8b27qHzboY4/nPC+nv0FE9hb3EjSSKxZ4/LbDEbl9D+dRRapC1uksmV 8yYwqFVm+YEjHT2qxb3MVz5nl7g0bbHVlwVPX+RoAHtYZLUWzqXiAAAJORjpz6iov7Oty0rkylpY /LcmQ5Zef8TVefVttlfTxQsDaMVPmDAbGM9PrVkajbZkDuYzHH5reYpUbfXntQAj6dbPCIXV2iCh NhckEDpmpFs4UlaRA6F23MquQrH1IpIbyCaXylLCQrvCsuCV9RTZNQgjmliIlZ4QGkCxk7Qeh/Q0 AL9gthgbDsD7xHuO0NnOcfXmmPplq5bKuA0gmwJCAHznIFO/tC2OSjmQKodjGpYKpGQT+FA1C2ab ykcyNhT8gJwG6H6UAJJp1tKLkOHP2kAS/OecDH4VILSETecN4k2CMkMeVHTP51DDqUUouD5UqiGQ xHKZyeOmPrT11C2ZCwc5Enlbdp3b+uMetAEwhUW/k7n27duS5Lfn1qF9Ptnjt0KsBbkNGQxBBxjr 3pft0G+ND5itI5jAZCPmxnH5VFNqkEUTSKkkm2cQMoXkMSB/WgB5062ZJlZXImcSPlz94YwR6dB+ VONhAZpZT5heWMROd55X/JNNl1G1iMgdyPKAMh28R5/velTTXEUIQu3LnagAyWPsKAIksLeNUEYd CiCMMrkHaOgJ70f2fagxFIzGYlKLsYr8p6j3p32yLaDtlzkrt8s5yOtRnU7TZburs4uAfK2ITuwM kfWgCBtIRGhEDbYYUKLGzHjJz1qeCwVJI5ppZJZ41ZA+cYUnOMflz7UHU7QBizkKpCuxU4QnsfQ8 ipri6htjGsrYaQ4RQOWPWgAtbaK0t1ghDCNckAnPXmpqqvf26ELly2zzCoQ7lX1I7UxNThkuTDGk jr5QmEijKspzjH5UAXaKz4dUSeKykWJkW6OAHyCOCeMDHb2qT+07XJ5kAWXyWYxnCtnGCfxFAFyi qsmoW0bOGdsI4jYhSQGOMDPryPzq1QB4R8Qf+R31P/fX/wBAWij4g/8AI76n/vr/AOgLRQB6r8P/ APkSNM/3X/8AQ2roq534f/8AIkaZ/uv/AOhtXRUAFFFFABVaeyjnuorkySJJCrKhUjAz17e1Wail uYYWCu+GI3bQCTj1wO1AEH9mW4EWwyI8cjSCQN8xZupOeuc00aVAIvLEk23z/tH3snfnPp0zUxvb YAEShsqH+UE4U9zjoKR7+1SQRmYFynmAKC2V9RjrQBG+mQSSTSM0haV1kzuxtZRgEelJJpUMoug8 0zfalCSHcOQOmOOKnF5bFI3WUMJV3JtBYsPUAUhvrUKGEwYFN/ygn5fU46CgBn9nQec0oLh3ADng 78DAJyOuPSmz6XBMlxHvlSO4H7xUbAY4xnpwcAdKkOoWglEXnguVDhVBbKnoeO3vSDUbMtgTj/We UTg4D+hOODQAmo2slzpU1pEw3yR7AznH4nAprabHMhM7ytIY/L3B+UHGcEAegqdbuBpTEsm5g2w4 BIDdcZ6ZonuoLfIlfbhSx4JwB3OO1AFf7AImleECRplCSLK2FKgEdAPfpQulQjTUsi8mxSGLA/Mx ByOT9B+VSyX9rFIsbTDeyb1UAksvqMdaamoQHzt7KgjlEXXJZiBgY9eelACS6bDMbvfJL/pSBJME dAMcccdaP7Ng80yguHZQrng7wOBnI6/Spftlv8v7w5bOF2nccdeMZ4oe7gWza7D74VUvuTnIFAEb afC0txJvkBniETAEYCjPTj3NCafFG8Lq8gaGLyQQ3VeOD+XWo31SNZbMbG8u6DEMQQQQM4xjmp1v bZ4lkSXcrMVGASSR1GOueKAEt7GG3nadSxkZdpYkcj3xjJ9zzSpZxxzSSRPJH5jb3VW+Vm9fb8KY 2pWqm32s0guGKoUUkcA5z+VW6AKQ0uASpJvl3JKZVy2cMc57cjk9aQ6XC0LxGSXa03nn5hndnPp0 yKcNRt1SeSV1jSGXyixOeeOvp1qeG5hnd0jfLx43KQQRnp1oAbd2qXcSxyM6hXV/lODkHIpklhDJ ctcfMsjKFcjHzAdMgg+tPkvLeOTy3lCsGCng4BPQE9OaY+o2aNIrTgGJgsnyn5CemeOOtADZdNgk 88BpIxOuyUI2A3GPTg49KDp0JZWEkqsIvJJDY3L6Hj9RVmWWOCMySuEQdzVa51O3ghaTLOysqFAp 3AscDI7daAEh0yGAReTJKjRxiIMGGWUdAeOcetOOnwGd5gXV3AD9DvxwCcg8/SoY9TLzyxNEqeTg yuzMFUHnIJX09cVaF5b4b95jau8gqQdvrjuKAHzwR3Fu9vIuY3XaR7VDHp1tFPDMqtviTy1JY8j1 PqevPuajfVrNYUlV3kR2RVKISDu6c45qa8vIrO28+UOUyB8qknk4HH40AQppcCSROJJt0Ts6kvnG 7r25696UaZbZkZt7tJGYmJOCVPXOOp9zzUz3luhYNJgqNzfKflHqfT8adNcQwW7XEsirCoyX6jHr QBX/ALMgDRuGk8xE8vfwSVHQHIxUl5bNLps9rDtDPE0aluAMjHakOpWal1M3zIu8jY2dvrjHT3p0 l9axoHaYbSnmbgCRt9eO1AEMOnKI4jO7vKkXlg7shMjBxx3x1NObToWsIbMvL5UJUqcjPynIyce1 PN5GLtoCRhYvNLZzxn0oh1C0nMYimDeYpdPlPzAdccc0ARy6ZDN9r3SS/wClgCTDDoBjjjilk06G WZ5Xkl3PD5Bw2Pl69u9Lb6lbXFss6l1RmKKGQ5JBI4HfoaHv4NsDRsrrNL5QOcYPOfx46UARtpNu yzAyS/vohE+CBlRn246mppbOOVbcM8n+jsHXBHJAxzxSHUrNWcGcDY/ludpwrehOOOop95craQea 4BG4LycdTjrQBWl079zcQx4dLpi0plb7pI6rgewq5bwrbwJChOFGMk5J9z71FLqFpC8qPNhogDIN pO0HueOnvTpLy3izulHC7zgE4X1OOgoAgXS4FijjEku2OYzj5h94kn06cmp7e1S3mnlVnLTtvbce M4xx+Aoe9tkLbph8oBYgEhc9MntTJdQtInkR5gGjUO4Ck7VPfgdPegBkumQSw3UJeVY7olpAGHU4 zjjjpSzabbzyM8xeQND5DKTwV6/nUkd7bSuUSYE7PM5yAV9QT1HvToru3mdUjkBZl3LwRuHqM9R9 KAEt7ZIOQzMcYy2M4/ACqpsJX1K7naUpDPGiYjbDcZznj37VMb1Uv5raQKiRwibzC3GCSOfTpRJq VnEheSbaFAJyp6E4Bxjp70AC6dboGEO+FWQIwjbAIAwP04zTW0y2bywQwSPbsQHhdvTB6jp61M95 bo7I8m1lIBBB6noB6n2FRTahGjQeUBIJJhC3OChIzyMUADabAwlAeVVlk81gG43cc/p0PFNGlW4L ENLuaXzg27lXxjI/Dt0qxHd28smyOQMcleAcZHUZ6cU1ryMX32MBzMY/MHynbjOOtACTWSTLGHll Lxv5iPuG4HGPTHQ+lRf2Xb+VLGXlIklExJbkOMcj8hSWGqwXkEDn93JNkKhyRkZyAcYJ4qwLy2aU RiUbmJC8HkjqAe+KAI/7Og855QWDSYMnQhiBjPI4P0xUtxax3Hll9ytG25HQ4Knp/Km2V5Few+bC HC5K/MpHQ4/pSreW7yrEso3sSF4PzEdcHvigBslkkjRO8sxaMkg7hzn1GMVHDpcEItQjygWpYxgs D16545605NSsnVnW4Uquctg4BBwRnHXPbrU8U8UzOqNlkxuUggjPTg0AQLp8CTSSJuXzG3svBBb1 5HH4VLcWyXKhXZgozwMEH6ggg1NRQBSTSrWNkaPejKgjznduUdAcg+pqUWcS3PnqWVvLERAPBUdP 51YooApJpkMcdrGskuy1bdENw44IweORg0jaXC0MsRkl2yTec3zDO7IPp04FXqKAMqTTrlri4lWV Q8jh0bghcDAypByfx/Kr8EcqPK0sxcOwKr2QY7fXrU1FAHhHxB/5HfU/99f/AEBaKPiD/wAjvqf+ +v8A6AtFAHqvw/8A+RI0z/df/wBDauirnfh//wAiRpn+6/8A6G1dFQAUUUUAFVpbQNdC6jleKXZ5 ZIAIZc55BqzUUtzBC6pLMiOwJCk8kD0FAERsgJpJY5pEeVQshGDux0PseaZDpscE0ckMjIscPkKm AQB1z9eKn+1W5hWYTIY3+6wPX6UpurcRq/nJtb7pz1oAqW+lJbLAYbiRZIYzEHwDuXOcEdOtPk02 N7lrjzG8x0COSoYMBnHBHHU1O13bKiubiPaw3Kd2cj1+lK11bqwUzoCccbvXp+dAEUVikV99pRyP 3QhEYAChQcj+dQnSlMEkX2iTElx9oJwPvZBx9MirYurcuU85NwzkZ9Ov5Ui3ds6syzoQg3Mc9B6/ T3oAh/s9DeC5Mjbw275QFJ9iR1HsaW7sVunJaaRVaMxlBgjB7jPQ+9OGoWTMqi6iJcgLhs5J6Yqa OaKTfskDeWdrY7H0oArQ2AhuIJhO7GGHyQCBgjj9eBSf2ap+0ZlLCeQSMGRSMgYxgjpwKkg1C0nh MyTDywxXLccg4/pU0cscq7o3DjOOD0NAFJdIhRo3SWTzEDKGbDDaTnGD2z0q19li+xtagbY2Uodo A69en1pRc25l8oTIXJwFz1Pp9aQXdsc4nQ4BPB7Dr9aAIBp4Elm5uHJtAQnyjkEY5/CmppgjUBbq X/XNMeBgluoI7j0qwl5bOIyk6MJAWQg8MB1IoF5alHf7RHtQbmO7oPX6e9AFeLSo4o4ESaQeRI0i EgfxZyDxz1NWoFmVpTNIGDPlFwPlX0z3pYriGcMYpVkC9SpziqkWq28zqIyNjSGIOzBcsOOAevNA CSaUskVzGbiQC4lErEAcEY4H5CrEdoI76a781maVFQqQMADOP5mlF7anIFwmVfyyM9G9PrTluYGl 8pZkL5IwD3HUUAVbnTFuWkL3EuHdXA4O0qQRjI6cdKSbS1mjvUa4kxdkF8AcYAHH5U99SgW7t7dC JDM5TcrD5SAT+PSrUs0UIHmSKuemT1oAiu7OO8t1ilLfKyurDqGHQ1DLpiSwmMylWLq7OqKCdpyO 1WDd2wVW8+Pa4ypDZyPWh7q3QAtPGAw3A7u3r9PegCB9Njka7Msjut0FDrwMYHGKc9gJXMks7vII 2jVsAbQ3Xj14pyX9q8s8YmAaDHmZ4A4z1qaKaObPluG2nBx2NAFZtORrC3tDK+IChR+M5Xpnt2qW 7tVu7UwSOwBKncvXIIIP5inzTwwBTNKke47V3HGT6Uz7ba+V5huIwm7aWLYwfT60ARtYgtMyzOhn AEuAPmwMZHocUtxYxzaa1grNFEUEY28kL+NP+22u0N56YOcc+nWl+123mGPz0LhPMwD/AA+v0oAh aw3XEkxnfc8HkEYGMev15qE6RG1stubmYxiDyMcdMYyOOD71ajvYJZjGjggRiXfuGNv55/pUceow S362sZD7ojIHB4wCB/WgAWw2zibz3LCDyPujGPX602HTFh+w4ncizUqmQPmBGOfwqwLy2YMRcRkK NxO7t6/SmrfWjDK3MbDjo2c55GPWgCBNMEVukEdzKqRyF1HHck4PqOaRdJRY441nkCx3BuBwPvEk 46dOTV0TRGHzhIvlYzvzxioRqFkel1Efl3DDZyPUetAEEulrLDdRG4kAuZBIxAHBGOB+QqxfWovb UwPIyAlSWUDPBz/SnG7thGknnx7HGUIOdw9qBd2zSCMToXKeYADnK+v0oAgl08SPdsZ3H2qMRtgD gAEcfmaWLTxBJ5kNxIjMio/AIbaMA47GrCTRSQiZZFMRGd+eMeuarXWp29vbNOrCUIyhwrAFQxwD z2oAV9PRhcKssiJccyqMfNxg4PbIpraYha42zOizwiDaAPlUZAx+Zqwt3bMsjCeMiP753fd+tBvL YRPKZ4wicMxONv19KAKzaXE7J5krui25tyuANynGfx4qW1sUtih3byi7UJRQQPqBUiXds5cLPGfL GW+b7o9fpQt1btnE6fKNx56D1NAFe50uG6nnkmd2WaIQsgwAADkYPrk09LCIK6y7Zd6GMkoASp7c VPFPFNnypFfHUA9KqzapbpDdvHmVrUEyIOOgzwTQAn9kwfZoYTJIzQv5iysQWLYxz2PHFOfTUYRY kKGOUTEqijcwGOamgu7efiOZC20OVzyAe9I99bLDJIsqOI1LkBhyPx/nQBHHp6R3YuRI+8Z6ALuz /ex978ake1DXq3ayMkgj8sjAIIzmhr61RVMk8cZZA4VmGcetJe3iWawu65SSRY92cbc9DQBBDpKQ 29pCtxIVtZDIuQOSc9fzNKNMUTxSm5lZopDIpbBPIIIJxyMGrK3Vu0bSCdNinBOeh9KhuNRggWFw Q8ckoiLBgNhPrQBJZWq2cRiR2aPcWUNjjJyf51Aulqs8MxuZWeF2dS2CfmBBBOOetWVu7ZojIJ4y ittJz0Pp9aT7ba5jH2iPMjFUGfvEdR9aAK40qI2JtHkd1MplDcAq27d/OrFvbLAWbIZ2xlggXOPp TWvoPMiRXDmSQxjDDggc9f6VJ9pgMnl+cm/O3Ge/p9aAJaKr/brTcV+0xbgSCNw4I659Klimim3e XIrbeDjtQA+iq0OoWsyyskw2xOUYtxgjipopo5gTG6vg4OD0oAfRRRQAUUUUAeEfEH/kd9T/AN9f /QFoo+IP/I76n/vr/wCgLRQB6r8P/wDkSNM/3X/9Dauirnfh/wD8iRpn+6//AKG1dFQAUUUUAFVp rUy31tdCQL5AYBduc7h6/hVmo3nRLhITnc4JHoMetAGfHo/liFhcEyQvI6tt4+c5IIz+uamXTRFN HPBII5VDA/JlW3HJ4z1yOuatLcQOyqs0bM3QBwSaXzYvM8vzE3/3dwz+VAFN9NBujcLLh2jEbgr8 pAJPABGOppDpSCRWik8kKEA8tdpAXtnOCPqDVxbiBjhZoycZwHHT1oE8JQuJYygOC24YFAFP+zCJ WkS4aLdvz5a4BLdyOQSPpSJpjrI0hudztB5BJTt69evNXvOi8vzPNTYf4twx+dI08KortLGFboSw waAKU1kw0qHT0RpCihUlXC+Wy/dbr/KrttCLeBY9xYjlmPVj3P50TzxW0DTzSBIkGSx6YqFtQt1u UhZwN8ZkWTI2kAgHnPvQBDHpYjSJROSYZWljJXoWzkH16n0qzbWoglnmLl5JmDOcYHAwMCpDNEsY kMqBD0YsMH8aGljSLzWkRY8Z3lhjH1oAq29h5Fv9mE263GdqlfmAOf4vx64zSR6cFW0Rpi0dqcxg Lg8DAyfofarYmiJAEqZK7sbh09fpUU95DDaS3IPmpEpZhGQTgUAVho8H2e5tzI5imBVVHHlKeSF9 s8/pSvpgkt5Y3kUyPCYRIE5Cnr3q4txCy58xRhQxBIyoPc+lDXECgFpowCNwyw5Hr9KACCMw28cW 4HYoUHGOntVEaUwto4Tc58u5+0Z8vqdxbHX3q8s8LsFWaNmYZADAkilEsZkMYkQuOqhhn8qAKTac 5vxei5AnBwSI+Cn93Gf160lvpMUEaQl/MhjYsgYfMpOe+evJ5xV95I4wDJIqA9NxxUFzfQWzRozb pJc7EBGWwM9zigCsmlun2JRc5SzbMYMfJG0jBOfQ9asz2hku4rqOXy5Y1KcruUqcdvwqYyKkYeQi MH++QMe1I08ChS00YDDIJYcigCAWbJc/aI5Qspj8tspkEZJ4HbqarnR0WJI4pmTYm0SAfOMnJIII 7nocirrXMStCAd/nHClcEdKeJYmcosiFx1UMM0AVG0/L3Z80Mtzt3K8YbkAD8QcURWtxbELDNuVp AzhwSqqByFycj9atpLFISEkRiOu1gcVCt/A98tojb3ZC4ZSCuAQCOvXmgCHV4J50tRAhZo7hJCeO AOvUimT6V56zF5/3kzxu7bOMIcgAZq+s0TlgsqMV6gMDilSWOTPlyK+Ou0g4oAge1P2xrqKXZK0Y jbK7gQCSMenU1XOkQiG2jjldPIyu4dXU/eU+x/SrlxcxW4j8wnMjbEUDJZvQflSR3MbnaSY33FQs g2kkc8ev4UAVrrS0uriV3lKxyQeQUVcYGc5zTZNMeecST3O4eQ0BVU25VsZOc8HirwmiKM4lQqpw TuGAahlvoIpIFLblmYqrqQVBAJ5OfagCBNLCwiNpFZliMSPs5UEY9f5Ypx04GytrYujC3AAJTrgY BGDkH6GrkciSoHjdXU9CpyKQSxNIY1kQuOqhhn8qAIktWWwNqZ3clCvmPyeagg00wyWTCcH7LCYg Nn3sgDPXjoKt+fCGK+bHuXqNwyKijv7aZIXhk8xZjhSv070AVrfS3gggiW7JWLfkbMBtxz69vy9q i/sthDaWiF1Ft8ouBgbkP3lxnv8A/XrU82PzPL8xN/8Ad3DP5Un2iDcF8+PcTtA3jOfSgCO7tI7q za1YlEYADb2xyP5VBe2Et7ZvBLcKCxX51i/unPr7VcMsYkEZkQOf4dwz+VDTRLJ5bSIHxu2lhnHr igCnNp7y3FzMtyY2mjVPlQfLtJP9TUcukmSO9Q3OPtaqrHZnbgY45/nV9biB9uyaNtwyuGByPagX EBVmE0ZVfvHcMD60AUL/AE6Wbz5UZJHe28gRlcA85zmojpstyJIrgfJJGqvKRh8qcqByQR1zWr5q btqsrPt3BQRkiobe9gns47rd5ccn3fMIB+lAC29qIpWlYq0rKFLhSDgduSagm00yRX8Yn2reZzlM lSVC8c+1WLO6jvLYTxghSWHzY7HB/lThc25IAuIiSMj5x0oApy6UJ2HmTHZ9mNsyquCQcc5zx0pf 7MBgaNpFL+SYVk2cqpGD3/wq091CkSyhhIjMFBQg5JOKY1/aqZ1Eqs8Ay6qeRxmgCOLTzHdW05mD eRAYQNnUcc5zx0p9/Zm8WFRL5flSrLnbnJHQVN50QVSzqu4ZAYgGjz4dwXzY9zdBuGTQBRl0lZpG nknJnMiSBguFBUEAYz7nvSy6WJPLYSKjrOs7ME++VGBnJq3HdW8k8kCTI0seN6g8ipI5Y5c+XIj4 67WBxQBRbTpDJcOt0VM0qy8J0wAMdenHtTf7JBt7iMzkNJN56SBcGN+OR69Knm1G2iS5IcSNbruk RCNwGM/yqaG4hnA8uRWOA20EZAPqKAIJbAOLQJJsFtJ5nK53HBHP5mmDS1Futr5x+zrJ5gXHzZ3b sbvr+NXEljkJCSIxHUKwOKGljVwjSIGPRSwyaAKkenbI71DIri6kMhzGCBkAYx3HFS2dobXzP3rO GIIU52pgdskn9am8+HcV81Ny8kbhkU0XMBVWE0ZDAlcMPm+nrQBU/ssYYeecfaPtKfL91vf1FWIL Xyrma5d98soVTgYAAzjj8TTo7qF4Y5S4QSLuAcgHFPE0RjEglQoejbhg/jQA+iozPCF3GaML67hi nghlBUgg8gjvQAtFFFAHhHxB/wCR31P/AH1/9AWij4g/8jvqf++v/oC0UAeq/D//AJEjTP8Adf8A 9Dauirnfh/8A8iRpn+6//obV0VABRRRQAVUntHl1C2ulZAIVcEEcncPX8Kt0xpoklWJpFEjglVJ5 OKAMyLSZI7e2jEkQMNyZywQjOSTj9asWli1soj3RSxrIZFZ0y4JJPX1561Pa3cN1HviJ+8y4YYOQ cHipsjdtyM9cZ5oAy10b/iWPaNIis0pl3omM/NuwR3HapH06RsyK8azMyFjgsGC5wOTx16ir0c0U pcRyK5Q7WAOcH0qOK7gmuZrZJMzQ43oQQRnofegCimksqMpkjfM7TqcMpUkdiDxSppUkciS/aRI4 i8pty7QRknIx068+tXYbuCe4mgik3yQkCQAHCnrjPSpgykZDAj1BoAqT2CSaS+no3loYvLBxnb+d MNjK+o2927RHyYWj27TyTjkflUwv7ctcKC2bfBfCk8HpjHWrG4DGSBnpnvQBlQaRLCtqROpe3DqB ghSGOfXgir0FpFFZ/ZtimM53LyQc9ev1qfI3bcjPpnmjcuQNwye2aAM1dI/0J7d7gu3yqjlfuopy qn19/WnXOnSXH2hzKiSTQGABVO0A9z6mtAEHOCDjrg9KCyjqwH1NAGc2nS+cZEmjBe2Fu+UJ6ZwR z79KINMeKSwYvE32SExfc+9kAZ9ulaO5fm5B29QO1NjlSSJZVOFbkbht/Q0AZlvpEkEFlGJIs20z SkhCN2c8e33v0qSz0oWwhR3EqQOXRjndk5684zzVt7uFLtLZiQ7oXBxxgYzz+Ip7zwxsivKimQ4Q E/e78UAQy2rG+F3G67vL8sq4yMZzkelV4tLaGWyKTKy22/O5eW3dcegHarlxcx27QrJuHnOI1IGR k+tShlK7gwI9c8UAVL2ya4uLe4STa8G7CnO05GO3f3qnNZPBeWH2eEHY8ju20lVLD6561r714+Ze enPWjemCd64HU5oAzF0p1eBxKm5Lk3DfJxkgjC+g5o/sglZE88RxurqVjB6t3GSdp+nWtSkBDcqQ foaAM6fS2uVVZZlQJC0SmFdudwxk/l0pH0yaW4SSSaJAsDwERIVOGxyOeOlaQYEZBBHqDQGBAIII PQ5oAzY9KxAschicxxGJCVbGCMHIz7VLa2c9rv2TIQxUbWUttUdQDnP0z0q6HU9GU/Q0FlC7iwA9 c8UAQ3cBuEVP3TJnLJIm4N/hVL+ypFETJcfNFP5yIwLKo2lSo5zjnNaUkixIXY8Dt3P0pttPHdW0 dxESY5FDKSMHBoAz10qVSz+ehf7Sblfk+XJGMEZ/WpJtPeae1lJgXyZjKyqnDEqR+fPWr4ZSCQwI HXnpQGBJAIJHUA0AVbC0e0+0bnVhLM0oCjGM44/Sq66ZMJ7eVp0JhkdvlTbuDAjtwDzVxruFLqO2 JPmSBiuBkcdQfSpiQOpA+poApWVi1tDFAzRSJECEfZ8/Pv6+p71DFpcsdvYQ+bGRZyBg2w5YAEfh 1rT3KSAGGSM4z2o3LkjcMjkjPSgDOGlkW623nDyll83ft/eZ3bsZ/TPpUcmkSNBeRiSINcXAmDbD 8uCOP/Hf1rV3qcYZeenPWhmVeWYD6nFAFH+z3+2/aFkWPMnmOFU/PxjkE4z7jmn39j9reGRJTFJG SN4GSUP3l/GrZIUZJAHqTQWCjJYD6mgDMXRY1guIBKVikUpCqjHkqeSB6jP6cVJNprXLMZpFXMDw ARLgYbufpjgVf3KCBuXJ6DNBIBAJAJ6DPWgChBY3Ed3BcPNExigMO0IRnpz19ulR2uly2y2rCaN5 IEaPDKdpDHOR6GtBZ4Xd0WVCyHDAN0NSZBOMjPpQBU020eytPIZ0fDswKrgcknp+NU4dHeK3s4t8 J+zztMTs+9nPH/j36VqPNFHE0ryKsaDLMTwKUSIUDh1Knoc8GgDMfSpWt54vNi/e3QuB8h+XBBx+ nX3qSfTnk/tALJHi8TB3Lnadu38avyyRwxtJK4RFGSzHAAqH7ZB9pW33fM0ZkB/hKggHn8RQBlzW M/nSRmLdE1skLEKSJMZ9DxUsum3N1C/mPFCZPLbYFzsK4OMjG7p1NaxYBdxIA9SaCQqliQAOcnpQ BnXGltOb4GYKl2qg7RypAx+Iqe1tPKmM0mwybPLyu7pnPc1Jb3cNwpeMny8AiQjCsD6GpiwUZJAH qTQBnz6dJIdQ2SoBeJt+ZTlDt2/jTW0pmaIeaiKtq1u3lrhuccg9ulaZ468VBBeQ3GTES0Y/5aY+ U844NAEFnp/kPE0hRmhTy0Zdw447Zx2pJtPaS8NwkixlmVmIU5YL2IJwfrjIq/kdcjn3oBDDIII9 RQBmDTJvtEErTxnyZmkGExuDAjHBwOv41Ja6atq8m1w0fzeRGV4iDcke/P6cVeDKRkMCPUGgMCAQ Rg9DmgDLt9JeJdNVpIm+x7v4D82Rjj0qKTT7i3WERhZCt08+5V4QHPGM89cVsCRD0dT+IpFmRpTE pJYKG6HGD79KAMuHTpJIwDEkPlyOyPlgxLdW4PHOeO9adtE0NtHEz+YyKAW2hc/gOlPDAjIIIHoa AQwypBHqDQAtFFFAHhHxB/5HfU/99f8A0BaKPiD/AMjvqf8Avr/6AtFAG94c1/VLPQrW3t7rZEgI VfLU4+YnuK0v+Eo1r/n8/wDISf4UUUAH/CUa1/z+f+Qk/wAKP+Eo1r/n8/8AISf4UUUAH/CUa1/z +f8AkJP8KrS+IdVfUbeVrlS6owDGFOOntRRQBUTW9RWFXWdQwuy+7ykznce+KluvEGqfbIiLlQfN WTIiQHdzznFFFAEtl4h1WFrgx3KqWlYkiJOTx7VFJ4i1ZdQFwt1iXeRuEacjZ06ewoooGV5Nf1RL e4C3W0SGLfhF+b9P/wBdCeIdWknYNdDa7x7lESAHGcZAGKKKBEk+uaiU1FfPUCRF3ARIM4HHarEe vanNcXHm3CybiqndEh4x0HHFFFAEd54g1T7TEftKhvMR8iJAc5x1xTJNd1JRqEwnUSMSd4iTIO0D IOOPwoooASx8R6ut5EVugu2IqMRIOOOvHP41Jca5qMtzdPJMjM8AUkxJyOfaiigAg13Uo57cpcKD 9nKn90nI468c/jUdtr2pqlsv2kFUt2VQY0IAyPaiigBYdc1Iy2O6dW8uFgu6JDjOM9uelEOu6kEs h56kRSPszEh29fb3oopgWL/xDqs4t1lugwWZWAMSdRn2qNNe1NReKJ027w+3yUxuAHOMe1FFICBd e1Py1k+0Dcl1vU+Unyk8HHHH0pJPEWqpNCVuV+67Y8pCMk8nGOvvRRQBc0/xFqx09ITd5jO4FTGh 4yeOlVP+Eh1U/aB9q2iQRqwWNACN3sKKKALVzrupZixOih5VDBYUG4DOM4HNJea1qDRRqZkw0yOQ IUGSD16UUUAKNe1OPUFZJ0U+Sy/LCgGCwPTFUI/EOqxC2VbobUgwqmJCBk+hFFFAE9lr2psvz3If bCFXfGjYGT6irdj4i1ZdOggF0PK8sLt8pOmOnSiimBTXX9UZrtTcLtaDYVESAEDOOMU5te1OHY0V yEYWrLlY0Bxge1FFICRNd1KK5smjnVWRGCkRJ3A9uakuNf1Sa+tpJLhXZA+CYk9PpRRQBWh1vUY4 7YpOqlLglSIkyOT3x09qkk8QaouoxbbhRhmPESDOV5zxz+NFFACWWvanG0aJcKFhaTyx5SfLz24q aXX9Tk1GOSS4RnETLkwoeMj2oooAo/8ACRatHJEq3Q2xiQKpjQgZb0IqS21vUXa1Lzq+yJ1G6JDw WHHIoooAe+t6gwvyZky/JPkp12jkccfhVWXxHq7icteZLsCWMaZ4Axg4yPwoooAsza7qTQ6gDOv7 xst+6Tnge1WP+Eg1R9QdmuQS8ARv3ScjPTpRRQBTOv6m6Xqm4Xa8AVlESAEDPbFLceI9WW5XFyuF hChTChAB68YxRRQBMfEOrPoXkPdbo/K24aNDx9cU5td1J7+3Zp0JSFgoMKYAJGeMUUUAVB4i1aNb VVuvljR9qmNCBz6EVcsvEerjTPK+15TDDBjQ8ZPtRRQBUPiHVYlslS5UKkR2r5SY7DOMcn3qOPxH q6tH/pYIWNgA0SMBljngjFFFAE9p4r1xGtrdb4+VsxtMaH19RS2mu6kiWUazqEVXIXykxn1PHNFF AA+uak7iNrgFEug6r5a4Bx9Ont0pzeJ9Za4lsjdgW/lkeWsSKMY9hRRQBXHiTV2sLdjdDJlG7ESD dgHGeOfxp0evanMP3lwGH2lXA8pMA49MUUUATXOu6jHcbkmRC8DRtthQZXI46e5pLrX9UWS42XIT dCiHbGi/Lu6cCiigCTUNe1JbbKzqu51VtsSDIBzg4HSjT/E2sCe4YXYBbbkCJAPyxiiigC9/wlGt f8/n/kJP8KP+Eo1r/n8/8hJ/hRRQBwHiO5mvNeuri4ffK7Dc2AM/KB2ooooA/9k= ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image005.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAIdAisDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwC/4M8I 6BqXhSxvLzTlluJFYu5dhnDEdj7Vt/8ACB+F/wDoEp/38f8A+KqLwNcw2nw/sLi4cRxIjlmPYb2r Zsdb03UJzDaXSyyAbtoBHH4inYTkk7NmX/wgfhf/AKBKf9/H/wDiqP8AhA/C/wD0CU/7+P8A/FV0 lFIZzf8Awgfhf/oEp/38f/4qj/hA/C//AECU/wC/j/8AxVdJRQBzf/CB+F/+gSn/AH8f/wCKo/4Q Pwv/ANAlP+/j/wDxVdJVC61rTrS8FpcXSpOcYQg9+nagTaW5lf8ACB+F/wDoEp/38f8A+Ko/4QPw v/0CU/7+P/8AFV0lFAzm/wDhA/C//QJT/v4//wAVR/wgfhf/AKBKf9/H/wDiq6SigDm/+ED8L/8A QJT/AL+P/wDFUf8ACB+F/wDoEp/38f8A+KrVv9a03TpBHd3aRORnbyTj6CrTXES2xuGcCILv3f7O M5p2FzLuYH/CB+F/+gSn/fx//iqP+ED8L/8AQJT/AL+P/wDFVrafq9hqbOtncrMUALYBGM/Wr1IE 09Uc3/wgfhf/AKBKf9/H/wDiqP8AhA/C/wD0CU/7+P8A/FVu3F5bWu37RcRxbum9gM1MjK6B1YMr DII6EUBdbHOf8IH4X/6BKf8Afx//AIqj/hA/C/8A0CU/7+P/APFV0lFAzm/+ED8L/wDQJT/v4/8A 8VR/wgfhf/oEp/38f/4qukooA5v/AIQPwv8A9AlP+/j/APxVH/CB+F/+gSn/AH8f/wCKrpKqahqV npqI95OIlc4UkE5P4UCbS1Zjf8IH4X/6BKf9/H/+Ko/4QPwv/wBAlP8Av4//AMVXQW88VzAk8L74 3G5WHcVn3PiHSLS4e3nvVSWM4ZSp4P5U7MTkkrtmf/wgfhf/AKBKf9/H/wDiqP8AhA/C/wD0CU/7 +P8A/FVttf2iaf8Ab2mUW23f5nOMVWtNf0q9uVt7a8WSVs4UKRnHPpRZhzRWlzN/4QPwv/0CU/7+ P/8AFUf8IH4X/wCgSn/fx/8A4qukopFHN/8ACB+F/wDoEp/38f8A+Ko/4QPwv/0CU/7+P/8AFVsa hqtjpgQ3twIRJnbkE5x16VDJr2lx3EcD3aiWQKUXaeQ3Tt3p2ZLnFaNmb/wgfhf/AKBKf9/H/wDi qP8AhA/C/wD0CU/7+P8A/FV0lRXNxFaW73E7hIoxlmPYUijA/wCED8L/APQJT/v4/wD8VR/wgfhf /oEp/wB/H/8Aiq2bDUrPUkd7OcSqh2sQCMH8at0CTT1Rzf8Awgfhf/oEp/38f/4qj/hA/C//AECU /wC/j/8AxVdJRQM5v/hA/C//AECU/wC/j/8AxVH/AAgfhf8A6BKf9/H/APiq6SigDm/+ED8L/wDQ JT/v4/8A8VR/wgfhf/oEp/38f/4qukooA5v/AIQPwv8A9AlP+/j/APxVH/CB+F/+gSn/AH8f/wCK rpKKAOb/AOED8L/9AlP+/j//ABVH/CB+F/8AoEp/38f/AOKrpKKAOb/4QPwv/wBAlP8Av4//AMVR /wAIH4X/AOgSn/fx/wD4qukooA5v/hA/C/8A0CU/7+P/APFUf8IH4X/6BKf9/H/+KrpKKAOb/wCE D8L/APQJT/v4/wD8VR/wgfhf/oEp/wB/H/8Aiq6SigDm/wDhA/C//QJT/v4//wAVR/wgfhf/AKBK f9/H/wDiq6SigDm/+ED8L/8AQJT/AL+P/wDFUf8ACB+F/wDoEp/38f8A+KrpKKAOb/4QPwv/ANAl P+/j/wDxVH/CB+F/+gSn/fx//iq6SigDm/8AhA/C/wD0CU/7+P8A/FUf8IH4X/6BKf8Afx//AIqu i8xfXP0GaTzF9/yNAHPf8IH4X/6BKf8Afx//AIqj/hA/C/8A0CU/7+P/APFV0PmL7/kaPMX3/I0A c9/wgfhf/oEp/wB/H/8AiqP+ED8L/wDQJT/v4/8A8VXQ+Yvv+Ro8xff8jQBz3/CB+F/+gSn/AH8f /wCKo/4QPwv/ANAlP+/j/wDxVdD5i+/5GjzF9/yNAHPf8IH4X/6BKf8Afx//AIqj/hA/C/8A0CU/ 7+P/APFV0PmL7/kaPMX3/I0Ac9/wgfhf/oEp/wB/H/8Aiq8h8ZWVvp3iq/s7OIRQRMoRAScfKD3+ te/+Yvv+Rrwf4gHPjbU/99f/AEBaAOzgufJ+FOmxA4MzFfwDsT/KmaEG0vxPp4bgTxrnP+2v+NZZ uN3hLQrXPCRSOfxkYf0qxqmqxXd9aXVvE8Rt40TBOc7TxW8V7tjzK017VvtY7HUvFf8AZ+tPYNZt Iq4+ZW+YkjIAGKh0rxhJeXkltc2QicKzLhj1UZwc/Ssm7cS/EC2kXo8kTD8VFRj/AJHi9/3pv/QD S5VYt1Z8176XsaI8cyyW0jxaaTIuD94lVHqTirkfjKE6Kb2S3ImEnlCINwTjOc+mK57w5/yAdc/6 4D+tR6XeWdloEz3NlFdyNcYiSQcD5Rk03FdiY1qmjct0bX/CaX0AimutK2W8vKMGI3D2z1rN8Ryp P4ttJozlJFhYH2Jqtr39py6fY3N95UcDgi3gjGAi4HP5Ypt9j+1tKz08i3zTSS1RE6kpLlfkdHP4 vu5ryeLS9N+0Rw5LOSeg747Ctbw7r0WuWzuI/KliIDpnI56EGuUutK1HSL6e80W5WeHksImDMq+j L3Fb/hDVodShmT7JDb3EeN5iUKHHY1EkrXR00qk+e03/AF5E/iTxEmi+XEkPnTyDIUnAA9TWfZeL 5/t62mpWH2dnxtIJ4J6ZB7Gsvx3/AMjDbf8AXJf/AEI0eMP+Rstf92L/ANCoUVYipVmpNp7NGTeX hu/EL3VxYNIWf5rU5yeMY9a9Hv8AH/CPz7U2D7McL6fL0rj5P+SkL/13H/oNdpq//IIvP+uL/wAq JdCqCsptnAeFtROk2uo3oi80osY25xnLEVrTeOZhBFLFpvBJDszHbn0Bx1xXN2H/ACAtV+kP/odX pP8AkQ4f+vw/yNW0m9TnhUmo2i+l/wARPFer/wBr/ZXFs8UQUlXb+InGR+BrZi8XGw0W3WSxZZ8B ERiQCoA+bp0NYesf8izov+7J/OpfFgJbSR62aD9aLJ2Qc84uU09dDbg8YXMN5FBqmnG3WXBDAnIB 6HB7UT+N1guLuF7PmEsqEP8AfIOPTis7U9I1Ca8tzqmsWIlUDYrttO3Ppio/D8EU/jS4jniWRQZT tYZGc+lTaO5p7SrdRv1NQeNWFyYG08u235fLbJZsZAAxUukeMVumuFvbfyPKjMmUOeB1GD3rJtVC /EZlUAKJmAA7fLVSwltoPEWpS3cQlgRZS0ZH3ueB+dHKuwKrUT1fWxsHxpfSRyXMGk7rWM4Zyx49 MkVU8U6rFrHh+xuo0KHz2VkJztIWq8k+oahoN5La29vY6ZGcvHGuC5yOM/l6Vny/8ipD/wBfj/8A oApqKInUk003dNHovh3/AJF+x/64rXn/AIgiM/ii/Rc53EjHsua9A8O/8i/Y/wDXFa46RQ/xDdDy HmKn6FMVMN2bV1enBegs2o7vh7DDu+YzeT+AO7+WKp+G1Fj4ni847REjs59PkJNUII5pLuLST937 VjHvnaf5Voy4/wCEq1IDkBZwPwQirtujm5m2pdrI2D4zvZzNLZaX5ltDyzMTkD1OOlXG8ZQf2Gb5 ID5/meV5Jb+LGc59MVzXh+01K502++yXsNtbY2z+b0Ix6444qHULEWOioFvLe5D3Gd0DbgMJ0NLl jexqq1Xl5iTxFrj6zaWhmtjBIhY5GdrA45GfpWhcXNhHq+nRTacZZzHb4l84rjgY49qg8ShR4e0I gDPkn+QqC/8A+Rk0z/rnbfyFNWsQ21Jt67HRan4tni1R7DTrH7Q8ZKkknkjrgCmx+JYNW0TUEurM h4YtzxB8B1z2PUVmeHP+R6uf96b+dWrv+wFs9WXTQwu/IfzM7sY3DPXjrUWS0NlOck5N99CPS9et dM0Wa6s9N8tTcCNkMxOTtznJFSzeOZU8mRNOPlMPmLMRk99px2rnU/5FSX/r9X/0A1e1r/kUdD+j 1XKrmSqzUdHayOh1bxctq9vDZWxuJpkVwCcAbug46mk07xZK+pfYNSsvs0xOBg9+wIP865NlnfXb JLZwk5WERs3RW2jBraTSbpvEsE+oarYyXQkXdHuw7Y6DGPSk4xSLVWpJ3Xc6qw1I3U7RNHtx0I/z 7Vo1FHbxRNuRcNjGfQen0qWsmd8U0tQooopFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUx /mbb26mn1GeJD7gUADMqIWYhVUZJ9BUcNxDOheN8qO5BH86W4jMtvLGCAXQqCfcVTSxka2ihmCkI 6scyM4YD6j9KAL29A6pvXcwyBnkil3DBO4YHvVBbBkaFh5eUEi57qGORt+lRw6W6QeXIyt86E85D BfbA5NAGpn3oJA5JA+pqtfWpuURUYJg4Y+qHhhVX+zpRGu4xSsrH5XztK4wv4gf1oA0884yM00Sx tuw6nbweelUTpzFHBkBcwrEHPXjr+BqNtOlMMgCQKzSiRUX7i8Y9OfyoA0pJFijLucKKcSB1IH1N QSRO5t1bBVDucjjJA44+tVr+0lubsFY42XySm9/4ST1HvQBeWRGdkVwWU4IzyK8J+IH/ACO2p/76 /wDoC17ULArc+eCu/wA0Pvx8xULgivEPGsP2fxdqERwSHHT3UGgDtfCXhi41HRtL1A3MQiA/1ZUk 4VzxXV+JfDp1hbf7PJHA0ROSV6g/So/h5/yI+m/7r/8AobV0lVzMydGDurbnI2vhO8i1a0vZbuFv I2ZAU5IUYqb/AIRe4/4SCfUvtMeyUuQm05G5SP611FFHOxewgcppfhW4sdO1C1e6idrqMIpCnC9e tVG8E3H9lGD7VE06y+YhwQpBGCD+VdtRT52L6vTatY4h/B+qXVnDHdamhaL5Y0OWVF+vrVi48I3M 15ZzfaoQsEcaMu0/Nt6/nXX0Uc7F9XpnGN4U1SxvJ5NIvo445sghuCFPboa1/DPh8aJFIzyiWeXG 4gYAA7Ctyik5N6FRowi7o57xP4cbWHiuLeYRXEY2/N0YdfwrPs/CuoT6rFe6veJN5ZBwpJLY6DoM CuxooUmlYJUISlzM5pvDc58UjV/tEfliTfswc9MVvXsBubKeBSFMiFQT2yKnopNtlxpxjdLqcZbe DLqHT7y2N5CWuNmCFOBtOasN4UuW8Ox6Z9qi8xZzLv2nGPSurop87M1h4LocpeeE5bnQ7KzFygnt d3zYO1gTVefwde3OnxrPfq91EdqE5K7Oy+3NdnRT52Dw9N9DjLbwpqNzqMNzq96kqxYwFJJYDoOg wKv6V4bnsfEMupPcRujlzsAORuNdJRSc2xqhBanNR+G508Utq/2iMxmQv5eDnkYqqPBsrXt5LLdp 5dwHACqcqSciuvoo52DoQfQ4e18IasttPaSaikds/OxMkM3bI7VM3g67bR0sftcO5ZzLu2nGCuMV 2VFPnZKw1Mq6XatZabb2rsGaJApYdDisJ/DNw3igasLmMR+aJNmDnGMYrp6KlNo0lTjJJPoczD4X ePxOdVM6GHzDII9pzkj/ABqOHwpKNenvpriNoJjJmMA7sMCOv411VFPmZPsIdvM4b/hENYthNb2d /H9lm4cElSw9xirsng4f8I+LKOcG5Enm+YR8pOMY+mK6yinzsSw9NHDN4K1CeziSfUUMkeVVDllR fQVdufClzNqlpdi6iCwLEpUqcnZjP8q6yijnYLD00chqHha/TV5NQ0m8SJpGLYbIKk9cHB4p2n+E ZrfT75ZrlGurqMxhgDtUE5P1rraKXOw9hC9zjV8HXQ0Z7H7XFvacS7tpxgLjFWL/AMLXF1oun2C3 MSva7tzFThs+ldVRRzsPYQtaxx+oeEbl/stxZ3aJdQxorE5ALL0YHtUuj+GLuPVxqeqXSzTKdwC8 5bGMk11dFHO9g9hBO4UUUVJuFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1l3d8EdD TqKAI/nHVc/Q0Zb+4f0qSigCPLf3D+lGW/uH9KkooAjy39w/pRlv7h/SpKKAI8t/cP6UZb+4f0qS igCPLf3D+lGW/uH9KkooAjy39w/pXhHxA/5HbU/99f8A0Ba97rwX4g/8jvqf++v/AKAtAHq3w8/5 EfTf91//AENq6SuZ+HqKfBGmkjna/wD6G1dJ5af3aAHUU3y0/u0eWn92gB1FN8tP7tHlp/doAdRT fLT+7R5af3aAHUU3y0/u0eWn92gB1FN8tP7tHlp/doAdRTfLT+7R5af3aAHUU3y0/u0eWn92gB1F N8tP7tHlp/doAdRTfLT+7R5af3aAHUU3y0/u0eWn92gB1FN8tP7tHlp/doAdRTfLT+7R5af3aAHU U3y0/u0eWn92gB1FN8tP7tHlp/doAdRTfLT+7R5af3aAHUU3y0/u0eWn92gB1FN8tP7tHlp/doAd RTfLT+7R5af3aAHUU3y0/u0eWn92gB1FN8tP7tHlp/doAdRTfLT+7R5af3aAHUU3y0/u0eWn92gB 1FN8tP7tHlp/doAdRTfLT+7R5af3aAHUU3y0/u0eWn92gB1FN8tP7tHlp/doAdRTfLT+7R5af3aA HUU3y0/u0eWn92gB1FN8tP7tHlp/doAdRTfLT+7R5af3aAHUU3y0/u0eWn92gB1FN8tP7tHlp/do AdRTfLT+7R5af3aAHV4L8Qf+R31P/fX/ANAWvePLT+7Xg3xAGPG2p4/vr/6AtAHqHw7nJ8Lafb7R gQs+frIw/pWqurPN9r8lYsxAvGWbO9RkE8dORWV4Cs4ZvBumSsGD+Wy5VyuRvbjg10I06zUKFt0U KpQbRjgjBHvQBUTULk3EMLCEF41kJCsep6cdPxpP7SuGhuHCwpJEC3kvuDAD1/xFXmsYDIkgDKyq EBVyOB0BweaQWFsN+ULb1KHcxPynqBnoKAJbdpGgRpdu8jJ2Zx+tNvJjb2kswUMUUtg96lUBVCjg DgUksaTRNFIu5GGCPUUAZranMJJ18ldyAlIud7+47EfSn2+otLNDHmKTerksmeCuOMHoeasNYWzO XZWJ5x85+XPpzx+FIdPtSm3YepbduO4k8HnOaAKdtqk9xNEgSNN0auRhiTnPAI4HTvVnTr17ouJA iOvWLkOn1z/MVJ9htxKJFVkIULhHIGB0GAcU+C0hgcuincRjLMWOPTntQBNWXc6s1vcbDBujWbYx U8qu3cWx7VqVD9lg87zfLG/duz74x/KgCmdRmk0h76FYjtLHBJIIBI4I+lR3GrParcLMimWKNXGw Nhic+3FX0sraO0NokQWAgjYOnPWle0gkEoeMESqFfk8gdKAKtrey3F7LEQipGxXG1snAHOenel+2 Tus80ccfkQl1O4ncSvf86sR2kMUzSpvVmOSN52k+uM4pHsbd5GkKHLZ3AMQDxjJHTNAFe51B4LeK RY1YyQtJgnuFzioI9a81wqxBSBGHVj8yMzYIP06+9XRp1qIwhRmUAqAzk4BGCOT6U42NqZjL5K+Y duW7nacr+VADLK4nulWfZGtu4JXk7vbPardQRWkEMpkjUqTnjccDPXA6Cp6AKF/fSWU0ZZFaBg2c Z3DCk/TtUU+pXFqgM0MZZ03ptY46gEH8+tXmtIGn85k3PjHJJHp06dKYmn2qK6iLIZdpDEn5fQZ6 CgCpd6m8Fw8QESBZFTfITjlSefyqFtdMahpINqGAyB8/LuyQB9Djg1pJZW6bcR5IbfliSc4xkk9e Kb/Z1oYmiMClGTyyp5G3OcfrQBWTVd18lvsUKyDLbuRIRu24+lWEvR/ZQvpEwPL8wqPpSjTrMLgW 653bt3fP160+Czgt42jjVthGNrMWGPTBoAg+1XUQhM0cWJpFUbGPAIP+FNuNQeL7ZiIH7OUA5+9u x/jUp021KbNj4BBH7xvlx0xzxTjYWxdXZCzLjksTnHTPrj3oAqWmpyT3qwsibXZ1BAYFdp9Twc+1 alVorC2ilEiIdwJZcsSFJ6kAnirNAFK+1AWVzbJIv7qXdukz9zHQn2qGz1VrqdE8jYrNIBk84XGD +OavS28MzBpYw5AK88jB61G9jbOCDHjLF8qxByeDyKAILK+mvIztjRH8pXGSSMnP+FVxqtyloszw xMXjkkVVJ/hxxz61fFjbrMsqKyMoCjaxAwOgx0NBsLUxrGYhsVWUDJ4B60AUJdcH/LGHdiBpWLH7 rDHyH39alW9unMCIIS8pbkqygAAdjzVuSxtpQQ0K/MGBxxnPX+Qpp0+3YIG80lCSp81sjPB5zQBU /tjEcjvGF2Rkkbur7iuM+me9XbC6+12iSkBX5V1ByFYcEZpp06zOzMCkIAAO3Bz078mpobeGDf5U YTedxC8DP0oAeTtUk9BzWY+oXS6c9+II2iKbo0DHceeAe1alVf7PtcMPLO1uq7jgc54HbmgCjNrY zJ9njDqkPmb26bsgbePTPNXPtbpp73D7WYZ2hVIyegGDz1qSSxtZQwaEfMCDjjqcnp7il+yRbEQl 2VXDjc5PI+tAFafUvsd3BBcqArxFmlHRWHb8aitdSuLxVWGBI5SrORITwAxAHHfj8K0JLaGWTzJI 1Ztu3nnjOf5io3sLZgAYyMEnKsQeTk8jsaAK9rqE18d1tEgRAu/zCc5PYY9PWtGq5sbYsrCPaVAA 2kqCB0Bx1qxQBWv7r7JaNKAGfhUUnAZjwBmq0WqGUbljUj7MZjz/ABA4K/nV2a3hnKedGH2Hcobk Z+lRNptoRjyQoyThSR16jjsfSgCkNSuwryNHDsW3E+BnPIPH6U46vun8qKPcWVNpYFfmYnrkdOKv vaQPv3Rg708tvdfT9aSSzt5GZnjBLKFJz2ByP1oAoz6pLA3kyeRHKsgRnYnZgqWB/SiDVJJZYA8a QJIAQZM4fOfunp+frV1LK3TbiPJVt+SSSTjGST14po0+2GzCHamNq7jt46cZxxQArXEn2uSONNyx R7mA6lj0H5D9aqW+pySNArCMtJJsZRkNH8pPIPfir6QRp5uMnzTlsn2xUX9nWu0jYxJIO4uS3HTn OaAM+bWZlztiQYEhwQxztbGOBxn3p8utiL7UrQnfGqtEAc+aSoOB9M/lVxtNtWCjYyhVKDa5GQeS Dg808WVqAwEK8/pxt49OOKAKTajctHvijhH71IzuJ/iA54+tai7to3Y3Y5x0qEWVuq7REMbg+Mnq MYP6Cp6ACiiigAooooAKKKKACiiigAooooAK8F+IP/I76n/vr/6Ate9V4L8Qf+R31P8A31/9AWgD 07wDdrH4L05CjkhX5A/22rovtyf885PyrC+H6qfBOmkj+F//AENq6LYvoKAIvtyf885Pyo+3J/zz k/Kpdi+go2L6CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6 CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk /Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk/Kj7cn/POT8q l2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAI vtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3 J/zzk/Kpdi+go2L6CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+g o2L6CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk/Kj7cn/P OT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYv oKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885P yo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kp di+go2L6CgCL7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL 7cn/ADzk/Kj7cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk/Kj7 cn/POT8ql2L6CjYvoKAIvtyf885Pyo+3J/zzk/Kpdi+go2L6CgCL7cn/ADzk/KvDfHrh/GmpMARl 16/7i17vsX0FeE/EDjxtqf8Avr/6AtAHq/w8/wCRI03/AHX/APQ2rpMD0rm/h5/yI+m/7r/+htXS UAGB6UYHpWJba752ry2xWP7Od6wurfMzJ94Efnj6Glm19RZRTxWru0ts9wqlgMBccH86dmR7SJtY HpRgelc8+vXUc8DNYSNG9oZ3iTaWXB65zjGO3WrEniK3VtyQTSW6KjSzKBtj3jIzzk9RnHSjlYva RNnA9KMD0qjYaj9unuUS3kRIHMZkbG1mB7d6q65rD6a8SQpHI2DLKHbGIx1I9+ePxot0Kc0lzGxg elGB6Vk3WteXcSQW9pLcFIBPvUgLtOcck+1VF15lFpdXSNbwyWzzPEAGzjbgg5754HvRZkupFHQ4 HpRgelYk2sXCyWhktZLRXmKyCYAkrsLZBB9ql0rXbfU52hjieNtnmJuIO5c9eCcH2NFmP2kb2NbA 9KMD0rIbX4U1CSzeBwyhyrblIbaMkYByOPWoo/EsBhaWe0uIB5InjDAEyKSBxg9ckdfWizD2ke5u YHpRgelZOl6jc3mpXcE9u1usSRkRvjcCc55BIPSqUOtaiLRdQnhtmszOYmVCwkUb9ueeDz2osxe0 W50eB6UYHpXPxa+YSI5UknkeeRAcLGFVWxjJOD/OrM2tM32oW1pMyQh1+0YGwOoJxjOce9FmP2kT XwPSjA9KwovEKrBE0tvLIFjja4mQDZGXAI4znv26U8+Iodt64tpdlqCSSygtg4+7nI/EUcrF7SPc 2sD0owPSsm81yO0mli+zSyvG0SYTGWL5xj8qYPEVt/aC2jQyKd4iZsrhXP8ADjOfbPSizHzxXU2c D0owPSsfUtZOn30sbxb4Yrbzzt+8TvC49O9Vb/X7lbWVbWxkju1lSPZLtO0P908HnPTr1oSbB1Ir c6LA9KMD0rGh11DMkUlvNsMnkfaMAIZQOVxnPUEZ6UxPEXmwW0kenXLG5LCJMrlsDJPXpRZh7SJu YHpRgelY1r4hiuWX/RJ40kiaSJn2gPt+8OvGPeq7+Ji9vvt7F5JVnSJ4/MXjd0IIODmjlYvaR3ud DgelGB6VhrrTxXFzE0ctxN9o8qGBFUEfIGIznGB6mhvEcZCeTY3EzGN5GQbQU2HDA5PaizH7SJuY HpRgelRW06XVtFcREmOVQ659CM1LSL3DA9KMD0oooAMD0owPSiigAwPSjA9KKKADA9KMD0oooAMD 0owPSiigAwPSjA9KKKADA9KMD0oooAMD0owPSiigAwPSjA9KKKADA9KMD0oooAMD0owPSiigAwPS jA9KKKADA9KMD0oooAMD0owPSiigAwPSjA9KKKADA9KMD0oooAMD0pruka7nZVX1NOrJ1csJ49pf zgAbdVGQzdwe2MdaBM1EdJF3IysPUHNOwPSsfSi5u3Mm4XJz9oXGFX+7t9vfv3rYoBMr3LSr/qkD txwWwK8M8f8A/I7an/vr/wCgLXsurkiaPBI+WvE/Gf8AyNl//vj/ANBFAz174ef8iPpv+6//AKG1 dGy7lK5IyMZHWuc+Hn/Ij6b/ALr/APobV0lAGZHoGmRLCI7ZUeFgyyrw5I9W6nPemweH9Pt5C6JI QUaMI0hKhG6qB2FatFO7I5I9jOg0a0gUBTK2ITAC8hY7Cc45qM+H9PLREpJhFVSokIVwv3dw/ix7 1q0UXY+SPYz20qIKohkkjH2n7S+GPzHuPpTptIsbi6kubi3SeR1C/vRuCgegPTrV6ii4cq7FC00i 0tM+WHIMIgIdifkGcD9TUceg2CRpGUkkRI3iCySFhtbGR+gx6Vp0UXYckexmxaJZxeX/AK6QxvvB klL87SuDntg9Kl0/S7bTmc2/mAMMBWkLBR6AHoKu0UXYKMV0MsaBYLctOqyBmLnHmHaC4IbA7ZzT 20SxeNI3jZkSD7OAWP3Mg/nwOa0aKLsOSPYo2Gl2+nySSwmVpJQA7SSFycdOT9agh8PWEMqv++dV cyLG8rFA2c529OtatFF2HJHsZcugWMqbH87YXaRkErBWLHJyO4zTm0Sya4kmAlXzAdyLIwQkjBO3 pnFaVFF2HJHsZbaBp7PGxjfCKqlRIQsgX7u4dGx707+w7FpJ5JFklMyFG8yQthSckDPStKii7Dkj 2MuHQLKE5HnMxdJCzyliWTO3k/Wpv7JtRqBvVEiyk7mVZCEZsYyV6E1eoouw5I9ijeaTa3sskk4c tJF5Jw2Pl3bv5iiXSbWaeSZw++Ro3bDd0+7V6ii4cqfQzhotkL03YR9+4ybN52Bz1bb0z70+HSrW BbMIHxabvKy3TIwc+tXqKLhyx7GadDsDBFC0bNHEjxqpY/df72aYvh+wW3lh/fESlCzGUlsr90g9 iK1aKLsOSPYzZNDspFkDeaGeQS+YJCHVgu3IPbgU6LRrKEr5cbLtiaH7x5Vjk59ST3rQoouw5I9i K1t47W1it4gRHEoRcnJwKloopFbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2SNJFKuoYHsadRQAyOJIl2xqFHoKfRRQBk6x/r o/8AdrxPxn/yNd//AL4/9BFe2ax/ro/92vE/Gf8AyNd//vj/ANBFAHr3w8/5EfTf91//AENq6Sub +Hn/ACI+m/7r/wDobV0lAFODUradlVGYF2ZF3KRuZeoHvwanhnWWNHwU39FfhvyrKt9MufLgjmEa pDcPcfK2SxJbA6cfe5plrpN1Clp86o8ShHw25SASehHXngjFAGrcXkVv5e/J3yLF8vOGPTNT7lyR uGR156VippdwlrbR+XD5sMsZaQOf3iq2cnjrSf2POUWN3BCrIrMrFWl3MCMntj8eaANrzY8Z3rjG eval3LnG4Z9M1hTaRePERuikZoJYSW+UjcQVJwME8c9Kc+jzSi9J8uOSWNBFJnJUhcH6Z6cdqANr zEwDvXB4Bz1pJZkiheVslUBJ2jJ4rIl0qd1V4j5UxYscuGUE4BGNuCOO2DV4QSC1ukWKJGkZyuw8 NnufegCWK7ilKeWSwdPMVgOCPrUvmR7d29dvrnis1tOl3SCNlWN1BCH+FtwLD6HH6mkfT5HmDmKI rl22Z4XKgADj1GaANTcu4LkZPQVFNcRwvGjZzIwUY96o22nzJLG02DgIch/ulVxjpyP8adNZzG7E gSNx56y7ycMABjb0oAvRzJIqsCRuzgNwfypJLhI2jU5be+wFecHGefyrNj06dRDgIjLkEg5AG4ng Y688EVItlMI7dRFGjRsu91b7wAIz096ANHzEwTuGF689KXeuQNwyRkDNZX9nTeWoKqNiKnytjcQc 7un6H1NC6bOdwkdQxAIdDjYdu3GMdPxoA0YriOWeSJckx4JPbnP+FNnu0hkEbLIzFS/yqTwOtVrS 3uLeaRxBEodY1wremcnp71JcWrTX0UhH7tEIJDkHOQRx3HFAFpZEZchh0B+lHmJx8688daypdOne B48ITskXdn/WFjxn6Ut3prSu5igiAMSKOcYIbJ7UAanmIQDvXB4Bz1pSyggEgE9B61lNp85YlEjX 96zLzkAEjquPb61alt3a980xpIjKo+Y8oQc5H+e1AFrenPzDg4PNMmuEht2nOWRRk7eeKzDp9wQw aKEhvLyAcDKuSTjHoanNnMdMurYKgaVn2DPADHjtQBf8xNu7eu31zxQXRThmAPXk1lvp8zS+btRV LHMKtx90DPTGfwqxc2JljtxGQGi+QlucoRhhmgC0syNv5wFOCTwD9Kd5kYON656dazJbCZrh3VUE fmEhAQMgoFz06jH602XSpN+YXQBQrJu5IbG1iT3yv60AaodScBgTjPB7UyG4SaSVEyTGQCexyM8V nNpkhMyq20HcY3BxgFcbSMZx+NT29tMn2s+VFH5oG1QcjO3HPAoAttPCmzdIo3ttXnqfSpKyorCd XVmjj+WVZNue2zae341q0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk6x/ro/92vE/Gf/ACNd/wD74/8AQRXtmsf66P8A 3a8T8Z/8jXf/AO+P/QRQB698PP8AkR9N/wB1/wD0Nq6Sub+Hn/Ij6b/uv/6G1dGRkEZx70ALRWNB NftcRxSPIASYy2wfeU5LdOhHSiGa/a4SJ3k2ljEW2D7ynJbp0K8fWnYjmNmisZJ7/wA9Y3eTbuMR fYOoO7d06FePrUk19L9qXyCzqcYQrgHKEj364GfwosPmNWishrqQQ27/AGxgJJFWT92AVypJHT1H 4UiXd4UyxO/C+WuzHm5Ygk+nGPpRYOZGuzBQSSAB3NLnNYctzM8UqSTeYkiTrtKAfdPy9vShZ5Ek Ijk2bngUkIM4K80WFzm5RWKl7ePsRZADhgrsMB2DkYPHoB09asXd3LvcwsQFT92AufMcEgr+g/Oi w+ZGlRkVjtdzp5kj3BCC4MW0KBhevHv/AEpftDtHHK8oZkVVZ4wCNzHn2HA6+9Fg5ka9IWAIBIBP T3rDbULpbbezsGMOV+T+MNg9vSlfeboK0zhvtvykgHauw9OOlFhc5uUVjR3t09uj7jv2KUAT/Wtu IIP5D86GuboQSSi4LYmdAu0D5QTjBx16detFh8yNnIzjNFZEsjPNDOBkmZYwGXnhTn6cmj7VO0ED i5YPJIiyL5YyhOdw6UWDmNeisE3Vw9rIJJt+63lbDIMZVsDt3FWBd3IklJKqELL5ZHbopHHc4796 LC50a2Qe9FZEcUULzx3YYlSoiODyuB933znNMmvLtLeRw5EgRy67M+WQRtHvn/69Fh8xskhQSSAB 3NAIIBBBB9KxppXkkWKSdmVLtVztHK7M88YxmobWZ4YovKGMW4BITJUeZgn8ASce1Fhc50FGaxbt rlmb7PcSSFrd/LIGNx3D9cVHfFQkhsyyQ+RhyowN24Y/HG7NFg5jdVlYAqwIPcGlrFnYWst41sRG 4WEAhB3Jzx+NDT3HnKRI7mKSVFGMByFyoPH4UWDmNqisZbq7aOHFwAJJEUsFBIyDuHTjnFL9pvD5 v71UZSykOOgBAU8DuO/Tmiw+Y2KMisKWV5YrhpXl2taHCOBgnLDsOe1SjzLYBl2RCSMsGiXhiMbV wfqfrRYXMbFFY0l1d+Vdy+eY2iKBUCAgEhc/XnNAurlZmX7QWAlkjG5MjATIJwOeaLBzo2aQMGzg g44OKzFvZhYOcsZwTg7dwwCMkYHIGc1BbzMkkwWZhE0zFptoz9xcdsc8/lRYfMbdFY0rzLbzXgKw 3CwLuCrkliO/9BThdXCXO03BdROY8FB02bs8D1osHMa9Gawt090bfMpFxG7FH/hJ2+wGVPoen4Uv 2mWC2Z1V4N6TME2ZIkB4HT6/Wiwuc3KKxmu7hrnAuCEMsaYCDoyZPb1qa2kvbi2ikWTsQxwBkgkd xRYfMadFc5MXW3v4E3eVMZHDDPy4PzD8flx9TWgXiW8QeYUQ2pztJ46dPfGaLCUjTorN06TIdoDv jd/ul/8AVjA9e564qB5F/su9xI3yytt+Y568UWHzGzRWNcO51IsGfy+B8udwG08gdCv65qfTXSHf FwVLBUkAb94duT1z0xRYObWxpUUUUigooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMnW P9dH/u14n4z/AORrv/8AfH/oIr2zWP8AXR/7teJ+M/8Aka7/AP3x/wCgigD174ef8iPpv+6//obV 0lc38PP+RH03/df/ANDaukoAKKKKACiiigCOWBJmjLg5jbeuCRzUlFFABRRRQAUUUUARzQpNt3g5 U5Ug4INLDDHCu2NAozk+59afRQAUUUUAFFFFACKqqMKAB6CloooAjmhSdNkgJXOSM4z9fUU8qGGG AI680tFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZOsf66P8A3a8T8Z/8jXf/ AO+P/QRXtmsf66P/AHa8T8Z/8jXf/wC+P/QRQB698PP+RH03/df/ANDaukJwMmub+Hn/ACI+m/7r /wDobV0hGRg0AUbfURPCtyIitq2SJWYDCj+IjsDintqVmi7mnCjcFwQc5IyBjryKg/slfsJsPPf7 LgqEA5APbPt2pH0nfMJzcEy+akjHbwdgIAx+JoAnGqWJYr9oXIGTkEY4zz6cU8X9sSAJfmJI24OR jGcjt1H51Xm0pJ/twklbbdFTwMFCoGPr0FNl0eOVU3Oqurbt8abW3ccg5yDx70AWV1GzZyguFyCw 54GV+9z7Uf2jZ7cmcD5lXBBzk9OPes6LSDdCdbvekZmmZUGOd+RnP0J4qw2kb5BK1wTJviYnbwQn IGPxNAEs+qWyWZmikV2KuUXn5ivXtkYpsOqxFS07RxqEjb7xJBfoCMflUI0UKpxcsGIlUnaOVkOS Mex70HRcoy/aT8ywr9z/AJ5nI796ALZ1KzEe/wA8bfmB4ORt+9kdsU+6uhb2L3Ko0oVdwVeC1Zd1 pc6u3lPvDvJIT5YPLY+UjI44rS+zvPDALjZlVy6KOC2Mce1ACPqNoibnmAHlefnB+56/rUFxqyRm URoWMMkaOWyBh8cj86g/sL/Rlh+2MAIHt87B9xjkflU0mk7mlIuCPMeJyNvdMfzwKALP9oWnliQT Aglh0Ocr97jrx3pG1OyRyhuFLBQxwCeCMg8ewquukbXMi3BEheVg23jD9Rj8BT7XTPsjSmCcqGhS JMqCU2ggH360ATzXQjWB1XfHMwXdnGM9DVdNULwGXyQoUOWDP93b+HfIqzc2v2myNvJI2SAC44OR 3qJ9PU/aijlTcIE6ZC8Y4/z2oAQ3zicx+WuBKsec9mXOakiv4XjjZmCmToBkjrgc49aj/s9jL5nn j/WJJjZ/dGMdaYNMYRxp9pJCEEDZxkNuz1/CgCY6nZjP77pk/dPY4Pbt3p93dfZ1iIVWEjhcltoH BOf0qudNYoV+0dVlX7n9859e1TT2jTRQJ5ijymDcpkNgY6UAS2832i3SUKV3DODVNdUO6NWh2l/M DfP90rnjp3was2tu1suzzS6Y4BHQkkn+fT2qGXTIpDOd7DzZFk4/hI9Prz+dAEkd9CVHmsI3xlge i8ZIz6gUyTUI0ljA5jbcGJBDKQAemPemSaVHJ5ys3ySEt93lSfQ0k2lrN5ZaQKVLNlEwdxGAevUY oAuR3MUshjRssOvB/H8eRUc12IbyCBkO2bID56Edj9ahNnNHI00UwMzcHCYB5HJGeeBUl5Zm6P8A rSgCkAgcg5BBB9sUARjUSwkKQ5CziEEtjdnHPTpzVi3uPOaVGUpJE21lzntkEH0war/2eQrKkwUG VZR8nTaBx19hUkVvJDcbw+7zCWlYjrwAAPTFACfb1E91FIhUwAMOc7wR2/lUR1QrFDI0AHmQmXBk 5HTgccnmpJNP8y484y4O7cAF7YAwfUZAP4VGdMYxxIZwRHCYcmPqDjnrweKALH2tftq22xgWTcGP TP8Ad+uOakuJJIow0cfmHPPzYwMdaq/2dteOUS/vY5N4fbkkYxt6+nerKJM9qUlYeYwIyB0z04+l AFRdSYGBpoRHHMpYEEsfug9AKtC7gLqgkBLYxjpz0596h+wNstl87/UIUzt+9kYz1ptvpqwurFw+ Aucp3UYBHp0FAErXbmWVIYTJ5WAx3Y5xnA9Tiia+hiST5wWQE4OQMjqM4ps9gJfPCybUn/1ilc84 xkehxj8qjbS12TIrgCTdglMlC3XBoAs/bIAWDSAFfvcHA6cZ9eR+dNS7El0kSYKMjHPIIIIBBH41 BLpglZ2aXBYD7q4yQQQT64xUsVn5VwkodflVgVVMZJIOevtQAkV+rtISoWOMsGYtypBxyO2e1NfU oUnCs2IijMWwcggjIIx70kumiZt0kxLAEKwUBuuRk98YFOmsZJyS9wNxieI4T+9jnr7UATm6gEnl mQbuntnGcZ6ZxzUMl8n7swkPukVCDkEBuhpraargo8hMZbeVAxlsY6+lB09iyMZ8upTnb2Ukgfr1 oAsyXMMUgR3w3HbpngZ9KgjvHkiuJkiykW4KDkFiuc9R7Us9kJpHPmFVlCiRcdcHjB7UqWrLayw+ aCZC53bem4k9PxoAjGpI62ZSMk3JxgnGzjJz+WKm+3W5XIkz0xwec9MevQ9KrjTAsgYTHHmbyCvH QggemSSaWLTBEsWyUB4sBH2c4AIwfXg+1ABbaissaPJtjBj8w8nj5selSm/gDcsAgRnZjkEbSAeM e9V10ohEU3BO1NoO3Bzu3A/mKlnspJ877gZMTxkhP72OevtQBKL23ZSwkzhtuNpznGenXpzTnu4E iWVpBscZUgE5GM9vaqz6bvlMpm+bcGX5eBhdp71JPZebbxwpJ5aKCpCrwQRjpQBJDdRzTyxJuzHj JxwcjPBqCPUMiN5ovLSR2QMGzgjPXj2NS2tqbd2bzNwZVBGMcgYzUK6c3lqj3BIRmdNq4wxzz+GT igCY39qqBzLgFtv3TnOM4xj0pq6lbndksuJDGMofmOM8VHHpzI6t5+cSLIfk6kLt9ad9hPnB1mwB MZsbe5XGP1oAkS/tZFLLKCAA2cHoeBj154pTe24BJkxhWY/KeAOv5VWTSyoQGfOxFUHbjkNuB/8A rUsmml9zC4Ku+8O20c7gBwO3QUALNqSIzBFJCSIrEggYbHI9etXIZUmjEkbZU5HTHTg1TbTmJ4nx lo3Pyd0x798VLbwTQShRIGjLO7ZXHJOQB9OaAGG8uPtBhFqMgbuX7bsZ6fjS2uowTW6yM4Vtisy4 PGeOPXnipDbt9sa4EgGY/L27ffOc1VGk/u40afPlxqgO3urZB6/pQBfilSVN6HI6fjT6jt4RDHsG 3qSdoxkmpKACiiigAooooAydY/10f+7XifjP/ka7/wD3x/6CK9s1j/XR/wC7XifjP/ka7/8A3x/6 CKAPXvh5/wAiPpv+6/8A6G1dJXN/Dz/kR9N/3X/9DaukoAhiu7eZtscqseePXHWpqyVguHhiQQMr RTPLlmAzktgDHrkVGttcsFR4pVjMyMQH6Ltw3fPWgDZDA5wQccH2payDZukjKsLhTchyVbqm3HrT Iba7VFASUEx4fL9cP069duRQBtVHJPFFje+MsF9eT0rMkt7oZZInKMJFVN/KggYzz6g/TNMazmO4 mBy0jQEkNzhcbu/tQBsSSJFG0kjBUUZJPYUqsHUMpyCMg1niKYaVdQ+W+4+Ysak84Ocd/eongnNw ZBFLkGEr83Awfm4z6UAapYLjJAzwM01JY5PuODyR+XBrK+yTtjfE7qsyv8x+Y8nPfBxkc8Z/Cj7H M5BaJ92JkBZuV3HK9+mKANcsFxkgZOOaWsY21xKQ0tvJhWhbDMCTjIbvVmxguEnLzs+75g3918ng 9ew9hQBcSaN5GRSSV68HH51JWPHazLGf3DhS0p2BsHcWyrdfSrNlbyrcyyThy4ChWLfKflAbAz6i gCwby3ClvNXaH8sn0b0qesk29xtkbbLzdhwny4K7gc/pSJb3aqxkWR3zhwDgON2c9ecDtx6UAabT xLL5TPh9u/B9Omc0qSpI8iKctGcMMdDjNYz2l1LAY3hdm8h0yzDrvBAzn0FS/Z5hetMkMijzoyPm /g24PGaANGS7t4pfLklVXxnB9KfNKkETSyHai9TjOKpXFq9xqDKwcQNDsYjGG5zj1qtLbXZt5F8t 2cxur/NxISRtxzQBrpIjlgrZKna3sadWW0M7TyF4pWgMrEoG5IKjBHPQEHinW0J/tBwrbokxJnfk hyNpU/ln8aANKgnArInhummnKxSAMki/K/UkDaev1+lC286yEGKUwb0Zl38t8uD39cZoA0kuIXtx cCQeURnceKaLy3ZlUSAliQOD1Az+HFUo7Wf+yrWMxkSQurtGSPmwemf1/CpJ1lmnicWzqqs2TkZP yEZPPrxQBeR1kRXU5VhkH1FCSJICUbOCVP1FY/2a68tGMc3mLFCB8/8AED83f0qVYJzIfNilaIvJ hQ+CMkbT16Yz9KANKaVIYmlkOEUZJxnApstxDDt8xwu77vvWXNBdsbnEEmHjkTG4HJyNvU+mfpVy 7SWR7Qxh12vlmAB2jaR3+tAFxGV1DKwZSMgjoaWsn7E0LTiKKVlREEQ8wgHru79eaIoLjIWaKVog XChXwVy2VPX0/KgDTMsYZV3jLEgD1I60+sgWtxG2IY2RjNK24H5cMDtJ59SKVrecxxbYpVX/AJao W3EnGARz60AaxIAyTgCoTdW6oHM8YQnG7cMZpkLkwSRFGlaIBDvx+8OKom3nzK6wyhmJMbBlDA7Q OR0x/hQBqSTRxIHdwqnp70sciSoHRgynoRVSSKYT2twy+YY0ZXVfUgcj8v1qEw3Ml2HZHiQ7SgXB 24JJzz3/ABoA0iQoJJAA6k0tYZs7hrd4/JkJeGRWDPnJ3ZXv6VMbe4MkpxIByYwv93bgL145/wD1 0Aa1BOBk1lRWjiS2zHLgQkvmQ/6z5cZ568GpdNSeNpTLG6KwUgFs8457/wD66ALUF1Bcf6mVX4zx 6VK7BEZ26KMmsiGzlWzid43eUfIUJA2qWyeh56DvRBbXBKGeOUlICPv8FwTjvycUAa0brJGsiHKs AQfUU6sSGzu1tUBjJnQqQxbAYEbSpGe3P5CnCzuY7by/LZzkoG8znaAQrHnqSaANmopriGAqJZAp bpnvWXGHimMjhnVEWWRQ2WEgG3b179at38U00tt5RddrMS64+XKkDr7mgC6rK6hlIZSMgjvS1kRW 1ysaKsTRsFjEfzcR4PzZ55z+tNltrs27qqS79mHIf777gQRz6Z/OgDZpnmx+Z5fmLvxnbnms2G3m jvFcRyBBO3JbICFfr03VO6F79S1s4SMlgygYZiMZPOenFAFozwhA5lQK3AO4YNPJCqSeg5rL8mU6 b5P2Zw58wDG3IyTj8Dmr1vITGyGMhogFOOhOB0oAkiljmjWSJgyNyCO9Cyo0rxA/OgBIx2PT+RrL VLs2NtAIJFEYXzMkfMPQc89jTTaXIlO1ZS2yNUlJA2kMSc89gaANmisWSC8ZZ8QyrvUcLJ/EHznO fSpBbzhnBikaEO+1A/PIG09emc/nQBrUyaaOCMySuEQdWPQVlLb3azB3WRnV4fmD8HAw5xmrlw32 rTn2ws2442EDkBsH2xxQBNJdwRFxJKF2AFs9s9Kcs0bzNErgyKASvoD0rMltLlLe5hVWdNqLCQRu xnODn0/wq3bRSJqE7N5jIyIA7Y6jORx9aALlFFFABRRRQBk6x/ro/wDdrxPxn/yNd/8A74/9BFe2 ax/ro/8AdrxPxn/yNd//AL4/9BFAHr3w8/5EfTf91/8A0Nq6Sub+Hn/Ij6b/ALr/APobV0bkhSQM kDgUALRWPb3EsihWuGO+JJD8wX5znK57dOntSxyvIttIs0zyeWZHUHAIXjp7mgDXorFS/uHEUeV3 y7WaTf8AKAVJx04PGKv210ZbYzDBHlhxH/GvGcH60AW6KoWd5NMgd4tysqsCmOM9Qee3rVY6jdBC +63+5K/Q/wADY9e/6UAbFFZU2oMZHjVo9rK4GMgqQoPXPv2p+nyqZ5GZwN0UJwWzyQfWgDSorN1G 9uLWfYgQhk3pkf3T8/f+70qs15Kly9wHjObdZNhz843HAAz1IxTsS5JG3RWO2oXS3BgPl7g5iJ2n 7x5Tv0K80PfO0i4k2bj64wCCRgd+nfucUWDmRsUViPeyPcQSyvHH5cjqUOQRhCcn2/D0qVdRncrG jQ7zMI9xHGCm7OM0WFzo1qKyUu7pWKmaNma6MPzL90YJ9famxapOyIX8omSNWGM4XL7STzyO9Fh8 6NiismTUpY/My0QCpLhiOGK4x39+ntUM1xNI7EyrxcQbF6bdwGe/I5NFhOaNyis06iU055m2NKrM u0HAOG25x6dzVa9vJ2tbiFzHHiJ3Dn+MDpjB4P4+lFh8yNukVVXO1QMnJwO9Zov3W4SEtGczrFju VKbs9fWtJHV1DIwZT0IOQaQ07i0UUUDCiiigAooooAKKKKACiiigAooooAAAOgooooAKKKKACiii gAooooAKKKKACiiigBoRBnCgZOTgdT606iigAooooAKKKKACgADpRRQAUUUUAFFFFABQBjgUUUAF FFFABRRRQAUUUUAZOsf66P8A3a8T8Z/8jXf/AO+P/QRXtmsf66P/AHa8T8Z/8jXf/wC+P/QRQB69 8PP+RH03/df/ANDaukrm/h5/yI+m/wC6/wD6G1dJQAwxRlSpjUhjkjHU04KoOQADjFLRQAzyo9pX y12k5IwME0JEiO7gfM+Mn6dKfRQA1URM7VVcnJwMZpvkQ4x5SY5H3R361JRQAzyYj1iT/vkUx7aF sfu1ABB4A5x0qaigBCoPUA00xRFgxjQsOh28in0UAJtXOcDPXpUawIjErkAnO3PGalooAYYo2feY 0LepUZpBBCMYiQY6fKOKkooAYYYi24xoTnOdo60CGJekSDjHCjp6U+igBhijKqpjQheg2jigwxHG Yk4xj5R26U+igBgijHSNB16L69aTyISoUxJtHQbRgVJRQAzyYtwby0yMYO0dulOVVVQqgADoBS0U AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGTrH+uj/3a8T8Z/wDI13/++P8A0EV7ZrH+ uj/3a8T8Z/8AI13/APvj/wBBFAHr3w8/5EfTf91//Q2rpK5v4ef8iPpv+6//AKG1dGQCCD0NAFWP UYJFEi7hAxIExGE46nPpx1qb7RAM5mj4wD8w4z0qgmmzpph00TJ5HltGHI+baQQAR7Z/Sq50e5fc XeAlngYjBx+76j8aANZbq2cqFuImLcjDg54z/Kl+1W4UOZ49pzzuGOOtZ02j+c+ocxxrcoqIUXlM Aj+tA0uTzreY+V5iSGSTkncdm0Yz0/8ArUAX1vLdrkW6yq0hTzABzlfWg3cQvfshJEnl+Z04xnHX 1qjpumTWUkDtIjBLcQMAD2YkEfnT5bG4e7gulkQSxykkEnBQjGPr0/KgC1JfWsULTNcR7FQyEhgf lHemRajBJdNBuC4VGViQA+7OMflWYuhziBoTNHt+zy26kKc/M2QTU0+l3EzyPvhDOIMdeNjZP50A annwhmUyplBlhuHH1pY5Y5FJjkRwpwSpzg1kyaNI0ZQSrhRNsJHLGTP3vpn8cCrsdq8WmpbRiNX2 BWI4B4wT+VAD7e+t7i1+0q+yPJUl/lwQcYP41B/a8A0xr0jaF34QsNzbSQcevSq50mZZnZJU8sXK 3CK+TzjDA/Xr9ah/sO4Fu6CaIs8MsJyDgB2LAj88GgDYW6gbaPNQORnaWGemen0pftMG0N50e1jg HcOTWW2jPKl8rvGpuVQK6jJUqoH64p0mkSOVlVxFPks0iOx5OM8HgghRwaANPz4fn/ep8n3vmHH1 oE8J2YlT5/u/MOfpWTJo0x8zy7jywXWRY8kruDbvqAfQd+alGkss8MsTiJlOXKsTu+YsQQeCCT7Y oAvTXUUVq1yD5kajOUINIt5FudJD5TpjIkIHB6H9D+VRSWsz6Y9t+5WRgR8ilUHPpUc9jLPL5zmI vuj+XnAVWz+eTQBcmuEitWuADIirv+TnI9qg/tCMySRiN2ZNmQMc7umOasKrNGyShcEkAL/drPj0 plWAGfJRWV2A5bP3fyoAv/aINjP5ybVOCdwwDTFvIzO8TELt27SWGHyMjH5VTXTZVWJgy+bFtH3m wwAI/DrQmmyRXIljZAAqoEJJBXBBz+fWgDQWeFyAsqEk4GGHJqCS+CTeX9nmJ5wQBzjGSOfem2dr NbYUmMpn7vJ2DGMA/wCPQVLJDI19DMNuxEZSD15x/hQAW15FcISGVWGdyFhkYJGf0p7XMKW7TmRT EoyWBzWcdLmaERl414kBK5/iYMP5c1ZNj5lnLE52PK24spLYYYwefoKAJluVO7zEeIABsvgDH1pf tMW8ruG0IH35GMGqk9lcTyiVpQrKVIQM20kE8+3X9KadObJwI9uwDG5s53bs560AX/PiO0LIhZhl RuHzfSoVvo2tYJ9rDzsBF4zk9qrRadKkoeSRZc7WOSVwy9OlSpZyDTobZxDJsADqwO1h7enagCwt xGVXJ2Ow4R+G/Km217DcW4lDqvyhmUsMr9ar21lLbvy6ShguTJklSOmKhi0uZIokLxfu4lXjPLBt 35UAaRuIQqsZU2twDuGDTYZxK0y7SvlPtOT14Bz+tUzp8u6Rw8e6UOrKQdq7sdPy/GpEsX8i6hdx tm4VhyQNoXn8qAJZ76GKJXDq+5tigMOW9M043SLdx2zqyySIXX046jPrVY2U7TpMTED5isVGcYUE ce/P6U69s5biYPG6xlQNjdSDn/DIoAlhvoJkd92xFkMe58AEj0pZbyOO4jhyGZs5wwyuBnkVSGmS Bj8ybcuAmSPlbH68frT1sJkmTYYjGkjON2d3zKRj8M0AXEuYmSMlwpkXcqkjNIl3AyIxkVC4BCsw zz071VtLGa3ChvKcbEDZB4KjHH+eKh/sufyNmYd3kCLPPUNn8qANUSxmQxh1LjkrnkVFLd28KSO8 qgRjL85IqG3smiuWkYhhvd1OTkbuox0qCTTp5GlJkj+ZHQYBHVgRx+H9aALs1ysXlYRpPNbauzHX Ge59qI7yCRQd4Qlim1zg7h1GKZcwzS/Z2Tyw0b72BJx0I4/Oqkumzsr7ZY8yEu+QR82QePbAx+tA F6W9tYfvzoDkLjdzknH86U3dsuc3EQx1+ccVV+wyeXMB5Yd7gTAjPYg4P5Uz+z5fN3/uf9ZI/f8A iGBQBoGaIMFMihmGQM8kVHJeW0URlaZNgAbIOeCcZqpFp8qIqF0wfLLEZyCmOn1x+pqP+zLjyyhk iwIvLU4P97cCaAL0V5FJPJCWCurYALD5uAcj86fcTeQgby3fPZR04z/SqbWUxuGmJjGZ0l75wFxi rS+dNZEOqpKykY5wPSgCFdTiLRb0aJJAWDyEAdAfX0NWvNj3hPMXcwyFzyaotYzMloCYyYImQ5zy SuOKS2054pEaRlcDYx5Iwyrjj1HFAFiW+SGSVWjk2xKGdwAQAc89c9jU3nw5YeamVG4/MOB61Vnt J5Zrna0axzxiMnkkDnPH41DJps5ZgrxbNjooOejAAZ+mPxoAufbrXzfL8+PdtLfeGMDrzT1uYHYK s0bMTgAMMk1TmsJGj2p5QzbGAg9AT3pP7Pl87ePKA8yN+M5wq4NAF77RDz+9Tg7T8w4PpUcl7AjB PMVnbdtUHqR1FVDpsphCb4wY4wicH5sMGyfy/U0qWNwsnmF4y2+RsDOMMB/LFAFy2uYrmJXjYHKg lcglcjPNNjvYWjLuwiAZl/eEDODg96hsbOW2dCxjwsCRfL6rnn9ajWxm3Rs3lHZJI/f+LOP50AXJ bqCJSzyoMLv69vWozf26gszgJ8uGyMHd0qommTCNV8yNf3XluVyd3y7Rwf5/hT2sZ2LNmIHbEB16 o2aALrXUCoWMyYAJ6+nX8qI7mCRYysqnzBlOeTVFtPmaYnfH5ZeRuhz84x+lLFp0iyK0jKw2oGG4 jBTpj1oA0qKKKAMnWP8AXR/7teJ+M/8Aka7/AP3x/wCgivbNY/10f+7XifjP/ka7/wD3x/6CKAPX vh5/yI+m/wC6/wD6G1dJXN/Dz/kR9N/3X/8AQ2rpDQA1ZEdmVXVmX7wB5H1p1YluLiO1UL54+Vyv ByZNxwD7fp1q9YiZp53lkk+V9qoeFAwOnHPOaALXnRYz5iYzjO4dfSn1irG/lxnb8n2wts8o5A3H n6e9OikvPKDTNLliFkVVOVbPJzjp9M9qANYSIZDGGG8DJXPIFCSI+djBtpwcHofSsNxPPHudZhJ5 Ee4hSDkPz+OKnhMqXpZTMFe5IIKnaV2denqBzQBqmSMPsLru/u55oeRI13OwUZxknFZtxbG51GZA NqmJMvsOchieD+VQzNcvakOJWyqmQFTw+8cD2xn9KANlWDZwQcHBxS1kq0wkdSZkiMsnzInOeNvb p1qa2E/2+SN5JGSM7wSfvBug/DB/SgDQpCQoJJwByTWPNNd5uNn2hf3b7flyQwYYxxjpTy84leMv OYBIcsFO7BUEdumc0AagdWQOGBQjIYHjFN8+LIHmJyCR8w5A6ms5Y5DpengxuUjKGVMc4AxyPY4O Pam3W1pQ0EMijZLyIzySo56e2PwoA1wQRkcikVgwypBHtWQslyJA26YKphAXaduD97t/+qlt2m+R HM0ceX2sqdW3nrx6Y/WgDVeRI13OwVemScUPIiYDuq56ZOKxZ5LiSO4RknKMoIVkJ+YP9PT0q5qE ZlvLQKoP3wSyFgMjvQBoUVkIk0HnIJblkh2RoAO2ACenPfp0pbeS5cxrO06DGFITqwY9ePTH60Aa pYBgCRk9B60tYiC4iSMRLK0qmbhxnB5I5NSytcYQQyz+U27LOpyrYGB0zjrQBrUmR6iq/mJLayK4 aQoNkgVSCTjnA/GsxoT5bkRMxV2aIGHKPwONp+76fmaANtmVF3MwUepOKUEEZHIqhOrC9gmmjLQi MjAG4I/HOPpkZqGIz/aQqB4IQVKKVONmPm/HPr04oA1aKwT9rktCjtcMWhV2yCCGD8449O1Ts94f tBDyKVD7QFJyuPkI4xnpQBr0EgDJOBWUonEyjzrllEHmEAdXz06fpUtjJK0dwJvMKjBXepyQVGe3 POaALyOjjKOrD2OaHdY0LuwVRySTgCse3gkis7eb94rMixFY0K7QM8t368UZuZoZPNafi0BKbSAX wwI6fTigDaBBGRyKKxUF79nTBmEofYyjO3awwGGew4P4GhmvUtMt9o87DAY5GVGAfxPPpQBtU15I 0IDuqk9MnFZqyyRXbGaSXyVxLnk8Nxtx7HJp2qRySXEAiUFwkmCU3DpwPbNAGlRWTE1wqxrEJht2 CNXHGzAzu9+v6U1pLvyRh5wSE3nbyH3DcBx0xn26UAbFGay7RrhbtAzzMheVTvBxgH5T0/XvTtsL amWCOmzduOxv3hI556YH86ANLNISFBJIAHc1jFN2lRIIZPNCkLlD69PY9Oa0ZJUltbgAElQUYbT1 x09+tAFhWDKCpBB7ikWRGZlVgWX7wB5FZQmlFrawxJKiIqiVghGPlPHTPUc4pii5W6dsymY+SMhC Ff8AvZ/CgDaorF866ZX5uVyYyMqcj5iGHT0xTxJdbWUtPtUyBGCncWB+XPHIx+FAGvSMyr94gdua yo3uhdKztN/r1Urt+XaU57dN3erF6YbzThlWeKRl42nONw/EUAWzLGpIMigjrk9KUOrMVDAkdQD0 rGljnEcyzRlnWSICTZu3gHO7H061btUkF3fZ++23D7NoPy/rQBoZHrSZGcZ5rGgiITEkThfLQNuj LDzRnJI7/X6U9beRo7fbbbZ44d+5xk7gMKM/rQBr0VhgXWxFPmeSCC7mL5i23oR3Ga1rWV5IlEkZ SRVXeMYAJHQetAE1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAZOsf66P8A3a8T8Z/8jXf/AO+P/QRX tmsf66P/AHa8T8Z/8jXf/wC+P/QRQB698PP+RH03/df/ANDaukrm/h5/yI+m/wC6/wD6G1dJQAUU UUAFFFFABRRRQAUUUUAFMiijhUiNQoJyfrT6KACiiigAooooAKKKKACiiigAooooAKKKKAEVVUYU Y5zS0UUAFFFFABRRRQAUUUUAFFFFABRRRQBGsESZ2oBubcfc+tSUUUAFFFFABRRRQAUiqqjCjHOa WigAooooAKKKKAAjIwaRQFAAGAOgpaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKAMnWP9dH/ALteJ+M/+Rrv/wDfH/oIr2zWP9dH/u14n4z/AORrv/8AfH/oIoA9e+Hn/Ij6b/uv /wChtXSVzfw8/wCRH03/AHX/APQ2rpKAMs6qwsHm8oecsnl7M8dev0xzV2O6SS4eBQ5eM4Y7TgHA PX8arNpUbKcyybiuwtx0znpjr2+lWEtikkjiZwZHDkYHYYx06cUAV76/e1uCm1GHl7wCTuY5xtHv U0l/DEzq4cFVLfd64649cZouLFbiVnaRxuj2YGOOc5+uaY2mo8jO80jbgwI46MMH/PagBLi/EZUR jOJURwVPRhxirENyk4Uor4YE5KkYwcEH3quNNXcGM8jHejknHVRgdqnt7Y24AErso3HBAwSTn0oA qtqZTz2aMERZzGD84wcA49D1zU7ahboWDFhtzn5e4GSPrimy6ckwIllkf5WVScZUHrz3pslgFjna M7nkVjggcsRjOccUAJLqSjyjGrcyKrKyHJVgcEflUn9o221W3Nhhk/L90Zxz6c8VFDp+UheWV/NX YT0/hBwPpyadHpkcbKwdiRwdyg7hkn09SaAJYb6Gaby13hjuA3KQCVOCKgN+63zW5VDiQIACd2CM 7segqWKxEUqSea7FC5wQOdxyaDYqZml81wxkEgxjggYx9CKAF+3wZI+cEFRypH3jgH6ZqKXUlSZM KxjIkDAKdwKkZ/DrSrpiKrDzpCSFGTjI2tuB6cnP50f2auc+fIf9Z1x/H17UASzXW0wLEA7zn5M8 DGM5NIbwQ5W4Xa45bZyAufvH0FONohihXeweHGxx1HGP5VG9gr7t80hLjbIcj5h6e3U9KAF/tC38 xkJcbSwLFTjKjJ5+nNH9oQ7dxEgBRnHy9QMZ/mKT+zxv3iaQHzGk4xwWGPSmHS4tm0SupO4ErgcM ACMYwOg6UAI2olJmBjLoWjCbRz8w704alGqZkDEkuAEQnhTzS/2cuSfOfPyEcDgr0o/s5evnP/y0 7D+Pr2oAlF7A0iopZixCggcZIzjP05ovJnghDoqkl1XDe5A/rVNLK4huNyYIUqATj7oXH1DVbe2e a0jilmO9SrM4A5IOf5igBWmcX0cAC7GRnJ78ED+tMiuZZ2Zoo1MSyGMknBODgkf57UhsXMnmfa5d +1lzgdCR049hTlsxGT5csiqW3lARyfr796AHX07W1q0qBSQQPmOByQP61Xhv5J5jBHGnmLuJYk7S AQMj6k/oame1eexEE8xLcFmAHODn6U+S1V5UlRzHIqldygcj0xQBA9+f7NN2iKCG2srngHdtPP1p YtQUx7pFOcsBsG4EDq30p72MZsxaozIgIORySc57+9N/s9AzOJXEj53OMcg4yP0FAD4r6Gabyk3F h7cYxkH6HPBqOe8lt5HDwKyqhfKvk4HqMU6GwSG4EySOCF2Y4wV7D8O31NPls0lMxZmzKAM5+6B0 x+NAFb+1F8veIwwVWdirZG0HGQe//wBarlxI0dtJJGAzKpYA9DxVY6ZEQ2XfL5DkYG4HGR7dO3vU whke3ljlkPzlgCAPlU9qAK41LeLLZGMzn58n/V4Bz+oxUp1G3CbiXxwR8p5BOAR7Zpo02NZN4kfO /eRxgnGMew5J+poOmoVC+a/yhVU8cKpBA/QUAL/aMZkjURyEMHydv3dvUEUq6jbsoI3gsFKqVwWB 6YFNNiEzIsjs+XYDjnd1H6VFBpga3hM7t56IoB4OzA6dMHqaAHNqPzOybTFtQqSD/ExU5/KpX1K2 jDlmbauTnaSDg4OPXBNNk05X3fvWUFVXCgD7rbvT1pDpkRiljV2VXzjAGVycnnHrQBaEjSQF40IY g4DjHPvVOC8uLhIjFHHlkDPkn5STgj8MH8qtxLKHkLvlS3yj0GP8abBax25mMZIMrlznnBPp7UAQ QXshsWu541WMJvGw59cj/PrTX1FkYo0Sq6th9z4VeARzj3qxHZolj9kZi8e0qSeuPwqM2AKyAzyZ lyJDx84wB6egoAbJqcKebjDeXxjPLNwMD8TTlvidoMWG87yXG77pxnPvTW0uBsqS+zJKpnhSepFP +wjauJXDCTzWbA+ZqALdFNRCu7Ls2SSM449qdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAZOsf66P/AHa8T8Z/8jXf/wC+P/QRXtmsf66P/drxPxn/AMjXf/74/wDQRQB6 98PP+RH03/df/wBDaukrm/h5/wAiPpv+6/8A6G1dJQAUU1XVvusD9DTqACim+Yh/jX86UMGGQQR7 UALRSB1ZmUMCy9QDyKWgAoopGYKpZiABySe1AC0UgIYAggg8gikaRFOGdQfc0AOopqur52sGwcHB zg06gAopAylioIyOozQSAQMjJoAWiimq6uCVYMAcZBzQA6ikDBhlSCPUUK6uCVYMAcHBzzQAtFFI HUuUDAsOSM8igBaKCcDJ6U1ZEcAq6sG6EHOaAHUUmRnGRn0oZ1QAswUE4GTjmgBaKAQehzSAg9Dm gBaKKKACikLBRliAPegEMMggj1FAC0UUUAFFFFABRSb1LlAw3AZIzyBSkgDJOBQAUUzzouB5icnA +Ycmn0AFFIXVThmAPuaWgAooooAKKKKACikR1ddyMGHTIOaAykkAgkdRQAtFFJkZxnmgBaKKKACi mu6RjLuqjOMk45p1ABRSFlBAJAJ6UBg33SD9DQAtFI7qilnYKo6knApGdVKhmALHAyepoAdRSFgo ySAPegEMMggj1FAC0U0SIxIDqSDg4Pf0p1ABRRRQAUU3eu/ZuG7GduecU6gAooooAydY/wBdH/u1 4n4z/wCRrv8A/fH/AKCK9s1j/XR/7teJ+M/+Rrv/APfH/oIoA9e+Hn/Ij6b/ALr/APobV0lc38PP +RH03/df/wBDaukoAxYEBWDyY2SRJ5GdghGEy3XjnPGKu6ZI7W0fnSSvM8Ydt64x2x0/SrtFAGHP byxTzPFAWFvJ58YA++W4YD/x78xUhe4tpBDbq/yArt2/KTsyCOO7d81sUUAYavKrzvFJLlhHlnQg tw2RnHH5U+R79WyonKjbJggZIYbdv1B5rZooAzN90kmwvIWV9p44Me373Trn/CoVExjs5ppZnLxO XyMDcVHBAH1rZooAyLB5EhSKSWYL5MLcJyG6EdOnTPpU+oQxGa2cxBmaZQx254AP6c1oUUAYyiS3 u5BBvVfPVBHt+Ujyx7eoHNWLJruWCQtJ85jHDAjbJznsOOnHNaNFAGKDLFbwi2ts3CRNvLKdytjn 65NPLzb4W8xmGX2N5ZYqNnfgd/8ACteigDFE16wVNzqMNiQgkM/GO2cdeD71Oih7C8RhIoaV+UU5 5PUDvWnRQBkRPMrbDmKIlsSwxkB24wcHOO/scUxHuIppTCXJeaUBCvyn5cg9PXvW1RQBlCW43KN8 xtzt3yFcMpwcgcdM4p9i0rXu6ZWDmAAkrjPzHH44xxWlRQBiXD3Mlm6u02WT96Av3W3DAHHpmrGp xHba+SCZI3LpgdwDx+PT8a06KAMMPMtxPOqOrTGMuSpyiYPHTtxn0zSztcMgSdpGw0bJsQ4cb+Se Owx6Vt0UAZEUku4oXkjjLyYdI+S27jPHp+dN3zeYUV5I1M024qmMjGQenr371s0UAZME95LNDuYp lYyAVOGGPn7dfyxUk8039oLGplCbgrfLxgqeRx645rSooAyHXPh6NHDu2EBDqSc5GeKHMiTTvAJY 4JCoXYuAWCnJxjgfdHTkiteigDGLXVzDPmWYEWysEVduXKnPb6cUNLP5hCTz7AYQvy9jw3b0/Ktm igDIE915R+eX5RIEITlnDEKDx6Y+tL51yZvJcygmRwcLxgpkc49ela1FAHPgzRqkkbTB0tE52kks G6Hj9K2sw3SSRkb1Vtrgjvwf8KmpFVVBCjGTk0AYvkp9lR0jKSG7xuVOQvmZ9PTvThPeNtQSOoG8 K7KeWDEDPHpj0zWzRQBn3vlf2hbmWPcojcH5C3XHt9aq28l3B9mjfzhtKhlIyApJ/kMd62qKAMeI TPHZzSzTnMp38YxwwHGPpUInvBDvM85byS+Nn8QbAHT07VvUUAZckl2zyBDJ5hZxtA4CbTtIPrnH 51C0s8+CWnCK8LHCkf73b1raooAyLJpUulAaTy5JZsqVwBzkHpRKXS6umi3xs00QLKnUcA9vrWvR QBkLPc7ohvlYLIyEbcMw34BzjB4+nrUOyX7OsYMxk8qcHK/MDnjBxW7RQBj+fPGyorzFS0JU7Sfl zhs8U1Guo4xGryKMyZZgTh93yjoeMc+9bVFAGbfiQ3UBQM0ixSEKB8pbAxmomluSUVJphG0iAuU5 5B3Dp9PpWvRQBQvEP2uxC8srN87Ju/hPXFUomuEUpEfLVnlO8IQC+75eMHjH51uUUAYlzNO8d1Gw lZWikG0ofvAjGOPTNLKrmcjdNzdow4Jwu3qOOO9bVFAGVMzzeH5PMDO+CvzKcnDYHGPpSOk9u8hV 2VZFMiiJeN+AAMfr71rUUAYu6UXLMsf73zycbOM+V649eM1I0s62qXKSzuUZTJGVweeCOnqQfwrW pjwxyOjuuSnK89KAKN408FpEivK0u05ZRnLAcZ49agFxcmYP5kuN8Q27OMEfN2//AFVsUUAZNg0j 6gjy+YZDAQ+5cBW3DIHFa1FFABRRRQBk6x/ro/8AdrxPxn/yNd//AL4/9BFe2ax/ro/92vE/Gf8A yNd//vj/ANBFAHr3w8/5EfTf91//AENq6NjgE1znw8/5EfTf91//AENq6SgDMEtxLpn2v7RtLxM+ xQOOCQAfUUq30qOy7DId0aAEgAbh16etWmsrZt2Yhhs5GTjnrx2zR9htg27yucq3U9V6flQBV/tE gpIyMqmNsoCCNwcL1+pqWe+ktwPNgAOeQHzxkDI/PvipBYWoGPJBGGXBJPBOT+tDWFq4AaINgY5J 6daAIo5Zfst43mHdG7hSe2ORUMN7dIsZMbTLLsVC+EO4qSe3TgdqvLawrHJGE+WQkuMnknrQbaEr EpTiIgpyeCOKAKzalskZGi5A+Xa2cncFx+ZFNnu7pJGQxKmIXc4bJyCMEcfzqx9gtcsfJX5gQfxO T+vNONnbsoBjzhSvU5weozQBXF+RC8pjLRRL+8bIznbu6fiKntbhp9+6MoVI+hyM8HFKLO3ByIh9 3afQjGOR34pFtI0kiZMqI8kDcT1GKAKV3d3FvNcAyYhIAjbAyj4zg+x/n9ame/dVJSHf8zRp82Cz KCT246GrLWsDiUPGGEuN4PIOKUW8KzeaEAfrn39aAKf9qZClIt+5Sy4J5AAJ7dcnFNjnla5X944U 3JXaf7pj3Y/Orn2O32IgiCqhJXbxjPXpQLO3EnmCP5t/mZyfvYxn8qAKd1dTw3sgEjCNRGeVG1QS Qcnr2p0uoP5DERlWKSkEN0KHHcVaezt3lMrx7nOM5JwcdOOlNawtWZmMIywYHk/xdfzoArR3UguZ IuZDIyhAxwB8mTzioYNQmjtleQNKVtxIRkDJ3Y6461ofYrbJPlckgk5OcgYH6U3+zrTZs8kbduzG T93OcfnQBC+otHuDQfOrMpG7jhQ3XHUg9KuqzNCGwFYrnB7Gqs+npJIHjIU7izAk8kgDPB9qlgtR Ejq7tLvADFznOBigCl9sufONsWQSbj8xXHAXPT3P6ZqdrmSSKwlRigmYblwDwVJx+lTfYrbZs8oY Jz1OemOv0p8ttDKEDpxGcrgkY7dqAIZb3y7pIdgYMwXcG6Egnp6cVVt76WOBJphvMuCQH+6C23gY 96uLp9opUiEArgjBPUdD9eaT+z7TYqeSMKMDk9M5/nzQBB/aZUHdCAytsYBs4bdgdu/X6UyXUbgC UpCqhIWfDE9QSPTpxVuOzQpJ54WR5SC5AwDjgfypxtIG+9Hn5SnJJyD1B9aAIY79muPJMROGCOVy cNjPp0qKe6nhnk3HavPlcAo+FzgnqGzmriWsMcm9Uw2AM5PP19aPskBkLmIEkkn0yeCcUAUzqUkc e6SAELCsrsreueAMeopW1NlYp5DGQBmwM4IGOnHPXFWlsrdQQIhhkEZBJOVHag2cBCgoTt6Hcc/n 1oAbZzyztPvVVVJNq464wDz+dIJHGpPGZP3QiDbcDg5I6/hTmtIzKJFG0795wT8xxills7eaQySR 7mICk5PIHagChNqLy23mQo6jKsjDuN4GDxxnNTSakY1YtCMxsVcB/THT16j0qwbK2ZGQxDaxyVyc Zznp9aRrC0ZdrQgjBHU85OTn15oAhbUikjiSHEau6bg2T8q7s4+lDag6lVMHzsUwA/GGyAc49qnF lbhg3l87i/JPUjBP5UfYrYAARDhgw5PUdPyoAdazm4gEhXackEZzggkH+VUJLu4illjeTCtKFhcK OORlT+HIq7FaRwyq8YKhQwCgnuck042sBDAxghnDkHn5h3oAz3u7gLMA8mVuQgcIMBSQMfrU19eS wSuI9u2KLzWyPvc4x/n2qwbK3Kspj4Z/MPzHlvWny28UrK0iBivQmgCqZrgXMkLTKg2FwxToAe3P PB5qKPUJVCCXJUKrvIF6BiQvGfQc1d+x22HHlDDgq30PUe1Oe2hkdXeMFlxg/TkUAV7G9N03zqUL p5iKR/DnrmrtQCzt1ziIDJB49jkfrU9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAZOsf66P8A3a8T8Z/8jXf/AO+P/QRXtmsf66P/AHa8T8Z/8jXf/wC+P/QRQB69 8PP+RH03/df/ANDaukrm/h5/yI+m/wC6/wD6G1dJQAUVBFeW8zBUkySSBkEZx1xmp6ACiq63tszK ok5dzGoweWHUVJHNHLCJUOUIznBoAkopEcOiuvRhkcYpGdUxuYDJwM+tADqKbJIsaF2JAHoM06gA oqOaeOBA8jbVJC9CeT06UsU0cylo2DAHB9j6GgB9FI7qilnYKo6k9qWgAoopGYKpZiAAMkntQAtF RpPHJK8SkllAY8cYPT+VEk0cckaO2GkOFGDyaAJKKhS6hkOFcn5in3T1HWpVdWQOp3KRkEd6AFoq OCZJ4VljJKMMjIxUlABRUc8yW8LSyZCL1wM0TTR28LzSttjQZY+goAkoqJriFJIo2cb5c7B/exzU hOAT1xQAtFRQ3EU4UxkncocZBHBqWgAoqFLmJ7cz7tsYzktxjBwf5U6KeOYsEbJXGQQQRnp1oAko opEdXXcjBh6igBaKKb5qGXyt4343bc849aAHUVGtxE8skSuN8WN49M9KIJ47iFZom3RsMq3rQBJR UMlzFHI0bkgqm8/KTxnFTUAFFRtMiTJEc7nBK8ccdaa91AkhRpAGBAPHQnpk9qAJqKKQuoYKWAY9 B60ALRRUM1zDC6pIxDMCQApPA69KAJqKaJEaMSKwZCMgjnIpUcOisvRhkUALRRUazxvM8Ktl0ALD B4z0oAkoqOWZIdm/PzsEGBnk1JQAUUUUAFFFQLeW7ruWTcPM8o4B4b0PpQBPRVf7bblA287Wfywd p+96VK00SSLG0ih26Ank0APoqA3tqFLeemFOCQaelxC6oySKwf7uD1oAkopqujkhWBK8HHanUAFF FFABRRRQAUUUUAFFFFAGTrH+uj/3a8T8Z/8AI13/APvj/wBBFe2ax/ro/wDdrxPxn/yNd/8A74/9 BFAHr3w8/wCRH03/AHX/APQ2rpK5v4ef8iPpv+6//obV0lAGWltcPHDG8WwRzPKSWBzktgDH1qfT YXtraKJoSjeWC7Fs5bp/k1dooAyrmwuGmuJIduQwkgyej/xZ/L9TSixlWZ8hmUfcIIHy7cbT361q UUAYwsrjarGA+YscIB3jhlPzd/T86U2MxckwhlEqyYYgseTnnuOe/PatiigDGaxuvJkyGaXPUMAH +cEH14AqRLSZbvzfIODM7E7hyhXjv69q1aKAKVxFI1jCkUGCrRnyww+UAgkZ/CqtzZ3MrTyCIZmJ wu7lMLgH0zn644rXooAyJLCSdLwyQ5kkVQm5gedoz9ORRJYyPdGT7OQpmRvvD7m3BHX17Vr0UAY6 2d19nVDH84j2IS/+qO48/lj8qHsrli0flDZ++G4sMHfyOK2KKAMd7KYsXW2wypCEwwGCrZbv6Vau Led5rf5mdVkLFlwpUbSPx61eooAyUs7jKK0Zx50pJZgflYHGfzFOs7SWLyhLb5VUQLhgPLK9fz6+ /etSigDEgsLqOFFWLa3lYkG8fMd+cfiMj8anltJWB8uHaGTCKX/1TZzu/l09K1KKAMma0na1uE8n dOwYCXePnBORx7D19KmW3mXTZoDEGkJIyCP3mT1PofWtCigDHFjdq8eOPLDxxvuHyqVO0n3yR+VL HZTKIy0TMoI3xFhgnbjI/H1rXooAxorO7WONfKxthjVl3jDbWyV/KpZLafzomit9ioysPn5A3EsO vp6VqUUAZotJn00xFQsgmMgVjwfn3AHHrS3UdzcvGfJ2xqfmTcCW4P4cfWtGigDIFjOk+8RsxWSL DlxkqBhj/nrTE0+dY449m2MB1IQjglshh+H4itqigDOtYzbXDl4G3zTMA24HC9c/T/GrDJJ/aSSC M+WIypbI6kg/0qzRQBmT2s73zyxphXxG5yPmTHb3yP1qGGxuQsCurIFjVRtI/dkEk/nx0rZooAxG sbny5ALf5zAULhx877s5qw9tORcEwb5WLFXMmAVP8PXsPw4rTooAy7W2uI7iEtEQiPIc7hwG6VNF FPbtOixCQSSmQPkYGcZz9P8ACr1FAGMthcfZwrq7SZQN8wAbDZLflmlNjcHlIwjL5yxtkfIG+6RW xRQBkiwdvJDxNs8wF0LDAG0g9Dzk4q1cJKt5BJFCXREYHDAcnGOv0q5RQBkQabJGwEke8LAQCG43 lieB+OM0iadcBMDCM0IOSclZQu3P9fwrYooAoWavbOqNG4MvVcjCYHXj1pWW5S8uHjhJEgRVbcMD Gcn9avYooAxhYXAhjDRM7B494LDDbSSW9yfel+yXa+XiIfKwZcPyg352/l6VsUUAYwsbkZ8uMxs3 nAtv7E5Xv/8AqqRrOR5kPkYh80N5e4fKNpB79yRx7Vq0UAUtPMscUVtLGwdIwS24EDnGPyqBbOcT JMiBN0xMqkj5l3Ehh7jp9PpWpRQBkraXAWNtkmRdGQpvGAu4nP61LdWk0lzIUGVl8v5s/c2Nk1o0 UAZwiuxJPLHEEZ4wihmBwcnofQZzTHsrhLgmBmUEIqvu4UDOQR3zWpRQBnWENzahUZGMe1FKlwcH ncw9unFaNFFABRRRQAUUUUAFFFFABRRRQBk6x/ro/wDdrxPxn/yNd/8A74/9BFe2ax/ro/8AdrxP xn/yNd//AL4/9BFAHr3w8/5EfTf91/8A0Nqvxale3HmNb6aHjWR4wxnC52kg8Y9qofDz/kR9N/3X /wDQ2rS0L/jyl/6+Zv8A0Y1S97GsLKLbV9hfteqf9Apf/Akf4Ufa9U/6BS/+BI/wqP8AtRkvLxG2 ukcJliA4J25DDP1x+dMm1l/KYwwDcPIPzNxiQ4/SnZ9xc8f5V+P+ZP8Aa9U/6BS/+BI/wo+16p/0 Cl/8CR/hUMWpSQ3c0c4LRm5MStkfJ8gbGO460r65GkAlNu/zRLMgBGShYD8DyOKVn3Dnj/Kvx/zJ fteqf9Apf/Akf4Ufa9U/6BS/+BI/wpby9nhgth5QiluJhF8x3BM55468D9aJb17WXyG/fyFWlGML hFxnPvk0WfcOeP8AKvx/zE+16p/0Cl/8CR/hR9r1T/oFL/4Ej/CoxrcbONkDmMtEN+QOJPunFNi1 aYxputd8ks8kSKjgfdz1z9Kdn3Dnj/Kvx/zJvteqf9Apf/Akf4Ufa9U/6BS/+BI/wqq1/cm7jSNn z9rMTRttxjy92MgdM9+tPOvJ5DzC3chYPOILDP3ipH4EGiz7hzx/lX4/5k/2vVP+gUv/AIEj/Cj7 Xqn/AECl/wDAkf4VDJqM3mzKQUWO7jhUoQSQdvXPbntTn1yJYfO8lyjJI8eCMsE6/T2pWfcOeP8A Kvx/zJPteqf9Apf/AAJH+FH2vVP+gUv/AIEj/CmPrKRrKZIGXymVWOcgBlyGJA4FXI7hnR5DERGE DKwYEPkZ4xRZ9w54/wAq/H/Mrfa9U/6BS/8AgSP8KPteqf8AQKX/AMCR/hSx3Mws4r2SQMsihjGo /vYwAfx705791kEQtyZdxUjeMAhd3X3FFn3Dnj/Kvx/zGfa9U/6BS/8AgSP8KPteqf8AQKX/AMCR /hUiagJE8xImMaorucj5QRnp34pi6mWVCtuxLsoHzcfMDjn8ORTs+4c8f5V+P+Yn2vVP+gUv/gSP 8KPteqf9Apf/AAJH+FRy6jMVmKR7AkRYnILBgxB9j0qw1/tY4iJQOYw2erAZxj0460reYc8f5V+P +ZH9r1T/AKBS/wDgSP8ACj7Xqn/QKX/wJH+FTWd4bkkNEYzsWQc5yGz/AIVF/aR2tiAlgyDAcfxH A5os+4c8f5V+P+Yn2vVP+gUv/gSP8KPteqf9Apf/AAJH+FMudQka1mEUZWZUdj8w+TacenPNT3dy 8cOyNS0rRM4IOMADr+ZFFvMOeP8AKvx/zI/teqf9Apf/AAJH+FH2vVP+gUv/AIEj/CiHUsqieW8j AKGK9dxXd0/z1pP7S3eXJtITDllUgn5Vzg9wfanZ9w54/wAq/H/MX7Xqn/QKX/wJH+FH2vVP+gUv /gSP8KcNQdmVVt9xZ/LGHGM7d3X0qe2uGuY0kEZWN0DAk9/TFKz7hzx/lX4/5lb7Xqn/AECl/wDA kf4Ufa9U/wCgUv8A4Ej/AAqBr64il2ySgrFKyzHaBwfuf0qxcS3ENvaZkbe7hX2oCT8pPA/Ciz7h zx/lX4/5ifa9U/6BS/8AgSP8KPteqf8AQKX/AMCR/hVqylaezjkcqXI52+tZpv7iN1EkoIjd0mO0 DnnZ/T86LPuHPH+Vfj/mWPteqf8AQKX/AMCR/hR9r1T/AKBS/wDgSP8ACmrqYijPmqz+XlWcDqw6 8dhnimz6k8c8R2lQSyFM/KxwMc49+tFn3Dnj/Kvx/wAyT7Xqn/QKX/wJH+FH2vVP+gUv/gSP8Knh u/MuntzHsZR3PJ6cgdxz1ouJJUvrWNXwkm7cMdcDIp2fcOeP8q/H/Mg+16p/0Cl/8CR/hR9r1T/o FL/4Ej/CmXd5Pbz3ALgRbQI2x9x8ZwfY/wA/rWg4kaAhH2yFeGI70rPuHPH+Vfj/AJlL7Xqn/QKX /wACR/hR9r1T/oFL/wCBI/wqtHqFxKUAlAEsaqp2jiQEbv5/oan/ALSMkatGjqCUIbg5UsBz6H2p 2fcOeP8AKvx/zHfa9U/6BS/+BI/wo+16p/0Cl/8AAkf4U5dRYuym2f8A5aBdpBLFO2PemHVCCshR fJEbuxDZPykdPz6GlZ9w54/yr8f8xfteqf8AQKX/AMCR/hR9r1T/AKBS/wDgSP8ACnC+d5ol8tly 5UgYIPy7hzUllem6YBoTGWjWUZbPBz/hTs+4c8f5V+P+ZD9r1T/oFL/4Ej/Cj7Xqn/QKX/wJH+Fa NFKz7hzx/lX4/wCZnfa9U/6BS/8AgSP8KPteqf8AQKX/AMCR/hWjRRZ9w54/yr8f8zO+16p/0Cl/ 8CR/hR9r1T/oFL/4Ej/CtGiiz7hzx/lX4/5md9r1T/oFL/4Ej/Cj7Xqn/QKX/wACR/hWjRRZ9w54 /wAq/H/Mzvteqf8AQKX/AMCR/hR9r1T/AKBS/wDgSP8ACtGiiz7hzx/lX4/5md9r1T/oFL/4Ej/C j7Xqn/QKX/wJH+FaNFFn3Dnj/Kvx/wAzO+16p/0Cl/8AAkf4Ufa9U/6BS/8AgSP8K0aKLPuHPH+V fj/mZ32vVP8AoFL/AOBI/wAKPteqf9Apf/Akf4Vo0UWfcOeP8q/H/Mzvteqf9Apf/Akf4Ufa9U/6 BS/+BI/wrRoos+4c8f5V+P8AmZ32vVP+gUv/AIEj/Cj7Xqn/AECl/wDAkf4Vo0UWfcOeP8q/H/My brU7+0tZbmbSgI41LNi4BOB+FaqncoPrzWd4j/5F6/8A+uLfyrQj/wBWv0FC3sOVnBSStq/0MvWP 9dH/ALteJ+M/+Rrv/wDfH/oIr2zWP9dH/u14n4z/AORrv/8AfH/oIqjI9e+Hn/Ij6b/uv/6G1aWh DNjMP+nmb/0Y1Zvw8/5EfTf91/8A0Nq0tB/48pf+vmb/ANGNUvc0j8D+X6llrC2YxFo9xiUquWJw D1Hvmo10qxWNkEA2sFB+Y9FOV79qu0VRmVf7PtfM8zyvm8zzc7j97GM/lxSHTLJomjMA2MApGT0B yAPQZ7VbooAjmgjnj8uVA68HB9R0NRNp9q4+aLJOckscnIwefoBVmigCo2m2bMWMIyxRjgkcr938 qcNPtVdXEWGWQyrhjwx6n9TVmigCo2m2jSGQxHcXMmdx+8RjPXrjikfSrGRFRrZdqp5YAJHy5zjj 3q5RQBVbT7V2Zmi5Z1kPzHll6H68ChtOs3V1aAYcMpGT0bqB6Z74q1RQBWGn2wZ2EZDPjcQxycDA 7+nFSQ20MDMYowhYAHHoBgVLRQBX+w23Tyhjn5cnAz1wO1H2ODKnYcqSQdxzkjBJ9eKsUUAV0sre PbtjxtUL1PIHQH1/Gop7BWjijiOxUkVyCxPA7DnirtFAFZrC2ZNhjwNhQ4YjIPODTjZwFixTk57n uMZ+uO9T0UAQxWsMLZjUg7AnUn5R0FRjTrVRgRkD5f4j/Ccjv2q1RQBVbT7V1KtGSG3Z+Y87uvfo akltYZlVZEyFGByQcHgjNTUUAV1srdOFQgbdpG44Ixjn14pkunwvGwQFXIYBySSCRgk888VbooAp wWIQgyMW2kFFDNhDjHGT71NDbQwACJSoVdo+YnipqKAIXtIJPM3xKfNxvz/FjpSPZwuQWVsh94w5 GGxjPWp6KAIobeKE/u028YwCcY/yTSPaQP5m6JT5hDP7kYx/IVNRQBAbSAmTKZEmdy5ODnrx0pGs rdwA6FwAV+ZieDwe9WKKAKr2ETD5dyn+9uOQMgnHPGcCnS2ommDyMSoUqqjjGRg81YooAgazgdZF ePcsgAdWJIIHSpUjVCxUHLHcec806igCFbSBdm2JRscuvsxzk/qab9it/L8vYdmQwXccAg5GOeOa sUUAVvsNtnOw9WP3j1br3pfsNt3jz97OSTnPXPr0HWrFFAEH2OH5MhjsJKkuTjIx6+lNWxt0ACoR hQg+c9Acgdas0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4j/wCR ev8A/ri38q0I/wDVr9BWf4j/AORev/8Ari38q0I/9Wv0FT9o1f8ADXq/0MvWP9dH/u14n4z/AORr v/8AfH/oIr2zWP8AXR/7teJ+M/8Aka7/AP3x/wCgiqMj174ef8iPpv8Auv8A+htWloP/AB5S/wDX zN/6Mas34ef8iPpv+6//AKG1aWh8WM3f/SZv/RjVL3NI/A/l+pfWWN5HjVwXTG4A8jPIp9ZH2e6W SSXy2P2iJw6jAKn+HnPPUikjtbhF2eQxVhFuBfPIB3Hrz2qjM1BMhnaEE71UMRjsf/1VITgZPSsN 4J1iDzLtkSCMIXcfNIpJx15zU4tJkniZYyRj58twM5JxzkHJ+h/CgDTjdZI1dDlWGQadWVZ21yk1 s7o3yoFfewOMLjgg+vb8aSe3unuJmWFsMsi5D/eyBt7+o/CgDWNQpcwvbrOG/dscA4Prj+dZyWtw rAGFzFmNnTePm+Ug9/XH1xT0t500eOERMJVcHaGHA35659KANMkAEngCgEMAQcg9CKyDZzmR/wB0 2HeYEl8jaR8vfpmlgtJ1ki3K6IqptC4+TH3h17/jQBr0Vhi38hLFJYXaR2YOhfJb5Tjvg9qeLG7K S53ecIUCOX43DO7HPXBxmgDY3KGCkjJ6D1oLAEAkDJwPesoWciypKsLMQsm1WIXYSBgcHgcH86bF aTb42ktyVSYOFJHAKYOOfWgDWjkWVA6HKnoadWOtrd+QqlH37NqEv/q23E5PPpj8qkgtp0vUl8tw DLJuJbPykcd+maANSoo7iKRS6t8oOMkYB+nrVKS3nNwzbSxMm7fngx7cbcf59aT7Gx0a3g8j508s tHkdiM+3rQBfimSbdsJOxip4xgipKx/slyJnkijaN2lkIfcOFKYHGfXFT29tcJZzqpeOV0woYjAb HXgnr60AXkmR5ZI1J3R43DHr0p24FiuRkckVkC1mDS7bRljdk+UuOykHvzzj+dCWlwo3vbl5GiiV juGcqfm78/1oA2Kri9tmKgSjLOYwMHlh1FQ2EUkaRiaJhIqsu8sDxu4HX0x+VV7mxuDNcSQheCJY Mn+P+L9B+poAvm8txEspk+R22qcHk+lSxyJKgdGDKehFUbmGU28UMcT4ikT5lIyQOpFS2CTRR+VJ EQMswbIPVjgH37mgB63tsxQLKCXYooweSOoqWKVJoxJG25G6H1rMuLG5824khC5VxJBk/wAR+9/n 3oeyug8ojdlYA+U4IwBtwFPPrz0oA03mRJI42JDSEheOuBmn1iy2Ny8UYiV0JYkhsYX5CPXue/41 KFmt7g3P2dxGE5QsCRwAAvP6H60AaM1xFAAZXC55oluIoVBkcKD096q38MkjK0SOJFUhZEYcE9iD wQf6U25jnmVD5LrLGCFkjYcHjseqn0PpQBeLqIy+flxnPtTILmG4GYpA3AP4HoaahlNsyyR4cLj5 cYY47e2fWs2C0uYoQGhaRjFGvzMMrg/MvB/H3oA2aZHMkpcITlG2tkYwf8msd7S8FsVETM5hePG8 cHdle/pUwt5hemfymXNxuLbh9zZg9/WgDRnnjt4zJK21B1NDTxJLHGzhXkzsB/ixyap3sv2jTQAj K82NqHr1FLdwPdyRBonQKWw4Iyh/hYc0AXIpUmTdG25ckZx3FRC9tiVAlGWcxgYPLDqKbYi4SJUn jAc7mZlPy53Hgd/eql1Y3DT3EkIXgrLDk/8ALTof0A/M0AaUc0csXmI2U55x6UqOsiK6HKsMg1mr ZzLcHO8ouNhUjoFwV69zmofsl15asYZPMWGID5x94Nz39KANlmVcbiBk45pJJFiQu5wo6msl7Od3 ctCXTzVk+YjccNkjrgjHToe1I9pdmKckSNKd2NpAD5YEc57D6UAbNFZaW8y3omETj/SGbO7+Apj1 6Z7VpRszRqzIUYjlSQcflQA6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM3xH/ AMi9f/8AXFv5VoR/6tfoKz/Ef/IvX/8A1xb+VaEf+rX6Cp+0av8Ahr1f6GXrH+uj/wB2vE/Gf/I1 3/8Avj/0EV7ZrH+uj/3a8T8Z/wDI13/++P8A0EVRkevfDz/kR9N/3X/9DatLQf8Ajyl/6+Zv/RjV m/Dz/kR9N/3X/wDQ2rS0H/jyl/6+Zv8A0Y1S9zSPwP5fqaVFFFUZiFQ2MgHByM9qWiigAooooAKK KKACiiigBCqsQSoJHQkdKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjFFFABR RRQAUUUUAFGKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAzfEf8AyL1//wBcW/lWhH/q1+grP8R/8i9f/wDXFv5VoR/6tfoKn7Rq/wCGvV/o Zesf66P/AHa8T8Z/8jXf/wC+P/QRXtmsf66P/drxPxn/AMjXf/74/wDQRVGR698PP+RH03/df/0N q0tC/wCPKX/r5m/9GNWb8PP+RH03/df/ANDatLQv+PKX/r5m/wDRjVL3NI/A/l+okV3cIsMkjiRZ JmiK7cEYLYI/KnjVP9Hjna3dI3AYZYZwcdvxqeOxgjIKhiRkjLE7SepHp1pp021aNIyh2omwfMfu 9cfpVGZXF5c/aT8gKGfyAu4YxjOemc0q6kyQgtC0h2PITkDAVsGrQsoBnhuZPMzuOd3rTf7Ottu3 a2NrJ989GOTQAi3yvdCFY2OWK7s+gz09MGka+AdgIyVDmPdnq+M4/wDr02OxkjujIspClt3BOSMY 2kdPxqdrSFpC5U5JzwTjOMZx6470AVY7q4TTYrllDySsnykgBQxA4/Omw6g0byrOGKLJIA/HAUZx j6Zq79li+yrb4Plrjb8xyMdOaYLC3znaT8zOcsSCWGD+lACW96Jo5G8tgYwGxkHIIz19aiGpFgoS 3ZnaQx4DDGdu7r6YqytrEIGgIZo2G0hmJ49OaYtjAkiuA+5W35Lk84xn8qAKw1CQODKnlosrocc5 CqT/AEp0t5IrQSMjQxljuzg7l2E/0qwbKAvuKn7xfG44yRg8UgsYAEGGIjOVBckDjGPpg9KAGW98 bj7kLfwk8jhT3+vtUN/c3UM7xwsu54swgr/EDyPyxVtLWKNVVd+1SCo3njHQdentT3hjeWOVlBeP Ow+mRg0AVI7mSWzuLhJMrtJj+Xphf15pdOuZZ94lOSFVhldp5HPHp71MLKBYvKVSqbWTarEDBOTR HZQRkMobcMYJYk4HQfTk8UAVL+6uoJpY4mBZow8IK9wfm/ShdTClmJMqsC6AADCDA/E5zxV94Y3l SVlBePIU+metRrY26CMRoUEY2rtYjj0+lAFO51PdbTNDlSqsyvwfunByO1TDUgfKPlHbKTsbcMEZ x+ftUrWMDRyRkMEk6qHIHXJx6UGxtySdpwW3Fdx2k5z0+vNABqMskNhNLCwV0XIyM1HfTz2zQNGA 6ZJlXHJUDkj3HWntaF7MWzSkqfvk8kj0zUn2aPzBJ824MWHzHqetADbKVpoC5kEgLttYDgjPFUZr 24hneNpFIjmBf5ekRA5/M/pWhDawwY8pNgXdhQTjk5PH1oktIJWkaSMMZE8tie688fqaAKcGoncs Tgu5IBIGMbuVGPpjJ96RNUKwRs0Tv+6WRm4HBOOlXRaxLJ5igq2ADtYgHHAyKi/s218vZtbbsEf3 z93OcUARTaiymRYocujqmGbB5YDOP5U2bUx5c3lowKB8MMHlevH+c1Zaxt2LFlYlu5Y5HOePTnml aygZJUIbbLncocgHPX86AIvt/wDpPkmFgBII9+R1K5HFXar/AGKDfvw27eJPvH7wGB+lTRxrFGEX OB0yST+ZoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAZviP/kXr/8A64t/KtCP/Vr9BWf4j/5F6/8A+uLfyrQj/wBWv0FT 9o1f8Ner/Qy9Y/10f+7XifjP/ka7/wD3x/6CK9s1j/XR/wC7XifjP/ka7/8A3x/6CKoyPXvh5/yI +m/7r/8AobVpaD/x5S/9fM3/AKMas34ef8iPpv8Auv8A+htWloX/AB5S/wDXzN/6Mape5pH4H8v1 NKioluYWl8pZFL9MZpzSxq+xnAbG7B9PWqMx9FNWRXZlVgSpww9O9KzBELN0AyaAFopsciyxrIhy rAEH1Bp1ABRTTIokWMsAzAkD1xR5ieZ5e758bse1ADqKKKACio3mjSRY2Pzt0ABP/wCqgzxrIiFv mckLjnJHUUASUUUUAFFIWAIBIBPSkSRZIxIh3KRkEd6AHUUyGVJ4lljbcjDINI80aSKjH5m6AAn/ APVQBJRRTfMQyGPd84G7HtQA6iiigAoopAQwBByD0IoAWikJCgknAHUmkaREZQzAFzhfc9aAHUUj MFGWIA9TTZZEhiaRzhFGScZwKAH0VHHPHKzqjZKYDDHTIyKkzQAUUgIYAg5B6EU2aVIImlkO1F5J x0oAfRRRQAUUhYLjJAzxzS0AFFIWAIBIyeg9abLNHCFMjhdzBRnuT2oAfRUK3duzBVlUkuUwP7w6 ihbqBpjEJV8wHBX39KAJqKZLNHDs8xwu9tq57n0piXdu7ALKpJYoMeo6igCaiimRTJMpaM5AYqeM YI60APooqOO4hlZljkVmXqAaAJKKjS4ikkMaSKzjqAaSa5ggYLLIELAkA+goAlopAQQCDkHoRTZp khTfIdq5Azj1OKAH0UVA95bpKY2lUOMAg9s9KAJ6KiluoIGVZZAjMMgH0p7yIkZkZgEAyT7UAOoq v9ttsE+cuAgk/wCAnofpVgHIBHQ0AFFMilSZS0ZyASp4xgg4NPoAKKKjlnihUtI2ACAe+MnAoAko oqNZ4mmeFXBkQAsvcZoAkoqFbu3ZVZZVIZtgIPVvT61NQBm+I/8AkXr/AP64t/KtCP8A1a/QVn+I /wDkXr//AK4t/KtCP/Vr9BU/aNX/AA16v9DL1j/XR/7teJ+M/wDka7//AHx/6CK9s1j/AF0f+7Xi fjP/AJGu/wD98f8AoIqjI9e+Hn/Ij6b/ALr/APobVo6GM2Mwzj/SZ/8A0Y1Z3w8/5EfTf91//Q2r S0L/AI8pf+vmb/0Y1S9zSPwP5fqNWKePTBafZmMiRsu9SBzg4IPqf61FcWUrRNEkUjK1vyGfOXyD 69etbNFUZmUYZ/Pc+TKbcyAlN3JGzHHPY9qGiuRdBlil2DKkl92V2YHf1/xrVooAzHglbTrGIpIC pQSBWwQAMHODURsbiXzkdpFPzbWB4I/g5z2wO3rWxRQBktb3JEbbJVaSOQyeW/3WOMAZOOOaaIL3 ACoyny2HDYB+cH1OCRn6VsUUAZL20zyIPKlEG9yE39F2Ywef71TeXO1laCRHbaB5yZ+Y/Lj155rQ ooAzbK3mS9Ek0bbvJC7yc87jx+RFQiyYSIhgfZ9pkdyp6qQ2O/uK2KKAMi3t7wtD5xkXCpg8EqR9 4Hnv+NTXEdwdQSRIn2Ky5YN1XBzxn1x/OtGigDHt7J1SykkikaRS3mbnyw4IHen2cNwvk/aI5TtR NpD/AHSM7s89/wAc1q0UAYsFrd4hVxJGoUbcY+QhiTnnuMetT3dvK97JJFGwJhVQ4OM/Nkj8q06K AMoWsr3EQaOUW+9jt342rtGM8+vNO1CK4klm8pZSGiUAq2PmDZ459K06KAMhbeWOct5cqp5j8l+A hXjv0zUdrFPJbwyIsnkmOMyKXyZD3I5+n1rbIBBBGQaRVVFCqoVR0AGBQBmRWsr3KeesnliNsAvw DuyoPPJAqKO3uYorVEt3XygmcN6N83f0/OtmigDENncNC6eVKTJHMrbnyOWynf0q9LG/+h+XHIFR vmAOMDaRzz64q7RQBhfYrlrXy2hlbdCu4M+csGz69cVLLbXTfacrISQ4QDGGUrgL17fStiigDHaC 5MrsInEZdCw4ywCY9exqWO1m3MkwlkO0BJN2BjbggjPrWnRQBifZrmO2RI4JBmGNcBh8rK3Pf0/O nXMN07XO2CTEiOuNwOTkbep9M/TpWzRQBSu45JJoiUkeHaQVRsENxg9frVaW3uismFkLkSbmD/eB B2gc9en5VrUUAY32SYsN0MjRrJFJhmz2w2OfWkNteGCTf5plzg7TgN84OQc9h9K2qKAMmO1kF1E7 QuUjmk25bopAwevTOatTwtJpZjijZJAoZFdskMOQCfqKuUUAZlvbT29w0hjLoVEmFIz5h4b/ABpr QTm/eQROV89XG7G3AUAn1z1xWrRQBUvEluLAmNNswxIisRwwOQD/ACqk1jdR+cIuAVDqQeSxI3j8 h+tbFFAGO1rdFlAaUREHbgcxtn0z/jSLbXIkuC0cm2QvsKEBk+bPrzkfyxWzRQBTsXdU8iSMq6ru 46YJOO5wfaobOOa3f5YZBDtA2MQShJ6Ke6j3/CtLAHOKKAM22jnt5SUgcRYOYyQdrEj7p9OpOadq UM880Qh3riOQbxjAJAwDn6VoUUAZKwz+fAVt3jjXapG/OF2kEdexx/OoWtrxrYxtDLnyUQ/OOWD8 nr6d63KKAKNmzwO0LxyBXlby8nOFxn16dajkSYalLKI5WQhAAMbWxnOc+ma0sDOcc0UAZt9HNcSR MsUyjZIrbduecAd++Kt22/7OscsQQqoUgfdPHOPbtU9FAGNDYXKNCWAOGMT8/wDLIcr/AC/U0CG8 LOTDIqNtLqHzuwxyAc+hHpWzRQBjR21wpTZDIAJWOxm+XBfOcg5Bx9fSljsLlZ1Bz5QYx8v/AAA7 g31zxWxRQBjSW94bchVlD7FDkPy77gSRz6Z/OlubFlNyIYHIkWMKQ3o3PU1sUUAUbNmgdoHjkAeV vLycgLjPr060Qv8A8TC4kjUyK3loSvYjdn8qvYGc45ooAyYbWeOaOWOMqrylpkJA55ww+vAP4VqR sXjVmQoSMlT1FOooAzfEf/IvX/8A1xb+VaEf+rX6Cs/xH/yL1/8A9cW/lWhH/q1+gqftGr/hr1f6 GXrH+uj/AN2vE/Gf/I13/wDvj/0EV7nf2puJVIcLgY5FeH+OIzF4w1GMnOHXn/gIqjI9b+Hn/Ij6 b/uv/wChtWloXNjN/wBfM3/oxqzfh5/yI+m/7r/+htWloP8Ax5S/9fM3/oxql7mkfgfy/UpNNNCx BklIt5GhfLH5i/3Cfplfzqd7udbedFA2RK6Es3zDaOpOc81r7VOeBzzTWijYktGpLDBJA5FUZmf9 vmW425i8sSJHjnJ3Lnrmo1vriRoQXRG80B1C5yCpOAc4PTg1qeTFnPlJ1B+6O1AijC7RGoGc4wOv rQBlrfTTQxSMqqjvGRhsEZbBXg81LbX8rzqsrRBGMo+XjGxsZzn0q/5MXP7tOTuPyjr60nkQ/wDP JO/8I79aAJAQQCDkHvRQAAMAYAooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKAM3xH/yL1//ANcW/lWhH/q1+grP8R/8i9f/APXFv5VoR/6tfoKn 7Rq/4a9X+hHL9+vCvH//ACO2p/76/wDoIr3WX79eFeP/APkdtT/31/8AQRVGR6v8PP8AkR9N/wB1 /wD0Nq0tB/48pf8Ar5m/9GNWb8PP+RH03/df/wBDatLQv+PKX/r5m/8ARjVL3NI/A/l+ppUVTGoI U3+RKFywycdQcHv61YE8Jk8sSoX5+XcM8daozJKKryXca+WUIkV5BHlSDgmpTLGJBGZFDkZ255oA fRUQurcqWE8ZUYyd4wM9KPtMAUMZ49rdDuHNAEtFRG4gH/LaP7237w6+lKLiFiAsqEtwAGHNAElF QwXKTWonP7tec7j0wcUyS8iWSKNCJHl5UBh0HU0AWaKqS6hBG5QMGKyLG+D90noTU/nw7UbzUw/3 TuHzfSgCSimtLGjKrOqs3QE8mopL21jIDTpksFwGzyaAJ6KhW6iZAzMEBYqNzDkg4psV3G6MzkRY kMfzEckHFAFiiopJ0SGSRf3gjzuCcnjqPrVcalCSyhJCRGsmBjkNwMc9aALtFVZ76O3kKOknCbyw AwBnHrU08oggeYqzBFLEL1wKAJKKp/2jEXdFSRmRUbAxzu6Y5qx9oh2s3mpheGO4cUASUVXW8iNw 8TELjbtYkYbdnGPyqZJI5M7HVsHB2nOKAHUVAt0jTtEqu21tjMBwDjOPyo+1IbhoVV2KsFZgOFJG efwoAnoqK4uBborFGbcwQBcdScCmx3kMi53hDuKbXODuHBFAE9FRNcRhTtdWbnChhkkdRSW1zFcw rJGwOVDFcglcjPNAE1FQT3QhlSPypHZlLDbjt16n3omuliijcxufMYKFAGQT0zmgCeio4JlniEiZ xkjB6gg4NVxqMRkRNkgZ5WiAIHDDk96ALlFQwXUUyqQdrMN2xiN2PXFMjvoJJJl3qFix8+4bTmgC zRUX2mDOPOjznH3h1xn+VKJ4WIAlQkjdww6etAElFVnv7dWCrKjuQSqqwOcDNPtrmK5iWSNgcqCV yCVyM80ATUVDJcLHcxQFWLSAkEYxx1z+dRPqESSTxlX3wKGZcfeB7j1oAt0VHNKIYHlKswRSxVet V/7SiLMoSRiqI+AByG6Y5oAuUVC1zEMYYOdwQhSOCactxCxIWaMkDJww4FAElFQC8t2lWITIWZSw wew60puotyYcMr5+YMMDHWgCaimRzRS58uRXx12nOKfQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAZviP8A5F6//wCuLfyrQj/1a/QVn+I/+Rev/wDri38q0I/9Wv0FT9o1f8Ner/Qjl+/XhXj/ AP5HbU/99f8A0EV7rL9+vCvH/wDyO2p/76/+giqMj1f4ef8AIj6b/uv/AOhtWloR/wBCl/6+Zv8A 0Y1eWaD8RZ9E0a301NNjlWAEBzKQTkk9Me9Of4g20kjO/hq0LMSzHzDyT1PSk77o0i42cZHp/wDZ zfYZ4/3QmlJ+bJxgsWH86c1jMZmcGEZmMmevBTbXln/CfWn/AELNn/38P+FH/CfWn/Qs2f8A38P+ FLULU+7+7/gnqEdhcK6sXiP7yNzyf4Rg1NPayveLMHj8tXV8Y54BB+vWvKf+E+tP+hZtP+/h/wAK P+E+tP8AoWbP/v4f8KeoWp9393/BPRltpf7KSRkUFYwioEOT84PI/D+dXVsXN0k7mL7zuwHbKgDH 5V5Z/wAJ/af9Czaf9/D/AIUf8J9af9CzZ/8Afw/4Uahan3f3f8E9R/s2Qw7DIitHEI42UdwQQx/E D9adJYymSLY8e1Cjc8ElSSfzz+FeWf8ACfWn/Qs2f/fw/wCFH/CfWn/Qs2f/AH8P+FGoWp9393/B PVks5BYJCzpvSTeMfdPzZwaILSWK7WYshHzlgM8FiOn5frXlP/CfWn/Qs2f/AH8P+FH/AAn1p/0L Nn/38P8AhRqFqfd/d/wT1WeylkmdlaPY08cvzZz8uMj9KiGmyFiXZGVg6soYgYLluPzry/8A4T60 /wChZs/+/h/wo/4T60/6Fm0/7+H/AAo1C1Pu/u/4J6ve2s08ysjxhRtPPXIbP+fSmLZOsWAYg4uD Nx0IyTj9a8r/AOE+tP8AoWbP/v4f8KP+E+tP+hZs/wDv4f8ACjULU+7+7/gnqcVjLHJvPksDvDK2 SMM2786adOlZ2ZnQhjICu4gbWIP58V5d/wAJ9af9Czaf9/D/AIUf8J9af9CzZ/8Afw/4UtQtT7v7 v+CewQqVVlYIBnjb6e/vVGHTDF9nPnAmJ2J4+8v8I/DC/lXlv/CfWn/Qs2n/AH8P+FH/AAn1p/0L Np/38P8AhT1C1Pu/u/4J6ndWU9zIrsYQ3lbMgn5WznI+lXow5jKzFW5I47j3968e/wCE+tP+hZs/ +/h/wo/4T60/6Fm0/wC/h/wo1C1Pu/u/4J6jFpbIsAM+THuDEDlgfu/lgflSJpkixwnevmQ7QDuO GABHPp1z3ry//hPrT/oWbP8A7+H/AAo/4T60/wChZs/+/h/wo1C1Pu/u/wCCeoppskV0s0ToAqqo QkkEc5z+fB9qltIJ7V1jGwxseQCTsAHYnrz2PSvKf+E+tP8AoWbP/v4f8KP+E+tP+hZs/wDv4f8A CjULU+7+7/gnq72krXf2hWjVlOQy5BYY4VvUZ70jWkz3KTlolkUg70yCRj7p9Rn1ryn/AIT60/6F m0/7+H/Cj/hPrT/oWbP/AL+H/CjULU+7+7/gnrV1BLc2scZ8veHRn5OOCCcVUk02c25gSSIINwXI OcFgRk/p+teYf8J9af8AQs2f/fw/4Uf8J9af9CzZ/wDfw/4Uahan3f3f8E9TNlOLjeHi2eY0nfPz LjH50kFtcWaoUETMIY4sDIyQeT+RNeW/8J9af9CzZ/8Afw/4Uf8ACfWn/Qs2f/fw/wCFGoWp9393 /BPV720a5nicLGyorDDsRycen0oube4uIURzCSsiN3AIHX9a8o/4T60/6Fm0/wC/h/wo/wCE+tP+ hZtP+/h/wo1C1Pu/u/4J63Zwy26+WzIY+SAP4cnoPYCq9xpzSyXLpMEMm1o+PuMOp/HAryz/AIT6 0/6Fm0/7+H/Cj/hPrT/oWbP/AL+H/CjULU+7+7/gnqM2nSyyECSNYuQMdQCm386GsJ3aRm8kFthX YSNpUEZB/H+leXf8J9af9CzZ/wDfw/4Uf8J9af8AQs2f/fw/4Uahan3f3f8ABPUZdLd23CdQ21SD txhwMFse68VJ9hYSfKyeWJPNHrnbjb9K8q/4T60/6Fmz/wC/h/wo/wCE+tP+hZtP+/h/wo1C1Pu/ u/4J6nHYSR29qimINDE0bYyAcgDI/Ki3trizCFBExEUUWBkdCcn8ia8s/wCE+tP+hZtP+/h/wo/4 T60/6Fm0/wC/h/wouwtT7v7v+Ces3CSyXsbxKAYkbDP90k4x/KorqwkuPNPmIjkgxsOccAEH2NeV /wDCfWn/AELNn/38P+FH/CfWn/Qs2f8A38P+FGoWp9393/BPYU3neJNmMnGPT396oQ6WY/s+Z8mM tuOPvL/CPwwv5V5b/wAJ9af9CzZ/9/D/AIUf8J9af9CzZ/8Afw/4Uahan3f3f8E9Rj02RIolzGXj aMbix5VTnp2NA06TAUiAjEoYc87zkV5d/wAJ9af9Czaf9/D/AIUf8J9af9CzZ/8Afw/4Uahan3f3 f8E9QfTZpIyjTqd0boT3GSCOe/TBp5sZC6SDyw2XL5YnJK7RXln/AAn1p/0LNp/38P8AhR/wn1p/ 0LNp/wB/D/hS1C1Pu/u/4J6ra2k9sQVMP+qjj7/w5z/OtDIrxr/hPrT/AKFmz/7+H/Cj/hPrT/oW bP8A7+H/AAp6han3f3f8E9lyKMivGv8AhPrT/oWbT/v4f8KP+E+tP+hZtP8Av4f8KNQtT7v7v+Ce y5FGRXjX/CfWn/Qs2n/fw/4Uf8J9af8AQs2n/fw/4Uahan3f3f8ABPZcijIrxr/hPrT/AKFmz/7+ H/Cj/hPrT/oWbP8A7+H/AAo1C1Pu/u/4J7LkUZFeNf8ACfWn/Qs2f/fw/wCFH/CfWn/Qs2n/AH8P +FGoWp9393/BPZcijIrxr/hPrT/oWbT/AL+H/Cj/AIT60/6Fm0/7+H/CjULU+7+7/gnsuRRkV41/ wn1p/wBCzaf9/D/hR/wn1p/0LNp/38P+FGoWp9393/BPZcijIrxr/hPrT/oWbP8A7+H/AAo/4T60 /wChZs/+/h/wo1C1Pu/u/wCCep+Ij/xT1/8A9cW/lWhH/q1+grxw+PrM9fDFmf8Atof8K0B8WrkD A0eH/v8AH/Ckk73Y5SjyqMf62PT5Pv14V4//AOR21P8A31/9BFb158T5ryLy5NJVRkHMdyyHj3Ar j9c1JtZ1i41FohCZiDsByBgAdfwqjI//2Y== ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image006.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAK4AikDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD06iii gChdazp1pO0E9wEkXquxj/IVF/wkWkf8/Y/74b/CtSigDL/4SLSP+fsf98N/hR/wkWkf8/Y/74b/ AAqxq1zLa6dLJbIHuSNsKH+Jz0FVNF1RtX8NxXykRztGQ4x9yQcEY+ooAf8A8JFpH/P2P++G/wAK P+Ei0j/n7H/fDf4VX0bXY5tD0+5v5VFzcQmQqik5A6nA7CrketafMkTRTmTzc+WFRiXA5JAxkjkc 9KAI/wDhItI/5+x/3w3+FH/CRaR/z9j/AL4b/CnvrmmxrAzXI23G4REKTuK9RwOox061AmsJLqka xXMT2j2huAgjcyMMj5hxjGO3WgCT/hItI/5+x/3w3+FH/CRaR/z9j/vhv8KjsfEVnPoS6vOXgt+p Zo2wBnAPSrDa1p6vJGZzvjTzGXY2dn94DHI46igCP/hItI/5+x/3w3+FH/CRaR/z9j/vhv8ACrB1 WxxEVn8wzR+agjUuSn97A7VYt54bqBJ4JFkicZVlOQRQBn/8JFpH/P2P++G/wo/4SLSP+fsf98N/ hVbX9XvtMW4ljt4vKjjVoi5yZ5CceWADkHpzz1rThv4HuY7R2Ed40ImMB6qvQ/rxQBV/4SLSP+fs f98N/hR/wkWkf8/Y/wC+G/wp3iC7nsdIlurdwkkZXqMjBYD+tJBezDVmsy63EAh8xpgAPLbP3Tjj kc/hQAn/AAkWkf8AP2P++G/wo/4SLSP+fsf98N/hUt5fodPuHtpgJVhaWMleoA6jPUU+0v4prWN3 kUSGESsD8vGOTz2oAr/8JFpH/P2P++G/wo/4SLSP+fsf98N/hU9hcySs6SyRMxG9AgKnafr1+tM1 K+khu7Oxt8Ce6ZsMwyEVRljjuegH1oAj/wCEi0j/AJ+x/wB8N/hR/wAJFpH/AD9j/vhv8KmL3Vtd AzzI1mImZ5GABVgRj2xjNRapqBi0+aW1kCzRFCVZecFgOQfXmgBP+Ei0j/n7H/fDf4Uf8JFpH/P2 P++G/wAKuNe2yymMyjcG2Hg43YyBn19qhstVt7uyF180aMxUb1IJOSBj16UAQ/8ACRaR/wA/Y/74 b/Cj/hItI/5+x/3w3+FWZNStIlUvLt3P5Y+U/e/un0NWIpUmiSWM5RxkHGMigDO/4SLSP+fsf98N /hR/wkWkf8/Y/wC+G/wpbjUc6hYR28oaKaR0f5chsKTwfYirkN7bTuEilDFgWX/aAOCR60AUv+Ei 0j/n7H/fDf4Uf8JFpH/P2P8Avhv8Kk1S+e2ktLaAKbi7k8tC3RQASzH1wB0pzNd21xEZJke02MZZ GUKVIxjpxjrQBD/wkWkf8/Y/74b/AAo/4SLSP+fsf98N/hVmXUrSGJ5ZZdiRgFsqeAehx6e9R3er 21tA8mWco6IVVTkFiAMj05oAi/4SLSP+fsf98N/hR/wkWkf8/Y/74b/CrMupWkMywyyFJGUOFKHO M4z09SKozanKDayJNGUa8Nu4VD0weOedwIoAl/4SLSP+fsf98N/hR/wkWkf8/Y/74b/Crf8AaFru jXzfmkcxqMH7wGdp9D9aiOpQySWwgmTbLK0Z3q2SVByB6HI7+hoAh/4SLSP+fsf98N/hR/wkWkf8 /Y/74b/CrX9oWpVts6cBiC3Cnb157474pkF6Fjla6mhHlgE4BXg9Dg+tAEH/AAkWkf8AP2P++G/w o/4SLSP+fsf98N/hVsX1sSQJCWBIKbTuGBnp16EVPG6yRrIhyrDIPtQBm/8ACRaR/wA/Y/74b/Cj /hItI/5+x/3w3+FLPqOdSsI7eUNFM7o/y8NhScg+xFXIb22nkCRyhiwJX0YA4JB70AUv+Ei0j/n7 H/fDf4Uf8JFpH/P2P++G/wAK0pZBFE0jdFGazNK1OSTTbiTUMJPaSOk+0HAxyCB6bSDQAv8AwkWk f8/Y/wC+G/wo/wCEi0j/AJ+x/wB8N/hU82qWkUcrbyxjh88qqkkp6j1p8N/DLbQSncpmXKoVO48Z 4HWgCr/wkWkf8/Y/74b/AAo/4SLSP+fsf98N/hVh9VsY2QNOMupdcKTkA4PQdqe2oWisQ06jBK5P TI6jPTIoAqf8JFpH/P2P++G/wo/4SLSP+fsf98N/hWhFPHKzKhOVxkEEYz9ahmnY38NqhxlTI5/2 RgY/En9KAKv/AAkWkf8AP2P++G/wo/4SLSP+fsf98N/hVBtVvI4NTl89JJbWdoooCozLgAheOcnO Kvm+nutV/s+D9yY4VmnYjJG4nCjt2OTQAf8ACRaR/wA/Y/74b/Cj/hItI/5+x/3w3+FRXl/fWUvk uI3a4mSG1YjGcgli30welXNt/Fc2yiVZoWJExKgEccYx70AQf8JFpH/P2P8Avhv8KP8AhItI/wCf sf8AfDf4Uf2jMviFLRwotZY2ETdzIvLD8j+hq0Z2j1JbdzlJULp7FcZH6j9aAKv/AAkWkf8AP2P+ +G/wo/4SLSP+fsf98N/hWpRQBl/8JFpH/P2P++G/wo/4SLSP+fsf98N/hU8erWMqlknBA65UjnO3 HTrnjFSfb7XA/e5JYrtAO7I6jHXigCp/wkWkf8/Y/wC+G/wo/wCEi0j/AJ+x/wB8N/hVo6jZgA+e pUhW3DkAN0JPbNVdN1Hf9oS6lG5Lp4VbbgHngemaAD/hItI/5+x/3w3+FH/CRaR/z9j/AL4b/Cro vbZpvKEoLFig9Cw5Iz0z7VPQBl/8JFpH/P2P++G/wo/4SLSP+fsf98N/hWpRQBl/8JFpH/P2P++G /wAKP+Ei0j/n7H/fDf4VqUUAFFFFABRRRQBnXllNeahAZdn2OIFsLIyvvIwDx6c9+9Z+kaLe6Vca mkLQGyunMsUZdi0bEYOSR0J5roCyqQCwBPQE9aNy7tu4Z64zQBxEmmXunx6XZD7OJre1kja4Z3RG UkfKGAzn2q/pFjcSy2Wp29vFbNawvZ/Zyx8tkBGGRsZxx3FdOJYzyHU8Z69qUuoXcWAU980AcxB4 bu7aTTnSaFzBdy3c27IyzgjC8dBnvWjNplxJ4ki1BWiW3S1a3287uSDnpjtWvTfMQtt3rnOMZ70A cyfDuof8IfJoX2i3J8oRI5zjG7O48denFWJNHvn1W4vAbYCWwFoF3Nw2Sc9OnNb+5d23cN3XGeaa ZkCMysHwM4U5NDA57StBvtMktbhJIJJo7JbORSWCnachgcZ78itTQdM/sjSIbLzfNZNzM2MAkkk4 9uas21yZYQ80fkMTjaWB/IjrUodDjDqc9OetMDE1jS9Svlv4I7mF7e6hEcaSjHkHBBYYHPr17Vcs bO7tJbeMzxy2sNssRZl/es4759Mdqvl0BILAEDJGe1RW95b3MKzRSoyMcA5HNICtrtlNqOlS2kBj V3K8yZwAGB7fSoLnS55b+aVHRILm1+zyovGGyfmHrwSPyrV3px8y/N05606gDGk0ieeOBZZUXyLZ 4FK5+YsoXJ9uOlJPosl3DHFPKEEdo1uDHnJLAAn/AMd6Vfur37PeWkAQOJ3KE7uVO0np+FWgykkB gSOoz0o3DYoQ2Ux1CK7nZAYoDEFTODkgkn8hTtRsWuLi1u4GVbm1YlN33WDDDKfr/SrpIUZYgD1N IZIx1dRxnr2oAoX1lPqVnJDKwhyBtCndyCDk/lVbUdKurw3EweJZpI0iVSTtAV9xJOOtahuoBdLb GVfOK7wuecZx/WpBIjDIdTxng0AZtvpRhnmLBJEluPtA3E/K3GeOh5HBqGLSLhLa2j85CbWcyx9c Pkt19OG/StncpXduG31zxVSyvvtJug6qnkTGPO7IbgHP60AUZdJuXuPtCvEXe7S4dWJwAq7QBx1r ZYblIPcYpQcjIppkRc5dRt65PSjyAxo9IuYodNtw8TRWbMCxJDMpVlH481Z0zTDZR28bhHNvGY0k ySSOOx6dBmtAyRg4Lrn60oYEkAgkdcdqAKWp2BuzbTROEuLWTzImboeCCD7EE0y+s59SspbeZhAG TA2Nu54OT7cVo1UgvfOvrm3CrsgVD5gbOS2ePwx+tAGfqWk3V8LiTfCssluIFXJ243biTxS3GlXU 8145eFRMYGQAk4MZzg8d60ru9gs4VklcYZlRcHqSQB/Op9w3YyM9cUAUBaXJ1iG8YxFFhaNuTuyW B446cYqtHpV0FUs8QZb5roAEkFTnj681sBgWIBGR1FQXd7BZ25nlcbQQvB5JJxj9aAM86TN5xufM TzWuxcleduAmzH5c1HDpV6jQb2gIS9kuGwTyrbuBx1+b9K3OtIGUkgMCR1GelAHOx2Xm2b+HywBh i+ScLnI3cZ9D0yO9Wr/R5dQleeWVY5PLRUVCSMq+/n8RitfzE27t64zjOe9Rz3dvbxiSWVVUsEBy OSTjFAGdc6R9pcM8MQySSVkYOGwACHHPrWjBC6WaQyyGRwgVn7njrUu9OPmHzdOetIJEJwHUnpwa AMaLSbqKPTIA8TRWZZS2SGZSpUH681Y0vTDZRW0ThH+zIUSTJLEfQ9OBzU99e/ZHtlCB/NmWI/Ng rnocVb3Lu27hu9M80AVr6Ga4WOJBGYi4Mu5iCVHpiqH9kTJqF+0LRpa3kARwSSwcAjd+RA/Ctmm7 0K7gy7fXPFAGOuk3TSnzHiEZsfsh2kkg+v0qWLTrmOazuC8bS28Rh2ZO0qQvIPrlf1rUBDDIII9R VXU737Da+cEEhDKCu7BwSBkfnQBRs9JuLW9tpd8TpGJi+Sc7pGDHHsMUiaK0drJbAQyjzHkjaXJx uJOCOn8RGfStncu7buG7rjPNVb29+yyWyhA/mzLEfmwVz3xQAzTLA2PmqrMImIKRly4TjnBPOPai VDFrENwfuSRGEn0OQR/Wru5SxXcNw7ZpAyPwCrY9OaAMKTRLqWy1SIyQpNdT+dDIuSUPy4zx/s9v Wrn2K4TURqUQj86SMRTRE8MASVIPqMn860nYKpJIHpk4qrp96LzT4rp1EW/IKls4IJHX8KAIL3Tp b2OORpBHcQyrND3VSOMH2IJB+tWB9sfDMsaMoOFDkhm9zjpVkuqkAsAT0yaWgDEutIuJLW0ki8lb +CdZi5ZtpOTuH4gkVddTNrEDY4t4m3EdNzYwPyB/SrnmJtLb12jjOeKjnuYLaGWaWRESMbnORxQA XVsl1GEkaRQDn925Q/mKlVdiBRk4GBk5pBJGUD712noc8UF0DbS6g+maAMZNHnbTkgleMSx3ZuUK E7T85bB796m/sx0v4r6JY1kUOroSSGDbec+vyj8K1N65I3DI6jPShWVhlWBHsaAMoaQRc3MhWJ47 kJvQkhVKjHAHUYpr6TM8M9u0ieVNdfaCwzuA3BsfXjrWrK/lQvJjdtBOMgZ9uaRJlZFLEIxAJUkZ XNAGfZ6X9mcqwSRBO86MxOVLEnp0zyefStSiigAooooAKKKKACiiigAooooAyJLR21S8a4heaGZY xEVP3MdR7c81AlneiKGIo32lbwyvP2ZNxPX3XjFb1QW11FdeaI9wMUhjcMMYI/8A1igDAs7KaP8A s/NjKgS7meTgcKd23PPTleKk022u42tpLi3lMEYnUxEAlSXypxnpt49q3ppo4QhkbbvYIvHUnoKk oApaPDcW+mxx3J/eAscZztBYkD8BgVjXFu09xrsNvATPI8YjccbW2DDZ7YPNb9zdxWzwLLuHnOI1 IGRuPTP5U6K2ghmlljiVJJTl2A5b60AYZt78XkU32d8pdlm2/wASbSu7JPQ8HHamw2UqadelLBhc Pcvt3cHy2kByMHpjnFdHR0oA5i4tLtrW9ga0lkVruOWPAA+XKZwM8dGp9xbXAe+aOzmy15DJHgD7 o27iOeOjVvx3EctsLiIl4yu4YHJH0otbmO7tY7mEkxyLuXIwcUf1/X3AZNpYTCdhdCRnF08ocAYZ TnAJ9MHGPaqi2M8ehWVobFi8M8ZYIB2fJP0x/OumpjyxokjswAjGW9uM0AYtxYzRnUY47csk0Kra hMARnB49vmOa2YEkS2jSR90oQBm9Tjk1DLqNvGFO5n3R+bhVJOz1qyrB0DL0YZFAHOxWd3GmkrJb yNcQzP50wAPJVhuz3BJFWdGsZoVtTcCQTwxskjcBXJ6kn+LJGa2qgmuoobmCB9weckIccZAz/KgC pq1vcTS2UkWTFFLulQDJI2kA474JBqkbEx6jZsLWaSJI59zMAcbiCB/PA7Vv0UAc7pVpcwzWE81o 29bMQsXAyrBh1/DNJBZSx6XPssGWdrlvvcERmXdkYPIA5xXQCVWfaMk5I6enWo5LuKK8htX3CSYM U44OOvNAGHHaXwlIaKQwLfecV4G+Mrjgezc4pY7e5W4nC2ciRvf+buI6L5YGQM88jHPSugkdY42k c4VQST6AVVm1K3hALeaytGJQVjYgrkD096P6/r7g/r+vvIdBjuIdOEFzGyNG7AbjnI3Ej8MYqpq9 nM91fSR2xlE9iYl245fJwD+dbtQQ3cU9xPAu4SQEBwRjqMjFAGBPaTyPM4spSW0wRA4H+s5469au 6bDPHqiM1vLHGbKNGZsY3gnOeevNbNFO4rFHV4p5rMRwbvmkQSbeuzcN2PwrLhs7rcSbVo4pL0yy oMZZApCjHpwua6Ko55o7ePzJW2pkDOM8k4FIZgW9lcm3sFmsydlxJPIpwcMckD6Zb9Kclre/boJJ YHkYXMkrvkAAYKoB7YP6VuSXEcc8UBJMkmdoAzwOpPoKbc3UVqYvN3YlkEakDPzHpmgDEey1FoLx omdWlTK7sB4yzZdQf4hjoTU9zYlxbLHau8a3AdwwHIVfl47DOK14po5t/ltu8tijcdCO1SUANYMY yFIVsYHsa58afdHREgWF0vo49jvuwJPmBbnvuwefeuiooA5vVrO5uFu2gtZPJeOJViAAJcPksBnj A4pbqynmubwizcxC5t5UBAwQuN2B610W4btuRuxnFVRqNs0luiszeeWVGCnBK5yP0NAGbJY3E15d mdZBFOkfleXjMeOoz/DzzVdrW4WS4dLKYMdSSUEAcoNuSOenBroYJo7iPzIm3JkjOMcg4NSUAc49 pdJBarJbSTTx6h5ryLg5XcSG+mCBipY7O9EVvEVYXKXhlkn7Mm4nr7qQMVr3d3FZxrJNu2s6pkDO CTgZ/Gp6EDKWsQ3FxpksVscSHacZxuAIJH4jIrNurS5mvnlhWa3gIjC7AuVcbju2ngjBA/8A1Vv0 UAVNLjmisESdVWQE52rtB5POO2fSse/s7o2moK9u9xLJdJJGy4PyBlIA9MAHiujooA5+4gvWvROt s42XivhTndHtxnJPf0phtLtLe0WW2kluI7/zZJFwcrlvmz6YIGK6OigDnRZXwsreExubmOZ3mlBx 5i/NkA+4IHt+FXdGtrm3kcTFnj8tAryIFcYz8pxwcetatFAGddwzHV7edkMtssTqUHO1yRhsfQEV m6Ta3UEdk09tJ5MUUqNCQCVYvkHHfjiujooA5mDT9RjSPcXMi7cxuA8bruJAz1UqOMj0rev/ADDY XAhi82QxsFTdt3HHTParFFAHNNYXkkWoweQzJcWiqhYBRvAYdPXpReWVxdtqSLZvieyjRC4GGcbu PryK6WigDIMM329J3tma1+zmNYgBlWznOPcVTsdOnF9Zi+t2lKWmxpCAVDbwVHuQB1ro6QsFxkgZ OB70Ac5FptyNNSO4W4a5jV1doiBvyeWz39cGr9gbmzylwjTebMFEqoEONvVhn1GOK0UmjeaSFWy8 eNwx0z0p5UEgkZI5FAFfUkMmmXUaxmRmiZQgGckisJ7OdmDGylJ/svyc4H+s9OvWumooAz9OivBF bvLOVQRKGhaMbgcYOWz61oUUU3qAUUUUgCiiigAooooAKKKKAMiWWaTVLyGW4a2VFjNuQOGz9447 nPGKoidlmuXhlZduqKJNp42lVBz7V0uAe1GB6CgDmRfuFbF2/wAmqCIZb+A449xyaIr+SOTd9sdv +JmYMM2R5fp/9eulwPQUuB6Chf1+AM5iW4eWLT5buQpcf2hteMnAXBYAY+mOferFteXjR2LEsbuS 4KXEJ6InzZ47YwOf8a3htbkYPvS4Gc45oQGdezSJqlrC7GO0eNyzg4y4xgZ7cZP4UulzTT6V5l0S py4DHglASFb8Rg1oEA9RmigDnNLvZ7iOzFxO/kNaF/MzgvIGwQT7DHHvVfS7i4eytIUm8qD7CDHJ u2/vMkHPHJHHHvXV4HoKTC8DA9hQBzF1fTwHVH+2tvgEDKM8Bj97j0PpU6MsDa43nSq7FnQ7zwPL Ugj8eldAducHGTS4HpQBykkyvMbg3Lib+yd+5ZCDu65q5aXU9zIyzXbQj7PC0Dj+MkfMfc54xW/g elGBxx0pgc8upTi/gcSOYpJ5YirdcAHaNvbkcHvUK3EkjaLNPITds8m+NjgB9jfLjtzxXTHAyTge 9GBnOBmkBz0d5ctbWLGVzJLE5uxnHl4QnP8As4bArQ0AvJpVvcSXMk7yxIzFjkA45x6VojaScYz3 pelAFKSxhhZ7qCIm4XfIo3nBZhzxnvgViNcymTSJxI0l40EzFGP/AC02dMdueMV1FJtGc4GaAOek vJ/s1uUnkbzLSR7ht2DGwUEH/ZO7Ix/hWrp+LrTLWaQmRnhXc2euQCf1q4do64Gf1paAKGszTwWi NBkBpkWRwOUQn5j+VZD3Dw6jqQtpCwM1uJGzkpGRhiD/AFrpqQADoBQBQ0+aWS+vY8l7aMp5Tk5y SPmGe+OPzrKnuriNdUMNzK9zDdKsERbOchTtx6HJ+ldKBjpVa1so7Wa4lV3Zp38xtxHBwBxx6AUA ZkU15NdTiWbyWjutoUseYsdh7jnP+FU47mVfDKXx1CZpTIi5L8cSY/8AQTzXUYGc45owPSgDAku7 sJcSAn7Yt2I4ouzR7gBx6FSTmoLm4eSG3ku5WSZdSVTGTgKochePTGDn3rpeBycUFQeoBoA52O9n NwYvtDm3+3vHI+7lF2ZUZ7AtxU32iZLi4imun8lIN8Mo43tls/XHyit3A9KMD0oGUtNu2nt4Y7jC 3nkpJLH3XI/xzWfq080F5e4nljjNgzphjw4J5Hv0rb2DzDJ/FjH4U4gHqM0MS0OfsXD6xFcSSyN5 tjEQd52s2Tnjp9ahtLoTf2M0s/mN9pnXczZJADgc/TFdNgccDijA9KAOWjv5JNPgjS+f7RK0qB2f iNA5y5PfAwBUt1qUiMzwTyFIZIFy/GVbG44/iBBzmujO0DnAHvRgegoA5m/uXlsp3upWjdL6NVQ8 AR712nHuOc1Ya8vPLZwzfaxe+WsPYx7sdPTbzmt4qD1ANLgZzjmgDL1yV4lsmWZ4g11GjFWxlT1B qkL2f7a9t5sjW5uCsUhOAyhMsC3senr0rYvbOO88nzJHTypBKu0gZYdM1YwMYwMUAczb3s14NISW 8lieZZUm2HaSQOPxzUz6jMl9GwlfyxeGBw/93af4fTIGD3zXQ4HpRgZzgUAZWuzNEtjtuGh33SIx VsZU5yKrM94Ly6tvtLR+SIvs7yMfnHckAfMScit7GaMA9qAMSykuLm1LzXMkd0TKJIR26hQPTHBz 3qnBezP9lRrqTfJpjO43EfvBt5/3utdPgZzjmo54FmhkiOVDqVJXqM0mM56O9vRa2b2Uj3Usli8k gY7vnCgqfYk8YpLy5uI9L+0LflQUh6OSQ5cZPtkE8e1dBaW6WlrFboWZY1CAt1wOmalwPQVXUk5/ Vbme0WeK2uJmaK2Mylz1JY4wf4umMemKmt5zd686LeSCMQRSiNW4Jy2fwIxxW3gelGB6UhmdfTSp qVpEzGO1dXLuDj5hjaM9u5/Ck0+6nbR5Li43ZQybWC5ZkBO049SAK0iAevNJkAgZGaAOZGoz+XcI 9w4V7DzkbdyH55z2PTipJE3R6NcyXU8ivJvdvMIAJiPp7j9a6LA9BS4GMY4oA567vpo7jVBHclBG IGAY/cBPzY9OKSC6mLQsLvzYJbplkZJN3lJglVJ7EnHNbk8Ed1GoJPysHVlPQikhtI4ppZsl5JAA zNjoOg/U0AV9JmmmW68wloknZYXP8SYH585Gfasi0v5VNsReNIXv5YcM2coA2B+g5rpqMD0oAwrK 8u3GmEszTzMwuoz/AADBzx2wcCt2jA64ooAKKKKACiiigAooooAKKp3Gq6dbTGGe9gikXqruARUf 9u6R/wBBK1/7+igBs+qeTqQs2URlmUIzg7Xz1w3TI9DVGG9ud9jHAI41kupkkDMzZ27uhPbjpU7X +hPK0jalAdzK5XzhgkdDjPsKiSfw8kaoNRh+SRpVJuMkM2d3Oe+TQBaTVmluJFhhLpFcCBsZznjL emBmrN5eeRcWtsi7pbliFz0AAySapLf6CkrSJqNuu8hmUTAAkd8Z9h+VOn1TQ7gxtJqNtujbcjCU AqelAFbS7s27vaqi+bPezhR/CoXkn/PrWrYXgvEm+Xa8MrQuO2R6fmKy45/D0WSuow7jKZgxnyVY 9SDnjNWbfVdEtoykWoWoBYsT5oJJPUk+tADF1iZIZJ5oUEUd19mbaTn7wUN+ZHFOg1aS6CvBBmN3 kQE5+Xbn5m9iR+orPsbjSVM5vNQtG3XTXCKtxleTkEj1FXVvtBTeE1KBFYltqzgAE9SBnjrR0AjG oXFzZ6ddT2yKk80W0LIcjd6/Q9u9PTUIZJLbU2jzHNKbaM5OVySM46ckfyqMT+Hxa21sNSi8u2ZW jH2jkEdOc809bzw+jqwv7bCOZFTzhtVj3Az7n86AI2uzf3Gi3gjVY5ZmKc/MF8t8Z+tSWGosWjtI 4QJpZZycuWUBGwTzzySOO1M8/wAPBoCuowqLdzJGqz4Ck5B4z05PFEc/h6ILs1GEMrtIr/aPmBb7 3Oeh9KALJ1WTZdH7OFazjV5kZucld2AR7VpQyrPBHMn3ZFDDPoRmseS78Pyb92oW/wC8UJJicDeB 6889ami1XRYpHdNStwXxkecMDAwMDPFAC6/GLqxax3uhnU/MgOVwMjp74qbRL06hpFtcsMSMmJB6 OOGH5g1XGp6KLxrr+1IS5XZgz/KB9M4qOyvtBsRKINShAlkMjBp93zHqRk8UAV76QW9xrcojDAJC zLuK5655Herz6qRftZhVjlyQglBAcbc5B6H6daqzzeHrhroyalEftIVZMXOMgdMc8VIt9oKuG/tK BsP5mGnBG7GM9aAFsNRuP7Esri4MbSz7QSD0yOuOp/Cr+m3gv7FLjZsJLKV9CCQf5VlrP4dRIUTU IFEDboyJ+U4I456YJqaz1DQrKNkg1C3VWYsQZgeSc+tAFe9uzfxWVwkaiIagqIT97hipP4kGrllq zXjRPHATDK7oCAcrtyMntg4/UVVkn8PSAD+0YVUTCcKk+AHznPX1qaHUNCgYmPUbdV3F9gmG0E9T jNCBlrUb5rPaFVWLIzcn+6M4x1/HtVddUuJ7m1jtoIytxbC4BdiCoyMg/g36Uy4v9BuJxNJqFvvC NHkTAZU9R19qjt7jw/bTQyxalCGhjMSD7RkBfTGfYUAMa9uW0XVJrkRyCKWRQqsy5VWx1HI4q1ca rKl21tDACyvHGNxOTuGd30Hf8aryz+HZYbiJtQgCXBJcLPjr1xzxmqs9xYtNNLFrMKyNjy3W72hQ BgZXof60Aaf9sf6Oboxj7OLj7Oefmzu2Z+m6pNO1P7bO0RURui5eNgVdDnHQ9R7jiqgu/D+ctf2x BfzSvnDaX/vYz1zzUlvqGhW7KyalASieWpaYEhfTrQAmoXqyXssKwNM1lslKc/OxzgDHcAZ571d1 W8ksdMlu441dowG2scZ5qm+o6E87T/2jbrIyhWKzAbgOmefrUOs6lpt7pM9rBqVnvkXaN0wAHNAd SXUNYmsjcRmBHlijWZcE4ZS20j2INWBfXBupLTyo/Pij81vmO3BJCge5wfpVGWfw/cRSCbUIC0yq Hb7RzgcgZz0zU0t/oUr721KAPs8sss4BZfQnPNAD7fWGvv8Ajyg34gSchjgndnCj34PNJHrLzAyQ 2zSRiV4tq53fLkZ9MZGPypn2zw+rq0d/bRlYxF8kwXKjoDzSG88P7ZFGoW6pISWQTgDJ6nGaAFXX laIyBCVVlWTEbbosgn5kxn8RRPrnk2qz7I5FESynY2dwLY49PxpPtmg+asv9pw+auMP54zjBGOvu aiaTw0yyr9utwsqBJAJ8bgCSM89ck0ALrl4brS9VijjUpbYRmbqW4PH0yKuXGq+ReLCYwV85ITg5 PzDg+3PY1Tml8OzQzRNqEASZQJAs+N2OhPPX3oeXw6+/dqEPzyCU/wCkfxgAbuvXigDXvrn7LbGX APIHJx1OP8isq41W5lto2twiOL5baTdnBGeo+tTXOpaFdRJHLqFsQjK64mAIYdDUHn+Hdsg+3wfv JBKT5/Icc5HPFAEl1fLLeuogMzWLplVz8zMM5A6cA96v6je/YooiE3yTSrDGM4G4+vt1qiL7QVkM i6jbqzABtswG7HTPPNPudU0O6iEc2oWpAYMP3oBBHIIPrQAk2rTRSSRmFC0VzFA5zwQ+OR+dIdZZ ZmgeJRIbs2yEZIwF3ZP4VSguNKNzfm51C0MU8qSxkXGWBUAA+3IzU6z+HkaRhqMJaSUTEmfkPjGR zxxQBrWVw9xAXkiMbBipB74PUexqjBq7zymFY0DtA0qHOQCpxgnv1HIp6avoyxlP7StiDnOZQc5q pDP4dgeFkv4MwoY0zPkBfTr0oAWK7nk0fSp7kJI8ssO7azLjd0Pvz26VLHq83mYkgQL9sNplTyfR v/rVD5/h77PFANRhCQuroBcYwV6d+g9KY8vh/a2zUod3nfaBm548z169PajqBZivjBLeL5ahhdiM kuSDlQc4P8hV7Tbz7dZrPs2HcyEe6sVP8qxba50lnknvNStBM04nXy5/uEIF4P5/nVyz1DQrJHSD ULdVZi5BmB5Jye/rQAyfxAkAm8yPa8WcxMCrH5goIPQg5HI6VLNqlxC6q1uCvnxxF+QGD8ZGe4NQ G58OtH5cl/byJhgFeYHGeuOake+0KSLy5NThf5lYMZwSCvIOc0AXdPu3ujdLIiqYJ2i+U9QADn9a xrqWRL7UppY4pkingUAkgqDtxg9uTn3q5aahoVm0zQ6lBmZ/MfdOD82MZ6+1QzTeHpjcF9Si/wBI dXfFzjJXGO/HQUAT3GrzQTXoaFDHayRrkE5YPj9RmpX1XZfpbtGNrT+RwckHbkH07dOtU5pfDsxu C+pRn7QVaTFzjJXp346UGbw6Tn+0IP8AW+djz+jnqevfn86ALmhALFeqBgC8lwB25rTrDhu9Ahzs 1OLmYzn/AEjqx69+ntVz+3dI/wCgla/9/RQBoUVn/wBu6R/0ErX/AL+ij+3dI/6CVr/39FAGhRWf /bukf9BK1/7+ij+3dI/6CVr/AN/RQBoUVn/27pH/AEErX/v6KP7d0j/oJWv/AH9FAGhRWf8A27pH /QStf+/oo/t3SP8AoJWv/f0UAaFFFFADGijY5aNSfUik8iH/AJ5J/wB8ipKKAI/Ih/55J/3yKPIh /wCeSf8AfIqSigDldY1JrDxPBZvcRQWUlq87EwqSpX04q9HeR6faG41R0aCSRRDMIQPlYDAYDpzx mm3+j3lx4kh1RHtjHFA0AikDfMG6k1Ff6JqV9YyQyT2yM08ToqhtiJGQQPqSKF/X3gybU9c0+y0+ 9uEg3y2m0PF5WCpb7pI9D61ZuNS061+zC4iMbXGRGphOSQM46dazr/w5dX0msl7iFF1BIguASUKd M+oNWrzS7+6utMuGmgLWkzTMCDg5BGB9Ae9AEj6xpCRiQ42GETlhCcLGTjceOKfeXtiiyQxFWn8n zR5ce/avZjx0qrq+h3eozXoN2v2e4t/JjRs/uTg5IA4Ocjr6U200O7tJpJ45oTJPax28oIOAUBAZ fwPSk9hoTR9Wt5dC024vkV7q6gMhEcOc46nAHFaC3+lP9jKPEwvc+QVTIfAz6elZdj4fv7Wz062e 7ieK1gaJoxuCs3Z+Oc47HirWj6Vf6Zp+nWS3UBitSyyfuzmRe2PQ5qnuT0NSf7Lbx75UjVcgD5Ry T0ArOs7qKS4vHlCGFZxDCpjG7cFG4dOec/lVy/s2uZLWRWGbeXzNrdG+Uj9M5qjb6PcQvbymeN5Y mlb7pwS5+99RSGSXOo2qi0NtAs/2mbywVjyABncfwwastcaekwiby9xcR/c43kZ259cVVtNJnt/s GZkb7KjL06lsZb69fzpItImilt9syFIriSc5BJYtnk+4yaALwksjMYgse4Er93jIGSM+uKrXV/Yw WM10kSyLHGZBhPvD1HtmoW0QySzytKI5Z4njkePI8zcMAkdMgVJLpbyaaLQeUgAjBwD8wUgkE+hA x+NAFy1RJrWKSS3RHZQWUpjB7inTLawRNLKkaIvJJUUvnGMBZFd27lUOKrX0P9oRRxrvQxypLh1I DbTnBoAGvNOWOWRgiiE4kBTlTjPPHpzUWpX1pZ2dzLHCkssGBsVM/M33QfrkVG2kzva3UUk0bNPO JjwcEZB2n2wAKDpNwwlLzRkyXS3BGDggYwp+mB+VAFt57KJR5qIrBN7DZyq+p9BTftenGYwjYXBU YCZ+907dDioJ9Jlla9HngLeqqSNj5lUDBA+vP5mrNnYfZprqQsP3zKF2/wAKKoAH8/zoAdHLZSOV QRnqM7eDjrz7UsD2lwT5SIeA33OoPQj2qrZaZLZ6etrE8SskZRZNu4n3Oal0vTU07zhF8kchBWJS SqYHbPTPpQBb8iH/AJ5J/wB8ijyIf+eSf98ipKKAI/Ih/wCeSf8AfIo8iH/nkn/fIqSigCPyIf8A nkn/AHyKPIh/55J/3yKkooAj8iH/AJ5J/wB8ijyIf+eSf98ipKKAI/Ih/wCeSf8AfIo8iH/nkn/f IqSigCPyIf8Ankn/AHyKPIh/55J/3yKkooAj8iH/AJ5J/wB8ijyIf+eSf98ipKKAI/Ih/wCeSf8A fIo8iH/nkn/fIqSigCPyIf8Ankn/AHyKPIh/55J/3yKkooAj8iH/AJ5J/wB8ijyIf+eSf98ipKKA I/Ih/wCeSf8AfIo8iH/nkn/fIqSigCPyIf8Ankn/AHyKPIh/55J/3yKkooAj8iH/AJ5J/wB8ijyI f+eSf98ipKKAI/Ih/wCeSf8AfIo8iH/nkn/fIqSigCPyIf8Ankn/AHyKPIh/55J/3yKkooAj8iH/ AJ5J/wB8ijyIf+eSf98ipKKAI/Ih/wCeSf8AfIo8iH/nkn/fIqSigCPyIf8Ankn/AHyKPIh/55J/ 3yKkooAj8iH/AJ5J/wB8ijyIf+eSf98ipKKAI/Ih/wCeSf8AfIo8iH/nkn/fIqSigCPyIf8Ankn/ AHyKPIh/55J/3yKkooAKKKKACiiigAooooAypNXLatcafbLCZbdVZlkk2l92SAo/DrVq2vkeygnu dtq8qhjHIwBU+lYutaRbapdznUNHebYALe4gYB8Y5GcgjBqv/ZeqGG1t7qBZ2SwaE3Hys5c/wkno MY5FLoHU6C6vZY761tYIVlMpJkYyBdiDvjqT7VBqWsLZXljBGI5ftNwIHw/zISCc4/CsSz03U/N0 HzLaSOS1s5IJpiynYxUAHrkjIpkelX0Vj4fgOnu01jch7iRSpyMMCwOcnJINPqHQ64XELS+UJozJ /cDDP5U9XViwVgSpwcHoa4+bTdTaaCcWPlyRal9odYdoBj5GQc5JIIyDiuh02Hyrq/b7Atr5k27z A+7z+B8x9PTFCBli/uls7OaclcxozgMcZwM06CfzIIWlCxySIGKZ6EjpWNqVjd3Et6GhMqzSRKpy MLEMFgPfOaSWxvZJiZIDIzXqys24YEaj5VH4gZ/GhAa8N9BPez2sbhpIApfBGOc8fpU6ujjKsrD1 BrDexvGtdQCx7Jbi43MykZMeQMD/AICP1py2dw39o5tmjW5dUGxwCsYUDI9+pxQBtCRCm8OpX1zx Vea/t4bq3ti4MlwTsAI7DOayo9Pvg1qZ3aSNJnd9qgM/GELDpx7e1WY7R01aKcwYijgKqWIO0lss SfoB+dAGtSM6oMswUe5xTPtEP/PaP/voVny27T6lPLKhuLZ4BHEFPAyTv/E8c0AaZdQwUsNx6DPN IJYyQBIpJ6AHrWHHp126RxSKVf7UZpZc/wAAJ2qvfpgfnSWmn3Mf2Bmg2nz5LibBHyk5Cj6YP6UA atvqFtcTXEccgPkMFZsjGSAf61LLMFjLR7ZGzgLuAyfTNYh065fRrq3NuFnuJmZjkfxPgn8Fq3qF hlrZba3Gzzg8pXj7o4/UL+VAFm3vvO1K7tSFAg24bdyxIyRj24/OrQdGAIYEHoQetYi6ZcPd/Mm3 N29xLJn764IRR+GM/SmWNleRyWomtyRFDIXywAMjnJ/DHT60Abkcu5GdgqqGIDbgQR604yIACXUA 9DnrWHaWV3HHp3nRsY4y8kyAjmQ8g49AS36US6fc/wCmpHBgSwiK3BbKxA53E++Tn8qAN0uoYKWA Y9Bnk0B1LFQwLDqM8isfT7CeB5ftHmTSeduVyRjaBheevTt607TbO6iv2nlLeUyltj4JjdjkhSOo +tAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFY2p3LweIdKjWd1jkMgkQfdPynbn8aANmiiigAo oooAjuJltreSdwSkalmx1wKWGVZoY5VBCuoYZGDg1z2sSzXH263lMiIZI4I1XP3Dgu59eCR+FOnu 7kzH5pIj9sSJEUH5YgASSP8Aa5H4ihAb4ljaZoQ4MigMy9wD0/kafXN7pYBqt3bq4uZJxGpbJ2IC F3Y/FjU0dzMDqSxTyhdyxQMylgp2j5/oSf0oA3qY8scbxo7hWkOEB7nGf5CsGK41Bmto5cRRtLJ5 rByVIUDAU9cE5P4GpfKWTXbMyNI4ggLK3I3MzYHHsAfzoA3KKKyriSWXU7iCSV4IUhXyyvVmbOT7 4wOPegDVornxcX023a0i3LXZXZ2jiU4JI6cgZ+pFJZTXJbT2eSY+fLLId2eI+Qq/qp/A0AbySxyS SIjhmjIDgdiRn+VEsixRl3ztHXAJ/SubiWSPR7ya3aZLq5uCRySQS+1Rz6AA1oXyy2strHHPOfNn BYk5woGSPxxjHuaALsM1vNdT2yxYeDbuyoxyMjFWQAowAAPaudhW5+3u0RkWaa7dpvRIlXaPzwuP rTtOu7mWSzjkllH7iSWTgnlj8q/8BGf0oA345Fk3bc/K205BHNOrn7O6upI7BZpHSGYySSuc5A6q mfof0pJp7tVvIhJM7RRKtr2aV2BO78DgfgaAOhorG0+S7lmd7yXZIsxURqD91Rjp79c+9Lps13Lq TGU7oGVpEYEggEjCup6Ee3vQBsUVSvPtfnDyPN24/g2Yz+NOsvtOX8/zMcY37f6UAOnu1iu4LUIW lmDEY6ADGSfzFCXitqD2TIVkVBID1DLnH86qTZ/4Sa18zG37PJ5W31yu7P6Y/Gkkz/wlEfl43fZT 5m7pt3cY985oQGrRVe9eJIkMszwr5igMnc54B9jVigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii sbV7++s7qPyWtyruipExwzAn5yT2AHSgDZooooAKKKKACis77ZcXF1dx2+xEtWVC0n8TEAn8AD+d VbbVp7mazYbEiuhJJtI5SNeFP1JI/OgDboxXOafeXEFjA4Jmn1G5ZhkfcU5Ocf7qjitCW/minhtn 2q7LJK8nZEXH68j9aANPFBGRisGDWLma0aRwkRhtRcStjjLZKqB9BzU1pe395cvGoji2RRSMrKSV LclfyH60AaIt4SxUO+R1HmHj9alRFRQozgepzWMNTkXznWONpJLpbaJgOvqT6gHd+VPTU7g2l26K k0kc5ihVSA0gGM8E4z978qANiiqmmXRvLNZzn5mYAMu1hg4wR60up3n2GwkuAm9lwFX1YkAfqaAJ /Oi8/wAjzF83bu2Z5x64p9c3LeTQapc3B2zzJ5VpEAMDc5y34DI/KtK6u7q2tSRH50xcBUXG8rxk gZwSBzigDSorHttSnvWEduUBFuJjI4IHzEhRjt0Oaktrm+uLy5jVoQlu6KTgncSuWAP4igDTBUkg EEjqPSlrEt9TkZE2RxmW6umiRwMAqoOWP4KcfhRd6pdW/wBsQmMtawmVnxkMSSEX68c0AbdFY0+q zJHeMAi/Y4FdzjO+QjO0e3+NaE1xJHZLNsVXIBKtnjPbgUAWabI6RRtJIwVFGWY9AKz4tQleZEIh wxxxvz/KjxExGhXahSQ8ZQnsoPG4+woYImeGK6mtr9JGVog2044KnGQQfoKLaGCW7bUY5vOMkflq QRtCg54/Go5LqRdQtbCMhQ8LSGQjOQuBgfnWTo97Olra2UK/M0U0pcLkEiQgAfnQHQ6R0WRdrdMg 06sP+1rpJVFxA0YJUZQB0J25K5ByGz07dKSTUb/+wf7SRofmt/OC4+6eCF9xg4JoA3CwDAEgE9B6 0pIUEkgAdSaxb24ntLq0knEc52zPxHhgAmQAfXt70rXtx/Zkd1M1uyTxIwUg/eYj5QO/B/OgDYVl YZUgj2NLWBa6iY2FpHCkTteNBuC4wAu7JHr2rS067e5ku4pB81vN5W4dG4Bz+tAFqSaKIoJJFQu2 1cnGT6U+uduruW+t7adtqINRSMR45AV8ZPvxmrdhqF3eGKYRYieaSNlIxsCkgHPc5HT3oA16KoXd 3Kup29jFhDLG8hcjP3cDA/P9KpXOrXFuWz5TtCYVlCcqC5AIJ7dcigDZmmigUNLIqKSFBY45PQU+ ud1O7kvdNvGBVI4buOELjlsOnOffPFWX1aRL+NAUaFrk25IHAwpPX1BHNAGzRVLU7uS1+ypGBuuJ 1h3HouQTn9P1qpe6hdWoeMtE0qRSS4UZJVfukjsPWgDYorEiu5ptZt5PO2QPZCUxgAjJYd6bBqt/ LpqX6QKyvDJJsbjaR90Z79OaAN2isN9RvYlaRhmNpY4YmKYyXxlj9CSKLvU7uK6ktoypaKeFC5Xh lk7fUf4UAbe4btuRuxnHelrDnu5rK9uDM0DSJaK3mlNuTuIx3OPb1q5pt7JcXN3byjDQOoBIwSCo PI/GgC7NLHBE0szqka9WY4Ap4IIyORWDrF3LcWetW67US2gxyM7yy5z9O35099Tmitb+RAoWwRfl I/1nyBj/ADwKANuiqGq3Utvos93AQkiReYu8ZHrg1Rv9YuNPaZGVZiLYTKQMbSWC4Ptzn8DQBu0m 5d23I3YzjvWPd3moQFVG0BriKNWZRlg3B47Y7VDd30+n3Vw8ixSypbRneE2nJcrz7d/zoA3UkRyw R1YocMAc4PoaaLiFmkUSpujwHGfu56ZrGuL9tLnls44kYnymEgGADI+0lv51WvXkhm1tz5crJHAc OmQw54IoA6aisyK9ubi4u/L2KltOIijdWGASf14qK11WaSLTZ2UFL5iuwDmP5SR/LBoA1ILiK4Qt E4YKxU9iCOoIqSsvSSV1DVIgNy/aN+8dMlV+X6jH61fbzftKYdBHtO5SPmJ4wR7UAS0UUUAFFFFA BRRRQAUUUUAFFFFABVO50nT7u7S6uLOGWdMbZHXJGORVyqF7q0FldRwSxykuyKGC8ZY4H16c46UA X6KKKACiiigCI20JlMpjXecEnHXHSmLZWqOrrboGXODjpmmS38Uc0kSq8jR7fMCDO3d0pn9q25KE bmSSQxI4HDOM8D8jz7UATiztliWJYUCKcqAOh9qq3+mG8jeANGkDR7MbPmXP3iD7inW2rQ3Jg8tJ B56s0eRjO3rVa01hjYNeXUTCN5ysQUAnbu2j9f50AaJs7Y7cwodoCjI7DpUiRRo7uiANIcsQOWOM c/hVOS+UyQRMs0LyS7B8o5xk/kQDVPTtTCyXDTNKyz3Egt8nIITgge3BNAGp9jtthTyEClt5GO/X NC2Vqi7VgRRu3cDHPr+tQQ6rbzBNgcl4fPAx/DnAptvqMJt7cq0kzzoZUUgbtvXJ9uQKALRhdQFh kESAYChQaQwNIpSeQSxkcqUHNV31e2WN5MPsiCmU4x5e7GAffkcVJBqEFxLshy67mQOOhK9fw96A HiytQHxAg3kFuOpHenG1gKgGJeCSPx61FZahBfZMBLLjIYcjrj8D7U+W8iikKMJCR6RsR+goAcbW 3LAmJchdo47elPjiji3+WgXe25sDqfWkhnSdSUDAA4+ZSv8AOqG8zeJCm4tFDbgkA8K5bv74FAFw WdssYjWBAituAA6H1pHsbSQYe3RhjbyOoqpaMYtevbcsVR0jkjQngnkMR+mavyy+W0Y8t33ttyoz t46n2oAabS2LhjChYY5x6dKmoooAKr6hbfbdPuLXds86Nk3emRViigCuluJIYRcxoZIx1HOD04NJ Hp9nFEscduiopJUAdCev51ZooAhW0t1k3rCgbO7IHfpmmNp9m8TxNbRmN+GXHB79Ks0UAQNZ2zSQ yNCheHiMkcr9KqwaWiTT+b5b28m0rDs4Qg5yP04rRooArixtBvxbp85DMcdSOh+tSxRRwpsjQIuc 4HrT6KAK0thaTHMlujfOJOR/EOh+tSLbQpKZFiUOTkkDv61LRQBHNBFPt82NW2nKk9qifT7OTdvt o23gBsjrjp+VWaKAK02n2c6sstvG6tjcCOuOlB0+zY5NtGTv39P4vX61ZooAZLFHPHslQOvXBFRN Y2rEFoEJAK5I7HqKsUUAQLZWyeVtgQeUMJgfdHpUdxp8MtvLHGoiaQEFgPXr+ferdFAGba6RDBM7 bI1jdNhiRSFPOckHvVl9Ps5ECPboyhw+CP4h0P1qzRQBXksLSWV5ZLeN3dNjMRkleuKdFawQyNJH EquwAZgOT9amooAgns7a53+dAj712NkfeHoaT7FanbmBDtAA47DpViigCrqlo19ptxaI4QzIU3EZ xn2p0VnDHGVMUZLqFfj73H8qsUUAVn0+0kjVHt0ZVYMAR0I6GnNZ2zTPM0CGR08tmI5K+n0qeigC EWlsI3TyU2v94EZz9aifTLGTzd9rG3mgLJkZ3AdM1booAh+yweb5vlLv4+bHp0oS1gjk8yOFFfnB A6Z61NRQBT060ktvtLyspe4mMpC9F4Ax+lTPbo91HcFRvjVlBxzg4/wqaigAooooAKKKKACiiigA ooooAKKKKACsvUtHOoTh3vJUj3RuEAHylTn5T2z0NalRyzxQ7PNkVN7BFycbmPQCgCSiiigAoooo Apx2Pk3NxLHKVFw4dxjnIAHB+gFV4tGjjhgiEzFbZWEPH3SQRu9yATV6a6t4DiaZUOM8noKGu7dG kDTIpjG58noPWgCpFpKQvbskzgQQeQo9vX6nA/KiPSUS0tLYzMUtnRwMfe29Afx5qSPUY5NWksFB JjjDs2DgEk8fpmpTfWgVmM6BVGSc9vX6UANnsxNe29yZGUwhgF7HOOf0x+NVU0SFYwjSOVSJ4ou2 wP1P196ureWzKzCdCFYKee56CnNcwrGshkG1ulAFBdGwswNy4823Fv8AKoG0AEDH51LHpoiuI54p SsiQ+T93I25yMDtV5WDKGUggjII70kkiRLukYKvTJoAzzo8TeajSM0M0wnkQj7zDHBPpkDipLbTR a2ptoZmSPDBSoAYZJPX2zU5vLYIHMy7Tk9fTr+VI99aIzK06AqAW56A9/pQBHZ6fFaTzToFEkoUP tXaDjPJ9+etSS2UEshd1YsfRiKifUol1VbHBLeUZWbnCjIx+fP5VIuoWjg7bhDhS3B7A4/nQBLBB HApWMEAnPJJqhsaLxH5uxlimttu4DguG7++DTZNSeO+sonlh2SwvLKVyRgYwQfTJq/8Aa7cb8zIP LIDc9M9KAKVpG0muX1wyN5YSOONmHcbtwH5irtwszND5MhUCQFxgHcuDx7Ui3CtPKvmR7IlBbnlT z19qBeWxUsJlwCB75PQYoAnoqE3duEV/OXa+SuDnOOtK1xCrqrSKC2Mfj0oAlopruiDLsq/U4pFm idsLIjH0DCgB9FUdYuZbWyDwkB3ljjyRnG5gCf1pt/PNaT2GyQlZZhC6sByCCc/XigDQopGZUUsx AVRkk9hSRyJLGskbBkYAqR0IoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYmt6XfXl5aT28sZWGd JNsgxsC9cH1NbdFABRRRQAUUUUAYl5pdzLLdlSjrcTROSx/gXHy/mP1ovdLup5rll8phOYgcnGFU 5ZfxOfzrbzRQBkSabdyJqY81Ue7GFkBPA2AAe3OfzqK80ee6VyPLi/cC2jQHIVCRvP1wMCtYXUJv DaBsyhPMI9BnFTZHrQBn32nma6s5owNluzMUB25JXAP4VBf6ZLdxxouIfLU+W0TlSjnr9Rjt3rXz RkYzmgCAXEMaiMvyoxwpqtdRG8u7OeFt6W7szRnIySpAP4VoUUAY0umXLSXrR+UhuohECP8AlkOd 2B3znP1pkuiy+TeRxlMSiKFMnnylxkZ9Tlq2LmYW1rLOwJWNC5A74GapT6jLBoy6i0SEBRIyA/wn 0PrzQAR2lwmoXNwwjYSRoi+wUHj/AL6NRDTJY/D32KMp9pMW0v8A7R5Y5/E1rA5GaKAMW50iaUSo hRFmtktsj/lmoJzj1yCPypsuk3Pnv5YjKNcRycn+BFG1cexGa3KKAMWfSbiZb0FkzPMj8HG5FI+X 24B/Op5rOd9RhvVjj/dq48vOMsQAGJx2AI/GtOigDDs9FktJzIzC4LRbDlioDFyzcehJ/SppNMlk 1NLrcI2VxnYx2vGOilehOc89q1qKAILu2+0qq7guDnlA386it7DyJhJ5gOOwjUfqBVyigDK18BLe 2uP4ormMjPTBYA5H0NGuYk+wQZ4lukBx1wATwe3TrWo6K6lHUMp4IIyDTRFGGVhGu5RhTjoKAFky Im2gEhTgN0/GmWrO9rE0iBHKglV6A+1S0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzur29x/bk d3BaSTSx+UkYP+rILHefYgHPPtXRUUAFFFFABRRRQBz+pQ3k012GjlbfNEkRT+CIYLEe5ORSahDd tPe7IpgJhFGuz+7nLn684rUvNVsrKZYbicLIwB2gE4BOATjoM8VdoAwWguln1e6t7bbdyIFgYgcA Jxz7kn8qhvbO6eOQWySiMW4hGchpJGYfOf8AdGTn3rpKKAMi8sniuLRbfctsXL3GMtuIXC5Hpn9a i1GC6aCKO08xDEpdRIu5ZCcjaQOh757VsmWMCQlxiP7/APs8Z5/CmWl1Be2sdzbSCWGQbkcdCKAE lic2YjTIcKB98j9etU0tLsSKSTgEZ/fsa06KAKOtq7aNeBH2HymJ4zkY5H41W1J4v+ETlfyv3Zth hM9BgY59qtXF/aG4ksJA7yGPc0YQnKHjP07UyG3sb3TUgjkM1qPlxvJzj+E/THSgC5bq6W8ayyeY 4UBnxjJ+lRWJiMcohjeMCVwwfqWzyfoas0iqqj5RjJzQAtFFFABRRRQAUU2SRIo2kkYIijLMTgAV U/tS0CozOyLIwVGdCAxJwAPrQBdooooAKKKKACiiigAooooAKKKKACiio/OT7R5AyX27iB2HvQBJ RRRQAUUU2WRIo2kkYKi8kntQA6iiigAooqGS5ijuYbd2IkmzsGOuOTQBNRTS6q6oWAZugzyadQAU VDc3MVqiNMxVXcIDjPJOBU1ABRRRQAUU1XVywVgSpwcHoadQAUUUUAFFNEiNI0YYF1AJHpnpTZ5k t4/MkyEBAJ9Pc0ASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc1q2rXdvrE0WWjt4BAVCAF pC74OB3xXS01o0ZgzIpYdCRyKAHUUUUAFFFFAHLSIr+O7xRcOH/s9SFV++48Y/Wqmm6xdyL4XM18 xkufMS5UkfMQpxn0Oa7Lyo/M8zYu/wDvY5/Om+RDkHyUyDnO0daEDOKXWbyKwkuTqJdotX+zKGIw Yi4GD68HrWpa3dzeX+oC41BrN7a8CRxADDRDGOO+7J5rbj+ySzTW6wpuiI3AoMZIyKmZYRKpYJ5h +7nGfwoX9fgDOY0Jwl7rqTXc3mG7kChn+6oRcN7exqvomq3V1DokNxcmK3ms3kkmXC75AQAueg4y cV2PlxlmbYuWGCcdRTPLt+IdkfHzbMD88UAcfBq+oTzaMst20Sz3c8BPA86Jc7W+px1rb8L30t7b XqzT+cYLyWFWyCdgPGa1zFESpMaEr93Kjj6UqRxx52Iq567RjNAGFI7HxtsimjV/sGMNz/y0+tR3 1jHpltaRxykvPqKySMzbd7MTnp29q6Hy49+/Yu/+9jmlZFfG5Q2DkZGcUf1+IHLLdT+R5bTOI/7S Mdwu7/Ux/wB3PXaTjn/aqTU7i7gn1FNLLNElqrnZyEfdg7ffbk49hW8ZbQLM+6PC8SHj9amjEYQG MLtPI29DQBlTxWghWSCdvlhc/K+QwK9W/wAazbCQHRreSW7WGVrQeXKshYklPmZh7cV0wijUECNQ D1wOtAhiHSJBxj7o6UAc6JLopPE7QW9wDFtZZC0EvJ49Vzg5/CrFvcM1hPbyI0NxNM0W1JN3YZKE 44A59jW15UYUr5a4POMUojjG3CKNvTjpQByl3JcXvhQQtukmsrlEu0HLMiON35rg10U0tpcwxDKT K7qyBTnkEEH8OtWlRVJKqAW5OB1pqQxRsWSJFJ6kDFAHONO50fU7ieRk1GOSUIAfmUgnywo9CMfX NPuZLiGWa9yzlIUF3bI2eCpywHYg/mK6ExoX3lFLeuOaUIoYsFALdTjrQBz2pxxw6VZziZ1Mklsu TIR8u4Z/PJzT9QiEGradDExfeJ22PIQG4BA/PpW60aOAGRWA6AjNBRCwYqCV6HHSgDmIbkS6foLt dtI73WGLNg9HO0+uCAOfSo5J2jW7lSbHl6ljKOTJt3L8oHcc9PTNdUIYh0jTrn7o6+tAijDbhGgO c5x3o/r8gMVMC61uKV2G5l2KWI4KD7v456d6rXstxBe6v9iYtcR2MZjTOcH5skD14H6V0hRGYMVB YdCRzQEQOXCgMepxzQBnQpZgWk0Vw3yKWJ353jbyW/8Ar1Str2aLWWZmYxahEXgDsNu9egH1Ug/h W6IoxnEajd1460vlx/L8i/L93jp9KAOYW4lHh60uY3ZtVeRNyk/MXLAOpHoBn6YrSiuGtzrNyULy RPkL3IEYIH861RGgfeEXd645qMW4W7adTjeoV17NjoaAMaG/nE0iy3WVjsxNLgD75yePoAfzFP8A Pv4NNs5pJ2aa6MUbZUYjJ5Lflx9a2hFGBgIvTHTtQ6b4yvTI4OM4oAwRfXTw+ZHcExyX3kxMQMbA cEk9+jfpR/aU81usiT4Mt4UT5eBGD3/4Cp/MVrWFjHZWMdoCZETPLgZPOaseWmMbFxnPTvQBktPd S397AlwUCGJU4Gck5OPbGB+dRDULuVo3QkSyXhiWED7sasQxb8ATn3Fbm1d27aN3rjmmvErBsfIW /iXg/nQA+uf1aZxqN1cI7D7Fa4TH/PSQ8f8AoI/Otf7J/wBPNx/33/8AWqZYlCbSN2eCW5J+tAGM mbjX0kedswWwAx90u/UgemFqOzu7ub7Bm4b/AEh5XPA4hXOPx5Xmt/Yuc7RnGM4oCKMYUDAwOOgo A52G6e9/slJnJDTPPz/dXOwH3+ZfyroI5opWkWORWMbbXAP3T1wfzpRGgxhFGOnHSkiiWMuR1dtz H1NAGc1xPPfXkXn/AGdICipxksSAScdxzj86p2upXE9zYl5dn2gyPJHj7iDhV+uSP1rfKKW3FRu9 cc0gjQHIRQeucUAc3YTTQadbtAzNLfXRaR3P+rU5P57QBV64vZIJLeJ5gIGEkkswPRVxhQfXn9K1 vLTbt2Lt9MVVvLAXavG8zrC6bGjUDGO/0z0oAyYNSu2tc3MpTZaCfKjDSM2doH0AA+pqexk1C7un jmuGiaKGIyKqjiQ8kfl/OtkRxgKAi4UYXjpSgAEkAAnr70AYJ1C6CXBSQHfdrboxH+rGcM35hsfh VmxuDd2+orLL5kSyPGmeyAYOT9c1qbEwRsXB5PHWo7i3WaBoQdivw+0ckdxQMybS4bGiLLfmGSSI /uNmfP8AlHftjrW5TQiDbhR8owvHSnUCCiiigAooooAKKKKACiiigAooooAKKKKACsjV73VLa8t4 rKG1dJiEHmsQxbknGOwAzWvUMtrDNcQ3EiBpYMmNv7uRg/pQBMM4560UUUAFFFFABRRRQBlxzpbX 2rzyHCRhHb6BM1Rnvyb6C9uowsdraNclF+8C3Cr9cZrQto0l1PVI5FDI3lqwPcFKm/suyy5MIYug RtxJyo6CgCnJrEtsbn7RCp8mKNiEPO9yQE/lz71We7eHWLi5lRHljWK0iVOAXc7iPw4rW/syzJkJ i3GXG8kkk46H68CgaZZgufK5dw5OTncO/wBeBQBUl1aSI3aeSZXt3RSYwTkMATgdTgHkCrtldC6s FugVKsCwI6Ef0oFjbKF2x7SrFgwPOT1OanjjSKMRxqFRRgAUAZ39rf8ATOH/AL/j/Cr/AJv+j+aV J+Xdhefy9ad5af3F/KndKAMvQEzoSZIPmGR/++mJ59+eaXw42dDtUwcxoI89mxxkeopdPtriy02S 3MYdldyhDYDBmJH061Y0u1ay0u2tXYM0UaoSOhIFAEyGbzpA4QR8bCDyfXNSVDHbrHdTTjrKFB5P apqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArOv9ZtbC7jtZm/ euoYLnBIzjj1OewrRrJ1TQrfU7gyztnKqoyoJTBzlT/CaANaijpRQAUUUUAFFFFAGdaMF1XU2Y4A MZP/AHxVWwu2XTLMzSTb7uXcjDkgMxKjntj9KnjhFxfavCWKiQIhI6jKYqUaYoNmfOb/AEUEKMcH Ix+HHH40AP8A7RhN5Jap88sZwygjIOM9PTHequnarJLp8VxcoQ9zKywIMZYZO39BnNTNpMTziZ3L SKHCyY+YBsjr3AzwKE0pUSzCytutBiM4HTbt6fSgCzZXcd5AZYwwAdk+Yd1OD+oqSaWOCF5pWCRo CzMewFVbK2bTrVLaIPOq5+YkA0t3Cb+1ltJ4GSOVdpYMOKAGnVIlVS8Uql9vlgj75boB78fhVW91 aQ2imyiYytci2+bHDA/N9eAatzWBnkgkkmJkgfeh2jAOCOn0NQxaMsUcCi4kJhkeRSQOS2c/j8x5 oAn/ALRha5aBAWaNlR8fwse3vTP7Vt/NRBuZXlaEOOm5QSfwGDzT4bFbaWeWJjiWQysuBknA4z+F ZlrpbS3ESNHLFZxwyAI+AweQ89PQE8+9AF/+17ciJgr7ZkZ4j/fC9fp60yTVozp73RinjiMYdX2j kEdvf/61DaNG8Ox5mLLbm3jYADYpGCR7nAqxdWCXFnHbBiiRshGP9k5AP5UARXGqQWiyK3mSeQqm UgcjdwPxPpUsuowR3otM5mwrFR1wTgEDv/Sq8+jpK0pE7qJZUlcYByy4x+HAqV9MjluI5pXMhjkE iFh8ykDGAfT2oAtTzrAoLBzk4+VS38qjivI5ZAipKCf70ZAqSaCOdQJFyAcjkio4rK3ikDohDDod xNAFTXZGFvBAjkPNcRrtU8su4bvwxnNJqx+zTafOp8tFnCOwOAEKkYPtnFO1yJ3tYZIkLPFPHJ8o +YKGG7H4ZpNURrm406ONGdROJH442hT1/HHFC/UGaLttjZwpbAzhep+lEbmSJXKshYA7W6j2NEoY xOFYqxUgEdQabbiRbeNZW3SBQGbHU0ASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVXnvbW3l EU06I5AOCexOAT6c8VYrA13Q5dTuJTEyxLPCkUj7jnCvu6fnQBv0UAYGKKACiiigAooooAzrRguq 6mx6Axn/AMdp1hqkN5Zfaj+7jMjImc/NgkAj64qOFXe/1ZY2CuQgUnsdnFRRaZcRR6dtKH7GhXZn gkqAG/n+dAGkLu3aETLMpjJ2gg9TnGPrT4pop4/MikV05G4HjjrXPG3fToLPzJY2ns45JfK5/eMw xu9zknj3rX0m1a20i3gk4k8vL/7x5P6k0AWPtMH/AD3j/wC+hSXM3k2kk6qX2ruAUZJ+g71V/swf 89v/ACEn+FXo12Rquc4GOmKAKh1FI7W6uJVdEgznchGQBnI9aWLUYPsUNxcOITJGJCrfw8c5+nrS 6rbSXmny28ZAL4Bz3GRkflms++0q6uHuWDRsZ444yCSAqqxLKPrmgDVmu7eDHmzKmQDyfU4H61V1 67msNGuLuAqJIl3DcMg81mTwNNqXlo6TC4uIzNjPyLGMkY9Nw/WtPXrOe/0a4tLfZ5kq7QXOAOaA IJdQmXWLK0imjkSaKR3wOcrj+eaa11qKapZ2TyxAzwySMRH90rt4HP8AtVJLY3D61YXixxLHBE6S DdzlsdOO2KdcWl1Jr9reosfkwxPGcsdx3FecY/2aAI2v7y21CyjuQnkzqEkwMbJDnH4HBH5VKb2d /EAskKrALcyE4ySwYD8uaTU7K4vvPiUIiNGPLk3crIpyDjHTOKSOyuk1mO7IjaNbYxMdxBLFgxOM dM0AO0G7uL6wae4ZS3mugCrgAKxX+lX5po4EDSuFBIAz3J7Vj6bZ6nZWCWoSAEzs7uJDwrOWOBjr g4q9qNnJcyWk0RG+2m8za3RuCCP1oAm+2220N5qkHOMc9Ov5UxtRs0mERuF3kKQPUHgGq32KePUD exJHl4TEYs4AO4tn8c81DpmlT2F3CSUkijtRDvJ+YsGLdPTmgC9HqdjKrMlyhCjJP44/nxT/ALda 7S3nDC5zwcjHXI7VlppFw2lR28hRJorr7QNrHDfOWwTj3pbrR2nlaREETsCRIkpDhjgZJ7jgcUAa P9o2YkkQzqGjID5z8uemfrUj3UEblHlUMMZ9s9M+lYXkS3lzrdkjRlpUijZz2+TBOKszaRMba/tU kBjvCp8xj8yfKFP1+7kUAaI1C0MjRiddyv5bDnhuwqtqWo+QYBBIhY3KROCM8McEZ9aqTaXesbvY sJ827inUlz91NvXjr8v60sml3aWywReW4W9FzuZsErv3EfXtQv6/ADVN7bByhmXcCQR7gZI+vtUR 1SyNu06Th0ERlG0E5UdSPWqlrpb24ZCFlCzvPGzOeCxJ6evJGarW+j3iQ2UL+SohtJIHKsTy2MEc e1LoHU1oNQt5rSG43bVmAKgg5PGcYqdJY5IRKjq0ZGQwPGKyV0y5/wCJdKzLvtEMexWIBBUAnPrk VfS2aLTWt4Akb7WCjqoJz19eTTfkCJYbmCckRSBiACQPQ9D9KJrmGAgSyBSQSB7DqfpWbp+n3Vtf pO5TZ9mWFhuJOVJPHtzU9xZSHVReoEkVoDA0bnAxnOf8aALIvLYyLGJlLMcDnqcZxn6VU1DUPJkt lgkQlrlYZBjPXqM+tVZtLvHm3gxZS6SZACVXaoxjHr70HSruK1t7ePy5BDefaN7Ngsu4sfx5oA1l uoHm8lZVL8jHrjr+VFxdQWuzz5AnmNsXPc+lZSaZei8trhmjLRTyO3JAKtkDA7HB/GpfEL7I7H7u ftkRAJ96OwF8XlsY94mXG7Z77vTHrUb6nYx7d1yo3KWXryAcH8jWe+jzvetfFwJDcibylYgYCbOv rzmpV06VNStJ0iiWKMS7xuJOXIOenPT9aALKXwMVw5eJikpjQKTyccA57/SnwXSi1iaeeNpGO0lB wW7gDrWfHpd0Lw3J8vKXjTogY4ZWTbzxwe9LFpM8V8l9vVn8+SVos8AOoXg+o2j8zQA6w1OSaOHz JISz3MkIJBG4KT09+P51oC9tWJAnTjJJzxx159qyYNNvUFuGWH93eyXDYc/dbd046/N+lOGjSnRP 7MYxjYjIk/c85H0z3oDqaM1wZbaX7HIvnquV3KT9OKfamc+b55U4c7Nox8v+e9V4bSY6ob6XamIB CEU5zzkmr9ADEmjkeREcM0Zw4HY4zT6ggeRri4V0QIrDYy9WGO/vU9ABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABSZAxkjnpWb4jiefQLyKKOSSVomEax5zuxxWNqdrqM/mNFFMW eziS3OMeXIH+bPp259qAOsooGcDPWigAooooAKKKKAM+zIGrakTwMx/+g1fDqxwGBPXg1nQKH1HV VYAghAQe/wAlcpodtPc6BoJsbeRLiO53yTkYHlhm3AnvkcYoA7vKFsZUsO3cUodW6MD9DXGRW2oL eaddLYSwMl9I1wiKSQjbhy2fmBOD7VNpWmvFZ6pcNp0rXST3DW8bkpvRxwB7H9KAOtVlbO1gcehp SQoySAPU1ymjWt3ba7ZyfZpY7ZrHynAj2qsgIIB57DPJrQ8RW91NNpkkSNLaw3G+5iTksuCAcdwD g4oA2S6BdxYAHvmlLBRkkAeprmLiyxeWsVvpjrafvn8xwX2s2ONueM88npiqmlWeppFoZ1CCeSG2 jljniYbiJM/IxHcY4zQB0ek6mmow3EvleSYZ3gbLA5KnrmtAEEZByPauJs7S7isXgOly7G1Z5fnU /u4ycq20H5h7Vs+Fobq2j1CC5ilRftbvDuGB5bYIx+vHahf1+AM3cjOMjNJuHPI46+1ZMVvJ/aF2 bqOVy06PA6ngIAMDPbkHP1qpYxXYvLV5LeRUkilSZCMhSWBAYnr35oA3oLiK4hWaJw0bchgafkcc jmubtLO6h03S4VgMaW7/AOkIF+98pAOO4BxTL23ZX+zobmRWhcEKm4xbnyGAHTvj6UAdPuXjkc9K RnCqxznHYGufaOSaC+eBGlSeFfsTIPu/Lj8Du5p9rZn7ZqUlzbOz7VKNt4ZvLwxX6nNDBG5FL5kK OVMZcA7W6j2p2RnGRmuVe3v30pIkt5klSwRUJHJkHb2Ix175q8IruTUluFR9jTKWilToNo+ZW7fT 60+oG1LLHDGXlcIo7k02C5iuQxiYsF4OVI/nVPVY5TLbTIzCOJm37U3EZHBx7f1qawlEqv8A6SZ8 HqY9mKQFkFN3BGaXcCcZGa5u6haS612KCF2uGEflFf4XKcHPbnmnmxuZJ9VZI2W6Ma+RKRhd/l4J H4mgDogQehzSbl/vD061z15bX00bCwR4B9jKMG+Us+RgfXAbn3qe9tBJbLJbW8qlZoXKnjAVhnA+ mc+tAG1uX+8PTrRuHHI56VzMtvK7Tj7JPtOpJKuF6phcke3BqXULa5R5ltbaRFiaHytuTuAILY9O MjHegDodwJxkZpSQOScVj6fbBtZvp5baRMujxMwwPuAHH61JqME8mp20hBa0ETqyhd2HOMEj6ZFA GnuXOMjNKCD0Oa5a6sp0XUFSC5kb7DHHG+MlnG7v/e5XmtPT0lTV7g+TKkLQRYLLhSwzn8eRQBrE gck4oJA6kCsnWEumuFMcTyxJBIVRf4peAufwzUFrp7SXNos0UhhhtNjbyfmY4HP4An8aAN3I6ZpD tIycEda5mzhuHuYoZUf7TBbySyZOAzMcKv0ABp9vBeJDIvkTMY7JUQNwGflm/XA/CgDoIJvNj3GN ozkja/B4OM1Jkcc9awfsU2+2QxylFtGjyT1Y4HPpxk01rO7LSR4cP9ojEchPEcKYPB9Tg/nQB0FV rq8+z3NrDs3ee5XOcbcAnP6VP5if31/OsbV7ea5upJUgMggtWEPoZHOP0A/WgDVkuoY7qK2Zv3so YqPYdf51LuX1FYkdq/8AaHmy2zsI7RYkbuepY59eFH41VisLqKCH9w7PFZu5BP3pXP3T645oA3Z7 vyr62tRHu88MdwP3Qoz/AFqySB1OKx9PgnTUYDLFJsitFiV29c/MT78LRrUVxNMY4oWKm2kAccgu cYGOx75oegI2KhhuoZ5p4o2y0LBX9ASM/wBaZpzStp8BmVlk2AMH65xzmsaG1uFgUC3aMTXhkudo 5K5bA+nCj8aOodDosjGc8UVzcYuYLKGWeGSOBJpZ7hO+MEqMenT8q1NEHlaPbLI48xk3sCehbnH6 0AWb65FnZTXJXcIkL4zjOKSa8it7E3c52IF3MOpHtVbWYmvLNLWNS6TSosu09Ezk/wAsfjWdJaTz W7RyWjGN74OyYzhAeMD32j86AOh3D1FV9QuxZWMt1t8zyxnaDjPOMVjXlhcTTXrJFIvmtFCmD90Z Bdh9M4z7Ustvcs8qC2k8p71GKjpsUDH5lQc+9AG1eXUdlYzXc+RHChdsdcAZqvpmovewmWW2Nup2 mMs4IcEA8fTOKZ4jha48PX8KQtNJJAyoijJLEcfrXPy2NzLbwwJpjRhdNMauUyfMI5XGcKcgHdSv uFjsWZVGWYD6mgsoIBYAnoM9a4xVlg+wXeuRzGxGni3k8wf6ubIBLD3HAam6tY3k9tqEdnp8kbC1 iS1cEuz4GRhs/KR+tMFqdtRUVs7SWsTsrKxUEhxgg+9S0AgooooAKKKKACiiigAoqnrErwaRdTRz eU6RMyvxwQOOtZNzqUyaZodwt2FaeWFZenzgj5qAOiooooAKKKKACiiigDOtUWTVNURhlW8sEf8A AKtWdnb2FuLe1iWKJeQi9BVay/5C+pfWP/0GtCgBk0nlQSSYzsUtj6Cm2s32i0hnI2+Yivj0yM0l 7/x5T/8AXNv5Vz2sXM1pomhyQ3L24eeCKRlOAUYc5oA6eiuPutVube41S3W7na0R4FhnQBirufmT ceMe/bNVr7WL2LTtfQXjRyWksTW7bwWwwGRn+IZzQB3NFc7eyyWk1jbnUbiX7VM8inKqu0L90v2H cdzVjwnfz3+jb7qTfNHLJGx74ViBn3xigDaormvtNzdavqlvcX8lj9neP7OFx8yYBJwfvZOR7VSn 1q4S6juILqUxHUxbuspACx9CNvYA9GNAHU6hfW+nWjXV05SFSAzAE4ycdqsg5GRXCa7eTXXhzW3v bho5orrykgzgeWHXbx3yOc1a13V7iEanLZXUu+0iiZVyAgJ5OB1cEHn0oA7GopLaGV97plsbcg4O Kgu7mVdHmurVRLKIS8YHIY4yKoSXTQ2sLpetL5xiUDHOSeef4cj8sUAbKLHDGqKFRBwoHAp1cxJc y3VvbiWdwYNR8tirY+TLYyfyq2Lq8mvLpVkEQikjEIc8MhAJJHfOSKNwNyiudhvbqWd9tyryxCYt CHA3sD8gA69BzRLfXAtbdknZjNaSSTNn/VMFBB9ueMUdLh1sb8k0cTRq7hTI21Qe5xnH6U+sBLiV IdHma9aQ3Mi7wSMHMZyB+Io0/U5ZL+0DylormOQ/N1JDDbx/DwTx7UAbMdrBDPLPHGFklwZG/vY6 VKGDdCD9KzNWaQ3dtEVQwMGyHfaGbjAJ/PirdjH5cTDyIouekRyDQBZornLi8uYV1V4rl3mguVWG I85yFO3HfOTSyXd2g1eaC4eV7WTCRcEAFVzn6Ek/hQB0VFc/qF/dW7zpaOZohCjmX73lkuAT/wB8 5OPap7yWWB7ZorxnjN2inHOEI5BPfnmgDZormFvpn8tBfMv/ABMpIM7hkpg8fywamvNQmtp2CTsy 280MTl8DION3Hfg5zQB0NISAQCRk9KydMkkuNTvs3jtHBNhY8jGCgPP4k0akNuu6dI0siRhJchWw CcDH49aANeobi6it3hWUkGZ/LTjI3en6VkJf3ZiilJP2lrzyWg9E3kdP935s1WkuZJ4tOmupdkx1 Da0R4C4LADH0xzQB0CWsEdzJcJGBLIAGbuQOlTVzaatMJoX88iGZJ/mcdCp+U7e3fjvWho9xcyyy R3IIdUU5V96NnPIPb6GgDUpGVXUqwBU9Qawr/UporyQxykJFcRRsDwAGxu478HOaksby4l1FFc74 ZGk8uSNuCB2ZTypHrQBdvFsbO3M0sCbQQMBASSTgD8zVlWjijQECIHCqpwOT2rO8QZNrArcQm4i8 xh1HzjGB9cU3VAsus6fG7uqR7piAeCRhV/VjQBr0Vz1nqdzLd2rO5BkjlleEDoAcIv160231G7lI P2hRIbUO6kZVJZD8g9sYNAHR0xZUZtoOTz+lVNImmntC86sr7yu0ndjHHB7j3py6fDE7SxtKHw/8 Z43HJ/Xp6UPQC2SFUk9BzVWHUILhW8jfIwQSbdpBIPTr9KydMvbl49HIuGna5Q+eDzgBc7vbnA/G t5Ikj5UdsUAVo1s9TgiuwgkR0+Ut6Z5BH1FQXt3pNncLFcLGJWwxAj3EAnAJwOBnim+G8/2PEB/q gzCNu7LuOCR2NY19NFbeMNSuGuJV8vTQ+EO45BPRe+OuKAOrjhiiz5capnrtGKfXGQ6vqMFy8UMr XBfS2uIlkYOXmHTp3I6rVj7cYdAOonV7h2azG9EUOUkJGWA7EE4waAOrorndEv7hvEF5YTTb4hbx SxhnDncchsHv0H0roqACiiigCve2NrfxeVdwiWP+6xOD9R3qdFVECKAqqMADsKWigAooooAKKKKA CiiigAooooARlDLhgCPQ00xRkAGNcDoMdKSdnS3d4wpdVJAbpWMdXvZNBtdSihhHmQmVwxJ+bHyq B1OTxQBu0VFayvPaQzSR+W7oGZM52kjpmpaACiiigAooooAz7L/kL6l9Y/8A0GtCs+y/5C+pfWP/ ANBrQoAhvf8Ajyn/AOubfyrNbS49U0jTFkleMQCKZduOWA4zmtK9/wCPKf8A65t/KmaZ/wAgu0/6 4p/6CKAJ/LTYU2LtPUY4qGU20csMTxrumJVflHYE/wBKsVQv/wDkI6b/ANdX/wDRbUAXJBEseZAg RefmxgUqqg5QAbucjvWFq9695a3dpCFCGZbPLdWZsbsfQGpxqr+ZGsESeSbr7KoJ5OAdzfQYP5UA aknkqQ8uwHOAzYpTFGckxqc9eOtYN1eHUvsibVW2luj16lIskt+JUfnVuDV2kNjI0YWK8LFAeqoA SGP5fqKANC4+zxxtLOECAfMzCniOJgG2KcjAOO1Yw1F761nR4jE8ZjLRupDKS/H1HHUVb/tCSSW6 8hF8q1cI7OcZOAWx9AaANAAKAAAAOwpPLTBGxcHtism31aWaSDKJHHNbtcc9Y1GNufXOf0qDTr64 gsbFJcy3N87S9D8in5ufoCAKAN3YmCNi4PUYpSikglRkdDis6bUZIpY4GRVl8p55GPREU4/M/wCN Vk1qV7OWYxJG1vbLPNkkjLDcFH4fzFAFxNKhTyRuJWF96DAzntz1NXdicjavPXjrWbaX95d3MqJD GqxGMtuJz8wyR9QMfnUMWpHcxSFPOuLowIR0baOWPsMMPfFAGo728ckUb7FZjiMEd/apBGgOQig9 elZUV297HBI6qAt2yKV/iC7hn8cGrWrXrWNn5iRu7swRSq5Ck9z7UAW5I0kQpIoZT1BGRTYYIbdS sMSxqTkhRiq4vsKAba5J7ny+tPurxbbTZr1o32xRmQoRg8DOKA3G2tiltcXM28u08nmHcB8pwBx+ AFWCYo2GdiM5wOgLH+tZsuoXVuluZY4yblo0RlPAZs5z7ADr3qrf3RnuoraRR5lrfQjcBwQwyKPI PM3giqCAoAPoKTYm3bsXb6Y4rGi1a6urEXMMQVJUkIJU/u9udpPrnFPtb6dNN08PJG808YJODn7m fu96ANXyo/8AnmnXPTvSlEJJKKSeuRWPHqt3dDTjbRxL9shZyHydjAA9u3NX9RvDZWyPt3O8iRKO 2WIGT7c0AWgiqSVUAnqQOtBUNjIBxyM1UtbxpL+5spAN8Co24dCGz+vBqFNQnmmu/JjUxWsoiYE4 J4BY/rx60AaO1d27aN3rjmkMaMclFJznkVkx6tLJBYy7FAvgfLGPuHaWGfXgc1FFq13NZwsyxo9x ZPOpAJCMuPz60bBubflp/cX16UfJEpPyovc9BWNa6lOlvpdu5Dz3UO8vtJ2gKD09eaZcXk9xuhub eNdtqbnY+Th1bGD6jvQ9AWptyCJVZ5AgGOWbFKqoPmVV57gVhXGoyX+mX0axovl2Qkk3c5LoTgew qSDU5Es7gRouLG3R33fx5TdgenFHcDS1CzW+tTAXKHcrhh2KkEfqKlQozbWZGlQc46j8O1Vb3UVt tJ+3hCwKqVU8csQBn86oSTyWmsX87+UWS0jOc7QTubrQBsywq8bKp8tmBAdQMjPcVFb2UcDzScvJ MQXZgOcDAFRadfNdTXULrhoHC5xjcCoboenWi4vJft32K2RWlERmYt0AzgD8Tn8qALwAAwBgUjqW RlB2kjGR2rJi1eWa5gVI0Ecs7w8nnCA7mHtuGKrWd/PDA07nz5L27KQqAflUZGfphCaANfT7JLCz itkYuI12hmAyR+FTyBihCMFbHBIzisi61eeBJ1EK+bbxCRs9CWYhF+pxTn1dwzMsYMaXKW2O7sSA 2PYZ/Q0bgX7C0SxsorVGLLGMZPU1N5cZbfsXd645rLj1C8dLqUpCsVvKyMSTyAMk/gf5VWGqtbWT eTbqkiW/2qVSSRuYnC/UnP0oA3BFGuNqKMdMDpVCw0eKzvru7EryPdY8xTgLx3wO/vV8M7W+5Qvm FcgZ4zSx7/KXzNvmYG7b0z3xQALHGpBVFBHAwOlOoooAKKKKACiiigAooooAKKKKACiiigAooooA bLGssTRuCVYYODis6bQNLns4bSS2zBAcxpvYBf1q7eXK2dnLcujusSliEGTgVQu9cgtLKG7aGVop YhLkDoDjj689KANOKNIYkijXaiAKo9AKdQDkA0UAFFFFABRRRQBn2X/IX1L6x/8AoNaFZ9l/yF9S +sf/AKDWhQBDe/8AHlP/ANc2/lTNM/5Bdp/1xT/0EU+9/wCPKf8A65t/KsDVry6tdD0ZLYN/pEsE LlWCnaR0B7Z9aAOlqleozahp7KpIWRixHb5GrFt9ZGnWutTzR3Mi2UwLxM4bYCoOFPcc55q+2vKt 3Ja/ZJTMluLoDIwY+e/Y8dKAL0mnWkkhd4QTv8zqfvYxn64oOm2ZkV/JG5XLjnox6n8adp95FqGn wXsGfKnQOueuDVijYNyqNOsxIjiEbkJK+2eT+dKun2iKVEK7ShjwecKew9BVmigCld2f+iSLbxhp W2nluuCDjNSi0gLM5iAMh3OueCcY5FWKKAKi6ZZq2RAM7PL5JPy+n0p4sbZUjUR48v7hBORxjr9K sUUAZeo6W16jwARJEyCMOM7wpPzD3zVtrC1dizQqc7cjscdMjvirNFAEcUEULSGNApkbe59TjGf0 FQrp9oiKqwhQrF1weh56fmfzq1RQBQNisBtorSBUiSXe3zdOD/jV2RFljaNxuVhgg9xTqKAEUBVC joOKGVXQowDKwwQehFLRQBWFhaiHyvKygxgEk7cdMemKa+m2kgXdFkrIJc7jneOhPrVuigCCOzt4 ydkYAJJ29uevFRrptogi2xY8rIQgnKgjGPpgCrdFAFOLS7KGSF44dpgz5eGPy561ZmhjniMUqB0P UGn0UARQ28UBdo1wznLMeSfxpv2SDz2m2YdsFiDjcR0yO9T0UAVl0+1TG2IDAIUZPyg9celMi0qy hMJjhx5MZiT5iQFPUVcooAqrp9qkccaxYEZyhBOV4xwfpxSy2FrKBviBwhj6nlT1BqzRQBT/ALLs vI8nyfk8rySMnlPQ+tL/AGbabAnk/LsEZGT8yjoD61booAZLDHNC0MiBo2GCpHBFVX0qykeR5Id7 SII2LMTkA5H5GrtFAEENnbwTSTRx4kkxvbJJbFLJawyy+a6fPt2kg4yOuKmooAqjTrMSpKIQHQll 9ieT+tCafapGsaRBVRty4PKn2/M1aooAy7jSvtFwm5Y0iSVHyudzBeQD6/NzV1bK3WbzREN+4v8A 8CPBOPWp6KAIBZ24tpLfyh5UhYsvruOT/Oo5NNs5V2vCCCoU8nkA5H61booAY0SGAwhRsK7ce1Jb xCC3jhByEUKPwqSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAgvbf7XZTW3mGMSoULAZIB GDWbc6ALjT47J72YRLB9nIAHI4w2OzDHWtWeeK2haaZxHGoyzN0FMkvLaK0F1JMiwMAQ5PBz0/nQ BKihI1QEkKAOetOoooAKKKKACiiigDPsv+QvqX1j/wDQa0Kz7L/kL6l9Y/8A0GtCgCG9/wCPKf8A 65t/Ksx9MGp6TpQM7RfZ/KnG0A5ZRxnNad7/AMeU/wD1zb+VUodQtNP0rTzdzCISoiISCcsVGBQB VuPDaXEGqxNeSBdSYGTCj5cADj8AKlbQ91+959sk8x7T7IRsGNvXP1zVs6vp4hmla5VVgYLJuBBQ noCOvOaa+s6dHbS3D3KrHC4jkJB+Rj2I7UAP0mwXS9Lt7FJWlSBQiswAJA6dKuVQGs6eVBFyDmQx AAEkuBkjGPTmrVrcwXlus9vKskTdGWjcCWiqVzq1haytFNcqrJt38E7dxwM+mfegatYG5+z/AGhf M8ww9DjfjO3PTPtQBdorC8R66thpd1LZzobm3ZQQVLKCSBtJ7HBq/Nq1jbyNFPcKjoFL5Bwm7pk9 BmgC9RSMyqpZiAoGST0Aqut/asu4TLjg/XPTH1oAs0VRudVtoI7d9xdZpfKXaCcHnOfyqdry3STy 2lAbIBHoT0z6ZoAnoqsL+1MoiEwLkkAAHnHB/Kg39qI2fzhtVS+cHlR1I9RQBZoqj/aUEslutvPE wkk2ncDz8u7j3xg1Yiu7eaTy45VZsEgDuAcEj15oAmoqC5uVgKLsaSR/uovU/wD1qdBJJIpMsJiO ehYHP5UAS0Vm6vqH2e2ZLaRftRdI1BGRuYgYP4VbN5biYQmZfMLbAPVsZx9cdqAJ6Kzb3UMXVpb2 sqmSSfY4xkbQCW59sVcS7t5H2LKpOCR74649cUATUVHDcRT58tw2MH8D0NYd7rFx/b8unW8kUKW8 KTyPKhIYFju57YUdfWgDoKKp2+qWNyWEVwpKxiU5yvyHo3Pb3qNdb01kd/tahUi84kgj5M43e4oA 0KKr2t9bXbyJBKGePG9SCCueRwfWrFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFbUoZLnTbi3iC75Y2QbjgDIxWLqOiX93oNvZpNEss UaR7W5TKkfNnGc8V0dIWUDJYY+tAAm7Yu772OfrS0UUAFFFFABRRRQBn2X/IX1L6x/8AoNaFZ9l/ yF9S+sf/AKDWhQBDe/8AHlP/ANc2/lXM+IGK6FoO3BcXVswB6YA5J9q6a9/48p/+ubfyqPTQDpdp kZ/cp/6CKAMW50PUZru/vo54oprowr5Y5HloeRnH3jnrjiq154cv5rfWoo2gxqJjZd7sdm0AEHjn pXW1Vup5IryyiUjbLIyt9AhP8xQBUvrK9nnsZIWjjjjYtPEp2lzjAwwGeP1pPDemz6Tpz2k7I376 R1ZCeQzFuc/WtQugbaWUN6Z5pQ6FioYbh2zzQBjQaVc2mqajPF5M0N86SESdUYDHTuOM1RudC1O4 KPJPFJJFfrdqxYqrKDwu0Dg47105IUZJAHvQXUdWH50AcveeHr46Nqmm2zwst5cG4WSQkFcsGIPH t1p+raFqWpQ6jE08QS5iRYhuIEeByCAPm5710pYAgEgE9KNwzjIz6UAVLi0e80eSzlby3lhMbFTn aSMcVXms7uW2hQLCjo0e8r1dV6gHHHtWkHQ9GB79aZBcw3EIlikVkY4BB60AZEek3SRbd0ZKXv2p Rk8gk5BP41MmlutzdPJtmS5dJWDEjawAHTv90EVq7l4+Yc9OetBdRnLDjrz0oA5i3hZmVWhHlzGW JNrnfCJCSTtxx781dk0q5kgtkLRhrW3eJME4csu3J9BgZrbwBzgUgIYZBBHtR0sHmZX2C6+z6VGB EDaMpk+Y44Qrxx71FZ6XeQ3lnPI8bNEkiSEE/NuIOQO3TpW0WAIBIBPSjcMkZGR1oAo6jZGeeG4R PMaMFSm8rkHHQ+vFTWCGOJgYHh56M+7P61JBcw3EZkikV0BIyD6HFSblwDuGD3zQBjDSrlZY8PGy rdvcsWzls52/lkflSW+k3MMlp+8jKwSSyMx6sz5w34AmtreuAdwwfejeucbhn60AYUOjXSR20Xmo qwwSRBxktvbq/wDn1qVNKnC2/MSm1tzDEnVSTgMT+A/WtSCbzYVkZDFuz8rEZ61LQBQ0rT/7PWVF ZvKZgUjZi2wAYwCe3t2rPu9K1KTWL+8tpYYhPZi3iZssVYEnJGMY5re3rz8w4460b1/vDrjrQBy0 nhu6nuJGmlVI5tPaykIcsyknO4ZH6U21mvNRsbnSbYww3dpCkX2gLuSQcdDjgYB47GuspBtGQMDH WgDF0zSrm0166v3KGK4gjj27yzKUz3PXOa26gu7uG0t/PlbCZAGO5JAH86myMgZGTQAtFAIPQ9KQ MpGQRigBaKikm2GMKjSb22/Lj5R6n2qUEHOCDigAooBB5BBooAKKqyXmzUoLRU3eYjOWB+7tx1H4 1Z3LgnIwOvNAC0UhYAAkjmjcucZGaAFoqKKbzBIWRowrFQWx8w9R7VJkZxkZoAWijIzjIz6VWsZ5 J7NZ5QilsnC9AKALNFJuHHI56e9QrdwtetaK2ZVQSEegJI/pQBPRSblwTkYHvQSBySBQAtFJuAOM jNRpNveUFGVUIAc4w3HagCWiq7TSLfxw4UxujNnuCCP8anZlQZZgo9ScUALRTTIgxl15GRz1FQXV /bWghMsqjzpBGnI5JoAs0VSvb9rWSNUtJbgP3jK8enU81bMiqFLkIT2JoAdRRRQAUUUUAQ3ih7OV SjOCp+Veprl3sLmXw/pcc1nO01tC2VPOJAvyhh3BNddRQBFaGY2cJuEVJii71XorY5A/GpaKKACi iigAooooAz7L/kL6l9Y//Qa0Kz7L/kL6l9Y//Qa0KAIb3/jyn/65t/KmaZ/yC7T/AK4p/wCgin3v /HlP/wBc2/lTNM/5Bdp/1xT/ANBFAFmqF/8A8hHTf+ur/wDotqv1Qv8A/kI6b/11f/0W1AGM9jf/ ANuNcQiQxNdhmimjBXAwN6v1H0qPRdLvIktEvRN9sguXkeVVGJASeS/cEHpXWUULQHqZmpwXEl/Z SrlrdN4kULu5I+U479/zrNksJI7hgtvPIo0941ZhnLFsgfXFbtvc+dPcx7ceQ4TPr8oP9adFd280 KzRyq0bNtVs9TnGPzoAxrO2nZib6GZ1ktoVjx1QgfMPY55zSrbXvlJGUb7ULzzGm7GPdnr6beMVv UgIPQg9uKOtwObs7WeJrLFpMgF5MXyvSNt2M+3IpospovDcNn9ifzI5oyQi88SZJHttrp6KAMOaz kimvVW3Z4ZIAtsqD7jfNkexyQc1TvbG9Wz1BHheeaa1hAKc75FzuP1rqKQkKMkgD3oAqamZX0mby YWkkZMBAdp5qtpUdxFf3okR/Jco8bFdq/dAOB25rVooAyHtZG1S8NzHJJFKI/JZD90DqPbnmq0MV 6NRtZ2tpFHnTCVRzhTnGT3HQ+1dBSOyohd2CqBkk9BQBzkVjdRaTHbRQGMxXW+UAf6xPMJwPXgg0 l9AUnVIxPJ5glJjCZ2hgo3Bc8cg4+prpQcjI6VHJbxSsGdAWAwD3xQBhW8RZZXjjkntmtRHD8uCr jIbI7EnHPtT9NsZV1JmvoHkkW2hzKR8rSKG3Ee/IrXs5IXhIgQrGjFR8uM4POPxqegDlYrW8bTkt /skseIJwpYfxFjtGO3GDmtyMXUuibBuiumg2gv1D7cZP41dyN23Iz1xS0dLB1uczdWEzaHKBDO1x 9lERjVcZbI59znPNF/bXDf2qYbWfLxReThf4hnOPfpXTUUARTGU2jmEfvdhKBv72OM1i/ZJvs1kq xzbgUF056uOrD3y2M+1brOisqswDNwoJ60k0ohheVgxVRkhRk0Ac9HaXElrbLNZvj7Y88iHBx1Kj 6Z2j8KsG3vA97Kwc3BkYwdAqgLhOfTPb1rajdZI1deVYAj6Uk0Uc8TRyqGRuoPegDmYoLiZ51hEo 8kQW8pz8zDO6Q/XkCrU1hcTBwY2WOe7QqgOPLjUDJ9s7f1rciijhUrGgUE5OO5pJp4oAhmkVA7hF yerHoKAMi7tJ4tQZ7KArtgkZCD8pkb/9X61Db29zHLMfs8+PsqQh84JJzub65P6V0BIVST0HNRQ3 dvPHE8UyMsoJQ5+9jrigCppEcltbulzIpffw2NpZQAASOx4qzePI1lOLRlNx5beXz/Fjj9adPHbA NLOkWAOXcDj8adHBDGd0cSKfVVAo3DY577HeKLs20MiTfZEhjlbqT1Y/XJ/SrVxayfZhFbCaMlg3 mbQRlRwCvcGtuigDEitJzNtu4XaMW6IiRk4DHO/nt259KfDYbpdQnlgZiZB5SluTtHBH1JNbFFAG BaWtyi2S3EUhgSKRnQd5SR1Hpy2KjFpdi4iDwSttuwwOfuxKvyDP16/jXR0UAYUVpeyXERcMsv2t pZZD0EYyFUfUY/WnRxzSW+mYVmtlLNMq9zg7fwz/AErbqK2t0tovKj3bASQCc4oA5+4s7otKgt5T GZYhGAc7Ix8zc+pOQamntbsnVpYITHczEKkgAyEAA4Pry1b9Ri4hNybYOPOC7ynfHTNAGHeq1mFu FSQ2sKvJIpGNxC4Tj06/jUSWN6loYCjyH7GscOTwsjZ3sfpx+Vb8tpbzSCSWJXYDGT6Zz/OpqAMe 303ffXTXKM6BI40Zj94gZLfnj8qqQ298kNuXt5CgaaWSL1c/cX6cn8RXR0ZoAx9LieBdNikVldIH Dbjzn5c/rUWu2l3Lq2mXKK0lnCZBLGF3fMR8rbe+Ofpmtg26G6FwdxcKVHPAB9vwqWgDkZdLlS+0 PZbXEsMNxM8jMv3EYHAPtk9PSqiaXePBbtJp8rJb6u8+xkBIhbOMD05HFdzRQH9f195yGt2d/fG/ VNOMcjWKpC6/Nubk7c5wuDUkdteG8mub20muIprGOOJSuTG4B3AjsScHNdXRQBn6Bb3droVlBfvv uo4gJDnPP171oUUUPUAooooAa+dh2sFOOCRnFcxDrt9LpulkbWmu3mWSRQAFCbjx25wK6hlDKVYA g8EGoRY2gh8kW0QjznaEGM+uKAI9KuvtulWt1u3ebGrE7duTj07VbpFVUUKqhVAwABgCloAKKKKA CiiigDPsv+QvqX1j/wDQa0Kz7L/kL6l9Y/8A0GtCgCG9/wCPKf8A65t/KmaZ/wAgu0/64p/6CKfe /wDHlP8A9c2/lTNM/wCQXaf9cU/9BFAFmqF//wAhHTf+ur/+i2q/VC//AOQjpv8A11f/ANFtQBfo pCQOpApaAMlbgWg1m4P/ACyfd+Ua1Bas9omkWSMjbl3SZGeg+Y/XcR+taNtbMs98ZUBjmkBAPORs Uf0NWfJiyh8tcoMKcdKAMc6pN9skDgrbbXeOVMMrIo59wwPrxUOmzTWtnp9r5uZLkPPNI2PkGNxH 1ywrdEES5xGo3DB46ij7PBtVfKTavQY6UAVdGupLzS4biZlLuC3AxwTx+mKfql21jp01yqb2QDav qScD8Oal+z7QFhcwoP4UUYoEDHIklMiEYKsBg/pQBQnubqC7t7Xzkc3DYL4/1YCksfx4xWc11LqU GmrJcbRLcNKSoA/doSVz7/d/Oui+zwlQpiTAOenekFtAAoEKAKcrhRxQBQtLy5uriZuI4o7gxAHH zBeCfqT0qkNbuPLhucAq8U1w8IHKxoPl/EnFbjQId7IqpIwOHC8g+tVrbTkhumuZGEkrRiLIQKMZ yePc0AZ1zqd3bocupItGnlIHEbcbVH15H4VPeTX1tYxtJNG0s7RoEKcBj94fTqfwrTFvAIyghTY3 UbeDT5I0kAEiKwByMjODQBiXWqXAkm8lljVLmO2jDD7xOCxPtgnH0qeTUJ/7WSFFzbO4jWRcEbgC WVh1B44PStFreB2LNCjMTnJWnCKMPvCKG9cUAZNvdSK1pZxfL5rTO8h7KrdB7kkVBPql4kc4WWPf DJHArbeJHYjJ+gB/nWra2myHy51jfa7MhA7E5/rUzW0DnLQoTx1UdulCAw5LpoL7VtSDtL9niEUc fGGIG4/qwq3PeXdpYtK+ySZvLRV44ZjjJx25/StPyYgXPlrl+G46/WoprXdGqQlIxuyw2Bgw9D/n tQBlrqdybxrZHV1a5ECSEfd2puc/nwKbDqN5cXkUEcgCPPKivt5aNRy354Fadnp8FraiDaJBvMjF h1YnJP61YEUaspEagqNqkDoPSgDJuL6a0vCkrLMLe1aaTC4JPbHoThqZDfXEszwSyIc2fmuoH3Xb OAPbANbJijLlzGpcjaTjnHpUMtqnkSC3iiSRkKgkf4UALbMy6bEyLvYRAhc4ycdKo6de3stsZJLN jIzncvmD5D/d/CtOCMxW8cZOSihc/QU5VVc7VA3HJx3NAEcEksgbzYDFjplgc/lWTr8L6jBPbQJv khTzEIYDZL1U/p+tbdRrBCjSMsSK0n3yBy319aAMq01ZtQlsREwjintjOz9fmBA2/hk5rO067e30 7SGTbJlJztwCWIDEYPbpXSJZ20cYjjt40RTkKqgAGkSztY/L2W8S+WSUwo+XPXHpQwRj3N1dN4ee 8a4ibfaiUqVBw3Bxj07c1Jc6ncRw6lOuFNmyhI8f6z5Qf1zgfStU2ls0bRmCMo/3lKjBpxt4SwYx JlcYO3pjpQBhvqV1FJdsZ1KxXkUKoQPuvsyD/wB9GpE1aT+0IBvVoJbiWEnGB8oOMd85GK1WsrRt 262iO9g7ZQcn1PvS/Zbfdu8iPO7dnaOvr9aAK+oXUkNxZQJ8ouJSjSf3QFJ/M4xS6ZdSXP2pZBny J2iV/wC+AAc/rj8KtvGki7XUMPQihEWNQqKFUdgMUAYSaldJI5adXVdRFsAQPuHH680+HU7h7azu D964uTC0OOUGWGfqMZNav2K0Of8ARouW3n5B971+tPEEIkLiJN5745oAwrHUbyYaaJLlW+0vMjkK OiZwR78UWeq3l39miGAzwSSGRQPmZX2gc/ma2lsrRNm22iXZkrhB8ueuKVbS2WNY1gjVFJIUKABn rQBWu7ye10KS8MavOkO8qvI3Y/lWXe3ctlqUtyri4kTTi4AHU7x6dq6LA27cDHTFRLaWyyCRYIw4 XaG2jOPT6UAVILqUaqtmX85Gt/N3gfdOQMceuf0qtq+qTWslz5Dg/Z0R2XHTc2OT7j0rXjhiiz5c apnrgYpsltBKxaSFGLDBJUHI9KAMXUdSuYBqrR3ACwRRSREgcZJyPccUr3U1rqOsT+Y8vlRI0cPG D8jHA/KtiS0tpV2yQRsCu3BUHj0pwgiVw4jUMBtzjnHpQBiX2pXUEB8uYMz2T3HmADCMoBH4HP6V r2Pmm3V5phKXwwIXGAQOKd9ltyjJ5Ee1xhl2jBHpUqIsaBEUKo4AAwBQBFbliZd06y4kIG0D5B/d PvU1RwwJC0jIADI+9sDGT0/pUlABRRRQAUUUUAFFFFAEc7tHA8iJvZRkLnGfxrGm1u8OjWeo2tik gnQO6vLt25xgDjkknFbUsYliaMlgGGCVODVOPR7SOxtrMCQw2zq8YLkkFTkfhQBcgaRoI2mQJIVB ZQcgH0zT6KKACiiigAooooAz7L/kL6l9Y/8A0GtCs+y/5C+pfWP/ANBrQoAhvf8Ajyn/AOubfypm mf8AILtP+uKf+gin3v8Ax5T/APXNv5UzTP8AkF2n/XFP/QRQBZqhf/8AIR03/rq//otqv1RvVY6h pxCkhZXJPp8jUAczq8lxJq3iDzUjlhtrNGVS7KVBDE7cdCcdfpWtFrFwLzTLGK3Qi7szMru5ypAX g+vWrc+hWc817K5m3XsYimxIQCo6AenU/nSpololxa3CvMJLWEwxHzDwp6/yH5UL+vxB/wBfgZ1n 4mkuIdLne0CRX07W+N+SrDPP0ytdHWPF4b0+KC0hQzhLSUzRDzDwx7/qfzrYoAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCO4uIrWB553CRoMsx7CoZNRtI445 GmG2RPMUgZ+X+99ORS6jBJc6dcW8RUPLGyAt0GRisO/8Ny31nZxTSIHtrfyVZGKlG4+YHuOOhoA6 UEEAjkGimxqyxorNuYAAnGMmnUAFFFFABRRRQBn2X/IX1L6x/wDoNaFZ9l/yF9S+sf8A6DWhQBDe /wDHlP8A9c2/lWLf6pJpmiaT5QO+5aGHdsLbQRycevpW1e/8eU//AFzb+VY91p9xqGk6OLdo1+zv DO2/PIUdBj60ALZ65FFBqM19dBobSUKW8plZFIB+YY9+1XW1rT1keMzHekfmldhyU/vAdxx1rJvP D99c2uvQiW3X+02UoSW+QAAc8e1Tto962qyXu63Aaw+yBcng5znp05o/r8ANu3niubeOeBxJFIoZ GHQg1JWfoNjLpuiWljMyO8EYjLJnBx35rQpsSCiiikMKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAJAGScCml0XBLqN3TJ61U1mIz6RdxLE0rvEyqq9SSOP1rn9 Q02/n021WGGUT/2ebbDYwj/Lz14PHWgDraKZArJBGjtudVAY+pxT6ACiiigAooooAz7L/kL6l9Y/ /Qa0Kz7L/kL6l9Y//Qa0KAIb3/jyn/65t/Ko9NIGlWhJwPJT/wBBFSXv/HlP/wBc2/lWYsU0lto5 AZrZEDSqvc7Pl/DP9KANgugUEsAD0OaQugOC6jt1rDls7kPdiO3Yo8Gy2QnIRmJ3E+nJH4CoZNLu hBeKEZ3YQwK5PJUY3P8AXk/lQBuG9gF+tluzMUMmPQAgc/nU3mJgnevAz1rKS2k/tS8uZLXO6JEQ jHQAkjPqScfhUK6bJD4dCpCGvjDtJ7gscn8iT+VAF837LfWts0QUzRs7ZYZTGPz61d3Lz8w4689K wLvTbiRpViiO5rVLaFyc+WMncT79D+FJLZ3azyqsMjK91GSQeDGgyPxLdfrQBvCQmYoF+UDJbI6+ mKdvUqW3DA75rCns712v2RHTzZo1+U8mIEbse5y1TTWzjUIJo7dxbDc0iD+JwAF49Ov40Aa5dQoJ YAHoc0FlBAJAJ6DNc/ZadeRTE3hd0MR2ImCELOzMPbAKjPtViS0upNVSZdyxh1V425UovIYHqDnt QBsO6ohd2CqoySewpQcjI6VQ1i1nurQLBKyFGDlFA/eAfwmni0uCM/bpR/wFf8KALh4FUbG/e7sI LnycGVsBQ38OSN35c1JepONLnSEmSfymCE8EtjiqC2cizaWiQMIbdDuOe4G1QfzJ/CgDYLqCQWAI 561BaXsF5bmeJv3YZlyfY4/pWUtrffbJbkKSHWR/Jkwdr4wu1u4PoelJBZTwW+mRLAfIgVjJGMZd 9owT7ZLfpQBvAgjIORRWdoqNaaVDDcjy5QCWDNzknJ/Umn6qZZ9Nnis5B57DA2tzjPOPfGaALu9M E7hgdTnpUF3ewWkaPK4xI6ooB6knArPntCbq1eC3dbdXzKvd9qnZx6ZNVbaxufK04T2hPlzSTSA4 OHOcD6Zb9KAOh3KGA3DJ6DNG5d23cM+maybO1mS5uJLoOzNcF1bjaqD7vPoB29azY4bx5YoFz9uh t5p2lJ4aR8qv4dcfSgDp96c/MOOvPSmyShY2ZcOy9FDAZPpWDcWF00BMELARWhiCsfmkkbHJ+mM/ jVq/0wJYwwW0JYl41lYHnavf68Y/GgDW3gYDEKT2JpSyhgpIBPQZrAvLS8lmn3wtIZLqMgg8LCuD gfiDn61O1rdyaulx8yx7wJI2wV2qDhlPUHPagDZooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKqalLNDbCSKWKJQw8yST+Fe5Hqe lc9/wkl+tnJLLBGklvbLPIg535crj24H5mgDrKKAcgH1ooAKKKKACiiigDPsv+QvqX1j/wDQatLe WzzeStxG0nI2hhnjrVKAMdR1UK21sJg4zg7K5bQXlhs/C7uYpRNLIo3R/MnDEkH1OKAO5mj82CSP ON6lc/UUltF9ntYoQdwjQJn1wMVyk2v6nDY6hc7oX+yaiLVVKY3qWUc+h+atjTr+5l13UdOnKOts sTo4XB+YHIP5UAa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1o0c5ZFY+4zQsUanKx qD6gU6igAooooARlV0KMAVYYIPcUyG3htwRDEqZwDgenSpKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIL2ytr+ DyLuFZosg7WHGRUS6Tp6RxxraRBIxtUAcAZzj8+akvLiS3jQxQNMzOFwDgL7k9hVC316O4j011tp VW+dkUtj5SATz/3zQBr0UUUAFFFFABRRRQBnWqLJqmpowyreWCPUbKemjabGsASzjUW7FogB9wnu PSo7ZmXUtUZV3MPLIGcZ+Ss6LxUp0carPYSxWrRhkbeDuctt2/n3oA1G0XTGjkjayiKSP5jjHDN6 n3qaGwtILqS6igRJ5AFdx1YDpmsPWvEM9tpOotDAoubeJXDB8phjjIOOoPatGTVXiu7SwMAa9nja TYH+VVXGSTj3FAGpRXP/APCTq32URWjO81y9oy7wCkignHuOOtT/ANtz/wBoWti2nsk9xbtMA0g+ QqQCp/PrQBs0ViW/iAXWn2N3Ba/LdbgfMkCiMrngnvkjHFXtH1GLVtMhvoVZElB+VuoIOCPzFAF2 iqH9qRlZJVjY20TsjzdhtB3H6DGKhm1pIYw7wON0DXCDPO0Yzn06igDVorNfVtsdwTAVaG3FwQzd jng+h4NRWt/cwWmnxXUJkurheSD3wW/pQBr0VmvfqLlFmikiZIGnYbuABjIPr14+hrP07VPsGlJH cROZlg+0kbs/KzHj69gKAOiorNutVjjhvT5TkW2FYg45K5wPfkfiaeb4JI9vDFJO8CKZBnkZ6D3P egC/RWY2tW6Is7Ai2aUxCXPUjOTj04PNSQ6oktq115LiIRecCOSR1xj1x2oAv0VV0+9jv4TLFtKZ wGVsg8VNG7tJIrRFFUgKxI+fjrQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFTUrIahZtbG4 mgViMtCQGI9KrDRIgliv2q4Y2bF0YkEsSCOePQkVoySxxLuldUX1Y4pDPCHVDKgZvujcMn6UASUU UUAFFFFABRUD3lrG7I9zErL95S4BH1p0l1bxBTLPGm4ZG5gMigClbKX1PVF3Fd3ljI6j5KZF4fs0 0L+x5DJNajpvPzDnIwR6Hmrz3VrC5Ek8KMV3HcwBI9fpTjdW6yCMzxhzjClxk56UAU7nR4bywns7 uaWaOZAjEkAgDnjA65pG0aEzQXAmlF1DuCzZG4huoPGMcCtKoVu7ZmZVuIiVBLAOOAOuaAM0eHLR Ra+XLMht52uQQRl5Gzlm456mrNxpUc+rRal58qzRRNEoUjbhuvb2FW4riGYExTI4XqVYHFZz6wv9 v2mnReVLFPE7+Yr5KlccfrQBDaeGrSzWz8qefdaB1jZiDw5yR09e9X9J02HSbIWdu7tCrEqHOSuT nFTxXNvMxWKeN2HJCsCakZlRdzMFHqTQBSGlwC1ltMv9nk35jzx82Sf5mmy6RbzpIJWd2dFjLZ5C A5wPr3p2n3/2mGZ5dieVM8WQ3BwetWGuALiGJArCQE7t44A9u9AFefSredrouz/6SoVwD6DHFS/Y o/tMNwzMzwhguTx82Mn9KknuIrdA8rYBOAOpJ9AKIJxOpIjkTBx86laAIJdOgmuJpnLHzo/Kdc8Y 5/xNMbSbd45FcuzybAXJ5whyo+madql99htTKmx3VlBRmwcFgP61b8xPM2b13/3c80AUTpEBjlUy SHzZRMxJ/iBB/oKmSxjinlljd1Mu0uAfvEDH8qdbX1tdeb5MqsInKMQehHWpfNjKb/MXb0znigCi NGtPKSFgzwxhwkZPC7s5/Qmp/sK+QsJmk2rtC4OMY6fyqfzogFPmphvu/MOaigvbe4uJoIpFaSE7 XAPQ4z/WgB1tax2wk8scyOXc4xkn/wDVRDFIlxO7SMyOQVVjwvHOKmpvmJ5mzeu/+7nmgB1FRi4g OMTRnc20fMOT6fWo7a+troSmGVWETlGwehHWgCxRUZnhChjKgUnAO4cn0o8+HCnzUw33TuHNAElF NEsZfYHUt6Z5rM1nV/7PuLS1iWN7i6ZggkfaowpPP16fjQBq0VXtrtJVRJHiW5K/PErhirY5H4U/ 7Tb+d5Pnx+b02bhn8qAJaKiiubeZykU8bsOoVgTUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBleII5ntEa20/7ZOpIQbgNmQQ W5ODwelY0ul3KwadaRaRIVVYfOmM67l2HKrnPbuR9K66igAooooAKKKKAOUmx/wnN+FtBcFtOQbR j+83XNQ2uianb2drZzwxyhLF4vNXDMHYn5CT/CBjkeldYLW3W4NwIYxMRgybRuI+tS0W0t/XX/Md 9bnH2Wj3b3GhLfWBeO2s3t7gsysMkAevI4P50utaRqV3HqkUFpGhdovs5j2jeqY+8TyCMECult7l 5b67gIAWEptI6nIzVqgRXuY5LnTpY0YwyyxFQT1Qkf0rnYdMu4vDqWyaVC2oQ2ht90rDa/TPPcHG ea6qigDjbjRNTnl1JYA8K3enrAkhKrtdSeoHTIOM1aNle/23pl1Dp3lpb2kkLZZQAxAwOD04rppZ BFG0jAkKMnaMn8qdR/X9feByWnaXqMGpaNcvaeWsEcsc6R7VVC3TAHVc1vajbzS3djMg3xQyMZI/ XKkA/gav0UAc9Z2N3HdLM0BWJLuaQxZHzK4+Vh9P6062sLuLULOV4iUE08h5H7pX+6v/AOqteW7j ivILVlYvOGKkDgbRk5qV5o0mjiZwJJM7V7nHWgClqdvK89vcRmTEW4MI8bsEdRmprBt0b/NcNz/y 3XB/CrVQXl2lnCssiswZ1TCjJyxwP1NAGNfWF39k1CMQG4kmuVljYEfdBU456YwaWa0vmvFnWDBS 983arAAptIzn19RW/RQBgmyu47S+gjtkYy3JkBz1UsDke4GePamDT7wyzoyzIjXPnJNGy7l+QDp0 6g5HvXQ1R/tWAwyzokj28Wd0qrleOuPWgDMi0u73y/agZEmt1ixHgbSC2fpnIPHer1nBJaaheyOi rFNIriQkdNgH55FaMUizQpKn3XUMPoahtrqO789VRgYZDE4YdwAf6igCT7RB/wA9k/76FYk9pfPd idIfu3olAVhhk24zn1PpW2REHVCFDNnAx1qTpQBz0thdRvhLbeBqQucgjhD1P1pzadd/ZbqCOMLu uzPwQBIm8Nt/EZrfqvZ3cd2sjIrL5cjRMGGOR1oX9fgDMfULC6nlnlS3LRyS25WLIB+Rss35cfhU 02mOb65OxjbTwrGiJgbCCcj2znORWyThScE47CobK6jvbSO5iDBJBkBhgjnFAGbp9lcwXqSfOIsv ujkIbYSeCrdefQ0msWlxPrmj3EVsZYreR2lbI4BUgdfc1tUUAcedL1Rp7O4azVJIdQaeRYSoUocj IPUkggnNO0qNNPuI9JvIEm1LzpbmCZzw4JPzZ65wcEV11Qi0thcG4EEYmP8Ay02jd+dAHL6fpepQ 6ho1y9oIxbrKlwke1VTf/dx1XPrzXXUUjusaF3YKo5JNAC0VG0yLOkJ3b3BI4OOPf8akoAKKr3t3 HZW/nyqxQMqnaM4ycf1qxQAUUVALpDftZ7W8wRiTOOMZxQBPRTJZFhieV87UBY4GTinKwdQw6EZF AC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm6/PFbaeJ5 5ZkjRwSsIJMn+zxzg/0rm3u7saTaOt1eS3CqjZCEbwZedvq2OOe3NdtRQAUUUUAFFFFABRRRQBk+ ZJDdazLCm+VERkX1ITgVThnmWaTfLO6R2QdyAcPIckkfgMfjWlZf8hfUvrH/AOg1oUAYRjvLfS7R vOmM83lRzsTnYCcscevbNQpNPNa+fFNKIpb7YhycJGpwT+O0/wDfVdEw3KVyRkYyOoqGztYrK1S2 h3eWnTccn1oAxPtNzNbK4eZWlvTjgjYgPT8l/wDHqsss82o3sJlmRT5Qjwcf7RYe3b8K2aKAMGOW +meEguLlrs71/hjhUkYP1AH4mt6kIDAg9DUX2WL/AG/++z/jQBi6t5r317cIsmbW18uLbkZdz1/D C1JFF5uvJLJ5haK1VEfnlmJy3p0UfnWraT29xCTbSrKisUJVs4I6ip6AOdtBdS/YcyTjzp5JGyT8 sQzhT9flpIJJrgaasyyFDcvMcg/KBnYv6j8q6OigClq4u206QWRUS99393vj3x0psAvvIj8trcJt G0FW6VfyD0ooAhKSvatHIyiVlI3L0BrL0KRLTQrexuF23FvGIXiI5Yjjj1B6/jW1RgZzjmgDnp5b xIL0KGW7SVVtY1zjZhcexH3s1GJZxdziLIgOoHzzyPl8sY/DcK6QMpYqGBYdRnkUtAHP+Qyarp80 zyTKqTKHGcfeUqPfjPPfFJBeXH9pW0n70RSTTI6sDnHO3I6Dkce1dDRQBn6m8y3NioLC2aQidl/3 Tt/DNZFnMVaSFPM2vfzZJyFxjIyev0rp6CQOtAHO6bdXU5sReNIIfIcOxBGZQRwfwqLRZJBbWEcx dbMQSZPIPmB+h/DNdPRQBzEE+pMsTzEuQEDxHKuBuOCvY5GMg1satK8cMATf88yqSvQD/aPYcVfp GIVSzEBRySaAM7Qp5ZbSVJixeOZ1BYH7u47evXjFZc8synVxbyym6juFFumSeSqnGPQ5Oa6YEEZH IqvbWcVtNcSoXLTvvfccjOMcfgBQBii8uBqEEmZRG1zJHIpyTtwcZHYZAxVZ4Dc+HLx/MuJXWV1C lm4US5HH0/SurpGIVSxOAOTQBi3cqjUbVUeRYmt5gwycEDGD/PFWPDyk6TbzPLLJJJGu/wAwnqBz welaEMsc8KywurxsMqynIIp9AHM6q8rWOpfai4kS5QRKM48vcpBA7981PLPeeXcspf7aLoCFecGP Ix7Y25zW/SMyopZmCgdSTigCpq8txDpkz2ozNwFOM4yQCfwBz+FYwaZJr6S2MoLzxQeYwJKRjALD PuWrpaKAOeme78uQo0yQvdqsJGSQgA3H6EhsfWtq9aNbKZpXeOMISzJnco9sd6nqveXdpbR4urhI Q/A3NjNAE0ZBjUqcggYPrTqAAAAOnaigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKAKeqTSQWolSeKBFYGSSTsvfHv0rEfxHcQ6XZSTeStzJIiy8/KFZ9vHvjt2robu 0tr2HybqBJo852uMjNRnTbE20dt9ki8iI5SPaNqn2FAFqiiigAooooAKKKKAM233f2lqu1trfu8H GcHZWFZa9qP9j6NqE00czXlwIJIVQDgkjI9xjNbtsGbUtUVSAx8sAnpnZUehaFBpNjBAwjmlh3bZ tmDyc/nzQBlxa9dG+08rMlxbXl3JAGEe1doDYKnqSMYNSadqeoy29/eXN7bpbWc08Tlo+yj5W49O 9bLabpyIWa0hCq3mfcHynrkelOtbKwS3f7PbxCK4G5gq8PnufWgDI0nV7yXWYLG4YSJNZfaQ5QId 24Dgehz35q3rmoz2d1ptrBhPtk/lNKwyEAUn8zjAq7Hp1lFJHJHaxK8YwjBeVHoKmnt4bmPy54lk TOcMM8+tAGHPfX0F1BYtfxPcN5rsIossUH3Sc8DGRmqumeILzUl0SPCQNewySyyAZGUONq59etdC dPs22E20ZMedp28jPWkGm2KxLEtrEEVi6qFAAJ6kelAHK6PevaWNwkdyizTaxLGMR7jJzyFHQHA7 8Vu+HNSn1GC8FxjzLa6eDIGNwGMEj15q2uk6ciFFsoQpfzCAg+96/WpoLS2tmkaCBI2kOXKjG4+9 C/r8AZTF5cXFxdiEpHHbSLHlx984Bb9Dx71WtdVnuJrMkpHHcxSTMpHMaDAX8Tmtf7PCZDJ5a7zy TjrTFs7ZGDLAgYAgHHQHtQBh6ddXFvYWmCZZ9QnaQkgfu1ILf+ggVen1CaGaOByqnypJpZOoVVOA PTPI/Kr4tbcRrGIUCKcgAdDVS/0z7bG8DOi27Js2hPmUZ+bB96AKMer3T2cskmyNre1WaQ4+87Ak KB+H61YtLu/u7uaMGOIRLEzKVzhm5Zfyx+daRtYGYMYUJUAAkenSnpGkbOyIFLnLEDqelAGKmpzb XKJG0k939njcDsOrH1Aw2PpV3SbuS7juGdlYJMyIV7qDjJ/EGrP2S3CFBCgUtuxjv606GCKBSIo1 QE5IUY5oAyQ8t1cXBkguJFjlMarHJtAA79c5PWr+oXf2DTJLnyyxjUYTPJPQDP1NPmsbeeQyMpDn gsjFSfripmjR4jE6hkIwQ3ORQBmz3V5Bc29szxs9wwAYD7gAJY/pxWfJdT6lbWCGcIJrpmyo6xoS wJ/JfzreNrblQDEpAORx3potrNDHGIolK5ZFwBj1xQBUtb25u7mbaoSGKfyRu/ix1P59KpjW5tkF yVURSLNM0ePmEaA4P1Jx+dbLW8eWdEVZDkhsd/WqtrpixXbXUpR5DF5WFTauM5Jx7mgClPqt1Ail 9m42jXMmBxFjGB75yR+FSXdxfQaaskzQtJP5aLGU43N1B9R1/AVp/ZLby2j8hNjgBhjrjpT5YY5l CyorgHIBHQ0AY91qs6tOLfYixTx26Bh99jgsfoAf0qaXUpV1SOBUzbu4RZVG5d3JZW7g46Vfe0tp GLPAjMSDkjuO9L9niDl1RVfrkDv60AS1i6vqU0f26KEhPs8AbcRnc75Cgfl+taflT/8APyf++BTf s1vPnzVjmcfKxIH60AZtjNNGzafbKqxWccabz0diMn8MU6fV5Ib51aM/ZwGKSKNyuFUlhnswIP5V qfZoN4fyl3cDOPTpSrbwqxYRKCc549etDBGTcX19FpP24tCC0IcR4yQxxtA9eoFSX011bxwxyvDI Z5lQKU4xjLZ+gDHP0rQFpbhNnkpt44x6cinyQxylTIisUOVyOhoAzRqE8i3VwpSOC2lZCrDlwv3j 9fSqy6zPHiWcKUFmbqSNRyufuqD9M/lWz9nh3l/KXcxyTjqaatnaocrBGDt2/d7en0oAp2t5ctqE NtKFYvb+dJtHEZyMDPvz+VZWqIreNITPKv2ddOlZ0dAy7Qy5z/ntXSRQxQ58uNUz1wOtRyWNpJdC 5kt42nC7Q5XJx6fSgDnLLX7wXdkkhFzHc2ks4Ij2ZK4I298EHvU9jql7JocOs3F9bRQSWzyujJ9x uoxjkgd62Y9MsYmiZLSJWiOYyF+79PSqNroQh1W5u3eMwTpsNssfydevPcjrjrQBX0jVryXW0sLl t6vZLchigQ7t2Dgeh68810NVotPsoZY5Y7aNZIxtVgvIHpmrNABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQBBeTSwQhoYDM5YLgHAGe59hWR/wAJGzW9tMtkwSUuHd3CrGFb buz3B7GtXULNb+ze1eWWJH4LRNtbHpmqJ8PWjWQtXmuXjMbRMWkyXVjkg/lQBrg5GRRSIoRAijCq MAUtABRRRQAUUUUAZ9l/yF9S+sf/AKDWhWfZf8hfUvrH/wCg1oUAQ3v/AB5T/wDXNv5VTt7tbfT9 NhC75p41VF+i5JPsBVy9/wCPKf8A65t/KqlpaR3Fhp8rFlkihG1lPIBUA0ANj1cSQWsogbFxMYlG fQkZ+nBP0qC51K4uRZrZKE8+5KZZuSiElj9Dt/WrkelW8UNvFGZFFuSYzu5HGP5Gkh0i2hWAIZP3 AYJ83Y4yP0oAZNq8cazSCMvDDKsLsD1YkDAHfBIpE1b91PcSwFLe3aRZJN2cbfQd/T8KnGmWwk3Y Yr5pn2E/Lv8AX8+aVNOt1097EqWhfduyeTuJJ5+poAjXUT9jluXgcIkfmYXk+uPrUun3qX9uZoir JnAZTkH/AD0pzWaugVpZDgqQd3THSkjgNqrLbxqd7F3LHBLHv0oAluJ47a3knmbbHGpZj6AVSfVG jjjeS2dfO2iIZGWZui+xxyasTRPdQvb3ESGGRSr4Y9D+FNewjkEXmPIzRMGRieVIGP5E0AVW1jbc fZxblpBOIGw3GSu7I/DrUN7qVxNYoLRQk0l19mB3ejckcdMA1fj0y2jlilUNvjdpMk/eZhgk+pxT I9Ito44UUyDyWLId3IJBB/maAD+0JTfS2sdqXaIIzHcBwxI/oT9KztTujdWN7FGjiWSdLVfn4ycZ x6EAnP0rZhtYoJ5pkzvmILZPoMCoV0u3RNqlxiUzKc8qxJOf1NAEEWro08duIjkzPATngFRkn3FI upLdLYERSKLlyUw2DgZOT7YH6ipzpNrsjVd6eWHAYHk7/vZ9z60sWl28Jtipf/R0KJluxx/gKAIv 7Yj+zNeeW32Nd+ZfZe+PQkYFMn1uO1lWG4hZJXRWRAck7m2gH0NT/wBlW32M2Z3m3wQI88DJzStp du8hlfc025WEhPIK9Me3J/OgBlzqiWloJ7hNimTy9xztH+0TjpULXcKXQv5wERLQyE9cDParr2SS EM0km4BhnPUHrx07VVlsImuFtDA32RrbyuOi4PAoAc+pPF5YktWVpiqxDP3mOeD6YAyaqXmp3M9p Gtogjlku/swYt/dPzEe2A1aUljHI0TvJI0kTbkbPIOCP5E1DHpFtEkKoZB5Ls6HdyC2c/wAzQAqa kst3LBDGXMLiOQj+8Rk4+gPNR/2zEXjKxkwySvEJM4+4CWb6DaRVpLNIXleIsPMfzGQHALY/+sKz rbSS10jzReVbpC6CDfuG5zlse3UfjQBN/bK7YGMJC3EbSxZPO1QDk+nBzTZdUk/struS0dInjVlw /wAx3dvY9Pzqc6TbNE0bF2zD5AYtyqegqe4s4bi3SFsqkbKy7TjBXpQBTudVS1EyRxNL9mCCT5ud zYAUep5H51PaKF1C+wAMlCceu2my6TbSs5JkXe6yMFbqy4wf0FPs0Zbu7YoyoSqqW/iwMZoAjm1W CPUvse8AxrulJB4z0AqePULWSRUSXLMcAbTUrQI1wk/IdARkdwexqSgAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAz7L/kL6l9Y//Qa0Kz7L/kL6l9Y//Qa0KAIb3/jyn/65t/KmaZ/yC7T/AK4p/wCgin3v/HlP /wBc2/lTNM/5Bdp/1xT/ANBFAFmiiigAooqK5WV7aRIHVJGUhWYZAPrQBz8WoXk2l3F1bXLTXDTu ttDgEMobAzx04JzWyupW7TmDLGRWVWAUkAnp+HBp2l2f2DTbe0yrGGMIWAxnHem21kYnvHeTLXL7 sjjaNoAH4YoAcuo2jMo80ANuCufutt64Ptz+VNGp2mM+YRkKVyD827pj1ziqEmgCexhtJZsJBAYY toxyRgsffH8zVq5097l7V5GjzbPvVADtPykf1oAsm9gCIxY5diirjkkdR+lNa/tl2fPncm/gdF6Z NV77S/tsKwzGNowpwu3G1uzAjkEc02bSBNNDJJJuaEp5cnR1C4yMjrnHOfWgC0+o2qTCIycmQRZA yN5GdufWqtlczaq000crQ2iSNHHtA3SFTgtk9s5A+lMj0iSOWArOuyKeSfBXli+ev0yamsbGewga 1gkTyN7MhI+ZQxJI9+SaAHwTy26bL2QPNJKwiVRyVHTj6cmhdWs3ZFRy7OrMoVc5A6/lRNYMbyK6 hkAeOFohvGcZIOfrxVWPQ/JjdIZyv+imBGI5BYksx9ySPyoAmm1UfarCK3QyJdAuXA4CAZz+ZH51 NHqdrJIURnJDFSdpwCBnH5VFDprw3cEyyKFig8kLjoM54/ID8KktLJ7ezmiEuZZXeQyAdGYnH5cf lQBTuNRdjYG3nZ/PuGztT+BQcjH4AZq4NVsipYTDaIjNuxxsHU1WTSJIobZY5lV4YGhBx03Y+Ye/ FRzaD+5eG3lCRtBHAAwyQqnJH455oAv/AGyJrtYlmC4jMjKV6jjnPbGaQanaFS3mEDaGUkH5gTgY 9cmq9xpL3L3Zkn4uIBDkDlRg5x+JzUk9hLOtrueMfZpFdVA+UkAjn86AJV1G1aNn8zG2TyipHO/+ 7j1qJ75bi4gt4HILOwk7FdvUfqKgh0eSJoZGnV5Ip5JuVwGLAjn6Z/ShLD7BcW9xuLkySGZ8dS+O foCAKALsmo2sc3lNJz5giyBkBz0XPrSRalbSzGJGYsHKH5TgHGeT9KpjR5FljKTqES5e55XJYtnr 9M1Yi07ZY3du0p3XTSMzqMY3cD8hj8qAHLqtoxAVydyGRcL95QcZHtT01G1kA2SbsxCYAD+E8A1k 2tlJcTX9uzGNY7ZLOJwhAxg5Iz7kflVkaTPi7xcKhngWFdq/cAGB/MmgC1b6hCyWwabzGnBZGC43 cE/yH6Uv9p2piSQOxDR+bgKchPUjtUX9nMJbSRJFH2eNowuOBnHI+gGKZNpJaS68qbYtzEsLHHKq Mjj65NAGkjrJGsiMGVgCCO4qhrlzJb2KeQ5SaSaONCBnksM8fTNWI3SCNYY4JQkYCqAvYcVHLAby 7tZjuRLdmfYy43MVwD+GTQBDfausVokltG0sjziALt6NuwQfoM1NLqtpC8yu7Awrvk+U/Kvr+hqr DpEscdqv2hWaCV5SSv3mYHn6/MTT7nSWuPtm6Yf6U0YPHRFxlfx5/OgCS71KFLO8dHZXgh8zpg4I O0j64q1ZCYWUAuG3TeWu84xlsc1n3WkPcNeHzwBcPG2CvZcfL9OD+dXl+0C7CllaHy+flwd2euf6 UAI1/bLN5e/kPsJA4DYzgn1xUa6pavnazMRGZgAv3kBxuHtUK6U62FzZCYCOdpCXA+b58n+tRPo8 zi4BuFTzbUWyhV+4Bnp+dAE9hqYm0+1nuEMctwCUjxyR14H0xU0uo2sUYdpODGZeBkhB1Y+1QNph NzbXBKM0MTRBSPlAOOn5VQ1K1kmmuI7fcZbgRW0mYyAEByxU9MYY/jQBrPqVogJMnyqFZiBwgbpn 0pF1O1aZolZiytsb5TgHGefwqtJo4kFzCZB5FxMJZBj5iAB8v0+UfhVqzs2tkucyBpJ5WkLY6Z4A /AAUANiv4TF5pm3h5TGihcHI4247ng0ya/RrWK+t3LQiQI49QW2n8jUEGkSQJZFZlMlqHAJHBLDl vrnJ/E0n2B4NKt9M3+YxdcsBj5QQxP6frQBqzyrBC8r52oMnaMn8qeDkA1FdGUWshgYLLtO0sMjP 0qRd2wbvvY5+tAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZmvyxQaeJpjcFEcHy4ASZD /dOOcev0rmUm1VbaAs9zcRrbK0XysrSSebyPbC469qEB3NFAooAKKKKACiiigDPs+NW1I+8f/oNM tdbt7t7byoZjFclhFLt+VtvX6DjjNJEFN9qwf7mEz9Nlcto0LWtr4YKRzxyea63Aw4wMNjcPTJFC A7x1V0ZGGVYYI9qSNFijWNBhFAUD0Arg52uU03VHie7EyaoPIxvyse5c7fbG6t/SHdPE+qwKZfsu yJogwbbuwd2CfwoQG/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFUtWme3tBMLmO2RWBkkcZ+X0Hv0rDW91m5h0xkv7eGW6yhRYg4Ygks2 c8YUDj1oA6migdPWigAooooAKKKKAM+y/wCQvqX1j/8AQa0KylnFrd6xcFSwiVHIHU4TNQ2+o3Ju THLJGAtoJpAB91jzgfQA0AbdAIIyCCPaufj1e4NuDM6qVsTcyEDnJ5UfkDT9Peazt9O04SZkkRpJ pWx8uACw+uWoA3aKwLPUL+9mhiSRY/MjlfcUz8obajY9+v0q1b3l3cXU6/KkcEohycDecAsf14oA 1CQqknoOaZBOk8CzIGCMMjcMHH0rLTUJ5b94WTEDhzFIuCjqB69Qc+tQS6lLb2ixxkRrBYCdnIzk kYVR+R/SkM27eeK5hE0EgkjbOGHtxTbi5itkZpCflG4hRk49celYVvdy2WnTQRsFFjbKzNjJklYE 4Htn9TU5uprhdQWYIvlwAEAchyMsM+gBX8abEjcByAR0NFQySSRWbSRRGWRUysYONxx0zVHT7y8k s0ka0eRmySd6jBz0/Dp+FAGpTJ5o7eF5pnCRoMsx6AU2CSSRSZITEc9CwOfyrD1a8kuvPtN4ihNx Hbc9XyAzn6baAOgBDKCDkHkUgdC5QMCy4JXPIrHOp3DSq0SgKbz7MkWOWUcMx/In8PerOkTG5+1S v5ZbzSgZVwSo45/HdigDRoqKMt9omBmVl+XEYHKfX61LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUARXNtb3cXlXMEc0ec7ZFDDP0NJHaW0SxLHbxoIc+WFUDZnrj0pt7NNBEpghEhZgCS2 0IO7H2FYbeLYUjszLbtC9ym5Vk7ndtwD09xnGRQB0lFFFABRRRQAUUUUAZ9mAdW1IEZBMeQf92ra W0EbZSFFOMZCjp6VRhlSDUNVmkO1IwjMfQBMmiDVXlmCG327rf7QCW+6pOAD79T+FAF1bS2XOIIx ldp+Ucj0+lK1vAyKjRIVXoCOlZ0Ws+bCjiHaWtWuTuPCqDx+fJpunXtxHZWENz+8vLpS+M8AdST9 MgUAawjjV94RQ2NuQOcelJ5MXmeZ5a7/AFxzWXDrMlxJHHb2u93EuMvgZQ4P4E8ZqeLUzPdSQxQl jC6xyf7xAJx9M9aALZgiVX2IqlgRkCoLS3iksYVmWCYqgTcvzKQKg/tRJb6exC7ZEDZDcHGM7h6j nHFMgvGt0060jgB86HIOcBcKCT9P8aANL7PBuVvKTK4wdvTHSobu18y3nWBY1llGCxHX64qtbasL pbVIov306NJgnhVBxkn3OMVFBrhuPKMcGFeBpizNwoU4OfbPSgDXUbVA9BihUVAQqgAnPHrWXHrS 7FkniMUZtTdHnJRRjg/XP6VKmoubKS6a2fYsXmBV5J74+v0oAvNIiuqM6hm+6CeTTHtoHfe8KM2c 5KjOazkvI78WdxHsZRcbVdTnPynPuKtapfpp9sHYEvIwjjGCRuPTPoKALKwxLIZFjUOerAc0scUc QIjRUBOTtGOaqjU7YAZdie+I2/wpNSu3g0W6vLdd7xwNIgI6kAkcUPQFqWEhjS5kmAUPIAGwOTjp n86lrHg06C40FN0rCWaEO1zu+YkjJOakbV0WF7jZ/oyXH2ctnnO7bnHpmjyDzNTOaKwNPvltCbRQ N813cbNx+VQpyf5ip7TUbq51aOMxrFC1t5hVidwO8r/TigDYorNtdVE98ls0YUyK7Lhs42kAg/mK sXF55d7BZooaaZWcZ4AVcZP6igC1RWL/AMJBF8oKCMklMyEhS4baVDdO3f1rQv7xbOKMlSzyyLEi +rNQBazRWHbXDWl9q0jIP9dEMBuBlRzU8WsrN5UaR5nkneADPy5UZJz6YoA1c5orA0q8+zyzWoQe bPezBFz8qhQCT/n1qaTX4oyVdBGyu8bM+dm9TjbnHGc55oA2aM1Vvr1bKyNw6luVUKO7MQAPzNZZ uzZazfyyoNzJboqqeGZmZR/n2oA3qM1Vt7zzL2ezdQs0Kq5wcgq2cfyNZmq3f2fWFuCm6Ozty784 OXYAD68GgDdozWZJq3l3E0JgJKSRxLz1Ln+g5qjbSgoTscrqF4xUo+0hQcAj8EyfrQB0NFZUGrvL OiNb7Q1w1uPmySQCSfoMYNTWWpfbpMwxEwbmUP8A7pxn6E0AX6KjZpRcIojBiKks+7oewx+dSUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVdSsItSs2tZpJ UjYgnyn2k47Z9KqDQLEQ+S3muhQI+99xcAkjJPuTV67u47REaQOxkcIiouSWPaqC+I9MeNZFmJQo HZtv3FLbct6cgj8KANbpRRRQAUUUUAFFFFAGZBEk+oarDIu5HCKw9QUqZNMtkleT52Z4xG25uqgE D+ZploQuq6mSQADGST/u1JFqdrK4RGYlo/NX5fvLnGR+JoAjGjWm11IkYPCIDlv4ACAP1NTNp8Ja N8uJIwyhw3ODjI/QflTE1S1kjRo2Zt8bSgAc7VOD/OotP1MzadbXFyhjluPuRgcsOox+FAFiDT7a 2mSSGPaUj8pQDwFzn+dOSzijld0LL5j+Yyg8FvX9Kr/2xaZUKZHZg+FVCTlfvD6ipv7QtzKYwSWB UNgfdLdAfegBFsIYwCgJZFYR7jnbu64qK0skkggknjdJlt/IKk9AcZ6fSpWvoXeSFGJdSUJHQMBn FRW13DbWNsjs7SNCJMZLNjGST+dAxy6VaoqBN6lY/K3BsEp6fpStpdoyyKEKrJCLchTjCDPA9OtK dUtAC287AVVnxwpbGAfzH501NVtXfaC4/e+QSV4D+lAh0mmWsjuzoSHiETLngqM4H6mnmyjZFVnk baVKkt0x0qnDq+Xv5J42jtrZ9itt5OBlvyqafUoRbO4aSLkKHMfrjBx3HIoAJLXyprZIYmI84yyP x1weT+Yq5NEk8LxSDKMMGsuHUdmr3izSv9nVo4UyPlD7cn+Yq3HqdrIUAcgu7RgEd1GT/KgC2BhQ Mk49aUgEEEZB6g1Ri1CExvK0xYNMYkTbg7h/CPXvQ+rWkcbOzNhEZ3G3lFBwSfxBoAdBp0UCCKN5 BApysWflHt9Pag6bbFiSp2NL5xjz8pfrnH15pZtStod+5idiCR8D7inufSksOHuwGZlE3y5YnAKq f60ANi0m2iO5Wk3iVpQ5bkM33sex9KkNhAbhJzv8xV2Z3feGc8/jTvtsJu2twylkXLnIwp7D61Ms kbHCupPoDQBSh0i1ga3ZPMH2cERjd0B5I9+gqzPaxTyxytlZI87XU4IB6ikuLuK3dEcku+SqKMkg dT+FRRanay/Ztjki5XdGcdRjP8hQA1dKtVjaNQ4jddrru4bknJ9ySeasXNtFdRCOVchWDKRwVI5B FUZdW3zaelpG0iXTFt2OiAHJ/PH51YbU7VWxvJUyGIMBwX/u/XigCNtHtnmkmZpS8kiSklujJwCK VNJtUcuofeZTMG3cqx6kfWlj1a0khabcyRKpcyMpCgA4PPrmpDqECxPI5ZApUEMMHLdPzzQBFFpF tEzOpk3mZpgxblWIwcex9KUaVbKrqu8CQESDd9/JySffmrcMqzR71yBkggjuKJpo7eF5pXCRoMsx 7CgBk9rDcWptpEzEQBj0x0qs+k20k00shkdpVVW3Nx8pypHoQak/tG3ztO9XLBQhXliRkY/CmDVr VpUiUu0jsyBQvO5eo+tAE8FrFBLJKuWlkxudjkkDoKZNYW88/myKSTt3LnhtpyMj2NVbjVs/YPsk bSi6kxnHRRkt+PFTrqls8zRL5hZGCMQhwpIyM/hQBXGmySaoLmTCRrK0pVWyHbbtU47YFTxaTaQi AIH/AHBOz5vXH+Aqne6g7ww/ZppC8t4IgFQAqB94e/APPvV2PVrOQptkOGRnBxxhfvflQAJpdshh IDZhZmU7upY5OfxqW3s4rbAiLBFztTPAycmohfwyzWqxylfOXzACn3lxnHt1BoGq2ewyGQiPaXDk cMAccfifxoAneEteRTB2ARWBUNwc47fhU1UzqdsrmNmZZQyr5ZHzEsMjA/A/lTm1C3RI2JOZN21c cnb1/KgC1RTGlUQGbDFQu7gZJGM9KWNxJGrgEBgCARg0AOooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKAKmpwXdzZNDZ3K20rceYU3YHfAyKx38L+daR2008e3yhFIY4t m4B93GD+HOfWuglljhTfK6ovqxxTPtdt+7P2iP8Aecp8w+b6UATAYGKKKKACiiigAooooAylgF1d 6xbsxUSqiEjqMpinQ6W6TvIbgANbrAAq42gZ6fnn8KfZf8hfUvrH/wCg0st+f7TtbWAxyCQOZOeV Cjr+ZAoAqrojrG6faQoNoLUbU+6ADz+Oc/hVk6cwmtZ0lUSW8bRqCvygEDoPbAqy95bJFJIZ02xj cx3dBTLS/hubCG7LCNJlDAMfXtQBBZaSlncRSrIWEcTIARyWZtzMfqafb6eLe5nljZf30vmsSuWB wBjP4VaaeJUV2kUK3Q54NKZolcIZFDHoM0AZ6aUsV014zAz+Wys6jBkz03euO1N0+13iC+glXc1q kJ3DOMc8fmatWWoQ30tykJyIJPLJz1OAf64/CrdAGWujrtMTy7oDcG5YY5Zs5AJ9M/yFCaQyi3/f 5aOd52O37zNnn8M1oiaIyFBIu4dRnmm/arfaW86PAOM7h1oAoHSGbT57M3HyzSFmO3kgvuOfw4qz f2Zu1gUSbBFKJMYyDjp+uD+FLd6jbWtlNdPKpSEEnB7gZx9acl7bmFJHlSPcgfDMOBQBVXSV+0Kz ybo1uDchcclyMDJ9qZa6Q9vNbP8AaAywCQAbeSXbJJ9+1Wru8EEc7q0ZWKFpGJbkY6celFlerNYw TTPGkkiruUNwGI6UAVYNHMCWZ84PJauzAleGLAgk+/JNJdaO9wbo/aADdKiyHb2U9B7HNaE1wqRM yPGXB2gM2Bu9M09po1cIzqHPQZoAzZdH837WjTny7sqZuOSAACAewIH86s6eytJeFCCvnYGPZVFW RNEzlBIpYdRmkWeJ1ZlkUqvUg9KAKv8AZdqL2S48mP8Aej94pXq39764qxHaW0Th44I1YdCFwakR 0kXcjBh6ikWVGleNWy6Y3D0z0oApX2mtc3LTxzeW7W7W+cZ2gnOR71G+kuY4Ak4VoYHgU7eFDADI 9xitSmSTRRY8yRUz/eOKAKFvpbQTW0gmH7iDyQNvQZB4/ICmQ6N5cVvF52Y7ZmeIY6uc4ZvXGTWk ZogzKZFBUbiM9B61XOowf2olgpDStGZDg9BkD9c/pRuBC+kxtokeml8qiqNxH3ipByR7kVJPYm4h 8qQxGMnLxFMo4x0P8/wqwbmAbszJ8vLfN0pVuIGVisyEJ94hhxQBXtIhp1pHaoksioOCOe/Tk029 hGo2xtmSSPLK4Zl4yrAgHn2q0Z4hGJPMXYeM5p+5du/cNuM57YoApTWUs13b3RlXzYNwUbfl+YY/ OoYNHEEiuk7bljkG4jnzHOWf9K00dZEV0YMrDIIOQRS0AZcGktAbIrMP9GjaMDb645Hvx+tWrO0+ zG5bfueeVpCcdOAAPwAFWqKAMqHSHghtQs4Mtvv2sV4JYYJ+vOajfQVWDybecov2ZrfLDJ5OS31P etmigDNfSzJMHeb5RbmDAGMA9SP0/KkbS2ksLe0aVQtuYymF4JQjGfyrTooAym0ZWvhfO4e48wud y/LjbtAx7D+Zp99pIvoxHO6MgXCjZjy2/vKR0NaVFAEcgcW7iNsOFIViM4OOuO9LB5nkR+aQZNo3 YGBnHNPooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCjqsMs8M SxQJLiUM2WwyDn5l/wBodq5qLw7qa6c9uyRBpbVLcbW4iKyFs+/Bzx3FdnRQAAYAHWiiigAooooA KKrXWoWlo22edUYKXI6kKOpOOg96njkSWNZI2DI4DKw6EHvQBl+XLLdazHA+yVkRUb0JTg1UfSr1 klWFFh/0IW0TbuQerfnxzW3FbJFczzgndNt3D0wMVNQBgT6bdyDUPKhSMTW6QRfMMhB1H6n9Klvb G8kkaSGNeLRoYULcRsT1P4Y/KtqigDCuNLuZbe3hizAbeIRxMjDHowcHgjAFWLSwkhurl5VMnmz+ YrbvlCgAKMe2OlatFAGbpcb2NoVuyiO0jOzZ+8zMT/hVtrmFlKpOgY8DnvU9GB6UAYJ0u4bRIrQR gXCKA8pbl8sC+D/tYP50t3pM13cSSNGixytFH5efuxIST+J6fSt2igDDn067ljvVZFP2i5RiA3WN SvA/AfrVr7C02rC5nijMS25THXLMef0AH41pUUAYd5pdxcPqGEULMqRpz/ADlh+OW/SiXS55J2uG UfvLmN2iB6RoOB9cgGtyigDBXTbx7NI5Yk3vdmabDdRuLY/RR9BViOxnAvA6K800zSJMx4Xj5Pyr WooA5y40W7uLC3gU+SYLcpw3MjNjdz9AfxNaFxZNNaPAISqSFVc78OFHQjHAIOMVp0UAVNMt5baz Ec7+ZJuYljjJyeM46nGKq2mlNBLcKbm4KO/mK/mcnPUH6fyrVooAggthC5bzpnyMYdsisrUtNu7i S+2qJFufKRctjbGD8w+p5/OtyigDC1HTbueS6ZIlPnQxxDDYwN2ZB+NTPZXjXF/Im2N5oFiicH7m FP8A7Ma16KAOfuNJupbdVijWPybQ28aFurNgMxPsB+dXL3TAyWaW6hY4ZVaRVwC4VSF+uDj8q1KK AMe+sJ7iJFiDwMm50eOT5g545zwQQTmtOOMxWaxlVYqmMDgE4/lUtFAENm2+zhbyRDlB+7HRfbip qOlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQBma3dS28MawXCRyuW2ocZkwpOATwPXnsKoWur3E0mgN9ojaO9jYygJt3EJnIzy Oa35YYpl2yxpIPRhmmm1t2ZGMERaPhCUGV+npQBLRSEgdSKNy+o/OgBaKTcvqPzo3L6j86AOQ1FW /wCEo1llunQrpitj5SOrcEEdP8afa6ldvL4ZhS6Ecd7asZlVVxlUBBHpya6Zra0eR5HghZ3GGYoC WHoaQWlkChFvADGMJ8g+X6elC/r8f8wf9fgcpa67qBsLC6ku1YvqZs3XaAGTcwyffgc12dVvsVgF C/ZbfaDuA8tcA+v1qxuX1FAC0Um5fUfnRuX1H50ALRSbl9R+dG5fUfnQAtFJuX1H50bl9R+dAC0U m5fUfnRuX1H50ALRSbl9R+dG5fUfnQAtFJuX1H50bl9R+dAC0Um5fUfnRuX1H50ALRSbl9R+dG5f UfnQAtFJuX1H50bl9R+dAC0Um5fUfnRuX1H50ALRSbl9R+dG5fUfnQAtFJuX1H50bl9R+dAC0Um5 fUfnRuX1H50ALRSbl9R+dG5fUfnQAtFJuX1H50bl9R+dAC0Um5fUfnRuX1H50ALRSbl9R+dG5fUf nQAtFJuX1H50bl9R+dAC0Um5fUfnRuX1H50ALRSbl9R+dG5fUfnQAtFJuX1H50bl9R+dAC0Um5fU fnRuX1H50ALRSbl9R+dG5fUfnQAtFJuX1H50bl9R+dAC0Um5fUfnRuX1H50ALRSbl9R+dG5fUfnQ AtFJuX1H50bl9R+dAC0Um5fUfnRuX1H50ALRSbl9R+dG5fUfnQAtFJuX1H50bl9RQAtFFFAFK50m wu5jNPbK8hwCxJ/xqL+wNK/580/M/wCNFFAB/YGlf8+afmf8aP7A0r/nzT8z/jRRQAf2BpX/AD5p +Z/xo/sDSv8AnzT8z/jRRQAf2BpX/Pmn5n/Gj+wNK/580/M/40UUAH9gaV/z5p+Z/wAaP7A0r/nz T8z/AI0UUAH9gaV/z5p+Z/xo/sDSv+fNPzP+NFFAB/YGlf8APmn5n/Gj+wNK/wCfNPzP+NFFAB/Y Glf8+afmf8aP7A0r/nzT8z/jRRQAf2BpX/Pmn5n/ABo/sDSv+fNPzP8AjRRQAf2BpX/Pmn5n/Gj+ wNK/580/M/40UUAH9gaV/wA+afmf8aP7A0r/AJ80/M/40UUAH9gaV/z5p+Z/xo/sDSv+fNPzP+NF FAB/YGlf8+afmf8AGj+wNK/580/M/wCNFFAB/YGlf8+afmf8aP7A0r/nzT8z/jRRQAf2BpX/AD5p +Z/xo/sDSv8AnzT8z/jRRQAf2BpX/Pmn5n/Gj+wNK/580/M/40UUAH9gaV/z5p+Z/wAaP7A0r/nz T8z/AI0UUAH9gaV/z5p+Z/xo/sDSv+fNPzP+NFFAB/YGlf8APmn5n/Gj+wNK/wCfNPzP+NFFAB/Y Glf8+afmf8aP7A0r/nzT8z/jRRQAf2BpX/Pmn5n/ABo/sDSv+fNPzP8AjRRQAf2BpX/Pmn5n/Gj+ wNK/580/M/40UUAH9gaV/wA+afmf8aP7A0r/AJ80/M/40UUAH9gaV/z5p+Z/xo/sDSv+fNPzP+NF FAB/YGlf8+afmf8AGj+wNK/580/M/wCNFFAB/YGlf8+afmf8aP7A0r/nzT8z/jRRQAf2BpX/AD5p +Z/xo/sDSv8AnzT8z/jRRQAf2BpX/Pmn5n/Gj+wNK/580/M/40UUAH9gaV/z5p+Z/wAaP7A0r/nz T8z/AI0UUAH9gaV/z5p+Z/xo/sDSv+fNPzP+NFFAB/YGlf8APmn5n/Gj+wNK/wCfNPzP+NFFAB/Y Glf8+afmf8aP7A0r/nzT8z/jRRQAf2BpX/Pmn5n/ABo/sDSv+fNPzP8AjRRQAf2BpX/Pmn5n/Gj+ wNK/581/76P+NFFAH//Z ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image007.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAC0AiwDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD06iii gAooqq9/BHqMVg28TSqzL8h2kLjPPTuKALVFFFABRRRQAUUUUAFFFFABRRRQAUVW1C9TT7b7RKju m9UOzGRuYKD9MkVZoAKKiScPcywCOQGMKSxQhWznoe/TmpaACiiigAooooAKKKKACiikd1jRnc4V Rkn0FAC0VVt9Rtbnd5UhJVBIVKkHaehAxkg4pkWrWM32by5932pDJDhT86jk44/SgC7RWN/bX2vw 9eajZKY3hSRlE0Zx8hPXp12/hVyz1K2uYx++USCJZWBBX5T/ABc9uvNAF2iqa6nZspYSnGwyDKH5 lHUjjkfSmw6xYXEYkhn8xWKhcKfm3DIxxzwD09KAL1FQpdwPCsolCox2gv8ALznGOfepqACiiigA ooooAKKKKACiiigAoqrqN39ithLhCS6oA77Rycfj9ByaoLr6Gz837O3nG7+xrHnAL5xnJHAxz0oA 2aKoy30tnY3F1e2xVYMk+Sd+5QM7u2O/5VcjcSRq69GAIoAdRVVb6JtSaw2SCUR+bkr8pXOODVqg AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKydX1r+zHlzCsqQxCZwr/PjJB4A46ZycA0Aa 1FZj6nNJe3VrZWwme1VDJuk2ZLDIA49O5rQaaJCQ0iKRjILDjNAD6KKrW99FcXdzaqkiyW+3duXA O7OMfkaALNFFFABVa5uWjlSCGMSTuCwBOAqjqSfxFWazLzWIrXUHs/s8zTCDzUbb8rnOAgPds9qA KcPiKe4gaW30yWbyrn7LMqHJDhsErxyo65OKnvknbxHp0yWsrwwJKryDGAW24757GqPhKQ22g2Vo q77x2aS5U8GNixLlvQ54A71stdpJqkVtFeIrIGaSHZkuOBw3bBIz16igC7RRRQAVnT61ZwTPC63W 5Dg7bWRh+BC4NaNZ08GsNM5hv7VIiflVrYsQPc7xmgBn/CQWP927/wDAOX/4mr1rcx3cCzRBwjZx vQofyIBqj9n1z/oJWf8A4CN/8XV+1W4SBVupUll7sibAfwyf50AS0UUUAVri5dZ1treMSTMu87m2 qq9Mk89/61lWviKa8t4Li30yaSJ7j7NJtOSjAkM3TBUY68VPqGsiC4u7OK2ma6jtw8R2jErHO1V9 Tnr2FVPCjrbaDpljAPMlEYa47eWTktu99xxigCvqFhetZXiS2ktzdtdrLHIhGPKEikAZIxhRjHt7 1PeWeoOmpKI3e8mk3WdwDgRLgbfptOcjv75rWW7SbVRBDeJ+7RjJBs5bkAEN7HIOPWrtAGVYwzx6 9qEjxOsUkcW1z91mG7dgZ46itWiigAqvqF7Fp9nJczBiq4AVRlmJOAAPUkgVYqjrFlJfWOyB1SeN 0liL/d3qwYZ9jjFAFRtWv7TZNqWmrBauwUyRz7zFk4G8YHGe4JxWzWBenU9YtTpz6Y9mkuFuJpJU YBc8hNpJJPTJAx19q36ACiiigDJ1LWTZWt1eLAJLa0/1rF8E46hRjnH4c8Ugvru/leyW1ntUntjJ Hdrz5eeADn+LvjmsbxDqSaxov2WG3njR7xYrkOmCkSyDc5A6A4rpYr6OQyyKVFpEv+uzwT3x6gDv QBSsNGltNSW8+0J/qBC6qh+fBJBySTnnmo7TQ57WXTMXSNFYb1VTGcurDHJzwRV/TblbtrqWO6eV BLs8to9hhIAyvTJ9efWrtAGMmjTJpN3py3Y8uZZEQlPuh2Yknnkjdjt0pH0Jp5X+0XCmKSx+xOqI VOP7wOePpW1RQBkNpE8slvJPcoz2sTxwlUIBLAKWbn0HQUh0Zm0Wz06V4JVtwqnfF8rhVwO+VPQ5 BrYooAwNTsGt9BitEjlupEnjZdqlyoEqsQCcnAGep7VvK25Q2CMjOCMGlooAKKKKAKWp6gLFIlSF ri4nfZDCpALHGTknoAASTVeDU7uO8itdSsktzPkRSxS+YjMBnaeAQcA49cGnava3LzWl/ZIstxaM x8pm2iRGGGAPY9CPp71XK32rXto09i9la2snnHzXUvI4BAACkgAZzkn0oA26KKKAEZlRSzEBVGST 2FY11rr2r2ZezJjvZPKgw/zliCV3DHAOPXitO/uVs7Ge6eKSVYkLlI13M2B0Arm7m9ivvE2j3UgM VjBBJKJH+75zADYT0yFJoA14D/a6yx39hJA1rcfu2JIDMBw6Hg45IqVdG09UmT7PkTOJHyxJLA53 Zzwc85FOF+qWZubhGiRmPlrtJZh2OOucAnHpUmmv5mnW8n2o3QdA4mKhd4PIOB04oAgvtPaXSbqz tmAe4RkLysW6jGT3NSgXkUFpGoiZgwWXrjbg8j36dat0UAZ5s7n+3hf7ovJEBh287uuc1oUUUAFF FFAGVLqd3NeTW+mWKXAtztllll8tA2M7RwSTgjPYZqzpl+L+KTdC0E8L+XNC5yUbGeo6gggg9wao It/pF3dCGwe9tbiUzIYnUOjN95SGIyM8gg96s6PaXMb3d7eKsdzdyB2iRtwjUKFVc9zgZJ9TQBol 1DKpYBm6Ank0vSqN3pFlealZ6hPGWubTd5TbiAM9eO9W54UuIJIJRujkUowzjIIwaAHKyuoZGDKe QQcg0b137Nw3Yztzziq2mafbaXp8NjaIUgiGFBJJ656n61GdJsjrQ1cxn7YIvJD7jjbnPTpQBNf3 kOn2cl1Pu2RjooyWJ4AA7kkgVmvq9/aKtxqOmLBaMQGdJ97Q54BcYHHrgnFXdYspL/T2hhdUmVlk iZhkB1YMM+2RWbetqur2bac2mNZiYbJ55JUZVU/e2YOWJHAyB70Ab9FAAAAHQUUAFQXdz9nRNqGS SRtiIDjcfr2GATU9UNQ1SCwurSGaKQi4LAShfkjwM/Me2eg9aAKEmv3Cy6hbR6e011YKHkSJiQwY ZULxkseeMdqvPptnfo09xasjXUSrNGWI3DHCsAecZNYvh+4eF9WnkiYajd3rFbdxhtgACZ9tvOa2 r69iS5t7QXhgmeVR8qbg3U7CSMDIB9+KAH/2TZBgyxsp2CMlXYb1HZueep6+tU9Q0P7XNezI0avP biBCV+7kncT7kYHtitmigCqouo5LaMeW0e1hKcHjpjHNQ2tncw6xeXbtEYrhUUKudw25x+ea0KKA CiiigAooooAKxIbO5XxTPdGACARrHC2RtCnLSH/eLY/AVt0UAFFFFABRRRQAUUUUAFFFFABRRRQB iWNncxeI725e3CxMFiibIwsQGTj3LsSfpW3RRQAUUUUAFFFFABRRRQAUUUUAFNkUNGy7Vbjo3SnU UAZPhuzurHThFdqqysTJIc5LyMSXbPpk8ewrWoooAKKKKACiiigAooooAKKKKACiiigAooooAKMU UUAZviC0uL3Rbi3tQPOkXYDnBCk4bB7HaTirdlG0VpHGyLHtGFReiqOg/AYqeigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigArG1Cxu5tfsrqKNDBAjkEnpK2F3Ed8JuA+tbNFABR RRQAUUUUAFFFFABRRTZJI4kLyuqIOrMcAUAOoqH7Vbfu/wDSIv3n3PnHzfT1rA1uBN8kUN1/pzTJ N57sF+yoCOM+hAOF75PagDpaKKKACiiigAooooAKKKKACimSyxwoXlkWNB/ExwKb9pt9yL58e6QZ Qbxlh7etAEhYL1IH1pa5bWL2XUNIuZSkSQwX0cIRwS+VmUbs9j6DHT61dudamjt9TvEjQQ6fIY2j YHfJgAnB7Zzxwc/jQBuUVlWMm7X9RUxqpEcLbgWyQd3BBOOMdsda1aACiiigAoqCG+s7iZoYbqGW VPvIkgJH1AqegAooooAKKjkuIYnVJJo0d+FVmALfSobq7jW1uvJcyyxRsTHCQ0mQOgHr9aALVFc5 pF3dPqP2aWSZ4JrVWVvmbbJzu+cgYOMZHrUGnXl40uhw3E9z5jRyx3QKn7wHG7jg56UAdJcXcFta y3U0mIYgS7AFsAdenpUqMrorqcqwyD7VylorQeEtTtnFy06x3AYSbmwSz7QPUnIPvmpYbq/hkeCz eWdzpgkiWVTtMwzgZxx24oA6eiub+0XBaEW89zJE1tIbtnyDG2BtI44bOeB+XFMhkvV0GxuBezNc T+X5vnqwUMFO4HaMoM9/Ue9AHT0VhRTXv9mRyyTSW6gSA4/eyO+75duR8y4zjgE8VqabJcy6bbPe Ki3LRqZQhyobHOPxoAs0UUUAFFIzKilmYKoGSScAVFbXdrdqWtbmKdVOCY3DAflQBNRRRQAUUVF9 pg81ovPj8xRkpuGQPXFAD5JI4kLyOqKO7HApBNEYfOEqeVjO/cNuPrVDUlk1Czi+wSQShZlZzkHg HJ2nkBunNZiaJf8A2WaJjFgXwvEQuSJBnJRjjj9eaAOiiminXfDIki5xlGBGafWJrChPDupSSxJb O8buojfDF9uASRjJyP5VoQXlutpaFpl/fbUQ9dzY6foaALdFcvcXFk3iCC2gvmF0l1vlYkliCD+6 AA5X1zwAPWuooAKKKKACiobm8tbQKbq5hgDcAyOFz+dSqwZQykEEZBHegBaKKKACiiigAooqCK+s 55mghuoZJV+8iSAsPqKAJ6KKKACiikZgqlmIAHJJ7UALUclxBFIsck0aO3RWYAmmfbLTyhL9qh8s naH3jGfTNY2uaVfai96sXleXPbCKJgdpBBJ+c4yRkjGOnNAG3LcwQECaeOMt0DsBmpaw10+8F7dX E1vb3IvIkRkdsiIrnjkcqc5+uaNS1K/tZ74RCIxW9uJR8hJLkkKvXvjn04oA3KKrx3kLGBGcCSdS yLg/Njrj865/T7ixl8QQRWV8ztCJFlJJLzn/AGuMYX19cAUAdRRRRQAVXnt45J0nmbKRKSEP3Qf7 31A/masVm3WjQXWom9aWVXeH7O6hvlZM5xjtnuRQBheGtNstR8Pi7vk+S8vGuo1LFcDzCUUY7d8e 9blzp2jtqUTz6bBJdTMWEptwxyozktjjtjNOsNIhsY4IUlkeC34gjbGI/wDHA4GaqQXdwfFU1ubn MEUWJF/h3ucoo9wqkn60AblFFFABXOX0mmi9mEup6rG+75kiMu0H2wuMV0dFAHK+bpX/AEF9Z/Ob /wCJre0owtYIYJp5o8nDz7t5577gDVyigAooooAq3UUKym9uGykEZIUjhe5b644//XXOeGNKs7nw 1p89+n7yW4+2RjcVwxYsij2APTpW1daHbXV9PcySSkXEQhmj3fK6Dt7ZzzjrUljpcdmkCedJKluu yFXxhBjHYcnHGTQAXVrp092sFxZpLJOpYkxZU7cdTjGemM81YeytXmEr28bSDGGK88dPyrKsLu4k 8S3kL3O6CJFjK44Mpy2F+iYz9a3KAIktbeO4e4SFFmkADyBfmYDpk1LRRQAVk+J2ZdFf5mSEyIJ2 QkFYiw3nj2z+Ga1qCAQQRkHqDQBzmvWunW2jxS2MMEV0rJ9iaFQGL5GAuOoPcema6OqNro2mWdx9 otrGCKXnDKgBGeuPT8KvUAFFFFAHM+MIlt/Dt6F/eXV9KkMbMOQWYBQPoOf1rVttKsLbUIp0X/S4 rfyQdxzszknHqT3qr/wjNn5PlGacqk5uYstkxyZzuz39Oe1aAtTDDM4nbz5B807gEjHTA6YHPFAE 0U/mzTR+VKnlMF3OuA3Gcqe45qWsXwtcyXWnPNJK7+bI0sSuSSkTE7AT7gZ/GtqgAooooAKKKKAK d/pdjqRjN5brMY87Mkjbnr0qzBDHbwJDCgSONQqqOgAp9FABRRRQBieIRG95pcN5j+z5JiJQ33Gf b8gb2z2PBIFM1CG1ttb0s2UccV48hV1iAG6Had24DsDtxnvitueGK4heGeNJYnGGRxkEe4qvY6XY acWNnaRQl/vFV5P40AW6KKKAEcFkYK20kYDelctq9nC+uaBpUa5CvJcyt3ZVXHzeu5mGfWujvrWO +sprSUuI5kKMUbBwfQ1nx6DDFPBcx3My3MMXkLLwf3fHy4IxjgH1zQBb0+ysrN7t7QfNPMZJvmLf PgD8OMcVPaz/AGm3SYRSRbhnZKu1h9RWXrhGmeH5ngaQeWOApO+V24UbuuSxGTV/TS/9nQLJP58q IEkl/vMOGP5g0AWqa6K5XcM7TuH1p1FABRRRQAUUUUAYOlwWtzquqtexxy3qzFcSgErDgbNoPRTy eOpzT/DnlrLqUVoQdPjuMQbfuqdo3hfYNn2zkVfvtK0/UWVry0imZOFZl5A9M+lWYYooIVihjWON BhUQYAHsKAKd4+qLqlktpFA1i277S7sQ68cbat3BlFvIYFVpgp2BjgFscZ9s1JRQBU0pr99NhbU4 4o7wj94sRyoOe34YqMvqn9uKgig/svycmTcfM8zPTHpir9FAGV4mZ00OYqzpHuQTMmdyxbhvIx/s 5qjr1rplvoKy2UUEU6bfsLQABjJn5QpHXPf1Gc10ZAIweRVC20XS7S5+029hBFNzhlQDGeuPT8KA L4zgZ60UUUAFQXNstz5ayE+WrbmTs+OgPtnn8KnqjqGlx311a3JmliltSxjKHj5hg5HQ8dPSgDA0 2ztNUv8AxJc3QAs3l+ygBtoARAHIx0yeCfaulZo7G2gjjhlaMFIlWNS20dAT7Duap2uh21orxRSS C1eTzTASCpc9ST1xkZxnrVTU7mWPxJYwLdOiYaeUD7ojA2hSO5Z2H/fNAG/RRRQA0orOrkZZc49s 06iigAooooAKKKKACoFs7ZbtroQoJ2ABfHJ7fyqeigAooooAKKKKACiiigAooooAKKKKAIEs7aO5 e5SFFmk+84HJ7f0H5VPRRQAUUUUAFFFFABRRRQAUUUUAFHWiigCOC3hto/LgiSJM52ouBUlFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAyaGOeJopo1kjbqrDINORFRAiKFVRgADAFLRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVG9vBJMkzwo0qfdcqMj6GpKKACiiigA ooooAKKKKACiiigClqd+2nxwMtnPdebMsREK5KZ/iPsKu1T1LVLXS44Xu2ZVmlWFNqlvmbp0q5QA UUUUAFFFFABRRRQAUUUUAFFFFAFJr9l1lNP+x3BVoTL9oC/uxzjaT61dqm2qWq6wmlFm+1PEZgu0 42g469KuUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUtRv2sWtQtncXPnzCImFc+Xn+JvQVdqnqO qWmmtbLdMym5mEMe1S2WPTp0q5QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVX1C6NlYTXSwS3Bi UsIohlm9gKsVXv72DTrGa8uSRDCpdyBk4+lAEltKZ7aKYxvEZEDbHGGXI6H3qSo7aeO5toriIkxy oHUkY4IyOKkoAKKKKACiiigAooooAKZPIYYJJQjSFFLbEGWbA6D3p9MnlS3gkmkJCRqXYgZ4AyaA IdNu2vtPhumt5bcyruMUowy+xFWaradfQalYQ3tqxaGZdyFlIOPpVmgAooooAKKKKACiiigAoooo ApalftYm2C2dxc+fMsR8lc+WD/E3sKu1T1HVLTTDbC6Zl+0zCGPahbLHpnHSrlABRRRQAUUUUAFF FFAFW/1Cy09ImvZ0iWWQRRlu7noKtUySKOUKJY0cKQw3DOCOh+tPoAKKKKACiiigAooooAKKKKAC iiigCq2oWS6ounGdBeNH5gi7lM4zVqmGKMzCYxr5oG0Pj5semfSn0AFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAVb7ULKwa3F5OkRnkEUW7+Jz0FWqZJFFLt8yNH2NuXcAdp9R70+gAooooAKKKKACiii gAooooAKKKKACiiigAqG9ureys5bm7kWOCNdzs3QCpqbJGksbRyIrowwVYZBH0oAbBNFcW8c8Lh4 pFDow6EEZBqSkVQqhVAVQMADoKWgAooooAKKKKACiiigApk0scELzSsEjjUszHoAOSafSEBlKsAQ eCD3oAhsbu2vrOK6s5Fkt5BlGXgEVPTY40ijWOJFRFGAqjAA+lOoAKKKKACiiigAooooAKKKKAKt 9qFlYGAXk6RGeURRbv4nPQVapkkUUu3zI0fY25dwBwfUe9PoAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiori5gtYTNcSpFEOr ucAfjUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRQSAMkgD1NGRjOeKACigEEZByPaigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikBDDIII9RQAtFIGDdCDjjiloAKKKKACiiigA ooqrdWpuZUErf6MoJaPON7ds+w54oAtVz8eqNa69qNoWkuZGki8i3DjcMpliMkYA6mqHh/T21jRx dveXESG8d7VkflIVkO1AT2OOvpgdK17zSNPlvJPOuZEubt1kTEgVg0Y4KcZGB19iaANgcgZGKKRR hQMk47nvS0AFFFYd3NIt1KB4ltrcBv8AVMkZKexyc0AblFc758v/AENlp/37i/xrZ05i9mpa8S8O T++QAA8+3FAFmiiigAoqnd2wnk3XLg2kaEmPkZb1PqAO1c94c0+XVdCsL+e8uY5PPM0RD8+UGO2M k9iMZ7mgC7rOqvLp0slj5yrDdRxGdGABYSKrDHUjkirs2tQxLdSiN3trRik8oIwhABPHU4BGf61F d6Tp8peyNzJB9pk+0eTHIBllYMWAxnrgntU8ujWsvnqxkEVywaeIHCynABJ+oAzjGaAFtLoy6xfQ eZIVjSJlUhdgDbuVI55xzn0rQqrDYxw6hPeK8heZVRlJ+UBc4wPxP51aoAKKKzPENxNb6WTDKYWk ljhMw/5ZBmClvwBoA06K5vVdMttF099SsGliuoCrbjKzefyBtYEnduzj1yRiukoAKKKKACquqXIs 9LubksyeXGW3Km8jjrjvWD4qjmttJadZm/tKe5jitpFJ/dlnAAA/3c59ea17PSUs9Rku0uZmEkQj MTNlcg5L+7H1oAyo9WvG/tO1+0Azx2omt2Xa7btrEjgYPIH51NY6pLdatbWv2xSs+nCYhQuVkyBk ce54rat5reYyLAyt5LmNwo+63BI/UVIERTkIoPsKAOOWf/i3t0sty0ky253+Zj5WJPBx3yOnWr91 q93ay6hDDMl00NvDKnygldzEMcDqAAGxXR7V5+UcnJ4oCqDkKAfpQBz93qVxCb+OC782GKyM4ucK fLkGcLwMHPXHt7ike+votOspheRXEl1h9pKxZGzJVWwR155+ma6AIirtCgD0ApSildpUFfTHFAGL Hq0q22lFiC905WTzQAwADEkbeM5AHHXNa9vPFdQLNC26NuhwR7dDVTUNJttRkV5y2UjaNNvGwkg7 h6N8o5q5EhjjCF2cjqzdTQA+iiigAorH1tnmvNO07zXhgupHErI21mCrkICOmfbnANV5rOHRNQ09 tPLxrczeRLb7yyuCpO7BJwRjqO2c0AdBRRRQAUUyYSGFxEVEm07S3QHtmuZv7fZ4m0mwt5pQ0kcs l4wc5ljAAAb6sfw5xQBr61DPOlqsUCyoswaToWUAHlQSATnA59c4NZMGnamunwwSwlore9aVoTIp 86IliF9OMqcHA4xW1ptiml206faZJUaV5f3h4jB/hHoBVq3niubeOeBw8UihkYdCD0NAGNqW+x0S Wa0R7E+ejbVIOdzqDnrjOTwK3C6qyqWALdAT1qO4tre6QJcQRzKDkB1DDP40j2kLvAxjX9wcx4A+ XjHH4GgDF07U5H1S9jG51e5IQSyYURrhCUz1+bOR710FRC1t1ZGEEYMeShCj5c8nH1qWgAooooAK K5+3soNbvL+XUS8oguGgjg8xlWNQBzgEcnOcntjFWdCeSOfULAzPPDaTBIpHbcwBUNtJ77c9TzjF AGvRVC7vrmDVLO1i0+WeGfd5lwp+WHA4z9at3EjRW8kiRtK6KWCL1YgdB9aAJKKqaVdTXumw3NxZ yWcsgy0Ehyyc96jN9cjXFsP7PlNsYfM+15+QNn7v1oAv0Vm+Ibma10iR4JPJdnSPzcf6sM4Ut+AO azdV0q20fTJdSsZJobu3AfzGmZvOOfuvk/Nu6fU8UAdJRQDkA4xRQAUUVy3ieKa3sYHSZhqdzeRx QyoT+7y3QD0Cg59aAN3WI55tJuYraFJpXTaI3bAbPXnjt7isP+zdVMerwW4aBbqJDDIzKu1guGG1 fu59R9a2LLSksr+e5juJmWVFXyWbKqRn5vcnuatwXMNz5nkyB/Lcxvjsw6igDKeVNLsrm/j0v7Ps iXepdRu2544yPx75q3Zag1xeT2ssIikiVGID55YZ2/UcZ+oq7JGkqFJEV0PVWGQaRYYlmaZYkEjD DOByfxoAyvEN2Y9Oh+zvKWmnjVWtzlsA7mxjr8qtV/T7o3lv522MKTlCj7gykAg9OOvSnQWdvbwx RpEm2Ikp8o+UnOcenU/nUkMMUEYjhjWNB/CowKAH0UUUAFZl5p95PqDTR37pbyQeS0OOF5yXH+1j jnpWnRQBkaXo8ljZ2tk86vbWmPKCrgtjoW+nt1PNJFe3EniZrJ0iMcUBkY45jy2EGfVgGJHsK2Kp rplsmoyXwDebIVLDPykgbQceuOKALlFFFABUD2VpI5d7WFmPJJjBJqeigCt/Z9j/AM+dv/36X/Cp 4444UCRIqIOiqMCnUUAFFFFAGVe6XdXd1cn+0JFtLmEQtCB9wc5K+5z17Uum6XLaW1pbTTI8NmgS IIu3dgYBbnrjtWpRQBj2d7cT+Irm1kSIpBCCSB80bMThc98qMn8K2Kpw6ZbQ3014gbzJW3sC3G7a Fzj1wAKuUAFFFFABUc8EVzA8E8ayRSAqyMMgg1JRQBlQaBZxTRSPJcziE7oo55mdIz2IB7jtnOK1 aKKACiiigDnj4fvZYbMXOptcS2U/nxPIv32yfv8A0BwMdK1BDPBDPOZUNzIBlyMIgHoPQcn3q7TZ Y0mieKRQyOpVge4PWgDN8O3k1/pKXM7AmRmZOAGMZJ2EgdyuDWpVeys4LGAQwKQoAHJJOAMDk+gA FWKACiiigAooooAKKKKACiiigCvfWVvqFuYLlNyZDAgkFWHQgjkEeoqvZaPbWlz9pMk9zcBSqyXE pcoD1Az0rQooAKKKKAKupW013p81vb3T2srrhZkGShrPTR7tNVGqLdI1yYPs7B1JUJnII5znOc+u e1bVFAGLrMs2j6E8ltJ86g/Mw3NJIx+UAdPmcj8K1rcu1vGZChk2gPs6bu+Pxpl5ZwX0IinUlVdZ FIJBVlOQQfUGpIokhiWKNQqKMACgB9FFFABRRRQAUUUUAZ15o1tdXJuVkuLadgFeS3lKFwOgbHX6 9as2Vlb2FsLe2j2Rgk9SSSepJPJJ9TViigAooooAKKKKAGTQx3ELwzIskbgqysMgg9qzYfD9nFLE 7SXM6QkNFFNOzpGR0IB9O2c4rVooAKKKKAEIJUgHB9awBoF66WDXGpG4nsJDJE8i58wnOS/4HAx0 966CigCiYpbW2uJ2mTz3w0kjDCoo9B6AZ/GovDt3PfaNBc3JHmyZfGADsJJTI9duDWhPDHc28kEy B4pFKOp7gjBFMtLWGzhEUIIX1JyTxjk/QAfhQBNRRRQAUUUUAZegR3UNrPDdXzXrJOwWZlCkjjjj 0OR+FalNREjQIihVHQAYFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q== ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image008.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAACMAAAAdCAIAAACvy0LTAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAaxJREFUSEvtVjFWwzAMdThL26GvJzAn4LEwsbI5IxyAkY3FGekROrHUuUFO 0JcB+y5BsmzHTnkPJTw61VNkfftL8pfaahgGcZF1cxEWJLkyhVK3dYWrbn8tPSJvG+dxoIgFy2op pLZzTs5hskZJykLKCRG6yCdVDMAob0eTz4QHpTaYB2YklIkZeTNzpcvxSIJxmYgnlKusXXHfkFkI G+Nhqrz93Av1+ryi4tm+k4/3wfCuh7sgDvd1SjJB2HYdTR4Tnk+HXPO2F7tNICpcwh0PXeTFEBKM 27mrzU50vYXwXFu/91DI7dq1DcrXuw5HFDLsPL10ynz4BEMICKNuoGcNqpKprP6VMyEbb4OyQBL0 PYo8kyS646LtdCUyWa0QESQEUPia2SyMxsq1R+LVEMuoGMYVTEih8tBr/8EDv01FREXXMGPlwnKm 8LI/p/TnIEYm4NF2Mme48XJwgSmpzT8VZgU7KbnJrOTce44RpO00gEnrxQ71Wz5SF1HxJmw5KxcR Dby5V87KNEJnfbCYJrNyFkECc5jOZuUyKk7RJ7OSc+QcU13/wy57IX/qG693qStzDqODAAAAAElF TkSuQmCC ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image009.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAAcAAAAbCAIAAAA/JAJkAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAJBJREFUKFNj/P//PwMGYMIUAorQQXR7OiMjY/p2kPUI2+7cusLAYKWlChJl JNW9YBOBwHriHaingCYAwe0JVkB+2jYI7z+y39ICPKFKIaJ3tq46BrMf4bLb14CCYd4q8KACGbMt DdlQqLnI7oeoBpkL0s+go6bCcGdiejrEcRATQO5isEqbcBviMpJ9PMCxCQD0plAfd1Pe3gAAAABJ RU5ErkJggk== ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image010.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAEkAAAAhCAIAAAAathG8AAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAslJREFUWEftWD12ozAQlvcskMLPJzAnwG5S5QhQxk26LbdLAyXu0rpyYzhB OEGeC6O7kPkRQiK8jZJAHHhRZTGj0Xyab2YkL+q6FjMdf2aKC2H9Yvt6cIt4gSMuvm7K2cKYcQM8 QSrZlTCrkrWzV8MojohNXl6G8fGzVtyxySIOAiJWGw1mmgqONQFtf1eKcud3uCjTmKwEFj3RONsG gYq1prFa0nCgVTU86cUPPcBhIKHWSYWaxK0oV4vySAvq2pqQolqj1zUf8kgYMpyBSTRf0W+9lZ6A Mf6I8kh7Yth/i0I4ACOVioDhIOsNNguAjaYPW7POOiAbKImUz9ZW7e4gpoN4Z7hzsgIyESk3+88m QP86ysvVjaek3s3qf/ahKOXJ6rABrmv2sj4ljS5ezv1NpoG/OSz/Pj2ruA2JjsC8XFRBFR2ob3fy wvvsGcibiP3O56wFWHF8ughRmupucavOpVjfbUM4W1kcsfxpV+B3eTihY7J4PIDtc2XYL88okjBs H6uzMQ9vIyg6jwUbOYGR6DYkl8FbeysBp8yh8cLtnW4qXphl2f122TmI90jL8iqBmoFJDkzPqVHp LOYpfIiUxBCpRZD7VCJIDeqANbHssx3OpbYh6uymWqMRoTOm+50Er51ridsZXFWri01xUvWMtulA 7M1GNmR+fZ8tJhzyoC2+uplcNQwf2VyznA+OSWxykptOAow2CP6RHX6YrpVvjH4myOra6gFYjKHW P1ABnv4wsRXxP7hylFaDmjLCFhsgWz5hyu2P3/mAHPPwmt5sXLOpzABKq6LYF9ofVjX63RFc+dWr ob0NGF8mgaPPSad7iaqf/GqaznC6K4cZomufIWPmyIC2nbDRu0PdzQfce2xTbtjgjbNe+mP7MrR9 J2zFcT89Rrr9r4yMhLDJIk2n1flcyh6/Byd3z1zgW2CmwynfJop9ztheAUblBMCZEeWEAAAAAElF TkSuQmCC ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image011.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAEkAAAAhCAIAAAAathG8AAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAtJJREFUWEftVzFy6jAQFf8sOAXDCfAJTJpUHMEuQ/O7lOnS2CXu0lLRxD4B PkGGAukuzu5qLUvAEE1i/0TMV8Egr7TaJ719K03athU32v7cKC6E9R/b9w+3zibYsvr7rrw9jHlu gCculA4l2ch84R3VMANHxKaO78PE+FUv/thUncUxEas/Dc00PhynA6OjdSOadXTCRVVk5CV26InO tW8w8FkbGvOUjgP9UCuSi/ihBng0JNQilziSuJVWPKlKjaFtnQ4N5DlmXvehSoVlwx64RPeS/pul TAec6Y9oT00klv9zFMIDGA2RBAwbee+wOQBcNJewdfOcDXKBkoljdpbqVwczbcQnzZ+TEshEpFyW X02Ay/MoL+d3U7ZO7+bX/IMoVfl8uwSuG/YKK1+Q7KxffthUEUfL7ezpdc/nNiQ6AvN+5IDECdTz labJ42YP5M1FuY501spdKVacMaJ8ftO+/LDJQyMWq/sE9lbVO5Q/Ewr8b7bkTNUv20aIg7TCaQ5o UtDcGOXB6icPKYjOC223qt/ASfqQoF0d8ddeSsAua02ZJvcrU1SSTbt/7A6+58BnpNV2mYNmYJID 0ysqVCaLdRc+pGyxTDwJcp8kgoaBDjgdx7/2o3OpL4gmu0lrDCIMxg3fKA599tYSvz34wVGIutsW HQZj490AI0enN+2qxP4gjvOlCVinpPwPsQHhEHAvvu7R/ioMl4MxJDe0P+WkLjq5tQUBwLoSopNv Gn5PzLChtU4NQDEGrf9LAhx+s7HV2TNcORqnQIWMsMcGyGavmHLl7l8+IMfcvK42W9dsugkDSqtk 6htyOCVB1zet/Pxq6G8D1pdgFcXrXsL6qV9N4TSvu3KyQXT9M2TMHBnQtxc2enfw3XzAtcd25YcN 3jiLWTR2LEP798JWw9MvOEb6vU2RkXBsqi6KsCqfj+zpF1Bw98wJ1rgbbV75Fij2W8b2AQ0D0XKJ ptqXAAAAAElFTkSuQmCC ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image012.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAEkAAAAiCAIAAACcImMSAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAtFJREFUWEftWDty4kAQHfYsyAHFCdAJhBNHPoIULslmG27mRAohc0pEYukE 1glcBGjuou2f5oOxa6iSxIraCSjNr6df9+vuGWZt26o7bT/uFBfC+o9tms4dy29VNsOWVSOaaUhs gCcuNINJtk2+GhHXwPGmTx8jgzk7LtxvusrimIhlvcFME+d4HVgdbWpVb6IzLuoiIymxR08UzrJh QnxtaCxbOg7YpY4mF60I9S2gIaFWeYMriVtpKZvK1Ey0rdehhbLH7OsGylQ5c9gDkSi+oW9zlOmA MB7E+dRo4sj/jEIFAKMlDQHDRtI7bB4AH80lbN0+z0A+UJoSnb2j7OkwTYZwNXJtJePhnGyATETK 9a7fMKK4XD7MRer8YfmdfEhKZb7cr4Hrhr1fJKowbLqIo/V+8fv1XfzWJzoC83GShKrOoH4+aZ78 3L4DeXO120TfFZUwbM2xVqvnxwRsq6sDpj+jCnzX+zdUTFcv+1qpY+OoUx9xSkPzdWyOTj95SiHp vFQs5A2EpE8JzusT/rpHKbAy55R58vh8oahIAuJKGhZvTQ45A4McmF5SoTJRzF0YSGXGmZJNEPuU ImgZ5AGvw9Es8lkOx5ItiCa6KdcYRKiMqN/FNngzRQEkIRBbmAVut8rawcmcwkmpGbbogO/dQtZn fA0lC1ABRKioJgaZEMgDm3xNMbmdI6482dQbdiA7z+UkF50cGO0Q/MpDbrK8i19b3QmeF2+8ZmrI vjSnVwMwGUOu/0UJePrNxVZlf+DKUXsFasoILTZAtnjFkNsdxnxADmk8Zqt3zaabMIx4GcW/0N4k ZVx7qOLML68GextwRq4V+c+sD7qXSP7kV9N0WtBdOdkiOvsMGTJGepQdhI3eHXI37/HsoUWFYYM3 zmoRDa1L3/KDsFWH3fQYGfafOTIS3KarophW5QtJe/wenNw9c4ZvgTttQfE2Uez3jO0vi3XqTDgZ h78AAAAASUVORK5CYIJ= ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image013.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAAwAAAAbCAIAAADHxPmTAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAMtJREFUOE/Vk8ERgyAQRZfUYjxkrABLyD0lQDvYhnexAyvI5BDohSwIrDiM XjKTyZ5w9/nZ/QBzzsFZXM4AX/8NZIeehegHW+kSp1vDKIFloXOCFtvGnwD8dq0IEWReC/DHvTmC 7BuFurbGZJ/sNKJQ3MzOMs4h5zBHbE+XXftPLrRZqxEqGKM45yoCBGEa/8S80XuAoCCUohCh7QIT almysNT3tK1UKW+mtzFZ1LQdwDJOFtAHmQ7Sud30QcsbQPOxP7++xw/re0/qA7km9oo1I3sVAAAA AElFTkSuQmCC ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image014.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAC0AAAAgCAIAAAAJ5mYTAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAexJREFUWEftVz12wjAMVnqWwMDjBMkJYGLq2i0ZYWHrDbokY9m6dupCcgI4 QV8HnLtQyT/EfjVUcchrhmriWZb8Rd8n2UTn8xlGYA8jwEAQ/nG4RPDr0dR5mkbS0rJps9C6WkZH XofyjDplmCgSSApBO+knZJUOqjKAJKvIQ47LOiOnswW4AUKCIKOjzXkShsLXz/i8iBJ5IQaWu0vt m9MnwHwae8iQNDoEtlEeFw9HU6aT5fvs+e2g66FzxtO5H0Ke708Axx9ORHfFxSqnVX5RZaQPzYUU iyFGFGbZ6OgKZZbazPG8eiy2RQabCTZEuofVYwK7zZPsmXh9QIzkQd8LbNc+ilgtxKpHyCbPR5s0 wfVgfdHNTaiw6OZwMb2IPMtJoDFL4kNbkuRkGSXFfFIsHpc8keYH6osmUas5ExRChz+mciTs2WPP MTUpC2yI4LEYjNyZp6pof4BC8dLa3cZ057rYOOSEsu6wzsl6BLQ4EEUh3Mu0R96uoRrHpUOkRHSj OWodmDJQ3dpeDGpw2CtdPy1oP+v9ofvoHu+MayBZ99zilZD43xn9R77MwMIB9N7JVos7nelLw8Mh vo7JbDIgDF496o/dsKzweCFWsBxNXZbBfwt+rSWny9SgHfTeiejuH4HxdDo80LHg+AZBXn3KR/ZU bAAAAABJRU5ErkJggk== ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image015.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAC8AAAAhCAIAAADGT2WLAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAi9JREFUWEfVVz16wjAMNT0LMPBxguQEMHGKcImOPUAylq0rE0vjE5QT9GOo fZf0SXYSp+FHgZCCp1axpGe9Z1mMiqJQD7NeHgYJAXlWNFav43jEK85sXVKyOzM+rPVttYZuBMuk kYpSQzvpT5Xk3ilPlIqSnL7Qh8p+Lib5wMuFaywlgMJbTOVLwcqsDOZI2AtRTwGX68ZkYIo4WW4q NuzPt1Lz6bgjPfZzu09Wi7aXDI3N4slyO3v9+MKhXaF5jafzI0AscLO4Skk1dAYHc9hHs4lSCPtH hiKmAkJMnpBuPDssopIqk5LZ5GlunJ13tVmBhV2wM0mguVo/Qt0gEcIjQZTmOWWq1cLo+FsJ0dfP awsnaSqLkfJqaV6IRlTBelNQjxYYYprghZeh9JTp5gqVsjAgDegcMrdZpkkl6EfeoharRG12+F/r ukl1PLVoe1APyIxJREdycgk6F3Mc8lt4pjz58PLpHLlXtJKTcCHZi42J0ECiHrvPX4peVIg+N4Uq dj0/RZ1EDb5PGD5W4075B+S/sGDSapzwymentyqFN1yv3/AE7Q+m44XucXt1LsjF3T/ZWNBbPcJA nqnqFrF0SDiwDK8fFbxvbo5xr0ijKZF9EEmNkKhH3m8MJXqn9Lo1Dd+Y9oS7CM3inXjqPuN1hixC w+/u0dGxc77zDjI05ejYc/JWOBEavdsMwZPstybxhOHJaoxMd66OpKe66WeAbviE/ebO9NThRSoe DM0va6C/84IDUtwAAAAASUVORK5CYIJ= ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image016.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAAsAAAAbCAIAAAAlGOLqAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAG9JREFUOE9j/P//PwNewIRfGig7qgItiP7fnmAFEUrb9v/2tjQrCM8qbcJt YHCDQhxMbksDCVqlpW0DC0M0WUHUIKuA6YJpARoKBEihrqOmgi2S6B4vV27dQXUHVADqVYgcxINg v8MFGEdTIUrAAQAAp1BuC8oBvAAAAABJRU5ErkJggk== ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image017.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAH1AjADASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD06iii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK57y5NZ1/Ubea6uIrax8tEigkMe5mXcWYjk 9QAOlAHQ0VhTXN9aXcOj6dtuZ1hMzzXjnhM4AyBkkn+VV4/EF/evp0VjaQLLdRzM/nOcRNGwUjjq Mk0AdLRXNWfiG/mWyuZrOCO1nuPsjgSEusmSu4cY25H1pq+IdSEU99JZ24sLe7a3kIc+YVD7d4HT gnkUAdPRXN6j4kew1YQPJZSQ+ckRjR2My7iACeMdT09KsWuqahc6jqKLDax2llKYzJI5Bb5Aw9gM nk0AblFcvZeKwZLtLp7WZYLVroSWjMRtU4KncOvIwRV+G41STTp59QisYYXhLKvmsNmR0dsencUA bNFcXo+tWem2+pLHBA/kQrODayOyuM7Qvz9OfTjmtuw1K/GqLp+p28EcssJniaBiRgEBlOe4yOe9 AGzRWNf6lfHVG0/TreGRooBPM0zEDBJAVcdzg81laHqV/wD2TpWn6fDC1y9qbiRrhjtRd2AOOSSf 5UAddRWfpl4us6OJnRoTIGjkRWwUYEqwDD3Bwa5e7MGk6jqkklxeyJa/ZhBG95Jt3uT156ZAz9KA O4orkv8AhLLhLDUZPKt7ia1jWVGhL+W4LY2ncMgj+oq02q64L6bT/sdn9pWAXKt5jbNmSNp4zuyO vSgDo6K5xde1C+uLGHTbWDN1Zfai07ECPkDHHXriiHX72/Fpb2FrCt5IkjzCdzsi2NsI45OW6UAd HRVDSNR/tDTRcyR+TIjNHKmc7WUkNz3HFc9PqWoaidFu5LeKOyuL5DFtc+YBhsbh05Hp0oA7CiuT i8YGW8QokDWrz+SI1LGYDdt39MYzzj0rU8R3NxHHZWltM0D3lysDSr1RcEnHvgYH1oA2KKxLmKPw 7Y3GoJPeXAVAPJlnLhmJAHLZxyaoarqN/wD2bqunalDDHOdPknje3YlSMYI55yCR+dAHVUVyd74n eyla0g+zBrWFGkE5bdISudq7Qe3c9zViyv8AUrzxKxiaJbFrSGbypdwZQ27P/Av8BQB0lFc5YeI3 m1uKwlksplm3hWtXZihUZwcjB47it20knlhLXNv5D7mGzeG4B4OR6jmgCaiuItdXu7C51cyzyTC4 mlS0V2ztkVgoQex3KcexqzpN/d6d4a/fX0LzR3csJmvpGO7axHGOSeOlAHXUVzEfia6udPsZLS2g knuLtrRwXIQEBjuBxnHAPSp4tdu12Q3EEIuVv1s5djErgruDL36Y4NAHQUViz6xLHJqqZtoRZtGE kncqp3KCc/nxisi71ttV0C/jcxGW2uIFMkBbY4Z1IIzyO4oA7GiqGs38mm2Iu1jV40kQTZ/hQnBI 9xnNZ+oa9cW7ag1vbJJFavFD5hzgO3LFsfwqCM4oA36Ko6RdyXtiJ5JbWYknD2rFkI/HvVDxhM0O lQESTorXcKv5BIcqW5AxzzQBu0Vxdtdz/wBleJGt57tbWCPEH2hm86N9hLdfmA6Yz71P4gv5DHZW cOoC1mS2+2MxlCFyoG1DnqGOcj2oA62iq9hdx31hb3cRyk0auPxGasUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUVlaqZ5NS0+1iupbdJfMLmLbk4Ax1Bp39lTf9BnUP++o//iKANOis z+ypv+gzqH/fUf8A8RR/ZU3/AEGdQ/76j/8AiKANOisz+ypv+gzqH/fUf/xFH9lTf9BnUP8AvqP/ AOIoA06KzP7Km/6DOof99R//ABFH9lTf9BnUP++o/wD4igDTorM/sqb/AKDOof8AfUf/AMRR/ZU3 /QZ1D/vqP/4igDTrLvNHaS/a+sr2WyuJFCSlFDLIB0yp7j1pf7Km/wCgzqH/AH1H/wDEUf2VN/0G dQ/76j/+IoAin0OR2gnh1O5ivI0aNrjCsZFJyQQRjr09KfZ6Fb2U9jJDJJi0ikjAbnfvIJYn1yP1 p39lTf8AQZ1D/vqP/wCIo/sqb/oM6h/31H/8RQBHHoMUdlbWouJCsF39rDYGSdxbH05rL0vQJ7hL j7ZcXEVu1/JM1qQNsmHypz1wcA471sf2VN/0GdQ/76j/APiKP7Km/wCgzqH/AH1H/wDEUAU7jwws 0kqrqE8dtJci6MCquN4YMecZIJHSrn9iQNBqcEkjvHqDs8g6bcqFwPyo/sqb/oM6h/31H/8AEUf2 VN/0GdQ/76j/APiKAK0HhwfaTNe3015m1a0KOqquxiD0A68daq2Wl3N5BqOl3tzePYqoghaaNVY4 /iB/ixgYJ61p/wBlTf8AQZ1D/vqP/wCIo/sqb/oM6h/31H/8RQBWXw2kslzJf30121zb/Zn3BUAX OQVAHBqfTtHa1vPtl1fTXtwsfkxtIFXYmcngDqcDJ9qd/ZU3/QZ1D/vqP/4ij+ypv+gzqH/fUf8A 8RQAl/o5ur4XlvezWkzR+TKYwD5iZyByOCMnB96qx+GxbW1kllqE9vPawmATBVYuhOcMCMdec1b/ ALKm/wCgzqH/AH1H/wDEUf2VN/0GdQ/76j/+IoAs6bYw6bYRWkG4pGD8zHJYk5JPuSSaqXWg293N fSyyyA3Qi+7gGNo8lWU+uT+lO/sqb/oM6h/31H/8RR/ZU3/QZ1D/AL6j/wDiKAIptFuLvTrmzvdU muBMFUN5aLswc8ADrxVttORtVe/8xtz2wt9mOMbic/Xmof7Km/6DOof99R//ABFH9lTf9BnUP++o /wD4igDIXQbmDV7GG0uriCO109olulVSCd44IPB45/Cr/wDwjkcMNp9hvZ7a4t1ZBOAGLhjltwIw cnn61Y/sqb/oM6h/31H/APEUf2VN/wBBnUP++o//AIigCxpunw6bYpaRFnUZLM5yzsTkk+5JNZcX hgRS2gGo3BtbOfzoLchdq9eCcZI5OPSrn9lTf9BnUP8AvqP/AOIo/sqb/oM6h/31H/8AEUAR22iy 2c+LXUp4rPzDJ9m2KQCTkgMRkAnPFXNT06HU7XyJi6FWEkciHDRuOjA+tV/7Km/6DOof99R//EUf 2VN/0GdQ/wC+o/8A4igCM6JJc209vqOpT3ccqbMbVQLzncMD72QOai/4R3zYrz7ZqE9zPcW5tvNZ VGxD6ADGc8k1Z/sqb/oM6h/31H/8RR/ZU3/QZ1D/AL6j/wDiKAI5dEkW5a4sdRms5JEVJtqKwk2j AOCODjvT5NHLakt6l5IpaEQToVBEyjOM+h5PIpf7Km/6DOof99R//EUf2VN/0GdQ/wC+o/8A4igC rZeG/slxYyNqM8sdjuEETKoAUjGDgcn3rWtIZYISkty9w25m3uADgnIHHp0qn/ZU3/QZ1D/vqP8A +Io/sqb/AKDOof8AfUf/AMRQAttolpDuMqidvtTXaFwP3bt6fSqp8OKqRNBeyxTw3Es6S7VbHmEl hg8Ec1Z/sqb/AKDOof8AfUf/AMRR/ZU3/QZ1D/vqP/4igCva+HIrZYB9rmlaG8e73PjLMwIIP50+ 50COf7Uy3Mscs1yl0kigZidVAGB3HHf1qX+ypv8AoM6h/wB9R/8AxFH9lTf9BnUP++o//iKAKf8A wjKtHcmTUJ5LieaO484quUdBgEDGMcdKcPDYaO+E9/PNJePFJJIyqMGMgjAHAHFWv7Km/wCgzqH/ AH1H/wDEUf2VN/0GdQ/76j/+IoAvXdvHd2k1tMMxyoUYexGKzbLRHsNHFjbahMk28yNclVZnYnnI IwfT8Kk/sqb/AKDOof8AfUf/AMRR/ZU3/QZ1D/vqP/4igBtlozWUREV9KJZLn7RPIFUeacYK4xgD AHT0qzqWnpqEUKPIyeVOkwK9ypzioP7Km/6DOof99R//ABFH9lTf9BnUP++o/wD4igBt9ocV3cXk oneL7XbG3lVQMN1w31GSKW30O0jup7idVuXlCKPNQHYqrgAfqfxpf7Km/wCgzqH/AH1H/wDEUf2V N/0GdQ/76j/+IoAn0vT00y0NtHIzxCR3QEAbAxztHsM1crM/sqb/AKDOof8AfUf/AMRR/ZU3/QZ1 D/vqP/4igDTorM/sqb/oM6h/31H/APEUf2VN/wBBnUP++o//AIigDTorM/sqb/oM6h/31H/8RR/Z U3/QZ1D/AL6j/wDiKANOisz+ypv+gzqH/fUf/wARR/ZU3/QZ1D/vqP8A+IoA06KzP7Km/wCgzqH/ AH1H/wDEUf2VN/0GdQ/76j/+IoA06Kzf7Km/6DOof99R/wDxFO0GWWbSY3nlaWQPIpdsZOHYDOPY CgDQooooAKpPqUaarFp7QzB5VZkk2/IcYJGc9efSrtY+oQ6g+vWNxBaRvb24cMzTbSdwA4GO2KAH xa/ZySFdkyph2jlZPkl2fe2nv+me1LoOpNqdtPK7xMUmKgR/wjAIB9+ap6dpN9BcWMMwiFtYGQxy KxLS7sgZGOMAnPWt5I0j3bFC7jubHc+tAGReXEEniLTFSaNmQTbgGBI+Uda2N68/MOPesC4it08X 2Kx/ZwxSVmjWMB+g5J71v7F5+Uc+1ABvXj5hz05pN6YzuXH1pdi8fKOOnFJ5aYxsXH0oAXevPzDj rzRvXj5hz70bF5+Uc9eOtGxePlHHTigBN6YzuGPrS715+YcdeaTYmMbFx9KXYvPyjnrxQAb16bh+ dJvTGdw/Ol2LnO0enSk2JjGxcD2oAXevPzDjrzRvX+8Pzo2Jz8o568UbF67R6dKADevHzDn3o3rz 8w496TYnHyjjpxRsTn5V568UALvXpuHr1o3rx8w56c0bFznaPTpSbE4+UcdOKAF3r/eH50b1/vD8 6TYnPyLz7Uuxeu0flQAb14+Yc9OaTemM7hj60uxePlHHTjpSbExjYuPpQAu9efmHHvRvXj5hz05o 2Lydo59qNi8fKOOnFACb0xncMfWl3LkjcMj3pNiYxsXH0rnfHRMegbkJVjMoJXg96mUuVNm1Cl7a pGne1zpMj1FJuHqK8X+0T8fvpOP9o0n2ifGPOkx/vGuX60ux7n9gy/5+fh/wT2rI9RRkeorxb7RP z++k56/MaPtM/wDz3k/76NH1pdg/sGX/AD8/D/gntGR6ijI9RXi32ifp50n/AH0aX7RPz++k56/M aPrS7B/YMv8An5+H/BPacj1FJkeorxf7TP18+T0+8aT7RPx++k4/2jR9aXYP7Bl/z8/D/gntOR6i lyPWvFvtE/P76Tn/AGjR9pn6+dJ/30aPrS7B/YMv+fn4f8E9oyPUUZHqK8X+0T8fvpOOnzGk+0T/ APPaTn/aNH1pdg/sGX/Pz8P+Ce1ZHrSZHqK8X+0z9fPk/wC+jR9on4/fScdPmNH1pdg/sGX/AD8/ D/gntGR6ijI9RXi32ifp50n/AH0ataZPM2q2gM0hBmQHLHn5hTWKT6EyyKUU3z/h/wAE9f3rx8w5 6c0m9MZ3Lj60uxePlHHTjpSeWmMbFx9K6z58XevPzDjrzRvXj5hz70bF5+Uc9eKNi8fKOOnFACb0 xncMfWl3rz8w4680mxMY2Lj6UuxeflHPXjrQAb14G4c+9JvTGdwx9aXYvB2jj2pNiYxsXH0oAXev PzDjrzRvX+8Pzo2Lz8o568UbF67R6dKADevHzDn3o3rz8w4680mxOPlXj2o2Jz8o568UALvXpuHr 1o3rx8w56c0bFznaPTpSbE4+UcdOKAF3rz8w496N6/3h+dJsTn5V59qXYvXaPTpQAb14+Yc9OaTe mM7h+dLsTj5Rx046UmxMY2Lj6UALvXpuH50b14+Yc9OaNi9do59qNi8fKOOnFACb0xncMfWl3rz8 w4680mxMY2Lj6UuxeflHPXigA3rx8w56c1m+HP8AkDJ/11l/9GNWlsUYO0cdOOlZvhzjRk/66y/+ jGoA06KKKACiiigAooooAxr0v/wlGmgzIU2S4jC/MDtHJOf6Vs1i3mz/AISrTcW5V9kuZdoww2jj PWtqgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5rx7/wAi9/22X+td LXNePf8AkXv+2y/1rOr8DOzAf7zT9UebUUUV5R96FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFWtL /wCQtZ/9d0/9CFVataX/AMhaz/67p/6EKpbmdT4H6HslFFFeufnQUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFZnh3/kDp/11l/9GNWnWZ4d/wCQOn/XWX/0Y1AGnRRRQAUU UUAFFFFAGPevIfE2mIYsRhZSJNw5O0cYrYrHvZc+JtMi8txtWU7yPlPyjgH1rYoAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACua8e/8i9/22X+tdLXNePf+Re/7bL/Ws6vw M7MB/vNP1R5tRRRXlH3oUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVa0v/kLWf/XdP/QhVWrWl/8A IWs/+u6f+hCqW5nU+B+h7JRRRXrn50FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABWZ4d/wCQOn/XWX/0Y1adZnh3/kDp/wBdZf8A0Y1AGnRRRQAUUUUAFFFFAGXf/wDIf0r6 Tf8AoIrUrHvUkHibTHMpKFZQI9o4O0c561sUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABXNePf+Re/7bL/AFrpa5rx7/yL3/bZf61nV+BnZgP95p+qPNqKKK8o+9CiiigA ooooAKKKKACiiigAooooAKKKKACrWl/8haz/AOu6f+hCqtWtL/5C1n/13T/0IVS3M6nwP0PZKKKK 9c/OgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKzPDv/ACB0/wCusv8A 6MatOszw7/yB0/66y/8AoxqANOiiigAooqo2o2y6mmnsXE7qWX5DtIHX5unegC3RWfb6xZ3V01rB KTL82wshCuV4O09GweuKdpV5NdpOLhAskMmzhSuRgHO08jr+PWgCG/8A+Q/pX0m/9BFalZd//wAh /SvpN/6CK1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArmvHv/ACL3 /bZf610tc149/wCRe/7bL/Ws6vwM7MB/vNP1R5tRRRXlH3oUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAVa0v/AJC1n/13T/0IVVq1pf8AyFrP/run/oQqluZ1PgfoeyUUUV65+dBRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVmeHf+QOn/XWX/0Y1adZnh3/AJA6f9dZf/RjUAad FFFABWNqK3reINPmhsJJYIA4eQOgHzADoTnjFbNFAHN6dpl8kmn2s9uEgsDJ++Dj97uBAwByODk5 x0retbSG0VlhUjcdzFmLFj05JJJqaigDnJ7O1h8X2RiitVLpKzBBiQnA5b2rofKjyTsGTweKyLxJ B4p01ysWwpKAQPnztHU+lbNADRFGCCEHy9OOlJ5Me3GxcZzjFPooAZ5UZJOwfN1460vlRgg7BkcD inUUAM8mPGNi4znpR5UZz8g+brx1p9FADfKTIOwZAx0pPJjwBsXAORxT6KAGeVGc/IPm68daXyo8 52DOMdKdRQAzyo+PkHHI4o8qPBGwc8njrT6KAG+Umc7BnGOnak8qMY+QcdOOlPooAZ5UeCNi4PJ4 pfKTJOwZIx0p1FADBFGMYQfL046UeTHgjYuCc9KfRQA3yoySdgyeDSeVGMfIOOnHSn0UAM8mPGNi 4znpXO+OgI9B3oNrecvI6966Wua8e/8AIvf9tl/rWdX4GdmA/wB5h6nnJmkIILthuTz1pfPl3bvM bOMZzUdFeXdn3fJHsPE0g2gO3y9OelHnSYI3tgnJ5plFF2HLHsSefLknzGyRg80gmlG3EjfL056U yii7Dkj2H+bJgje2Cc9e9L50pJPmNkjB561HRRdhyR7EnnSjH7xvl4HPSk86TGN7Yznr3plFF2HJ HsSGaU7syN83XnrR58uQfMbIGBz0qOii7FyR7D/NkwBvbAOevegzSndmRvm689aZRRdj5Y9iTz5c g+Y2QMdas6ZI7anZoWJXz04/4EKpVa0v/kLWf/XdP/QhTTdzOpGPI9Oh7F5UYIOwfL046Unkx4xs XGc4xT6K9c/PBpijJJ2DJ68daPKjBB2Djpx0p1FADPJjxjYuM56UGKM5+QfN1460+igBvlRgg7Bk DA4pPJjwBsXAOelPooAYYozn5B83XjrS+Umc7BkDHSnUUAM8qPAGxeORxR5UZz8g568dafRQA3yk znYM4x07UnlR8fIOOnHSn0UAM8qPBGwc8nil8pM52DOMU6igBnlRjHyD5enHSjyY8EbFweTxT6KA G+UmSdgyRg8UnlRjHyD5enHSn0UAM8mPGNi4znpS+VGSTsGT14606igBoiQEEIMr046VneHBjRow Onmy/wDoxq06zPDv/IHT/rrL/wCjGoA0n3eW2zG/HGema5u7v5rS4KXXiO1hnHJgFvuVfY85ro3c Rxs5BIUE4UZJ+grmbmS6tNSu2tbi6jSZxIUXS3lAO0D7wPPQUAdJbmVrdDNs8wj5tmdv4ZqSkQko pPXHpiloAKKKKAMS8EP/AAlmnFYmExjl3PsIBG0YGehrbrIvZCfE2mR+U4CrMd5xtPyjgc5/Steg AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5rx7/AMi9/wBtl/rXS1zX j3/kXv8Atsv9azq/AzswH+80/VHm1FFFeUfehRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVrS/wDk LWf/AF3T/wBCFVataX/yFrP/AK7p/wChCqW5nU+B+h7JRRRXrn50FFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABWZ4d/5A6f9dZf/AEY1adZnh3/kDp/11l/9GNQBp1yl1HLd atfZsr+9SOQKrxXPlKnyg7Qu4euc+9dU+4I2wAtjgHgZrl7izWe7lmm8P3hupcb2iusRsQMDkMP5 UAdQnCLwRx0NLUdv5n2dPNRUkxyqtuA9s96koAKKKKAMi9lVvE2mRANuVZicqcfdHfoa16y7/wD5 D+lfSb/0EVqUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXNePf+Re/ 7bL/AFrpa5rx7/yL3/bZf61nV+BnZgP95p+qPNqKKK8o+9CiiigAooooAKKKKACiiigAooooAKKK KACrWl/8haz/AOu6f+hCqtWtL/5C1n/13T/0IVS3M6nwP0PZKKKK9c/OgooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKzPDv/ACB0/wCusv8A6MatOszw7/yB0/66y/8AoxqA NOsC+1u7hlvXhjtPs9icSLNKVkfgH5RjA64GeprfrjryS78y4nv7TSEm84xQXEswZosqNo+5zjk8 0AdfG++NXAI3AHB606mxgiNQzbmwMt6+9OoAKKKKAMi9Ev8AwkumEupi2zbVC8g7R3z/AErXrLv/ APkP6V9Jv/QRWpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc149/5 F7/tsv8AWulrmvHv/Ivf9tl/rWdX4GdmA/3mn6o82oooryj70KKKKACiiigAooooAKKKKACiiigA ooooAKtaX/yFrP8A67p/6EKq1a0v/kLWf/XdP/QhVLczqfA/Q9kooor1z86CiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigArM8O/8AIHT/AK6y/wDoxq06zPDv/IHT/rrL/wCj GoA0643V5bOHU70Lbahchkk3iLZsjYoodhuwc7SvsMmuyrktQzf2a3q6VC1sYjdyu0zIT2Kgr1JV RkHigDqoAot4wn3Qox9MVCdQtBqAsDOv2oqWEfOSBU0LK0MbIMKVBA9BWNqUsq+JNOZLK6kjiWQP IkeVG4ADn8KANCLVLK4uZLW3uI5LiMHKZxnHXnvg9cdKXT7uS6WYSxqjwyGNtjblJwDwcD1x9Qaw dNsbvzNOs5LWWH7CZvNn4CvuBA2nvnOfbFdBp9lHp9qtvFJI6L08xtxH40AVL/8A5D+lfSb/ANBF alc9PZww+K7ApBKu9ZiZGmLBjgcAE8fkK3vKQknB54PJoAfRTBEgIODx05NHkptxg4zn7xoAfRTD EhJOD83Xk0eWgIODxwOTQA+imeUmMYOM5+8aDEhzweevJoAfRTPLXIODwMdTR5SYAwcA5+8aAH0U zykOeD83Xk0eWuc4PTHU0APopnlIMcHjpyaPKTBGDzyfmNAD6KZ5a5zg5xjqaPKQY4PHTk0APopn lJgjB55+8aPLXJPPIx1NAD6KYIkG3g/L05NHkpgjBxnP3jQA+imeWuScHkYPJoESDHB46cmgB9c1 49/5F7/tsv8AWui8pMYwcZz941zvjoCPQd6/e85evPrWdX4GdmA/3mHqebUU8yuQwyMMcn5RS+fJ u3ZGcY+6K8vQ+6vLt/X3EdFPEzjbyPl6fKKPNfBGRgnP3RRoO8uwyipPOkyTkZIx90UCZxt5Hy9P lFGgry7f19xHRT/NfBGRgnP3RS+dISTkZIwflFGg7y7f19xHRUgmcbeR8vA+UUnmvjGRjOfuijQL y7DKKkMzndyPm6/KKPOkyDkZAwPlFGgry7f19xHRT/NfAGRgHP3RSmZzu5HzdflFGg7y7EdWtL/5 C1n/ANd0/wDQhUPnyZByMgY+6Ks6ZIzanZocY89Ow/vCmrXM6jlyPToew0Uzy0yDg8dOTR5KbcYO M5+8a9c/PB9FMMakk4PPXk0eWoIODx05NAD6KZ5SYxg4zn7xoMSHPB+bryaAH0Uzy1yDg8DHU0eU mAMHAOfvGgB9FMMSHPB568mjy1yDg9MdTQA+imeUmAMHjkfMaPKQ54PPXk0APopnlpnOD0x1NHlJ xweOnJoAfRTPKTBGDzz940eWuc4PTHU0APopnlINvB+XpyaPJTBGDgnP3jQA+imeWuScHkY6mjyk GODx05NAD6KZ5KYxg4zn7xo8tCScHnryaAH1meHf+QOn/XWX/wBGNWgI1BU4Py9OTWd4cGNGjH/T SX/0Y1AGpWHJoFgJvJa9uUgkbf8AYvPxGxzkjb1xntnFblcbrUVuupXlvK+nPNdlSk87kSW3AA7H GMZHI5NAHZAADA4FFNjUrGqlixAA3Hv706gAooooAxbyPHivTZPIiXcko80H52+UcHjp+NbVYt4I f+Eq00rJmbZLuXzCcDaMHbnj64raoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACua8e/wDIvf8AbZf610tc149/5F7/ALbL/Ws6vwM7MB/vNP1R5tRRRXlH3oUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAVa0v8A5C1n/wBd0/8AQhVWrWl/8haz/wCu6f8AoQqluZ1PgfoeyUUU V65+dBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVmeHf+QOn/XWX/wBG NWnWZ4d/5A6f9dZf/RjUAadcfqu5bvU7WDUcRXLfvo0095ihKgEFh3IA+ldhXK3DTx6vf7ptWt1a QFBaWu6NhtHOSpy3r9BQB0OnR3MVoqXMySuOjIhQbewwSas0ifcXqeO/WloAKKKKAMa9dD4o01BG wcJKS+wgEbRxu7/Stmsm+dD4j0uMOpcLMSueQNo7VrUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABXNePf+Re/7bL/WulrmvHv/ACL3/bZf61nV+BnZgP8AeafqjzaiiivK PvQooooAKKKKACiiigAooooAKKKKACiiigAq1pf/ACFrP/run/oQqrVrS/8AkLWf/XdP/QhVLczq fA/Q9kooor1z86CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArM8O/wDI HT/rrL/6MatOszw7/wAgdP8ArrL/AOjGoA064mae5u7x723HmJdwOqSG6VRCGVNoKk8FSGPAPWu2 rKs/D2l21nDA9jbTNGgUyNCuW9zQBpxArEis24hQC3r706gAAAAYAooAKKKKAMm+RB4i0twihysw LY5I2jvWtWPe+d/wk2mbtnk7ZduM7s7RnPbFbFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAVzXj3/kXv8Atsv9a6Wua8e/8i9/22X+tZ1fgZ2YD/eafqjzaiiivKPvQooo oAKKKKACiiigAooooAKKKKACiiigAq1pf/IWs/8Arun/AKEKq1a0v/kLWf8A13T/ANCFUtzOp8D9 D2SiiivXPzoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACszw7/yB0/66 y/8Aoxq06zPDv/IHT/rrL/6MagDTooooAKKKh+1232r7L9oi+0Y3eVvG7HrjrQBNRUCXltLNJBFc RSTxj5o1cFh9R2pun3ZvbUTGIxNuZWQkHBBIPI+lAFS//wCQ/pX0m/8AQRWpWXf/APIf0r6Tf+gi tSgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5rx7/yL3/bZf610tc1 49/5F7/tsv8AWs6vwM7MB/vNP1R5tRRRXlH3oUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVa0v/kL Wf8A13T/ANCFVataX/yFrP8A67p/6EKpbmdT4H6HslFFFeufnQUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFZnh3/kDp/wBdZf8A0Y1adZnh3/kDp/11l/8ARjUAadFFFABW DqU8UXijTW8mUlFkEjpAzAbgoXLAY7VvUUAcnpFvKLnTLf7LLHcWZmNzK0ZAO7PRujbiQe/Sui06 zNjbtEbiSfLs+5woIycnoB3NWqKAOenjuF8VWCvc3EibZiu6NAi8DgEDJP1rf2tk/vDz7Disa8Ef /CW6cwikEnly5kOdpG0cDnrW3QAwK2R+8PHXgc0bH2481s564FPooAZtbJ/eHnpwOKNrZH7w8ew5 p9FADNj4x5rZz1wKNrc/vDz04HFPooAbtbI/eHp0wKTY+APNb64HNPooAZsbn94eenA4pdrZ/wBY enoKdRQAzY/H7w8ew5o2Pg/vTz04HFPooAbtbOfMPTGMCk2Nx+8PHXgc0+igBmx8H96fyHFLtbJ/ eHp6CnUUAMCtx+8PHXgc0bHwR5rZz1wKfRQAza2T+8PPsOKNrcfvDx14HNPooAZsfGPNbOeuBXO+ OgV0Hcx3r5y/KeneulrmvHv/ACL3/bZf61nV+BnZgP8AeYep5yXTBHlLz0OTxS+Ym7PkrjHTJ/xq OivLufdcq/pjw6fL+6U468nmjemCPKXk9cnimUUXHyok3pknyVxjpk8frQHT5f3S8deTzUdFFxcq /pj96YI8pc5znJ/Kl3pk/uV5HAyeP1qOii4+VEgdOP3S8deTzSb0xjylznOcn8qZRRcOVEhdPm/d Lz05PFG9Mg+SuAORk8/rUdFFxcq/pj96YA8pc5znJ/KgunzfulGenJ4plFFx8qJN6ZB8lcY6ZP8A jVnTGU6nZgIAfPT5sn+8KpVa0v8A5C1n/wBd0/8AQhTT1M6kVyP0PYtrZH7w8deBzSbHxjzWznrg U+ivXPzwaVbJ/eHnpwOKTa2R+8PHXgc0+igBmx8Y805z1wKCrc/vDz04HFPooAZtbI/eHp6DmjY+ APNOc9cCn0UAMKtz+8PPTgcUu1s/6w9PQU6igBmx8D96ePYc0bH5/eHnpwOKfRQA3a2f9YemMYFJ sfj94eOvA5p9FADNj4P7w8+w4pdrZ/1h6egp1FADNjcfvDx14HNGx8Eea2fXAp9FADdrZP7w9PQc Um1uP3h468Dmn0UAM2PjHmtnPXAo2tk/vDz04HFPooAaFbI/eE468Dms3w5xo0fOf3kv/oxq1KzP Dv8AyB0/66y/+jGoA06KKKACiiigAooooAx71XHifTGMxKFJQI8D5TtHOetbFYl4bf8A4SzTgqqL jy5d7bMErtGOe9bdABXIeL9f1DSdRhhtJEVGiDkMgPOSP6V19ee/ET/kMW3/AFwH/oTVjXbULo9P KqcKmJUZq6syp/wmmt/89ov+/Yo/4TTW/wDntF/37Fc9RXB7Wfc+r+o4b/n2vuOh/wCE01v/AJ7R f9+xR/wmmt/89ov+/YrnqKPaz7h9Rw3/AD7X3HQ/8Jprf/PaL/v2KP8AhNNb/wCe0X/fsVz1FHtZ 9w+o4b/n2vuOh/4TTW/+e0X/AH7FH/Caa3/z2i/79iueoo9rPuH1HDf8+19x0P8Awmmt/wDPaL/v 2KP+E01v/ntF/wB+xXPUUe1n3D6jhv8An2vuOh/4TTW/+e0X/fsUf8Jprf8Az2i/79iueoo9rPuH 1HDf8+19x0P/AAmmt/8APaL/AL9ij/hNNb/57Rf9+xXPUUe1n3D6jhv+fa+46H/hNNb/AOe0X/fs VueEfEOo6rqslvdyI0axFwFQDnIH9a4Kuo+H3/Idl/692/8AQlrSlUk5pNnHjsJQhh5yjBJpdj0a iiivRPjQrmvHv/Ivf9tl/rXS1zXj3/kXv+2y/wBazq/AzswH+80/VHm1FFFeUfehRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABVrS/+QtZ/wDXdP8A0IVVq1pf/IWs/wDrun/oQqluZ1PgfoeyUUUV65+d BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVmeHf+QOn/AF1l/wDRjVp1 meHf+QOn/XWX/wBGNQBp0UUUAFFFFABRRRQBl3//ACH9K+k3/oIrUrIvYYl8S6ZMI1ErLMrPjkja OM1r0AFee/ET/kMW3/XAf+hNXoVee/ET/kMW3/XAf+hNWGI+A9bJv96Xozk6KKK80+zCiiigAooo oAKKKKACiiigAooooAKKKKACuo+H3/Idl/692/8AQlrl66j4ff8AIdl/692/9CWtaPxo4cw/3Wfo ejUUUV6h8IFc149/5F7/ALbL/WulrmvHv/Ivf9tl/rWdX4GdmA/3mn6o82oooryj70KKKKACiiig AooooAKKKKACiiigAooooAKtaX/yFrP/AK7p/wChCqtWtL/5C1n/ANd0/wDQhVLczqfA/Q9kooor 1z86CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArM8O/8gdP+usv/AKMa tOszw7/yB0/66y/+jGoA06KKKACiiigAooooAyL12PiXTEMThQsxEhxg/KOOuf0rXrLv/wDkP6V9 Jv8A0EVqUAFee/ET/kMW3/XAf+hNXoVee/ET/kMW3/XAf+hNWGI+A9bJv96Xozk6KKK80+zCiiig AooooAKKKKACiiigAooooAKKKKACuo+H3/Idl/692/8AQlrl66j4ff8AIdl/692/9CWtaPxo4cw/ 3WfoejUUUV6h8IFc149/5F7/ALbL/WulrmvHv/Ivf9tl/rWdX4GdmA/3mn6o82oooryj70KKKKAC iiigAooooAKKKKACiiigAooooAKtaX/yFrP/AK7p/wChCqtWtL/5C1n/ANd0/wDQhVLczqfA/Q9k ooor1z86CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArM8O/8gdP+usv/ AKMatOszw7/yB0/66y/+jGoA06KKKACiisC/a1g8Xaa/nKk0kcquDLjIwu3jNAG87KiM7EBVGST2 FQ2d5BexmSBiwBwcqVI4z0PsQa5PTQtxNYqJ3N7didL5d5JAwfvL2wcAdK6XS7Oa1WV7h0aWQqD5 YIACqAOv0zQBDf8A/If0r6Tf+gitSufn+1DxVYRy3IcbZmUC3KhRgfxZw1bu2TJ+cY7fL0oAfXnv xE/5DFt/1wH/AKE1d+FkyMuPf5etcB4+wusW/m/P/o4xj5f4jWGI+A9XJ9MUvRnJ0U8NHhcxnI6/ N1/SgtHg/uznPHzdK84+yu+wyipN0W7/AFTYx03f/WoDRfLmM8dfm6/pRYXM+xHRT90eD+7Oc8Hd 2pd0WT+7bGOBu6fpRYOZ9iOipA0Xy5jPHX5uv6Um6PH+rOc/3u1Fh3fYZRUm6LJ/dn2+bp+lG6LI /dnHf5uv6UWFzPt+RHRT90eP9Wc567u1KWi+bEZ56fN0/Siw7vsR0VJuiyP3bYxz83X9KTdHgfuz nPPzdvyosHM+wyuo+H3/ACHZf+vdv/Qlrmi0fzYjPPT5un6V03gPDa5J5Q2f6O2c/N/EtaUvjRxZ g39Vnp0PRaKZtkyfnGMcfL0oCycfOPf5eteofCj65rx7/wAi9/22X+tdFtkx/rBnPXbXO+OgRoOX O5fOXgceves6vwM7MB/vMPU82op5aPDYjOe3zdKXdFuz5TYx03f/AFq8ux91zPsR0U8NH8uYzx1+ br+lG6PB/dnOePm6UDu+wyipN0WT+7bGOPm/+tQGi+XMZ46/N1/SiwuZ9iOin7o8H92c567u1Lui yf3bYxx83T9KLD5n2I6KkDRfL+7Pv83X9KTdHj/VnOf73aiwXfYZRUhaL5v3Z56fN0/SjdFkfu2x jn5uv6UWFzPt+RHRT90eB+7Oc9d3alLRfNiM89Pm6fpQO77EdWtL/wCQtZ/9d0/9CFQ7osj922Md N3/1qs6YUOp2YCEN56c5/wBoU0tTOo3yPToew0UzbJkfOPf5etG2Tb/rBnPXb/8AXr1z88H1HcyG K2lkXG5ELDPsKUrJk/OMdvl6VDeK/wBjmywI8tsjHXg0nsJ7Hn48c6xj7lr/AN+z/jS/8JzrH9y1 /wC/Z/xrnA0X/PJsY6bu/wCVAMfy5jbjr83X9K832s/5jyPbVP5jo/8AhOdY/uWv/fs/40f8JzrH 9y1/79n/ABrnMx4P7ts54+bp+lLui3H902McDd/9aj2s/wCYXtqn8x0X/Cc6x/ctf+/Z/wAaP+E5 1j+5a/8Afs/41zgMfy5jbjr83X9KMx4P7s5z/e7flR7Wf8we2qfzHR/8JzrH9y1/79n/ABo/4TnW P7lr/wB+z/jXO5jyf3TYxx83T9KTMfy/um46/N1/Sj2s/wCYftqn8x0f/Cc6x/ctf+/Z/wAaP+E5 1j+5a/8Afs/41zmY8f6s5z13dqXMeW/dN7fN0/Sj2s/5he2qfzHRf8JzrH9y1/79n/Gj/hOdY/uW v/fs/wCNc7mPI/dNjHPzdf0pMx4H7s5z/e7flR7Wf8we2qfzHR/8JzrH9y1/79n/ABo/4TnWP7lr /wB+z/jXOEx/NiNuenzdP0pd0W4fumxjkbv/AK1HtZ/zB7ap/MdF/wAJzrH9y1/79n/Gj/hOdY/u Wv8A37P+Nc5mPA/dnOefm7flQTH82I256fN0/Sj2s/5g9tU/mPXtGu5L7SLW6mCiSVAzbRgZq7WT 4bDnw7Y7WCjyhjIzgVplZMn5x7fL0r0Y6pHrwd4ofWZ4d/5A6f8AXWX/ANGNWgFfIy4x3+XrWf4c yNGjz182X/0Y1UUadFFFABUMlnayyiWS2heQYw7ICeOnNTUUAMWGJJWlSJFkf7zBQC31NPoooAq3 unWeoBBdwLL5ZJXOeM9aq/8ACO6R/wA+S/8AfTf41qUUAZf/AAjukf8APkv/AH03+NMfwxochzJp sLnplsmteigadtjG/wCEU0D/AKBVv/3zR/wimgf9Aq3/AO+a2aKVh8z7mN/wimgf9Aq3/wC+aP8A hFNA/wCgVb/981s0UWDmfcxv+EU0D/oFW/8A3zR/wimgf9Aq3/75rZoosHM+5jf8IpoH/QKt/wDv mq58IaR/aYl/s62+zeSVKY/j3A5/KuhoosHM+5jf8IpoH/QKt/8Avmj/AIRTQP8AoFW//fNbNFFg 5n3Mb/hFNA/6BVv/AN80f8IpoH/QKt/++a2azr68u4pm+xJDdeUoMtuGxLz3Hbp2PWiwcz7lf/hF NA/6BVv/AN80f8IpoH/QKt/++a0rK7hvrSO5t23RyDIyMEexHYip6LBzPuY3/CKaB/0Crf8A75py eGNDjOU02FD0yuRWvRTsLmfcy/8AhHdI/wCfJf8Avpv8aP8AhHdI/wCfJf8Avpv8a1KKBGX/AMI7 pH/Pkv8A303+NI/hrRZF2vp8bj0Ykj+datFAGN/wimgf9Aq3/wC+aP8AhFNA/wCgVb/981s0UrFc z7mN/wAIpoH/AECrf/vmj/hFNA/6BVv/AN81s0UWDmfcxv8AhFNA/wCgVb/980f8IpoH/QKt/wDv mtmiiwcz7mN/wimgf9Aq3/75qvqPhDSJrGWO1062inYfK+CMc10NFFg5n3Mb/hFdA/6BVv8A980f 8IpoH/QKt/8Avmtmiiwcz7mN/wAIpoH/AECrf/vmj/hFNA/6BVv/AN81s0UWDmfcxv8AhFNA/wCg Vb/980f8IpoH/QKt/wDvmrV/PcCVYbGa3a5VTIYJc5dfqPu/XBqTTb9NQtvNCNFIjFJYn+9Gw6g0 WDmfco/8IpoH/QKt/wDvmlHhXQAcjSrcEdwtbFFFg5n3Mv8A4R3SP+fJf++m/wAaP+Ed0j/nyX/v pv8AGtSimSZf/CO6R/z5L/303+NB8O6ORg2SEf7zf41qUUAY3/CKeH/+gTbf980f8Ip4f/6BNt/3 zWzRRYVjG/4RTw//ANAm2/75o/4RTw//ANAm2/75rZoosFjG/wCEU8P/APQJtv8Avmj/AIRTw/8A 9Am2/wC+a2aKLBYxv+EU8P8A/QJtv++aP+EU8P8A/QJtv++a2aKLBY56w8H6PFahLnTbaSXe53Yz wWJA/AYFWP8AhFPD/wD0Cbb/AL5rZoosFjG/4RTw/wD9Am2/75o/4RTw/wD9Am2/75rZoosFjG/4 RTw//wBAm2/75o/4RTw//wBAm2/75rZoosFjG/4RTw//ANAm2/75o/4RTw//ANAm2/75rZJABJOA Kx/7Vmt5o3uRDLYTvtjuoDwpJwA49D0yOM0WCw9fDmjKoVbFFUdACQB+tL/wjukf8+S/99N/jWpR QMy/+Ed0j/nyX/vpv8av2ttBZ26W9vGscSfdVeg71LRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUZxyazdS1MwGCG0EM088nlrvkwinaW5Iz2HHrQBHrWsppqKsbRNMzhSHY4 TIJGQOcnGAO5rJtrO9nYPBNNBdSTLNcQiQBbcnBIbjL5HAB6Zp2mWb3lzdxXNqJLaWcm4jkky0Ew AwUbqVIxjuK6Ozs7exh8q2jCKTuPJJY+pJ5JoAW2tYrUSCIECRzIRnjJ64qaiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACsmfW0a3uGtFWSSGQowdtoQDq7dwowe3OKk1rVo9NtZGDx +cqhsPnCqWA3NjsM1h6dbS3F286rBHc3XzXVuQQs8BOA7DnY+M4GenFAEMIn1mW8MQubXUJAhki8 zZGBjCyggZIxzszXW29rHA7yDJlkC+Y394gYzim2Gn22nQmK2QqpOSWYsT+J56VZoAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKCcDJpHdEGXYKPUnFc9rGoyXUd/awwCW0hhBnZ JtkhVhnMeODge/PSgBmq6sb+4fSrVI5YZUAkdZMNsYcuOMBQO56nipNP02W4eXzbmWfTpbfyxucb Zc4IZVAwgAp2n6RFe2sR1K3jmMSBIZ1Yr50WMjcB+oPFbyqFUKoAAGAB2oAFXaoXJOBjJpaKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACignHJqFJkvLQyWsylXBCSLyM9M+/N AEGoXixFbRZES5uFYQ+apKMw7H/CuZ0ixMsVxYW9tCbcTD7Tbzsd1vJ3KsPvAjpyMUlvY3c+sSWU nnTW28rcR3IbbtH3ZVfs5PYcYrrbOzhsrcQwKQuSSWYsWJ6kk8k0AFnZ29jB5NvHsXJY5JJYnqST yTU9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ97qSxwSfY3hmmXkgv8sYzgs2 OcDB/KlXV7RtUbTiXWYdGZcK56lVPcgY4qnPostveT3WkmCNrri5hnBMch/vcdD7dDQBmaZLPqGr PP8AZhFcSIouoZATFcQH7rr12tj+E10tlYWlgjJaW6Qqxydoxmm6dp1tptv5VtEsYPLYzycY7/y7 VboAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKRnVMbmC5OBk4yfSs/Xoppd MkaEyMYwXMUZIMuBwuRyBnHSgDM8STW+o2NxbmP7RBav/pcQysqqBkOnrjr7jIpdP0z+0o4Zb+K2 uLdYgIbiMsjTJ1G5RgAY7HNQaHpRvoi+ob7mGMhbeeQNFK64yysO6Z6Z9K6oAAYAwBQAgAVQAAAO ABS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYviPULKG1e1u0uWUqH drcfNEM8Nn1z0AyTjpQA/XJVBS2u2Kafdo0MkinaY3P3TnsDyPrVODT7iy1GwjgubqeVebiRuITF ggDb90HOMY9DVrR7mS/tntL1Eu49gKXKrmO4Q9yOzeorSs7OGxh8m3DLHnIUuWC+wz0HtQBPRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFISFBJIAHJJoAWsnWruVbSF7SWTyTLtmlt18 x0XB6DnvgH0qvrWuizuGtlijkVUVpA0m1mVjgCMAZY9aqwxNam3m8MBXt7hjHJE4IjjI6ue4Ixgj vQAWn23V7G80y/RftMYEtvM67WAJOxmA+64x2rf0+1NnZpA08tw45aWU5Zz3Pt9Kfb2sNu0jxxqs krb5GHVm9amoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZNKsEEkz52RqWb HoBmmXd1BZ27T3EgSMYGeuSegA7msea6vnzrFlOt3YYw1ps2naPvEE87gc8HjHFAFWe8stZvLSz1 WyeAzR+baOsu4c9Dx91vT8cVpaLJqrSTQXqq0EDGOOdgQ8+P4sdh29zzVXTbHTr9Le806PyLMS+d gRbTMw+6cnnaMmugoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisr UtZW2slubREulOTvD4QAepGeSeAB3oAk1DVorRzBDsuLsAN9mVwHK98Ducc471hQb9VvxbWl9JLb xn7VFdcM9u/I8tw3XqcdxRpkCarJdRmKQwSyl5RK2LixnAHAPcehHT6V1cUSxIFHJ7tgZY+p96AI dPsYNOs0tbdAqL7dSepPuTVmiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqS3tr d3VzpzhllRfmjcY3oR95fUdqdqF4tsqRLIiXE+Ug8wHaXx0J/wA5rlLZ7zVNSFu1z5zxs5iuUCia 0ZTglwMAqxz8vpQBotZ3AWDT7tZleBwbS/hQPwOAG9Dg4OeDW5YWSWNv5SMzszF3dursTkk1YUEK Axyccn1paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuc1XUxqHk2lmXXd NgPKGjin25yiuPcfjgigDY1KxS/t1jZ3jdHEkbocFWHQ1j6HpFzDMzXduIo2hMc6tN5n2lyclyO3 f86taZNql7FveWNVjuOHERUSx45AB5HPQ98Vs0AIqhVCqAABgAdqWiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAyPEF9qGnxw3FrBDLbAn7RvzlV7EY7etYukaJNJBJGk HkWMsx3ReblWThlkjZejA8ds4rsSAQQRkGora2gtIBDbxrHGCSFXoMnNADbO0isoBDCGxkksx3Mx PJJJ6mp6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKz9Y1L+zoYdiq008gii35C bj/eYDioNX1r+zLq1Rrdntpw2+dTny8e3f8A+tWEtvdz6s1ssst3DLtWaOcM0U0RGTKG6KcnChfS gCd4dR1Fr2xaNA0v+uguHJEJPSWJscrxnHGCK6a0tltYFTcZHCgPKwG6QgYyxHU061gFtbRwCSSQ Iu0PIcsfqe9S0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNlZkiZlQyMBkK uMn25p1c1ravquqrpkcr2rxR+dE5JC3B4yvB5X1HWgCTVNTkuLiCCy1KKzicMy3JAZWlRuYzngd8 9/SqugQJqkayGeWKKGcTPZ4BVZPvBlfrsOdwq7Y6e13eS3V1YfZQ4Cz27lZI53H8eO2PXqe/StWy sYbISeVuLStudmOST0H4AcAUAWaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRlDqVbkEYNLRQ Bytt4cNjqUNtG1x9hEnnRMj5CEdUcHPByeR64ro7S0gsoBBbR+XECSFB4GTnip6KACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACorm5gtIvNuZkhjyBudgBk8Cpa5h9SN7BHdajYW 8umtKU4JZoGyVy4PH5dM0Abmp2v22xeEEnPO0NgPj+En0PesDw9o8xGbyKVLZCsiQzABo5xyzIQf lTtjvWjpNpqNney23m/8SuHiASDdI2R0zn7q9s8/lWzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSMSFJUZOOB60 FguMkDJwM96wT4jNtcyR31oyIJ2hUxHzG4GQSo5xt5yM0AVL9LnWo47uCLfC0LR4+0GM2soPLHHX H9PepNF0mK+s/tFzNNJukIdkYol2FOFdl7k4HPetKOwgnnGpafcvCLjDSBRlJh6lT3x34NagAAwB gUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUjHapOCcDOBS0UAcbJrDatIYL23/0UhmcQI5msXU/IWI/iPPQce4rT 0Symlvxqs7xSOYfJE6r/AK9M5V8fwnqCO9aZ06IaoL+JmikK7ZVX7so7bh6j1q5QAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXO3uuT6f4hmin2f2ekCngfMJ Dkjn32kY9cV0VVH020kupbiWIStKE3K43L8hJUgeoJoA5ZfEl19gFvekfbA7vJ5R2YRWxtHB5PTt 9RWlHr9ws+ozy26mwt4o5E+YiT5lyAVx1JPrxV5tBtfMMsU1xBMzOzSRSYY7jkg+2fyp8ui2s00z yNKyzxCKZC/yyADAJ75HrQBVbXpojJbz2Gy9DRqkKyhlffnB3Y4xg547d6r2WtXu+4hktjJdvevD FCZAFRVjVj82OnU9M81eGgWnkyI8txJLIyt57yZkUr93B7Y/qaRfD1okJRJblZDObjz/ADP3gcgK SD7gdOlAFzTb0ahZLcCMxtuZHRjkqykgjPfkVaqCytIbG1S2gBCLnqckknJJPck1PQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAf//Z ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image018.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAFpAicDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD06iii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKoa7dy2GhX13AAZYYHdMjPIFAF+isSy0q0s rWLUTNcyzpH5skpnYmXjJyM4x7YqtaaxqgNhNdrbGHUY2eJYwd0RCF1BJPzcDnpzQB0lFcpZavrt wulbzZKdThZ1IRv3JUBsnn5sg9OMGpI9a1S6/sy3gFrHcXDXEczsrFVMZxlRnv6e9AHT0VzLa5dt ZIjTwQXqzyQOFt3m8wocZVVOcdCc9M0kGualqCaOtotvC96k5laRGIQxkDIGQeTng0AdPRXNT69c QavFEs0VxbtdLbOqW7jYTx/rPu5B6irmmXmo6jI94HtorASvGsZQlyFJXcWzgcjpjpQBsBlJwGBP saWuN0zUre01fzI4beSO5ilfzoLZ4s7fmOGbh8+o9q0dO1XUmutN+3C2MOpRs8axAhoSF3AEk/Nx 345oA6GkBDDIII9RWTqF7ftrEem6eYI2EBuJHmUsCN20KACO+eaxtBvdRk0zTdOsPs8MptWuJJJl LgfOQFABHfPNAHYUVm6bcJrmgxS3EW0TqRIiseoJBwRzjIrlsQaVe3TW8Ltcf2j9ntyxklES+UrE 7Act3496AO7orlxrerNbW6CBFnkvlthLNC8auhQtvCk5GMY/CmjWtYiiuJpvsjR2V2ttMFRgZQSv zLz8uA4456GgDqqK5efWtWj/ALSvALU2dhdeU0ZU75E+XPOcAjd6c0+fW9RUXWoRrb/2fa3P2doi p8xgGCswOcDk8DHagDpaQEEkAgkdaztavbi0jtorQR/aLqcQo0gJVOCSSB14B4rno9TvNMm1QyLG 93Nfx24aONmXmIHdtHJ4HT1oA7OisrQb+7vY7hbuFlMTgJKYWiEqkZztbkY6Vn6bZR63JfXd/LO0 iXUkMapMyCFVOBgAjnvn3oA6WkBBJAIyOtc3eavqUP8AaM9qIDaaYQkiSgmSbChmO7OBweODk1Xu NUfTr7VZYE3SXN5BEhKF9u6FTkqOTgA8CgDraK4661HWLq2t0Dm2kTUIo1ma3eNZlYf3Cc8HgjPN WtZ1260yR9lxDObZUM8S20hznrlwcJ6gGgDp6Kgia4a5l3pGLfapjYMdxPOcjt2rltRvm0zxddal LNJ9jhhiimTJ2gOHIOPXcoH40AdhRXGaPdXWn2mrPdXgjuXuY2zMrS7WdFYqqjk9SABVhPEOoyWO 2NITdrqCWhaSJ0VlYA7tp5BwentQB1dFc6usX8M32S48h547+O2d0UhWR13AgZ4POKfc6zNG2pIZ 4YPIuI4YmaJpCdyBsbQcseTjFAG8SBjJAzxS1yJ1ObUrez+0KBLb6tHCWEbR7uMg7W5HB6Vvaney 2N1YHC/ZppvJlJHKkj5Tn6jH40AaFFcvLrmotZQ3caxxWs80uLjyGlEcanCZVTn5uTnoK6Kzm8+z hmEscu9A3mR/db3HtQBNRXIeJdh8QOJbO8vETTy6x20hUq28/N94f1o01ZtVuNPsNQu3nhj05Lhj FIVE7sxGSRgkAD8zQB19FczqGmW66ro2nlp3tWadijTOf4QQM5zgdqhkv20CXWoEmkktre3jmhEj FzG7kqEyecEgGgDrKK5rwfdwj7Vpkd6bsQbZFlZiSQw+br6MG/MV0tABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFQ2l3BeQ+bbyCSPcV3AdwcGgCaisW8tIb7xGkNyGeNbQsFDsozv6 8Gp/+Ef0v/n3b/v8/wDjQBp0Vmf8I/pf/Pu3/f5/8aP+Ef0v/n3b/v8AP/jQBp0Vmf8ACP6X/wA+ 7f8Af5/8aP8AhH9L/wCfdv8Av8/+NAGnRWZ/wj+l/wDPu3/f5/8AGj/hH9L/AOfdv+/z/wCNAGnS OiyIyOoZWGCCMgis3/hH9L/592/7/P8A40f8I/pf/Pu3/f5/8aAEtNBtbSRDHNdGKP8A1cDTsY09 gPT2NNtPD1haTCSMzMEVkiR5SywhuoQHpT/+Ef0v/n3b/v8AP/jR/wAI/pf/AD7t/wB/n/xoAkg0 i0g+wbA/+gIUhy3YjBz68Cs278Oq99p4gMqW8LzyPIsu10d+cg/XNXv+Ef0v/n3b/v8AP/jR/wAI /pf/AD7t/wB/n/xoAYfD1iILeOJriFrcsVljlIc7jlst3yeTUllodlY/YxArgWYkEWXJwHOWz60n /CP6X/z7t/3+f/Gj/hH9L/592/7/AD/40ARv4csHuhOWuAFuBcrEJT5ayA53Bfc1EmkvF4gMsCyx WLq0kqif928h/wBj8yexzVn/AIR/S/8An3b/AL/P/jR/wj+l/wDPu3/f5/8AGgCO08OWFrcwTq1w 5twyRJJKWVFYYKgHtT7DQbGwuUmiMzGJSkKSSFlhU9QgPSl/4R/S/wDn3b/v8/8AjR/wj+l/8+7f 9/n/AMaAJNQ0m2v5455GmimjBQPDIUJU9VOOoqt/wjdgtrawQtcQfZkMcckUpV9h6qT3FS/8I/pf /Pu3/f5/8aP+Ef0v/n3b/v8AP/jQBetLaGztY7a3QRwxKFVR2FUptDspluAwkDTTi4Lq5DJIFCgq R04FJ/wj+l/8+7f9/n/xo/4R/S/+fdv+/wA/+NAD00eAJAsk1zO0E3nq8spZt2CPywTxSSaLZyQX ULB9t1MJ5Pm/iG3GPQfKKb/wj+l/8+7f9/n/AMaP+Ef0v/n3b/v8/wDjQBQtvDcct5fT33mbZbwz LEsp2SKAu0svsQauy+H7CW+a5bzsNIJnhEhETuOjFemeB+VO/wCEf0v/AJ92/wC/z/40f8I/pf8A z7t/3+f/ABoAs6jp8Go24hn3jawdHRtrIw6EHsapJ4c09LeeH9+xnlEzSNKS4kAADBuoPFSf8I/p f/Pu3/f5/wDGj/hH9L/592/7/P8A40AWrGzFlGyCe4nLHJaeQuf/AK1VLjQrWa6luElubdpuZRbz FFkPTJA747il/wCEf0v/AJ92/wC/z/40f8I/pf8Az7t/3+f/ABoAZc+HdPubhpXEyq+3zYllISXb 03DvUtxotlcG5MivuuJElLK5BR1ACspHQgCm/wDCP6X/AM+7f9/n/wAaP+Ef0v8A592/7/P/AI0A I+h28tkbaa4u5f3iyiV5iXRh0IPaorrw1Y3fm+dLdETKqyqJiBIVGAzDueB+VTf8I/pf/Pu3/f5/ 8aP+Ef0v/n3b/v8AP/jQBcitliupZxJITIqqVZyVGM9B2680z+zrb7XcXLR73uFRZA/KkLnHH41W /wCEf0v/AJ92/wC/z/40f8I/pf8Az7t/3+f/ABoAW40OzuDcM3mq88qzl0chkdVCgqe3ApkHh+xh BwZmJuVuizyFi0ijAJJ+lO/4R/S/+fdv+/z/AONH/CP6X/z7t/3+f/GgB1zolnc/aS/mB7iRJS6O QyugAUqex4qAeG7BYZYw9zvkmWcy+cfMEgGNwPripf8AhH9L/wCfdv8Av8/+NH/CP6X/AM+7f9/n /wAaAG2/h+xt02qZmP2kXZZ5CxMgAGST9Kt6lYQanYS2dyGMUgGdpwRg5BB7Hiq3/CP6X/z7t/3+ f/Gj/hH9L/592/7/AD/40APn0iGW2t7eOe5t44E2L5EpTK4AwfXpUlpptvZtF9n8xI4oRCkQc7Au c5x6+9Qf8I/pf/Pu3/f5/wDGj/hH9L/592/7/P8A40AW/sUP9pfb/m8/yvJ68bc56fWqB8O2AijS IzwtCztFJFIVeMMclQf7ue1Sf8I/pf8Az7t/3+f/ABo/4R/S/wDn3b/v8/8AjQAyXw/bSJb4ubxJ IGZlmWc7yWGDkmnR6BYRqoxKzCdbh3eQs0jr0LE9QPTpS/8ACP6X/wA+7f8Af5/8aP8AhH9L/wCf dv8Av8/+NAFprKFtQjvsMJo42iBB4Kkg4I78irNZn/CP6X/z7t/3+f8Axo/4R/S/+fdv+/z/AONA GnRWZ/wj+l/8+7f9/n/xo/4R/S/+fdv+/wA/+NAGnRWZ/wAI/pf/AD7t/wB/n/xo/wCEf0v/AJ92 /wC/z/40AadFZn/CP6X/AM+7f9/n/wAaP+Ef0v8A592/7/P/AI0AadFZn/CP6X/z7t/3+f8Axqrq eh6dDpV5LHC6ukLspEz8EKcd6AN2iobMk2UBJyTGuSfpRQBNRRRQAUUUUAFYGqzWVt4o0l5LiOOd vMVg0mMrsOOM+tb9NKIxyVBPqRQByGmItxd20QmlF5Ms66htc7lHOM+nOMe1dJpdgdOtnh895gZG cFwMgHtwKuAAEkAZPU0tAGHbQ3Ufigie7ExNpkfuguBv6da2dsmD+87/AN2s/wD5mkf9eX/s9adA DCr8/vOvTjpWLc+KdKtbqS3mu2EkRKMPJJ5HFbteQ+IP+Q/qH/Xd/wCZrCtUdNJo9TLMHTxc5RqX 0XQ7weMNH4zevx1/ctzR/wAJfo+P+P185/54tXmdFc31mZ7f9iYbu/vX+R6YfGGj84vXGen7luKP +Ew0bP8Ax+P0/wCeLda8zoo+szD+xMN3f3r/ACPTB4w0bjN4/HX9y3NH/CX6Pgf6a+c/88WrzOij 6zMP7Ew3d/ev8j0w+MNH5/01/b9y3FH/AAmGjZP+mP04/ctxXmdFH1mYf2Jhu7+9f5Hpn/CYaNkf 6Y/Tn9y1A8X6Px/pr+/7lua8zoo+szD+xMN3f3r/ACPTP+Ev0fB/0185/wCeLUHxho3OLx+en7lu K8zoo+szD+xMN3f3r/I9M/4TDRs/8fj9P+eLUDxho/Gb1zjr+5bmvM6KPrMw/sTDd396/wAj0z/h L9Hx/wAfr5z18lqD4w0fn/TX56fuW4rzOij6zMP7Ew3d/ev8j0z/AITDRs/8fj9P+eLUDxho3H+m P7/uW5rzOij6zMP7Ew3d/ev8j0z/AIS/R8D/AE1+v/PFqD4v0fB/01+vH7luK8zoo+szD+xMN3f3 r/I9M/4TDRsn/TH6cfuW4o/4TDRsj/TH6c/uWrzOij6zMP7Ew3d/ev8AI9MHjDR+P9Nf3/ctzWxZ XK31mlzbzbo5OVYpjjp0rxuvVvCX/Is2X+6f/QjW1GtKcrM8zMsupYWkp027t21NUq/OJOvTjpRt fP8ArO3p3p9FdR4YwK/GZOnXjrRtkx/rOc/3afRQAwq/P7zr0+XpRtfJ/edvSn0UAMCvkfvOnXjr RtkwP3nfn5afRQAzbJg/vO/Hy9KNr5P7z6cdKfRQAza+R8/b0oCycZkzjr8vWn0UAM2yY/1nOf7t BV+f3nXpx0p9FADNr5+/29O9AV/lzJ068dafRQAzbJj/AFnOeu2gq/OJOvTjpT6KAGbXyf3nb0oC vx+8+vHWn0UAM2yYH7zvz8vWjbJg/vO/Hy9KfRQAwq+T+8+nHSja+R8/b0p9FADAr8fvOnXjrRtk x/rOc/3afRQAwq/zYk69OOlG18/6zt6d6fRQAwK/GZOnXjrRtkx/rOc/3afRQAwrJz+869Pl6VU1 hX/se/O/j7PJxj/ZNXqp6x/yBb7/AK95P/QTQBLZf8eNv/1zX+VFFl/x42//AFzX+VFAE9FFFABR RRQAUUUUAFFFFAGZ/wAzSP8Ary/9nrTrJSKOPxYzpGqtJZ5cgYLHf3rWoAK8h8Qf8h/UP+u7/wAz Xr1eQ+IP+Q/qH/Xd/wCZrkxXwo9/Iv4s/Qz6KKK4T6oKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACvVvCX/Is2X+6f8A0I15TXq3hL/kWbL/AHT/AOhGurC/Ezws9/gR9f0Z sUUUV3nyYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABVPWP+QLff9e8n/oJq5VPWP8AkC33/XvJ/wCgmgCWy/48bf8A65r/ACoosv8Ajxt/+ua/ yooAnooooAKKKKACiiigAooooAzP+ZpH/Xl/7PWnWZ/zNI/68j/6HWnQAV5D4g/5D+of9d3/AJmv Xq8h8Qf8h/UP+u7/AMzXJivhR7+RfxZ+hn0UUVwn1QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFereEv+RZsv8AdP8A6Ea8pr1bwl/yLNl/un/0I11YX4meFnv8CPr+jNii iiu8+TCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKp6x/yBb7/r3k/9BNXKp6x/yBb7/r3k/wDQTQBLZf8AHjb/APXNf5UUWX/Hjb/9c1/lRQBP RRRQAUUUUAFFFFABRRRQBkJCkfix3UENJZ5bknPz/pWvWZ/zNI/68v8A2etOgAryHxB/yH9Q/wCu 7/zNevV5D4g/5D+of9d3/ma5MV8KPfyL+LP0M+iiiuE+qCiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAr1bwl/wAizZf7p/8AQjXlNereEv8AkWbL/dP/AKEa6sL8TPCz3+BH 1/RmxRRRXefJhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFU9Y/5At9/wBe8n/oJq5VPWP+QLff9e8n/oJoAlsv+PG3/wCua/yoosv+PG3/AOua /wAqKAJ6KKKACiiigAooooAKKKKAMz/maR/15f8As9adZKNIfFjh4wqiz+Uhs7hv9O1a1ABXkPiD /kP6h/13f+Zr16vIfEH/ACH9Q/67v/M1yYr4Ue/kX8WfoZ9FFFcJ9UFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXq3hL/kWbL/dP/oRrymvVvCX/Is2X+6f/QjXVhfiZ4We /wACPr+jNiiiiu8+TCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKp6x/wAgW+/695P/AEE1cqnrH/IFvv8Ar3k/9BNAEtl/x42//XNf5UUWX/Hj b/8AXNf5UUAT0U2R/LiZwjPtBO1ep9hWZ9u1UNubSB5foLlfMx9MY/DNAGrRSI25FbBXIzg9RS0A FFFFABRRRQBmf8zSP+vL/wBnrTrM/wCZpH/Xl/7PWnQAV5D4g/5D+of9d3/ma9eryHxB/wAh/UP+ u7/zNcmK+FHv5F/Fn6GfRRRXCfVBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAV6t4S/5Fmy/3T/6Ea8pr1bwl/yLNl/un/0I11YX4meFnv8AAj6/ozYooorvPkwooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqesf8AIFvv +veT/wBBNXKp6x/yBb7/AK95P/QTQBLZf8eNv/1zX+VFFl/x42//AFzX+VFAErukcbSSMFRRksTg AVyEn2SPWrgXMelXErXOVea8xKoyMDbt4x2FdjjIweRXL/apptVuFae/IjuNgFrbK0WARwWK5J9e aAOooornNK1i6u9RV7gSxW00ssMC7F2koSOT97Pyk+lAHR0VjXutyWmqppv2dWnnINud+FI/i3f3 SMHHr271Nr011bWcdxaziPZLGHUoG3hnVce3WgDToyKwNW1G+hub5raVI4rCFJWRkz527ORnsML2 7mrVtC516S6SB442iKszKqhjkEEEct0PXp260AO/5mkf9eX/ALPWnWQjSN4scPFsVbPCtuB3Df8A pWvQAV5D4g/5D+of9d3/AJmvXq8h8Qf8h/UP+u7/AMzXJivhR7+RfxZ+hn0UUVwn1QUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFereEv+RZsv8AdP8A6Ea8pr1bwl/yLNl/ un/0I11YX4meFnv8CPr+jNiiiiu8+TCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKp6x/yBb7/r3k/9BNXKp6x/yBb7/r3k/wDQTQBLZf8AHjb/ APXNf5UUWX/Hjb/9c1/lRQBLIzrEzRpvcAkLnGT6Zrmtn+mSSRW2uxzSSeY0SuFj3fXO3H4109YM +uzxzTSLDbm1gn8hlMuJmOQMhcY78DPIoA3ULFFLLtYjkZzg1Ti0myhvTdpERLlmHzEqrN1IXOAT 3Iq7RQBWk0+zl87zLdGMzK0hI5Yjp+WKbqOnW+pQrFc+YUVg2ElZMkcjOCM8irdFAFCfRrG5eN5o 2dkUJkyN84ByA3Pzc885q/RRQBmf8zSP+vL/ANnrTrM/5mkf9eX/ALPWnQAV5D4g/wCQ/qH/AF3f +Zr16vIfEH/If1D/AK7v/M1yYr4Ue/kX8WfoZ9FFFcJ9UFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABXq3hL/kWbL/dP/oRrymvVvCX/ACLNl/un/wBCNdWF+JnhZ7/Aj6/o zYooorvPkwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACqesf8gW+/695P8A0E1cqnrH/IFvv+veT/0E0AS2X/Hjb/8AXNf5UUWX/Hjb/wDXNf5U UATHODjr2zXHvJdi5V706TFdSXDRpcjLyIA3QfL2BxknvXY1xd7cW8ep3ipYSyQyNiSR7oKFAkUO VXB/ixn1oA7SiiigAooooAKKKKAMz/maR/15f+z1p1mf8zSP+vL/ANnrToAK8h8Qf8h/UP8Aru/8 zXr1eQ+IP+Q/qH/Xd/5muTFfCj38i/iz9DPooorhPqgooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAK9W8Jf8AIs2X+6f/AEI15TXq3hL/AJFmy/3T/wChGurC/Ezws9/gR9f0 ZsUUUV3nyYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABVPWP+QLff8AXvJ/6CauVT1j/kC33/XvJ/6CaAJbL/jxt/8Armv8qKLL/jxt/wDrmv8A KigCWRikTuBuKgkD1rlrqSae0tdWZbB4VEUiIYQzPKxwwBzwenryK6usDHhu21ncIYUvBJgyCM7V kPvjaGOfrzQBv0UUUAFFFFABRRRQBkojr4sctKzhrPKqQBt+ftj+ta1Zn/M0j/ry/wDZ606ACvIf EH/If1D/AK7v/M169XkPiD/kP6h/13f+ZrkxXwo9/Iv4s/Qz6KKK4T6oKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACvVvCX/ACLNl/un/wBCNeU16t4S/wCRZsv90/8AoRrq wvxM8LPf4EfX9GbFFFFd58mFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAVT1j/kC33/AF7yf+gmrlU9Y/5At9/17yf+gmgCWy/48bf/AK5r/Kii y/48bf8A65r/ACooAnrk7oL9puQBff2V9p/f7fL2+ZuGcZ+fbuxnH4V1lcdc2lpdatchoLOI/aPn We+kR2PHzBBxz2/CgDsaKitreO1t0gi3bE4G5ix/M81LQAUUUUAFFFFAGZ/zNI/68v8A2etOsz/m aR/15f8As9adABXkPiD/AJD+of8AXd/5mvXq8h8Qf8h/UP8Aru/8zXJivhR7+RfxZ+hn0UUVwn1Q UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFereEv+RZsv90/+hGvKa9W8 Jf8AIs2X+6f/AEI11YX4meFnv8CPr+jNiiiiu8+TCiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKp6x/yBb7/r3k/wDQTVyqesf8gW+/695P/QTQ BLZf8eNv/wBc1/lRRZf8eNv/ANc1/lRQBPXJAxw6vfAS2Dqs3nO0tozMoLAY35wSD+VdTcsUtpXU 4KoSD6cVyFlY3l59mvJbC7KTIjSILqIRvkhicYzgnkgGgDs6KKi+0wC6Fr5yeeU3+Xu+bbnGcelA EtFFQXN5a2hjFzcRxGRtqb2A3H0FAE9FV5760tpo4Z7mKOSXhFZgC30qOO/36pJYtHhlTzAwYHIy ByO3WgCD/maR/wBeX/s9adZn/M0j/ryP/odadABXkPiD/kP6h/13f+Zr16vIfEH/ACH9Q/67v/M1 yYr4Ue/kX8WfoZ9FFFcJ9UFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB Xq3hL/kWbL/dP/oRrymvVvCX/Is2X+6f/QjXVhfiZ4We/wACPr+jNiiiiu8+TCiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKp6x/wAgW+/695P/ AEE1cqnrH/IFvv8Ar3k/9BNAEtl/x42//XNf5UUWX/Hjb/8AXNf5UUAT4yMGgAKAAAAOABRRQAVz dnp2qQeJormcW8qPHL5k6qwPJXavJ7ADHsDXSUUAc7qOnX02qvPDEwsgyGe38zH2kj+If3dvHH8W OateJy50xY4rWa4kaWMgRJuICurH6cA1sUUAcxq1vczzX3l2Msv9oW0ccLbR+6IJyGz93GQfwrdi sgl19peaWRwpVQxG1QcZxx7DrmrVFAGSkSp4sZgXJezycsSB8/YHp+Fa1Zn/ADNI/wCvL/2etOgA ryHxB/yH9Q/67v8AzNevV5D4g/5D+of9d3/ma5MV8KPfyL+LP0M+iiiuE+qCiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAr1bwl/yLNl/un/0I15TXq3hL/kWbL/dP/oRrqwv xM8LPf4EfX9GbFFFFd58mFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAVT1j/kC33/XvJ/6CauVT1j/kC33/AF7yf+gmgCWy/wCPG3/65r/Kiiy/ 48bf/rmv8qKAJ6KKKACiiigAooooAKKKKAMz/maR/wBeX/s9adZn/M0j/ry/9nrToAK8h8Qf8h/U P+u7/wAzXr1eQ+IP+Q/qH/Xd/wCZrkxXwo9/Iv4s/Qz6KKK4T6oKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACvVvCX/Is2X+6f8A0I15TXq3hL/kWbL/AHT/AOhGurC/Ezws 9/gR9f0ZsUUUV3nyYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABVPWP+QLff9e8n/oJq5VPWP8AkC33/XvJ/wCgmgCWy/48bf8A65r/ACoosv8A jxt/+ua/yooAnooooAKKKKACiiigAooooAzP+ZpH/Xl/7PWnWZ/zNI/68v8A2etOgAryHxB/yH9Q /wCu7/zNevV5D4g/5D+of9d3/ma5MV8KPfyL+LP0M+iiiuE+qCiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAr1bwl/wAizZf7p/8AQjXlNereEv8AkWbL/dP/AKEa6sL8TPCz 3+BH1/RmxRRRXefJhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFU9Y/5At9/wBe8n/oJq5VPWP+QLff9e8n/oJoAlsv+PG3/wCua/yoosv+PG3/ AOua/wAqKAJ6KKKACiisdb68i8QpYyyLJFKrtzCY9uACArZw555FAGxRWTea19k1JdOa1ZrmYj7O AwxIP4iT/Djn69qk1y5u7O0juLaSNQssayK6btwZ1XjkY60AaVFYWq6pewXF4bbyhFYRJLIrqSZd 2eAc8cDrzzU9tGx1+SeOORYmiIclCqlsjBz/ABd/p+NAD/8AmaR/15f+z1p1ko7N4sZTEyBbPAYk Yb5+2D/OtagAryHxB/yH9Q/67v8AzNevV5D4g/5D+of9d3/ma5MV8KPfyL+LP0M+iiiuE+qCiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr1bwl/yLNl/un/0I15TXq3hL/kW bL/dP/oRrqwvxM8LPf4EfX9GbFFFFd58mFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVT1j/kC33/XvJ/6CauVT1j/kC33/AF7yf+gmgCWy/wCP G3/65r/Kiiy/48bf/rmv8qKAJ6KKKACqMWlQJei7eWeaRCxjEshZY89cD9KvUUAU5dLspnleWAM8 rKzMSc5X7uD2x7Ump6bFqcCwzSzxoGDYifbkggjP0IBq7RQBm3OiWl06PMZmIRUf94R5qg5Af15r SoooAzP+ZpH/AF5f+z1p1mf8zSP+vL/2etOgAryHxB/yH9Q/67v/ADNevV5D4g/5D+of9d3/AJmu TFfCj38i/iz9DPooorhPqgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK 9W8Jf8izZf7p/wDQjXlNereEv+RZsv8AdP8A6Ea6sL8TPCz3+BH1/RmxRRRXefJhRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFU9Y/5At9/17yf +gmrlU9Y/wCQLff9e8n/AKCaAJbL/jxt/wDrmv8AKiiy/wCPG3/65r/KigCeiiigAooooAKKKKAC iiigDM/5mkf9eX/s9adZn/M0j/ry/wDZ606ACvIfEH/If1D/AK7v/M169XkPiD/kP6h/13f+Zrkx Xwo9/Iv4s/Qz6KKK4T6oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvV vCX/ACLNl/un/wBCNeU16t4S/wCRZsv90/8AoRrqwvxM8LPf4EfX9GbFFFFd58mFFFFABXmOveOd asNcvbOBoPKhlZFzHk4H416dXhfi3/katT/6+G/nXs5PRp1qslUV9DOo2loa3/CxPEH962/79f8A 16P+FieIP71t/wB+v/r1yVFfSfUMN/z7X3GPNLudb/wsTxB/etv+/X/16P8AhYniD+9bf9+v/r1y VFH1DDf8+19wc0u51v8AwsTxB/etv+/X/wBej/hYniD+9bf9+v8A69clRR9Qw3/PtfcHNLudb/ws TxB/etv+/X/16P8AhYniD+9bf9+v/r1yVFH1DDf8+19wc0u51v8AwsTxB/etv+/X/wBej/hYniD+ 9bf9+v8A69clRR9Qw3/PtfcHNLudb/wsTxB/etv+/X/16P8AhYniD+9bf9+v/r1yVFH1DDf8+19w c0u51v8AwsTxB/etv+/X/wBej/hYniD+9bf9+v8A69clRR9Qw3/PtfcHNLudb/wsTxB/etv+/X/1 6P8AhYniD+9bf9+v/r1yVFH1DDf8+19wc0u51v8AwsTxB/etv+/X/wBej/hYniD+9bf9+v8A69cl RR9Qw3/PtfcHNLudb/wsTxB/etv+/X/16P8AhYniD+9bf9+v/r1yVFH1DDf8+19wc0u51v8AwsTx B/etv+/X/wBej/hYniD+9bf9+v8A69clRR9Qw3/PtfcHNLudb/wsTxB/etv+/X/169H8Kajcar4d tb66KmaXdu2jA4YgcfQV4XXtPgH/AJE2w+j/APobV5GcYajSoKVOKTv+jNKbbep0VU9Y/wCQLff9 e8n/AKCauVT1j/kC33/XvJ/6Ca+ZNiWy/wCPG3/65r/Kiiy/48bf/rmv8qKAJ6KKKACiiigAoooo AKKKKAKl5pljfSLJdWscrqNoZhyB6VB/wj+kf8+EP5VpUUAZv/CP6R/z4Q/lUZ8M6ESSdJtST1Jj Fa1FA02tjJ/4RjQf+gRaf9+xR/wjGg/9Ai0/79itaiiwcz7mT/wjGg/9Ai0/79ij/hGNB/6BFp/3 7Fa1FFg5n3Mn/hGNB/6BFp/37FH/AAjGg/8AQItP+/YrWoosHM+5k/8ACMaD/wBAi0/79ij/AIRj Qf8AoEWn/fsVrUUWDmfcyf8AhGNB/wCgRaf9+xR/wjGg/wDQItP+/Yq/fMVsbhgSCI2II7cVxkM+ opYaXHLNciK2lhkM5Y/v1cjauf4sAtkewosHM+50n/CMaD/0CLT/AL9iq9r4T0eJrgzabaSB5S6D y/urgDH5g/nWUPEl8Yb0xTK3+ifaYHkCZX5gOQp6c9DzWg+qXtnfNa3FzG6x3USPKUC/I6scHsOQ Ofeiwcz7l3/hGNB/6BFp/wB+xR/wjGg/9Ai0/wC/YrIufENwbEyQXI83zLgoyhAjJG2Bksfp05Na GhXJu9UurlgAZrW2kKjoMqxosHM+5P8A8IxoP/QItP8Av2KP+EY0H/oEWn/fsVrUUWDmfcyf+EY0 H/oEWn/fsUf8IxoP/QItP+/YrWoosHM+5k/8IxoP/QItP+/Yo/4RjQf+gRaf9+xWtRRYOZ9zJ/4R jQf+gRaf9+xR/wAIxoP/AECLT/v2K1qKLBzPuZP/AAjGg/8AQItP+/Yp6+HdGUBV06BQOwXArToo Btszf+Ef0j/nwh/Kj/hH9I/58IfyrSooEZv/AAj+kf8APhD+VH/CP6R/z4Q/lWlRQBm/8I/pH/Ph D+VRN4X0BmLNpFoxPUmIEmteimnYDI/4Rbw//wBAaz/79Cj/AIRbw/8A9Aaz/wC/QrXoo5n3AyP+ EW8P/wDQGs/+/Qo/4Rbw/wD9Aaz/AO/QrXoo5n3AyP8AhFvD/wD0BrP/AL9Cj/hFvD//AEBrP/v0 K16KOZ9wMj/hFvD/AP0BrP8A79Cj/hFvD/8A0BrP/v0K16KOZ9wMj/hFvD//AEBrP/v0KP8AhFvD /wD0BrP/AL9CtesDxIlxNfabBbjeX80mMztEGwuRkrzRzPuBY/4Rbw//ANAaz/79Cq9t4R0WOW5a XS7N1kk3Rjyh8i7VGPzBP41maJMl75iaxqUgkt4kVB5xi7fM3UZIbIOfT3qS9kt1Ot3D6hLFcwMv 2crOc58pCoC5wck9Mc5o5n3A1/8AhFvD/wD0BrP/AL9Cj/hFvD//AEBrP/v0KyJ9WuhqMd48dyIr Py4pvLH7kFh+93c/w5X6YNdd1o5n3AyP+EW8P/8AQGs/+/Qo/wCEW8P/APQGs/8Av0K16KOZ9wMj /hFvD/8A0BrP/v0KP+EW8P8A/QGs/wDv0K16KOZ9wMj/AIRbw/8A9Aaz/wC/Qo/4Rbw//wBAaz/7 9CteijmfcDI/4Rbw/wD9Aaz/AO/Qo/4Rbw//ANAaz/79CteijmfcDI/4Rbw//wBAaz/79Cnr4d0Z FCppsCqOgVcCtSihtsDN/wCEf0j/AJ8IfypD4e0cgg6fCQeCCK06KQCKoVQqgAAYAHailooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAAgEEEZB7U3y4yqrsXauMDHAx0p1 FAEK2lsm7bbxLuzuwg5z1zTnghkDiSJHD43BlB3Y9fWpKKAIWtbZlVWt4iqnKgoMA+oqRI0Q5RFX gDgY4HQU6igAooooAKKKKACiiigAooooAKKKqatkaRe46+Q//oJoAt01ZI2keNXUumNwB5Gema4Y wahBa6YpikaKxdPsxLf68upIz/uj5eaQzXdzo908l8mGWKaZYXzJG/mLuJ+QbQBng56UAd5SF1Vl UsAW4AJ61y1xqM8d6yQ6jI7I0ItYsBhco2NzE456tyMYxVc3k82sWTtcvLeJPc5tCo2x7Y3CDpkZ GOSec0AdlRXPeHr6e5vAn22S7ja2EkxdQPJlz93gDHfg9MV0NABRRRQAUUUUAFFFFABRRRQAUhRS ysVBZehI5FLRQBC9pbSY8y3ifBLDcgOCep+tBtLYz+ebeIzf89Ng3fnU1FADPKj2MnlrtbO4Y4Oe uaeBgYHSiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUUUAG B6UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAf/9k= ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Eficiência e Precisão na Extração de Dados Científicos: Um Estudo de Caso com Robôs Automatizados

Edson Melo de Sou= za; Wonder Alexandre Luz Alves

IS= SN 2237-4558  •<= /span>  Navus    Florianópolis    SC    v. 16 • p. 01-7jan./dez. 2025

7

 

 

 

                  =                                                                           <= /span>       

 

ISSN 2237-4558    Navus    Florianópolis   SC=     v.9  •=   n.2    p. XX-XX  •  abr./jun. 2019

 

 

------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/image019.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAcd1DS29sB /v///wAAAAAAAAAAXwAxADgAMQAxADIANQAxADcAOQA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA4UsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7JhlVFzNlrAhECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb5iTN++d 78pas+6dmT+zvrt7Peecrqpd+5TtXXWGh3CXcipAywh/JyIISAh3948QUP4qDfFP/hAcBIQHf/6/ u7+//0vy/b/l/5TAAZD/HMO/8GvMUQHQAB4BoAM8BsAAwATAAsD+PQUQcAHwAPABCAAIAYgAiAFI AEgBQABkAOQAFABPACgBqACoAWgAngLQAjwDoAOgB2AAYARgAmAGYPnzPf8t/3uigmAL/JyAsZBE sAHuDghuf+8K/kshQnj4n2v+lz/Q2pQ1Ch9LbJC0YFW42OmO/5vC2E5Ko7OziEjAY9t/+hRFhHcI pv+Szb8WdIQHiH/dnn9Wj+DPOxJg3wjBCkEGaL0Z0BP/quAB9hH/qOe37/tndH6V/4tffYUggaAC 9L0r0Pemf4yA479kn+jP9iP/C/Z/jRPOn89/ve7/Lf//CeLv6fA/EKT/tyf4bwh1LAgBIoqEcGRL jZA79j+p6d/y35FXCCaAz38FeL5fvscQwRK4mwIpqn/EAlMg5f1/qU8HTJ+/nk//jM2HADMK/xtv /1v+Vfv/2/J/2b6SHBIyEAvR0BDmFexkrGffX2UCoalC6PcuztjWxsnUxondxNDJ8I8LJxtw3deW f0cmSeDtAsKlKso59cVJ8MxmIpTBp5eX0coPmHqWT+sMopfXrkaPbI6MuMW/oscSDUKzXxqnCYi+ dkTIcRBb8a2jsg+PrsuRDiSjohZrD0QLKKoLuFjYc/VZcW6yLgzisuURrOS2bXE72RiY1dxXQJcl SVymPTXqEcN4k40hyQ/hHNSIkGNsRXuI0LOiC+KaYooq4ZFeolh//GkiL7JENfGOiTz95psDcbn3 Iw98oUGvvfa6iCpvtORbd9o+02oJgcTX5lVqLEk9Fq/oETzfeuNIMH2WU1SloL5cqkU6PJ1HOsTo koLA1FT4fIpw7to+R/QtLkegH83DXT/vfo7ktiMQbAj3LDNqSmB5kL5QpDTdGG8+051M8RYbm1Jk rpaRAzaPk9xxP7CTgX4kVww70usbRcyFFvbfPN8QrT9WLAhg7GWZjRH6jF12zbBA4x0fMYOdPld0 yXm2LXC0fNu5/KUMtsm71YRKdPx9IQ4Gt76br3/iKTCFdWj2cg0pCmWp2VG4nBLquOR/w/00lGDa 8mpRtCZog6/WVof+2kXik8O2jeHg265FTK9eZa3ioTdmdPr0ejOc0u5Fj12ouVmU0z6z2U3YXXxb wNaVCtcKdQloEC+ZJOz7AXq5gaI5ufsNcun2ZVmVN3ySVmS+77Yjo+3mIZo4JYbxXuMQa/CMwYcz mVgisaHVAE1cF9N3r9qZ6LIFihUInd0EwBkq7Z9qwUUZ5TdlYJOd2q9tWDYMV1xQ4wY05QU2S9cy 6RgayVACRpX8f3hQy8qkeO6TmAJfPx84a4M9PXdivZrGtzYvrSrTdS10fBAaHcTyTvwRejSEf4Hx +l4FzSj6e3QQl5YEwqerfnU8d0OiMXWWx4byiO1uG8hovONWDxwstNVS1/WdZTFrwx10EbWtexZR Vzy0sPwhpiuFeZpNG7gFtWBdkpKG4CsSuezvcm/BRJR+kq7ym0hbIwX24MzVrPAuzg03DIfmpp46 xg22N1KS/Mw96i9FfpCssnufzo5zGcnb2TzaNV92Zhl5h8dfm/49lUZO4lqW++KBFWtEQy57uLgP s2uZmOQkseVLi+aiWrTkLslj9iPzRZKa/epw83SPM4iKGeZgOQ9oF7z6gpUq9NLrq8lIiuAtJ4t+ 5+gDbSksPHWPI5r30rUyEeY6K3VJTOGVMk/7v5m6irmmOMdC+JIrO77mpcRIOu0XTt0lCRmipYWe CODNIcCfKMe++7zU4Gzssub9TrnmFP21URjJfZf0WRKJKMwS5dkKeeJY35nZojKUXthaTgvKk9TB qjfZHLmhBBo495dmZV/2jh/YlnY1+aojuO/1YU4m07mE8d6826LkojKXb/Om+K2ecBZhZ/NiZY3t xK7mSNOlEPNHviiNx3kjhO/ezzLZmku+X5j82eVYG7pPYjrumP7heUezyvx6vaTlnLbW7MRJgs3m 3FRlop2kiVBEgfPCRKQ1dNR3tybCQ6uSHm3JRnDgZhSZ5vRY1+/D6tj13QVLrqk9femR4k3j03Gr WtXZM5zcPX10oY86hIqnFGIDfbrOuNrnBuTmFMqinHDMPOjT7Fpft0xc8UgjRU5dCDjmx1uyTXs0 j7BybIIgMpp3Q/lneDrD3T9loWFsHBG1YRw07LBo1im8/LAnMT14eEJBZjx5mcUZ3obCXRq4kOWA XW+2oxmqZjrQVtw1mdNeXluQyei72irtnkPy9S+VYCFTFrlyfYw2Au3iZMmQWPCp2J659L3YB5h7 347wWf2WjAgZTRN+39YCbceuaMuuQIXx+tRmzAcuJ51if7snHTe27PeWaT8vwp9lsi9XJ7rprjn5 bPEwIUltDFK/Ce9+9Q2RvJu//TIAZKCfPNwdvaET/z4vX/R9WKImDuyCs4by89NpFel1otlHrB3e wkN6Lihy3YfTvME5aVl8hRXFZHLX9iVKoDXQCpoRaM0NxltCiesOgk6/2gWb6nkJN9F8ZDg78ZhT rOl0xJfsDzuyURWSisrzAbU5C+/lYBt7CZFwtzoKxXyp6UAnyHSpsyGx+rLJOK6X29BoF/ZU2NB6 sl5i/jPlMuH8KqnIhMzoQ68P1LQixxNxdvAKePkZ/UH54F31PGmDSzxWuTyil1f2HOPw0Huh0qzZ S4KJTzsU+1e5aaV5taIXrUp5NR6DFUit9i5Fix6oY6Jw1+DImmHlhBENuqutPselHVc8Lxc3sjVc HHcvjiy3aZA90YCW7UHJi+utSSLs0CJnf4fUsOtTyr+NaJEtXOLXQCQjffD7G8TfRLT3ho5Opg5K huamv8LazcX9vQ8dCgoKzh2qyf3TNhjqKMtLlgcdoJdQpA6il3uIHSIvdbA6qJ6zJ5OSsJVzcwgN GxswpLa3RbeO73CEzcnDnim/vw2HXIjNkJKIpWr64SDfIXE2IiBhLbVH90Z3Aw6rRwma3R89qIS+ Rv+g0zz3hRROmKOZkf1ghFegapiG1LViMz4T1Yf4AZwDcroiR1+qh7WOWFwEnPkPKLLboh/kE5LI +t5KQGipBhEFuCiLjNhS2+sq+N+xEQU9Aqdmns2mrdUmnbnM2mu2o4XbCbhu4WTaOaAKIq8wkKQM RWNglOlQsWNvKUWvqr2EiFPQI/38jECI+gIZ+e82AaGiMcqaVMDREA3xHzcBdkBn/d4EZDzSif95 cY/dzsWChJG70eVrZrGR6hFvlBvLbMZmWRrsYVVnqy8vzzHJQ+jYW2b56bOmlZXZCmgjVdZmPVZ2 sJ1r9eOhOuSkcfMJOL5ouX/37PndHburl2PWpshF/VDG8lW642Z60DuJ9JEpUhtsZuzplc13qGeG CEsssvbKTKFGOAWfGHJyA0LEbxS3EUvfoAbrse1Y679YMmoYtpKfJG1RqC4dNlySQK0Ptb0WVz4F X4aVNRWeONo1nIg21Vp0JNnWap9aS+VtR2uXSBWOracreJ7Bd8cG8DufbTolOJaW+jEs51YRmb5W SNMeVMx0uaqIc+5rquA5RboP1pShtGm50dcztSZBe2WIcArBVcK8bmdQhrHWDEG5yXvM+blPSLGa Zs5lG9f5tEtTapoHTZ3g8KH2lNEDW8hJ01YTX7g/QzCEKvsFS2s2xtTiw69D/C+KtTs5bV4glaWM MWNesyo3BHMFo7DKhjKMT8TpESlHrulg6PbAWDuz/eQOJDDxx7gxvrzKt6DMqOSTiH+khHgdYklG 08LcxvxNREWn3c6eUK2MqksZ8UsoF1jBRf/K5777XD7WIyikl5LxOrtZOco91/g6dB8p00L0USmv CH4507bDy7L0mOH4XNcSuUejNSsvbAUu0uHrhT6Lc1+nfnad7z6afW454RvCmjq12172/m5Qfa+1 4XCxAS/j4/l0rW3qE7RJqABH+uOAz3JOWLvwzrVdx41WrMMypQ7jEx/l8N1vDMKSjdLKRc3mCh5j xmWdGemTP+4kJ8ulNKKnSxO4Z9sNqjwpMYkDN5xMMjX8a1uZF2xHVi4/5cJxlHMdtZ4H8h7yVuGx CoqjWqDYhmZZibzZ6bu3Drl3649b/Il+qbpg+2QajfNAmpPIvYzAxum+v0IyVFkiBJazAm1fl94/ 6dssebpJd9HINN4/fXEBc5Iq07C90uZeU2xVj5SK174MFskd8E1f7NyIak7K3KusFdIwr8jyvpkJ yUPpbTmJ7Bc5oF4JXh6WuCVgrYm4Uo1CWrMmPUtizV1zTe3TA69N80lXFR61nCVdJDRdoGVW4L44 MaR0LOnWk3HfjIp3FD4fWWiCZc+9CIOeYHnia7XtHn5zLdm9W2889DnB2mMus/bFWTY0unXTt7d5 VaYjWsEH01G8TSOSl4jYzIvy9AELnzO9vg374TXCCe8MvjvwvKpmvCW9IoxyPxUcfzEkmH1gXHb8 ctqxKt69dHp2alE7r8NNKlTYST8iHhbqd3xwkr/iuexI15ZGsOymOLUXD+lAOlEdiV9CPNv9ZLQ/ COWVOYi9EXEKgp+kjGfW0QpgaofBCRXye88lBDLrlE+lbvbhZCurhbP3nTOm2VbdbuxgnXrytufW xpezZXPwSNNvBDzl201fa0o+vKBe7slbdRkvu8360q3nQRsHb5pkDSa+MVdviBl2ttqWmrVWMyNN F8w0HVbW7c2PlXkWJ0uX8FrEmuuFi095iImDFnGiME2viVmiXl/u5ruNE9MUufMGmRRalRt+sdjv 6EaivTTV9KNHEjtR57M3Pjtc05Przwt/9JlMEq1Td2ig3qAkBGHxpZNPGJ8+jOvtzR3hAabcX6ww pbD0cZE6cU2pyc8FBs2f+IeUWUh7NrdC5MquvidegWr0O1mEA+sF+7BjjXhuv8VRep6wY344Pfa/ nn8eTrqDqgDn8bRNpQzAxj17BsV24R5bhWe/pt+oXQaZobnYflreUfaOptoCHaD66xud9/DkpRnc PzY73dpG1Yfx5lEnptSlXo0qiJZT8BrP+nvbrRJzDwp2eO4GU1aF8hmLo1RqNlDq8Jt15aw0DOqa 8da/B9+c8U7BUInPoHhsoAn8d9hCgy80zZpYu3yYf4az8l19P/1qtofbfRppeq146J9htiFDdmL3 AlOx+NC/hrC+dXdoM5O++zWax4NTVRI4+V0dIafwrWUyLuYbOhJ0azDJTnyQmJ/A1FydUMCCk8Nb feWXth4xFrVq8YR9s4NSXxJIc6BopmAG7lyGFNxNHyzeq7BGu/QQ06S3DjWQTyarT2dq8eE68DZ4 KqT2APTMeoFLfFST7sl4eaLBjAsmfSi8ecK6rqszSjPWkhFGf4H/GY4hJnBXGTtXxlnoc+OGIa5/ j2gf4VKPHEiooU9xs/Tz6yH9TuSO5sPTEVgIOCXXhJFSmBJRdeVLh3rIV7zJXNrSgkiUND3cD8v1 sxEcBc2QjhSYFclVCW7qY8qmZSyi6S3slHmjiMMbO+pQTmi+DPjy1Ov7d/B2u6LtQLp24rbhWeAo UjKh/vCwKgeT5uVSZwSHRxZpq8XgbTXfScYI+HKnjjRM8fmPT8xmr93CTRU4vhbzrob4gd8K6V+u LUOrnydPypItt/NzL3CR5EwxcbN94BIvsDcrXrcNKAsKXf1CRm3vS3oB4fbZ6U8XSrjA1jMKIIWl HbWBn5LfTYVXdno21Sds03p63ggl4Owvsg7c9ui3n8HIDPPF2ot7wSRMnkfHqxGHvcLc4FB7kE1K hRG9mYOu2WYouJ7u5e2Lt+1sHyNoeG6/5OA2YI3b6dGb3VBDMUb0lfgwbxRxuxTqIGQdV32Blg6Z C7bQ/OeoN3UYUbd33YmIx2wYQpbVQpKzpun9EPFZtjEFVJnZfIc30be3bcrCJb6PkWRyM+hkU7VI LsfmNafZ+lyUa8K+6YYm7sfWs06pKcwFdjfvMr+POAW9JibWn5rLqv9KM7bfQBo1cZqwe+PnnzzI nOKhcPNDrpUzTH3CrozKawGnye+GLG2sFS50FnQpfmqA6QE17io5DFRM45bpD4nh5RbhGyNm0Rhw fcfBXfH8pBPSUs6bdqU0JaGOXFYzfGjy+GBooTVDsZRVCJ4AYWRbRS+ZMD5HEUs5FpAWwqNN2qb4 ifS4aGIoxMVU8pGaVUYUDVP1G6uSca3Pzsoqu4hH3+nwEnCtvda4vPqudM75rKVn9/P3HTThlj3a 4XKuOesl8+QuvDCv/sFPeQ0O4IQmRjfV409r+5pxtXVIe+F0SYcxCkb3Jwuxxrzucubx0oMMMekj k2yucpuOYpyUvSMDKc/pLqV/ZVjIizmAVxfWvPfhs/U5dVFOeIo/zd1DvXtIn8Vyy9KaO5mxUm57 8jINvos5YK2/Ta11AoeshZfi0JpXhfzUPq8V+bUO7izNxx96P2Yp1rrY6rXyfC8gmBa5I1uSoMX8 R6OuNVV3ET3elsB9uKTNHSNZk7zILGJzInj24t77JnNgen3XhiQq2p9BkhotLjNa+dLxv5CrpEyz hJPODZLxSnB4TJiptDIXbnDl59DV26dDpBorE4YPCc26VaAGGXwYWfnL+6/9b/m95VAqtRrEvDFE qfymt4IRP0VORpf6DyqSD0emrEpsPkIaikBl37GarxP5am+QREVC5WkudZb2UG13UaLROnfuHwYh Q9Bf3rRT9/JiHeVSqDN8k5jEAMrKrXfXhqBtm1zxU3rj8X5K7S6I/7tsedahnzHyZNUoR3M14ifs YROPlXNSqGNu62ULaELbzPeqmYe8qQsB34hnjsjc9yKwLxJnk1pdj3SAp6WjGGbie9ecEh8tyTPP szrDhMJw0Uz6CpXTJ72Lh/V5DxXfLRThMVbaiLewouuIoeJ8wfnHiECi7WY9lh9jVhVogl+ImQ1o 6wst1p7KchLKZEbhMMW8oSmR0ApxUsbbvoT5y4utsN3OObMH+yi0q323WecRsmuXM2PEL1QfO8w2 6C8FCWScxtK4e/E6ajKb9RM3G7zh+3Rx8hrvrAFXT0VCkMXA+5rw5DpKT0WtW+fwI54UNPm8kjgA Tdl5EfZQKi7A/rA6SceOsiV+2pyFuzqNOH+BczVJ163p3N6W4EyY2igd5iqj0TJKxb7tXjhkwjvb o1M58Jio6mf5d14bW1E229fOU3Fy64qSI2HfA8SZr2snkb4P5fsTijShHRQtVPnafAi2mHwb/6lv f1DqeUIus6RGaClBMwOj++WCQVxQ3WP9uy5VNroPCn3rX/Ut+fNaJp+6NDBMdZ/gWgpSmBcK5zLv WUo6J0ASAxPb/MiQCsa09p2ynbQofiaofqVVksmOffnMbygVuYu+XNVjtF1VIMhaWLhAVfB7v6pA tYSDFT16rGoj87x/xnQJFGvktW5AkJNVyNo4Xu9neYp96oy3ZbrQwVaOpAI36cIayPAjB6tJU3fp Qt67RKBcxpCHNH2Ng1AltBBarSqcr0p21RJEXuY15yWZkT4WMiaUr+ph2hLkZMT33nBGgXuxfo06 Q2tXEuiUUgb+ajGlhuFQEVcO5hp75ezwdhc1jRh92ZHfHXBXzHg9uE9+lcA/k0EpPhM9PTur22WJ z6iQJh2qtU34gTRJ2B65clPAbFt/3jSdN2alqh9NJf18vGQuq9lHUPTJOttqYWuY8cLN3F/U7Gee EtX11+315SVXC3CaNx2wrVaFEBRSPAVy2Ks374g2Tm1Fh0QpCnUf2aSgf53QFUeins33v5R+Yyx1 dnTwUHXXYkShifxbs4p1wcTvZc/WZ0Vxo1oesrYz6Nzs2UQY84T6yWGl3pcd9pNkZgjnK8Gd9acd 1jyT/VLBQRJbwLOwx1aBwGLURL8UhMwo+Yk+V/f7ESATn3HQo4lKWLxJJV5PRPy2/dr9Cs2eRlg8 XToKJ2v2DXuJ35Vxsi27gY1mYVIUjmizOjslhZ6R4MmtQrMOui0c9aQHs9kzgF+X+LdKrT7sQn93 Pa855LSufP7jKZo9iF6yLoJgtVAqOEunNCkK414YcjVCshEr9qchIYXoJ9QLhpF64GJln6pIQ1FF GK47yU0BBBO8YziNJa+nkUbJI8QXQioSIXNyMWaDaV/6xCrURThpy3CELzdL8WzYthJSzcfhf87l cyWDbXxugfaxlt3a1fHxWNLGTTyElW9neZATM0PUnE2nc+7oEewD/C326pDV5Q4LJzaxK7lhq+Vl J//GR4aNUTZ3C2+19jDbE+epss1Wd55rUfJIDQoXghmHa42rl/wasqjCr6a4HNQ0dsn7HFQS476l x6+fFmsqIDkcj6TtufgziaeExHNOmJuyEUsduQheNHJRWpi9ewJDYU/nW/2RZ8Oh9pahGn+eyjiL lG/RLo5IQQuFW3mIaCgVz70I7k/6FWUrp8lisj5dT2TLyVNG+PQ11yqDqPBco2WX0oeNFQ+b2EnV eYMdig1ZdvnYLseRfB8JEPv72kpboai40jB/9OO+s7Ew7iIkRyAU1o7QijozELfZI0fu7D8mMT+E WIyD48+ZBqkoJdX+8MDVKru5+RMaF8hpTCGNdkYQZqfr3nAZm+KaO0QbridLBrpmtwYbhRU2DsJ+ b6n7w52R0xJH7KAkfAzq8u0Q2wa/RWZQjQWVWsNnyO6Xxu97fMmUTkbXUlaXEVOKu5Sm2pz9TuaZ HknqdQcWfCm4tfahZNCU0mVojM2wayIkyaO+9yzRjDVF0zR54H2p0juCSgmPjV4UUJdbY29dUG2n czF7znJRjc2x/ba5QMVPsaY0w67KjycBZzHDM/LeO8p5T04OT17vbH4wVK8arUfUAjK49a+EeoT2 htIyQ8VwHsAIZqi2vBMfim75yaC35DWgC6mh+HGhxYtlY3w0H6Da+umHhK2tZ5eA6Cm28kbBL+ji oeX3TGm/IAl0oWKvHnV0uxBLKL58ctwDXdMl6hjkZCALKbVR9pURmOXkVMusl1LHdGkZElfKdVju +fErhpCnaSFwTa8aVIdIevJG1VswcG/Ja5C6ur742G1NeUGoXIjwA6Mi6wF247lDgh8koZCju9Ts 7tt3dZQnWAtt+/vdhIFt7Z+UKoZDvT1THrVwbGdPc+IXE4fuF+lV+IbqKfCg4xXkqpx6qqkyNqg4 FWzJjoTF5mYRh+qJzQUKmtS1eeX0NBJvxD4hJPZgSDpVSu6g1FmTuoB57T84u+NYPU547aW/MVnW 8FLOVv6bF9ly32OBobFDPVHiK2VP+FDy5yOol7mOwR0dpn7jwYOnIpOH7TzEde4q7VGl9S8TKkEu ons0ouL6cNJKL0ez6IWHDSUjdo1pj9MtejEwRoe15h6WCnPkaTgTWyKmY37wY/xhhOY2+bABxpnn /KLy2tusO43tOIfPCW7YneIEh5Q3+RTuZR3OaP+Y9/1hdbv8ZC9hKH1Qrz6v4XgmoYs5QgNUxnOn OXZZkTFlnQWPqTz1vmGxS9Tz8A8cHLWmj51UoC3zGqc13y74gGUIotyivcgckynLkNYTjGk6x5wW 2C6gDxCQu74wcCHdZ2k+XyMx366WUrBP1LvpWAYqWJwd07Q6HSCCOn6HLmQCCdjHS0cz3bp64703 NkvrgMZ6QXpBkkg54kljKVQl5pfKeNDsbBQzup4HMjljVS7lV7NYn4R3lvRxGHGOapTqLyV9NHjc FeOVZUdOlOV/Dc2vMMIuG5p5+KZ8+5k9sQtpWZxPRviUYRXkZzcnd9B2NgwVdLcQkXAjbrzhTGlG kYN1ejEkSkj72Fc6KhjzdLS3vB6vjMujeYAHvEulyeC677NtgtDabbKxd+HMZbjUWZZMwbu7tvgq qy6EFWml8N5wpttyMxbYrPlgrnbU+XsGdHK+QeUWCkgSFUfVPUg9esOeQT7Z/gbKxs45Jrtt8gMx ZhSL9eMpw/ygUaukjkbrBFSfJiVBasdAkhjzIuwOFmBZp5YOe1kEGVy5tYVwZJVlCbK9WmhVVvhZ 7rOHHfcBUidOhjlgiyrN56Nqz4tO/tMY3YLnNVHEpxC8vHCIZ4AmKWafhRLYnwsUGjtisE/w7gvd wY/H1wK9LCI0pqwHljDaiI8j4A3rN9FNqWhc1kdrhtGaYUkKflCtOTtSk4mVlUaqvGPenQzaydYO Ft1+GTNWPEbrinAqU9Y7V3yTCaOEDKpKopD4aun84s4dejEQ2XPulHvGDVpS5WmgLHjSPnYkcHaX q5vXKRYs5eCz0cZAn1ItPSmpGSbRp1Wlb1ublGHCSx3zjSjERGKYH6jaVR0owM/SJgPiU51Pqe5w DT6LE/M+FQPqR/kYX+06OQvUq+Jj8np66ETf9EIYkzuX/pSpipRzzcn39Yh1HB7VALKUc8KPwt9n YfEU3KFUUtzZQNXL0kDf185PVdDT2TiSCPIVgUOGgTtNweGzwI+vl7/Og0zQF1MiqeLQZ8AVe0MU /eSE/RjaGFyBsCn0aEZP0n6xT4cJmg+4Ass6HkQzemgYp5yBOQsxH6b8kMonEKGJML8trM8/GnUR ZAwc8ta9d0LXJxhnrtLSn/6h0LwZgnA1DTg+2WXVv7h7c4USQQf0xaKK4PjYczEMms/7E4TBp6Re a7VQPUYo+AlVhjXwahnOqCk/NLjwY1QuB7PA+QQt+RnB8T8mb5klZJeBhlAC6TMw8fxO33mplEV4 F3kGRHonzfVXstajkGyCFuIxXMZA29HnElqedVf4jtPf0q9pf6vqx1IVHP7MCpOuQEuZBQqVXcoA GWEiQdJvUAF1MBpQ5H41OP7bh2Nts3EQ3dkrRs9eVaDgkIi+JEOgLVod0QwVmiYugv8D58NZYsTj oVX+L2UM2Tct0lXaTH3o6y2bTxv6qJR+O3qleIyPVzDktNtO3TprMgmt5/SxNx4lTmz7syHm1k8b 9McO+9GhHs9w4wa5jqi43zdCcox8ys5AWEUDe4vh9c8/XuB/9nJFplS8+dzK/QI+O/TK5kK0nFcE LzKJubiuhZsHYeZyy+AYj0hR6sz+IcHkhUSjcm646kpqlC+jvfof3yOslfEmVcR1vIAjTsTOtMrr s9XKguDSxZ70W99aRcGepmNN3lFjeFAJtCvYSBw5yWz1ZQakq3O67qjmUEXUzN2rY5Z9YLBrPpdi cGnVRspe9PxEWKtyw7W6kDod38AtJ7DSiFsP0vI8OCmH4qd6aCqewrN0Wf4EOxHrH27VzIVFESxp EcdirOvfYlTGPz74FmP0JTg+FxjQ6oPrd/Usc5fR8lyOIEddWzKVUFBMYmAIQXAL1QRdUm3tbYfn JSo3wS+9wWvT/2DcK4Pi6ppuQ7DgBA0eEpwZIDB4gASHQYIEG4LDBBgk6OAJBCe4ayABEnSwwd0Z 3J3g7sEH+Hje99669T2/7p9d55w6p3v3qnW6d1etfpn7q+qkX15ZI9zTREZZAwJFMuf+ZLhPuWqn 2qBjmovWHJ+nnl2D76/mieWmYgPLmXN/qRrbySgr2TZn1V7jkGvaKXLahGvWNN7W5ETnnEvKUhuM HEpRP4pTEeOg6SspeaCohtZD0/HhobD9haqOkNc5hxlcXFT83BWHQ3h2J5/i+/pfyTlRjWJa6Vha Ldcpt1Vh02VSlthH1BMJf3i1SmtMV6JOir/vENc9RATFAVWZTvywMqQwa9fqtdo7KycS8AbNo2OJ CrVHHHW+E5Ebjw2PoYIofNR+NsPcrx8sWecvj8sLpUt+TpHmqTUprqI9KLBtN3a3uTRAiNxFByHN hNCSGu1Z/OWOW6W0k5K96X8Fx3w0qNiMSadellSM8qrcuLbpEAUf9rVNVVsnuzwnyLebQrTqb0y6 sH3bPdnsPy9Tuf6Opiu7P5mjtUq30vRz02wOUmi19sPn8+OvQ28DMDuk4x7y6VQaTmu//KCjl57H 9KTRJsL+kwlonmxV+ek6yQiHPgXKzxREj8aNwLn5xnuB1AOHmDQqVHcmZX8x8TkuVnliKc1BLp1C eu+XTPq07esv3oNeAXRYayzXb0XDOX7s6r+nAQPUcSNLQxy1XsVvT0wpKmDOmBavTbq+/lQsSU14 ceEwn/pijnyOQqCNrfW7nYq6rlRITcfPUw+8g4MOFcOYMHI3OmYnY64mrRQPj9QoC3N2h957kNCb ChvrWKMSKu/ncFCEx0oEtvFtNUbdFGLli6LDs+mZsBkmT5l7I509v2E6oy0HOb7rFmhAcc3PNJLk IMhx3KH3d/dKSomCK2Uen6QUUDc1W3OrSg9C0XOv0iR9+t4sXQ7J7ku+/1K0IyrlNlz4JxBpkoW5 yLdsTjDoNUU3b2XgeLu7yOfLEdcFRidl6jsb06YKeQV8sqSlum9RKN9ByfceLp7G/ZzKdWPY6DdC i42gaTJBaoy8V0Wfpt0l+HUJVe+Dy1ym3L99sihx6ecRyupPCDSlCWYS1hUz5FdyZgGJPDlQ2KKf dKccNrwyAM3y9PFYloiA8OJrc/opLUs4nHM5UrjFvbDSbEK9yg93S0hXoXJmocLF0xVRhfH7axP9 x1MpuRLzJjt83PYX7gGrmMXwsky6/h37ztZlexN8S00pGSzdCdWEDhQnHJaVBjK2go2BD4o2mQeS SiYkWG1hR19xdFPs6PLMLg3UnxxXK2bamLWaLnm2FUoA4ZcN7CqMsFbfKYnsQS8q9PQCAVrB4KjY Mc8PcHogxntZhhl3XVs5Aj4Hp4/xYKt/+BtvRf0tQIRugdUuKdmHLPnDOd/Unonb3AbxAJZ5dV17 CEGvnn2ZuLevJI2XigsuSSvydt60s9aCMNQxWMy/VNgJl3RPJ07/6r2wEtOrIcvZn4qjNXunDvC2 NvjoyROU0jpKePDIzxoO+HJqSVCvdmJ5+ih5ZJqmEoscZFvsrOcO/L5sSn66xUJbx9Xenl3D3S5D w9h39C5IQYP/9Xw9TppikRBLbcsUZZHi621Lyra9x13iVAD3Fmx5dgM+l0Ryi0W1Lj8SV3+N/Nhj Izr2aaQwTWFTT4STqa8jpsl+r0X6S/s7Jr3Y40sY3egxq8JM9LXt6+GgcamYQQXAzEBYaefM0bdX Ot5nks7vz2C9YIaKGML0tdYZeF4x5Y3uJ39+Gk69izyBdxLo7ArQ5zxtRwybewXdvHs1tg8kZw7N Ta938c87vHun85lXuE0/ZMs1fHDSrxXj4wW88U1e/uXb2mjy4q7iYxIHfpXuixJZw9Aask+sK/eH IXD0XGve+UomGqFLdR0BlluJ3/4N1zua9tfeY4XfV2hX/u1vO5nTOga2KitovspToPI0VO1kWKg4 irr5rad8FAml9T1Vo0rkTgoawNqWwfNr9WBWmaKyvjzNVuld2nwFce3tqCvNXXb+kvLswoz2QCTt i2qE9eWyLo3eTCzXzA7fqRFwA79auyEj+cuYfd6fbPyUmnNZ/Myd6FC6JvXWhAqBGB32AgZoV5VX SKXYckOg/v2gzN+ZOH/epP62QnatYYHXBLapWmuuvDxDU+qnjt+DiS4C+bzkf5oEDOgrFuIOVXtw iJ7C8tbWJ/trN/mP4h66Nw8LnEgPZuxugwPzxl8UDTXHkkZL7emGL9+XTzNvBHVZ6wmuS/JA2DbM 3+EsimUFUZPzI6rqsTdBfbKbzwkWJfp+Xrk9NaSMCTz9AYQfjcqgLVOw444wTiUrZPswDYEil32Y MI7LhW1c+B45gZDY5SNbfKOl60cvkwyGjY9+iBCsbOAqMo16IyNrXUTHqFB7r0OuPlFuCA3h1rzI VCpkmMO2rgo9H9shq2J/6HKyLVadScpkjbkZ8VBtn4BFcFLYpc4r7gPqU4MdgvA1tU+N51dC6E4F UBTpDVQAkBXMJrUwkVDFVzccpH+FbflzWZC9rAjUQD8x0S3Wx6cVlMLfH296DqOzavc67RaDyhy+ lIsj5axjYdtqAokwGiklEep3uqRFRzr7gbveto8dn+32Tjeoio1y9U1GuzSYK8b89A2R4NJnyW8w b71q2tZzKMeGHNYEE2zitZstSKgYmrQaby60a4YDahynJWDN0/7A2YV2UTDg8vCP1yipXqyvbrnW rXhsTGZ/p7C9OXRk0HNLyJ66u9rQnc5HCmlyPT932atA1Z8Jp6sfpLxtgNPZxQHguMXPJr9dSSOw Bex0VI7VEvY8X2ODPyBzlvIo9spja3/iCpRnUx56J/hL6VSvzO5zioyadEJuNBHrMgRNroFKt19n AJcDp1S9Y2LcnkwI5fa1JbtDxVFXxQBLzTqWgVNlKNu3bsn7oAad3iX03/EVpa1CRFA3gn71C2FA WA48VFMr/p1Gm9N51mhFDGkjfcvhfl333MH2mFvUbi6NFM74zotvOAGXQ5Rw2ZvzQ9zG41Kevft/ iRH+AsRj/pkb+WdG5Nm/xAjy1jBLFWtnl3/kCGAlgBJo/GFd7lMF8CgB8RVV1LGdCT4TIv4tb1D5 MZgiiv3o0R7Tf1Xw/9eik4PDfywVzxirQN7T4x6N8ef+Dv0iGR2i8jxW9IE+G7JJtWxpLSuEdLFv QWR38XOw+uFZKke2sDQcFiu3UJzudvx2/by4ZSZAu1Q8riwZ6zEGqEvQykrGWGfTokOO+nXSeV+2 98wh41+2YC/n68bmzCHR6urc4ukPmk6caWUZ9VzKCZPyDrTmsBgHqib3efsVvzG9wqmpoou0pOuZ UST0Ii6BscnhuEB0tkzAt+hkAxyukJwBdDC7/9FmbnZ/2+Dx5l5n0T/UvFr9eOu23fuNAMzj9an3 oYvwGkiQg0fi1InYvDSvI0piUV7ukLfHZC+yQbZ5aXfqpuo2IAowNd9+0YcxUcoA7YyigzvvXIkt MpKf2FpKS1uFbxwV+rqHG08IVDTk2oOfxV3zslz7oOl9gEJPnAsnitZQ67+dBbkKUOxW9P0uhqjx qfqssWtVvB9Ntbu79/tDTxnHbIz+eCXV33132/vTbbNg6uDkwy2QQbrPJfXWVXz3byrGYtjXVNuJ MlJXT3j4s1+n8duTrmonOnYGtUa9NPvlNTwWXRWTqRCkmf2AbX8xTX9x6tnShk7h9h3Thk7pmO33 yIQyyOTI5LWa6SK9+6pYxK+x3OK4d5tDKpK6RuqDBWKJl/FsQ/dsApn3xaF3VFkV+kXk2gf61uq0 Q+8Xz9N0jQR8S1YGfkNtPLiV9AdVABL3rRPmQgIEtM4c2FGi6f7d89wRtbQRM52HY0usg+/RuNqN xvVGSIg1OC46pkoFUsZq05koiZmYpgP7lDeWKBwYUWQpyQARmkasU5huq6xfUNMh0xvDkWgOCwvg HH/Z+rEKbJsdwH5VR9/XQQXmseOk4i9PJK+ddmKjhiyyAfxOXVP6OhNDvWf5eR++SMCeXgG0JI59 Ze2aWk94DDuWfAO5fvDRCeumSmOALDIDZubNqs1RTWazTrI9PQY8VOaow85pMn4EzzaJOWqFeFZz S6+Z9U9LohEukvAZQpZ+ml9PGZIjLT9Z3kgIyeRoTxT4us5fDUowBcuJ2olyPfiUSjJHVTnBPJIQ 05c+/UhqyEnBR3DuQ7SEuqYoWUpkg4Ke24lrrXYg8GJiOJGL+aUtze/WxFIbxHrRF9erXByIPWg0 0dvyNpEHG+JJAfNYarH1025N/MI2e9L4YOX1eAQwd2CaX1Evc3NoxaYrMby4krXR7jYROodYV3xA SwDBkz+LYD16YRf6hEYf7CaOpECao0hNZ7qNedf3p0en3kKaKB9Ay1GDfXIxQ+HiGN1UZUyv+GQg /xLQbA+ZY8DKsB/SWFtsN/D8EXLvMA/I8BAu/9Q3IMHC9EnMF9deOAFECNcaXPWwm3QSM5Q2KUSS DQCcP7ElhWTijSSaP7zuxPoVKCwzzQ/747f2DXPa6ZreLuXpg1OgzHS57ROI5CtHdTfiB8ySkfSU /KNZwPZpJ2AE0BTzwmLuCRIUMZIo/DWiaD3qFUwp1AQV8uWQ5+CbCeoyqXK94MHpXkZH4qwSTFRd j9gZBY6bdlqlm42VavQFT4GQf1XMUb++eJ1sgZDeEjKQO7IHp/nQsvVhANLb5k8mehaARHDYcf7z eFUDth1uhoJ+XRe2p4kyQw1bzp78w8q95PbEE1HYVToiwincixgi1P3xn1h9l6JMUdqEkKbngGrr w5tXsFqnDCTMUK95PRAbJor8DDT/uo57BwggmB4tU4S0PYAQ26oyXM45kgULfVbTpUy2WXJdwjsh a4APRNHgxt0XaxX+uC2hVhy/wv3fafao5PXk8EN6LcT477CguQPMwYn3PysP3A4WGD1E4M9H0X34 9r6d1F/s5/rbJ5PExQjiGI5ljx2wjnOAnezthWWoHk4G4+GN5NIFgRZrPNsl5a9YKntk74tiNcNH K52joah+ZjZi3Y/V2a3eT7G0ljLMSwnuECM7vp96RlQN46WDfplR4YPURmVAb3XvS6XG9+yd2FqY bS01empk72B/x6p1sZ9oqsP6HDC6nxMMGybWb34ajX2GVYHG5w3SNREcKrtQFZSYjYKleNz9ic5g rg5KT+b73KheZrVz7POrcFLbS4dpPyFVrsfx6F81hmxegYEO59EjENV/JyLtLF1M/6s4/D8X/0Cw oAd2XhEhbdrUrWmoel+Py0cS/CX+WPsxs4yqEXav1QYH4tH+dCI4EXOvdCnRIsKuN6VY1J74k/uu VuHENUvVkSRTzrBnN4AVxDi34NaNdGzIwwitNr85s5yknZ2E3reJGzLksLTR6w8zq5USm9NhuwSW vqGy6j7nBVye6iFqDVSgooSVZY2rr2ud0m99lxYv5uLtMg4+gpzEJPKnbDFyEhjNI4mLRW6BF5rw 1BWXAcU2ZjHw1kc5AUmk3XqTI8OPJ/l4Bqvnqfz0bfc9KVj9T2OwQ37EQrY95c0zm/JEfs2GmzoM TzrZ+KQHqS1iBaHBlsOHxGIMQ5yQgunSy5p8gKLPEGcH10qMEyB1onr2XBoekq3qU2g3RbOksdHM 40CdGcf9voMfcvttiv466+f169iXL+cy3qSvc1l9WQpNT9wVDTQMnP8Rr+vPSWODEfMoFm+5x8En UDqF9aw4dzm5BxCiXmXJiKvfN/PUgKAsDG4F6pn0ZrxEqEE7n3hi6VyZAdu3V64HroU4PHsSDe7i fir7x2aHNfQqPnttNYIv4Ld1LpEP+4VN9qIpGxDbmrlmULdNi0FTx0DdhkqYTY0ZsJL+8XVZW7bi DSLtq8yPxtkzKjN8k0+Z0mgWzriwSJxCU6+MdzkKE+82wQ0Dw8jkNqXinDwXiaxrDPkFVWiVdW3r Rvk68Yd5WjfeG+AaTlKGBp9B7ULJJgfMDmI5IgBX9fnIa0HkFBWJsBBl07XhfsywpNji7ls699QP wReoFOzb6kR+Jp81OD2fF5DP0lamF6YtUk1M5VKRo3jGJbgjkbTGBBD12OdyMR0uU48wEbGvtSiQ TlI9u80c5SMnWkI3Jb+ZGca6NQr2LR2zqRjR//H4awT7sPxi2Zq30kRr9bE4sfWLmMCi9rwINhTD vI4XBsBa7C9bRxlLERmhDKMI6rGgGQ9tg0mInGeMP3Fyi9t3mtP199myMlxbjBVKimQpIdKv4ATW gJea/sQ1uCshblcTacbPwpZPLBwPmbCLcuhGlTTVUtbCFDf1Cz8kdcmdR+AG4Qc4UVz7iJAk/Hx5 8GyArFWf9Rl/zKvnYY7ZLAxlpFOZa1a313EDwl8VFNleJxESPjGl1Oz8bDj+lkRkYUCRQ+ldTx4r cRQkoTvuV0DmgYNrIayW/ZjEtWkjlkZHMmQAivgq2vWloZ7QfjOaIyiDkqHmtTy3TXIuLH2FKBQv qTvJRFVJ0D25m1PhmBZ8qf/q6wKo5MKfxKl4vVpe7bSRVV8gSngc1AhLeN4Evm0qyoovame0fmRa 1x75689j8w6Sre+pWBoEuVQmMhyiMnRmFJQaWtJ0fQaCBjIKvQjoqYrfQWX2qbUDDRu7ToGpzVBI NlCm96Cy4H3A4jItcW583Bme8YjrZUQo+9ei9/EW01cabVFQQ/3b54uVZDCZ2AQF1q3Pwlcqj1rS 7oyiP/cSo0trf+l0CDpOEgasr0+UFn90hmp8H/guJkePE+RvMNEiaP4Nd2P9PBH9jDb4o3dKiid8 pV/w8J1rokQqL2oquYcLAhuMg30nGPhu8qKMy955xhvLkjBLjZk51f5LfKFuSd0TfNVg37fejeQc rMkf2TWL7eMNQQlMzIIxMkIbSkLVVCHRl3HBh8YS7Lr9Teny0JyjV7gYWk9eTS02nV32Y9kd7ALJ ++5RHQORaZ7tO7ug00x+RqE9y16x1mKca6C14ppqMVa7pMy22sL6AzPD3VeQ2tR3SkIJv8XJcPP5 c3/S5JAN9UEBHu972DzJ3Lgo8a+mLqFGQfcE1v1Yx7JfeLm0uDvoJJHLhK64B+xzKyCauR/Lf8qn qoBXFf3TB668Cj5TVcWU6+ny5vWCe+4Kt5HFDFH8WFqDzxZIV5W406jnJnCDP3sb5oXX09n6itO4 KAS8LZyiOrTaH/HIdP2h4EDG4IeGIabOy+0alxMEs0NWW67Nr87/ovPPFm/gw1ZTR5lvurXvW2WZ PJVrXXHZGyZ20XfHH5lq4qUYacgyK+qsDAnmMLWDVhqddQqew3Owk2Pg4lGir/9gV9oXNN4vH4dn k7ZZp7DupPPcjhekxnu8yriiztRC3+0aown+dzUJCKKsoXooo1WP/1VNXCzhLtb2Vg7/VJPcWA31 AD7S7qUrCtULQuEjOUXT0FgJoE0/+tEHyFNMoHWhy9Ji+VN/+w7Zm+G/B9f3C1K1L+mmhLa0Pmpx p6yKGJizsGg1JL6PND6fO6L6ofqUNKkWaRuY20Pws9cwklMXN+bqIhrHEKuHKefK9tzQvttBsu84 reoDzvCFz/iSrLIuab41/i5WLMtfKWnn+MS6d6kTiimKuXwqUxlnB8OkYwHXCNEuKPprYiVl3g8V WRXrkcv6QK8SU8eu37kCe3i3cDh1vyRhwWHC72OGYh5urarf4RkF2h01bHxsPKKOlLImZeIzIz+G 78urxJjfoXEh4IFe8uIO3jxS9E9gSI+RCOQ6pp8SCq7Qj6rHWuW/ug2wxgj/8y8gndq6pa4egMTA ++8A+H/PJBYO5u9MYZYuLpb/4Fil02s/x0faSL0lRfo67UTxRdUjZIB2MKMmpjwJhveale6XxM+x 4c+zxtW3BKV0bD69wK6KI8gOoPq4MdDgEbW2s/EbMOxgl9pQMjl98WgJ1uSrL3EiXV0s361VMqnH roltytLzlv1p9nPKpxRm0iTxjzetcywjNDrBjV31PLEvc2MK1n+Pv4cIwytiXTXSrMzJmc4ugywq umbc/NyJB6TfzCVnN5J8PngcpJGmW3yL10CKBp1Q/+kEBZqMSGATjmLxSqUQSiqeh8pyVnj4ozxa wN1eJs3tCbNNNEa918CxnGa+AlXffm6jPZzz5os1MGdClvLbjxQC0qJjLE/DyLGlnwzKtZE40uwY pWnec+WZ+E6VkSPmNrXe/uRxGdvRbck0gt7eFtFJso7+wEwnR2SM7N+UXalFl6frnsVLQ7GsQhOE v/uYfOAXVBplPlcxGktMHZhJQXiytIHtXVonLLAWajKyrWDf2XwUiOh8lkR9vRvS13CrrfySbUFO OieTPKXvUVB799z0BZTxKZyfHKHGA12ugZh8peL1Y/s+8sez++77/Rluo9B10Zwn0u1mesisHvuV d8KwQo4ULfeNR/Uql8LC3zlqhk6fkbcihWJhX1hXvWWkItp341I76rRMrQqrJBmQHskzEUB5KE+w VveJ9xP9yG46r9F/H1/LM5JTUaSPHuU+e/wfqji7eMAsnf/hiqudpb0Lj7mFs/N+hl1cThdtUPOm rp5OhkNqLI73jMPBHixWrCKlOEMJqab5mwI/woIS0LGnVt7rIEX0BPMvwS8+MfiQdnnkbQ9qbP58 7GJia2nJRWxB9aimsq5UzG9MaivrXolpVAoGre1Hq2bhMU6ZOupun2dm/r2rRFcd1ryd5u9BDkN1 g+7h60AJKViD50Xz/blvXf3dMJ1sc9/zOwfEzbbzXRLaoro+5SZxfbG42KMSXMeqGvXDU+Za1536 Sv0ktqSaKDHSdl1d3ns+6IaUNRdSPrUlTMdfQRVp2/TtVMe7qqxSUqx1xe08WBB6QcM4MKqn7rN0 098EN72kau51GuA2bzTNvG93nr/54L5OKyluhTBR96hYZEiIHTrre+K9CR6P/mtwl77pelFiDaNy aHiu6oK0s555mxpcis6zfhMFRxIViXAaCzTPwJc89EKQZ+M6n8xBv3XggT5rbO7rWIl+q8N+bWwS U6pzqn+mB+ef0A99M+4xbHSevelKt3/hd8t/QvFE2+23MPvoDv9AesGbAlZoS4Ita6syK4RnlmxG OZA7sUS24cWVMpbh2zaiED0e89/RF0nlhv24PbUqw5pKYLmM5skkUAvQaBtJbbw2VfEuOdA+J2ms a+VDMN1m6ZbNCJ5GvP+1FGT5KrhYBri0gtU1uuw6NCm47cqwG+3Ve5omBKrPAnCZNtFmCJa2lu9r Q+ZBPjXNT1mtd8S7NJNfWoKa0gEzQX52sMcaeUZ0GD5ZFPlhKjzs78GbraQRVbZi45KXXZ4xTLar YMQ7UzkuP4vM/ID4deOR8cXib7UyzoNENdmNzESXW1dWbG9MCXLh4qBPJ4gUS6+ms8zM5NeDiO0N fNNAzSMUSbrzy708ncgbzE36INgf+7jANwlap93Fh0Umyyn92dgupFmDQouxTVXOdEsidJ63Qz+6 7ize+IU/vSCA3vVWCY30fN9OLaF+sZFl4ZXsx7XQidayZ1IJEYXcxffIPj3gpmZdgvJo+/rOvNO0 XmKpdrBU8QsUZ8/tdXVwd3g8aqTiX17PCBbWzdYt3Lvi5KreZZawfUEI3N9neTc7Y/3OfmiviJNc f3ZC6Wdl/tj3+chtfY62nhP7JvDicO5turyle7G8VNswvsQH680UxPzi2bIJRyhwfw+kOTunrlGb EdX141jvmcHskvWvyvasnPIbtlXHzbZ3g01xbwWv3YUr3fIdSuqPEv8AWyH+1VgOvw0rWcsT8HUB H0LhcicJT2r8v9KRlhl2aTIf8lrWJpNEO6d8z41NDKv75KDEuvq29Z3Httqb20lNgrjx6IrxNpUJ e8B6njhfogmgVc+/DMscr0uTTSnJHtDYfHdsPxv44AFvkayBFQ5ezwHGFGvXmG0rd3DHlsq2ULLM fw5Z50/E9/DjRHV6f05HYQETKrXHv3mBLfhpSOYsccYPgVV8SkQeYGA/xT8W/t+mQ8knPle7CPqQ QH+/TC1o0/evwILiDZKls4qAN3cBnGElO0AIVLO5arwLILgGrHr1fshPgf6piMyNmEqRBGYwp11g O1ZwKB1eMB6x1uwrx2S1Tb6UD9NgRJIJb6uRf6P2/+cPsYBuY7UT4VS5Mq6jGW5pyz1n/f07ELyP oqDiadXxL8aC4CHJYKzTyum/cGC51ZHNeGIXatFXjg6LhFQ45IRsz1T4kk341iMJHm7yvC8yjrSS tD9Yp7wcbsnnqeJVUvXZ0bzhfx/VCprjSdI5ElJzsLxls2awbV/+ZWMwxOV17KFei+00f3670FY2 cy1kj9affKYqI425i+vZlV7+OrLOVU48T1dkiDYc0r4vr8WWSUDtkGzsYYFjqCS/qBz2aiRQUaHW Pej+D4KdgkjPX0i8X3MLgF++Bkn7M0mMKeQf4kO1ePa+qaI2X0bst0V0+SDeFNN706iNlyZRbYyB En0E/hLX+Oe/OCpZ9rsAmSzniuovMeVofInYO65NvkcfMW9/23JVqSxddvF8nYcR0IZyAAQ0hVq0 Mgo/L1YBuG3xIb9c3K56mtbibHZAmyy96/gnNZZvkyyDZEaCZjQoBD/wWJvQRs/1v5hpFe8memkP uGDm8aDQ0IP3p02N/DFkFK4yP1QmPW+kRq90shZJy3de4CxBxjA3KXzCa+bJx0Wy84QvFumuT7a4 1iK6HXwcXB18enXrPczRG9dNN+lBl5z7R5+hVEyHMZskrLqzjc9LvUH93xIcUVd2wXXrgX+bPjaj 6eedMhPBaoV1oTyaldpj6wU8I1XaM2Z24HHgZLXsMiVo8XPfulgSl49fMWrC9/MiipJ3okH7bGCJ VCVeY04S3vSFzh+SnJtn/8TetMDGuDKlMP+TzBEP2SRLkZJeHILNVDVPqY7elp9G/4cfecBOxvIQ 0dipuI6IcXZu2mjn40GwQP5JPrFt2ByObcEHsOjcljRlHAYJPqO2YcRhmeGepQjOGeQdUEVThlib QODMMFxMSuwgQOl+bjx6pkLZxG5XjDLH5qWa5oXe3G9Ht8X+WbX4FxxyBoZh8byqbHtnbv69gYIX hhV4eYweV9wol4iWMCFGt/7SlJAlp2VktSvmqhJ94F4R0ZjKvIfg0t/1Pnx3V9u5+tZqdfzgkx5Z CrGJhZKDx+Hc0wnQk46dYNsizU0jUzo/ocS5rUBP1UM7dFk10nVP5v1Qs4fzVLmAxk0RtBSDpux/ 2jnPqKbPNg6HGBASkDLDkI0s2aMIoRpAAQ0jhKEgJIAsK3tZBQSxrKpIiASwgExBrRICilRGZEMg YmSDILJkJDJakILSAPU9Ia3veU8/v//rw/3hOed3fXn+z4f7ec59jjvVdgjsCfJsugnSBmqfgnG0 vQ97OHheTegRMcWxQsAVIfng3KFLpbwt7Y2+hJtSVDG9S0ckbdISO6SdTfmOOerqRR+kea6dySmK tA8rEBIMpRYv+/W4I6YSCwgNqEsOYhnq6YojBB20ystUCyp7MoiB5xBc1lgWNrWsxkewb/DgQ3iq 8hOPdwg1jcRmT8XhT12OsSV7RccSyMVqQlX2o9LYbRS7BC0msVxGbMn2SY+X88aDdVESxHglX/kO LELNXKwYK1UXaRX23ayVF/yyZ15vi9z8yGVl3MKPNfRePk7dCjWDMVXL98Soiu5W7jHVbEFTfQhN 6K331dI+gH5ve5Wn0SuOxna6T+VYpGJM1H4aiGbpbAwzhlVj83Lycs63xkbERUyn8FRWhFfa0eIi ttH2317KCVnHc55RcS9POqQtzOUkOwX2CIBTQowRh2rrS6eIR+EDU1T8T2dVArutGVBw3uDKlTbQ 03d1iF7v60jl2aYZnLfzA3uleA9du/yD6Lue+fiChzBCPDge1zvz4q5555G5BYSb1hesG642x/7F O7Ojwo0lqRHH7Ry7NXcgrPx+B96oXQbguaBTB+DZxwB2F/Q0LmHczqLCNQU1SUVgzV70JytCSWgS 2iZDhwAlQDX4ByADh2kibhpuZSPlbJFP2CPH5TRgBcqHt1e3qVH4wYqEzr4gOTDfmQZacNCzI6HN Fb4ZgBRznsLi02UzrtWeCXsi9YcH7aD6hkcjoB5QT3wUi9kljsKxCWTQQRme/xHzEdSU4vsO/JF9 l1auFIG30Jk7+zcNK+TZrjh0Cb7tx3KBNk2U41BFXsVtUySNAzVDuCtWHA70TY9GeD2ckZyH2YWR /AnIoMN6ZD4Ps/a6/+IbhRf9G7O31qqOodfe19eP1dbXlpw+67KQlu8vKlBcJnbvTb93YXCMN+Pv V3z6iGKVzq3gSL/9PRumhpe+n2di38/OlzLNxu7/hr4tDSh3FcPwf/PwZEsixYkdzj3WiD1/38Na K+AkbbUn2CQD4aqy+mlKHbrJlqYBrbVfRY3rp3RUytiCj24gfMR/LyQKK9yXse9rsPwOqjIxC822 7HvGKzdBeyZqhjc2SbvRJm06cXfIkT7cSEz04iVL4r9Tjbwirxp5ZhVIzv1NVxt5e5ySLaUkH2Vx OX/f9rEdtX1sB/WuB2sMOGBgoWWhEpcPh91JDhT4Sb39+jJ1pSQFhnjmn+FbNEHhH8VT+rU0FPaR DdwzWkMJfW/AsTBEkE87pJIc7MNVz3cRnydorBwSUGxh8JvMf04eu6c006qDMtnpXoZmbifEeWHT /ZZNgdVBw8O/Xl2STzGJ6Es4r4A069KPriY2uL4ZWg1YpOEa8o20+eKtw6sePie9A0dMZRmV/5Ef kw4Uj/ffHDwTUAid06utWmpFR5UJWLhTwShOVNtNkDJI2RLGUfSN/tpkCo8I0VWEf4zew5c+SErd ZfHz209spiGPL7m16SD4NT17LdlMJbNIAm4W8e9VbolIJsr2ypxNAp4oOFjdE1JkK7g+/rz/eD9u 1J6jyJzD2V+TSHmUAWy35pxHS7w4pjOc1tjV8KM6RB8S3Unqajip5VvRjb7qJxz0PY+nXU4UokXA XzN74YrZRu3F5daLedZ5lCKhUoFSnDhXD1dPVgQ3UhHpQx+INRyON1xyRUtgT7D1cO0SyDcqi1Rk 7N45I8buDXfsEkTOYLn8miUyHnQJ56M6k21sKZX295HgZt97JgY1R9v51U6cvmgPEQIrPvTZYseE rx7KFPmC4ribxxeC5RKTxxvNYQXrKkiRHQbWxazg7lmnAfFPslwB8WwMcmyAZ682LI4XDqqbK4fM FlsU9sw34SCaGpplJWTRTkjndSjXNPt0egR3JjTzNH2AVOP8ombxZIbEqyghxuoOZgI3FDQ1KHq8 0+HeJ4ErD+4oa5bJCXBOx6NAxRbkU1iyO1q1auhWZDn6ADSq3F0aI40ZdEzV2MXY51rUVQZeM7Qn WI2oRXdz3Qvs68Ad4t6AnnNNXg/tuhaV45QGr3vgDZ6cbwPFReUzdh6ViJoMaYMmutCS6xSuqawx kuEYOCM5T2MXY5990WwMvBTp4XllMTzH8qAPdW7VNa+N0T9z/6JFbY4KXVrCyLnENX90Kc01yDTa qG6SumUolh2s2314fZbrLhyclOTb53rh7tStwKWNhAszm8o/oOe+J0uczRxy/8ky0Dv8Xp1WYYlM h2ANzaRuFCXqb7SWHwrNzOF9V3Pf+flKS80SxNI/84CmhJshKSx2FvBaBldE1pL4uIKrLnehQm93 QoaPsKv+gp6wVGq5liucpZWY45JSWTt/2F7h+OnIaAcpPqv5kW61iABqCc4n6xmm7sAsr+i35R7W I2WtORvXc80lQ+Z8DLE9Fp9r14uF119qYf3cH+d6yQ7ia5ZazV87OdFbllxupM4cM/H+NgeTEfcK Whi4bGSGuVEnEv1SLXDzlf5yMGRxQbsFjTqCVxD1msvch7oXCShqeo9H8Jnp3wjYP3Pz0kpV9Ln0 aHHl5gzzsZjCOVzwlH3u0XO17+73B23xlGBDP9x8gMvvMAvBB2qtjQXRKScdW6z8ntaljsbgRO3k nbBvSIStiy+ChLdmhqrnPzt95Ok48Be5H6DI1VW7Vb8UQqUUYkPcaWir63HBdZ4EisIPLmZrvS1e 0jkm3R2ahCtbxI6+hEpEYcDok3vPF8QGz4bq2KUkPhIQEk8oKD2HkPv0asDxj6ER6U/l7qKfDGxn p2DEm+V3cEniNv6/fmiUEJV4PddNfOV0+efF8ezV9oQPpuvDxV6r5zN+MepPPjDdXzpetRhWvz6z tbf5IboRkqQPAAD0ALsDQP3OB1wI3W6OVZSXtXXZKiHUVCidLysctHt0kCiLLgTFpr0TUeUA5gl+ /QSJIlRNENvbO8mrnQjy6e6qCSAAiWADqgG+NmZKnmUk1T8PnQLvjAvdHp4oApipqj0GgFPZWCur Z+/wD2YPleO/jgJhlomq1e2Es1ZW2d6xGcwyds6vDdH4N569L2KYPWlKX38fw2ySzSXtJLNWVtPe lzLMpkmlv7+b+TeGvZfEzAaE+t+ujJkFpICmnUDWyirYexHLLLDQ+Mq1LLNmeWI3lrWyavZ26Jk1 eL2v9OuZNQLazTuxrJVVs7d/zawZ+/afu9nMlnJg+04qa2W17G19MlvABv/cCGW2NCjvprJWVsve M4bZsv8U04nDHG3zunMnirUiEew741QhDDAgAMDrFOD/3//4/QnI2tvfAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DBDBB9.2A38CD80 Content-Location: file:///C:/2669C735/2085_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DBDBB9.2A38CD80--