MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DBA321.4A6E9150" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Atributos, barreiras e desafios que impactam o processo decisório no desenvolvimento de Smart Camp= us

Attributes, barriers and challenges that = impact the decision-making process in the development of Smart Campus.<= /span>

Patrícia Bellotti Carvalho<= /o:p>

htt= ps://orcid.org/0000-0002-0821-8931

= Mestre em Educação. Doutoranda em Gest= ão da Informação. Universidade Federal do Paraná (UFPR) – Brasil. patriciabellotti@ufpr.br<= span style=3D'font-family:"Liberation Serif",serif;mso-fareast-font-family:Cal= ibri; mso-bidi-font-family:"Lohit Devanagari";mso-bidi-language:HI'>=

= Taiane Ritta Coelho

https://orcid.org/0000-00= 03-2607-0704

Doutora em Administração. Professora do Programa de Pós-graduação em Gestão da Informação (PPGGI) da Universidade Federal do Paraná (UFPR) – Brasil. taianecoelho@ufpr.br

= Louisi Francis Moura

https://orcid.org/0000-00= 02-6980-4002

=  

Doutora em Engenharia de Produção e Sistemas. Professora de Gestão e Engenharia Organizacional da Universidade Tecnológica Federal do Paraná (UTFPR) – Brasil. louisifrancis@utfpr.edu.br

 

 <= /o:p>

RESUMO

Este estudo identifica os atrib= utos, barreiras e desafios que afetam o desenvolvimento de S= mart Campus e influenciam o processo decisório. A pesquisa esclarece seu impacto= na implementação e gestão desses ambientes, fornecendo subsídios para decisões mais eficientes. A metodologia adotada combina uma revisão sistemática da literatura e análise de conteúdo para mapear os principais atributos, barreiras e desafios associados ao desenvolvimento de Smart Campus. A abordagem teórica baseia-se na intera= ção entre stakeholders e fatores contextuais, como governança, infraestrutura tecnológica e cultura institucional. Foram identificados 11 atributos essenciais, incluindo conectividade digital, interoperabilidade de sistemas= e segurança da informação. Além disso, a pesquisa revelou 8 barreiras que dificultam a implementação, como resistência à mudança e restrições orçamen= tárias, e 7 desafios relacionados à gestão estratégica, integração tecnológica e políticas de privacidade. A análise evidenciou que a superação dessas barre= iras e desafios requer estratégias adaptativas e um alinhamento entre stakeholde= rs. Conclui-se que a adoção de atributos específicos, aliada a estratégias efic= azes para mitigar barreiras e desafios, é fundamental para fortalecer a eficiênc= ia da gestão e promover a inovação e sustentabilidade dos Smart Campus. Os achados deste estudo contribuem para o desenvolvimento de diretr= izes práticas voltadas à tomada de decisão informada e à melhoria contínua desses ambientes.

Palavras-chave: Smart Campus; processo decisório; estratégia; barreiras; atributos.

 <= /o:p>

ABSTRACT

This study identifies the attributes, barriers and challenges that affect the development of Smart Campus and influence the decision-making process. The research clarifies their impact on the implementation and management of the= se environments, providing support for more efficient decision-making. The ado= pted methodology combines a systematic literature review with content analysis to map the key attributes, barriers, and challenges associated with the development of Smart Campus. The theoretical approach is based on the interaction between stakeholders and contextual factors, such as governance, technological infrastructure, and institutional culture. Eleven essential attributes were identified, including digital connectivity, systems interoperability, and information security. Additionally, the research reve= aled eight barriers that hinder implementation, such as resistance to change and budgetary constraints, as well as seven challenges related to strategic management, technological integration, and privacy policies. The analysis evidenced that overcoming these barriers and challenges requires adaptive strategies and alignment among stakeholders. It is concluded that the adopt= ion of specific attributes, combined with effective strategies to mitigate barr= iers and challenges, is essential to strengthen management efficiency and promote innovation and sustainability of Smart Campus. The findings of this study contribute to the development of practical guidelines aimed at informed decision-making and continuous improvement of these environments.

Keywords: Smart Campus; decision-making.; strategy; barrie= r; attributes.

 

Recebido em 08/12/2024.  Aprovado em 24/02/2= 025. Avaliado pelo sistema double blind peer review. Publicado conforme normas da APA.

https://doi.org/10.22279/navus.v16.2064

1 INTRODUÇÃO

 

O conceito de Smart = Cities tem ganhado destaque como resultado de avanços tecnológicos significativos que permitem uma gestão mais eficiente dos recu= rsos urbanos, promovendo conectividade, automação e otimização de serviços (Zhan= g, 2021). Esse modelo inovador tem sido adaptado ao contexto acadêmico por mei= o do conceito de Smart Campus, que busca integrar tecnologias avançadas para aprimorar processos administrativos, acadêmicos = e de governança institucional (Li, 2021).

Um Smart Campus é um ambiente colaborativo e tecnológico que integra redes sem fio, Internet das Coisas (IoT) e análise de dados para otimizar a gestão e a tomada de decisão (Ferreira & Araújo, 2018). Esses ambientes promovem eficiência operacio= nal, segurança e sustentabilidade (Bandeira & Araújo Neto, 2022; Schenatz, 2019). No entanto, a sua implementação enfr= enta desafios como barreiras tecnológicas, dificuldades na integração de sistema= s e a necessidade de estratégias de governança eficazes.

Apesar dos avanços na literatura sobre Smart Campus, ainda há uma lacuna na sistematização d= e um modelo conceitual que estruture os atributos críticos, barreiras e desafios= que influenciam a tomada de decisão e a implementação desses ambientes. A ausên= cia de um referencial estruturado dificulta a formulação de estratégias coerent= es para sua governança e expansão. Diferentemente de abordagens fragmentadas q= ue analisam aspectos isolados do Smart Campus, este estudo propõe um modelo conceitual integrador, identificando 11 atributos essenciais, 8 barreiras que dificultam a implementação e 7 desafios crítico= s, considerando aspectos como integração tecnológica, políticas institucionais= e interação com stakeholders.

A identificação desses elementos é fundamental p= ara qualificar a tomada de decisão em Smart Campus,= pois permite compreender os fatores determinantes para sua gestão eficiente. Em = um cenário onde o volume de informações disponíveis cresce exponencialmente, a ausência de estruturação pode comprometer a efetividade das estratégias adotadas (Silva, 2017). Assim, a integração de sistemas de informação e a adoção de estratégias estruturadas possibilitam coletar, organizar e distri= buir dados de forma estratégica, apoiando gestores e pesquisadores na formulação= de políticas mais eficazes (Leite & Tavares, 2018). Modelos tradicionais de tomada de decisão, como os propostos por Simon (1997), Freeman (2018) e Davenport & Prusak (1998), demonstram que a interação entre stakeholders e a gestão eficiente da informação são fatores essenciais para garantir inovação e governança eficaz em ambientes acadêmic= os inteligentes.

Dessa forma, este estudo não apenas analisa os conceitos de Smart Cities<= /span> e Smart Campus, mas também propõe um modelo conce= itual baseado em uma revisão sistemática da literatura e análise de conteúdo, estruturando os principais atributos, barreiras e desafios que impactam a governança e a tomada de decisão nesses ambientes acadêmicos. A partir dessa abordagem, o estudo busca fornecer diretrizes práticas para apoiar gestores na implementação de estratégias eficazes, promovendo a inovação e sustentabilidade dos Smart Campus.

 

2 FUNDAMENTAÇÃO TEÓRICA=

 

A transformação digital tem impactado significativamente as instituições de ensino superior, demandando modelos organizacionais mais eficientes e um processo decisório fundamentado na gestão da informação e na interação entre stakeholders. Neste contexto, a análise dos processos decisórios, da estrut= ura organizacional das universidades e dos modelos conceituais aplicáveis aos <= span class=3DSpellE>Smart Campus tornam-se elementos fundamentais para compreender e aprimorar a governança desses ambientes. O Smart Campus transforma a educação superior ao integrar tecnologias avançadas e práticas sustentáveis. Além de promover sustentabilidade ambiental, econômi= ca e social, incentiva a aprendizagem colaborativa e adaptativa, sendo uma exten= são do conceito de Smart Citie= s. Segundo Pagliaro et al. (2016), os Smart Campus ampliam a eficiência e eficácia dessas iniciativas urbanas.

O processo decisório em ambientes Smart Campus ex= ige um modelo estruturado que integre dados, tecnologia e colaboração entre stakeholders (Mitchell et al., 1997). Freeman (2018) reforça que a interação entre os stakeholders influencia diretamente as decisões organizacionais, enquanto Davenport e Prusak (1998) destacam a importância da qualidade da informação no processo decisório. Modelos tradicionais de tomada de decisão, como o racional e incremental, precisam = ser adaptados à dinâmica tecnológica dos Smart Camp= us (Simon, 1997), permitindo maior transparência e eficiência na gestão. Nesse sentido, as universidades, como instituições de ensino e pesquisa, enfrentam desafios organizacionais que demandam estruturas de governança flexíveis e adaptativas (Neves et al., 2017). A gestão organizacional no contexto universitário deve equilibrar a inovação tecnológica com a gestão da informação, garantindo um modelo responsivo às mudanças institucionais e às= demandas dos stakeholders (Wood & Agle, 1997). O uso= de plataformas digitais para análise preditiva e automação de processos administrativos tem sido um diferencial na governança universitária (Yang et al., 2018). Além disso, a educação corporativa também se posiciona como fator-chave na gestão organizacional das universidades, permitindo o desenvolvimento de competências essenciais para a integração de tecnologias inteligentes ao ambiente acadêmico (Blackmore &= amp; Sachs, 2012; El-Tannir, 2002).

Os modelos conceituais oferecem uma estrutura teórica para compreender e aprim= orar a gestão de Smart Campus. Modelos de classifica= ção dos stakeholders, como os de Freeman (2018) e Mitchell et al. (1997), auxil= iam na priorização de atores influentes no ambiente universitário. A gestão bas= eada em dados permite a construção de frameworks estruturados para otimizar processos e integrar decisões baseadas em evidências (Batini et al., 2009).= O framework decisório para Smart Campus deve inco= rporar atributos como qualidade da informação, gestão colaborativa e transparência, promovendo uma governança mais eficaz (Davenport & Prusak, 1998).

Os Smart Campus representam ambientes educacionais dinâmicos, nos quais a interação entre usuários (alunos e professores) e dispositivos é mediada pela Internet das Coisas (IoT) (Hadwan et al., 2020). Estes ambientes são extensões dos Ambientes Inteligentes, projetados para fornecer suporte eficaz aos usuários, além de intensificar o conhecimento e minimizar erros no desenvolvimento de fluxos de trabalho (Augusto et al., 2022). Essa abordagem melhora o ensino, a pesquisa e o des= ign dos módulos educacionais, garantindo que as universidades acompanhem os ava= nços mais recentes em tecnologia da informação e comunicação (Huang, 2021). Semelhantes às Smart Citie= s, os Smart Campus enfrentam desafios como a adapt= ação às mudanças climáticas, crescimento populacional e a necessidade de lideran= ça colaborativa (Fachinelli et al., 2022).

Neste cenário, uma revisão sistemática da literatura pode auxiliar na identificação dos atributos, barreiras e desafios que impactam a gestão de = Smart Campus e influenciam o processo decisório, proporcionando uma base sólida para a construção de um modelo conceitual eficaz. A abordagem metodológica adotada neste estudo visa fornecer uma compreensão abrangente dos fatores críticos que afetam a implementação e a = gestão de Smart Campus, contribuindo para o avanço e a inovação nas práticas educacionais e organizacionais. Dessa forma, a fundamentação teórica apresentada sustenta a necessidade de um modelo de to= mada de decisão que integre tecnologia, gestão da informação e colaboração entre stakeholders, permitindo uma gestão universitária mais inovadora e eficient= e.

 

3 PROCEDIMENTOS METODOLÓGICOS

 <= /o:p>

A pesquisa a= dota métodos descritivos, combinando análises qualitativas e quantitativas por m= eio de revisão sistemática da literatura (RSL) e análise de conteúdo. As fontes utilizadas para a RSL e a construção do modelo conceitual incluem IEEE, Web= of Science, Science Direct, Google Acadêmico, Scopus, Eme= rald e DOAJ. O acesso foi realizado pelo Portal de Periódicos da Capes, autentic= ado via Acesso CAFe.

Definiu-se a estr= atégia de busca utilizando todas as ferramentas necessárias, como o tesauro e os operadores booleanos "AND" e "OR". A construção da estratégia de busca partiu dos termos chave da pesquisa, sendo Smart Cam= pus, tomada de decisão e estratégia. Os termos foram considerados no singular e plural, e apenas o idioma inglês foi utilizado na elaboração da estratégia = de busca.

Para a busca foram considerados critérios em todas as bases de dados, sendo estes: (i) data da= busca em 17 de agosto de 2023 e atualização dos resultados em 02 de novembro de 2= 023; (ii) o período temporal considerou de 2019 à 2023; (iii) tipo de documentos, considerando somente os “artigos”; e (iv) artigos “Revisado por pares”.

Na Tabela 1 estão descritos maiores detalhes da busca, um panorama geral sobre as bases de da= dos pesquisas, período, filtro por subárea e tipo de material, assim como o resultado obtido.

 =

Tabela 1

Panorama da busca nas bases de dados

Base de dados=

Termos

Período<= /o:p>

Resultados 17/08/2023

Filtro por su= báreas da

base

Tipo do mater= ial

IEEE

(“Smart Campus” OR “S= mart Campus” OR "college Campus") AND decision making

2019-2023

14

educational instituti= ons; decision making; teaching

Artigo

Web of Science

- Core Collection

((“Smart Campus” OR “Smart Campus” OR "college Campus") AND decision making AND (strategy OR strategie OR

strategies2019-2023

16

--

Artigo

Scopus

(("Smart Campus" OR "Smart Campus" OR "college Campus") A= ND decision AND

making AND (strategy<= /span> OR strategie OR strategies))<= /p>

2019-2023

10

Social Science e Decisio= n Science

Artigo

Emerald("Smart Campus&q= uot; OR "Smart Campus") AND decisión

2019-2023

44

--

Artigo

Science direct

((“Smart Campus” OR “Smart Campus” OR "college Campus") AND decision making AND (strategy OR strategie OR strategies))

2019-2023

16

--

Artigo

DOAJ

("Smart Campus&q= uot; OR "Smart Campus")

2019-2023

6

Social Science

Artigo

Google acadêmico

((“Smart Campus” OR “Smart Campus”) AND decision making AND (strat= egy OR strategies) AND

barriers2019-2023

213

--

Artigo de revisão

&n= bsp;

 Nas bases Web of Science e Scopus, a bus= ca foi realizada no campo “tópicos”, que inclui o título, resumo e palavra-chave. = As bases de dados foram escolhidas por serem reconhecidas internacionalmente e categorizadas nas áreas multidisciplinar (Web of science, Science Direct, Google Acadêmico, Scopus e DOAJ), de tecnologia (IEEE), e de administração e negócios (Emerald). Elas fornecem o embasamento teórico necessário para o desenvolvimento da pesquisa, a partir da estratégia de busca aplicada para = localizar e identificar as bibliografias.

Além disso, a esc= olha e seleção dessas bases de dados passou pelo critério de relevância e pertinên= cia com o tema foco da pesquisa, e a possibilidade de recuperação por subtópicos/subáreas, possibilitando chegar nos termos-chaves de interesse.<= o:p>

A Figura 1 resume= o desenho da pesquisa aplicada: uma RSL, a análise de conteúdo e uma proposta= de modelo conceitual.

 =

Figura 1

Etapa 1: Revisão Sistemática da Litera= tura

 

Análise de conteúdo<= o:p>

 

Modelo conceitual

Revisão Sistemática = da

Literatura


 

Na etapa da revisão sistemática de literatura, foi utilizado o protocolo que orientou e forneceu o embasamento para o desenvolvimento e aplicação da RSL. Na Figura 2 é possível visualiza= r a descrição das etapas do protocolo.

 

 

Figura 2

Protocolo RSL

 

Questão de pesquisa:

 

Quais são os atributos que influenciam o modelo organizacional e que devem ser considerados no processo decisório em Smart Campus?

 

Palavras-chave da pesquisa (PT):

 

Smart Campus; Processo Decisório; Estraté= gia; Barreiras; Atributos

 

Palavras-chave da pesquisa (EN):

 

Smart Campus; Deci= sion-making process; Strategy; Barriers; Attributes

 

 

 

 

 

 

 

 

 

 

 

 

 

Portfólio:

 

22

artigos

 

Base de dados:

 =

IEEE; Science Dir= ect; Web of Science; Scopus; Emerald; DOAJ; Google Ac= adêmico.

 

Período: 2019-2023

 =

IEEE: 14;

Science Direct: 1= 6; Web of Science: 16; Google academico: 213=

Scopus: 10

Emerald: 44

DOAJ: 6

Análise de títulos e

resumos:

 

IEEE: 5; Science Direct: 2; Web of Science: 3; Scopus:

2; Emerald: 2;

DOAJ: 5; Google

Academico: 3


 <= /o:p>

 <= /o:p>

 


O protocolo RSL t= em como objetivo identificar trabalhos que abordem os atributos s serem considerados em um Smart Campus. Este protocolo fornece um portfólio de art= igos com base em dois critérios: o tema central do artigo deve estar relacionado= a Smart Campus ou campus inteligente, bem como englobar uma perspectiva sobre= os atributos adequados para o processo decisório. Um artigo coletado é excluíd= o se não atender a esses parâmetros.

 =

3.1 Aná= lise de Conteúdo

&n= bsp;

A análise de cont= eúdo apoia a identificação e análise de atributos que influenciam os modelos organizacionais e que devem ser considerados no processo decisório em Smart Campus. A Figura 3 resume o procedimento de análise de conteúdo.=

 =

Figura 3

Análise de Conteúdo

 =

Na análise de con= teúdo, serão apresentados os resultados, examinando os atributos, barreiras e desa= fios que influenciam o desenvolvimento de Smart Campus e impactam o processo decisório nesse contexto. A análise foi conduzida por meio da leitura detal= hada dos textos e da categorização qualitativa com o software Atlas.ti, permitin= do a extração e organização dos principais fatores críticos. Utilizando o método= de Classificação Hierárquica Descendente (CHD), os dados foram organizados e categorizados pelo software, conforme detalhado no Anexo I. Os padrões identificados na CHD serviram de base para estruturar o Modelo Conceitual, sintetizando as principais influências na gestão de Smart Campus.

A combinação da investigação manual com a análise via Atlas.ti proporciona uma compreensão aprofundada dos fatores críticos que influenciam a gestão e implementação de Smart Campus. Assim, este estudo oferece uma oportunidade para explorar o processo de tomada de decisão como um escopo adicional a ser investigado.

Os resultados obt= idos na Análise de Conteúdo foram fundamentais para estruturar a etapa seguinte = da pesquisa. A categorização dos fatores identificados, realizada pelo Atlas.t= i, permitiu reconhecer padrões e inter-relações entre os elementos analisados.= Essas categorias emergentes serviram de base para a formulação do Modelo Conceitu= al, que sintetiza as principais influências na gestão de Smart Campus e na toma= da de decisão nesse contexto. Além disso, a identificação de stakeholders-chav= e e suas interações possibilitou uma compreensão mais aprofundada das dinâmicas institucionais, garantindo que o modelo proposto seja aplicável à realidade= dos gestores acadêmicos.

A partir dessas análises, a Etapa 3 se dedicou à estruturação de um modelo que represente visualmente essas conexões, facilitando sua interpretação e aplicação estratégica.

&n= bsp;

3.2 Mod= elo Conceitual

 

Com base nos resultados obtidos na Eta= pa 2, foi desenvolvido um Modelo Conceitual que sintetiza os principais atributos, barreiras e desafios que influenciam a governança de S= mart Campus. Além disso, o modelo incorpora o papel dos stakeholders e das tecnologias de suporte para sua implementação eficiente. A construção do mo= delo foi guiada por um percurso estruturado, assegurando coerência e aplicabilid= ade aos elementos identificados por meio da Análise de Conteúdo.

O processo de construção do modelo seg= uiu um percurso estruturado que envolveu a identificação dos componentes-chave, a definição das relações entre esses elementos, a elaboração de uma represent= ação gráfica e a validação por especialistas. Inicialmente, foram selecionados os elementos mais relevantes que afetam a governança e o desenvolvimento de Smart Campus, incluindo atributos críticos como interoperabilidade de sistemas, escalabilidade e segurança da informação. A= lém disso, foram consideradas barreiras institucionais, como resistência à muda= nça e restrições orçamentárias, bem como desafios estratégicos que exigem a formulação de políticas de governança digital e a integração de tecnologias emergentes. A compreensão dessas interações é fundamental para estruturar um modelo decisório robusto e aplicável a diferentes contextos acadêmicos.

A relação entre esses componentes foi analisada para compreender como atributos, barreiras e desafios afetam a to= mada de decisão em um Smart Campus. Nesse sentido, f= oram identificadas relações causais e interdependências, evidenciando que barrei= ras institucionais podem dificultar a adoção de determinados atributos, enquant= o a atuação estratégica dos stakeholders pode minimizar desafios e facilitar a implementação de soluções tecnológicas inovadoras. Esse mapeamento permitiu estruturar um modelo mais alinhado às necessidades institucionais e às prát= icas de governança digital.

Para facilitar a compreensão dessas interações, foi elaborada uma representação visual do Modelo Conceitual. Es= se modelo se configura como uma ferramenta prática para gestores e pesquisador= es, permitindo a visualização integrada dos fatores críticos que influenciam a governança de Smart Campus. Sua estrutura contr= ibui para a formulação de estratégias mais eficazes, promovendo a inovação e a sustentabilidade nesses ambientes acadêmicos inteligentes.

A robustez e aplicabilidade do modelo = serão asseguradas por meio de um processo de validação utilizando o método Delphi, que contará com a participação de especialistas na área. Esse procedimento permitirá a realização de refinamentos e melhorias, garantindo que o modelo esteja alinhado às necessidades reais da gestão de Sma= rt Campus e possa ser aplicado em diferentes cenários institucionais.

O Modelo Conceitual desenvolvido nesta= etapa oferece uma abordagem prática e integrada para apoiar a governança e a toma= da de decisão em Smart Campus, facilitando sua implementação em diferentes instituições. Esse modelo se mostra especialmen= te útil para gestores acadêmicos, pois auxilia na identificação de pontos crít= icos para a tomada de decisão, permitindo uma administração mais eficiente e estratégica dos recursos e iniciativas institucionais. Além disso, sua aplicabilidade estende-se às instituições de ensino, fornecendo suporte na implementação de estratégias sustentáveis que favorecem a integração de nov= as tecnologias e a modernização dos processos acadêmicos e administrativos.

Pesquisadores também se beneficiam des= se modelo, visto que ele estabelece uma base estruturada para o desenvolviment= o de estudos voltados à governança e inovação em Smart Campus, oferecendo uma abordagem analítica que permite explorar diferentes aspectos relacionados à adoção e gestão desses ambientes inteligentes. Além disso, stakeholders institucionais encontram no modelo um suporte fundament= al para alinhar as necessidades dos diversos atores envolvidos, garantindo que= a implementação de soluções tecnológicas seja viável e atenda aos desafios específicos de cada instituição.

Ao estruturar os elementos essenciais = que impactam a gestão de Smart Campus, o modelo não apenas sistematiza informações relevantes, mas também fornece um framework analítico que orienta estratégias de inovação e sustentabilidade. Dessa for= ma, contribui para uma gestão mais eficiente, promovendo a transformação digita= l e garantindo que as universidades e centros acadêmicos possam se adaptar às exigências do cenário contemporâneo de forma estratégica e bem fundamentada= .<= /span>

A Tabela 2 indica= as principais informações de cada artigo coletado (identificação A1 - A22), incluindo título, autor(es), periódico publicado, ano e o método utilizado.=

 

Tabela 2

Panorama do portfólio

 

Título

Autor(es)

Periódico

Ano

Método

A1<= /span>

A tomada de decisão baseada em atributos que influenciam a compra de máquinas agrícolas

Mello et al.

 

Saber Humano

2019

Questionário;

Estatística descritiva

A2<= /span>

Smart Campus® as a li= ving lab on Sustainability indicators monitoring

Negreiros et al.=

IEEE

International Smart Cities Conference

 

2020

Dashboard;

Sistema de monitoramento contínuo e inteligen= te

A3<= /span>

Smart Campus Model: A Literature Review

Imbar et al.<= /o:p>

International Confere= nce on ICT for Smart

Society

2020

Revisão de literatura

A4<= /span>

Uma análise dos atributos Importantes no proc= esso de decisão de compra de notebooks utilizando Análise fatorial e escalonam= ento Multidimensional

Vieira & Slongo

Revista de Administração Mackenzie

2006

Pesquisa exploratória-qualitativa;=

Entrevista;

Análise factorial; Escalonamento multidimensional

A5<= /span>

Smart Campus: extensi= ve review of the last decade of research and current challenges

Chagnon- Lessard et a= l.

IEEE Access

2021

Extensa análise da literatura científica sobre campi inteligentes da última década (2010-2020)<= /p>

A6<= /span>

A Smart Campus framew= ork: challenges and opportunities for education based on the sustainable development goals

Silva-da-Nóbrega et al.

Sustainability

2022

Pesquisa quantitativa descritiva exploratória= por meio da Análise de Importância-Desempenho (IPA)<= /p>

A7<= /span>

The Making of Smart Campus: A Review and Conceptual Framework

Polin et al.

Buildings<= /span>

2023

Revisão Sistemática da Literatura utilizando o protocolo PRISMA

A8<= /span>

Optimizing Smart Camp= us Solutions: An Evidential Reasoning

Decision Support Tool=

Ahmed et al.

Smart Cities

2023

Revisão de literatura; Abordagem de raciocínio evidencial

(ER) com Python<= /o:p>

A9<= /span>

The Challenges and Op= portunities of Era

5.0 for a More

Tavares et al.

Society

2022

Revisão Sistemática de Literatura

A10

Towards a Sma= rt Campus: supporting campus decisions with Internet of Things applications<= o:p>

Valks et al.

Building=

Research &= ;

Information

2020

Revisão de literatura;

Estudo de caso

A11

Smart Campus = — A sketch

Min-Allah &am= p; Alrashed

Sustainable Cities and Society

2020

Revisão de literatura

A12

A study on posture - based teacher -student behavioral engagement pattern=

Zhao et al.

Sustainable Cities and Society

2021

Modelo de árvore de decisão baseado em árvore de classificação e regressão (CART)

A13

Smart Campus:=

definition, framework,

technologies,= and

services=

Dong et al.

IET Smart Cit= ies

2020

Revisão integral das tecnologias de a= poio e das propostas existentes de Smart Campuss

A14

Towards Smart Campus Management:

defining information

requirements = for

decision maki= ng

through dashb= oard

Design

Valks et al.

 

Buildings

2021(a)<= /o:p>

Dashboards;

Briefing=

A15

Supporting strategic

decision-maki= ng on the future campus with space utilization studies: a case study

Valks et al.

Property=

Management

2021 (b)=

Medições de uso do espaço realizadas = na

TU Delft nos últimos cinco anos<= /o:p>

A16

A determinati= on of the

smartness lev= el

of university=

Campus: the Smart Availability

Scale (SAS)

Samancioglu &

Nuere<= /span>

Journal of

Engineering

and Applied

Science<= /o:p>

 

 

2023

Revisão de literatura;

Estudo de caso com avaliações pós-ocupação (POEs)<= /p>

A17

A multi-attri= bute

utility decis= ion

support tool = for a

Smart Campus—= UAE

as a case stu= dy

Ahmed, V. et = al.

 

Frontiers in Built

Environment

2022

Revisão de

Literatura;<= /p>

Pesquisa envolvendo=

uma amostra;=

Análise AHP

A18

Smart Campus tools –

adding value = to the university campus by

measuring spa= ce use real-time

 Valks, et al.

 

Jornal de

Imóveis

Corporativos

2018

Questionário; Entrevista semi- estruturada.

A19

An Investigat= ion into

stakeholders’=

perception of Smart Campus criteria: the

American Univ= ersity

of Sharjah as= a case study

Ahmed et al.<= o:p>

 

Sustainabilit= y

2020

Pesquisa

exploratória,

quantitativa e

qualitativa;=

Estudo de caso;

Revisão de literatura

A20

Facilitating successful Smart Campus transitions: a systems=

Awuzie et al.

Applied Scien= ces

2021

Revisão de literatura

A21

Automating students’decision processes

in a Smart Ca= mpus

Opranescu et al.

International Symposium on Advanced Topics in

Electrical Engineering

2023

Estudo de caso; Revisão Sistemática da Literatura (RSL)

A22

Teaching Performance Evaluation

in Smart Camp= us

Xu et al.

IEEE Access

2018

Revisão Sistemática da Literatura (RS= L); Sistema de avaliação de desempenho

 

 

3.3 Análise de Conteúdo

 

A Análise de Conteúdo, conforme Bardin (2016), emprega métodos sistemáticos no intuito de descrever o conteúdo das informações, a partir de indicadores (quantitativos ou não), permitindo, as= sim, realizar interpretações baseadas nas classificações dos componentes das mensagens analisadas.

A análise de conteúdo foi apoiada pela utilização do software Atlas.ti, e suas fases se organizaram em três etapas: pré-análise; explor= ação do material; tratamento dos resultados e interpretações, conforme demonstra= do na Figura 4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 4


Etapas e procedimentos da análise de co= nteúdo

&nbs= p;

 

A fase in= icial de = pré-análise compreendeu a leitura preliminar dos títulos, resumos e palavras-chave dos textos, seguida pela organização no software Atlas.ti. Durante esse processo, o "tema" foi estabelecido como a unidade de registro para codificaç= ão, identificado por palavras-chave representativas dos códigos associados. As "frases" foram designadas como unidades de contexto, destinadas a fornecer esclarecimentos sobre as unidades de registro. Além disso, foram formulados indicadores e estabelecidas categorias de contexto, com base nas análises preliminares. É importante destacar que a elaboração dos indicador= es seguiu o critério do "objeto de referência citado", que pressupõe= que quanto mais frequente for o objeto nas mensagens, maior será sua relevância (Bardin, 2016).

A exploração do material envolveu a análise e codificação completa de todos os textos do portfólio bibliográfico. A partir dessa codificação, as unidades = de registro foram agrupadas e relacionadas por tópicos semelhantes, resultando= na formação de categorias de análise. É relevante mencionar que uma análise de conteúdo engloba categorias de duas naturezas: Categorias de Contexto e Categorias de Análise. As categorias de contexto são amplas e definem-se pe= lo seu relacionamento com a questão e os objetivos de pesquisa, enquanto as categorias de análise correspondem a subdivisões das categorias de contexto= em partes analisáveis (Bardin, 2016). Na presente Revisão Sistemática da Literatura (RSL), as categorias de contexto foram definidas durante a etapa= de pré-análise, enquanto as categorias de análise foram identificadas durante a fase de exploração do material.

Por fim, o tratamento dos resultados foi caracterizado pela exploração, compara= ção e análise das categorias, unidades de registro e de contexto, permitindo a interpretação e atribuição de significado aos dados (C= reswell, 2014).

 

4 APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS=

 

4.1 Categorias de Contexto

 

As categorias de contexto, como mencionado anteriormente, são definidas pela s= ua amplitude e relevância para a questão e os objetivos da pesquisa. Com base = nas análises descritivas apresentadas nesta etapa preliminar, e em consonância = com os objetivos deste estudo, foram identificadas cinco categorias de contexto: (i) Smart Campus; (ii) Processo Decisório; (iii); Atributos; (iv) Desafios; e (v) Barreiras.

Concluídos os procedimentos preliminares de análise textual, o próximo passo envolve a exploração do material, que é identificada na análise de conteúdo através da realização de codificações, associação dos códigos às categorias de context= o e subdivisão das categorias de contexto em categorias de análise, conforme detalhado na próxima subseção.

 

4.2 Exploração do material

 

A etapa de exploração do material teve início com a releitura e a codificação abrangente dos textos. Esse processo envolveu a seleção criteriosa, a análi= se profunda e a interpretação dos dados, empregando a codificação de segmentos textuais para identificar e atribuir significados às relações pertinentes a= os objetivos da pesquisa (Bardin, 2016).

A codificação transforma dados brutos em informações, organizando e categoriz= ando os diferentes trechos textuais com base em suas similaridades, o que permite identificar padrões no conteúdo examinado. Dessa forma, a frequência de ocorrência dos códigos possibilita uma análise heurística, que, ao ser visualizada graficamente, oferece uma representação do constructo final da codificação e fornece subsídios para a formulação das categorias de análise= .

A codificação dos artigos resultou em cinco códigos distintos, dos quais, os = mais recorrentes e representativos da análise estão apresentados na Figura 5. Frisa-se que os códigos foram nomeados, individualmente, em língua portugue= sa, conforme recurso disponibilizado pelo software Atlas.t= i. Na referida figura, códigos maiores e mais centralizados indicam maior frequência de ocorrência nos textos.

A Figura 5 (nuvem de palavra) destaca, principalmente, 5 categorias: Smart Campus; Processo Decisório; Atributos; Desafios= e Barreiras.

Os três primeiros códigos fazem parte da estratégia de busca utilizada nas bas= es para recuperação dos artigos, e se relacionam diretamente com o problema de= sta pesquisa, razão pela qual aparecem com maior Frequência.<= /span>

 

 

 

Figura 5


Análise heurística da codificação

 

4.3   = Atributos

 

Mattoni et al. (2016) desenvolveram uma metodologia de tomada de decisão para o desenvolvimento de um Smart Campus, considerand= o as influências mútuas entre os diferentes aspectos desse conceito e priorizando fatores diversos. Complementando essa abordagem, Majee= d e Ali (2018) propuseram um modelo que explora os efeitos da IoT e da comput= ação em nuvem na ampliação dos recursos tecnológicos e na conectividade dos dispositivos nos campi. Esses estudos fornecem insights relevantes sobre os atributos que influenciam a gestão e implement= ação de Smart Campus e devem ser levados em conta no processo decisório.

A literatura destaca que a identificaç= ão de tecnologias facilitadoras é essencial para a sustentação de um Smart Campus. Sensores, plataformas de análise de dad= os e redes de comunicação figuram entre os elementos-chave, juntamente com fator= es estratégicos como custos de implementação, operação e manutenção, duração do projeto, disponibilidade de recursos e benefícios percebidos pelas partes interessadas (Karam, 2020). Além disso, ferramentas de apoio à decisão são apontadas como indispensáveis para determinar aplicações inteligentes adequ= adas a contextos específicos, considerando variáveis como localização, cultura e custos (Prandi et al., 2020). Métodos multicritérios e a abordagem de raciocínio evidencial (ER) também são mencionados como alternativas robustas para lidar com desafios estratégicos (Sun et al., 2017).<= /span>

Vieira e Slongo (2006) analisaram atributos importantes no processo de decisão de compra por meio de uma pesquisa com 131 participantes, utilizando análise fatorial exploratória. Identificaram 24 atributos agrupados em cinco dimensões: praz= er e benefícios, características do produto, desempenho, atenção e operacionalid= ade. Esses resultados têm implicações práticas, podendo auxiliar na formulação de estratégias de marketing direcionadas.

Omotayo et al. (2021) reforçam a importância dos atributos na tomada de decisão, explorando sua classificação em termos de relevância para os consumidores e destacando fatores sociais, culturais, pessoais e psicológicos que moldam as percepções sobre esses atributos. Eles também apontam como tais característ= icas influenciam estratégias de mercado e posicionamento competitivo.

A literatura sobre Smart Campus identifica uma ampla gama de atributos que influenciam a gestão e a eficiência desses ambientes, como a capacidade de personalização de serviço= s, a conectividade robusta entre recursos operacionais e transacionais e o investimento em infraestrutura tecnológica. Outros elementos incluem a sensibilidade ao contexto, o uso de algoritmos para recomendações inteligen= tes e a garantia de continuidade dos negócios diante de interrupções. Esses atributos são fundamentais para decisões estratégicas e para a eficiência administrativa.

Ahmed et al. (2020) abordam a análise e classificação dos atributos conforme critérios teóricos, destacando mapas perceptuais e aspectos sociais, culturais e psicológicos que influenciam o processo decisório. Esses fatores são essenciais para identificar os atribu= tos mais relevantes segundo a perspectiva dos stakeholders, auxiliando no desenvolvimento de estratégias e decisões alinhadas às necessidades institucionais.

Por fim, Coccoli<= /span> et al. (2015) enfatizam que a identificação e avaliação de atributos são cruciais para transformar campi tradicionais em Smart<= /span> Campus. Eles destacam dimensões como educação, meio ambiente, gestão e tecnologia, alinhando necessidades institucionais com paradigmas educaciona= is inovadores. A construção de um modelo eficaz depende da integração de eleme= ntos como comunicação de dados, processamento inteligente e recomendações personalizadas, que, juntos, otimizam o processo decisório e promovem uma gestão eficiente.

A Figura 6 apresenta os principais atr= ibutos identificados no processo decisório no contexto do ambiente Smart Campus.

 

Figura 6

= Atributos<= /p>

 

Os atributos identificados para o processo decisório em Smart Campus possuem aplicações práticas em ambientes universitários inteligentes= . A conectividade robusta é um dos fatores essenciais, pois redes de alta performance, como a fibra óptica, garantem a transmissão de dados sem interrupções, viabilizando plataformas de ensino a distância e análises acadêmicas em tempo real. A segurança da informação também se destaca, com soluções baseadas em blockchain que asseguram a autenticidade de registros acadêmicos e protegem dados sensíveis de estudantes e da administração, especialmente em instituições que priorizam a privacidade. Além disso, a sustentabilidade ambiental é fortalecida pelo uso de sensores IoT, que monitoram em tempo real o consumo de energia e ajustam automaticamente as configurações de climatização e iluminação para maior eficiência.

Outro aspecto fundamental é a gestão integrada de recursos, onde sistemas de gerenciamento inteligente alocam automaticamente salas de aula e laboratórios conforme a demanda em tempo real, otimizando o uso do espaço. Um exemplo prático dessa aplicação pode ser observado na Universidade Federal do Rio Grande do Sul (UFRGS), que alcançou economia significativa ao adotar um sistema de alocaç= ão dinâmica (Wronski, 2007). Além disso, a UFRGS realizou estudos sobre alocação dinâmica de tarefas em redes em chip (NoCs), buscando otimizar o consumo energético em sist= emas computacionais. Essas iniciativas refletem a preocupação dessas instituições com a eficiência e a sustentabilidade em suas operações.

Esses exempl= os demonstram de maneira concreta como os atributos identificados influenciam a tomada de decisão e a gestão eficiente em um Smart Campus, assegurando maior inovação e otimização dos recursos institucionais= .

 <= /o:p>

4.4 Desafios

Liu, et al. = (2017) destacam desafios no processo decisório, como a avaliação de múltiplos critérios, a consideração de restrições diversas e a otimização de objetivo= s. Métodos como programação linear e inteligência artificial são sugeridos como ferramentas para superar essas dificuldades.

Na pesquisa = de Pribyl et al. (2018), a seleção de projetos e a aloca= ção de recursos são analisadas com ênfase na gestão de riscos e incertezas ao long= o do processo de tomada de decisão.

Adamkó et al. (2017) identificam os desafios relacion= ados à introdução de novas tecnologias, destacando fatores como custos de implementação e operação, impacto social e ambiental e considerações éticas= . A decomposição do problema decisório em componentes fundamentais é vista como essencial para auxiliar universidades a fazer escolhas informadas.

A transição = de um campus tradicional para um Smart Campus é reconhecidamente complexa, envolvendo múltiplos critérios, sistemas incompatíveis e gestão de riscos. Ahmed et al. (2022) enumeram sete desafios principais, incluindo a seleção de tecnologias adequadas e a integração de plataformas digitais.

Valks et al. (2020) destacam os desafios relacionados à implementação de tecnolog= ias IoT, como coleta, análise e segurança de dados, e ressaltam a necessidade de ferramentas de apoio à decisão para lidar com a complexidade dessas informações.

No trabalho = de Omotayo et al. (2021), são enfatizados os custos operacionais e os desafios de adaptação, sugerindo que a identificação de fatores críticos de sucesso, como custo e duração do projeto, é fundamental para o desenvolvimento de sistemas de apoio eficazes.

Coccoli et al. (2015) apontam a integração de plataformas digitais e questões de governança como desafios significativos. Também ressaltam a subutilização de conhecimento e a necessidade de otimizar a satisfação dos stakeholders.

Desafios adi= cionais incluem a gestão de grandes volumes de solicitações, o uso de big data para melhorar serviços educacionais, a redução de custos e o aumento da eficiênc= ia administrativa. Avaliar o desempenho docente de forma científica, com base = em informações de ensino e interações, também é essencial.

Esses desafi= os afetam diretamente a gestão e estruturação dos Smart Campus, exigindo a adoção de tecnologias como IoT, big data e computação em nuvem para melhorar a eficiência, flexibilidade e qualidade dos serviços educacionais. No processo decisório em Smart Ca= mpus, a consideração desses desafios é indispensável para garantir a integração efetiva de tecnologias, a avaliação adequada do desempenho e a contínua evolução dos serviços.

 

Figura 7

Desafios


 

As universid= ades brasileiras vêm enfrentando desafios tecnológicos de forma proativa, implementando soluções inovadoras para melhorar a eficiência e a gestão institucional. A gestão de grandes volumes de dados, por exemplo, tem sido aprimorada com plataformas de análise em tempo real, como demonstrado pela Universidade Federal de Lavras (UFLA), que desenvolveu uma solução baseada = em inteligência artificial para prever riscos de evasão e retenção de estudant= es, auxiliando na gestão dos cursos de graduação. No campo da sustentabilidade ambiental, Universidade Federal de Santa Catarina (UFSC) desenvolveu um sis= tema de controle utilizando recursos de IoT para integrar a iluminação e a climatização em ambientes acadêmicos (Scharlau,= 2021). Os resultados mostraram uma redução significativa no consumo de energia, demonstrando a viabilidade de utilizar tecnologias de IoT para otimizar o u= so de recursos em ambientes universitários.

A integração= de sistemas também tem sido um ponto central para a modernização das instituiç= ões. A Universidade Federal do Rio Grande do Norte (UFRN) desenvolveu uma plataf= orma de integração de middleware para computação ubíqua, permitindo a interopera= bilidade entre sistemas desenvolvidos de modo independente (Lopes, 2011). Essa soluç= ão possibilita a integração de serviços providos por diferentes plataformas, incluindo sistemas legados e novos, facilitando o desenvolvimento de aplica= ções mais complexas e exigentes. Além disso, a aceitação de mudanças tecnológica= s se torna mais eficaz quando há o envolvimento direto dos stakeholders. A Universidade Federal do Rio Grande (FURG) participa ativamente da Rede MCTI= /Embrapii de Tecnologia e Inovação Digital (TID), cuja estrutura de governança inclui comitês técnicos e um conselho consultivo (I= TEC FURG, n.d.). Com representantes de associações = empresariais, órgãos governamentais e organizações sociais, essa iniciativa busca promove= r a cooperação científica e tecnológica entre as instituições participantes, alinhando as ofertas de infraestrutura às demandas tecnológicas da indústria nacional.

Esses exempl= os práticos demonstram como as universidades podem adotar abordagens inovadoras para superar desafios e impulsionar a transformação digital, garantindo mai= or eficiência operacional e um ambiente acadêmico mais moderno e sustentável.<= span style=3D'background:yellow;mso-highlight:yellow'><= /p>

 

4.5 Barreiras

&nbs= p;

Valks et al. (2020) apontam barreiras enfrentadas por universidades, como a press= ão sobre recursos devido ao envelhecimento das instalações e ao desenvolvimento organizacional. Estudos sobre a utilização do espaço têm papel estratégico = ao informar decisões sobre tipo e escala de instalações necessárias. Além diss= o, diferenças na percepção da importância de critérios entre stakeholders podem dificultar o processo decisório. Assim, ferramentas que incorporem impacto social, ambiental e considerações éticas são fundamentais para decisões mais informadas.

Entre as bar= reiras descritas, destacam-se as culturais, que dificultam a transição para ambien= tes Smart Campus. A sensibilização tecnológica, o suporte adequado de TI (Tecnologia da Informação) e o engajamento de usuários são aspectos críticos para superar esses desafios e garantir uma transição efic= az (Valks et al., 2020).

A pesquisa de Mattoni et al. (2016), identificou outros entraves, como o aumento de solicitações de usuários, o = que exige maior eficiência no tempo de resposta. A redução da intervenção human= a em tarefas repetitivas, por meio de técnicas inovadoras, é essencial para minimizar erros e melhorar os processos. Os autores também destacam a necessidade de atualizar ferramentas e práticas educacionais para acompanha= r as exigências do novo modelo.

Essas barrei= ras afetam diretamente a gestão e a implementação de Smart= Campus, dificultando a integração de tecnologias e a satisfação dos stakeholders. Custos operacionais elevados, como despesas com pessoal, ener= gia e segurança, são apontados como fatores críticos que influenciam a viabilid= ade da transição. Além disso, desafios relacionados à sustentabilidade das instalações exigem atenção especial para reduzir o consumo de recursos e minimizar impactos adversos, como a produção de resíduos.

Uma abordagem holística é essencial para enfrentar barreiras tecnológicas, sociais, organizacionais e ambientais. Questões como resistência à mudança, conscientização de stakeholders, adequação da infraestrutura tecnológica e conformidade regulatória também emergem como aspectos críticos que devem ser cuidadosamente avaliados no processo decisório.

Valks et al. (2020) ressaltam que a pressão por recursos limita investimentos em infraestrutura, tornando essencial um planejamento estratégico baseado em d= ados robustos. Já Mattoni et al. (2016) enfatizam a importância de superar incompatibilidades entre sistemas tradicionais e nov= os paradigmas tecnológicos. Ambas as abordagens convergem para a necessidade de reduzir barreiras culturais e adotar soluções inovadoras que sustentem a transição para Smart Campus.

Os estudos c= itados identificam oito barreiras principais: divergências na percepção de critérios entre stakeholders, incompatibilidade com sistemas tradicionais, influência de preferências humanas no processo decisório, barreiras culturais, aumento das demandas dos usuários, necessidade de automação em tarefas repetitivas, uso= de técnicas inovadoras para funcionalidades inteligentes e atualização de ferramentas e processos educacionais. A superação dessas barreiras é fundamental para garantir uma transição bem-sucedida e otimizar os benefíci= os tecnológicos e organizacionais em Smart Campus.=

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

Figura 8

Barreiras


As barreiras identificadas no processo de implementação de um Smart= Campus, como a complexidade da transição e a resistência à mudança, podem s= er eliminadas ou minimizadas através de abordagens práticas e estratégicas. A seguir, são apresentados exemplos de como algumas das barreiras podem ser superadas:

 <= /o:p>

a) Resistênc= ia à mudança

Para mitigar= essa barreira, as universidades podem adotar programas de capacitação e workshops voltados para a conscientização e o treinamento dos stakeholders. Um exemplo concreto é a Universidade Federal da Bahia (UFBA), que investiu em iniciati= vas de capacitação digital para professores, alunos e funcionários, facilitando= a adoção de novas tecnologias e promovendo uma transição mais suave para o ambiente digital do Smart Campus (UFBA, 2020).<= /span>

 <= /o:p>

b) Custos operacionais elevados

Os altos cus= tos de implementação podem ser reduzidos com parcerias público-privadas (PPPs) e financiamentos externos. A Universidade Estadual de Campinas (Unicamp) exemplifica essa estratégia ao estabelecer uma colaboração com a Eletrobras para otimizar a eficiência energética no campus (Unicamp, 2019). Essa parce= ria resultou na redução de despesas com infraestrutura e impulsionou a sustentabilidade da instituição.

 <= /o:p>

c) Incompati= bilidade entre sistemas de informação

A integração= de sistemas legados com novas plataformas pode ser facilitada pelo uso de plataformas abertas e APIs (Interfaces de Programação de Aplicações). A Universidade Federal de Lavras (UFLA) demonstrou essa possibilidade ao desenvolver um sistema de inteligência artificial para prever padrões de ev= asão e retenção de estudantes (Andifes, 2023). Esse sistema foi integrado ao mod= elo acadêmico já existente, garantindo maior eficiência na gestão universitária= e melhorando o acompanhamento dos alunos.

 <= /o:p>

d) Segurança= e privacidade de dados

A adoção de protocolos avançados de criptografia e autenticação multifatorial é essenci= al para garantir a proteção dos dados institucionais e acadêmicos. A Universid= ade Federal da Paraíba (UFPB) implementou a tecnologia blockchain na emissão de diplomas digitais, assegurando autenticidade, proteção contra fraudes e conformidade com a LGPD (Lei Geral de Proteção de Dados) (Instituto Naciona= l de Tecnologia da Informação, 2022). Essa inovação fortaleceu a segurança dos registros acadêmicos e simplificou a validação dos diplomas.

 <= /o:p>

Esses exempl= os demonstram que, apesar dos desafios, a digitalização e modernização das universidades são viáveis por meio de soluções práticas e estratégicas. As barreiras não devem ser vistas apenas como obstáculos, mas como oportunidad= es para inovação, tornando os Smart Campus mais eficientes, seguros e preparados para o futuro.

 

Etapa 3: Modelo Conceitual

 

A Figura 9 a= presenta um modelo conceitual para apoiar gestores e pesquisadores no projeto, implementação e revisão de atributos como suporte para o processo de tomada= de decisão que influencia a gestão e o desenvolvimento de Smart Campus. A condução do processo decisório em um Smart Campus envolve desafios e barreiras que devem ser considerados para garanti= r a eficácia da implementação.

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

Figura 9

Modelo Conceitual

 

 

O m= odelo conceitual proposto busca estruturar e explicar a interação entre os difere= ntes elementos que influenciam a gestão e a tomada de decisão em ambientes Smart Ca= mpus. Para isso, são considerados cinco componentes principais: atributos, barrei= ras, desafios, stakeholders e tecnologias de suporte. A proposta visa fornecer um framework analítico que auxilie gestores e tomadores de decisão na implementação e aprimoramento das estratégias de gestão em universidades.

Os atributos identificados representam fatores críticos que impactam a gestão = e a eficiência de um Smart Campus. Dentre eles, destacam-se a conectividade e interoperabilidade, garantindo a integração de sistemas e a comunicação eficaz entre plataformas digitais; a segurança da informação e privacidade, asseguradas por medidas como criptografia e blockchain para proteção de dados sensíveis; a escalabilidade e adaptabilid= ade, permitindo a expansão do Smart Campus sem compr= ometer a infraestrutura tecnológica; a governança colaborativa, promovendo o envolvimento de diferentes stakeholders na gestão institucional; e a sustentabilidade ambiental, impulsionada pelo uso de IoT e sensores para otimizar o consumo de energia e reduzir desperdícios. Um exemplo prático da aplicação desses atributos pode ser observado na Universidade Estadual de Campinas (Unicamp), que, em parceria com a Eletrobras, implementou um proje= to de eficiência energética no campus Barão Geraldo. A modernização do sistema= de iluminação pública, com a substituição de luminárias convencionais por LED = e a adoção de um sistema de telegestão inteligente, ilustra como esses fatores podem otimizar recursos, promover sustentabilidade e fortalecer a governança colaborativa (Anibolete, 2022).

Ape= sar dos benefícios, a implementação de um Smart Cam= pus enfrenta diversas barreiras, que dificultam sua adoção e manutenção. Entre = os principais desafios, encontram-se a resistência à mudança, resultante da cultura organizacional tradicional; as limitações financeiras, que restring= em o orçamento para inovações tecnológicas; a incompatibilidade de sistemas lega= dos, dificultando a integração entre tecnologias antigas e novas plataformas; os desafios regulatórios e legais, relacionados à conformidade com normas de proteção de dados e privacidade; a infraestrutura inadequada, que limita a conectividade e a disponibilidade de equipamentos tecnológicos; a falta de capacitação, exigindo treinamentos contínuos para docentes, discentes e técnicos administrativos; e a governança fragmentada, caracterizada pelo de= salinhamento estratégico entre setores institucionais. A Universidade Federal da Bahia (UFBA) superou a resistência à mudança ao investir em programas de capacita= ção digital para docentes e discentes, promovendo maior adesão às novas tecnolo= gias e reduzindo a rejeição ao modelo de Smart Campus (Alves & Lopes, 2024). A instituição desenvolveu iniciativas voltadas à integração de plataformas digitais na educação, facilitando a adaptação ao ensino mediado por tecnologia. Essa abordagem demonstrou que a capacitação contínua e o suporte institucional são essenciais para garantir que a inova= ção tecnológica seja amplamente adotada, promovendo um ecossistema universitário mais dinâmico e digitalmente integrado (Alves & Lopes, 2024).

Alé= m das barreiras, existem desafios relacionados à gestão de grandes volumes de dad= os, ao desenvolvimento de políticas eficazes de governança digital e à adoção de tecnologias emergentes. Estratégias para superação incluem o uso de Big Dat= a e Analytics para apoiar a tomada de decisão, o investim= ento em Inteligência Artificial para automação de processos acadêmicos e administrativos e a implementação de modelos híbridos de governança que combinem participação ativa dos stakeholders e o uso de dashboards interati= vos. Um exemplo de sucesso na adoção dessas estratégias pode ser observado na Universidade Federal de Lavras (UFLA), que desenvolveu um sistema baseado em inteligência artificial para prever padrões de evasão e retenção de estudan= tes. Utilizando dados acadêmicos como coeficiente de rendimento, reprovações e trancamentos, a ferramenta identifica alunos em situação de risco com alta precisão, permitindo a adoção de medidas preventivas direcionadas. Essa iniciativa demonstra como a tecnologia pode contribuir para uma tomada de decisão mais assertiva, promovendo maior eficiência na gestão universitária= e garantindo um ambiente acadêmico mais inclusivo e sustentável (Mendes, 2023= ).

Os stakeholders desempenham um papel essencial na governança do Smart Campus, influenciando diretamente a aceitação e implementação de novas tecnologias, a definição de políticas institucionais= e a alocação de recursos e investimentos estratégicos. Para fortalecer essa governança e garantir a adoção bem-sucedida das inovações, uma estratégia eficaz é a criação de comitês consultivos multidisciplinares. Compostos por gestores acadêmicos, docentes, discentes, equipes de TI e setor administrat= ivo, esses comitês promovem uma abordagem colaborativa e participativa no proces= so decisório. Além de garantir um alinhamento mais preciso entre as necessidad= es institucionais e as soluções tecnológicas adotadas, essa estrutura reduz a resistência à mudança, facilita a identificação de desafios e oportunidades= e assegura que os investimentos sejam direcionados estrategicamente, otimizan= do recursos e ampliando os benefícios para toda a comunidade acadêmica.

Por= fim, as tecnologias emergentes desempenham um papel fundamental no suporte à ges= tão e tomada de decisão em um Smart Campus. Destaca= m-se, nesse contexto, a Internet das Coisas (IoT), utilizada para o monitoramento= de recursos e automação de processos acadêmicos; Big Data & Analytics, que permite a coleta e análise de dados pa= ra tomada de decisão estratégica; e o Blockchain, aplicado à segurança da informação e à gestão de credenciais acadêmicas. A implementação de blockch= ain, em particular, tem se mostrado uma solução inovadora para garantir a confiabilidade e transparência nos processos institucionais. Um exemplo prá= tico é a iniciativa da Universidade Federal da Paraíba (UFPB), que adotou essa tecnologia para a emissão de diplomas digitais. Com esse sistema, a universidade conseguiu reduzir fraudes, garantir a autenticidade dos certificados e agilizar o processo de certificação, eliminando a necessidad= e de documentos físicos. A solução, fornecida pela Rede Nacional de Ensino e Pesquisa (RNP), permite que instituições e empregadores verifiquem facilmen= te a validade dos diplomas, promovendo maior segurança e eficiência na gestão acadêmica. Esse caso reforça o papel estratégico do blockchain como uma ferramenta essencial no ecossistema de Smart Ca= mpus, assegurando a integridade dos registros acadêmicos e contribuindo para uma administração universitária mais digital e confiável (= Poquiviqui, 2022).

 

5 CONCLUSÃO

Este estudo teve como objetivo identificar os atributos, barreiras e desafios que impactam o desenvolvimento de Smart Campus e influenciam o processo decisório. A pesquisa, baseada em uma revisão sistemática da literatura e análise de conteúdo, resultou na identificação de 11 atributos, 8 barreiras e 7 desafi= os que afetam esses ambientes acadêmicos. Os achados contribuem para o avanço = do conhecimento ao estruturar fatores essenciais para a implementação eficaz d= e um Smart Campus, fornecendo uma abordagem fundamen= tada para sua gestão.

Além das contribuições teóricas, os resultados oferecem diretrizes práticas para gestores e tomadores de decisão em universidades e outras instituições acadêmicas. A identificação e categoriz= ação dos atributos servem como um referencial estratégico para desenvolver iniciativas que aprimorem a eficiência administrativa, promovam a integração tecnológica e melhorem a experiência acadêmica. A estrutura apresentada pode ser aplicada como ferramenta de planejamento, garantindo que a adoção de tecnologias e a implementação de novas práticas estejam alinhadas às necessidades institucionais.

Apesar das contribuições deste estudo, algumas limitações devem ser consideradas. A revisão sistemática da literatura pode= não ter capturado todas as nuances da implementação prática dos Smart Campus em diferentes contextos institucionais. Além disso, a análise se bas= eou em dados secundários, tornando essencial que futuras pesquisas complementem esses achados por meio de estudos empíricos aprofundados, como entrevistas = com gestores acadêmicos e stakeholders, além de estudos de caso em universidades que já implementaram estratégias alinhadas às diretrizes discutidas.

Para viabilizar a aplicação prática dos resultad= os, sugere-se que as universidades adotem estratégias específicas, como a criaç= ão de políticas institucionais que incorporem as diretrizes do estudo ao planejamento estratégico, a capacitação contínua de gestores e stakeholders para aprimorar a tomada de decisão diante dos desafios tecnológicos e organizacionais, a implementação progressiva de tecnologias inteligentes pa= ra facilitar a adaptação institucional e reduzir barreiras, além do monitorame= nto contínuo das mudanças por meio de indicadores de desempenho. Esse acompanhamento sistemático garantirá que as iniciativas implementadas estej= am alinhadas aos objetivos institucionais e tragam benefícios concretos à comunidade acadêmica.

Em suma, este estudo reforça a importância de uma abordagem estruturada na gestão de Smart Campus, destacando a relevância dos atributos identificados, bem como das barreiras= e desafios que influenciam o processo decisório. As contribuições teóricas e práticas apresentadas fornecem um suporte estratégico para gestores, permit= indo o desenvolvimento de ambientes acadêmicos mais eficientes, inovadores e alinhados às demandas contemporâneas. Com a implementação das diretrizes propostas, espera-se que as universidades possam aprimorar seus processos administrativos e acadêmicos, promovendo um ecossistema mais inteligente, sustentável e tecnologicamente integrado.

 <= /o:p>

ANEXO I: Classificação Hierárquica Descendente

 

Nota: Recuperado de Moura et al., 2019, = p. 1379

 

 

 

 

REFERÊNCIAS

 <= /o:p>

 

= ABNT. (2021). NBR ISO 37122: cidades e comunidades sustentáveis: indicador= es para cidades inteligentes. Rio de Janeiro, ABNT.

 

Ada= mkó, A., Balázs, B., Krisztián= , E., Attila, F., Nándor Kri= stóf, H., & Norbert, K-F. (2017). Smart Campus service link: Adaptation and interaction planes for campus and university environments. 2017 8th IEEE International Conference on Cognitive Infocommunicatio= ns (CogInfoCom), 000271–000276. https://doi.org/10.1109/CogInfoCom.2017.8268255

 

Ahmed, V., Abu Alnaaj, K., & Saboor, S. (2020). An Investigation into Stakeholders’ Perception of Smart Campus Criteria: The American University of Sharjah as a Case Study. = Sustainability, 12(12). https://doi.org/10.3390/su12125187

 

Ahmed, V., Saboor, S., Ahmed, N., & Ghaly, M= . (2022). A multi-attribute utility decision support tool for a Smart Campus—UAE as a case study. Frontiers in Built Environment, 8, 1044646. https://doi.= org/10.3389/fbuil.2022.1044646

 

Ahmed, V., Khatri, M. F., B= ahroun, Z., & Basheer, N. (2023). Optimizing smart campus solutions: An evident= ial reasoning decision support tool. Smart Cities, 6(5), 2308-2346.=

 

Alotaibi, S. (2021). An Integrated Framework for Smart College based on the Fourth Industrial Revolution. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(4), 12A4R, 1-18. http://TUENGR.COM/V12/12A4R.pdf<= /o:p>

 

= Alves, L., & Lopes, D. (2024). Educação e plataformas digitais: popularizando saberes, potencialidades e controvérsia. EDUFBA. https://repositorio.ufba.br/handle/ri/39372

=  

= Andifes. (2023). UFLA desenvolve solução com Inteligência Artificial para prever eva= são e retenção de estudantes. Andifes.org.br. https://www.andifes.org.br/2023/11/14/ufla-desenvolve-solucao-com-inteligen= cia-artificial-para-prever-evasao-e-retencao-de-estudantes/

=  

= Bandeira, L. K. R., & Araújo Neto, M. de S. (2022). O que é um Smart Campus?. = Perspectivas em Gestão & Conhecimento, 12(1), 175–188. https://periodicos.ufpb.br/ojs2/index.php/pgc/article/view/48610=

=  

= Bardin, L. (2016). Análise de conteúdo. Edições 70.=

=  

= Bufrem, L. S. (2021). Qualidade e quantidade como categorias indissociáveis de pesquisa. Informação & Informação, 26(4), 200–222. https://doi.org/10.5433/1981- 8920.2021v26n4p200

 

Chagnon-Lessard, N., Gosselin, L., Barnabé, S.,; Bello-Ochende, T., Fe= ndt, S., & Goers, S. (2021). Smart Campus: Extensive Review of the Last Decade of Research and Current Challenges. IEEE Access, 9, 124200–124234. https://doi.org/10.1109/ACCESS.2021.3109516<= /o:p>

=  

= Coccoli, M., Maresca, P., Stanganelli, L., & Guercio, A. (2015). <= span style=3D'mso-bookmark:_Hlk4746433'>An experience of collaboration using a PaaS for the smarter university model. Special Iss= ue on DMS2015, 31, 275–282. https://doi.org/10.1016/j.jvlc.2015.10.014

 

Dong, X., Kong, X., Zhang, F., Chen, Z., & K= ang, J. (2016). OnCampus: A mobile platform towards a Smart Campus. SpringerPlus, 5(1), 974. https://doi.org/10.1186/s40064-016-2608-4

 

Dong, Z. Y., Zhang, Y., Yip, C., Swift, S., & Beswick, K. (2020). Smart Campus: Definition, framework, technologies, and services. IET Smart Cities, 2(1), 43–54. https://doi.org/10.1049/iet-smc.2019.0072

 

= Fachinelli, A.C., Yigitcanlar, T., Cortese, T.T.P., Sabatini-Marques, J., Sotto, D., &a= mp; Libardi, B. = (2022). = Smart Cities do Brasil: desempenho das capitais brasileiras. Educs. https://www.citylivinglab.com/report-bra-aus

=  

= Ferreira, F. H. C., & Araújo, R. M. (2018). Campus Inteligentes: Conceitos, aplicações, tecnologias e desafios. RelaTe-DIA, 11(1). Recuperado de https://seer.unirio.br/monografiasppgi/article/view/7147<= /span>

=  

= Gil, A. C. (2017). Como elaborar projetos de pesquisa (5th ed.). <= /span>Atlas.=

 

Guofeng, X., & Mingzhu, L. (2021). The Application of Big Data Technology in the Construction of Smart Campus in Vocational Colleges. Journal of Physics: Conference Series, 1827(1), 012134. https://doi.org/10.1088/1742-6596/1827/1/012134

 

Hadwan, M., Khan, R.U., & = Abuzanouneh, K.I. (2020). Towards a Smart Campus for = Qassim University: An Investigation of Indoor Navigation System. Advances in Science, Technology and Engineering Systems Journal, 5, 831-837.

 

Huang, Z. (2021). The Research on Blended Teachi= ng in Vocational Colleges Based on Smart Campus. Journal of Physics: Confer= ence Series, 1865(2), 022048. https://doi.org/10.1088/1742-6596/1865/2/02204= 8

 

Imbar, R. V., Supangkat, S. H. & Langi, A. Z. R. (2020). Smart Campus Model: A Literature Review= . 2020 International Conference on ICT for Smart Society (ICISS), 1–7. https:/= /doi.org/10.1109/ICISS50791.2020.9307570

 

Instituto Nacional de Tecnologia da Informação. (2019). Universidade Federal da Paraíba passa a emitir diplomas digitais assinados com certificado ICP-Brasil. Instituto Nacional de Tecnologia Da Informação. https://www.gov.br/iti/pt-br/assuntos/noticias/indice-de-noticias/universid= ade-federal-da-paraiba-passa-a-emitir-diplomas-digitais-assinados-com-certi= ficado-icp-brasil

 

Ite= c Furg. (n.d.). Centro multiusuário. ITEC FURG - Centro de Rob= ótica E Ciência de Dados. https://itecfurg.org/?page_id=3D5643<= /span>

 

= Leite, F., & Tavares, R. (2018). Comunicação da informação, gestão da informação e gestão do conhecimento (S. Costa, Org.). Ibict. https://doi.org/10.18225/9788570131485

 

Li, W. (2021). Research on Teaching Management B= ased on Smart Campus Platform and Smart Classroom. 2021 4th International Conference on Information Systems and Computer Aided Education, 279–283. https://doi.org/10.1145/3482632.3482690

 

= Liu, K., Warade, N., Pai, T., & Gupta, K. (2017). Location-aware Smart Cam= pus security application. 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWor= ld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 1–8. https://doi.org/10.1109/UIC= -ATC.2017.8397588

 

= Lopes, F. A. D. S. (2011). Uma plataforma de integração de middleware para Computa= ção Ubíqua [tese]. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://= repositorio.ufrn.br/bitstream/123456789/17944/1/FredericoASL_TESE.pdf<= /o:p>

 

Majeed, A. & Ali, M. (2018). How Internet-of-Things (IoT) making the university Campus smart? QA higher education (QAHE) perspective. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 646–648. https://doi.org/= 10.1109/CCWC.2018.8301774

 

= Mattoni, B., Pagliaro, F., Corona, G., Ponzo, v., Bisegna, F., & Gugliermetti, F. (2016). A matrix approach to identify and choose efficient strategies to develop the Smart Campus. 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 1–6. https://doi.org/10.1109/EEEIC.2016.7555571

 

= Mello, M. F., Schlosser, J. F., & Cervo, H. Z. (2019). A tomada de decisão baseada= em atributos que influenciam a compra de máquinas agrícolas. Saber Humano: Revista Científica da Faculdade Antonio Meneghetti, 9(15), 149–168. https://doi.org/10.18815/sh.2019v9n15.410

=  

= Min-Allah, N., & Alrashed, S. (2020). S= mart Campus—A sketch. Sustainable Cities and Society= , 59, 102231. https://do= i.org/10.1016/j.scs.2020.102231

 

Morais, F. R. de, Var= ela, C. A., Roble, G. L. de E., & Augusto, E. E. F. (2020). Educação e Estratégia Organizacional em Serviços de Saúde. Revista de Administração FACES Journal, 19(2), 48–68. https://revista.fumec.br/index.php/facesp/article/view/6485

 

Moura, L. F. de Lima, E.P., Deschamps, F., Van Aken, E., da Costa, S.= E.G., Treinta, F.T., & Cestari, J.M.A.P. (2019). Designing performance measurement systems in nonprofit and public administration organizations. <= i>International Journal of Productivity and Performance Management, 68(8), 1373–1410. https://doi.org/10.1108/IJPPM-06-2018-0236

 

Negreiros, I., Franci= sco. A.C.C., Fengler, F.H., Faria, G., Pinto, L.G.P., & Tolotto, M. (2020). Smart Campus® as a living lab on sustainability indicators monitoring. 2020 IEEE International Sma= rt Cities Conference (ISC2), 1–5. https://doi.org/10.1109/ISC251055.2020.9239017

 

= Nóbrega, P. I. S. da. (2021). Smart Campus: indicators for the = smartization process at universities [Dissertação de mestrado]. Universidade= Federal de Campina Grande, Paraíba, Brasil. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/22981

 

Omotayo, T., Awuzie,= B., Ajayi, S., Moghayedi, A., & Oyeyipo, O. (2021). A Systems Thinking Model for Transitioning Smart Campus to Citie= s. Frontiers in Built Environment, 7, 755424. https://doi.org/10.3389/fbuil.2021.755= 424

 

Opranescu<= /span>, V., Nedelcu, I., & Ionita, A. D. (2023). Automating Students’ Decision Processes in a Smart Campus. 2023 13th International Symposium on Advanced Topics in Electric= al Engineering (ATEE), 1–6. https://doi.org/10.1109/ATEE58038.2023.1010809= 4

 

= Pagliaro, F., Mattoni, B., Gugliermenti, F., ; Bisegna, F., Azzaro, B., & Tomei, = F. (2016). A roadmap toward the development of Sapienza Smart Campus. 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)<= /i>, 1–6. https://doi.org/10.1109/EEEIC.2016.7555573

 

Polin, K., Yigitcanlar, T., Limb, M., & Washington, T. (2023). The Making of Smart Campus: A Re= view and Conceptual Framework. Buildings<= span lang=3DIT style=3D'font-family:"Myriad Pro",sans-serif;mso-fareast-font-fam= ily: "Times New Roman";mso-bidi-font-family:Arial;mso-ansi-language:IT;mso-bidi-= font-weight: bold'>, 13(4), 891. https://doi.org/10.3390/buildings13040891

=  

= Prandi, C., Monti, L., Ceccarini, C., & Salomoni, P. (2020). Smart Campus: Fostering = the Community Awareness Through an Intelligent Environment. Mobile Networks = and Applications, 25(3), 945–952. https://doi.org/10.1007/s11036-019-01238-= 2

 

Pribyl, O., Opasanon= , S., & Horak, T. (2018). Student perception of Smart Campus: A case study of Czech Republic and Thailand. 2018 Smart City Symposium Prague (SCSP), 1–7. https://doi.org/10.1109/SCSP.2018.8402669

 

Samancioglu, N., & Nuere, S. (2023). A determination of the smartness le= vel of university Campus: The Smart Availability Scale (SAS). Journal of Engineering and Applied Science, 70(1), 10. https://doi.org/10.1186/s44= 147-023-00179-8

 =

Sch= arlau, C. C. (2021). Desenvolvimento de um Sistema de Controle para Integração da Iluminação Natural e Artificial com Recursos de= IoT (p. 29) [TCC]. https://repositorio.ufsc.br/handle/123456789/223657

 

= Schenatz, B. N. (2019). Smart Campus e analytics para a redução da evasão e promoç= ão da permanência no ensino superior: um estudo de caso [Tese de doutorado= ]. Fundação Getúlio Vargas, São Paulo, Brasil. https://bibliotecadigital.fgv.br/dspace/handle/10438/27470

=  

= Silva, G. R. da. (2017). Gestão da informação para a tomada de decisão em uma instituição de ensino superior privada: a experiência da faculdades integra= das da união educacional do Planalto Central (FACIPLAC/DF). RDBCI: Revista Digital de Biblioteconomia e Ciência da Informação, 15(1), 53–81. https://doi.org/10.20396/rdbci.v15i1.8645248

=  

= Silva-da-Nóbrega, P. I., Chim-Miki, A. F., & Castillo-Palacio, M. (2022). <= span style=3D'mso-bookmark:_Hlk4746433'>A Smart Campus Framework: Challenges and Opportunities for Education Based on the Sustainable Develop= ment Goals. Sustainability, 14(15), 9640. https://doi.org/10.3390/su14159= 640

 

Sun, L., Chen, G., Xiong, H., & Guo, C. (201= 7). Cluster Analysis in DataDriven Management and Decisions. Journal of Management Science and Engineering, 2(4), 227251. https://doi.org/10.3724/SP.J.1383.204011

 

= Tavares, M. C., Azevedo, G., & Marques, R. P. (2022). The Challenges and Opportunities of Era 5.0 for a More Humanistic and Sustainable Society—A Literature Review. <= span class=3DSpellE>Soc= ieties, 12(6), 149. https://doi.org/10.3390/soc1206014= 9

 

UFBA. (2020). Mapeame= nto cultural UFBA 2019: programa Onda Digital. https://mapeamentocultural.ufba.= br/programa-onda-digital

 

Unicamp. (2019). Sobr= e o Projeto Campus Sustentável. Campus Sustentável. https://www.campus-sustentavel.unicamp.br/sobre/

 

Valks, B., Arkesteijn, M. H., Den Heijer, A. C., & Vande Putte, H.= J. (2018). Smart campus tools–adding value to the university campus by measuri= ng space use real-time. Journal of Corporate Real Estate, 20(2), 103-11= 6. https://www.emerald.com/insight/content/doi/10.1108/jcre-03-2017-0006/full/= html

 

Valks, B., Arkesteijn, M. H., Koutamanis, A., & Den Heijer, A. (2020). Towards a Smart Campus: supporting campus decisions with Interne= t of Things applications. Building Research & Information, 49(1), 1–2= 0. https://doi.org/10.1080/09613218.2020.1784702

 

Valks, B., Arkesteijn, M., Koutamanis, A., & Den Heijer, A. (2021a). Towards Smart Campus Management: Defining Information Requireme= nts for Decision Making through Dashboard Design. Buildings, 11(5), 201. https://doi.org/10.3390/buildings11050201

 

 

Valks, B., Blokland, E., Elissen, C., Van-Loon I., Roozem= ond, D., Uiterdijk, P., Arkeste= ijn, M., Koutamanis, A., & = Heijer, A. (2021b). Supporting strategic decision-making on the future campus with space utilisation studies: A case study. Pro= perty Management, 39(4), 441–465. https://doi.org/10.1108/PM-09-2020-0054

 

Vieira, V. A., & Slongo= , L. A. (2006). Uma análise dos atributos importantes no processo de decisão de compr= a de notebooks utilizando análise fatorial e escalonamento multidimensional. = RAM. Revista de Administração Mackenzie, 7(4), 35–59. https://doi.org/10.1590/1678-69712006/administracao.v7n4p35-59

=  

= Xu, X., Wang, Y., & Yu, S. (2018). Teaching Performance Evaluation in Smart Campus. IEEE Access, 6, 77754–77766. https://doi.org/10.1109/ACCESS.2018.2884022

 

Zhang, L. (2021). Research on WSN Time Synchronization Algorithm Based on Smart Campus. Journal of Physics: Conference Series, 1802(3), 032079. https://doi.org/10.1088/1742-6596/1802/3/032079

 =

= Zhao, J., Li, J., & Jia, J. (2021). A study on posture-based teacher-student behavio= ral engagement pattern. Sustainable Cities and Society, 67, 102749. http= s://doi.org/10.1016/j.scs.2021.102749

 =

Wronski, F. (2007). Alocação dinâmica de tarefas periódicas em NoCs malha com redução do consumo de energia (p. 103) [Dissertação]. http://hdl.handle.net/10183/1117= 7

 

------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/item0030.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/props031.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Atributos, barreiras e desafios que impactam o processo decisório no desenvolvimento d= e Smart Campus<= v:rect id=3D"Retângulo_x0020_23" o:spid=3D"_x0000_s1026" style=3D'position:absolu= te; margin-left:0;margin-top:10.75pt;width:496.05pt;height:1.15pt;z-index:2516= 58752; visibility:visible;mso-wrap-style:square;mso-width-percent:0; mso-height-percent:0;mso-wrap-distance-left:9pt;mso-wrap-distance-top:0; mso-wrap-distance-right:9pt;mso-wrap-distance-bottom:0; mso-position-horizontal:absolute;mso-position-horizontal-relative:text; mso-position-vertical:absolute;mso-position-vertical-relative:text; mso-width-percent:0;mso-height-percent:0;mso-width-relative:page; mso-height-relative:page;v-text-anchor:top' o:gfxdata=3D"UEsDBBQABgAIAAAAI= QC2gziS/gAAAOEBAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbJSRQU7DMBBF 90jcwfIWJU67QAgl6YK0S0CoHGBkTxKLZGx5TGhvj5O2G0SRWNoz/78nu9wcxkFMGNg6quQqL6RA 0s5Y6ir5vt9lD1JwBDIwOMJKHpHlpr69KfdHjyxSmriSfYz+USnWPY7AufNIadK6MEJMx9ApD/oD OlTrorhX2lFEilmcO2RdNtjC5xDF9pCuTyYBB5bi6bQ4syoJ3g9WQ0ymaiLzg5KdCXlKLjvcW893 SUOqXwnz5DrgnHtJTxOsQfEKIT7DmDSUCaxw7Rqn8787ZsmRM9e2VmPeBN4uqYvTtW7jvijg9N/y JsXecLq0q+WD6m8AAAD//wMAUEsDBBQABgAIAAAAIQA4/SH/1gAAAJQBAAALAAAAX3JlbHMvLnJl bHOkkMFqwzAMhu+DvYPRfXGawxijTi+j0GvpHsDYimMaW0Yy2fr2M4PBMnrbUb/Q94l/f/hMi1qR JVI2sOt6UJgd+ZiDgffL8ekFlFSbvV0oo4EbChzGx4f9GRdb25HMsYhqlCwG5lrLq9biZkxWOiqY 22YiTra2kYMu1l1tQD30/bPm3wwYN0x18gb45AdQl1tp5j/sFB2T0FQ7R0nTNEV3j6o9feQzro1i OWA14Fm+Q8a1a8+Bvu/d/dMb2JY5uiPbhG/ktn4cqGU/er3pcvwCAAD//wMAUEsDBBQABgAIAAAA IQD0Omtp6gEAALQDAAAOAAAAZHJzL2Uyb0RvYy54bWysU8tu2zAQvBfoPxC817Ic2YkFy0HqIEWB 9AGk/QCaoiSiFJdd0pbdr++SchyjuQW9EFzucnZnOFzdHnrD9gq9BlvxfDLlTFkJtbZtxX/+ePhw w5kPwtbCgFUVPyrPb9fv360GV6oZdGBqhYxArC8HV/EuBFdmmZed6oWfgFOWkg1gLwKF2GY1ioHQ e5PNptNFNgDWDkEq7+n0fkzydcJvGiXDt6bxKjBTcZotpBXTuo1rtl6JskXhOi1PY4g3TNELbanp GepeBMF2qF9B9VoieGjCREKfQdNoqRIHYpNP/2Hz1AmnEhcSx7uzTP7/wcqv+yf3HePo3j2C/OWZ hU0nbKvuEGHolKipXR6Fygbny/OFGHi6yrbDF6jpacUuQNLg0GAfAYkdOySpj2ep1SEwSYeL2XJ5 czXnTFIuLxbTeeogyufLDn34pKBncVNxpJdM4GL/6EMcRpTPJWl4MLp+0MakANvtxiDbC3r1YrG8 uv54QveXZcbGYgvx2ogYTxLLSCx6yJdbqI9EEmG0DlmdNh3gH84Gsk3F/e+dQMWZ+WxJqGVeFNFn KSjm1zMK8DKzvcwIKwmq4oGzcbsJozd3DnXbUac8kbZwR+I2OhF/meo0LFkj6XGycfTeZZyqXj7b +i8AAAD//wMAUEsDBBQABgAIAAAAIQDq5Hz53QAAAAYBAAAPAAAAZHJzL2Rvd25yZXYueG1sTI/N TsMwEITvSLyDtUjcqJMgUBuyqSp+KnEAqQWJqxMvSSBeR7HTpm/PcoLjzoxmvi3Ws+vVgcbQeUZI Fwko4trbjhuE97enqyWoEA1b03smhBMFWJfnZ4XJrT/yjg772Cgp4ZAbhDbGIdc61C05ExZ+IBbv 04/ORDnHRtvRHKXc9TpLklvtTMey0JqB7luqv/eTQ3DV8NU8ZHr7sqHTx24bXp8fJ0K8vJg3d6Ai zfEvDL/4gg6lMFV+YhtUjyCPRIQsvQEl7mqVpaAqEa6XoMtC/8cvfwAAAP//AwBQSwECLQAUAAYA CAAAACEAtoM4kv4AAADhAQAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQA4/SH/1gAAAJQBAAALAAAAAAAAAAAAAAAAAC8BAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQD0Omtp6gEAALQDAAAOAAAAAAAAAAAAAAAAAC4CAABkcnMvZTJvRG9jLnht bFBLAQItABQABgAIAAAAIQDq5Hz53QAAAAYBAAAPAAAAAAAAAAAAAAAAAEQEAABkcnMvZG93bnJl di54bWxQSwUGAAAAAAQABADzAAAATgUAAAAA " fillcolor=3D"#46937b" stroked=3D"f"/>

Patrícia Bellotti Carvalho; Taiane = Ritta Coelho; Louisi Francis Moura<= /p>

IS= SN 2237-4558    Navus    <= /span>Florianópolis    SC    <= /span>v. 16 • p. 01-34jan./dez. 2025

17

 

 

                  =                                                                            =        

 

ISSN 2237-4558    Navus  • &n= bsp;Florianópolis  •  SC    v.9    n.2    <= /span>p. XX-XX    abr./jun. 2019

 

 

------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBA1286o9sB /v///wAAAAAAAAAAXwAxADgAMAA1ADAAMgA5ADMAMAA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA40sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb9iXb76z v9mZc/bM7M4/e35z+3zee11Vt+4ru7fqDQ/hLuVUgJYR/kZEEJAQ7u4fIaD8VRrin/whOAgID/78 f3d/f/+X5Pt/y/8pgQMg/zmGf+HXmKMCoAE8AkAHeAyAAYAJgAWA/XsKIOAC4AHgAxAAEAIQARAD kACQAoAAyADIASgAngBQAlABUAPQADwFoAV4BkAHQA/AAMAIwATADMDy53v+W/51ooJgC/ycgLGQ RLAB7g4Ibn/rCv5bIUJ4+J9r/pc/0NqUNQofS2yQtGBVuNjpjv/rstEvJ20F8mYRkYDntv/0KYoI 7xBM/ymbfy3oCA8Q/7o9/6gewZ93JMC+EYIVggzQejOgJ/5ZwQPsI/5Rz2/f94/o/Cr/F7/6CkEC QQXoe1eg703/GAHHf8o+0Z/tR/4n7P8aJ5w/n/963f9b/v8TxN/T4X8hSP9vT/A/EOpYEAJEFAnh yJYaIXfsf1PTv+V/Iq8QTACf/wrwfL98jyGCJXA3BVJU/4gFpkDK+/9Wnw6YPn89n/4Rmw8BZhT+ FW//W/5Z+/9q+b9sX0kOCRmIhWhoCPMKdjLWs++vMoHQVCH0exdnbGvjZGrjxG5i6GT4x4WTDbju a8u/I5Mk8HYB4VIV5Zz64iR4ZjMRyuDTy8to5QdMPcundQbRy2tXo0c2R0bc4l/RY4kGodkvjdME RF87IuQ4iK341lHZh0fX5UgHklFRi7UHogUU1QVcLOy5+qw4N1kXBnHZ8ghWctu2uJ1sDMxq7iug y5IkLtOeGvWIYbzJxpDkh3AOakTIMbaiPUToWdEFcU0xRZXwSC9RrD/+NJEXWaKaeMdEnn7zzYG4 3PuRB77QoNdee11ElTda8q07bZ9ptYRA4mvzKjWWpB6LV/QInm+9cSSYPsspqlJQXy7VIh2eziMd YnRJQWBqKnw+RTh3bZ8j+haXI9CP5uGun3c/R3LbEQg2hHuWGTUlsDxIXyhSmm6MN5/pTqZ4i41N KTJXy8gBm8dJ7rgf2MlAP5Irhh3p9Y0i5kIL+2+eb4jWHysWBDD2sszGCH3GLrtmWKDxjo+YwU6f K7rkPNsWOFq+7Vz+Ugbb5N1qQiU6/r4QB4Nb383XP/EUmMI6NHu5hhSFstTsKFxOCXVc8r/hfhpK MG15tShaE7TBV2urQ3/tIvHJYdvGcPBt1yKmV6+yVvHQGzM6fXq9GU5p96LHLtTcLMppn9nsJuwu vi1g60qFa4W6BDSIl0wS9v0AvdxA0Zzc/Qa5dPuyrMobPkkrMt9325HRdvMQTZwSw3ivcYg1eMbg w5lMLJHY0GqAJq6L6btX7Ux02QLFCoTObgLgDJX2T7XgoozymzKwyU7t1zYsG4YrLqhxA5ryApul a5l0DI1kKAGjSv7fPahlZVI890lMga+fD5y1wZ6eO7FeTeNbm5dWlem6Fjo+CI0OYnkn/gg9GsK/ wHh9r4JmFP09OohLSwLh01W/Op67IdGYOstjQ3nEdrcNZDTecasHDhbaaqnr+s6ymLXhDrqI2tY9 i6grHlpY/hDTlcI8zaYN3IJasC5JSUPwFYlc9ne5t2AiSj9JV/lNpK2RAntw5mpWeBfnhhuGQ3NT Tx3jBtsbKUl+5h71lyI/SFbZvU9nx7mM5O1sHu2aLzuzjLzD469N/55KIydxLct98cCKNaIhlz1c 3IfZtUxMcpLY8qVFc1EtWnKX5DH7kfkiSc1+dbh5uscZRMUMc7CcB7QLXn3BShV66fXVZCRF8JaT Rb9z9IG2FBaeuscRzXvpWpkIc52VuiSm8EqZp/3fTF3FXFOcYyF8yZUdX/NSYiSd9gun7pKEDNHS Qk8E8OYQ4E+UY999XmpwNnZZ836nXHOK/toojOS+S/osiUQUZonybIU8cazvzGxRGUovbC2nBeVJ 6mDVm2yO3FACDZz7S7OyL3vHD2xLu5p81RHc9/owJ5PpXMJ4b95tUXJRmcu3eVP8Vk84i7CzebGy xnZiV3Ok6VKI+SNflMbjvBHCd+9nmWzNJd8vTP7scqwN3ScxHXdM//C8o1llfr1e0nJOW2t24iTB ZnNuqjLRTtJEKKLAeWEi0ho66rtbE+GhVUmPtmQjOHAzikxzeqzr92F17PrugiXX1J6+9EjxpvHp uFWt6uwZTu6ePrrQRx1CxVMKsYE+XWdc7XMDcnMKZVFOOGYe9Gl2ra9bJq54pJEipy4EHPPjLdmm PZpHWDk2QRAZzbuh/DM8neHun7LQMDaOiNowDhp2WDTrFF5+2JOYHjw8oSAznrzM4gxvQ+EuDVzI csCuN9vRDFUzHWgr7prMaS+vLchk9F1tlXbPIfn6l0qwkCmLXLk+RhuBdnGyZEgs+FRsz1z6XuwD zL1vR/isfktGhIymCb9va4G2Y1e0ZVegwnh9ajPmA5eTTrG/3ZOOG1v2e8u0nxfhzzLZl6sT3XTX nHy2eJiQpDYGqd+Ed7/6hkjezd9+GQAy0E8e7o7e0Il/n5cv+j4sURMHdsFZQ/n56bSK9DrR7CPW Dm/hIT0XFLnuw2ne4Jy0LL7CimIyuWv7EiXQGmgFzQi05gbjLaHEdQdBp1/tgk31vISbaD4ynJ14 zCnWdDriS/aHHdmoCklF5fmA2pyF93Kwjb2ESLhbHYVivtR0oBNkutTZkFh92WQc18ttaLQLeyps aD1ZLzH/mXKZcH6VVGRCZvSh1wdqWpHjiTg7eAW8/Iz+oHzwrnqetMElHqtcHtHLK3uOcXjovVBp 1uwlwcSnHYr9q9y00rxa0YtWpbwaj8EKpFZ7l6JFD9QxUbhrcGTNsHLCiAbd1Vaf49KOK56XixvZ Gi6OuxdHlts0yJ5oQMv2oOTF9dYkEXZokbO/Q2rY9Snlf41okS1c4tdAJCN98PsbxH+JaO8NHZ1M HZQMzU1/hbWbi/t7HzoUFBScO1ST+6dtMNRRlpcsDzpAL6FIHUQv9xA7RF7qYHVQPWdPJiVhK+fm EBo2NmBIbW+Lbh3f4Qibk4c9U35/Gw65EJshJRFL1fTDQb5D4mxEQMJaao/uje4GHFaPEjS7P3pQ CX2N/kGnee4LKZwwRzMj+8EIr0DVMA2pa8VmfCaqD/EDOAfkdEWOvlQPax2xuAg48x9QZLdFP8gn JJH1vZWA0FINIgpwURYZsaW211Xwv2MjCnoETs08m01bq006c5m112xHC7cTcN3CybRzQBVEXmEg SRmKxsAo06Fix95Sil5VewkRp6BH+vkZgRD1BTLy32wCQkVjlDWpgKMhGuLfbwLsgM76vQnIeKQT //PiHrudiwUJI3ejy9fMYiPVI94oN5bZjM2yNNjDqs5WX16eY5KH0LG3zPLTZ00rK7MV0EaqrM16 rOxgO9fqx0N1yEnj5hNwfNFy/+7Z87s7dlcvx6xNkYv6oYzlq3THzfSgdxLpI1OkNtjM2NMrm+9Q zwwRllhk7ZWZQo1wCj4x5OQGhIjfKG4jlr5BDdZj27HWf7Fk1DBsJT9J2qJQXTpsuCSBWh9qey2u fAq+DCtrKjxxtGs4EW2qtehIsq3VPrWWytuO1i6RKhxbT1fwPIPvjg3gdz7bdEpwLC31Y1jOrSIy fa2Qpj2omOlyVRHn3NdUwXOKdB+sKUNp03Kjr2dqTYL2yhDhFIKrhHndzqAMY60ZgnKT95jzc5+Q YjXNnMs2rvNpl6bUNA+aOsHhQ+0powe2kJOmrSa+cH+GYAhV9guW1myMqcWHX4f4XxRrd3LavEAq SxljxrxmVW4I5gpGYZUNZRifiNMjUo5c08HQ7YGxdmb7yR1IYOKPcWN8eZVvQZlRyScR/0gJ8TrE koymhbmN+ZuIik67nT2hWhlVlzLil1AusIKL/pXPffe5fKxHUEgvJeN1drNylHuu8XXoPlKmheij Ul4R/HKmbYeXZekxw/G5riVyj0ZrVl7YClykw9cLfRbnvk797DrffTT73HLCN4Q1dWq3vez93aD6 XmvD4WIDXsbH8+la29QnaJNQAY70xwGf5ZywduGda7uOG61Yh2VKHcYnPsrhu98YhCUbpZWLms0V PMaMyzoz0id/3ElOlktpRE+XJnDPthtUeVJiEgduOJlkavjXtjIv2I6sXH7KheMo5zpqPQ/kPeSt wmMVFEe1QLENzbISebPTd28dcu/WH7f4E/1SdcH2yTQa54E0J5F7GYGN031/hWSoskQILGcF2r4u vX/St1nydJPuopFpvH/64gLmJFWmYXulzb2m2KoeKRWvfRkskjvgm77YuRHVnJS5V1krpGFekeV9 MxOSh9LbchLZL3JAvRK8PCxxS8BaE3GlGoW0Zk16lsSau+aa2qcHXpvmk64qPGo5S7pIaLpAy6zA fXFiSOlY0q0n474ZFe8ofD6y0ATLnnsRBj3B8sTXats9/OZasnu33njoc4K1x1xm7YuzbGh066Zv b/OqTEe0gg+mo3ibRiQvEbGZF+XpAxY+Z3p9G/bDa4QT3hl8d+B5Vc14S3pFGOV+Kjj+Ykgw+8C4 7PjltGNVvHvp9OzUonZeh5tUqLCTfkQ8LNTv+OAkf8Vz2ZGuLY1g2U1xai8e0oF0ojoSv4R4tvvJ aH8QyitzEHsj4hQEP0kZz6yjFcDUDoMTKuT3nksIZNYpn0rd7MPJVlYLZ+87Z0yzrbrd2ME69eRt z62NL2fL5uCRpt8IeMq3m77WlHx4Qb3ck7fqMl52m/WlW8+DNg7eNMkaTHxjrt4QM+xstS01a61m RpoumGk6rKzbmx8r8yxOli7htYg11wsXn/IQEwct4kRhml4Ts0S9vtzNdxsnpily5w0yKbQqN/xi sd/RjUR7aarpR48kdqLOZ298drimJ9efF/7oM5kkWqfu0EC9QUkIwuJLJ58wPn0Y19ubO8IDTLm/ WGFKYenjInXimlKTnwsMmj/xDymzkPZsboXIlV19T7wC1eh3sggH1gv2Ycca8dx+i6P0PGHH/HB6 7H89/zycdAdVAc7jaZtKGYCNe/YMiu3CPbYKz35Nv1G7DDJDc7H9tLyj7B1NtQU6QPXXNzrv4clL M7h/bHa6tY2qD+PNo05MqUu9GlUQLafgNZ7197ZbJeYeFOzw3A2mrArlMxZHqdRsoNThN+vKWWkY 1DXjrX8PvjnjnYKhEp9B8dhAE/jvsIUGX2iaNbF2+TD/DGflu/p++tVsD7f7NNL0WvHQP8NsQ4bs xO4FpmLxoX8NYX3r7tBmJn33azSPB6eqJHDyuzpCTuFby2RczDd0JOjWYJKd+CAxP4GpuTqhgAUn h7f6yi9tPWIsatXiCftmB6W+JJDmQNFMwQzcuQwpuJs+WLxXYY126SGmSW8daiCfTFafztTiw3Xg bfBUSO0B6Jn1Apf4qCbdk/HyRIMZF0z6UHjzhHVdV2eUZqwlI4z+Av8zHENM4K4ydq6Ms9Dnxg1D XP8e0T7CpR45kFBDn+Jm6efXQ/qdyB3Nh6cjsBBwSq4JI6UwJaLqypcO9ZCveJO5tKUFkShpergf lutnIzgKmiEdKTArkqsS3NTHlE3LWETTW9gp80YRhzd21KGc0HwZ8OWp1/fv4O12RduBdO3EbcOz wFGkZEL94WFVDibNy6XOCA6PLNJWi8Hbar6TjBHw5U4daZji8x+fmM1eu4WbKnB8LeZdDfEDvxXS v1xbhlY/T56UJVtu5+de4CLJmWLiZvvAJV5gb1a8bhtQFhS6+oWM2t6X9ALC7bPTny6UcIGtZxRA Cks7agM/Jb+bCq/s9GyqT9im9fS8EUrA2V9kHbjt0W8/g5EZ5ou1F/eCSZg8j45XIw57hbnBofYg m5QKI3ozB12zzVBwPd3L2xdv29k+RtDw3H7JwW3AGrfToze7oYZijOgr8WHeKOJ2KdRByDqu+gIt HTIXbKH5z1Fv6jCibu+6ExGP2TCELKuFJGdN0/sh4rNsYwqoMrP5Dm+ib2/blIVLfB8jyeRm0Mmm apFcjs1rTrP1uSjXhH3TDU3cj61nnVJTmAvsbt5lfh9xCnpNTKw/NZdV/5VmbL+BNGriNGH3xs8/ eZA5xUPh5odcK2eY+oRdGZXXAk6T3w1Z2lgrXOgs6FL81ADTA2rcVXIYqJjGLdMfEsPLLcI3Rsyi MeD6joO74vlJJ6SlnDftSmlKQh25rGb40OTxwdBCa4ZiKasQPAHCyLaKXjJhfI4ilnIsIC2ER5u0 TfET6XHRxFCIi6nkIzWrjCgapuo3ViXjWp+dlVV2EY++0+El4Fp7rXF59V3pnPNZS8/u5+87aMIt e7TD5Vxz1kvmyV14YV79g5/yGhzACU2MbqrHn9b2NeNq65D2wumSDmMUjO5PFmKNed3lzOOlBxli 0kcm2VzlNh3FOCl7RwZSntNdSv/KsJAXcwCvLqx578Nn63PqopzwFH+au4d695A+i+WWpTV3MmOl 3PbkZRp8F3PAWn+bWusEDlkLL8WhNa8K+al9Xivyax3cWZqPP/R+zFKsdbHVa+X5XkAwLXJHtiRB i/mPRl1rqu4ierwtgftwSZs7RrImeZFZxOZE8OzFvfdN5sD0+q4NSVS0P4MkNVpcZrTypeN/IVdJ mWYJJ50bJOOV4PCYMFNpZS7c4MrPoau3T4dINVYmDB8SmnWrQA0y+DCy8pf3X/vf8nvLoVRqNYh5 Y4hS+U1vBSN+ipyMLvUfVCQfjkxZldh8hDQUgcq+YzVfJ/LV3iCJioTK01zqLO2h2u6iRKN17tzf DUKGoL+8aafu5cU6yqVQZ/gmMYkBlJVb764NQds2ueKn9Mbj/ZTaXRD/d9nyrEM/Y+TJqlGO5mrE T9jDJh4r56RQx9zWyxbQhLaZ71UzD3lTFwK+Ec8ckbnvRWBfJM4mtboe6QBPS0cxzMT3rjklPlqS Z55ndYYJheGimfQVKqdPehcP6/MeKr5bKMJjrLQRb2FF1xFDxfmC848RgUTbzXosP8asKtAEvxAz G9DWF1qsPZXlJJTJjMJhinlDUyKhFeKkjLd9CfOXF1thu51zZg/2UWhX+26zziNk1y5nxohfqD52 mG3QXwoSyDiNpXH34nXUZDbrJ242eMP36eLkNd5ZA66eioQgi4H3NeHJdZSeilq3zuFHPClo8nkl cQCasvMi7KFUXID9YXWSjh1lS/y0OQt3dRpx/gLnapKuW9O5vS3BmTC1UTrMVUajZZSKfdu9cMiE d7ZHp3LgMVHVz/LvvDa2omy2r52n4uTWFSVHwr4HiDNf104ifR/K9ycUaUI7KFqo8rX5EGwx+Tb+ U9/+oNTzhFxmSY3QUoJmBkb3ywWDuKC6x/p3XapsdB8U+ta/6lvy57VMPnVpYJjqPsG1FKQwLxTO Zd6zlHROgCQGJrb5kSEVjGntO2U7aVH8TFD9Sqskkx378pnfUCpyF325qsdou6pAkLWwcIGq4Pd+ VYFqCQcrevRY1Ubmef+M6RIo1shr3YAgJ6uQtXG83s/yFPvUGW/LdKGDrRxJBW7ShTWQ4UcOVpOm 7tKFvHeJQLmMIQ9p+hoHoUpoIbRaVThfleyqJYi8zGvOSzIjfSxkTChf1cO0JcjJiO+94YwC92L9 GnWG1q4k0CmlDPzVYkoNw6EirhzMNfbK2eHtLmoaMfqyI7874K6Y8Xpwn/wqgX8mg1J8Jnp6dla3 yxKfUSFNOlRrm/ADaZKwPXLlpoDZtv68aTpvzEpVP5pK+vl4yVxWs4+g6JN1ttXC1jDjhZu5v6jZ zzwlquuv2+vLS64W4DRvOmBbrQohKKR4CuSwV2/eEW2c2ooOiVIU6j6ySUH/OqErjkQ9m+9/Kf3G WOrs6OCh6q7FiEIT+bdmFeuCid/Lnq3PiuJGtTxkbWfQudmziTDmCfWTw0q9LzvsJ8nMEM5Xgjvr TzuseSb7pYKDJLaAZ2GPrQKBxaiJfikImVHyE32u7vcjQCY+46BHE5WweJNKvJ6I+G37tfsVmj2N sHi6dBRO1uwb9hK/K+NkW3YDG83CpCgc0WZ1dkoKPSPBk1uFZh10WzjqSQ9ms2cAvy7xb5VafdiF /u56XnPIaV35/MdTNHsQvWRdBMFqoVRwlk5pUhTGvTDkaoRkI1bsT0NCCtFPqBcMI/XAxco+VZGG ooowXHeSmwIIJnjHcBpLXk8jjZJHiC+EVCRC5uRizAbTvvSJVaiLcNKW4Qhfbpbi2bBtJaSaj8P/ nMvnSgbb+NwC7WMtu7Wr4+OxpI2beAgr387yICdmhqg5m07n3NEj2Af4W+zVIavLHRZObGJXcsNW y8tO/o2PDBujbO4W3mrtYbYnzlNlm63uPNei5JEaFC4EMw7XGlcv+TVkUYVfTXE5qGnskvc5qCTG fUuPXz8t1lRAcjgeSdtz8WcSTwmJ55wwN2UjljpyEbxo5KK0MHv3BIbCns63+iPPhkPtLUM1/jyV cRYp36JdHJGCFgq38hDRUCqeexHcn/QrylZOk8VkfbqeyJaTp4zw6WuuVQZR4blGyy6lDxsrHjax k6rzBjsUG7Ls8rFdjiP5PhIg9ve1lbZCUXGlYf7ox31nY2HcRUiOQCisHaEVdWYgbrNHjtzZf0xi fgixGAfHnzMNUlFKqv3hgatVdnPzJzQukNOYQhrtjCDMTte94TI2xTV3iDZcT5YMdM1uDTYKK2wc hP3eUveHOyOnJY7YQUn4GNTl2yG2DX6LzKAaCyq1hs+Q3S+N3/f4kimdjK6lrC4jphR3KU21Ofud zDM9ktTrDiz4UnBr7UPJoCmly9AYm2HXREiSR33vWaIZa4qmafLA+1KldwSVEh4bvSigLrfG3rqg 2k7nYvac5aIam2P7bXOBip9iTWmGXZUfTwLOYoZn5L13lPOenByevN7Z/GCoXjVaj6gFZHDrXwn1 CO0NpWWGiuE8gBHMUG15Jz4U3fKTQW/Ja0AXUkPx40KLF8vG+Gg+QLX10w8JW1vPLgHRU2zljYJf 0MVDy++Z0n5BEuhCxV496uh2IZZQfPnkuAe6pkvUMcjJQBZSaqPsKyMwy8mpllkvpY7p0jIkrpTr sNzz41cMIU/TQuCaXjWoDpH05I2qt2Dg3pLXIHV1ffGx25ryglC5EOEHRkXWA+zGc4cEP0hCIUd3 qdndt+/qKE+wFtr297sJA9vaPylVDId6e6Y8auHYzp7mxC8mDt0v0qvwDdVT4EHHK8hVOfVUU2Vs UHEq2JIdCYvNzSIO1RObCxQ0qWvzyulpJN6IfUJI7MGQdKqU3EGpsyZ1AfPaf3B2x7F6nPDaS39j sqzhpZyt/DcvsuW+xwJDY4d6osRXyp7woeTPR1Avcx2DOzpM/caDB09FJg/beYjr3FXao0rrXyZU glxE92hExfXhpJVejmbRCw8bSkbsGtMep1v0YmCMDmvNPSwV5sjTcCa2REzH/ODH+MMIzW3yYQOM M8/5ReW1t1l3GttxDp8T3LA7xQkOKW/yKdzLOpzR/jHv+8PqdvnJXsJQ+qBefV7D8UxCF3OEBqiM 505z7LIiY8o6Cx5Teep9w2KXqOfhHzg4ak0fO6lAW+Y1Tmu+XfAByxBEuUV7kTkmU5YhrScY03SO OS2wXUAfICB3fWHgQrrP0ny+RmK+XS2lYJ+od9OxDFSwODumaXU6QAR1/A5dyAQSsI+Xjma6dfXG e29sltYBjfWC9IIkkXLEk8ZSqErML5XxoNnZKGZ0PQ9kcsaqXMqvZrE+Ce8s6eMw4hzVKNVfSvpo 8LgrxivLjpwoy/8aml9hhF02NPPwTfn2M3tiF9KyOJ+M8CnDKsjPbk7uoO1sGCrobiEi4UbceMOZ 0owiB+v0YkiUkPaxr3RUMObpaG95PV4Zl0fzAA94l0qTwXXfZ9sEobXbZGPvwpnLcKmzLJmCd3dt 8VVWXQgr0krhveFMt+VmLLBZ88Fc7ajz9wzo5HyDyi0UkCQqjqp7kHr0hj2DfLL9DZSNnXNMdtvk B2LMKBbrx1OG+UGjVkkdjdYJqD5NSoLUjoEkMeZF2B0swLJOLR32sggyuHJrC+HIKssSZHu10Kqs 8LPcZw877gOkTpwMc8AWVZrPR9WeF538pzG6Bc9roohPIXh54RDPAE1SzD4LJbA/Fyg0dsRgn+Dd F7qDH4+vBXpZRGhMWQ8sYbQRH0fAG9ZvoptS0bisj9YMozXDkhT8oFpzdqQmEysrjVR5x7w7GbST rR0suv0yZqx4jNYV4VSmrHeu+CYTRgkZVJVEIfHV0vnFnTv0YiCy59wp94wbtKTK00BZ8KR97Ejg 7C5XN69TLFjKwWejjYE+pVp6UlIzTKJPq0rftjYpw4SXOuYbUYiJxDA/ULWrOlCAn6VNBsSnOp9S 3eEafBYn5n0qBtSP8jG+2nVyFqhXxcfk9fTQib7phTAmdy79KVMVKeeak+/rEes4PKoBZCnnhB+F v8/C4im4Q6mkuLOBqpelgb6vnZ+qoKezcSQR5CsChwwDd5qCw2eBH18vf50HmaAvpkRSxaHPgCv2 hij6yQn7MbQxuAJhU+jRjJ6k/WKfDhM0H3AFlnU8iGb00DBOOQNzFmI+TPkhlU8gQhNhfltYn380 6iLIGDjkrXvvhK5PMM5cpaU//UOheTME4WoacHyyy6p/cffmCiWCDuiLRRXB8bHnYhg0n/cnCINP Sb3WaqF6jFDwE6oMa+DVMpxRU35ocOHHqFwOZoHzCVryM4Ljf0zeMkvILgMNoQTSZ2Di+Z2+81Ip i/Au8gyI9E6a669krUch2QQtxGO4jIG2o88ltDzrrvAdp7+lX9P+VtWPpSo4/JkVJl2BljILFCq7 lAEywkSCpN+gAupgNKDI/Wpw/LcPx9pm4yC6s1eMnr2qQMEhEX1JhkBbtDqiGSo0TVwE/wfOh7PE iMdDq/xfyhiyb1qkq7SZ+tDXWzafNvRRKf129ErxGB+vYMhpt526ddZkElrP6WNvPEqc2PZnQ8yt nzbojx32o0M9nuHGDXIdUXG/b4TkGPmUnYGwigb2FsPrn3+8wP/s5YpMqXjzuZX7BXx26JXNhWg5 rwheZBJzcV0LNw/CzOWWwTEekaLUmf1DgskLiUbl3HDVldQoX0Z79T++R1gr402qiOt4AUeciJ1p lddnq5UFwaWLPem3vrWKgj1Nx5q8o8bwoBJoV7CROHKS2erLDEhX53TdUc2hiqiZu1fHLPvAYNd8 LsXg0qqNlL3o+YmwVuWGa3UhdTq+gVtOYKURtx6k5XlwUg7FT/XQVDyFZ+my/Al2ItY/3KqZC4si WNIijsVY17/FqIx/fPAtxuhLcHwuMKDVB9fv6lnmLqPluRxBjrq2ZCqhoJjEwBCC4BaqCbqk2trb Ds9LVG6CX3qD1//BuHdGw/V+bUe06KIGQSS6GYRREyQ6o0SJNqIzwShRR0+ILnqvIUr00Ubv3ei9 i9579MHj9/+/73rX8/v0frnXOWeds/e9r3Wdve+91rXNX+X8rjrpl1VUC3U3klJUg0CRTDnZ9PdJ V+1UG3SMc5Hq4/PUs2vw/dVc0ZxkbGA5U85vZUMbKUUF6+aM2msccnUbeQ6rUPWaxtuarMisc3Fp ar2RQwnqRzFKouw0fSUlDxRV03hoOj49FLa/UOUR8jrHEL2Li4rs3TdwCPfu5FN8b98rGQeqUUwL LXOL5TrFtipsunTKEtuweiKhT69XaQ3pSlRJ8fftYrqHiKA4oCrjiV8W+hQm7Rq9Fntn5UT8nqB5 dDRRoeaIvdZPInLDseExVACFl0p2M8z1+sGSZd7yuKxgqvjXJEnuWqPiKtqDAut2Q1erSz2E8F1k ANJEEC2u1p7BV26/VUo7Kd6b+ldgzEuNitWQdOpVScUoj9KNc5sWUeBhX9tUtWWi0wuCPJspRKvu xqQT64/dk83+8zKl659ourL7kzlai1QLdR8X9eYAuVZLH3xeH7469DYAs0My5iGfTqXgtPbLDtp7 6LhNTxpsImy/GIHmyVYVn66TjLDrUqB8jEHP0bhhODc/eC6QOuAgo0a56s6EzG9GXsfFSk/MJdnJ JZNI730SSZ+2ff/Nc9DLjw5pjebMl9ef48Ou/nvqN0AdM7I0xF7rUfz+xJiiAuaIafbWqOt7tnxJ ctzLC7v55Jdz5HMU/G2srT9tlFS1JYJqOrJP3fAODjqU9KNCyF3omBwMOZs0ktzckiPMTNnseu9B gu8qrCyjDUqoPF/AQWFuK2HYhrfVGHVTiJVv8nbPpmdCZhjdpe4NtPZ8hukMtuxkeK9boH7FNdkp JIkBkOOYQ8+frpWUYgVXitxeCUmgbmrW5lalHoS8+16lUer0vUmqDJLNm3z/lUhHRNJtqFA2EGmU gbnIu2xKMOgxRTdvoWd/u7vI680e0wVGJ6TrOhrSJgt6+H0xp6W6b5Er30HJ9h4unsZkT+W40G/0 G6BFR9A06SAVBp6roi/TrmJ82oTK94FlTlOuP76YlTj1cwtm9Mf5G9MEMgppi+rzKTgyg4SfHMht PZ90pRzWv9IDzXL3cZuXCIPwYmuz+inNS9gdc9iTuN54YKVYBXuUH+6WkK5CZUyChYqnKyIKY/fX JvqPp5JyxOaNdni5bC9c/VYxi+Fl6XT9O7adrcu2Rvjm6hJSWNoTynEdKA44LCMFZGgBGwMfFG0y DSSUTIixWMOOvuNoJ9nQ5Zpc6qk+Oa6WT7cyaTVecm8rFAPCLxvYlBhgrd5TYpmDHlTo6QUCtJze UbF9rg/g9ECU57IMM+a6tnIEfA5OHePGVv30N9aC+oefMN0Ci01CohdZ4qdz3qk9I5e5DeIBLNPq uvYggl4d27I3nt7iNB5KTrgkrcjbeePOWjPCYPtAUd9SIQdc0j2tGN2rj0IKjK+HzGez5Udr9k7t 4G1t8NGTJyiFdZTQ4JGPJRzw7dScoF7lxPz0UeLINE0lFjnIuthRxxX4c9mY/HSLmbaOs709s4ar XYqGoe/oQ4CcGt/b+XqcFPkiQebalinKIvm32+aUbXuPu95QAVxbsGXZ9Hid4snNFlW6fEicfdXy oo8N6NimkUI0hU09YQ7G3vaYRvu9ZqmvbO8YdaKPL2F0o8cscjOR19ZvhwPGJaIG5QAzAyGlnTNH P15reZ6JO348g/WC6SuiCFPXWmfgucWUN9pffPloOHQucvk/iKEzK0BfczXtMazu5bRz71VYP5Gc 2TU3vd3FP+/w7J3OY1rhMv6UKdPwyUG3VpSXB/DOO3H5t3dro9HLu4rPCez4VdovS6T1g2vIvrCs 3B8GwdFzrbnnK+lohDbVdRhYZiV2Ox+uczTtq7nHAr+v0Kz82992MqdxDGxVlFN/nStH5a6v3Em/ UHEUcZOvo3gUDqX1PlWhiudKCBjA2pbC82l1Y1KaorK8PM1U6l3afA1x7u2oK81ZdvyW9OzChPZA OOWbcpjl5bI2jc5MNOfMDu+pAXADv1qzIS3x25ht7p9M/KSac2n89J3IYLom1da4Cv4oLbYCemhX lUdQpehyg7/u/aDU35kYX56E/rZCNo1h/rcE1skaa8483ENTqqf2PwOJLvx5PWSzjfwGdOULcYeq 3dhFTmG5a+uT/bWbfEcxD92bmxlOuBsTdrfegWnjb4qGmmNxg6X2VP1XH8unmTYCuix1BNbFuSGs G6YfcBZFMwKoyfkQVfXYm6A+6c0XBItifdlXLk/1KaP8T38B4UejUmjzJOyYI4xT8QrpPkx9oPBl HyaM/XJhGxe+R04gKHr5yBrfYOn60asEvWHDo1/CBCsbuPKMo57I8FonkTEq1N7boKsvlBuCQ7g1 L9MVCunnsC2rgs/Hdsiq2B66nEyzVUeSMmlDLgY8VNsXYBGcFHap9ZrrgPpUb4cgdE3lS+P5lSC6 Uw4UQXoD5QdkBLJKLEzEVfHWDQfoXmGbZy8LsJUVgRqeT0x0i/bxagQk8fXHGp/D6CzaPU67RaFS h69kYkg56phZt5pAwgwGCgmEup1OKZHhjj7grvftY8dnu73TDcqio5x9k5FODabyUdneQWKcusx5 DaatV03bOnbl2JDDmkCCTbx2kwUxJX2jVsPNhXb1UECN/bQYrHnaFzi70C4CBlwe/vEYJdWJ9tYu 17h9Ex2V3t8pZGsKHRl03xK0pe6u1nel85JAGl3Pz132ylH1p8Pp6gcpbxvgdDYxADhu8bPJH1eS CGx+Gy2lY5W4Pfe32OBPyKylXIq98ujabFz+8kzKQ884Xwmt6pXZfQ7hUaNOyI06Yl2KoMnZX+H2 +wzgcuCUqndMlMudEaHYvrZkcyg/6izvZ65exzxwqghl/dEtfh/QoNW7hP47vqKwVYgI6EY8X/1G 6BeSBQ9W14j9oNbmcJ4xWhFF2vi85XC/rnvuYHvMJWI3h0YCZ3zn5Q8cv8shSrj0zfkhbuNxKffe /b/ECH8Bb6L+mRv5Z0bk2b/ECLKWMHMlS0enf+QIYAWAAmj8YV3uUwZwKwDx5ZVUsR0JvhIi/i1v UPo1mCSC/ejRHuN/VfD/16KDnd1/LBXPGCpBPj7HPRrjy8kP/iYeGaT0IlrkgT4b0gm1rCktK4R0 0e9BZHexc7D64Vkqe9aQFBxmC5dgnO52/Hbd3JhlRkC7RCyuNBnLMQaoS8DCQspQa9OsQ4b6bcJ5 X6bnzCHDX9ZAD8frxub0IZHq6pzi6U/qDhwpZWn1nIpxk7J2tKawKDuqJtd52xWfMZ3Cqamii5SE 65lRJPQiJo6hye64QGS2jN+76GQDHCqXmAa0M7n/1WZqcn/b4PbuXmvRN9i0WvV467bd8x0/zO3t qeehk9AaSICdW+zUgdi0NLcjQmxRVuaQp8doL7xBunlpd+qm6tYvAjA1337RhzFRSg/tjKCDO+5c iS4ykJ9Ym0tKWoRuHBV6u4YaTvBXNOTYgp/FXPMwX3uhn3sBBZ84Fk4UraHW8x0FOAtQbBbP+530 UeNT9Rlj18p4v5pqd3fv94eeMoxZGfzxSKi/++my96fbasHYzsGLiz+NdJ9T4r3zm92/yRiLId+T rSfKSJ3d4aHPfp/Gbk86q5xo2ejVGvTS7JfXcJt1VUwmQ5AmtgPW/cU0/cXJZ0sbWoXbd4wbWqVj 1j/D48ogkyOT1yrGi89dV0XDfo/lFMd82BxSEtc2UB0sEI2/jGUdumflT78vDr6jyqjQLSLXPNC1 VKUd+rh4nqJtwO9dsjKQD7Vy41LQHVQCiN23TpgK8hPQOrJjR4ik+nbPc4XV0obNdB6OLbEMfkTj ajYa1hsgIZbgmMioKiVIGYtVZ7w4ZnyKFuxL7li8kH9Ykbk4PURwGrFOYbyttH5BTYdMbQxFotnN zIBzfGXrx0qwbTYA21Xd874OKjC3DQcVX3k8ee20Ays1ZJEV4HPqnNTXGR/sOcvH8/BFHPb0CqAl fuw7S9fUetxj2LH4O8j1g49OWDdVCj1kkQkwM29SbYpqMpl1kO7p0eOmMkUddk6T8SG4t0lMUSvE s+pbOs0sf1riDXCRhM8Q0s+n+XQUIVmSspPljYSQdPb2eP7v63zVoDhjsIyIjQjng0+JBFNUlQPM LQExfenVj6SGnBR8Buc8REuobYySpkQ2yOm4nDjXavoDLyaG4zmZXlnT5LfGl1oh1ou+OV/l4EBs QaPxnua38dzYEHcKmNtSi7WPZmv8N9bZk8YHK2/Hw4A5A9N88jrpm0MrVl3xocWVLI02t/HQOcS6 /ANa/AjuvFkEy9FLm+AnNLpglzdICqQpitR4ptuQZ31/enTqPaSJ8gG0LBXYFycTFC6OwU1V2vSK VxryLwHN9pApBqwM+yGNtUV3A88fIfcOc4H0D+HyTf0AEixMn0R9c+6FE0AEcS3BVQ+7SSUxQWmS QsRZAcD5E2tSSDreSLzpw+sOLN+BQlLTfLA/Pms/MKcdrp/bJD19cAqUmi63fgIRf22v6kL8gFki 8jkl32gGsH3aARgGNMa8MJt7ggSFjcQLfQ8rWo94DVMINkIFfTvkPvhhhLpMqFwveHC6l9YRP6sA E1HVIXZEgWOmHVbpZqMlGr3BUyDkXyVT1O9vHidbIKSnmBTkjuzBaR60bH0YgPS0+pOOngUgEew2 HP88XlWDbYeaoKDf14VsaSJMUMPmsyf/sHIvsT3+RAR2lYoIcwj1IIYIdn/+J1bvpQhjlCYhpOkF oNry8OY1rNYhDQnT12le98eGiSC/Ak2/r+PeAfwIpkfL5CFtDyBEtyoNl3OMZMCCn9V0KZJtllyX 8ExI6+EDUTS4MffFGoW/bkuo5cevcP93mj0qeTs5/JBeCzH+Oyxoagezc+D5z8oNt4H5Rw4R+PJS dB++v28n9RXNXn//ZJK4GEEcxb7stgPWcvSzkb69MA/WwUljOLwRX7og0GCJZb2k/B1NZYvsfVms ov9opXM0GNXPxEqs/bk6s9XzKZbGUpppKcEdYmTH+0vPiLJ+rGTAbxMqfJDKqBTovfZ9qcT4nq0D awuTtblaT430HezvWLU29hN1VVifHUb3C4Jh/fj6zS+j0c+wKtD4PAHaRgJDZRfKAmKzEbAkt7s/ kWlM1QGpibxfG1XLLHaOvX4XTmp6aDHuxyXL9Ngf/avGkM3L0dPhPHoEovrvRKSNuZPxfxWH/+fi HwgWdMCOK8KkTZvaNQ1VH+txeUkCv8Ueaz5mklI2wO612GBHPNqfjgfHY+6VLsWbhdn0JhWL2BJ/ cd3VKJy4Zq46EmfMGnbvBrCAGOYWXLqR9g25GMHVpjdn5pO0s5PQ+7Y3+vRZzG3PdYeZVEqJTemw nfxL31FZdJ/zAC5PdRC1ekpQEcLKssbVt7UOqbfeS4sXc7E2aQefQQ6iYnlT1hhZcQym4cTFwrfA C3V48orTgHwbkyh467MMvzjSZr3Jnv7Xkzw8vdXzZL7nbfc9SVj9T6Owg35FQ7bdZU3Tm3KFf8+G GtsNTzpYeaUGqCxiBaDB5sOHxKL0QxyQgunSy5o8gLzXEEcH50qUAyB5onr2XBIelKnsVWgzRbOk ttHMbUedHsP1sYMPcvtj6vl1Rvb12+hXr+bS3qWuc1p8WwpOjd8V8df3n/8Vq+3LQWOFEfUoGm+5 x87LXzKJ5aw4ZzmxBxCkWmXOgKvbN/NUj6AsBG4B6pn0ZLhEqEA7n7hjaV2ZANu3V64HrgXZ3Xvi 9e5ishV9ozNDGnrln721GMHn99k6F8uD/cYme9mUCYhuTV/Tq9umxaCpo6duQ8XNJkcNWEj++r6s KV3xDpHyXepX4+wZlQm+0Zd0STQzR0xIOE6hsUfahyy5iQ+b4IaBYWRim0JxVq6TWMY1huyCMrTK srZ1o3yd+NM8rQvPDXANJyFNjVevdqFkkx1mAzEf4Ycre33mMSNyiAhHmImwaltxPaZfkm9x9S6d e+qD4PVXCPRudSA/k80YnJ7P9ctjbivTCdEUriamcqrIkj/jFNgRS1hjBIi47XM6GQ+XqYYZCdvW mhVIJiif3aaP8pITLaGbEt/NDGPdGgR6l45ZVYzo/nr8PYxtWHaxbM1TYaK1+vgNseXLKP+i9tww VhT9vJYHBsBS9C9rRxlzERmhFIMw6rGACTdtg1GQjHuUL3Fii8tPmtP1j5nSUpxbDBUK8mRJQZKv 4QSWgFfqvsQ1uCtBLlcTKYbPQpZPzOwPGbGLsuhGFdRVktZC5Dd1Cz8ldMmch+EG4Ps5UFx7CZPE Zb86eDZA1qrL8owv6vWLEPtMZvoy0qn0NYvb65gBoe9y8qxvEwgJnxhTqnd+1R9/TyK8MCDPrvCh J5eFOAIS1x3z2y/9wM65EFbLdkzi3LQRTaMlHjQARXwX6frWUE9ouxnJHpBGSV/zVpbLKjEHlrpC FIyX0J1gpKwg4JrYzSF3TAu+1H39fQFUcuFL4lC8Xi2rctrIossfITQOaoTFvWgC3zYVZcQWtTNY PjKuaw///eexaQfJ1s9kLDWCHCojKXYRKToTCko1DUm6Pj0BPSm5XgT0VMnnoDLz1NKOhpVNq8DY aigoEyjVe1BZ8NFvcZmWOCc25gzPcMT5MiyY7XvRx1iz6Su1tgiovu7ti8VKMphUdJwcy9ZXoSul Ry0pdwaRX3uJ0aW1v7U6BOwnCf3W1ydKiz87QtV+DvwUlXmOE+CrN9EiYPoDd2P9PB79jDbws2dS kjt8pV/g8INzvFgyD2oqsYcTAhuMgf0kGPhp9LKM09ZxxhPLnDBDhYkp2fZbbKF2Sd0TfOVA7/ee jeTsLImf2dSLbWP1QXGMTAJRUoIbCoLVVEGRlzGBh4ZibNr9Tamy0Kyj17gYGk9eTy02nV32Y9kc 7ALJ++5RHQPhKe7tO7ug03Q+BsE9817R1mKca6Cl/JpyMVa7uNS2ysL6AzNDXVeQmtR3CoJx+W/I cPP4crJpssiG+qAAt489rO5kLpyU+FdTl1CDgHsCy36sY+lvPJwaXB104shlQmfcA7a5FRDN3K/l P+VTVcCriv7pA2ceOa+pqmLK9VRZ03qBPVe52/Bi+gg+LI3BZwukqwpcKdRzE7iBXz31c0Pr6ay9 39A4yfm9L5yiOrTYH3FLd/4lZ0dG74OGIabOy20al+MEMoNWW65Nr87/ovPOFm/gwxZTR+nvujXv W6UZ3RVrnXHZGiZ20XfHnxlrYiUYaMjSK+os9AnmMDUDVhodtQpewLOwE6PgbyJE3v7BrrQtaLxf Pg7NJG2zTGLZSeW+HS9IjnV7nXZFna6Bvts1RBP872riF0BZQ/VQRqse/6uaOJnDnSxtLez+qSY5 0Wqqfryk3UtXFMoXhEJHMvLGwdFiQKt+9KNPkKeYQMtCp6XF8qe+th3SN8N/D67vFyRqX9FNCW5p fNbgSloV1jNlZtZoiP8Ybng+d0T1S/kpaUIt0to/p4cgu1c/nEMbN+rqIhJHH6uHMevK+lzftttO vO84peoTzvCF1/iStKI2aZ4l/i5WNPNfCUnH2Pi6D8kT8knyObxKU2lnB8OkY37XCJEuKPp7fCVl 7i8laSXLkct6f48SY/uu/Bz+PbxbOJy6X5yw4DAu/5i+mJtLoyo/NK1As6OGlZeVW8SeUtqo7M3M yK/h+/IqUaYPaFwIeKCXvLiDJ5cUnQ0M6jEQhlxH9VNCwRW6EfVYq3xXt36WGKF//gWkQ1u3xNUD kBh4/x0A/++ZxMzO9IMxzNzJyfwfHKu0em3neEkbqbckSN+mnMi/rHqE9NMMZFDHlCXB8Fyz0P4W /zU69EXGuOqWgISW1ZeX2FUxBJl+VJ83BhrcItZ2NvIBw3Y2yQ0lk9MXj5ZgTd66YieS1cWy3Rol kzps6tjGzD3v2Z5mvqB8SmEiSRL7eNMyyzxMrRPc2FXPHf0qJ6pgPX/8I0QIXhHtrJZiYUrOeHYZ YFbRNePi40o8IPluLjGzkeTrweMAtRTt4lu8BlI06IT6TyfI32hEDJtwFItHIolQXP48WJqjws0X 5dYC7vYwam6Pm22iMei9Bo5lNfMWKHv3cxns4Zw3X6yBOeIyFN9/puCXFBljfhpCji35ZFCmjcSe ZscgRf2eM9fIe6qMHDG3qfE+m9tpbEe7Jd0AentbRCfOMvoLM5UckTayf1N2pRJZnqp9FisJxbII jhP66WX0iU9AYZTpXMlgLD55YCYJ4c7cBrZ1ap0ww1qoScu0gP1k9ZIjovNaEvH2bEhdw6228Em0 BjlonUxyl35EQW1dc1IXUIancD5yhAo3dLkGYvSdiseH9efIH/fuu5/3Z7iNgtdFc+5Il5vpIZN6 7NeeccNyWRK0XDdu1auccgt/56jpO71G3gsXioZ8Y1n1lJIIa9+NSe6o0zC2KKwSp0e6Jc6EAWWh 3IEa3SeeT3TDu+k8Rv99fC1PS0xGkT56lPPs8X+o4ujkBjN3/Icrzjbmtk7cpmaOjvtpNjFZXbQB zZvaOlppdsnROJ4zdgd7sGjRiqTiNAWkino+BX6YGSWgY0+lvNdOgugJ5l+C37yi8CHN8vDbHtTY /PnYxcTW0pKT6ILyUU1lXamoz5jEVsa9AuOoBAxa249WzsBjmDK2194+T0//e1eJrjqseT/N14Mc hmoH3MPXgWISsAb3i+b7c++6+rthOunmvhd3doibbce7BLRZdX3STfz6YnGxWyW4jkU54pe71LW2 K/WV6kl0STVRfLj1uqqs53zADSlLDqR8akuIjq+CKty66ceplmdVWaW4aOuKy3mgAPSChmFgVEfV a+mmvwlufEnV3OswwGXaaJx+3+44f/PJdZ1W/I0FwkjVrWKRPi566KzviecmeDzyr95d6qbzRYkl jMqu4YWyE9LGcuZ9cmApOtfyXQQcSVQkzGHI3zwDX3LTCUKejWt9MQXla8H9vdZYXdex4n1Wh33a WMWmlOeU/0wPzj95PvTDsEe/0XH2pivV9qXPLd8JxRNNl3whttEdvoHUgncFLNCWOGuWVkUWCPcs 2YyiP1d8iXTDyytFLP33bURBOtym+ZEXCeX6/bg9tUrD6gpgmbTmyQRQC9BgG0ltuDZV8SHR3zYr Yaxr5VMg3WbpltUInlqs77UEZPkqsFgKuLSC1TW67Dw0KbDtTL8b6dF7miIIqs8AcBo30aYJlLaW 72tC5kFeNc1PWSx33nSpJ74yBzWlAmYCfGxgj9VyDegwvDIo8kKUuNk+gjdbScOqrEXHxS+73KMY rVfBiA/GMpw+Zul5frHrhiPji8U/aqUcB4lqMhuZiC63rixY3xkT5MDfgL6cIJLMPZrO0tMT3w4i tjfwjf3Vj1AkqY6v9nK1wm8wN58HwP7Yxvi/i9M47S4+LDJaTurPxHYizRgUXIxuqnKkWxKmc78d +tV1Z/bOJ/TpBQH0rrdKcKTn53ZyCfXLjQwzj0QfzoVOtIYto1KQCOQutkf66QEXNcsSlFvT23vm g7rlEnO1nbmSj/8btpxeZztXu8ejBkq+5fUMYCHtTO3CvSsOzupdJjHrl4TA/X3mD7Mzlh9sh/aK OMh1ZycUsivzxn7Oh2/rsrf1nNg2gReHc25TZc1di2Ul2obxxT5ZbiYh5hfPlo3Yg4H7eyD12TlV tdq0iK5fxzrP9GaXLH9Xtmdkld+wrtpvtn0YbIp5L3DtKlTpkmdXUn8U/wfYCvGtxrLL169kKY/D 1wZ8CobLnMQ9qfH9Tkdapt+lznTIY16bSBLpmPQzJzo+pO6LnQLL6vvWD27bKu9uJ9UJYsYjK8bb lCZsAeu5b3jjjQCtOr5lWKZ4XeqsCgm2gMbmu2PbWf8HD3iLZA0scPB6FjCqWLPGZFuxgyu6VLqF knn+a9A6Xzy+mw8HqtPzayoKCxhXqTn+wwNsxkdDMmeOM34IrOJVIHIDA/sp/rHw/zYdTD7xtdpJ wIsEmv8quaBN17cCC4o3SJbKIgze3AVwhJTsACFQ9eaq8S6AwBqw6vXHIR+550+FpW5ElYrEMAM5 bPzbsQKD6fAC8Yg1Zl/bJ6ps8iZ9mgYjEox4Wg18GzX/P3+IBXQbi40wh9KVYR3NcEtbzjlLfr4/ eB9FQcXdquVbjAXBQ5LBWKYVU3/jwHKqw5vxRC9UIq/s7RYJqXDICVmfKfEmGvGuhxM83OR6XqQd aSRofrJMejXcksddxaOg7LWjfsP3MaIVNMedoHUkqGJnfstqSW/dvvzbSm+I0+PYTbUW22H+/Hah rWzmWtAWrTv5TFlKEnMX170rtfxteJ2zzJtcbeEh2lBI+76sBms6AbVdoqGbGY6+guyiYsjrEX95 uVrXgPs/CDYKIh1fwTf96lsA/PI1SMqfSWJMQd8gL6rFs49NFbV5UqL5ZpHlg3hTjB+NIzZeGUW0 MfiL9RH4il3jn/9mr2Te7wKkM5/Lq77ClKHxJmLruDb6GXnEtP1jy1mpsnTZyf1tLoZfG8oO4NcU bNbKIPSiWAngssWL/HZxu+puXIuz2QFtMves45tUW75NMA+QGgmYUaMQ+MRtaUQbOdf/cqb1TTfR K1vABRO3G4WaDrw/ZWrkjz6DUJXpoSLpeSM1eqWTpUhStvMCZwkyhrlJ4RVaM08+LpyZK3SxSHd9 ssW5FtZt52XnbOfVq13vZoreuG66SQ245Ng/+gqlYjyM2iRh0Z5tfFHqCer/EWePurIJrFv3/9v0 uRn9fN4hPR6sUlgXzK1eqTm2XsA9UqU5Y2IDHgdOVksvU4IWv/atiyZwevkUoya8vy6iKHkmGjTP BpZIlWLV5sThTd/ofCGJObm2T2yNC6wMK5MK875IHXGTTTIXKejEIFiNlXMV6p5b89Ho/vIh99tJ Wx4iGjt9oyVsmJmTMtr5eBDMn3eSR2wdModjXfAJLDK3JUkZg0GCz6CpH3ZYpr9nLoxzBvkAVFKX ItYk4D/TDxWVED3wU7ifG4+cqVA0stkVpcyyeqWifqEzl2/vstg/qxL7kl1GTz8klkeZde/MxbfX X+BCvwIvl8HtigvlFNYSIsjg0l+aFLTksIysdsZcVXjuv1dENKY07yaw9He9D9/V2XquvrVaFT/w pEeaQnRioeTgcSjXdBz0pGMn0LpIfdPAmM5HMH5uy99d+dAGXVaNdN6T+jjU7OY4Vc6vdlMELcWg +Z92zjOq6bONwyEGhASkzDBkI0v2KEKoBlBAwwhhKAgJIMvKXlYJglhWVSREAlhApqBWCQFFKiOy Z8TIBkFkyUhktCAFpQHqe0Ja3/Oefn7/14f7w3PO7/ry/J8P9/Ocu+wcd4rtENgT5Nl4E6QN1D4F 42h9H/Zw8Lya0CNSsmO5gCtC8sG5Q5dKeJvbGnyJN6WoYnqXjkjapCa0Szub8h1z1NWLOkjzXDuT XRhpH5YvJBhKLVr263FHTCXkE+tRlxzE0tXTFEeIOmiVlykWVPYkEAPPIbissSxsalmNj2hf78GH 8FTlJx1vF2ocicmaiiWcuhxt2+EVFUPsKFITqrQflcZto9glaDGJ4zJiS7JPfLycOx6si5IgxSn5 yrfjEGrmYkU4qdpIq7DvZq284Jc9c3ub5eZHLivjF36spvfyceqWqxmMqVq+J2HLu1u4x1SzBE31 ITSht95XS/oA+r1tlZ5Grzga2ug+FWORitHY/TQQzdLZGGYMq8LlZudmn2+JiYiNmE7mqSgPr7Cj xUZso+2/vZQdsk7gPKPiXpZ4SFuYy0l2CuwRAKeEGCMO1dSVTJGOwgemqISfzqoEdlszoOC9wRUr raCn72oRvd7XkcqzjTN4b+cH9kpxHrp2eQfRdz3zCPkPYcQ4cBy+d+bFXfPOI3MLCDetL1jXX22K +Yt3ZkeFG4pTIo7bOXZr7kBc+f0OvEG7FMBzQacWwLOPAewu6Gls/LidRblrMmqSisCZvehPUoSS 0WS0TboOEUqEavAPQAYO00TcNNxKR8rYIp+wR47LacDylQ9vr25TrfCDFRmddUFyYL4zFbTgoGdH RpsrfDMAKeI8hSOkyaZfqzkT9kTqDw/aQfUNjwZAHaCO9CgGs0sshWMTyKCdMjz/I+YjqDHZ9x34 I/suLVzJAm+hM3f2bxqWy7NdcegSfNuP4wJtmijHogq9ilqnyBoHqofwV6w4HOibHg3wOjgjORez CyP5E5BBu/XIfC5m7XX/xTcKL/o3Zm+tVR5Dr72vqxurqaspPn3WZSE1z19UoKhU7N6bfu+C4Ghv xt+v+PQRxSqNW8GRfvt7Nkw1L30/z8S+n50vZZiN3f8NfVsaUOYqhuH/5uHJ5gSKEzuce6wBd/6+ h7VWwEnaak+wSTrCVWX105Q6dJMtVQNaY7+KGtdPbq+QsQUf3UD4iP9eQBJWuC9j31dv+R1UZWIW mmXZ94xXboL2TNSMYGySeqNV2nTi7pAjfbiBlODF2yFJ+E418oq8auSZVWBHzm+62sjb45QsKSV5 rMXlvH3bxzZ2+9gO6l0P1hhwwMBCS0MlLh8Ou5MUKPCTetv1ZepKcTIM8cw/3bdwgsI/SqD0a2ko 7OswcE9vCSX2vQHHwBBBPm2Qio5gH646vouEXEFj5ZCAIguD32T+c/LYPaWZVh6UyUrzMjRzOyHO C5vut2wMrAoaHv716pJ8sklEX/x5BaRZl35UFane9c3QasAiDV+fZ6TNF2cdXvnwOfkdOGIq06js j7zoNKB4nP/m4JmAAuicXk3lUgsaWypg4U4FozhRrTdByiBlSxhH4Tf6a5PJPCIkVxH+MXoPX9og OWWXxc9vP7GZhjy+5Naqg+DX9Oy1ZDOVzCQLuFnEvVe5JSKZINsrczYReCL/YFVPSKGt4Pr48/7j /fhRe45Ccw5nf00S5VE6sM2acx4t8eKYznBqQ1f9j+oQfUhUJ7mr/qSWb3k3+qqfcND3PJ522VhE s4C/ZtbCFbONmovLLRdzrXMphUIlAiV4ca4erp7MCG6kItKHPhBjOBxnuOSKlsCdYOvh2iWQb1QW qcjYvXNGjN0b7tgliJzBcfk1SaQ/6BLOQ3Um2dhSKuzvI8FNvvdMDKqPtvGrnTh90R4iBFZ86LPF jglfPZQh8gXFcTePLwTLJSSNN5jD8tdVkCI7DKyLWcHdM08D4p5kugLi2Bhk2wDPXq1fHC8YVDdX DpktsijomW/EQzQ1NEuLO0Q7IZ3XoVzT7NNpEdwZ0IzT9AFytfOL6sWT6RKvsEKM1R3MBG4oaGpQ 9Hinw71PAlce3FHWLJUT4JyOQ4GKLDpO4Trc0aqVQ7ciy9AHoNgyd2mMNGbQMUVjF2Ofa9irDLxm aE9wGthFd3PdC+zrwB1i34Cec01eD+26hs12SoXXPvAGT863gmKxeYydRyWhJkNaoQkutKRahWsq a4xkOAbOSM7V2MXYZ18UGwMvRXp4bmk0z7Fc6EOdW7VNa2P0z9y/aFGbsKFLSxg5l9imjy4lOQYZ RhtVjVK3DMWygnW7D6/Pct2FgxMTfftcL9yduhW4tBF/YWZT+Qf03PcdEmczhtx/sgz0Dr9Xq1VQ LNMuWE0zqR1FifobreWFQjOyed9V33d+vtJcvQSx9M84oCnhZkgOi5kFvJbBF3ZoSXxcwVeVuVCh tzshw0fYVX9BT1gqNV/LEc7USsh2Sa6omT9sr3D8dGSUgxSf1fxIt1pEALUY75P5DFN7YJZX9Nsy D+uR0pbsjes55pIhcz6GuB6LzzXrRcLrL7Vwfu6Pc7xkBwnVSy3mr52c6M1LLjdSZo6ZeH+bjUmP fQUtCFw2MsPcqBWJeqkWuPlKfzkYsrig3YxGHSEoiHrNZexD3YsEFDa+JyD4zPRvBOyfuXlppTLq XFqUuHJTuvlYdMEcPnjKPufouZp39/uDtniKcaEfbj7A57WbhRACtdbGguiUk47NVn5Pa1NGo/Gi dvJOuDdk4tbFF0HCWzNDVfOfnT7ytB/4i5wPUOTqqt2qXzKxQgqxIe40tNX1OP86TzxF4QcXs7Xe Zi/pbJPudk3ilS1Se198BaIgYPTJvecLYoNnQ3XskhMeCQiJx+eXnEPIfXo14PjH0Ij0pzJ30U8G trNTMNLNsjv4RHEb/18/NEiISrye6ya9crr88+J41mpb/AfT9eEir9Xz6b8Y9ScdmO4vGa9cDKtb n9na2/wQ3QhJ1AcAAHqA3QGgfucDLoRuN8fKy0pbu2yVEGoqlM6X5Q7aPTpIlEUXgmLT1omodADz BL9+gkQRKydIbW2dHaudiI7T3ZUTQAASwQZUA3xtzJQ8y0iqfx46Bd4ZF7o9PFEEMFNZcwwAp7Kx VlbP3uEfzB4qx38dBcIsE1Wr3QlnrayyvWMzmGXsnF8bovFvPHtfxDB7UpW+/j6G2SSbQ95JZq2s pr0vZZhNk0p/fzfzbwx7L4mZDQj1v10ZMwvIAY07gayVVbD3IpZZYKHxlWtZZs3yxG4sa2XV7O3Q M2sIel/p1zNrBLSbdmJZK6tmb/+aWTP27T93s5ktZcC2nVTWymrZ2/pktoAN/rkRymypV95NZa2s lr1nDLNl/ymmE4c52uZ1504Ua0Ui2HfGqUIYYEAAgNcpwP+///H7EyTS3FIAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAKYAAACOCAMAAACMqYMeAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAHpUExURQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoK Cjs7O2dnZ6CgoK2trcHBwZqamoWFhUdHRxkZGQEBAQAAAAAAAB4eHo6Ojuzs7P///83NzTo6OgMD AwAAAAAAAAICAktLS/j4+MzMzBoaGgAAAAAAAAAAAAYGBru7u/X19R8fHwAAAAAAAAAAAPb29v7+ /vr6+jIyMgAAAAAAAAEBAbe3tx0dHQAAAFxcXA0NDQAAAAAAABYWFm1tbQAAAAAAAHJycvT09BMT EwAAAAMDA/Pz80BAQAAAAC8vL6urqwEBAQAAAGZmZu/v7wkJCQAAAAAAAIyMjAAAAKGhoQAAAAAA AMPDwzw8PD09PbCwsAAAAK+vryUlJXh4eBEREQAAAAAAAFZWVtHR0QEBAQAAAAAAABgYGHZ2dgAA AAEBAbKysi0tLQAAAEJCQr+/vwICAgAAAAAAAAgICAAAABsbG/Ly8nx8fAAAAAAAAAAAADk5Ofv7 +8/PzwICAgAAAAAAADMzM8nJyQICAgAAAC4uLuvr65WVlQEBAQAAABISEs7OzioqKgEBAQAAAAEB ARwcHE9PT3t7ewMDAwAAAAAAAAAAAAEBAQwMDAICAgAAAAAAAAAAAAAAAAAAAG3hDBoAAACjdFJO UwAUWI65yrKcdDUCATqf/////////////9twI////////+1SLfn/////lAhL/////+MHL//////b Hfj//77/+Ss7//+3rP///xf///9U///Tf////xWo/7z/Scv/////SP////8hef///wY2//+u6/// UP//4xAL6WT////dEZP////3Igr///0l////+iD////aKbf////3WQOM2P/0nkcWPygQ55roAAAA CXBIWXMAAA7DAAAOwwHHb6hkAAACNUlEQVR4Xu3c6TfUYRjG8duW+FlSwihFaKEsgylRFNrQXpZW SwspKhQJiUoLKlGWlL+0M3PGMvfr65xu51yfl9fzvPiemTPz8hFZFRQcEhpmxabwzRGRa20rnKjo mNgtcVu3GRG/PSExyRWkKpPDd+xM2WXM7tS0PQGfaHpG5l59yYJ9+w9krVVmHzykLxiRk5uXv1Lp jiko1OdWFHkO+7/3I8VH9aEhRSUhvkqn9Jg+MiXleJk3s/xEgT6x5WSFIyKVVXo35tRpt8iZs+f0 bk21S6SmVq/mnL8gcvGSXs25fOWqXLuuV3tyy6WuXo/2eBqk8YYe7bm5MTJvMROImUjMRGImEjOR mInETCRmIjETiZlIzERiJhIzkZiJxEwkZiIxE4mZSMxEYiYSM5GYicRMJGYiMROJmUjMRGImEjOR mInETCRmIjETiZlIzERiJhIzkZiJxEwkZiIxE4mZSMxEYiYSM5GYicRMJGYiMROJmUjMRGImEjOR mIm0gTJv69Eezx2pu6tHe5rcEt2sR3taWuXefT2a8+Bhm7Q/0qs5HY9Fsp506tmarqci4nqmZ2Oe d/eISO8L47/1ppe+ly2D+/r1iSWvBl77MiMHh4b1mRmFb0be+h9dHR0YM/mArbfy3fsP/kqR0bzx j/qCDZ8+f1mtFMkfnOjI0Vf+v8mpr8nrKkWcb9+nf9j6A+2fGZv9+Sug0hvaPje/MD2VaoNnvGTx 91KvjvRx/qQ3WPF3OeCZ6n+Q3VHkP4cGTgAAAABJRU5ErkJggk== ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAJQAAAB5CAMAAADoOPi6AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAIiUExURQAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAcHBygoKFxcXJaWlpqamrGxsZOTk2dnZz09PRcXFwICAgAAAAAAAAAAAAAAABUVFY+P j+zs7Pz8/P////39/ff398jIyCEhIQEBAQAAAAAAAAQEBGJiYuLi4r6+vh4eHgAAAAAAAAAAAAkJ CaOjo8/PzywsLAAAAAAAAAoKCouLi+Xl5TMzMwAAAAAAAAAAAAAAAHBwcNfX1w8PDwAAAAAAABAQ EIODgwAAAAAAAAAAAJ2dnQoKCgAAAAAAAAwMDOTk5GhoaAAAAAAAAB8fH/n5+QEBAQAAAAAAAFZW Vtra2gAAAAAAAHNzcw0NDQAAAAAAAIyMjOvr6xAQEAAAAOjo6A4ODgAAAGxsbN7e3gAAADg4OP7+ /tLS0gMDAwAAAAAAABQUFPPz85iYmAAAALi4uCMjIwAAAAAAAEZGRrS0tAICAgAAAAAAAAUFBa2t rSwsLAAAAAAAACAgIHt7ewICAgAAACoqKuPj44WFhQkJCQAAAB8fH729ve7u7gUFBQAAAAAAAAAA AAkJCXl5ecPDwzQ0NAAAAAAAAAAAAAUFBSsrK7Ozs/b29vj4+N/f3xEREQAAAAAAAAAAAAAAAAAA AAAAAAEBARISEhsbGx4eHhwcHBkZGRMTEwUFBQAAAAAAAAAAAAAAAAAAAAAAAA7s50YAAAC2dFJO UwADLmaYsb/Eupx+ShgBBjrA//////////////mnHRDN/f//////////+GpO7P////yrDVX////9 rzHq////lgII2///8Utp/P/VBOv/+kQ0////xWj///8Rl///Lbf//zjB////O///sP//iv////8a Uv///9b//1ei///qEhbt//+Sef//2Qz////vpP7///pNC6n0////PCXS/P///////viFBwksfen/ ////////xxcfKz8ydhCjNgAAAAlwSFlzAAAOwwAADsMBx2+oZAAAAglJREFUeF7t3NlbjHEYxvGn kK0pEUI7M/ZJTElN0oqR7MlONdYIo8USkX2fkD1rlH3r/3NNTV3jObqPPCf35/B+3oPvP/D+RMKi okeMHBUz2siYsePGxzqGWsLi4ickTJyUOHmKkalJ06bPSE75Jys1LT0jc+YsS07X7Dlz50UNJznm L1jo1h8ZcGUtyl48FLXEk6PvRnKX5sUONi3LL9BHM97C5UWhphXFJfpkqLSsPBRVsdKrL5ZWrY4T 8a2p1Lsp99oqkXXrN+jd1sZNDtm8pVrPtrK21si27Xo1tiNhp+zarVdj3j17ZV+tXo3V1fsZBWEU ilEoRqEYhWIUilEoRqEYhWIUilEoRqEYhWIUilEoRqEYhWIUilEoRqEYhWIUilEoRqEYhWIUilEo RqEYhWIUilEoRqEYhWIUilEoRqEYhWIUilEoRqEYhWIUilEoRqEYhWIUilGo/Qf8cvCQXo0d9kTL kYajerZ1rPG4nDgZ0LOtU00+SWls1rOtllYRx+kzejZ19lybiJy/0K4PhlwXLw38cN9xuU6fzDiv XB18nOBa3vUb+mjl5q2q8HsJNbfv3NVXE/eS7gcHXiYI6Xzw8JHbqT/53wJdj9OeRL7C8fTZ8xcv A93VVl51v0588/bd+4gkEen58LHX0/fps40vX799/xH8qd9QCXX9+v3Hir+/M6LoL26z5n5Tv+o4 AAAAAElFTkSuQmCC ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAI0AAAB/CAMAAADl2rGFAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAIfUExURQAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAEBAREREUlJSYiIiIuLi6WlpXNzc1JSUh0dHQgICAAAAAAAAAAAAAAAAAAAABISEnR0 dMXFxfb29v////r6+t7e3qOjoyAgIAEBAQAAAAAAAAAAAAICAkpKStHR0fHx8ZCQkBQUFAAAAAAA AAAAAAUFBW1tbbm5uRAQEAAAAAICAmBgYP7+/v39/cbGxhcXFwAAAAAAAJ+fnwYGBgAAAAAAAAcH B8jIyFNTUwAAAAAAAGpqagMDAwAAAAYGBtLS0vn5+TExMQAAAAAAABQUFKmpqQAAADo6OtnZ2QAA AAAAAGxsbOPj4wsLCwAAAJqamunp6Q8PDwAAAAEBAaioqO3t7QAAAI+Pj+Tk5AwMDAAAAAAAAAAA AAAAAB4eHs7OzgAAAAAAAAAAAFpaWgAAAAAAAAAAAOvr6wsLCwAAACQkJPj4+H5+fgAAAAAAAAAA AAEBAYSEhBISEgAAAAAAABEREa6urvz8/E5OTgEBAQAAAAAAABEREdbW1vLy8gICAgAAAAAAAAwM DCwsLAEBAQAAAAAAAAYGBlZWVsvLy4eHhyMjIwAAAAAAAAAAAAsLC6urq8nJyebm5tfX17W1tXt7 ew8PDwAAAAAAAAAAAAAAAAEBAQMDAwcHBwkJCQoKCgAAAAAAAAAAAAAAAFOp+hQAAAC1dFJOUwAE LmiUsMDAuJd3RRcBAz27//////////////ueDw2y+v//////////1VYCQdz/////+X4JMP////6H 1//////6dLT/5Cgx9v//wdr/8Rv/////kFf//+3//xyq////wv///zvC//+3////NaIic////Q45 /5UL6v/6Xv3//9gIEd3//1lP8v///7AFivv//9Yndf7/+yp77P////+oH7by/////////d5vBoXp /////8UdNww0Itx7AAAACXBIWXMAAA7DAAAOwwHHb6hkAAACIklEQVR4Xu3c2VeNYRTH8V2GSB1K ZkI4IRI6hqhQIkNHhhQOkqkyZ56STInIPBMZo0x/oHXOek/rtNf63T7bxe9zufd78V3vet/L5xHx xMX36z9gYIJrgwYnDklKjkZ4fEOHpaQOTxsx0rVRo8eMHTd+Qp+Y9ImTJmdMmWpimj9z+oyZWb0t ybNmZ8/RD7mUM3fe/NxoTWDBQr13bdHiPC8nfcnSfL11raBw2fJITNyKbL0zkF9UvDJcU7JqtV6Z KF0T/pLXrivQCxMZ68tEyoIb9NxG+cZNIpu35Oi5kYqtWZJXaf5DeaqC22T7Dj21EtoZkF279dRK 9Z4a2btPT63sT2UNwhqMNRhrMNZgrMFYg7EGYw3GGow1GGsw1mCswViDsQZjDcYajDUYazDWYKzB WIOxBmMNxhqMNRhrMNZgrMFYg7EGYw3GGow1GGsw1mCswViDsQZjDcYajDUYazDWYKzBWIOxBmMN Fq45cFBPrdTW1cuhUj21UhU8LEeO/i/nNY8dPyENdbV6bOTkKZHTZ9L02MbZcwEROX/hol6YuHS5 UUSuNF3VCwv+5muRw/PXb9zUK/dutdxujdT47txtsz6wfq/lfrt350Lrg4cVeu1W6NHjJ16MSOPT Z89f6CfcqX756nX0zUS8efuusuN9W+iDYyF/58dPn798/RYbI+JL6vr+o7vnp2s93Sm/6nvv6YiR +7u9wbk/8X9jbnj5BzX70DgiQ2USAAAAAElFTkSuQmCC ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAB0AAAA7CAYAAACHZoEkAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAf4SURBVFhHrZlraFTbFcfX5MzMSc6dmUzSau80 IRgaqzT2ShV8gUqs/eADWvFBErR+UHux1pgPgmIVtCK1aKEtVqv0Sr1GrO/3+xnfGt9viS1ekZQa LFcJVWnrLr/NbDnuTk7OlLtgk2TmnP9/77XWf611TkS6toiIFIiIIyIxESkWkU9EZKyI/ExEVohI ffb7vIwbXBH5SES+JSI1IlInIotF5A/RaPR4PB5vcV33y3Q6rXr37q1qamrUlClT1Lx581RxcfE/ ReRjGzTIINpWVFT0l2QyqSoqKtTw4cPV2LFj1ezZs9WSJUvU2rVr1a5du9TFixfV/fv31e3bt9WN GzfU1atX1d27d/UmRKSfDRxkld26dVPHjx9Xt27d0iD8vHbtmrpy5Yq6fPmyOn/+vDp79qw6c+aM On36tDp16pQ6efKkXpAPGzYM0jE2cJCVpFKpDk4BMKCAnThxQm/k6NGj79eRI0f04vdDhw6pY8eO qZaWFjV+/HhIf2wDB1kilUrdP3DggD7J4cOH9YIUcjbB5xcuXNCnhoTN7du3T5Pz2cyZMyH9eTbp QplbWFh4ZPXq1ercuXOacP/+/RrswYMHqrW1VT19+lS1tbWp9vZ29eTJE7Vnzx61e/dufWo8tGzZ MhWNRv8kIlEbvDNzHMf5jBs5DUAG9M6dO+rt27fq3bt3Cnvz5o12+Y4dO/T3uJh4b9y4UcXj8XMi UmiDB9mvZs2apU+Hy/bu3auBWZyko6NDvXz5Un+/detW/TnZfPDgQe1qwuC6bltWCaHt07q6Oh0v kgPSnTt3qm3btqktW7bovyHgd5YhJQ+am5t1xicSiTci8g0bOMhGjRgxQssE95EkflJ7bd++XX9P 7JHPvXv3VI8ePUimahs4yPpWVVVp0ZO1gHGSrkjZHNffvHlTDRgwANLv28BB9nH37t3/RVFAIrgN UsBtQkOKi3E7nsFDVDARqbWBg6w4lUp9QTzRJPEjO7siJctJPCoXdVhE5tjAQeYlk8kzmzZt0lpF CoaUbLVJcbshRWKXLl1SixYtUo7j/C6fbhNzXbdp5cqVWqsUCAAB7oyUDbExruWeNWvWqFgsdijb rUJZJBKJ/HbBggV616ZAhCHFK3iHPPA8rzVfrTZOnTpVx8doFdJcGcxGIDVaJQ9oc57nvaSB2MBB Vj969OhQWoWUz/0Fgj6byWRIpp42cJAN7NOnj9YcZS0MqSkQXI/G+/btC+kQGzjIKsvLy3V1ocqY ApFLNn5SUyCuX7+uRo4cCel4GzjISktKStpxFaurAmFkQ+xNM580aRKkM2zgIEsUFxdfZfd2gciV wabbmAJBB5o7dy5aXZadHkOZ63nezlWrVukeaQpEZ7IxGWyaOVpF5/F4fIuIxG3wzqzAcZzfL168 WPfQrrTqJzVaxeWFhYXX89XqgmnTpv1PM+8sg41WTTMnLJ7ntYtIygYOsmnjxo3TQs/VzO3lLxAk HzNVaWnpf0SkzAYOshFDhgzRWqVAIJsgUr9WkZlv8O5vAwdZda9evfTNgBjZdEXqb+ZDhw7Ne/Du VlJS8pqY4i5iFVarppkTHhGZYgMHWUk6nf4r2Wi0akg7y2Bbq9OnT1cFBQXz8xm8P/I87/T69etD NXM/qRm8eeCKx+OfZR8rQ1nUcZy1S5cu/WDwDqNVmjlFZcOGDaqoqKhZRIps8M6MZv7LOXPmaFf5 SXMlU64CQWwTicQzEUna4EH2k9ra2lDNnGVrlUeRVCr1Ot9m/iOesmlVXTVzlr+ZIzOaeWVlJRn8 HRs4yL5XXV39weDdFalfq9w3cOBASIfZwEFWnslk/k0zDzN4+0mNVseMGQMpLz9CW2k6nX6Gq9Bq V6RGNqaZkwv19fWQNtjAQZZKJBItYQdvu0Awwi5cuJAZ+Df5DN5x13X/vGLFiveDd9hmbgZvnuoL Cwv35/OQXBCJRH49f/78UIN3Lq0SX8/zHjEC2eBB1jB58uRQzZzlb+ZolfsSicSXIvJDEflp9iXI 59m3a55NZqx+1KhRoZu5X6tk/MOHD/ULsMGDB6sJEyaoxsZGPbRFo1GKxgdv1nAFHf/bIjKzX79+ +iVWPlo1gzd9FelwPy+3GE8ZDkRkoek+FObPPc9ryWQyrT179vxb//79X5P2/mYOaGey8WsVz+Bi Tkx8IZ84caKKRCJ0nvcDW/dYLNY+Y8YMnX2Q4FZ2yw652W7mJI//1KaZQwoGyQcOhFn5nBeRr/vd ynGHu657t6GhQU919EXIcC0792sVQOor0shFile4j2RqampSyWTyCxH5rp/Qb73i8fhWnkcgQS7s FhJ2Dxhl7vHjx+rVq1fq+fPn709rEsm4lw1xfUVFRUc2gwMtTXpXVVW93bx5s3YP8UE2EEOKFx49 eqRevHihSUw8yXA2iKcIy6BBg0iceWEfMXh8rystLf070z7xJSE4gYkXf9M3ibUpgXiHkJCxvAhz HKcpSJO5jDh/EovFmtEZp8VlxApSlpkWiTU/kQqeQY+u694gQW3QsPZNx3H+iKs4DR3EH2fI0KZJ nHXr1pE4jCp5NfBchos+zWQybcuXL9di55TEF1LiTZwhLysro+L8wAb4f40WVeN53hP0jBuNu4kv p8xOC435tLOwVh6JRHbjbho8ZCQOU30kEtmUTyvL1wD+RVlZ2TukwnDtOM5NEfmafeFXbWivNpVK PYtGo//4KhInH6OY8B+pvOy/o5irmhzNIjQAAAAASUVORK5CYIJ= ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image005.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAACUAAAAdCAMAAAAaaVXxAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAALcUExURQAAAAAAAAAAAAAAAAEBAQYGBgAAAAAAAAkJCYeHhw0NDQAAAAAAAAAAAAgI CMrKypqamhAQEAAAAAAAAAcHB83NzZmZmRkZGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD A8jIyMTExMvLy7e3tyQkJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD AwQEBAoKCg0NDQ0NDRAQEBQUFBQUFBcXFxoaGsPDw7+/v8nJyba2tiYmJgAAAAAAABYWFjo6OkFB QUlJSVRUVFtbW2RkZHBwcHd3d319fYqKipCQkJOTk52dnaWlpaioqLCwsLm5ubq6uszMzNLS0r29 vbOzszExMQICAgAAAAAAAGdnZ9PT08/Pz8fHx8bGxsXFxcHBwcDAwLi4uLW1tUZGRgICAgAAAAAA AGJiYry8vLu7u7S0tEZGRgEBAQAAAAAAAFhYWLKysrGxsa+vr09PTwEBAQAAAFZWVq2traysrKur qwICAgAAAAAAAEpKStbW1qqqqqmpqdHR0XFxcQICAgAAAD4+Ps7OzvX19d3d3dDQ0AMDAwAAADIy Mv39/dfX19TU1N/f376+vgcHBwAAAAAAAPT09P///+Li4q6urubm5g8PDwAAAAAAACUlJfLy8vn5 +d7e3hQUFAAAABgYGOzs7BsbGwAAAAAAANXV1TU1NQAAAAsLCzc3NwAAAAoKCsLCwktLSwICAgoK Cl9fXwEBAQgICKampp6enpiYmJSUlIyMjIGBgYCAgHNzc2ZmZmVlZUxMTFNTU2BgYAMDAwAAAAEB ARwcHBoaGhoaGhYWFhISEhERERAQEAkJCQcHBwQEBAAAAAAAAAAAAAAAAAAAAAAAABkZGX9/fwgI CAAAAAAAAAAAAAAAABUVFYaGhgwMDAAAABQUFIuLiwwMDAAAABAQEKKiohEREQAAAAMDAwwMDAAA AAAAAE5UsM4AAAD0dFJOUwAYCgPv3j8J9P/mSAEH8v//7ksF8f//8WACBAgLDxMXHvH/////+nEG NUVOW1xqeIGIlZ+ksLq+ysrX5PH///////l5Wv//////////////////////////////+owQf/// ///////////6oBJ0//////+rEWP//////7UV/////9ghUv///////99Q///////kQv////////4Z M////////Twk//////xn///8aRb/+3v//5j///+c8f+z6f/////////////////EG6348ebe183F v7SrnpuOjH5v+P/KIxoODPb/2CXz/+Y48f/sOuz1TTJLWPMlAAAACXBIWXMAAA7DAAAOwwHHb6hk AAACpUlEQVQ4T2NgwAYYmdBFsABmFlY2dDFMwM7BycXNgy6KDnj5+AUEhQgpExbhFxUTl2BGFwcD SSlpJhlZWTl5BUUlZRVVNXVeuJSGppa2jq6evoGhkbGJqZm5haWVtY2tip29g6OTszRMlYurm7uH p5e3j6+ff0BgUHBIaFi4XUSkcliUQ3RMbBxUVXxCYlKSqAo/v4NDslJySqqynV1aWrq9fUZmlFJ6 VnYORFVunop9fn5BQUF4eFhYRkaGqqqqo2NmZmZhZmZ+skNRcQlYVWmZSn5mdHR5eXl5RUVoRUUo CFSCQGhhQWpyVXUNSJVEbUR+gX1lXV1dXT0ENNQ3gEFdZXR4aoR3YxMDA0Nzi2hUVGRrQxsYtCOB hvrK6HC7js4uBQaG7p7eqIKOvn5keShoq6+MDkub4DeRl2HS5CSQqilT0ZVETZseaReuOsOhYeYs htmTJ0QVTJgzdx6Kbe3t8xfM6U8uyMhXSl+4iIFh8ZKOGeG9S5dFoSpqb5u+XClfNSq5YMVKBgaG xaum2Yf3rrYDSSBAQ0NDJsiklPQ1a0FpY92q9elh/PbQUAAFSF1d3fy6+fMrMzLyU5M3bJQEhVfJ pqlpYeGQwKwAAVD4lkdHFzpmFCgnb94CSdsaWyPTVDMdHVVVVTMywsLCwsPDCwry86MKVMO3OWzf IQOJR+GdynZpadvs7JSVU1NSlJSUHBxUREV7+WeEb1PZtVsOmiaE9xSobJsRXtGwd9/+AwcPHT5y 9FjZ8e0n+O3TRE+eOg1VxCB5xvbsufMXLl66fOXqtes3bt66fUdCQuKug13SvfsKMEUMDLIPmhQe yteUPHrMLgzLEDVPlESfPnuOUIQVlLzgf/nqNbooOnj05u279+iCGEDjw8dP6GJYwGfUEgAAbfAe jhCksfAAAAAASUVORK5CYIJ= ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image006.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAACEAAAAdCAMAAAATgvWLAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAJnUExURQAAAAAAAAAAAAAAAAAAAA4ODgICAgAAAAAAAEZGRmRkZAQEBAAAAAAAAEhI SNDQ0HFxcQgICAAAAM3NzX5+fgwMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAC8vL8zMzMLCwoWFhQsLCwAAAAAAAAMDAwUFBQYGBhMTExsbGyAgICEhIS0tLTk5OWxsbL29 vYyMjAkJCQAAAAAAAISEhNXV1dbW1tTU1NPT09LS0tHR0c/Pz8vLy7y8vLm5ucHBwc7OzomJiQcH BwICAsjIyMDAwL+/v76+vra2tgkJCQAAAAAAAH19fcfHx7q6urW1tbS0tLOzs7i4uIeHhwsLCwAA AAAAALCwsK+vr66urrKyssrKyouLiwoKCgAAAAAAALu7u6ysrKurq6GhoQsLCwAAAHZ2dtra2unp 6ampqaqqqp6enhEREQAAAG9vb8nJydnZ2fv7++3t7be3t6Ojow4ODgAAAAAAAHBwcNjY2Pr6+vz8 /NfX18XFxS4uLgAAAGpqavj4+PT09OLi4sPDw0FBQQAAAAAAAPf39+Tk5FdXVwEBAQAAAAAAAGNj YwQEBAAAAAAAAF5eXq2trW1tbQMDA1dXVwQEBAAAAAAAAAQEBHl5eQMDAwAAAAAAACwsLGVlZVxc XFhYWFlZWUtLS0lJSUpKSj09PT8/P4iIiAgICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAsLC5qamg8PDwAAAAAAAAsLC6amphAQEAgICBISEgAAAAgICKenpxEREQAAAAEBAQkJCQAA ANcBrUwAAADNdFJOUwAFdBdj/9wdYf//1x9G////1ij//9I3AQMMEhkaJScyM0CA/////9o5YP// /////////////944nv//////////////////5Z///////+E2n///////////3zyV////////4zqP /////+1K////////8E7/////////8j9//////////2X///////6nBP///rcIeP27C3D///7H/88i adj/3CZZ///////////////ddYuDe3ltZFNSREf5/+Q0Avf/6/fyTPb/+Fjz+VwKuPAWAAAACXBI WXMAAA7DAAAOwwHHb6hkAAACTUlEQVQ4T2NgQAeMTMzoQmiAhZWNHV0MFXBwcnHzoAuiAF4+fgFB IXRRZMDLKSwsIiomDheQkJSUkpaWkZWVk5dXUFRUVFRSVlEVVlPXgKvQ1NLW1tHV1dXT1zcwNDQ0 MjIyFjZR5Tc1M4epsLC0srK2traysbWz57ezd7Dnd3B0cnZxdXMXg6rwMPV0cXHx8vLy8vb29vbx 8TExcXLydXZxtfTzh6gICAwKDgkJCQkNDQkNDQ2DgNCwcBfHiMgosIrowKDg4NCYmJiYWCiIi4uL jY0P90pITEoGqUgRCUr1cQ1JA4F0EAaDNJASlYzMLJCK7KBgn5zc+DwUkJ8WFx/uJVxQWMTAkFJc kupdWlYeg6mkwlu4sqqaoaY2IdWnrr5BBVk+2KHR0cvZN7jJvrmFoaY1wcmnsb7NCVlFY3uHik9F cGdCV3cPQw2Xo5NJXW8JsoK8oD5hn/DUzpL+CRMZGCZxJTiZ2DhAvAADsQkm4cGqKpOnTGVgYJg2 vcTJyWvGjDg4AIVIeHiwquPMWeB0Mm12glNFPBiExcdDgzQ03NlFpXjOXHCYzpvtaJIKAk6pTk5O JiYmIBwe7KJSO18WEi8cs4VLEhISHBMcVRxVQMDVwdU72MV1wcJF0LhdvKRWoJZr6dJly1csX7lq 9Zo1a40cvbyF162HJ0TJDRs3bd68ZevWrds0Nbfv2LFz124VF5U9e/fBFDAwMOxHJEkQYDyg4njw EDhWcQDGw47pR46i6kIFPceOnziJTwGD+KnTZ/AqYGAwr0bhAgBVrdQhSoF8MwAAAABJRU5ErkJg gk== ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image007.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAB4AAAAiCAMAAAB/VplGAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAJtUExURQAAAAAAAAAAAAAAAAAAAAAAAAYGBgAAAAAAAAAAABAQEKioqAUFBQAAAAAA AA0NDY2Njc7OzgAAAAUFBYKCgtDQ0AUFBQAAAAAAAAMDA3Z2dsfHxwAAAAMDA2VlZczMzMXFxQMD AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFNTU83Nzb29vdPT00hISEdHRzs7Oz09PTY2Ni4u Li8vLzAwMCYmJiMjIwQEBAAAAAAAAElJScnJybu7u9HR0cjIyMTExMLCwsHBwRcXFwAAAAAAAAAA ADw8PL6+vri4uLq6ur+/v8PDw9fX1xoaGgAAAAAAAAAAAC8vL7a2tre3t7m5udjY2AAAAAAAACgo KLOzs7CwsLGxsQAAABcXF5aWlsDAwK6urq2trdra2hYWFgAAAAAAAAkJCcvLy6ysrKqqqqurq9nZ 2RAQEAAAAAcHB4aGhuDg4PT09KmpqfHx8d/f3wAAAAYGBnJycsrKyvX19fLy8rKysvv7+97e3hER EQAAAAAAADExMdTU1Ly8vOPj48/Pz7W1tf39/QAAAAAAAAQEBIaGhq+vr/z8/AAAAAsLC6Ghod3d 3QgICAAAABEREebm5tzc3AAAACEhIQAAAAICAkNDQ8bGxrS0tAAAAAQEBFtbWwcHBwAAAAYGBmxs bAAAAAsLC3t7ewAAAAAAAAkJCZycnJeXl5+fn6WlpQAAABwcHIiIiAUFBQUFBQYGBgcHBwAAAAAA ADY2NoeHhwAAAAAAAAAAAAAAAAAAAAAAAEJCQgAAAAAAAFJSUgAAAAoKCnd3dwAAAAsLCwAAAAAA AAAAAAAAAGSykj4AAADPdFJOUwAETjoBYv/4D2D6//kWUPL//xXu///4DjLf//8izP////p4cmxl X1UwGLP9//////////////////MTofv//////////ywSkfj/////////LgiE9v////8tA/D///9k 7f///////yFK8P///////z/r/v//////KN///////////xtp/////////xQd+f///0H4////Zvj/ /4n6CZv5//8HtP3/L87/Q97/AlLs/////wb6//7e7vubjfn/yB8kKQ2p/KjB/yfJ/zznmUn5ONSW e2AAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKMSURBVDhPfdL3U9NgAMbxF4kblKKIGrQRxDoaFQVF MTFD0SaNONIXsS1KQbQDREVApBZHlaFx4dZWrQtULCp1IK1769/kpW2g7Z1+fshdnu/de7n3AkCs pBHJce/xkJGjRo9JHIcgY8eNT0lNXBXIhIlpqpT0xFmRPGlyhmpKZuIcNXXadBX6z5w1Y6Yaw1Sz snNyZufm5s7RaDSauUN13vwFWgzHFi5anJe3ZGl+fsGy5YWFK1ZGa2rRKgLFSWw1RdEYSjMMjbEs tmZtpBavW49SOo7XsyzLMmECjW0o2RiumzZvYQgdJ4oGBcdxkCkt2SrXsuxtoloPOaPJPEzkmNKS LLmWb9+hrYAcbrBYKistETwLmaqd1QAgu3anWVnegGtVNrvdbnfID10NDZnS2moA9tTttTK8AVfv 22+oj+IPNNBQqKmtBo1NB7UCyemaGw61sNHqbDnsEiBT03oEHD12HHOLnE7tOnGyLVLt2vZ2lwDp qtoO0HnqtKoCOiWHXTm5vp5uP6NkcPbceave4LTYhrvDJR8uXOjqAAC5eMlO6ESzFP7uCNvlKwwU XHIGSVevSQTeZq60OWyOKDGDgUJDV7F8a9dv3NR73F6TJEnyjUgyg07Ot8J33nn7DkXzRq/Xa3RG GI1tkHb5IhncvXdfy0ARut1ukiR5nuR5nqTVSkYePOxWs5DECIKiUApFPajHQ1mVDHoePX5i1ePN +t7ep36/328ymyTeWdcXzaCn/JmZ0BPPX/T3NwUCgcBLn8/ne1WmZND3+g1HNQ+8HRwcDAaDwcZQ KBRSfjXZu/cfcOvAx5glXvqnz6qBosR12Jev37r/k8H3HwU/E7cYyK/ffxK3WEgmEj/8BSj57uPz ikzRAAAAAElFTkSuQmCC ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image008.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAIMAAACRCAYAAADggwv2AAAABmJLR0QA/wD/AP+gvaeTAAAACXBI WXMAAA7EAAAOxAGVKw4bAAAFk0lEQVR4nO3Zz08UdxjH8fd3lt1lVTakaSLyI3BqTW8FlN8kPXjq TYo1KQcPvfRgTJrUu4f2pEcMxosn00Q3+Dc0dVdOvbYHYpFZuqb2IGkQTODpYXafIgW06bKjzeeV kCXZneSZfN/Md2YJZsbrhBACkAM+AMaBbiAPdL32YGm1n4B14DfgIfCnvckiA+Gwz4UQcsBHwCVg FuhOuoDGq7w9dq9l/fc14D7wLfDMzHYOO37fGOpXgk7gGnA5hEAURRSLRcbGxhgYGODUqVPNOwtp ilqtxubmJrVajXK5zPr6OmbGzs5OFbhHEsUfB14pzOyVHyALDAMVwNrb2214eNgWFhZM3h1ra2tW KpVsdnbWisWihRAMiIExoM32rLuZsV8IM4BFUWQnT560+fn59M5ImuLBgwfW19dnURQZsAqM7BfE 7hAiYBBYzWazNjU1ZXEcp3kO0kTVatWmp6ctn883gjgDRHZADJ1AOZPJ2MTERKqDy9GI49guXrzY CKICvGd7Y6hvD9+HEKyrq8sePXqU7tRyZOI4tt7e3sY9xA2gYHti6ACsWCxapVJJeVw5aqVSyTo7 OxvbxaeN7SIKIUTApSiKOH36NKOjo015zJG31/nz5zl37hxtbW29wCck94tEJN8sfpPL5bh69Wqa M0oLXbhwgVwuB/A50A5JDFNAX6FQYGZmJsXxpJXGxsYoFAoAvcBkqG8RfVEUMT4+nu500lI9PT1M TEyQyWQABoAQAbkQAv39/akOJ63X399PFEUA/ZBsE6MhBHp7e1MdTFqvp6en8Q/HHqjfRYqAYpBd FIM4xSBOMYhTDOIUgzjFIE4xiFMM4hSDOMUgTjGIUwziFIM4xSBOMYhTDOIUgzjFIE4xiFMM4hSD OMUgTjGIUwziFIM4xSBOMYhTDOIUgzjFIE4xiFMM4hSDOMUgTjGIUwziFIM4xSBOMYhTDOIUgzjF IE4xiFMM4hSDOMUgTjGIUwziFIM4xSBOMYhTDOIUgzjFIE4xiFMM4hSDOMUgTjGIUwziFIM4xSBO MYhTDOIUgzjFIE4xiFMM4hSDOMUgTjGIUwziFIM4xSBOMYhTDOIUgzjFIE4xiFMM4hSDOMUgTjGI UwziFIM4xSBOMYhTDOIUgzjFIE4xiFMM4hSDOMUgTjGIUwziFIM4xSBOMYhTDOIUgzjFIE4xiFMM 4hSDOMUgTjGIUwziFIM4xSBOMYhTDOIUg7gIqJoZcRynPYu0WLVaxcwAliCJ4Ucz48mTJ6kOJq1X LpfZ3t4GeAlJDC/NjJWVlVQHk9Z7/PgxOzs7ABXAIuChmVWWl5cplUrpTicts7i4yObmJkAMLJuZ RSSXiB+2tra4e/duqgNK61y/fp2trS2AG9S3iUz9vadm9tXq6iodHR2MjIykNaO0wOLiIrdv3+bF ixcAX5jZBkBkye3kz8DXGxsb3Llzh6WlpTRnlSNUrVa5cuUK6+vrAPeADX/TzBqPF0WgnM1mbXJy 0uT/aW5uzvL5vJHcNL5v9fU3s1diiIAzgGWzWZuenrY4jlMdXJqnWq3a3NycHT9+3IBVoBsItl8M lgTRBowAq9ls1oaGhuzmzZtpnoM0wcLCgnV3d1smkzGSp4dZIGu71t72xmB/BzEI3A8hWKFQsLNn z9qtW7fSOxv519bW1mx+ft5GRkbs2LFjFkIwkm8ae4CM7Vl3M0suE3uFENqAj4AvgcshBNrb2+nr 6+PEiRMMDg6Sz+fp6upq5r2NNEGtVmNlZYVKpcLz58/Z3t5u/JHPA9eAZ7bfosP+MQCEEAKQI4ni EvBZCKG7/h67X+XtYa9e5deAEvAd8LuZbR927IEx+AeSFW+E8SEwBHQAH//30eUIPAV+JXla+AXY MrOdNznwtTH84wBdDt4JB20Fh/kLldrs+E6cHGoAAAAASUVORK5CYIJ= ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image009.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAABYAAAAcCAMAAABS8b9vAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAGYUExURQAAAAAAAAAAAAAAABwcHAAAAAAAAAgICKqqqgAAAAAAAAEBAX5+ftLS0gAA AAAAAFBQUNHR0dDQ0AAAACMjI87OzsbGxgAAAAAAAAAAAAAAAAAAAAoKCrW1tcjIyMHBwXJycnh4 eIWFhYSEhIODg3d3dwAAAAAAAAICApCQkMvLy76+vsDAwMnJycLCwgAAAAAAAAAAAFlZWbm5ubq6 usPDwwAAACMjI8/Pz7e3t7GxsbS0tAAAAAwMDMfHx7u7u7Kysq2trQAAAAEBAZ+fn729vebm5uDg 4Li4uOnp6QAAAAAAAGpqar+/v8TExN7e3v39/a6urqmpqf///wAAADQ0NNTU1NfX1/f39/7+/s3N zfHx8erq6gAAAKysrAAAAAAAAIyMjLCwsAAAAAYGBra2try8vLOzs6+vrwAAAB0dHcrKygAAAEFB QQAAAAAAAHx8fAAAAAkJCaSkpMXFxQAAABYWFtPT056enp2dnY2NjQAAADk5OQAAAAAAAAEBAWlp aQAAAAQEBJaWlgAAABEREQAAAAAAAOhk4sgAAACIdFJOUwB8iVP9/Crz//8O0///AqL///9n/v// k52kQi/3////////////7BHk////////7wO1/////3X//////zv//////xDq////////AcH///// /////5X//////////5r/Bdn//yX2/////2H//5z/B8//IfD//1D7/////4j/wmi8/xzo/z78m7sL c8t7AAAACXBIWXMAAA7DAAAOwwHHb6hkAAABVklEQVQoU23R+VdBQRTA8dtOu1do8yjarGU8W2Up SsqL0aqiFGnTpqJ979/uMINz4vvT3M+ZH+45F6BUTW35Xa6uvuE/AUBjk0D43wCaW1rbKrm9o1PE VHJXt1jCCKXSnt5CfUT7B2SsnFEoBoeUKpVKOTxS0NGxcbVGyxbT6Q15nZg0irTIVIojbLZYOZPN TptChKdnHA4nErvchWQs4jgDwOycR+1FuvkFQT7fImH/0rI1gPiVYDCEMZaF88wbYHVtXY80G5tb wQjG7u3wDvm9a2QCNlcoKsAYY3uJY3v7ao0sThhriwwHhwlH8ihFXMDlubDg8ckpb3KloiSng7L/ 7Fws99njtARlSF9cRgI+hHw0ynB1fcN6AxkSn5FQhts7LqO9z3o82Vwul/U8UIbHJ4a3Cp+LvVBO v76JrZVHg/ePzyq3BPj6TlZjMFuqcuzntzz8AQWtX4Hvm31fAAAAAElFTkSuQmCC ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image010.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAABgAAAAcCAMAAABMOI/cAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAH4UExURQAAAAAAAAAAAAAAAAAAAAAAACoqKgAAAAAAAAAAAAAAACMjI9ra2gAAAAAA ABsbG7y8vNvb2wAAABISEri4uMvLywAAAAoKCpSUlMzMzMXFxQAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAYGBnl5ecDAwJGRkZKSkpOTk5WVlY2NjYaGhoiIiCAgIAAAAAAAAAEBAV5eXs3NzcLCwru7 u8bGxsfHx9LS0jc3NwAAAAAAAAICAkxMTMnJycTExLq6ure3t7m5ub+/vzg4OAAAADAwMMHBwbW1 tbGxsbKystPT0wAAAAAAABsbG7S0tMjIyL29vdDQ0K2trcrKyjIyMgAAAAAAABISEqioqL6+vt7e 3vj4+Kqqquzs7AAAAAQEBMPDw9nZ2f7+/qmpqfb29vPz88/PzwAAAOjo6Kurq+Li4v////T09AAA ABcXF7Ozs6+vr6ysrNXV1QAAAC0tLa6uruPj4/Ly8s7OzgAAAAAAAEZGRtjY2NTU1CsrKwAAAAAA AAUFBWhoaLa2tiMjIwAAAAAAAA8PD4yMjB4eHgAAABQUFKenpwAAACwsLNHR0QAAADs7Ozs7O0VF RQgICAAAAAMDA1paWgAAAAAAAAAAAAICAoKCggAAAAAAAAcHBwAAAA8PD5CQkAAAAAAAAAcHBwAA AAAAAOp+TKwAAACodFJOUwAEj3AFn//3AwJ3/f8BWfr//0Tu//8p4P////yxsKuhigoXx/////// //////89Ea3//////////0UHif//////////cvr//////zhT9f////////82MeX///////8i5f// //////+M//////9K/f////91/f////8Mov////8tE8X///8nJtb//0Hv/2P0/4T8///yC6f/7ktU zv/WLOtG+P+7dv6CNBZ8eYIAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHDSURBVChTY2CAA0YmZgQH CbCwsrFzoAsyMDBwcnHzYJPg5eMXEMQmISQsIopNh5i4hKSUoLSMrKysnLy8vLyCIkRcSVlFUlVK UE1dXV1DU0JLW0dXDyyub2BoZGxibGpqamZqamZmZmZuYQkSt7K2sbWzdxCBAUcnc2eQBIeLq5up gL27Bwh4eni4izh5OXszMDD4+Pr5B9ibBQZBgEOwvZNXSCgDQ1h4RHCko1RUtEcMCDjGBto7ebGF MsTF6xg5OSYkRiclJicnJ4ukpKbZO5mzhTKkG6a5Odr7C2ZkpCUnJ2dmZedAJXLzBExN8gsKY0Dq k5OLkkASIKN4i0sS7Bw9SzMhEkFl5RX2qiAJhsqqaiM3EY/STAgoqKmwd6qtq2dgYGhobJJ0avYo KAWBglIPY3un2pZWkM/b2juCI939/Pz88kHAT8SpthMswdvV3WMmYB8ZGRAQECAgICDgVgSRYODs 7YuUEjDt7w8MTAOBikSoBAPLhInBCWbNFiAwafLkydVTlCASDFOnTRc1i5lhCQYzZ82q54VKMCjN nlNROBfGQwbz5kfEYJVgWLBw0WJ0MTDgXbJ0GboYBHAuR049AC+7f3eVwFfoAAAAAElFTkSuQmCC ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image011.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAHkAAACFCAMAAABIdKcZAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAGVUExURQAAAAAAAAAAAAAAAAAAAAEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD AzExMX5+fpycnLq6usHBwaysrJubm2JiYhgYGAEBAQAAAAAAAAAAAAUFBVtbW9DQ0P////j4+KSk pCwsLAAAAAAAAAAAAAAAABwcHMDAwG9vbwUFBQAAAAAAADU1NeTk5I6OjgAAAAAAAN3d3YeHhwMD AwAAAAQEBE5OTgAAAAAAAE1NTdbW1gcHBwAAAAICAtXV1VxcXAAAACMjI7e3twAAAHZ2durq6gYG BgAAACUlJQAAAAEBAT4+PgAAAFNTUwAAAExMTAAAAAAAAAAAABcXFwAAAAAAAFlZWevr6wUFBQAA AB8fH/Hx8ZKSkgAAAJqami4uLgAAACoqKp2dnQEBAQEBARsbGwAAAAMDA5WVlTAwMAAAAAAAAAQE BN7e3jc3N0dHRxsbGwAAAAAAAAAAABAQEFpaWrGxsfLy8pGRkS0tLQEBAQAAAAAAAAwMDB4eHjw8 PBgYGAICAgAAAAAAAAAAAAAAAPMQQ2MAAACHdFJOUwAORoy5wc+7oWcfAQ966v//////////+NNV A03q////////sSEEfP///9wtAv///ytc///HEOr/ioj///EZ6v//Rf//hf//+BT/NMn/Sv9R/8E8 o/8kff//6yf///+m//9D///HuP8S3P//dyzj////+H4FdfH//////9URf//////yr1MTUGXF3+kA AAAJcEhZcwAADsMAAA7DAcdvqGQAAAG4SURBVHhe7dvZV1JxFMXxI6Zm4Igm4QQqooITkIo4Ztkk zqXlkANaDlGODQ5paX+3C0SWnvff9mV/Hve5a33Xve9XJCXDkvkgK9usnIe5j6w3wRRbXn5BYVGx 3ayS0sdljifOW11reUVlVTWEy11TW5cOe+q9DfoJc1yNTb5U2F/f3KLPRrVWtF2X270BfTMsGLIl wk87gJ/6mquzK1EOd+uDeZGeXhFPX7/eAQbCIoPP9Iow5LDK8xd6RRh++Upq3XqFeP1G3hbrEWIk Ktl2PUKMjrGMwzISy0gsI7GMxDISy0gsI7GMxDISy0gsI7GMxDISy0gsI7GMxDISy0gsI7GMxDIS y0gsI7GMxDISy0gsI7GMxDISy0gsI7GMxDISy0j3Vx4fk4kSPUI0T8pUqR4hpt/J+xk9Isx+cMrH uXk9AywsivhDn/QMsLQsItEV/Euvxjwi4lxr1AfTAuuTyX9EP3/Z0Cez5je3Uv8ib38N6qNJ8W9T iW+d1Bb6HtF3U1zund29m7BIxv7B4Y+f+iED4r9+H1nu/vZ9fBI7/TMyatT42fnffxfpL53mv/RF /5u17LuVvQKkFuTVK6jrTQAAAABJRU5ErkJggk== ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image012.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAI4AAACgCAMAAADthaR8AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAHdUExURQAAAAAAAAAAAAAAAAAAAAEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAcHB1dXV4yMjKysrMDAwMrKytDQ0Jubm2dnZyEhIQICAgAAAAAAAAAAAAAAABsbG4+Pj+Tk5P// //j4+M3NzVxcXAYGBgAAAAAAAAAAAAAAAAYGBnV1dfHx8dbW1i8vLwAAAAAAAAAAABAQELGxsVhY WAEBAQAAABgYGM/Pz2BgYAEBAQAAAAAAAAUFBVBQUAAAAAAAAHx8fOPj4xkZGQAAAAAAABkZGZSU lAAAAIqKihoaGgAAAAAAAAYGBnFxcQAAAAAAAEdHRwICAn5+fg4ODgAAAAAAAKqqqi4uLgAAALu7 u0RERAAAAFNTUwAAAExMTAAAALq6ujQ0NAAAAAAAAJycnB4eHgAAAAAAAG5ubuvr6wQEBAAAAAAA ACkpKaGhoQAAAAICAsfHx0NDQwAAAAAAAAUFBU1NTQAAAAAAAAQEBAEBAQoKChwcHAAAAEZGRqSk pAoKCgAAABISEpOTk93d3QMDAwAAAAEBASIiIoGBgcbGxurq6kJCQgAAAAAAAAAAAAEBAQ0NDSQk JD4+PlJSUjw8PBcXFwICAgEBAQAAAAAAAAAAAAAAAAAAAC7a0kcAAACfdFJOUwAOVoy5yc+7qXw3 AwI6r/j////////////jcg8isP/////////jawQBRfH/////ohBd8f//xhH///+/Bxrx/5O3///4 Mzn//7b//zgc+P+QTv/h//gVsf//yP//Sv9R/8H//zyr//8rff//6ww9//+u1P//bn/q/3pj1rDx +G3///hX////3D6x//////9+Mo7V////////+LdhLFBDNAJCw40AAAAJcEhZcwAADsMAAA7DAcdv qGQAAAJBSURBVHhe7dzZV4wBGMfxJ9E6KTVliWrepImQpdRIaSFFKiG0oGRfB9lDCyGyr/G3Om8z Y+Y85/hdvk8Xv8/l752L75l5z1w+Iv8kLUleuizFY6lp6RmZ8YYYX9by7JwVuXn+fE/5cwtWrlq9 plDVrF1XVFwSsOGUri/bUJ4QE6zYuKlSf8pLm7dsrYrXbNu+Q3/AY87O6ppYTsWuWv3Yc05daHek pn6P9Xfjchoag26Nb2+TfmSiuaXVzdm33/QtjmsLuX9AB9r1bsTpOChyqHORfDmBwOEuke4evZop PRKUxl69mnGOHpPjfXq1cyJLTp7So53+AUnJ16OdwSHm/B9zEOYgzEGYgzAHYQ7CHIQ5CHMQ5iDM QZiDMAdhDsIchDkIcxDmIMxBmIMwB2EOwhyEOQhzEOYgzEGYgzAHYQ7CHIQ5CHMQ5iDMQZiDMAdh DsIchDkIcxDmIMxBmIMwB2EOwhyEOQhzEOYgzEGYgzAHYQ7CHIQ5CHMQ5iDMQZiDMAdhDsIcxM3x 69HO6SE5c1aPdoZH5NyoHu2cvyAXL+nRzOUrV+Xadb2auXFTJPNWWM9Wbt8RkbuDejYSHnMvaFaN 5ekHNu7dX7jG+GB4UdzUG30YOS9a/ijH0c+8V/t4JHo6szBUZ94TfjK+cKrSVVP91OrmatSz5xO+ WI1IUvLklOELNN3w4mU8xj3n2Trz6vUbk59stu9t57vojdOEoLn3Hz5++vzFW/1fv33/8VNf7I3w 1f8amPfY7z+Jx3rlLxLe+g5ffVpQAAAAAElFTkSuQmCC ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image013.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAH4AAACcCAMAAACOce8zAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAHLUExURQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA8PD15eXpqamri4uMjIyM7Ozrq6uqioqIODgz8/PwQEBAAAAAAAAAAAAAEBATIyMq6urv///+Li 4mpqagYGBgAAAAAAAAAAAAYGBomJidra2jU1NQAAAAAAABgYGLy8vPf391RUVAAAAAAAAAAAAAYG BktLSwAAAAAAAAAAAJCQkOjo6CgoKAAAAAAAAKWlpQICAgAAAKysrDc3NwAAAAAAAB0dHY6OjgAA AAAAAGNjY+Hh4QMDAwAAAJOTkxsbGwAAAAEBAbKysjMzMwEBAQAAANDQ0FNTUwEBATw8PAAAAAAA AKKioisrKwAAAAAAAHt7ewwMDAAAADY2Nr29vQEBAQAAAAsLC25ubgAAAAAAAGhoaA8PDwAAAA0N DWtrawAAAAAAAPDw8KenpwUFBQAAAAAAAMTExAAAAAAAAAAAAK+vrwAAAAAAAAAAACkpKePj42Fh YQUFBQAAAAICApSUlNXV1fj4+La2tgcHBwAAAAAAAAAAAAAAAAMDAzQ0NFFRUUNDQy0tLQUFBQEB AQAAAAAAAAAAAAAAAAAAALA+4L0AAACZdFJOUwABLnyqv8jPsI1TFQNS2//////////////3nygp y///////94EEQvD///+uDv////+7Bifv/5YCwv///09W/9HR//9VHP//s3L//+in//8kuP//z1H/ /8f/San//zKY//8T///DDO//hJT/9x7v/493///hF63/Ow+8/2oNiv///+JD1P/////3oBhXpvH/ /////9yHKjxQSmET1r8AAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHeSURBVHhe7dzrO9NxGMfx+1eZ sHIYUikjk1Gt05JJzuRYbTU6KCk5TDmUUyEpRArR4c91bTZyP//e9wOf98PP/buu17X9AV+iaNah w0fibPHGsx1NSEyKobHsx44np6SmOdKNl5F5IuvkqdP79OwzZ3OccuXmnct37ekF5wv5F4ZzFxVf 2NUvXuJn43kuX7m6o1+7Lq87nR7vjZKwbr9Zyk8i+cpuhfnyMn4Q6naFi8iqrOK7UJ7qGqLaOg/f papvILrTyFexmprt1NLKV7na7tK9+3yUy19AAQcf5fI+oMBDPsoVBM9HucCDVwo8eKXAg1cKPHil wINXCjx4pcCDVwo8eKXAg1cKPHilwINXCjx4pcCDVwo8eKXAg1cKPHilwINXCjx4pcCDVwo8eKXA g1cKPHilwINXCjx4pcAfaL49g49ydTyix0/4KNfTTnr2nI9ydb2gxG4+ivXylUU9r318lqq3j4j6 B/gslC80SESDb9z8INPboch7O8P+EX6RaPTd+wjvGgsqvPoyHpqIPnY0ORXM5VfTfQh9jOpE0zOz o/xutE9zn2O/PZw1/8X/dYF/ZKjFpblvyyv/6eE/4Pvqj7qf3jXjrW/82tzK3o9H6vn956/5/k0k WXvmNqNCWCYAgd0xAAAAAElFTkSuQmCC ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image014.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAjgAAABpCAMAAAAA5qm/AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAMAUExURf///+Pj4/39/ff39/r6+t7e3tvb2+fn5+Tk5MvLy1paWvPz842NjS0tLfLy 8t/f39bW1uzs7L29vaOjo5aWlmdnZ2xsbL+/v83Nzba2tsfHx+np6fv7+0VFRf7+/kdHR/z8/Hh4 eMDAwDY2Nt3d3by8vEJCQl9fX1xcXJycnJSUlKqqqoeHh2NjY+bm5p6eng0NDcrKytLS0uvr63Jy cgsLC1BQUMPDw7GxsXp6eszMzMTExHBwcNHR0be3t7u7u/X19Q4ODtXV1SQkJJ+fn6ampurq6hoa GpmZmSMjIxQUFIaGhvT09CsrKxgYGGhoaB8fHxYWFoWFhURERPDw8IGBgVFRUfj4+CUlJdDQ0MLC wlhYWElJSXV1ddTU1ODg4KCgoG5ubmZmZllZWX5+fpiYmFZWVrW1tbm5uWVlZdzc3O/v7/b29r6+ vvn5+e7u7j09PTU1NcHBwdnZ2Tc3N7S0tDs7O2tra+3t7VtbW9jY2GFhYaWlpV1dXZOTkz4+Po+P j4ODgx0dHdfX1xsbG4iIiIKCgqGhoS4uLqenp0BAQK+vr0ZGRouLi+Xl5UpKSgcHB6urq7i4uBwc HDo6OkxMTDg4OCgoKKSkpDIyMlVVVVNTU4yMjBMTE6KiojAwMHx8fOLi4omJiZeXl3R0dJKSktra 2gAAAGJiYn19fQgICFJSUicnJ+Hh4RAQEJCQkLq6usjIyICAgKmpqaioqHZ2dq6urujo6EtLS2lp aaysrE5OTtPT02RkZBUVFRISEm9vb7CwsMnJyZWVlQUFBRERERcXF3l5eSkpKSIiIoSEhEFBQXFx cTMzMwwMDDk5OU9PTwkJCZqamgMDA8XFxQ8PD39/fyYmJgEBAR4eHsbGxk1NTYqKiiwsLFRUVAoK CrKysiAgIHt7e8/Pz/Hx8XNzcyoqKjw8PM7OzgQEBENDQ5GRkQICAo6Ojj8/P62trV5eXhkZGVdX V7OzszExMZubm52dnWBgYC8vL3d3d2pqakhISDQ0NAYGBm1tbSEhIVe4IwcAAAAJcEhZcwAADsMA AA7DAcdvqGQAAB29SURBVHhe7Z0LXE1Z+8d/7U6ik1LqUJ12O7cpKlS6oKSSKCIdZxLSjZzqZGKU XNPImIqIcTuDlJAoR+ReaoxxmcY1xv0ScknGrcH7mv9nnYpsIcb7vv7a30/tfdaz1nrW3rvf2Wvv dQvg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4Pg8UaJeDysrATyV JqpNXzdzcFTTTE1NjQ+oN9eoY9RsAS1toKWOrqBVHbOC1mp6+gZsI0fjQ2hIk51RHeEwxm0U+7bt Xtle0p7u8BXbxtEIUQjHxNRIAx1NOkFbx8zconMXw66Wna2su9nYmtpBw/6r7uhhYtIEyj2/coCj iYkQMDHpxXbE0bgQGtJOvZ31XDRc+7j1de/XX1/Hw3NAGwz0Aga1azHYW6jWo8kQn7YQDRV/7TvM TzicHiFS7jISA/3ZnjgaFUJDelQAqaoCg74aHBwymhkTSIQTqhAOxnpL+oWFR0h7RY77JqofhG2o NuMnBH47EQg2Y3viaFQIDWmdYCKc6BiAHzIJY0xeE05sPx84MZO/mfKN9gAKysxUk2m6naYzmBHH 9sTRqBAa0sNmxrt913NWAqxmK4TD+35O95fCcfohEX2aJiH5G6u+vSi9ufPo4MCmKfOhG8/2xNGY WJCamhrmnrpwEh+LUn/svjh1WGrqjGnf26amiiampi5JXdxVaWmqu9Oy1OWpMp+fuqxg5qXOm6mD 1FQ7ticOjreht5Jt4eB4P+FDVrFNHBwcHBwc/wW8mrAtCB3GtsDAyyutM9v4IaxWfj2sERcGpHt9 mzH3dfvHEWUP9ImFvzqrFGBNC7blnxC1GmiZiVgPKTum0TFr7RsqsezmzjYpr4PxeraxQSR3ydoA IHtC3W5UoUyx0w/Z+EMdaw1TNrWyc2Ib34Dn0qNOKCESjlnadQy15PTOZZs+DF63zXVCciVsyYqq Y2jEvCkcrH5DOFqL2JYGk6erGLLxmnBmbVXsjLfVsb0kKl+nAX+abdsz6oTGA9hRn3Bg9A+Fs3NX T+ZVaDeAPQ04ui8d2nnTpLXDYLe3SwQjTjLfQm70ylMLCt3hk917H1XUt7gZE13ws7Jk/8+/2OUc QPivBQedoPPTIU+2p7eTp0sxC/brTNBQTtrkLd1yWLfLMO2srCO+v8Evq+T3ZjMNmIyCozzxDwXH 3OjjBW2deIEFJ1rg5MxTrjy2qzpISzVOM6CLzqzpX0grD9z/Bw87tIVrliPqD4+z1NmCLIVONbqc 65BLRRV8V1e1H8b58Rf4wMkuffoLqJgBm9oKsSeKMbuIrn2Lm1HdCy75sDM0CsRBPiprh1kFSdNK Lm8LaXdAmZj6wM/dZ6pV2hVNa5XZuf7LGXMzWBnBwO8Ao9sawWrUeunVD7hcebpU7tFw2wkaxdfK BuVdX+ygPRZHtqLzr0DANp7OTIMp6rzRoXlDcCNRvye9fpr+L7h4HkfDrH5NZ7uqg4opb9c20KZn tlHbw10zPPdGYIe21rrliFNa4RhrD9ebnkDYBhWLC7lu6+HaPJztoIG060jvigDcs+x8Dkd2CtbK 3ow9UZFTL+KIyopQC2PszC5jZ2kMjAwkVdWWQArXSzd2m8ingY0zSVXl/MepU3+Un79VLKX5s1Ou EuHA9ID0NgBDoflaO9aAwXeRp0sd0CNVVYfep06pj0kS6xsR4TRpS4SD+JkGe0IBUFp7UrZ4dCQZ ws6niPSPipE+le2qDgldw+6cZrD7bgyMPJmwwDOOpKoyXY6KW6ulvY6dOrXUAojXJVWVbdapUzM/ 8hGcCvQN63iPwbVTwERVxmfd3Takqsq5iORbHaXOKadOHVRh52kMWCwjwllgw8PkYoeiO0YxgMUg Vax2zzwKWFm0T7wuT1MLtX4pnMMqwHahw5pdiWxPbydPl4pLJ8LZYwHo1yOcgC3AsG1Ddxtt0ZED 2uXj2hwRjVyoAbPqB6F6ibWpqKi4m1sjnCk74gfWCqdZZfSqNsHAeB8gcxkRzu7rQHkY20PDKL9f UeGRFVEjnDk9fS/UCqf9vozS+J5AEyt2nsaAtO2CorW/8+4lxv+ptW1s2Q4tABu2l83LGpbkUWan sq5VV3noaK1dGWKV22XiadbCnJ/LvDvCxEBnhbBMyHZWP+LOkzUiLl3bcmLsigdltg93duBr3w6v GJ3j8Junk+4Sp/Lv0lS+L3O4XBhdluUqzS7bmHP8cNmjA8zoCqV+b7YT1OI0uowBb/1QjWZn5vJv 5x/JadJ/m9j8srTjLl705jbB+Y9Olnk7AWHj1khO/FE2bneZGttDwxAXulHgCRZF6vd20pjQzjo9 9opj+H094eqjwnURzeQ+h1uV2TfKqgqWspYyJWhWyMKRGSWrfl2QySodyLYVbPt0zOebVvSp2CyT 3SmSyZrisWw+UJ4zm5eWU8n2VT9nZbJOsJM5TpHiuGyOlo5sd7rM0UDWYolsyTaZ7OEUWXvGTuYK f5ksVAbb33dQWjNkC2Sq+WtkSmxXr/CV3YlBpkxmOl82prPscZMK9ychZ2Uy546ydg5PirWIN8VA syYynZ3+UJHJPrKmKpLJfJBZIduSJ7Nzl/VpN+N4sXsvmUylo0yFXBs0lcnerm6O+mBabGGbPgFC USnbxPFlsdGUbfkUNFnNfYE5ODg4GjtDR7EtNQgBr5NsIxt6fvbLzwwNUAMz60bbVtUNvR8q3Ztt +lDIUSigL9iSnc/pevsDeJeasU11oJaps02voGpLwO0+ZKvxfcRr8R8JzROLxeLazgz60J2aD8Sy ZIBFdWhRvZ0onxU+DfqbM9avhCNvAux7vTnHq0FOXuE29J8Kh35ce+nPVn8jTvavVzh67xRO2qN3 CGdUbX+rkkxRVteBn0Y4YwxvH1q2q2bOo09SjXBU7wC89fmvJf0coIU0LaSEDEAJhWTDoDp8vIOQ ZmhGyNBCIYmjiV3xXVMEFFmFFBJPM0IKlJCiW3SJp6ujFJkokq+oioSEtCIBu+g3YYSPvYEa9w2D VqQWKg6blCj9TUwTDxT5oUALfbKjahKRby85WJpscKlZzYkIGfah0ULhA/VXmchpQigUglZcC+HS MgpCIUWRH1Js2V8RNYlopuZCKUqhSLsWySCkKYYSUopi34WHCPTPqxUlArPuKPzQITvImSi8MkIo LuWHXJ//GD1SuxafuppRhczAhNQWyk/lGzRz1opEQUI/l84PL1gc71bMlOZYeCUkJSu7Xr1Oqi63 gISbRQA8n40QFCLxpwRzL2aUvLDX46yeZU+Nn0/Bvp4ZQzOHllpNnkiE42ySMDxPnJOgW3csQv1Y 3k846i1ccX3SETE76q2YHZgUgkq1hAvXQmeqGw/OF7nI/eX2D2boL9V3fpSMJfbr90Yh2NhrLEms +5uZmi7f98CBZUQ4PHmCmiDMMsPsEKvlUn9sXHN1pJfuKSahEGPdOLRXS8i27X56/aG1mt4u61V0 rgZe3T0uTyVJgC3GwX9GoGKrwLwMXQ/uiWu+WRqXoBvUNKSt3AZA6RmYTfCMXhqsNim5qm7vfT14 iKB3VxtuWxMu9CLCEalNve8/qa2psvXW6EKnp99dH5DXf6SnfcLFEf+siZFmf1M+Bo2J5fmDnWOM 6HWJEI1aEUo9fWa51h/LwiuNgHMW+OEyhnnqmAI/WR5R2U1u7yEPqSU7SL07GsrjeiRmA0niA05F reZuaoJlbpVTDa6oYoOKayn6EOHQNnpQ6cd/Rjm+VzhOE6/B1NtgFqW634Ed9zaiLkAyNvI5kF4V flMFLicpI2bkM4q6oLFOH1OT6YU+/MVRjs8R9tcSAN3vA5uKekqctm/DpWa+O4C1K/JMqZYs4Rxt Bz/1uRuo+OYAWgzSMDBxGgIsGC48aovn+2DkpLSLolYaHMiDXED/K8ZpZYTvhHDl6Wbg3+uOPl5K k4HDOZ5XFL5OngAOe9qdhv89fhHx9w48zpyxEQI7F1A7zynPuoPTPfz/FfkwGi3V4Pb9gqhBaUD/ ka2MgX9/QP9ONYnBwfNfBqw83j+46b0Q4XznH7OUN5rcRcbel8uXWK6NgVGtcNpPku6DtR2wrGvE laHkyXfHJLmcHMSqEWDMOxHhLIvvlb09kwgnN8Fv0sZU4rdWOPzprRHziOnUL+gdzb7VuDUHTL01 h8jlHmnsuLdROZz0rxkB+UfDbwIuepQR49hWLp+hrBBOs0VS/uIos8lAEHloIcIxivi1UC4vwqVm nZ8CXnciLx6cX2d4DWGlFfzUI36Vy+XkL9+PPHHcAzSGC4+2w3NXGDk1uyGXe2gohNPaUOy0MmLK PcD+hUI4maOHjQXcgz2NFL5qhGPUIOGIIoeUA+qT5PLZvFl30F10XSEc6xFA0uyoG55EOHdmAetm s7O+DzpA/RPcZepSKxx6XUeITyY8BqJfEw6dFKKKQwGATWYFbbuOPAMngDeHjKTrD+GDdkQ4utJv hTuNiHDuaSTeN7jijCZzHWuEo2yYgPwN/AV0zmh20WzC/kXuOE03AFZn2XFvI+o0H5fdsv1R1POl cE6eBrT51kQ4/oo7juuEMkwnayIQ4SwdOe8s3DriUrMF8wCjh3kqtBFrLFFbcsdxeOQEMoqjxXf5 cNT4UR9lQS+FE98NsI1cTYSzUXHH6fWrKqpGKYSjba85ABC51ghn9wcJB9/e1YJpAuDoNOuOQarq RoVwkn8MVx5XXiOcvIvA8A9/Gi+sqN5PE2lCpRgYJVqiGNwUK3oiBor0TcvD7py3wM6Kkz6i9nNF jsJRwtXT8kWzKYSIRCxfCnrNvL66y5Mlf1bsnpCR4KC8TBQ3LHltn44u6tf6VrTMzgA8rAGLRdE7 HvMKRddJp4Lb1CMisuqJ51i/0hy0uG1tXkl5lwbOV/5tR9ffD9xf6mj3m2hGZPlE+fKZ5YErhzkb Whfq8e1FUxewi36Dyu9EFw+3SN8luhPDjnorBybJO6FypuhF/M4/PB4WBFDLS8tFD0SuUvehcX8N LQv4KnjwdY1oXXvF21r370VBd1DuJ/LeuO3nQ7wX5keCw/MKRU9Z48PcFyU032UxK1qkGP6j/kDk Cu0/Rc+atVl8JNTFT+h3tUjnoqhjeOWQhHsLra6bBP9Z6COaZL8V4N+LFi2XSOO2i7yskl10SG6D 7J6zBm0xd7FbNWjMqsGvqos3ob8dcvhbiJqXjlcrFO1LMxxe1PyFR98VzSZO85m85+odjRF72zN9 Lsk89wQWerwxjvq91Agnu3XUOd7NKyg2Z1aS3jolQ6eq+XA48438ybL4y1M36qQ9orc+pfcFJKwd kLk2iJck7pQUU+9YW4phGIaiGIYmvyRIMwwx0ootQJFXAUrxiSSoDtS+o5CWGxKl+EiRrAxDgeRT eCEbRXKaJqneiyK3IlODqT6ImnKqT4NWBMmxVG/pmkTkjlNzsIqzJR/I+b1R3MustadJKQ6tnhKo 10vg3+tK0ioCiounOKfq61D9wyqpLuSQqkut/a0u7pWRImVVX/APplo4ll/Hxf3N114M/dA735NO 37igOJupwDRj7F4cd+QXi0kVD2H8FA8DxNNj0O9bjG6xe9+CP0kF06ghVdV/ElJVfaYohCPrYSiV SmntxcDPknNEOF55UikPmDYDbc6RKKW1fWuFg2rhKPXWWdnYhWNx6+4/bV98N+fPDPpcFwkqLAUS Q1QLHGAXrr0Yz49jITnUfaP5GukK4eT/azxmKOkwD9pXBOHFwna1wpHnKP/d2IXTiBl74kRKyokm EA9OmUUPOPNi/q2Uwyn5AN0xxaUJIm7dao+RfVO2zJ2RMppSPZNS/Gzsmd4vzmQn3/13etbgDgVu bH8cHP955u5DVJ2F/pxnkBkmm+t74v6CKPMOMGz1zobssosJbFN9VC+/+Ra2kFlgbyfktSkkUdfq hj5nRqkqdozY+ZcXr6w7WlBAeP/oV5YPpEfd4eLaZGJbPfQ4duzYMTM8OLaYhDT/PvYhQm3JNnw4 uaV0+MJ3tvBTOg0RjqSQbalDcco7m4I7HPSH4t1ewYJbIa/Ffr5oLa0WDhSto7UIRyp25z9eOF4v 3QL8o5Z1o+pAGzKxe8/TyXfJlJlRxz5k+aYp7+kbeisayfHNEBaS7IuzQYbqul3U85Jj7ZKjhGuK 3JKT9RGrN7sX9iV3VaRtlZycALRMdiYBJXXL8n1rDGyTfZxyTia3AeKTkw0wfn7EvuVL86RN1Je8 pQHG6J3CwUF/iw6vQvb/H4QztcSwbNGZwS28uu7tvkUE+0k3//DNLXHVK1GHzn0wz/ZfjAZKSirQ fa+oYWPVY0pKxkOzxGHnvbvd+gRezR5ScrllyeUdZy69KFniMPgI9qwY3GpYyU+O2FmQo18tHCx6 IDRdtUEMBP/xXuGc7V0ypdlPusyg4ZVZP6+DWUlJPkJ7RseFDymZDZTM8mBnqAe1TJMR0I0aedpX fNxYQ/uXuQbDeeEuesL54rGOO7NiNx08/my9q8YFMg0m1EbjmwRU6ekPUAXEe7Rs3MM3+Yb9kKm2 Ntrta4zM0hiVJG3eYbRuZxMnel5+NOkxe4MSI6NE+Jb8oQgMjb+h8W3BYQ0krJzdPjuJP/E0EU6/ u3+PHFMy0BZIumIfAq2Skq2grUvmfEyTzn+DfX5MUubGmapdb6wL3T38Kuxvzk1chAfHscaMbzMa 0yqYqmj0C1VJ4sWVdW7Q0hXMEWy+63ZhrqwYi1Tjv7fJ23xjGzK2RV6wROkorH928tfJjuN/arFF oGwvXEU642lDxqJvHGUa9psv3Ctd3icc+mL+t3sx/yvmoRGuZmCfNXJvWAxtu62XR/ncXzVLh+WS 9Q7eR3RGud3I5j4ImISWpdD/s0y4p3340AxpK7qPlfddrfnLpfz+6uou5UB4tiWeJKgmqav3PQsI R6tHncUm3/AhmpJuSpTXcXkxcLNp5d/AnMlwf6A+lXStsQiftHvjwUTPDKy4oQxU/n1op0oG73xh O/OYofGtx/EtlxLhkDlnqe06PxUH6vHbhigHaXreTJZexdgGzkhqABuC4PYj2/jR8Jy2/xy7caYq qk4CU66Sqkp1QLVwcGc0ujiTqkrDcv89aXJv7wat8yH9pXeXtW2iS3LFWKSK+x7A68LBpMtAmWM3 c979gkpyWej+vbvd58E07I5h/mjm/cLxpFPXvhJOgB5w1FIvEBjUpfeJ2Z0uPW1Ix7DYI2tVBOmr 2l4jHIz5vdJgeJOTmNN75wmt+VXM3AIfHx8hYHVQFU8SNDdUhxAefcz1pXBgfP5FHyDIknT7zZmM VR19fPjsogClKlJV+Wb17nZiI6m1+JiW1fvY32GDTqswrwmnzO5SQP5QUlVpbQfK/Xhte0s+Wc9l 02lsyz+ix/PMB9XC2VwrnLmGqKoVzuCuOB+tfD+YuSfV3LlBl527PqRfAT5KbeYvM2aIcFYDbWuF M0shHJMxiDzq3sNcqDntMBkER6oqAKZhSgU72uP9wjF+0esW9GqFk+EObIjV2wEYacLT2cF5z9J3 PulWYz1+/NLYf4VKJ1cS4ZT/0rrMbaA6b1eVE5VEnVUIJ3z6HOiPB8QdkoUJw5vdtIXDSEB8NT/3 EQacjDzt7ZzSlRfUbkV2UyxX9BdXLrPoZePktJpdFDCXTC5NlEQDseTQnjvBNA7o4aM068bDFnWE o2XT2THAbQgRTswEYPMeqnXA9E/W3sh8unsXYepT/BVr8PfDa7XCWeqpvgYBY3HpWNqd0Tgwmbmf JVtrufme9IhDs3puw2/C3K9EjmTlsHZThTZN84hwjA4hq0TlUadWHa/GtP1ps8kY6P+Zn26ufA5b yKP4S+EgeZzG+4VDTRBuuYuzw8W6t4qLvzLr8Uusw+1wIpyKUiR2lSdTMxswCtPDa9NlerfL/jlU crespcxMPwaT59PpO0B57Z94d1DJv0PhdHh/EHlL9/xu/3ZjMf/K/klCQPzEsIszZpf8cc+3SYrh T7MhfNxl/2565q1ZiN2rSz3e9HUsuyiA/4Op1a2Z4ff8YUPO9LkTpG19yka0u4JV7mkX8itOROOg f9rpjSFfW6kHiM/twNeXVILuw+ahdCoKP3KNKJUkm8LhC/LPCX7qkedy9f5oq2tPBUlu6TcxShBn z078MWgKBNME+TreOwUCn6YCQVc8FoQA+QJBm9yyjBebpWYvVndCsaDj1mnO3oKGLRwSIxCEYme6 YCMcBQsCrmshTSBI9EXlqny3VQceb9ETCID1gtmC+c6Cp2RelUAg0AIeCwQbYYc1AsF7LhW9RLA6 wJWpEIwqRoygO4i/SIGgFcLPC5bANlfw3vH3nwZSVTUQZ4FxsQPGCwRkuHE6Of+igAwfq0zBemC2 4PFq6WpBCG/GIc9VgieCMfkCwWxb8AWCCDCXBY/f1Wv6DsRDPagxzbsOh7k8rF8ms3DNcCfsuuxr CD8llU8iHI6P5QOE87/AbwZ2F0hbJgwoRXZTXB/727Nnz2zbGWHBRBvyKsvxv4I37Zkr2/Y54TcD mw31epZ5KYSjlv77SBhsbmeEKZ5j/m5YzcHRKPEbXjxWf8HN9HHbDU6JDq2Ddof0NbEVNx5mVMjN 2Wk5OF7iZ2YRQ/PyLSItpNm+FmIg0sKNyrfQcoq0aFCryjtwT2ZbGsQwP7blCyJyYd2Q28q3rYcQ XjPA9/PFb8bLj9mf+L+s/vj25UWcAtmWV4ytZ7XZLwWrPWS77zn5TmpMw5RLr79cV6ktuzJ2V7LO X+MqRy7XfC3qc6Oy5LuajkKn27cms2P/GRVvF05OnR43Nu2rB/d/kQQpBoaunED6MwPtkd/3deGY Mi02QBwM48fAxhGvRX3pnB3Ys2qXKt9s3Y0IIhznyevOXQuXez0l6x5fO/fgpuqLX7XsXfJv/5ms fGjdvYqY4KSrupnW66oYR/Ots4gD46mTOyBtz7rtueJk3a1f2H/pdNhLtg8fXp0KnP3rr8f5fWP5 e0wmlJcdEFRVr+/VQtERRoQTbtKo3k1iUnLpIyMWrEHoUF5FKVzaYNRfBtOZJUQ4o+5ErrTc/atW 2u8w7YCz1vD892W9tvyY5fEY2uOpZ/x5ssp1HHXZEBdXIOLPyO3Uzi9MOK7Pyfa8tLybP/BUccdJ m84XdZZYC+Vs4QhN3jtx9YsiqwhPhudMr6oyE1aUzt2fCcsCGF/xIPVh2BzrAt+XwlljBpiPujYJ OLOsqupkq7ZJ5QAm6qG9Ef/rYWjaz8L74NWPXGbvc+XxOQD5fk86p6hTNcLBAu+lpnz7vmbVXaev hMPcb/Ccwi+CrCLIRK6FQIS0ojSyoBP0b1uNUbW+DuDQTtWlvkq1wpmjBizKJcIZpI+mlyOs9v0C 4MEatDeibqyG5JsYx/z1ZN7nF0To9+QUbTU1K++F1whHe4OPh6m/b9q56rFVr4TDu/i2N64vk7sB nYNgZXRodqVPkI1mrtHjEWcNhj42J+PTEp6lX5mR9vt5ef/zJwev0VhWen5HfsLvzuhhMirHQj1n FnnTan0v/VnfFb6GazzmR5oc3zGF7f7/N26DmtLpFzbTuDxQpJJ4Lzl0U+fc758sW6cdONtEcX/x N/ttpzLVavu61tBo0FCBL4esMZJIIFwiCedJJHyoSlRpIV9TQqKcJJqa/jw3iYUShJIYaEgk4Ekk YaBJIk8LiWJAt6okbS5gJVGimJpsXxJRM2gliRuNNIlEgyfhu0maUhLJXEmkk6S6X4ovkfgztKpE ooUtirW6Gg9ZZMkKjrdA6Rxnm+pHOKVx/ctJZsQZ8vzH8VYa2KxHkfXoOTg4ODj+N3iGQSm6AaN2 OThew65xNYhy/ENad+oUDn2lxH2phzSbLgA2d4oHqJOdbAGDTvQX1kLM8cmIX2h5YdSovTaBnRYu adLhBvwfFC1aGtVqa/lFM7hYXrjMTs/BoUDFQ3PeAdhsA4z0se0G+nigNBnfDEOvFLeBsyXVk6g5 ONiED30RdAAPztYKJ3Yy76sZ6NYd7VLSmnRY/M4VPDgaMWOewaRaOItsY7fdwNzAo1cBGzkcl2Je WWLPTzYRlePLwvfrR4t+mbrpNCBzyb2Z1cf54KNHSdDa9cg8H8s2nP5sV0zk+MwoygQy/0tTIjm+ IH7LBb5qyLIPHBx1sTKZN8+AbeTg4ODg4ODg4ODg4ODg4ODg4ODg4Pgv8H8WAIDKrKMgGQAAAABJ RU5ErkJggk== ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image015.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIMAeQDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2zWZ5 YYrZYXMbTXCRFwASoOc4zxninjT58DOqXf5R/wDxNV9e6af/ANfsf9a2MUdAKH9nz/8AQTu/yj/+ IpP7Pn/6Cd3+Uf8A8TWhSUXYGNa2tzNPeI2pXWIpgi4EfTYp/u+rGrQ0+fH/ACE7v8o//iKLD/j7 1H/r5H/opK0KbbAz/wCz5/8AoKXf5R//ABNH9nz/APQUu/yj/wDia0KKV2Bn/wBnz/8AQUu/yj/+ Jo/s+f8A6Cl3+Uf/AMTWhRRdgZ/9nz/9BS7/ACj/APiaX+z5/wDoJ3f5R/8AxFX6KLsDP/s+f/oK Xf5R/wDxNH9nz/8AQUu/yj/+JrQoouwM/wDs+f8A6Cl3+Uf/AMTQNPn/AOgnd/lH/wDE1oUUXYGf /Z8//QUu/wAo/wD4ml/s+f8A6Cd3+Uf/AMRV+ii7Azzp0/8A0FLv8o//AIij+z5/+gpd/lH/APE1 oUUXYGf/AGfP/wBBS7/KP/4mj7BN/wBBS7/KP/4irzdOKybL7TffaZGvJowtw8aqirgBTgdQTQrg WP7Pn/6Cd5+Uf/xFH9nzf9BO8/8AIf8A8TUVs63YlMGqXDiKQxPgJ8rDqPu0yeVIY1c6ncuDIsf7 tUbDEgDOF45Iz6U/mBY/s+b/AKCd3/5D/wDiaP7Pn/6Cd3+Uf/xNRW7JdQiaHV5ZIzkhlMZGAcH+ H2qRkClg2qzDaMnJj4H/AHzR8wF/s+b/AKCd5/5D/wDiaPsE+P8AkJ3n5R//ABNAhZk3jU7grjO4 eXj/ANBqlDf2095dWyaxOXtkR5SQgUB87fm24P3TR8wLv2Cf/oJ3f5R//EUfYJ/+gpd/lH/8TTSo UoG1WYF/u5MfzfT5eaqalqFtpKK97ql3GjYAZYQwySABkIcZJAov5gXP7Pmz/wAhS7/KP/4mnfYJ /wDoJ3n5R/8AxNZ/9pWoCs+qXkaFN++WJUAG4KMlkGCSeB3q5IpiiaRtTuNqgk48vsCT/D7UXAk+ wTf9BO8/KP8A+IpP7Pm/6Cd3/wCQ/wD4mobeSO6hgli1WcrPGJIwfLBKkZHG3NTJC0jFU1OdiOCB 5fH/AI7R8wD+z5v+gnd/lH/8RR/Z83/QTvPyj/8Aiaq39zHprRLc6leBpSQipEHLYGTwqHtRaXVv e2xuIdYmMauY2LBFKsP4SCuQfY0fMC1/Z83/AEE7z/yH/wDE0f2fN/0E7v8AKP8A+JpDGQ4Q6pMG bkKTHk/+O0ohYgH+05+Rkf6vkf8AfNHzAP7Pn/6Cd3+Uf/xFH9nzf9BO8/8AIf8A8TTQoYqF1WYl s7QDGc46/wANATcXxqkx2fewY/l+vy8UfMB39nzf9BO8/KP/AOIoFhP/ANBO7/KP/wCIoSFpE3pq U7Kf4h5ZH/oNEcLSjMepzuM4yvlnn/vmj5gBsJz/AMxO7/KP/wCJo/s+f/oKXf5R/wDxNNsXmXUr q2lneZUSN1LgAjO7I4A9K0qHdAZ/9nz/APQUu/yj/wDiaP7Pn/6Cl3+Uf/xNaFFK7Az/AOzp8/8A ITu/yj/+Jo/s+f8A6Cl3+Uf/AMTWhijFF2Bn/wBnz/8AQUu/yj/+Jo/s+f8A6Cl3+Uf/AMTWhiii 7Az/AOz5/wDoKXf5R/8AxNH9nz/9BS7/ACj/APia0KKLsDP/ALPn/wCgpd/lH/8AE0f2fP8A9BS7 /KP/AOJrQoouwKH9nz/9BO7/ACj/APiKP7Pn/wCgpd/lH/8AE1foouwKH9nz/wDQUu/yj/8AiaT+ z5/+gpd/lH/8TWhRRdgZ50+c/wDMTu/yj/8AiKhaK4tL2zH22aZJZSjLIFxjYzcYA7gVrVQvv+P3 T/8Aruf/AEW9NMC9RRRUgZGvdNP/AOv2P+tbFY+vdNP/AOv2P+tbFPoAUhpaQ0AUdP8A+PvUf+vg f+io6v1Q0/8A4+9R/wCvgf8AoqOr9NgFFFFIAooooAKM0VTvJZUeFIioeWTYGYZC/KT079KALlJm qflah/z9W3/gOf8A4uk8nUf+fq2/8B2/+LoAvZpM1S8nUf8An6tv/Adv/i6PK1H/AJ+rb/wHP/xd AF7NGao+TqP/AD9W3/gO3/xdHk6j/wA/Vt/4Dt/8XQBezSGqXk6j/wA/Vt/4Dt/8XR5Oo/8AP1bf +A7f/F0AXD0rN0b/AFN5/wBfc3/oRqYxajj/AI+rb/wHb/4uq+ghxb3QkIZvtcuSBgH5j2prZgZE OlatBHq1miQpHe3E8kd0sx3RCQYB27eSPrWfH4RvhBBtighkjmsy5WVSrJFKHYYWNe2cZyTk5rvc D0oxSA89h8KaxbWUsEMdmPM0+ax/1hAUs7MHwF54bp7da0Ljw3dMb2SOO2Z7nUEncMFy0SooC5ZS Ady56fqa7LA9KMD0oA42Lw9qA8FX2jySxR3ErzmJ0Y7QruzheAMDDbTgdvwqmnhi+/tubUzZ2KxP LBJ9iD5VwkUqEH5cZBdWHB+7XeOPlyOK46wvNZn+z3aS3DxfaZVuPNWJYlhVmHGBvyMDB596AKX/ AAiepRW0ZhS2+1fvCGdw0UQaZpAmxkOVUMACu08emK6fxFpkmqaObWEp5hngk+fphJUc/oprl5vG d1d25ijiEDyR29xFKm7lHnRCMMAcFW64HU8d6tP4zuftLxQWS3AaO5kh2Fh5nksOBkDJIzyOM4wS OaALniLw/dapJcvD5Lb7eFESQ4BZJd5zweo4quuhaqZ/LZbcQfbZ7vf5hLYkikULjGBguPwFTL4o uLu+to7G2iktrm5MEFw0hwwEJkZsAdAQV+oNVbfxpPcviCzim8y1kubciQoHCuijBYDOQ4OcDkY7 5oAitfCl/bp5LLbl2ntJlvA37yJYliDIMjkHy2A5xhzn3s6NpOoaDKXjtIDCsSxiISBmyXGSH2Bs AFjhiTnHTk1d0/xRHcqweCdpRK0REVvITGQqn94Co2H5h14PUE1j3XibU7vRtLvbcWsJvJrKRI1m LOElkAKONvAwcEjvkYoA6HWdHfVr3TpfPlhS3d2doZDG/KEDBH1rnl8IX8K2e2UTfZ5p2k8yUM9z vACyOXVgXAG08dM4x0q3eeLbm1jZBbwvcx/aC6KWI2xMBnpgA5HJPB6Z5wsHjI3AiRLVRcT+VPFE X+Y27xeYXPHUbXXHTIHrQBFF4YvLS4tHtY4gYxbq8kswlG1DyMMmcgZAKle2enNdfC+rNYw2Eott lvptxZiQStmRnaMhsbeBhD3J5rW8NeJbrW7iFZdPaGKa1FwsmCAMkfLyPm4PUccGupwPSgDjW8JE Xt3PCkEO/UIriBoxho41iVGA44yQ3A9aow+Eb0WNpbS21sPs1mLaQxTFTdOHibex28Y8snnOS5B4 zn0DApMUAcxFo+oP4U1DTZJYoJ7lJVheNQPLDDjdtABOc5IA/PmpvDujS6dPczzRLE0qRpsSRWXC 55wqKB1xnGSMZ6V0IAHag0AZ1r/yHb3/AK4w/wA3rRzWOqXTa9e+RLEg8mLO+Mtnl/RhVzytR/5+ rb/wHb/4umwLmaM1S8nUf+fq2/8AAdv/AIujydR/5+rb/wAB2/8Ai6QF3NGap+VqGP8Aj6tv/Ac/ /F0nk6h/z9W3/gO3/wAXRYC7mjNU/K1H/n6tv/Ac/wDxdJ5Oo/8AP1bf+A7f/F0AXc0ZFUvK1H/n 6tv/AAHP/wAXTZI9RVCRc2xI5A8hh/7NQBoUVHBJ5tvHJjG9Q2PqKkoAKKKKACiiigAqhff8fun/ APXc/wDot6v1Qvv+P7Tv+u5/9FvTQF6iiikBka900/8A6/Y/61sVj6900/8A6/Y/61sUdACkNLSG gCjp/wDx96j/ANfA/wDRUdX6oaf/AMfeo/8AXwP/AEVHV+mwCiiikAUUUUAFVLsf6VY/9dj/AOi3 q3VS7/4+rH/ruf8A0W9AFujFFFABijFFFABijFFFABijFFFADT0NZui/6q8/6+5v/QjWk3Q1k28O oWTXCRW8M0ckzSKzSlT8xzjG001sBr5ozWf5+p/8+EH/AIEH/wCJo8/U/wDnwg/8CD/8TSsBoZoz Wf5+p/8APhB/4EH/AOJo8/U/+fCD/wACD/8AE0WYF9uRio44IooTFHGqocnaBgcnJ/nVTz9T/wCf CD/wIP8A8TR5+p/8+EH/AIEH/wCJosA1NC0uL/V6baJ/uwqMcg+nqAfwp8Wj6fDcfaIrK2SbeX8x YwG3Hqc+vJ/Ok8/U/wDnwg/8CD/8TR5+p/8APhB/4EH/AOJosBLFp1pAsSRW0MaQktGqIAEJzkjH QnJ/M1Aug6Sudum2gBzn9yvfr2707z9T/wCfCD/wIP8A8TUNzqGo2sQkexhwXRBi47swUfw+pFFg LtrY2tlF5VrbxQxk7isahRn14qBNE0yIlorC2Qlw5KxKPmByD06g8ijz9T/58IP/AAIP/wATR5+p /wDPhB/4EH/4miwD5dJsJ2VprO3kZWLAtGCQT1P40Q6ZZ28kbw2kEbxR+VGyxgFE/ug9h7Uzz9T/ AOfCD/wIP/xNHn6n/wA+EH/gQf8A4miwElppllYSO9raQQM/3jFGFz+VXM1n+fqf/PhB/wCBB/8A iaPP1P8A58IP/Ag//E0WA0M0ZrP8/U/+fCD/AMCD/wDE0efqf/PhB/4EH/4mizA0M0E5rP8AP1P/ AJ8IP/Ag/wDxNHn6n/z4wf8AgSf/AImizAS2/wCQ9ff9cYf5vWlis6wguRe3N1coiGVUQIjbuFzz nA9a0abAMUYoopAGKMUUUAGKMUUUAGKZL/qz9KfTJP8AVn6UgIrH/jwt/wDrmv8AIVYqvY/8eFv/ ANcl/kKsUwCiiigAooooAKoX3/H9p3/Xc/8Aot6v1Qvv+P7Tv+u5/wDRb01uBeooopAZGvdNP/6/ Y/61sVj6900//r9j/rWxR0AKQ0tIaAKOn/8AH3qP/XwP/RUdX6oaf/x96j/18D/0VHV+mwCiiikA UUUUAFVLv/j6sf8Aruf/AEW9WzVS7/4+bH/rsf8A0W9AFuiiigAooooAKKKKACiiigAPvSZFI3Q1 k2gur43MhvZYVSd41SNUwApx3UnNG4GxxSZFUfsdx/0E7r/vmP8A+IqjfXEWnbPtWtXEZkJCLtjL OR1wAmT+VGgG5kUZFY9o6X1utxba1PJExKhh5fUcEfc65HSpjbTDrqlz+Ij/APiKNANLIoyKzTbS gAnVbjB6cR8/+O042kyrltUuQPUiMf8AstGgGhkUZFZF1/oUHn3GrXKRblXdtj6swUfwepFJETM5 RdXuRIAWKMsYYDJGcFM4yDzRZAbGRWL4lvY7HT4XkDkNcwgbFzyJFb+QNWPs8u0EapcYPfEf/wAT Ve8sllgP2rU5jFGVkYsIgEKkMCfl45Apq19QNlSMD6UuRWb9mmI41O59Okf/AMTR5En/AEFbjGcd I/8A4miwGlke1GR7VnG1nUZOp3OPcR//ABNQXR+xWk91cavcJDbxtLK22M7VAyTjZ6ClZAbGRRkV mRQySKrJqtydyhhxHyD3+5TJkeLaW1O7O5wg2pGcEnAzhOKNANbIoyKzRbTHONVuTjrgRcf+O0G2 lC7v7VuAPUiLH/oNGgGlkUcGqAs7gjP9p3X/AHzH/wDE0v2G4/6Cd1/3zH/8TRp3AvAjOB1pazLB pk1K6tpJmmWNEdWYAH5s5HAA/hrToAKKKKACiiigAoooouAUyT/Vt9KfVW/uUs7Ka4kDGONGdtoy cAZpdQHWP/Hhb/8AXNf5CrFZ+j3S3ek2c0asEeJSNwwcYrQpvcAoooouAUUUUAFUL7/j+07/AK7n /wBFvV+qF9/x/ad/13P/AKLemgL1FFFIDI17pp//AF+x/wBa2Kx9e6af/wBfsf8AWtijoAUhpaQ0 AUdP/wCPvUf+vgf+ikqxdXkNmgeZioJwMAkk+gA5PSq9h/x96j/18D/0UlR6l/yENK/6+T/6Kkp9 QF/tyz7i4/8AAaT/AOJo/tyy9Ln/AMBpP/iauXEiwxNIxwqgljjPArK07xFb6gkc4t7iG2lhM8c8 qqEKYBySCdvBzhsHr6UgLH9uWX/Tx/4DSf8AxNL/AG5Zelz/AOA0n/xNQt4h04vbCG4ScXE4gDRM GCsVZufQYU1PHrWlSxyyR6haskQBdhKuFB4BPsaAG/25Z+lx/wCA0n/xNZOrXrXd/p0lrc3MUUU2 6ZRbP8y7T/s/h+Jq1qHinT7FIJBIs0cwch45Ewu0gHOWHc4/nWgNVsFultZLyBbknHlGQbsnkDGe uKadncCMa3Z+lx/4DSf4Uv8Abdn6XP8A4DSf/E0zWNe0/RbaWa7uEUxQtN5QYb2VRk4BP4fWphq2 nG6+zfbLcXHTyvMG4HGcY9cc0gGf25Z+lz/4DSf/ABNJ/bll/wBPH/gNJ/hU1tqVlfqxs7qCbaAS Y3DYz0NUbfX4J7+KzMNxE0wkMTyoAJAnDHGcjrxkDPagCz/bll/08f8AgNJ/hT7fV7S4nWFGkDtn aHiZM8Z4yBmotH1q01r7W1ozOltOYGYqQGYAHK+owwwe/bI5p99xe6bj/n4b/wBFPR1A0aKKKAGn oazdE/1d5/19zf8AoRrSPQ1gwXo07StUvGICQ3E7tkE8Bj6U1swOgrn9Us7+LXLbVbK2juikEkEk TSbGAZlYMpPHVcEd+PSmS+L7GOUxAXDOJZoFPkEK8kaszID0zhGPocVU07xvb3WlWt1dwzQSSwxT TBImdIBIfk3Nj/8AUOTgHNICtqGi6nqFzFd3ek2VyDbzRfZBLhYXZgVfJGCcDkgZHbPNRJ4Lnkji N8sd5creWzvO7Hc8aQxpJ+bK+V755rWPjHTy4REupGa4ktU227nfJHu3heOQNjc9KLbxlpd3bG4i NwYzbpcoxt3HmIzbQV455/L6UAYB8JajFazwtY294jx3ENsrzBRabp5HRhkcDYyDjkbABW7r+lX1 9Z6dCscd5HFKGuFcJlsIQCA4K/eIJyOnTmpk8V6c8YaP7RI5eRPJjhZpAUwXO0DoMjnvuGM5FQy+ KwmuW1kIB9mmdIxO+9SGdNyjBTHPTrweOvFAFSz0LU18B22kXGxr2CaIlvMyrKk6vkHH9xayb3wd qkz3TwRwrLPDs87eAwAunlKHIPDowToQO4IrrtN8RWOp3EcMHnAzRNNC0kLIsqAgFlJ6jlfwIPQi mL4p0v8AtT+zvNfzRP8AZt2w7PNxnbn1x+GeOtAGDY+EphcWjTW5W1S9a4ltpZUZQPJKDCooUfNt bbz0z1rO/wCES1maGb7TY2jSXFlPDcDcgSSZmR0cALkjKnBYlgW7V2t5rtpYvdLMzBrYRswCEkiQ 7V2gdcsCOO9Zt/4zsrSK+CJK1zbW886RSIUEvk/fAJHrjnHPUZoApjR9X+0vFHYww2r6hFdhhMPk jWNFMYUdwVPtislvBOpL4V0vSore282LTWhllUoSlyUVd5LKcjjqoDcDn060+J7D7WICZgDM0Al8 lvLMiqWKhumcAj6jHXiqbeO9FW1juGknETwG6B8hsiEY/eEehzx64OM4NAC32h3Wq6boEF7Ej/Zb iOW8SRtwYCJ1P+98zD61h3Pg7UZ01VfKzPcJeBLjzUVZPNDhFbCbyAGUYLYG0Y9K6q28Q2N3qLWU LSSSK+wusZKZ2hwNw/2SOenbOeKbdeJrC0v5LOUzebE0SyMsLFE8wgJkjsSfwoA5pvDOsnWbe8WK JJIblXMyMgLReV5eB8u7IzkgnaccCltPC+pppmnWpsreC5tprNri7Wcs10YnBdyMc5AJy3zHJB9a 6W18TafeXsVtE0v76SSKGRoiI5HjzvCt0OMN9dpxnFPPiGz/ALUfT1EzTxusblYmKqzLuAJ7cd+n IoA40+C9UlsIbcW0MDx2a29zIs3N7J5sTeYcD0RzlucufqdO/wDDFysskNpZWzae96Z/s6hBhTAi AqGBUfMGJ475HNbEvizTIrSC5eRzHPbx3SERkkxuyqvA7kuvHvQPFWnmTyQl0bnzHi+ziBvMyqhm 49MMpz0+YetAFnwtZ3mneGrCyvyDc28Qich9wO3gEH0IxWua5W98d6ZaWE11CtzcpFbJckRwnG12 2rkngEnIx14PpVuPxbpkuoCy82QSmb7PloyAJcBthPrz+fHWgC9bf8h6+/64w/zetKsy1/5Dt9/1 xh/m9adNgFFFFIDO1AzNdWsEU7QiWQ7mQDOApOOQe9P+wTf9BG7/APIf/wARTbz/AJCWn/77/wDo BrQpgUPsEv8A0Ebv/wAh/wDxFH2CX/oJXf8A5D/+Irnde1y/tvE8GnW808cDWbTk29kbhywcDkAH AwanXxLdRJn7MZreCaC2nnkPlSl5AnIi28Y8xcgkd/Si7A2/sEv/AEErv/yH/wDEU2TTZJEKNf3L KRggiPkf98ViW/inULq3gmh0yP8AfrM8avc4+WIgEt8pxkngDPb3qOHxrI8lr5thsS7+yPCRMD+7 nZgC3HDDbyBkc9aV2Fzfi014o0jS/ulVQFAAj4A/4BTvsEv/AEErv/yH/wDEVz934rlgviQiCGKG 7DIWADyRSwop3Y4zvPAz17mls/F898y28Gn/AOmtcSQCOR2RPkRXLEsgYcOvG31PQZp3YHQfYJf+ gjd/+Q//AIik+wS/9BG7/wDIf/xFctfeKr2HXLSNcJamSCG4jC+YUaQgAblUqpyyclhkZwOhrV07 xJLeXlkklmI7e+WRraQS7mIT++u0bcjngnHQ0XYGp9gm7ajd5/7Z/wDxFQWMk6atdWck7TIkUUis 4AILFwRwBx8tavasm3/5Ge+/69YP/QpaOjA16oX3/H9p3/Xc/wDot6v1Qvv+P7Tv+u5/9FvQgL1F FFIDI17pp/8A1+x/1rYrH17pp/8A1+x/1rXJwM0dAFpDWXb+I9IuruS1g1C3eaOQQsquPvndhfc/ I3Hsa1O9AFGw/wCPvUf+vkf+ikqPUf8AkIaV/wBfR/8ARUlSWH/H3qP/AF8j/wBFJUeo/wDIQ0r/ AK+j/wCipKa+IOhenRniKq2xiCA2M49649/Bk1wZRLc2tukltNbyfYrcx+aZF25cbsHHUD1rs2BO MV59Jr+q2rLbi8hJa7vVeaUIvliNwI0O4gAlSWAPJA49aQGmfCUkxR7i5jEglR3aIPllWORMZZif +WhIqt/whk8WmpG11C09ssP2dwjnJidXAYFyMEqBgYx2qSPXtTe/s7aVrdUlWEzzIhdYZGQkxZzg ljgg9geeSucfTvFOqDRomkvovPi0tbpTLHlrqfLgxDkcjaoIHzfOOKBGtc+GdT1qyDXt5HbS3FtJ FNCiMBGXPUbX5IHHOc9eOlWB4TuXcpLfRfZ5b6C/lCxkP5kezhTnhSYx2zgkZplhr13L4kFlcyQh JHdUiiCsy4XOH+bchGDyQVP5V0kdzcNeTW7WTpCi5W4LqVc+gGcj8RQBj6/4eu9Se+NrdwxLfWP2 OXzYi+0AuQy4I/56Nn8PSq58Jzec8X2yP7G999vK+V8/mY6ZzjGQD06cVR0P+0p7y+uJoJ5oY9Tu VWU38i7UWRgAIgMEADpnmqdv4u1OeJtt1Z5mtVnieYKgU+YoZThjg7W6E8HGaAOm0HQp9HllL3Mb RNGkccESsETbnkbmOM56Djiqc3hW4vdRa4vNQUKY5ImktovLlmRsAB2yQcAdhWO/izU3+zxwyRKr JOWuZAgQupTagbfsPDE8HJx0GDjob+7U6DaS6lMbOWYJvEUxVPMKkhTIB8qk8buO30IMs6Dof9jT 6gy3UkyXMqyKr4+QLGiY4A/uflgdquX3/H7pv/Xw3/oqSszwZPNcaArXEjyOJ5lDuxbKiRgNrfxL jADHqADV7Vp0tptPmcOVW4OQiFj/AKp+w5oW4GrRWJZ+JbO9EhjivB5bbTm1k649ADirn9sWv9y7 /wDAOX/4mm01uBdPQ1h21hFqelapZTFhHPcTxuV64LEcUt34nsbSeKKSK8JlztxaSdsdsZPXtU2g SLNaXMqhgr3UpAZSp+8eoPI/Gmk0rgRyeGrOUQ7pJv3N3Ldr838ciyK3bpiRsfhVQeC7JbZbRLu6 W0MEMEsG5SsqxgBd2RkZAAOMZFdNTX+7UgY8HhqztzblHl/0e5nuUyR96YuWz7fvDiqDeBtNbTLS xWa4VLW3it42ypO2N1dcgjB5UZBGCOMVny+Jp4fFlvCrI9rd3p08KSRtKozFhls5DKVPygEEcnik 1jxJqel+J760jMDWyQWIjV1PyvPO8RcnP3VwCfw5FAFu48HGyhefSLuWK+MrOsj7QoD7BIMBTgER qRxwQMelTL4JsvtaXQu7rzFnjnViVZt6AL94ruIIHIJxyaoDxHq0uoS6dD9iaWKSdWuCrFG2RxON qhv+mm089R+FVrTxrfzwQvLFaI15Z2d3bYDHb57MNhyeSAvXKgn0oA6XTfDVvptxbSrdXEi2sDW1 tHIV2xRkrlRgAn7ijnPSo4fCWn2+sSajHw8k5uGQxIcyEYJ3Fdw6ZxnrzXPQeL728AtwbOCRY7x5 JpCdp8mRUAXDcEhs5ycY71W0zxlex6Zo7SNFPGy2FtcPJw5kmRCxyWHIEitwpzzyOcAHY33hyy1D VrLUpWlE1rnCo2FkGQQHHfDAMPQ1lv8AD7S5GJae55juIuNmdkww4J25Y9wSSf1zH4l167sbq4s7 aW2hEemzXhkmJyxU4Crg8dc557cGqmn+KtVubuKKOzR4I5YIH3uodt8aMXyXHTfnG05C8HmgDdPh a1acE3Nx5AuGuhbgqEErA5bpnqxbGcZ5qrJ4E0xkswryK1rZpYh2RJC0SfdB3KQD15GOpqj4w12+ sotXtbSe2tzbaQ12JJSd7sd6gJg8EbBzzyy8c0sfijUpdYuI4rASWsN2bUplQ5AXO4EuMnnONv3R 1oA2D4WtTrFvqJnl327b40CoMHYUwWA3FcE8E4zip7jQLW4kvHd5M3bRNIARgeWQVx+XNc/D4hvb i306eaWyb7W0EixW8jK8SuTwwzyO2eBnIxVJvE+oXGltb3UsVtfTrAYxACQA7EHa4Yq3Q4OV7HjI NAHTWfhe1s7m3kFxO8VrLJNbwMV2xO+7cRgZPDsBknANLeeGba91WO/luJt0ciyqqhRhh0G7G7b1 yucHJ9a5jTPFN+8cNktxbidEvHe6uzuVvKkCgfKw5wwPU4A711ug6umr6JZXhTyZrm1iuHgLZaLe oOCP89KAMS58DpHYQw2t7O8kUcFtEZWAEcMc0b4GF+9hOp61oL4UgFwt6t9dC/8AMeQ3XybjvREK 427cYjTt/DWCfGGqW2kDUp7e2kjltrmVI4wwKNG6qMkk/KQcngYxXQ6Jql1c6xqGm3XkytaJE4uI AQjbw3ynJPzDbnr0ZaAIm8Gaa2kXOmb5xBPBHAxDDcBGSVIOOuWJNLa+DtPtdTa+Vi0jTGd90UeW kIwW3bdwz1wDjNdHSGgDNtRjXb4f9MYf5vWnWKLyK11688xZjuhix5cLyd3/ALoOKt/2xa/3Lz/w Dm/+JpyBF+iqH9sWv9y8/wDAOb/4moptctYomcx3mFBJ/wBElH/stICW8/5CWn/77/8AoBp+o6lb aVZT3l5J5dvBG0sjYJwoGScDk8elZVtrFvq91p8luk6jc3+thZP4D0JGD+FZHi3w1f6tPqjQW9vc i8077LAZ5Nv2Z/nyw4P3t46Y+7TasB1a29o1+LwKhuvK8sPn5ghIOPpnFQS6Vplxdi+a3jknVlO8 c5I+6SOhI7E9K5Wfw5rEmuw3with5d27yOsgQyQtGyKvC7sjKk5PbjtWn4W0W70iW4SW3jhtTFGk S71eQld2SzKq5HI5IJ65pAWFv/D0F1FZq8CtEXiUhTsVnPzJu+6GJ7ZzmrFzpWiJZstxFAsEEKIx Jx5cceSvOcjbkkelZ+m2GsaZax6XHaWsttHKxW6ebrGX3cptyWwfXGec1g3ng/V75rotFaxvPbXc ErBgFkaTlGwFzgED7xJGT+II6/8AsLRXhEH2SAoysAvszKzEfVkU59VBqte+GNKurSe3hAt5JG3G aMnergY3Zz97BwT3zzmsmDw1erq5uZbeMRvNDMjJMoNsqKgMYOzOMoeAQCGPTnPPWWjXt89vp8EA S4tdOngubplkj+0yF4uXJUffCP6nk/iAd9/wj+hsN5s7c52crwMpjaRjgEbRg9eKkstO0q3u/tlv bLFM5cAsCDkt820HpkjPHXg1zS+ErqfWba6ls7W3sVvhO9krblCiB0zjGMl2U4x/DnrVfVvCmt3t pPBELbeYXFtMHCtDIZHfJJUnkFPukcg0AehCRSdoYbu4zzWXb/8AIzX3/XrB/wChS1jWGjahB4mS +FtDFC0kjzMziRmDDgKdoYHOMgkjg47Y2bf/AJGa+/69YP8A0KWn0YzXqhff8f2nf9dz/wCi3q/V C+/4/tO/67n/ANFvQtwL1FFFIDI17pp//X7H/WtV/uHFZWvdNP8A+v2P+tTa5Jcx6TK9mkj3AKbE jkRGb5hwC42jP/6ucUdAPMNJksW8U27wfbJLVLtEaFrtCsMvmzeWu0LubHzuVz8oYZzivYK8u0zU bhfFNtBcS3EUj3WXga/snwxz1RF3k9uucZ5r1GhgUbD/AI+9R/6+R/6KSo9R/wCQhpX/AF9H/wBF SVJYf8feo/8AXyP/AEUlR6j/AMhDSv8Ar6P/AKKkpr4g6GnTTGrdRn607NGaQDdijn0rH1vXtP0O CR7h/wB4sLzCNVJJVRnkjoO2TgZNbJPBrnNb8OTandXE1teLAbuzNlOHh8zKZYgryMEbm65z+FAF q31/TJZoLbzwk8yriMqcZK7gu7GN2OcZz7VHfa69vrJ0u106a7mW3FwxR0UKpYr/ABEZ5U1m/wDC HTC9guDqJdYLiO4jDxFmBVQpXJbhcbjgAcnqe97UfClhq+qTXt/BFcJJZi1EUkYJX5mO4N1B+btQ BBH4utbhrNLO1lmku4nlRGZIyNjbWGWOCc9h9fetHT9WhvNTew+zyxSpax3TCRQCA7OoB9xsNZ0v hu8fTrazW7s5YoY/KZLqwWRGA6MACMNjAPb2FR2Hha+0m7iuLDU48izitH+0W5kLBGdgRhhj759e AKAOrMaE5IFHlr6ChM7RuPPenZoAaFA6VQvwDeaaD0+0n/0VJWhVC/8A+P3Tf+vhv/RUlC3AvbR6 U7A9KKKAIyoyT3rP0T/VXn/X3N/6Ea0j0NZuif6u8/6/Jv8A0I01swNMsF600srDk8VHdrI9u4iO JSjBG9Djg1wlvp2rCysxJaasDGLc3yNe5MzAPv2Yb+8VLdAwGMUgO1Onae1w1wbS3MzMrNIY13Er 0JPXI4xTpLSxuJWklt4ZH2GMsyAnaeqn29q4mLQtZuJJPON+lv8AZr3yI/tjBkZpAYQxDZJC7sc8 Zx2plxpOuiMmNLgSPeQz3DBy3mJ9nCMAA69JRkgEcetAHcw2VlbxxxwW8MUaAhFRAoUHqBimNYad PEY2tbeSPaIypjUjap4XHoD27VxY0rxAltZKsl7KiBzdgzbGljM25Y1+Y4YL/Fu+78uSTlXxaXqF vcKJrO/kshc30kiQXBBdpJA0T/eBIC7hjjBOcd6AOwOl6Y4G6xtmCuHGYl4YAAHp1wAKiistHui7 pa2cpQeQzCNTgKfuHjsR07VjT2ernwvpEE3nS3ETQG+SKTEkigfOAwIyc4J55APrXNzaH4iXTriC ztriBppb2SE+eSytI4Me7Ei4OOdx3YwfxAPRriysrlo2uLeGVozlDIgYqfbPSk/s6w+0Jc/ZIPPR diy+WNyj0BxkD2rntRttUuPDelqPtaXqeW1x5YBJYIdwcBl3KT2DdcHtWTDbeJYYLxPslyDcabDD bqtzkRSLJLuJLMSpKtGepPGM8UAdrc2Wn3JWW6treUx5w0qBtnHPJ6cU77DZfbBd/ZoftQG3ztg3 gfXrXC6ro2uXS6xbRRXcyXEF0qGWYrtZgdgBD7WGcADaCo6nrmUaVr8niFpfNuorb7VDJBjJCwKq 7kb95gZIcEbSTnOTxgA7JLDTbXzJEtbeLc3mOyxquWH8R9T7mozo2kpFLEum2gjmIMqCBdrnqNwx zXE33hzXJdEjiH2uWaXS50ule5J3Tb4jGOuM4EgyO3Bq2tprw8QQ3KWtzHareAsnmEgwGPaOTJjr yV28HnPqAdS1postmkptrF7eQpIjGNCjEgBWHboQAafbjT2vZ57Z4muZFUSsjgkqpZQDz2O4fXNc Ppuja9bWGmW8FvfWxgsoIrpZLnKvIs0R+T5iMBFlHbggVNcaNryXU21Lk2Rmjd4oZtpdftc7vjnq UaMnpkcdqAO4hWymUiMQsIi0ZC4IQ/xL7e4pqR6dpNuBFHb2kJcKAihFLsQoGBgZJIFcC+j+IBDJ FDa3USSy3UkbG4LMpYoIw2JBjjPJLYxinvpOt31vALy0vJLr7bp84czfIkcZiMoI3YzuWQ9Ocg0A ejLIp7g84pxrh/C2l67b6rFLqk07GNJRMTko7FwVIzIe3TCjAJHHSu4NAGbbAf29fcf8sYf5vWlg VnW3/Ievv+uMP83rSpyBCbRSFdwwRxTqKQGddjGp6f8A77/+gGtDAPWqF5/yE9P/AN9//QDWgKAO L8T+IL+2t9TjsVSL7F5G+Vj826Rh90YwRj19farmmeI7m/1b7P8AYWFqbiaAS/N8pjLDJJGCCVPQ 8ZFbFxomm3kolurG2nlACh5IgxwDkDmnRaRYQXZu47OBLg5JlEYDEnqc+9AGObu9v9e1OzW9+xxW axiNVVSz7l3bzuB+XORjjlTzVb/hJLuK3eRVtbuG18hJ5kfb5zSBfmjUZ4+YYyeeg6V0F7o2najI sl5ZW9w6jAaWMMQPTnt7Uj6Jpsk8c72NsZY9oRzEMrt+7j0x29KAOXufFt+mlvdrZwKr/bEgzIWO +Dfywx0Pln9KtyeJrwaxJZpp5kWCaKCZkLEbnCncDtxgBx1OTj1rof7LsTEsf2WDYpchTGMAtncc e+Tn1yaiXQtLWeOYafaiWIKEfylyoXpg47dqAObuPFt3JbXS2ltAs1rNDDKXlyrM84jO3A5XGeex yOoNXrXxFczXlvvtoltJ76axXEh8wPHvyxGMYJjb3wQa120XTZIvKextmj2eWFMQxtyDj6ZAOPUC lTRtOiu/tcdlbpc5J81YwG5GDz9OKALij5fWsu3/AORnvh/06wf+hS1rAYGKybf/AJGe+/69YP8A 0KSmtmBr1Qvv+P7Tv+u5/wDRb1fqhff8f2nf9dz/AOi3oW4F6iiikBka900//r9j/rV+/s7e/sZb a5jEkTgZU8cg5BB7EEAg9iKoa900/wD6/Y/61rP9w0dAPJtG0sXHiazvLCzu4rOG8kV5ZDbhnKyS cnkOBl2HTLDGelet149ZWWoQeNrJptKtoPNuzI3kabhlUPICTLk44VDk43B+OlewGhiRRsP+PvUf +vgf+ikqLVdyXFjOI3dIZ97hFyQCjrnA68sKl0//AI+9R/6+B/6Kjq8QDT2dxmd/bFv/AM8bz/wF k/wo/tm3/wCeF5/4Cyf4Vo4HpRgelLTsBnf2zb/88Lz/AMBX/wAKP7Zt/wDnhef+Asn+FaOB6UYH pRp2Azv7Zt/+eN5/4Cyf4U1tctUZVaK7Bc4UG2fk4J9PY1p4HpVO8A+12H/Xc/8Aot6NOwEX9sW/ /PG8/wDAWT/Cj+2bf/nhef8AgLJ/hWjgelGB6UadgM7+2bf/AJ4Xn/gK/wDhR/bNv/zwvP8AwFf/ AArRwPSjA9KNOwGd/bFuf+WN5/4Cyf4VC10L6/sRDDcARSs7tJEyADy3HcepFa+B6UADNGgC0UUU ANPQ1m6J/q7z/r8m/wDQjWke9Zui/wCqvP8Ar8m/9CNNbMDUpMClopAJgUYHpS0UAJgelQ3VzBZ2 8txcSJHFEpd3c4CgdzU9UNZ0uPWdIutPldkS4jKF16r6GgCmfFGkeUJDdquZPJCMjBy+0sF24zkg EjjkCmp4t0N4WmF/EIljEm85AKlguQSOcMwB9CQDVGDwjsvLO8nuYGuLe7FwWhtvLDgRPGFOWY/8 tCc5/KqGs+DJ5dHs4bW433FqhiQ7AoO+4hlZu+MCLpznNAHQDxRo5QMLtdxl8kRlWDl8btu3Gc7e enTmgeJ9HPmn7bEFiVmLnIVlU4JU9GAJxxnk1mWvhBk1pNYub5Zbw3X2iQrFsRsQGEKFLHbgHOcn J+tQWPgVLGyazS4tngit3t7XzLQOyK3ZyWIcYAHAXPfJ5oA3H8SaZHai4aZthcoF8pt2QMn5cZ6c 9Kjk8TaWAgiu4pXkSORQrcFHICtnoAc8evasgeC7rylVtX3DzHZoTExhCsqjCKXJUjaSCSwyzcdg mneB/sOmfYvtwf8Ac2cIcQY+W3bcvGecjg/mPSgDVvvFWm2VtfyCQySWcEs7xKCC4jHzBSeCQeOO lK/iER6hHby2FzHDJP5CTvtCs+M8LndjrzjHHpzWFc+AJrpZxJq+4yx3UJd4NzmOYNkFt3JUlcEY GFxjnI6hdMDax9vdlbZCI4lKZMZySzA57jAxjt+QBoqAVBx2pcD0pQMACigBMD0owPSlooATA9KD S0hoAzrb/kPX3/XGH+b1pVm23/Ievv8ArjD/ADetKnIEFFFFIDN1BZhdWs8UJm8p23IrAHBUjucd cU4X1z/0DLn/AL7j/wDiq0MUUAUPt1z/ANAy5/77j/8AiqPt1z/0DLn/AL7j/wDiqv0U9OwFD7dc /wDQMuP++4//AIqkN/cjrptzj/fj/wDiq0Ka/wB00rrsBQTUbiSNXXTbkqwBB3R9P++qd9uuf+gZ c/8Afcf/AMVVmz/48oP+ua/yqanp2Aofbrn/AKBlx/33H/8AFUfbrn/oGXP/AH3H/wDFVfoo07AU Pt1z/wBAy5/77j/+KqvZRTvq11eSwNCkkMcaqzAnKliTwT/e/SteikAVQvv+P7Tv+u5/9FvV+qF9 /wAf2nf9dz/6LemtwL1FFFIDI17pp/8A1+x/1q7qMlzDYySWtutxKuCIi+zcMjOD64zjPGccjrVL Xumn/wDX7H/Wreq30emaReX8qs0dtC8zKvUhQSQPyo6Aee6T4pmufGsqvZKby4kjtGjWGUGOFHny WJ+XIO1s8Ah8dhXpxrzzwdFfS393DPf6pZvZzCWTT52ikXbLlwAwGcdeM8YxXoZoEijp/wDx96j/ ANfA/wDRUdX6oWH/AB9aj/18D/0VHS395LbPbRworyTy+Wu7gD5SxJP0U03uMvUVQMuorjK2oz6u 3+FHm6gei2v/AH23+FKwF+iqPmal/ctf++2/wpPN1H+5af8Afbf4UWAvE4rO1C5hhvNOWWVEJnOA zAZ/dsOPzFPL6if4LX/vtv8ACqF7p02o3NpPPDau9pL5ifOeuO/H0P4U0tdQN0HNLWeJNQH8Fr/3 23+FL5uo/wBy1/77b/CkBfoqh5uof3bT/vtv8KBLqJGQtoR672/wp2Av0VQ8zUf7lr/323+FN+13 kV3bRXEUOydygMbHKkKW7j/ZNKwGjRRRQAhGRVBNNaKSVoLuWJZHMhQBSMnrjIrQooApfZLn/oIT /wDfKf8AxNH2S5/6CE3/AHwn/wATV2ijUCl9kuf+ghN/3wn/AMTR9kuf+ghN/wB8J/8AE1doo1Ap fZLn/oITf98J/wDE0fZLn/oITf8AfCf/ABNXaKNQKX2S5/6CE3/fCf8AxNIbO5P/ADEJv++E/wDi avUUagUfslyBj+0Jv++E/wDiaq6gt5a2yyJfyljNEnKJ0aRVP8PoTWxWdrP/AB5J/wBfNv8A+jko TAk+yXP/AEEJv++E/wDiaPslz/0EJv8AvhP/AImrgpaNQKX2S5/6CE3/AHwn/wATR9kuf+ghN/3w n/xNXaKNQKX2S5/6CE3/AHwn/wATR9kuf+ghN/3wn/xNXaKNQKX2S5/6CE3/AHwn/wATR9kuf+gh N/3wn/xNXaKNQKX2S5/6CE3/AHwn/wATR9kue+oTf98J/wDE1doo1Ap2ln9nnlmMskkkoAZnx0HQ AAAdz+dXKKKACiiigAoqrfXMlrbl40DuXRFBOBlmC8n8aiEmp45jtv8Avpv8KAL9FUd+pf8APO2/ 77b/AApBJqJONlrn/fb/AAoAv1DNKkUTPIwVVGSScACqxl1ADJW1A/32/wAKr3Ud5eWktvKlq0Ui tGwDt0Iwe1FrsC9YTRy2Fu0bh1Ma4ZTkHirNZFjbXmn2UFrBFaiOFAi/O3QD6VY83UM42WufTe3+ FOwF+iqHmaj/AM87X/vtv8KPM1H+5a/99t/hRYC/RVHfqX/PO2/76b/Co4765TUI7S4jQGSNpFaM k/dKgg5H+0KQGlVC+/4/tO/67n/0W9Xx0qhff8f2nf8AXc/+i3prcC9RRRSAyNe6af8A9fsf9a0L 2yg1Gxns7lN9vPGY5EyRuUjBHHtWfr3TT/8Ar9j/AK1sUdAObsfAugabfJe2tpJHcKwYP9okOSOm QWIPU9a6M0tIaAKFh/x9aj/18j/0UlM1L/kIaUP+no/+ipKksP8Aj71H/r5H/opKj1H/AJCOlf8A X0f/AEVJTXxB0LGo2lveWrRXMKTJ94I65GfpXnGmwapp2jaTFFBPaCXS1MjxwMXa5A58wBGPGRw2 M5bnivUsZpMA9hSA4iabW5dTkt3NyLExsnmpDtY3Hl9BkZEXUhiPvcZx1pw3uorZwBJdWW4WC3Fr GbdtrnjeJSV45yDuIwACOtdpqmpW2lRRSTq582VYUEabiWbgDAqifFNgQAkdy8o80vEsRLR+WQHy PYkfXPGaAMzQrzUJPEE1vdNeTRkTN5jwtGiYcbVwUAzt6FWOQCcVWgTVZvEdzamS5tLJp7ljJDCB uwluIzu2nPJkwe+0+nHSX+s29toJ1WH99EY1eFVODKWxsUemSQPxqjB4mjkSwBtX+0XVxJbPGhDC GRAxYE8ZHy9fTmgDCs9S1v7Tpz3H22SWeG33wCFo1jZoxvLHYVI3ZJ+ZSOg969td+I5tLZvtF5He mOH7QrW7ZSUyoGKZQDAXzBgFhjB9z0Vl4us5LLTpLpHikvIrdsBflVpQNoyeTycZArS0/W7PU5XS 2WUqpYbynykq20jPY57HBoA5eWS/tdYuYpjfpp/2rZ59vbbpHxbxbdxVSSpbflsdQBkdKzdMl1my 0W2t2XUYLiOwh+xQpbHY8xLBllO0hRnaDkjAOR7dhZa/Fe6o1qsMkey5kt/3i/fZEycfn3reKg9Q KAOQ0a71A+Ipra4e7niZpjvaFo441D/IpBTB44BDHOM49N69/wCPvTP+vhv/AEVJWgVHoKoX3/H5 pv8A18N/6KkoW4GjRRRQAhOBVeS/tYX2S3EMbejuAf1qc9DWNpVpbzi9klt4pHN3KCzoCeGwKFqB of2nY/8AP5b/APf1f8aP7Tsf+fy3/wC/q/40f2dZ/wDPnB/37FUNQFpZS2aDT4XNzcCD7ijblWbP T/Z/WnoBf/tOx/5/Lf8A7+r/AI0f2nY/8/lv/wB/V/xrn7rWNKsdWlsbjT03CSGKIxxBzI8iuwGM ccRnmkfW9DAVzbIEIK+X9n/eeYJRFsxjruOKNAOh/tOx/wCfy3/7+r/jR/adj/z+W/8A39X/ABrm odd00PffaNM2Lb3Zt1H2cZOIkkJbPA+8R15xxSXXiLRRaieyskuEZLd94gwirMwCZOOpBz7cZ60a AdN/adj/AM/lv/39X/Gj+07H/n8tv+/q/wCNYVnrXh691BbKKKEyPJJFGTEAHePO4D6bW7c7TjNR avq+m2BeODTklkiure2lbyQEUyugxn1CuD+I9aNAOi/tOx/5/Lb/AL+r/jWJ4kv99jD9gurRn+0R Fgzg8Bwc8HscE+2aXTtY0DUrxbW3iiZ3L7CYQA+w4bH+eQMjNNutZ0Gzmu4pbQA2syQSN9nG0yOF KqD3JDg+wzmhNJ3A2xqdljm8ts/9dVpf7Tsf+fy3/wC/q/41grrugyBRFaeZIRIzRpbhmRUwGJx2 +ZfrnioYtf0ORI5lt4njnZRAqwAMwaJZRnOB91s0aAdJ/adj/wA/lv8A9/V/xo/tOx/5/Lf/AL+r /jXOvrujx3E0T6bIBG0UYP2YfM8gyqgdc4Iq1FqWjzXKwpY8NM8CyG3ARpFBLKD6/KR7kUaAbH9p 2P8Az+W//f1f8aP7Tsf+fy3/AO/q/wCNUp7VDZrPa6dbM5UNsmAjwMZ5wDz7Vzln4q0o6da3uoaf bW63Nml6sceJGSJhnLZUY/DOcGjQDsP7Tsf+fy2/7+rR/adj/wA/lv8A9/V/xrAfXdBW5ECWTSFp /s6MlqCrSGPzAoP+7znpRNr/AIft4Ip5bTZEyb2drYAIAxU59wQcgZxjPSjQDf8A7Tsf+fy2/wC/ q/40f2pY/wDP5bf9/V/xoGn2RGRaQf8Afsf4Uv8AZ9mP+XSD/v2KWgEsNxFcDdFIjr/eRgRUtZVh FHBrd+kUaxqYoWKqMDPzjP6D8q1abQBRRRSAo6p/x7J/18Q/+jFq6O9UtT/49k/67w/+jFqhqutm w1SKzX7IpeEy77m58kcEDA+U5PNHQDcrjFg1F9cuoBJdwW1xqchd0XrGLaPGCQcDcMZHcEVpt4ss IBcidmzbCMStGC8e6QJsVW43Z3jFLH4s0ydlSHzpZmZ1MSR5ZdgUsT7AOv8A30PWgDitYk1q+8PX NrfJqLzPYxeRHDbMyzPvbeXwvBwF4yOvHWtdLjUofMFwb6CBpbvyTaWu52fz22bhtIwU2kE4ByST 3roYPE+mXNkbqJpPK2W7ZMZBxNjZx/wIZ9Kzl8aWUd3efaSotIEmZZFBLN5Qy/H4Nj6HrQBlXWra 8utI1rDfbDcTQvFJCzIFEb+W2Qm0AuqHO443YOOlVoptS803VudVdTbWiXEtxaESr+9bzdqleSAe gBxzjOK64eKNOV/KZZ0nYxiOFosPLvDFdo75Eb/Tac1EfE9qtzMrJMBHFC/l+UQ4Lu6cg8AZQ89O Cc4xQIz9Kl1a61KOOSa9XTlkmaKSSLa8iL5W0Plcj5jKB0JArptOYSWUDhpmBQEGddrn/eGBg/hV WLX9Ok0STVvMK2kYfezLyCjFWGO/II96zoPFkf8AamoW01pNClqINuUwxMgY89gBt65oGdPisu5/ 5GWw/wCvaf8A9CjqnF4w0ucW/ktNIZkLhVjyQAxQ8d8MCMDPSrc5z4kscf8APtP/AOhR00BrVQvv +P7Tv+u5/wDRb1fqhff8f2nf9dz/AOi3pIC9RRRQBka900//AK/Y/wCtbFY+vdNP/wCv2P8ArWxR 0AKQ0tIaAKNh/wAfeo/9fA/9FJUWo/8AIQ0r/r6P/oqSpbD/AI+9R/6+B/6KSpruyivUVZd3yncp VirKfUEcjqfzp9QLOaM1mf2NB/z8X3/gXJ/jR/Y0H/Pxff8AgXJ/jSugJNQsItQMAm3YgmWdMH+J en4VnN4YtzNJNDc3NtLK0pkeIrlhIQWHKn+6MHqPWrv9jQf8/F9/4Fyf40f2NB/z8X3/AIFyf40X QEFx4d0+7sbGxmhDWVkV2W7cowVSqhgeoAOfqBUCeFdPtrhJrJWtAk4nWKAKqB9hRjjH8SnB+gI5 q9/Y0H/Pxff+Bcn+NH9jQf8APxff+Bcn+NF0Bjr4IsEjWOKe6jRfIwAU+9CFCMSVzxsHGce1XYPD cEF/Jepc3BuHieISHYGVWIPUKCxBAxu3Y59at/2NB/z8X3/gXJ/jR/Y0H/Pxff8AgXJ/jRdAQ22g 29vqZvVebcZ3n2lhtDMm1u2cEAd+tbNZn9jQf8/F9/4Fyf40f2NB/wA/F9/4Fyf40XQGkTVC+/4/ dN/6+G/9FSUz+xoP+fi+/wDAuT/GpINKt4J0lD3DuhJXzZmcAkYzgn0JougL9FFFADT0NZuif6u8 /wCvyb/0I1pHoazdE/1V5/19zf8AoRoWzA1KztVsLfVLYRSyvGYZVlWSJwrRuvIPOR07EYIPNaNc fqL3Fm3iG2Gn3U8moMXtmhj3I2YEjwSPu4ZTnOOCKALyeGrM3SXklxPcXAuUuTNI65ZlRkUYAACg O3AHU5qKbwzpM0LSmeRR5rzLKsi/I5mE2QcY4cDr6YrOt7HV4JJS0l4GtrmyjgRXPlmLbEJjgcMP 9Zk9qybm31m4065t7yPU2kkskW2WIHZv3OZN+OM42/e7dOaBHTf8IhZm4a5a8umuHkkkeVihJLoi MMFcDiNegBHaorfwfpsES2MV9diNI4A0BlU7xEf3ZPy542gZGM7RnNY95N4k/tZ5bKC7QtLcQtG+ 54wPLfymzwmCyoflHGSCeuaslrqwv7u702LVBC9raRvJch/O4lkMoGfm6MDx6nbQB2Gn+HLTTrwy wSSBN7yLEQmFZySxzt3EcngkgZqO88O2V/eT5vJ08yeC6mt0dcF4yuxiCCRny1HXB29Kr26auvg+ /EDyyXxSU2vnIQ44+UHdyTnpu56Zrm2tdSGsahcWEWqpZyx2aSSTrJ5zIpnLhf4+GZM45wTjjFAH Y6X4ctNIuPNt5JdgL7I2CEJubJwQu4+2ScCluvD1neR3au8ga4ukuiwIykioiAgEEYwg4IOcmqUK awvgy4EMksl/tkMJlTa+3cSo+bnO3gFuemaz5ftBe18sa5/ZfmSefuL+du2Lsxj95szuz7+2KALl 74alTypNNlK3CxSxPI8gjLK5UkYVCOqjoAfQjmpbTwja2+jw2AuptoSNZOEZX2RLHyrKRjCA/Wsc WviJ9LnnnlvRewWlu0CI2FMm9924Dhjt2bgePpUMlvq1qEgT+0Rai7vTOR5rMSZAYcFTu27CTxxn rQB0kHhewtWiMUtwEj8ghCwILRDCEnGc4GDzipo9At47tZluZzGlw9ykBZdiyPnLD5c9WJxnGTWG I9c+32ayPePZhIlvHxsZptmNyjsmdu4A9enRqw9OttftdBit3XVRNHpqpaCMv/x+Avv3noV/1eC3 y4zQB6cqBLRYmkZyqBS7Yy3HU471zMXhfRTDZQW10yva2a2asjRszRL90Hcp5HPIweTWvbK5t7sP 5zSk/OHzjcUXIT/Z+nfNcZo3h/WNM8Dwyxx2MV+ulhI1gsDHcpJsHBcuQSD1+UZoA6z/AIR6y+0R z5kDx3v21fm48zyvK9Om39ao3PgnTbo3GZrlBcQmGXay/Mpdn6lcjl26EZ75rL1Aata6wotY9R8m 1lgw26SUTQ7lMh44zgsMHcxxwBxUNwfEIW/is1v5JGJYzPvXYnmrlFVsqW8veA0Z7dM4oA9BhXy4 kTeWKgDJ6n8qea53wst6Le5N1JcNEZ8wC4R1ZV2jIy5LEZz1/liuiNAzJjnjh1293k8ww4wpPd/S r326D1f/AL9t/hVa3516+/64w/zetHFOQFf7dD6v/wB+2/wprX0PHzN/3w3+FWqQrmpbA5467a6o nlQCYMlzErb4mUcSL3xitWSwhk1IXjKWkEXlDPIxnPT8KbqSBbVMf8/EP/oxavjvVO3QDCufDljd C/D+Z/ps0UzkEfK8YXYRkY42L1BqMeGrdZIpo7y5juI/MAmTy1JV9u5cbdoB2L0GeKp+IrjVLXUL g2kV5JFNpsqwC3Qti4B+UnH3TjoTxUDW+rnUZLlZbzjVY0WMufL+zGNN529xktz2I7UhEll4WtId JsVmvpFUQWiTeVIPLlaLbsbJGeSB0IzxVs+EbAw3cAlmWC5SZGiAQbBLndghd38RxknFcw1vrNxp 1tBfRag9z5enmFEDeWAPLabfj5dwYPnPtin3j+Jvtt5Jp8d6ryx3UYSQMyrLgmEgnC444KjHOCTQ B1V14f0+81H7SZXW9jSDYyspaLyzJtYAg9RJIDkEEVBN4Ps57j7S91dtc/uiZmdWJMbSMpIKlTzK 3GMDjAGBXM3Ftqw1G4n0uLUls5EtEnkufMMpRfPLbf4+GaPOOcE44xVq4Gtw2FtKZdQuiqzGO3jS SNny3yAuCcEDjMikEdcHNAHSx+G7JNFutJd5pLW5aRn3sNyl2LMQcf3iTznH0AFUx4Usrm6/tE39 1NcO0con3RsMorquF27cYkbt1wetTa4ZzPYF1v8A7LtcSfYy28SfLszt52/f9s4zXK6ba+IoINOt nN1amOztkgCo7IrgHeHCkL1xndxjpQB0j+C7GWwWya5u3tgWbY5RsFmLEglMg5Y8gg+/ArTmG3xJ Yjn/AI9p+v8AvR1qR/6scEfWs25P/FTWA/6dp/8A0KOmhmrVC+/4/tO/67n/ANFvV8dKoX3/AB/a d/13P/ot6SAvUUUUAZGvdNP/AOv2P+tbFY+vdNP/AOv2P+tbFHQApDS0hoAo2H/H3qP/AF8D/wBF JV+qGn/8feo/9fA/9FR1foYBiiiigAooooAKKKKACiiigAooooAMUUUUAFFFFADT0rHtWutPa5iN hPMrzvIrxMmCGOe7A5rapMUbAZ/9o3P/AECbz/vqL/4uk+33H/QJu/8AvqL/AOLrSooAzf7Quf8A oE3n/fUX/wAXR9vucY/sm7/76i/+LrSooAzft9x/0CLv/vqL/wCLo+33H/QJu/8AvqL/AOLrSooA zft9z/0Cbv8A76i/+Lo+33P/AECbz/vqL/4utKigDN+33H/QJu/++ov/AIuop9WktoxJJpV2FLKn Bi6swUfx+pFa9Z2tf8eSf9fNv/6OSgBP7QuP+gTef99Rf/F0fb7n/oE3f/fUX/xdaIpaAM37fcf9 Am7/AO+ov/i6Pt9x/wBAm7/76i/+LrSooAzft9z/ANAm7/76i/8Ai6Pt9z/0Cbv/AL6i/wDi60qK AM37fcf9Am7/AO+ov/i6Df3B/wCYRd/99Rf/ABdaVFAGb/aFz/0Cbz/vqL/4ul/tC5/6BV3/AN9R f/F1o0mKAMywWaTUru5lt3gEiIiq7KSducn5SR/F+lalIBiloAKKKKAKOqf8eqf9d4f/AEYtXRVL VP8Aj2T/AK7w/wDoxatq2RR0AdgelQ3c6WlnNcupKRIXYKOcAZOKlzUdxCtzbSwSD5JEKNg9iMGl cDnJ/Gmn20cTSW9woeAXLBggKQkkBiCwJztJwMn27VY/4Se2kuRBHBcFWuJLZJ9gKNKiszAc542M MkYyKnk8PWjSRyRvcQuluttuilKlo1JIB+mTz15NZo8Ly/22tybhRaJdyXYhUtyzxsp4zjOWZs/o OaYE1l4qtrySK3jhmkmMUcjMAiA7kDjCs248EcgEDnng1TsPHllc6bHdT2dzAf7Pjv5RhWEaSbto znkkoQAB3HTtpJ4XsVktGL3BS1KGGMykqpRQqn24A6cGm2ng7SrSyltESVoZLRLIh5MkRJu2AHtj eefp6UCNHTdUS/muIGtp7eeDaXimC5w2cEFSQQcHoe1aGB6Vn6fpcWnS3EqyTSyz7d8kz7mIUYA+ g5/M1fzSuMdjArIuv+Rn07/r2uP5x1q7qybo/wDFT6f7Wtx/6FFVR3A2KoX3/H9p3/Xc/wDot6v1 Qvv+P7Tv+u5/9FvSQF6iiigDI17pp/8A1+x/1rYrH17pp/8A1+x/1rYo6AFIaWkNAFHT/wDj71H/ AK+B/wCio6v1Q0//AI+9R/6+B/6Kjq/TYBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAQnAzU El9axMUkuYkYdmcA1M3Q1kaTbQyi8eSJGc3cvzFQTw1CAv8A9pWX/P5b/wDf0f40f2lZf8/lv/39 X/GpPskH/PGP/vkU1raBVyIY/wDvkUAN/tKx/wCfy3/7+r/jR/aVj/z+W/8A39X/ABrlbLxXb3X9 mt9jsWF8QPLguA8sIKk5Zdo4GOeeKtW3inQ7tC0Cbx5DXEeIgTKikAlR17jrjqDQB0H9pWP/AD+W /wD39X/Gj+0rH/n8t/8Av6v+NczeeKNPitxLb28RVZZopvMUfuykDTds54A6djWjJq1hBqK2UtlK JGRpARCGG1RknjJx2HHJ4oA1f7Ssf+fy3/7+j/Gj+0rH/n8t/wDv6v8AjWHF4j0eVX2wkSK0aiLy gXcyZ2gAf7rfTBziq+qeJLfT0imFgogwxnM8ZjMYVtpPQ5xycDOQARwc0AdH/aVl/wA/lv8A9/V/ xrF8S3zyWEI0+7tDJ9oiLBnB4Dg54PYgZ9s1MusaY16lv9nO15zbLN5Q8sygElc/gR6ZGKg1nXLH S1u40szLPbQrM4WL5FDEhcn3Knpn3pppO4G2uo2QHN5b5/66r/jS/wBpWP8Az+W//f0f41jT+INH t71rWaIoy7xkw8MUXewA6/dBPTnHFWtLvrHVoTNb2uEwpDPGMEEZGCMg/wBKQF/+0rH/AJ/Lf/v6 v+NH9pWX/P5b/wDf1f8AGue/4SrRRarcvbypA8LTo7W+A6KyqSPoXXj3qf8AtuySURSWbmaSURRw rB8+4xeZgjtxmgDa/tKx/wCfy3/7+r/jR/aVj/z+W/8A39X/ABrn18VaE1t9oMTJG0Kzxl4MeYpc INv/AAJlHOOo7UybxTo8SNKVRY4hMZ1MWWXy0DnGOD8rA9e9AHR/2lY/8/lv/wB/V/xo/tKx/wCf y3/7+r/jWJP4g0q1kiW4tZIfM2YMkIAG9tq5/H0zjvVrT9T07UbyS2htyTGzqzmIbcq20j2OfXGa ANH+0rH/AJ/Lf/v6P8aP7Ssv+fy3/wC/q/40/wCyQf8APCP/AL5FH2WAf8sY/wDvkUAOhuIpxmKR JF9UYEVLWVZRpBrV8kaqq+VE2FGOSX5rU3ChqwC0UmaWgCC4tYrqJopl3ISDjOORyP5VW/se255n /wDAmT/4qtCii4FD+yLX1n/8CZP/AIqj+yLX1n/8CZP/AIqr9FFwKH9j2vrP/wCBMn/xVIdItfW4 /wDAmT/4qtCmk0XAxtO06Ga1LyPcFhLIuftEnQOwHf0Aq5/ZFqe9x/4Eyf8AxVGlf8eR/wCu03/o xqvjpRcCh/ZFr63H/gTJ/wDFUf2Ra+tx/wCBMn/xVX6KLgUP7ItfW4/8CZP/AIqnwabb28vmxqxk xt3PIznHpyT6D8quUUAFUL7/AI/tO/67n/0W9X6oX3/H9p3/AF3P/ot6a3AvUUUUgMjXumn/APX7 H/WtisfXumn/APX7H/WtijoAUhpaQ0AUdP8A+PvUf+vgf+io6v1Q0/8A4+9R/wCvgf8AoqOr9NgF FFFIAooooAKKKKACiiigAooooAKKKKACiiigBp6Gs3RP9Xef9fk3/oRrSbgGsvRXVY7wFgD9rl4z /tU1swNakYZGKTen94fnRvX+8PzpAY8Xhmxgh0+OLzENguyJw3zFcYKsccg8ceoB6gVTj8EabHp7 WAkm+zbAiJ8nyAMGHO3LfdA+bPFdJvX+8Pzo8xP7w/OgDm38E2Eq3CzXF1IJ3Z33Mo+ZoTCxGFGP kPToCBVh/DEDtfl7q5Zb9Ck4JXlCpXaDtyAATgZ4P1Odzen94fnSM6lThh09aAOZl8IQxxySW93O LsJGIpG2YRo92wgBcDG5gcDkE59aifwZBeWztqV3dSXNxa/Z7plkBDjLMQCVyoy7cLgYwMYFZ0b6 m2nhWOr/AGvEX287iFzvXzPK5z03Y2cbf9oCiNtSFzF5z6qdL8yfyfLZhNnEXl7v4sZ87G7/AGd1 OwjZTStNjnhmOpOYY7gXKwtKnlmVl4bgZ5JLYzjJzip73w9ZavJcXIurhI7yFI5lhkASVVJKnocf ePQjI4Oa46x0fU5xosV3FcLDayWZ2lioQLaMHzg9nwD1/Wr2hNq0cOnJqf8AaguRb23lrERsHyjz RJ2znOd3bG3mlYDdHg6zFzHOl1do0U8twgV1G15AwY525P32xknHbFT2Ok2OiXFxcfaSZbooHaYo oYrnGAoUZ5OTjJ79BXHxT+J/tMrR/blintjvR9xaOQSIWUM3G7YZACoC5AxmrUyW+rx2jOmqXWiN 55y2Wk8z92E/29o/eDnv14xRYDWsPB0B0m1t7u8uJjFa+QMONiglGYpxnkouM5wBxWydDtW1IX26 QTLN5ww3G7y/L6em2uKtk8VfbLZbqeSFwlr5XloxQAIvmhgpCctvB3dsYrZ0KTUE16eOc3ksLeax lmLoqfOCi7WyCcEjKHHHI54Bl+TwbpstpBblptsFsttG24ZCq6uD05IZF9vamz+DLC7t2huJZ33J NGWBVSRKoVuFUDoOOK6EOu0fMOnrS71/vD86AMDUPCNnqNzcTyz3CNcGIyCNl5MZBUgkEjBHTOD6 dasW3h23g1r+1WmlkuAropYKMKxBIyFBYccbicVr71/vD86N6f3h+dADqQ0m9f7w/Oguv94fnQwM C7fUE1O/OnQwSzeTDxM5UdX9K0LRtSa1iNxDbrMVG8CQ4Dd+1NtSr67fEEECGHp65f8AxrSxVSfk BVzef884P+/jf4UZvP8AnnB/38b/AAq3RUgVM3n/ADzt/wDv43+FGbz/AJ52/wD38b/CrdFAFTN5 /wA87f8A7+N/hQDef884P+/jf4VbooAq5vP+ecH/AH8P+FNLXn/POD8JD/hVyjFAFWxtja2wjZgz bmYkerMW/rVqiigAooooAKKKKACqF9/x/ad/13P/AKLer9UL7/j+07/ruf8A0W9NbgXqKKKQGRr3 TT/+v2P+tbFYviKVYYrGRgxC3kZO1Sx79AOTUw1u2/54Xv8A4By//E07aAalJWb/AG5bf88L3/wD l/8AiaT+27b/AJ4X3/gHL/8AE0rMCXT/APj71H/r5H/otKv1z1jrNut1qBMN5hrgEYtJD/yzT/Zq 9/blt/zwvf8AwDl/+JptMDTorM/ty2/54Xv/AIBy/wDxNH9uW3/PC9/8A5f/AImlZgadFZn9uW3/ ADwvf/AOX/4mj+3Lb/nhe/8AgHL/APE0agadFZn9uW3/ADwvf/AOX/4mj+3Lb/nhe/8AgHL/APE0 agadFZn9uW3/ADwvf/AOX/4mj+3Lb/nhe/8AgHL/APE0agadFZn9uW3/ADwvf/AOX/4mj+3Lb/nh e/8AgHL/APE0agadFZn9uW3/ADwvf/AOX/4mj+3Lb/nhe/8AgHL/APE0agadFZn9uW3/ADwvf/AO X/4mj+3Lb/nhe/8AgHL/APE0WYGkRng9KqSaXYzSGSS0hd26syAk1B/blt/zwvf/AADl/wDiaP7c tv8Anhe/+Acv/wATRZgS/wBkad/z5Qf9+xR/ZGnf8+UH/fsVF/blt/zwvf8AwDl/+Jo/ty2/543v /gHL/wDE0WYEv9kad/z5Qf8AfsUf2Rp3/PlB/wB+xUX9uW3/ADxvf/AOX/4mj+3Lb/nhe/8AgHL/ APE0WYEv9kad/wA+UH/fsUf2Rp2P+PKD/v2Ki/ty2/54Xv8A4By//E0f25bf88L3/wAA5f8A4miz AlOj6eRj7HDj/cFJ/Y2m4x9igx/1zFR/25bf88L3/wAA5f8A4mj+3Lb/AJ4Xv/gHL/8AE0agSf2P px62UH/fAqlqumWUVmjR2sSsbiAZCAcGVQfzBNWf7ctv+eF9/wCAcv8A8TVDVtZt3s0AhvARcQHm 0kHSVT/dp6gaR0bTmXH2ODB6/IKE0TTI1CpY26gdhGP89zUf9t23/PC+/wDAOX/4mj+3Lb/nje/+ Acv/AMTS1ETf2Pp3P+hw89fkHNJ/Y+nf8+UH/fAqP+3Lb/nhe/8AgHL/APE0f25bf88L3/wDl/8A iaLMZL/ZGnf8+UH/AH7FH9kad/z5Qf8AfsVF/blt/wA8L3/wDl/+Jo/ty2/54Xv/AIBy/wDxNFmB L/ZGnf8APlB/37FH9kad/wA+UH/fsVF/blt/zwvf/AOX/wCJo/ty2/54Xv8A4By//E0WYEv9kad/ z5Qf9+xR/ZGnf8+UH/fsVF/blt/zxvf/AADl/wDiaP7btv8Anje/+Acv/wATRZgXLe0t7UEQQpGD yQigZqesz+3Lb/nhe/8AgHL/APE0f25bf88L3/wDl/8AiaLMDTorM/ty2/54Xv8A4By//E0f25bf 88L3/wAA5f8A4mjUDTorM/ty2/54Xv8A4By//E0f25bf88L3/wAA5f8A4mjUDTorM/ty2/54Xv8A 4By//E0f25bf88L3/wAA5f8A4mnYDTorM/ty2/54Xv8A4By//E0f25bf88b3/wAA5f8A4mlqBp0V mf25bf8APC9/8A5f/iaP7ctv+eF7/wCAcv8A8TRqBp0Vmf25bf8APC9/8A5f/iaP7ctv+eF7/wCA cv8A8TRZgadFZn9uW3/PC9/8A5f/AImj+3Lb/nhe/wDgHL/8TRqBp1Qvv+P3T/8Aruf/AEW9R/25 bf8APC9/8A5f/iaryalDd6hp8ccdyp88nMtu6D/Vv3YCmrgbVFFFIDI17kadn/n9j/rWuAMdKyNe 6af/ANfsf9avahfRabYyXc4lMUeNwiiaRuSBwqgk9fSn0As4HoKMD0rnrXxjpl5dxW8UeoK8rBVM thNGufdmUAfia6KkBn6eAbvUf+vkf+i0rQwPSqGn/wDH3qX/AF8j/wBFpV+mwDA9KMCiikAYHpRg elFFABgelGB6UUUAGB6UYHpRRQAYHpRgelFFABgelGB6UUUAGB6UYHpRRQAnHpVCTVbWOZ4sTO6E B/LhdwpxnBIB55q83Q1laUoN5qnH/L3/AO00oQE39r2x/wCWV3/4Cyf/ABNH9r2w/wCWV3/4Cyf/ ABNX9o9BRtX0FGgFD+17b/nld/8AgLJ/8TR/a1v/AM8rv/wFk/8Aiav7Vx0FULzVbGxvbSznlCT3 ZYQrg/NjGee3UAZ6kgUaAH9r23/PK6/8BZP/AImj+17b/nld/wDgLJ/8TU5vLUTiDz4fOPSPeNx/ DrWfL4g0+MTv5oZIZo4GKDPzOwRf1YDP19KNALP9rW//ADyuv/AWT/4mj+17b/nldf8AgLJ/8TTo tRtHCb5EjZ2ZUSRgGbBI4GfUVNHdWss7wJNE0yDLRhgWX6ijQCv/AGvbf88rv/wFk/8AiaydfnOo 2UUVo97C6zxuSLaQZUMCf4fx/Cta91SzsWVJpkEjvGipnLEu4RePTLCphe2heRBcQF4+XUOMoPf0 pp2dwIRq1uB/qrv/AMBZP/iaP7Wtv+eV3/4Cyf8AxNTC8tXgM6TRyRDOXVgw45PSqVlr+nX8skMM jLJHEszLLG0f7s5w3zAcHB59qQE/9rW//PK7/wDAWT/4mj+1rf8A55XX/gLJ/wDE02z1nT73Sjqc M6fYxvzKwKgbSQevuDU0eo2MnlbbqAmUBoxvGXHsO9GgEX9r23/PG7/8BZP/AIml/te2/wCeV3/4 Cyf/ABNOudTsLO3NxcXUCRD+MuMdQP5kCpFvbR5vJWeEy43eWHBbHrjrRoBD/a9t/wA8rv8A8BZP /iaT+17b/njd/wDgLJ/8TVqC4troMYJYpQpwdjBsH8Km2r6CjQCh/a9v/wA8rv8A8BZP/iaP7Xtv +eV3/wCAsn/xNX9oo2j0FGgFa0v4LyR0j3h0ALLJGyHB74IHHBq1gelZkIA8Rz4/59I//Q3rUpgG B6UYHpRRSAMD0owPSiigAowPSiigAwPSjA9KKKADA9KMD0oooAMD0owPSiigAwPSjA9KKKADA9Ko X4H2zTeP+Xg/+ipKv1Rvv+PzTf8Ar5P/AKKkoAu0UUUgMjXumn/9fsf9a0Lu6is7czTFggKrlVJO SQBwPcis/Xumn/8AX7H/AFrVcfIe1PoB5FYWxfxpYbtSlu3F2WkM32raCGk4CsCnKsgzkAbOOtew V5V4f1dIdbW1i1PVRbG+2RW7yW5Vt7y5+ULvVQ0ZGM5AIPAr1WgSKGn/APH3qX/XyP8A0WlX6oaf /wAfepf9fI/9FpV+hjCiiigAooooAKKKKACiiigAooooAKKKKACiiigBp6Gs3Sf+PrVP+vw/+i46 0j0rFtbpLC91BbhZFMtx5iYjYhl2IM5A9jQuoG5RWf8A2zaf3pP+/L/4Uf2xaf3pP+/L/wCFFgL5 5U1yWp+FLjVLrULt9RkhmkCLbBArKgjIdCdyk58zLHBGePSt7+2LT+9J/wB+X/wo/tiz/vSf9+n/ AMKAMKTwvcyzfame3W5bUEvGdVJ4EIjx+Yz9KzIPBepLHbrLc25McVukmzIBaKaOTcAFAAO1gFA4 yOa7D+2LT+9J/wB+X/wo/ti0/vSf9+X/AMKBWOV/4Q+/jhCwTWyy5bMrElSpneUK0ZBVgA/sc55q 5pHhWXTdShuJZBMIZriRJDIdx8wk8rgDvzyc4B+m9/bFn/ek/wC/T/4Uf2xaf3pP+/L/AOFA7GDd +G7mbU72ZfszR3V/bXgkcHzI/K8vKjjnPlnByPvGqkfhC6+zW1q7WzpbQXEJclg9z5p6uwAIPcnJ +bmup/tiz/vSf9+X/wAKRtbsUGWkkA6ZMT/4UWAztH0q+06C+WSWJpJ5N0RK7yvyKBvYKu/kd+cY GeKz/wDhFb28urqe8uEgF1DGkyQM0gkKsxIO8cIc42DjGfWui/tm0/vSf9+X/wAKP7Ys/wC9J/35 f/CgDO07Qri18P32nTXKytcSXDK+zAUSMzDj/gVZR8I3Ml608xhKyNbuVSRlEZiCjA+Xn7uRyOSa 6b+2LT+9J/35f/Cj+2LT+9J/35f/AAoA5iXwheMt+VltS12pKoVIWAiXeFT0Vurerc+wmHhe8+4W tQn257zzQWLncpGwjHTnbnP3eMV0P9sWn96T/vy/+FH9sWn96T/vy/8AhQFjN8OaJdaRLP5rR+S0 UUccYbeV2bh98qGK4IwCTjnnmui7Vn/2xaf3pP8Avy/+FH9sWn96T/vy/wDhQBoUhqh/bFp/ek/7 8v8A4Uh1i0/vSf8Afl/8KAGx/wDIyT/9ekf/AKG9adZFlL9q1u4uI1fyvs6IGZCuSGY45+orXpsA ooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUb7/j803/r4P8A6Kkq9VG+/wCPzTf+vg/+ipKA LtFFFSBka900/wD6/Y/61pXKyNbSLE4jkK/K5Gdp7HHes3Xumn/9fsf9a1n+4aroB41oTOni6yZ7 pZ7lrwiS6j0YQmUFpAMzs3QlW6Lk7TivZ68i0FY9R8T210y20fk30qJFDpU+3iR+fODbM5LHJBwW Neu0CRQ0/wD4+9S/6+R/6LSr9UNP/wCPvUv+vkf+i0q/QxhRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAmKNtLSZHrQAY96Me9GRRkUgDHvRj3ozRkUAGPejHvRmjIoAMe9GPejIoyKADHvVLU/8A j0/7aR/+hiruRisbxJfjT9Ka4aKSRUkjyEGT98U1q7IDZx70Y96ZE5dFZlKkgHaeop+RSAMe9GPe jIoyKADHvRj3oyPWlzQAmPejHvS5HrRmjQBMe9GPelzRmgBAuDmlpAwPSlpgFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABVG+/4/NN/6+D/6Kkq9VG//AOPzTf8Ar5P/AKKkoAu0UUVIGRr3TT/+ v2P+tar/AHDWVr3TT/8Ar9j/AK1c1S4ubXTpZrOz+2TqBtg8wJv5GfmPA4yfwqugHFaZ/wAIlF4i W3stVvftn2lysfnzeS0u4lgM/ITnPHrmvQa8d0O6ll1fSzNa30WlvqLeTA+oxPHFNufnaEDkbt2A T6V7FQJFDT/+PvUv+vkf+i0q/VDT/wDj71L/AK+R/wCi0q/QxhRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQA1ulY1vA19eX7S3E6iGfykWOQqAAint7k1snoazNJ/4+tV/wCvw/8AouOhdQKd/LZa fPFby3OoPPKCyRQvI7FRjJwOg5HJ9aSKfTJLZJ21G5hR2KATztE24cEYbByDUupaVenWYNVsHgMq wNbyRT5CuhYMCCM4II9O9U7rRdWuHFw72U88lvLbukit5cYcgjb1z0wemcDpindgXmSwW4W3OpS+ cxwI/tZ3E4z0znpioZ7jSLeJpJdYdUV1jY/bCdrMdoB59eKo2vhGW2gmj8+OR2vLWdZWB3FYUiUg +58tv++qpr4N1FbIW8c1rHHEYGihDMygxzLJgEjcikLjbluvtyXYjoEjspJTGmoyO4bbtW6JOeeM Z6/KfyNDx2MZjD6lKpk+4DdkbvpzzWXF4ZvLVLSW3a2NxBqdzfMGyA4l80YyBnIEg/KqS+H9Q0y8 gCpbXhvI47aYvESsOySSTeB6HfjGRggUXYGvbXenXWoTWMd3e+fCC0m6ZtoA4POf8/SrlrBZ3iF7 bUJplBwTHdFgD+Brmp/BWqXSyRzX8IWSK5hLJkcStuDBQABggZA68kmt/S9Iu4NYvtTu3gWS6hhh 8qDJVRHvO7JwSTvI6dAKOZjIzc6Z/aK2K6jO0pjkkJW5JChCobcc8ffH60949Kns/OfU2a23Abzd 5XcDnrnGeKwz4P1U29vAlxZR/ZbGazSQIWMgdkO5gRjkIc9eWJqVfCupq80jzRO73K3MbefIHjby /LPz45OMdRggkY6UczA27tbGxsTeT310IOAGWdmzkgKABySSQAB61WtrrT7hpke61C3aFA7i5eSL CnIBy2Bjintod4/hy0sjcxfbrZo5Ul8vCF0IPKjHB6cY65qDUNK13UraRJJ7KD95CyRxKWyEcM3z kcEgYBA460XYFsNpjywxpqsjPOrNEBdk7wvBIwe2RSqdNeF5l1V2iQ4dxeZVT7nPFYX/AAhuoNDL C95EBNHdxGQM5ZFnCHIJ7qyfjk9Kim8NXlgi37RpNcxSW2EQvJuWIt64wBvJAAJGO9F2I6J/7Ojj WR9UdUc7VY3mAT6DmkmNlFKIvt07SllHlC6+YZIGSM/7Q/MVz2l+HdRKNeiK2WSb7ZGYJoygRZZQ 4YDn05B65GcYq1a+CpLOwNstxFJJ9sspvPdTudIFhUhvc+WxH+9RdgbSjTnaVV1OQmH/AFgF39z6 88VJDb2lxD50V9NJH/fS6JH5g1zA8F6k0ivcTWswFnJbOjO4Vyzo+8AY2cp0HQnOT0rZi0C8l0HV dPurvEl6JUSQHc0atGFGWwCxHJz16DtRdjFju9Klup4Y9SmYQRLNJILo7FVmZR82cZyh/Sr8FnbX MQlhvbmSNujJckg/iDXN3XhDUb24a6kntYJVjtVRICwDGFpDyccZ38ccEDrXRaBpbaTZSxSFd8sz zNh2blj6nqfU8c0m2A6zV7fWZ7XzpZIvISQCRtxBLMDyfoK1azI/+Rkn/wCvSP8A9DetOmwCiiik AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVRv/wDj803/AK+T/wCipKvVRv8A/j803/r5P/oqSgC7 RRRUgZGvdNP/AOv2P+taz/cNZOvdNP8A+v2P+tWNaubm00e5ntIfOuEXKR7S2456YHOP5VXQDjrC +8PHxFFfReFjAbm5eCLVDbxgPLlgeh3DJDckc16DXjlhHPF48spn0m2thPeMyqlrMWT5pFY5LeWC NqktgZEmRXsWaBIy4pvs41efGfLm3Y+kSGkhTWJIUc3loCwBIFuxx/4/Ucn/AB6a7/vN/wCiUrUt /wDj2j/3RTeiGU/J1f8A5/LX/wABj/8AF0vk6v8A8/tr/wCAzf8AxdaOKKVwMqX+0oELy6jZIg6s 1uQB/wCP0uzVcA/b7Tn/AKdm/wDi6zPFGnXutXVrp0UEbWODPcmYny5COEjOOvJ3f8AFZDWGvXGm SRXT3oubTT5okeKZoxNOhxHJwQSWHPPqQaLiOnaTUElWJtTshIylgpt2yQOp+/7ikhmvrhA8GqWE qkBgUgJGD0PD9DXKND4iOt29z5NyqrcRiZV3EPEYwGP39v3jkrtyME5qDTtN1u00DT7d0voTDBag pGCQCsTBlIVlbGcfdPUDgjNFwO32aqDj7daf+Azf/F0hXVFBJv7QADJJtm/+LrjmtfE008Rle7tl aGDylj3ShGB+cMRIq57/ADhsjjk1veI4byW7thHHevbfZ5wRaSFD5x2eWWwRxjf1455ouBoxnUpo kli1GzeNwGVltyQQehB30/Zqv/P9a/8AgM3/AMXXEW9p4hto9LQW93ELSOxV0VmYNGqp5vRwo/jG 0qxO0Y7Y2/D8eqRavIl0t7JbtHITJcMwKNvG1cbircZ5QAcdOaLjN7ydX/5/bX/wGb/4ujydX/5/ bX/wGb/4utGii4GaYdXx/wAftp/4DN/8XT9IvH1DTLe7ddrSxhioPANXm6Gsrw1/yLtj/wBchR0A 1D0NZuk/8fWq/wDX4f8A0XHWkRxWLZ3kFleaktzKsTPc71DnG5fLQZH5ULqBt0uKof2zp3/P5D/3 1R/bOn/8/cP/AH1RZgXsClxVD+2dP/5/If8Avqj+2dP/AOfuH/vqiwF7A9KNoznFUf7Z0/8A5/If ++qP7Z0//n8h/wC+qLMC/gVxK3/2g6jcX+vTWM9vdSRrEjIBGithPkIO7coDd87uK6f+2dP/AOfy H/vqoGvtIeVZWnt2kXoxIyPxoswOfm8U30U5kH2ZomvJ7RbbB81NiuQ5Oeh2ZxgcMOaz5/FOtnTI JhPZQtcRafcrIkZIRZ5lRlOW54PXjv0612H23R/NMvn2/mNwWyMnt1oe/wBHKbHmtmTAXacYx2FF hHN2firVby9lAitYLYS3EO6VlHleXuAdvnyQdoJG0cNnNOs/E+p6m+mzqYbGOW8EMttKhaTb5Lvy SRjcQCvHQjPcV0P2rRcsfNtssMMePmHoac19pLvva5gLcckg9OlFmBj6D4gvdRvbKO4ktZUvLNrs CAEG3wUGx8k5++RnA5U8V1hUHqKyo77SImZo7i3QscsVIGTU/wDbOn/8/kP/AH1RZjL21Qc4GaXA qh/bOn/8/kP/AH1R/bOn/wDP5D/31RZgX8CjAqh/bOn/APP5D/31R/bOn/8AP5D/AN9UWYF+kNUf 7Z0//n8h/wC+qP7Y08/8vkP/AH1RZgMj/wCRkn/69I//AEN60qyLKdLvXbieFg8Yt0TevTO5zjP4 /rWvTYBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKo3/APx+ab/18n/0VJV6qN//AMfmm/8A Xyf/AEVJQBdoooqQMjXumn/9fsf9a1nOENZOvdNP/wCv2P8ArWq/3DVdAPH4bmW91y20SPWl8pdQ lkjubaCb7QWYyAgs48vH3hnkfLwM163aW721rFFJM0zoioZGABYgdTjjJrzDRfs0vim2tJ9J2Xlt dOc2+pR7Mb3ZWaHeWyu9uOcbjXq1DEjGk/49Nd/3m/8ARKVqW/8Ax7R/7o/lWXJ/x6a7/vt/6JSt S2/494/90U3sMmooopAY9z4htrea7jaKVjazQQuQByZSoXHPT5hn8ayb3xlClvcH7JdQBYrp4ZnR WV2gzvwoYHscZxnHate78PWN3etdSI+53jkdVkYKzRkFGIBwSCKjufDul3MAhmg3IBOoG89Js+Z+ e4/TtQIzLnxXIdSsYLW0k+yyag9pJcvt2sURy4UbtwIZMZIx8p9ssi8f2MiShrK5WVfICRbo2Mhm k8tACrEA7hzkjFaU3hjSppfNkidh5rT+X5rbA7Aqzbc45DNn6nuagbwxo7SpHIJWlMaKu6dywWNw yEHPG1sEfWgCiPHEdpc3MF5ZSrOLl44oNyKwRIomYli20/NKAMHnI96vW/jKzu720t4bafFzHHIk khSPh+nDEE474BxU6+HNLim82MTR3LO8vmrOwkJYKrc5zghEyOnAqWfQbG5eIymd1idHWMzsV3IQ VYgnkggfXHOaAKniLxJJpVtfra2M089tYtdPIu3ZEMNtLAkE5KtwM8A0yHxnZSax/ZqwzFhP9nMo ZcCTHTbndjPGcdavahoFhqkkhuVlPmw/Z5AkrKJI8k7WAPPU/mali0O1t7l54jMheQyMiytsZyMb ivQnj+tAGrRRRQMRulYPh2/tY9As0eZQwjAIrePQ1k+GgP8AhHbHj/lkKfQC3/adn/z8JSHUrL/n ulXMDFM8xAcbgPxpAVv7Rsv+e6Uf2jZf890q15if3h+dG9P76/nQBV/tKy/57pR/aVl/z3SrW9P7 y/nRvT++v50AVf7Ss/8An4Sj+0rL/nulWt6f3l/OjzE/vr+dAFX+0rL/AJ7pR/aVl/z3SrW9P76/ nRvT++v50AVf7Rsv+e6VlXWv6ZdtJZRXAa4SSMFdp5+ZTwa3i0Z/iX86xfEc8trpTy2MMcs3mRnY TjPzj/61OOrswZuAZo21HFJ8i72XdjnB4zUnmJ/fX86QBto20eYn99fzpPMT+8PzoAdt4pNtHmJ/ fX86PMT++v50AG2l28UnmJ/fX86PMT++v50AG2jbR5if31/OgyIP4l/OgBQMUtNWRWOAQadQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUb/8A4/NN/wCvk/8AoqSr1Ub7/j803/r4P/oqSgC7 RRRUgZGvdNO/6/Y/61c1O8Nhp01yLW4uigH7m3XdI2SBwMj1zVPXumnf9fsf9a1nwEJNV0QHkWiQ SSeJLO0NjqEdtBetdRiTTY0kVmLN+8kDk7fm9MnivXzXiVnpbx69app8+hHVI9QklUm2n+1AlmJE uOQuGHJwDxivZbM3Bs4ftez7R5a+b5edu/HOM9s9KGJGZJ/x6a7/AL7f+iUrVtz/AKPH/uiqVtEs 0mqxOMq8+0j2MSUsVhdRRKg1GUhRgZjQn+VNjNLNGaofZLv/AKCMn/ftP8KPst3/ANBCT/v2n+FI C8TxXNa3pt/eX0stm7oy6fMkDiTaqznG0kdyBnn61r/ZLv8A6CEn/ftP8KPsl3/0EJP+/af4UAcK bTU9PsFuLoXUNsk1v58EkyJ5gG4NtPmEZJKZyVB20tnb6pqOktLAl6YGa62iO4UuQbiMoAS2GG1X HXBGQDyK7j7HdHj7e/8A36T/AAo+x3Y4GoPj/rkn+FMRwtzo2uTBJ1sJUmWyv7eJkmCsjSCMxsQZ DjlX6E44PHbR1HSdTjuLiKztbyUSW0S2c63Q228gLFmbLAnkg8Bs4x7V1P2O6/6CEn/fpP8ACgWl 1/0EJP8Av0n+FIDn9HstStvE0jvb3P2VmmZpriUE8tlQpVzuHoCo2gda7DNUPsl3/wBBCT/v2n+F AtLv/oISf9+0/wAKAL+aM1Q+y3f/AEEJP+/af4Un2W7/AOgjJ/37X/CgZeY8Gsrw0f8AinbH/rkK sfZLsj/kIyf9+0/wqaxtEsLOK2izsjXaM9aHsBOelYlpYWl7e6k9zbxTMtzsUyLnChEOB+ZrbPQ1 m6T/AMfWq/8AX4f/AEXHQgFk0jSokLGwtgACSfLAxWJYTWmoRWt5B4cU2F0QY5sIGCEZVyp6KfqT 7V1joHG0jIPBFYFr4eextoLKLUrldPtiBFAAAQo6IW6lRx79smgCp/afhPyWlaK3WMR+aGa3ZQ6b gu5SV+YZYcjPUetPa88MAf8AHmm/zDF5f2N9+4LvI27c/dIPTuKYPB0Bjt4pL2Z47SAW1sMKDHHv jcgnuf3SDPt+NWtQ8NQX7XBd0ImnFwySRLIoYIqDAPII25BBHU0BchNz4ZE6xC1hJJjUt9mYqhfG wM23Ck5HBIPI9aqQahoDPIs9haxlVQhFiLyMWkkjXChecmM4xnvwMZNpPCUUMTQfbp5LaVoXuFlw zStGFAJbryEXPrg9M00eD4EvPtsV7Kk4EWxtoIUpJK/TvnzmB9sUBchh1Lw41m1zNp8UaCSZMLbM x2xNtZiAuVH16Vd3+HGuhbJb27SZC5SAlQSu4AtjaCRyAT3FUbnwLa3ibbm6edWMzOssaOMyNkso IwrDoD6HFSxeHry1uPs1veyx2My5uWQqrmQRqg2nHGQoz7jg9RTAr2Op6JcLcPdaVBbJEkbrmIky K7FVKjaCcnA4ByTgZ4zq28fh+5tJ7lLW3SO3LCYyQ7DGVG47gwBHBB57EGs218C2to5khuzHJ5ca 7o4kXLRyCRHPHzNkck9c9q1o9CgOn6laXUzTNqRY3LYC53IsfygdPlUCkBjxar4ba+lg/s2NYkgi lEhtmDOZGZVUIVyfu9vX2q0b7wuFUi1jZjv+RbRy67Mb9yhcjG4dR3FA8JlrkXMmpzPcJFDHG2xQ F8piynHf7xB+vGKbdeDYbu3ZZLomWSaSZ5TEpYO4ALRnqhAUAYP1zQBY1JdKsfsiR6TDPPdyeVBE qKNx2liSTwAFUmq072Frau13oEcVz5pihgVBJ57Yz8u0E4wDnjjBrTvNHS9hsyl1LHPZvvgnBDEN tKHOeGyCQahl0KWaSK4l1GV7qKYyxyMg2LlShUJ6YJ75z3oAyr7VvDVppEt4llbzyR2puPLjhJHG Rhm2/J8ysvzY5B9KtG78OQvLHcWtqro8gISEvhY8bmbC8Abhk9OetMfwZF9iurWK/njju7doLk4U lwXkckccHdK/tg+2aZqXh+5guZJtNcmW4+0hwZAmPN2HAyp6FBz29DQBZS88MSSpGsEDbjGN4tzs UyAFAzYwpIK8EjqPUVPYf8I9qTEWlnE4wWD/AGchXGcZViMMPoTVO08JxRWy25vGMDG3lniABDSR Kigg9QD5a5HtV3SvDkWl6lJdpOWaRSrKsaoHJIO9wvDNx1wOp9aAI45vDUmoCzW3g81pWhUmAhWk UZKhsbSwAPAPY+lan9iaX/z4W3/fsVkWPgzTrDW21OKKEyNO9xk26GQM5JP7zGcZJP8AXHFdMetA GTZ28NnrtxDbxrFGbaNyiDAzucZx+ArXrMj/AORkm/69I/8A0N606bAKKKKQBRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABVG+/wCPzTf+vg/+ipKvVRvv+PzTf+vg/wDoqSgC7RRRUgZGvdNO/wCv2P8A rU+vXzaZ4e1G/RVd7W2kmVWPBKqSM/lUGvdNP/6/Y/61qyxRzwvFKivG42srDII9CKrogPLVv9Ei 8UwrpiWpvTq0Vu13HclpZ43i3sWIbLKD8uDkDHavVKz4tC0qCVJYtNs0kQ5V1gUEfQ4rRoYkUNP/ AOPvUv8Ar5H/AKLSr9UNP/4+9S/6+R/6LSr9DGGKKKKADFFFFABRRRQAUYoooAMUYoooAKKKKACi iigBrdDWbpP/AB96r/1+H/0XHWmw4NY0Er6feXwktp3E0/mo0abgQUUfzU00gNqsTxRcXlro/mWR kVvtESyvEm9kiLgOwGDkhc9j61b/ALVH/Pnef9+TSf2op/5crz/vyaOVgcP9s1GA3Mdq+oqtxeTS JdNAF8wCOIKCPLPJ5x8oB2nJqez1jWZrjSprhrovPHbCW0jg2lHIHmk7kwVBzn5gQB09ew/tNf8A nyu/+/Jpf7TX/nyu/wDvyaLMRg65DbvrqHWYJrjSjbARr5TSRCXcdxdQDzt24JGOGrI1fUdQtrEQ 6Lb6nbpHaPLbJIhbzW3NhMFWPGB8pK4Vh+Ha/wBqJ/z53f8A35NH9pp/z5Xf/fk0crA4ma/1mO5u jBc3ogl1FWaR4yBFC1urLt/dthS+QeDjHOCSTDqWs67aaffy3F5cRvBpontGhts+dJulzv3JwQFj /u9Sfp3n9pp/z5Xf/fk1Qu4dNv7iK4u9GlmmixskktslcHIx+PNHKwMObUdZW+VI57v7QbqZHthb jylgCvscNt6nEZ6nliMdhTjvNZt9OtrmcXUlzPp1o0k4gUPE7yHfkhDwoPIwSOuK7Yakveyu8/8A XE0kmrxRJvktLsLkDJhPUnAoswOLfVtZSyXfdXW6KWZSBbkNMPlKYYxEdCeNoznrxz0Os3d0lvpL rLdW1vNJi6kjiDSRjy2IBGGAy2AeK1Tqan/lyvP+/Jo/tJe9ld/9+TRysDznTbnxDa6XDBC9xar5 czxGSA5kmNxLkMojY/dEfHy8Mfw7HxO13dW9rpdpA0r3UmZyGKL5K4Lgtjjdwvr8xrU/tJP+fK7/ AO/Jpf7TX/nyu/8AvyaOVhc5TT21uZbTTJprm0a0iuIppI0DbyvlmEhmUgkqxycckMO1ZZ1XWp49 Iv7iG5F5FHaNLGbfIxIF85gPLJHDMD8wI2nj17/+00/58rv/AL8mj+00/wCfK7/78mjlYHDWT6pZ 2Eoj860IA/eG3zx9pnJBO1iAV29jjI45zS3Gq+IpfL8uS4tofsxMMkkZZppvMcfMFiORtEZAwpIb 8u4/tNf+fK7/AO/Jo/tNP+fK7/78mjlYF2Dd5K7sbsc46Zp5rP8A7UH/AD53n/fk0v8Aag/587z/ AL8mhxYxsf8AyMk//XpH/wChvWlWVYtJcaxPdGCWKMwJGPMXBJDMTx+IrVoYBRRRSAKKKKACiiig AooooAKKKKACiiigAooooAKo3/8Ax+ab/wBfB/8ARUlXqo33/H5pv/Xwf/RUlAF2iiipAx9fZUTT 2YgKL2PJP41o/bbb/n4i/wC+xWb4hjSRNPR1DKb2PKkZB60l5LoOnEi9/s+324yZdq9TgdfUg/lV 6WA0/ttr/wA/EX/fYpftlr/z8Rf99ioU06wdciytsdiIl5pf7LsP+fK3/wC/S/4UaAVbC7thd6jm 4iGbgEfOP+eaVe+22v8Az8xf99is2x02ya71AG0gIW4AA8scDy09qv8A9l2H/Plb/wDfpf8ACh2A f9ttf+fiL/vsUfbbX/n4i/77FM/suw/58rf/AL9LR/Zdh/z5W/8A36WjQB/221/5+Iv++xR9ttf+ fiL/AL7FM/suw/58rf8A79LR/Zdh/wA+Vv8A9+lo0Af9ttf+fiL/AL7FH221/wCfiL/vsUz+y7D/ AJ8rf/v0tH9l2H/Plb/9+lo0Af8AbbX/AJ+Iv++xR9ttf+fiL/vsUz+y7D/nyt/+/S0f2XYf8+Vv /wB+lo0Af9ttf+fiL/vsUfbbX/n4i/77FM/suw/58rf/AL9LR/Zdh/z5W/8A36WjQB/221/5+Iv+ +xR9ttf+fiL/AL7FM/suw/58rf8A79LR/Zdh/wA+Vv8A9+lo0Af9ttf+fiL/AL7FH221/wCfiL/v sUz+y7D/AJ8rf/v0tH9l2H/Plb/9+lo0Af8AbbX/AJ+Iv++xSG7tD/y8Rf8AfYpv9l2H/Plb/wDf paP7MsP+fK3/AO/S0tAHfa7X/n4h/wC+xR9stf8An4h/77FN/suw/wCfK3/79LR/Zdh/z5W//fpa LIB32y1/5+If++xR9stf+fiL/vsU3+y7D/nyt/8Av0tH9l2H/Plb/wDfpaLIB32y1/5+Iv8AvsUf bLX/AJ+Iv++xTf7LsP8Anyt/+/S0f2XYf8+Vv/36WiyAd9stf+fiL/vsUfbLX/n4i/77FN/suw/5 8rf/AL9LR/Zdh/z5W/8A36WiyAd9stf+fiL/AL7FVNSurY2nyzxE+ZH0Yf3xVn+y7D/nyt/+/S/4 VT1LTbFbTIs4B+8jHEY/vrRoBe+2Wv8Az3h/77FH2y1/5+If++xTf7LsP+fK3/79L/hR/Zdh/wA+ Vv8A9+losgHfbLX/AJ+If++xR9stf+fiL/vsU3+y7D/nyt/+/S0f2XYf8+Vv/wB+losgHfbLX/n4 i/77FH2y1/5+Iv8AvsU3+y7D/nyt/wDv0tH9l2H/AD5W/wD36WiyAd9stf8An4i/77FH2y1/5+If ++xTf7LsP+fK3/79LR/Zdh/z5W//AH6WiyAd9stf+fiH/vsUfbLX/n4i/wC+xTf7LsP+fK3/AO/S 0f2XYf8APlb/APfpaLIBwvLUH/j4i/77FL9ttf8An4i/77FM/suw/wCfK3/79LR/Zdh/z5W//fpa egD/ALba/wDPxF/32KPttr/z8Rf99imf2XYf8+Vv/wB+lo/suw/58rf/AL9LRoA/7ba/8/EX/fYo +22v/PxF/wB9imf2XYf8+Vv/AN+lo/suw/58rf8A79LRoA/7ba/8/EX/AH2KPttr/wA/EX/fYpn9 l2H/AD5W/wD36Wj+y7D/AJ8rf/v0tGgD/ttr/wA/EX/fYo+22v8Az8Rf99imf2XYf8+Vv/36Wj+y 7D/nyt/+/S0aAP8Attr/AM/EX/fYo+22v/PxF/32KZ/Zdh/z5W//AH6Wj+y7D/nyt/8Av0tGgD/t tr/z8Rf99ij7ba/8/EX/AH2KZ/Zdh/z5W/8A36Wj+y7D/nyt/wDv0tGgD/ttr/z8Rf8AfYo+22v/ AD8Rf99imf2XYf8APlb/APfpaP7LsP8Anyt/+/S0aAP+22v/AD8Rf99iqd3cwS32nKkyO32gnCsC f9VJVn+y7D/nyt/+/S1UubK1t9Q094beKNvPIyiAf8s3o0A1aKKKQGRr3TTv+v2P+tcL46lsY/E0 8swiSSPTwzi5u/JE4YSoBEu07pFDyD/gY4ruteGf7O/6/Y/61yXiDw1rraxPNYXOozQTpmLGpmIQ TEtkkEHK8rgD0NHQDvbIKtpEEQogUbVbqBjoasVDaqyWyK5ywABPvUpoAoaf/wAfeo/9fI/9FR1o VQ0//j71H/r4H/oqOr9DAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEJxVKbVrG3lMU1zGkg 6rnkVcPQ1l6Uo+16qcc/bD/6LShATf25pn/P5H+dH9uab/z9x/nV/FGKNAKH9uab/wA/cf50f25p v/P5H+dXWZUUsxAAGSTVaz1C1v7RLq1uEmgk5SRDkGjQCP8AtzTf+fuP86P7c03/AJ+4/wA6nnuo bcIZH273CKMElmPQAD/OAajTUbaS5a3STdIjlGCqSFYKrYJxgcMp/GjQBn9uab/z9x/nR/bmm/8A P5H+dXPMTGc8Uu5RyTRoBS/tzTP+fyP86yPEOpx3WltHp9/ClxvQgtyMBhn/AB/Ct6K7gmeVY5Qx ifY4/utgHH5EfnUpZO+DQnZ3Az4tZ05EUNexsQMFvWpP7c03/n7j/OnXuq2OnlBdXMcTPnYp5Zsd cAcnFS215bXlulxbTxywuMq6MGB+hFGgEH9uab/z9x/nR/bmm/8AP3H+dWkuIZGkVJUYxttcKwO0 4BwfQ4IP4inb0zjPNGgFP+3NN/5+4/zpP7c03/n8j/OrvmJ6io/tMZuTACd4UMflOMEkdemeOnWj QCv/AG5pv/P3H+dH9uab/wA/cf51c3p6inDBGRRoBR/tzTf+fuP86P7c03/n7j/Or+KMUaAVrXUL W9Li3mSTZ97ac4q1WZEMeJJwOM2kf/ob1p0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVC +/4/dO/67n/0W9X6oX3/AB/ad/13P/ot6aAvUUUUgMnXumnf9fsf9a4HxvrKx6zN5WrAq1uIo4o7 yWE20qs+XKoDvJwOD/c9K73Xv+Yd/wBf0f8AWuJ8X2FraXd9Gumyxma3EsNxD5p82YvJuRirDauJ GHOOJT6U+gHpFru+zR7m3NtGWxjJx6VKap6S876dGbi2W3cDAjWTeAO3P0q4aTAo6f8A8feo/wDX wP8A0VHV+qGn/wDH3qP/AF8D/wBFR1fpsAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANPQ1m 6Txd6p/1+H/0XHWke9Y1hd29teams80cTNdbgHYKSDGnPP0oXUDbzRVP+0rH/n8t/wDv6P8AGj+0 rH/n9t/+/o/xpagUvEVrd6hpkthat5ZuSIpJc4KRn75HqcZH41z0/ha+a5W0It5tNa+jvHAGz+Fl kQpyCp+U47ktmuu/tKx/5/Lf/v6v+NH9pWP/AD+W/wD38X/GnqBwd94O1CWwexS0tmiVbtbQ5B8g ySs0ZGQdoC7cbRkdM1bvfDWo32pT3MkJEU4uN6JPtc77eGMAHGM5R/8AJrsf7SsP+fy3/wC/q/40 f2lYf8/lv/38X/GjURw3/CK3z28cb2FubKO4d/sirGNwaNQGZceXkMG6Afez1rav9EupfCFnpqK0 zwyQNLDLLnzI0dWZC2AD8oI5GDW//aVh/wA/lv8A9/F/xo/tKw/5/Lf/AL+L/jRqM4iTwvfSRPAd Ntvsck8siW+5W8klI1T7wIAGH6AkcY4p9loGrQ3WlXM1qsl9DHbx3FxNIsn3FCyFW++pPzcAkHPP U12n9o2H/P5b/wDfxf8AGkOpWAPN3b/9/Fo1Ayr21vrbxEdVtbRbtJbRbZk3hXQqzMCCeMHdz9BW Fr+ha1q8bN9itUl+yOLZopADbzMzHO4jIONnzKAcg84xXZ/2lY/8/lv/AN/V/wAaP7RsP+fy3/7+ r/jRqBxF34Vu5ry5mGnQiGfURdzRLs/fKYAmGBG0lXyefUkc1m6xpFxawT2zW7zzy6akNjudi1tJ ucEKVGOdyDjsoB4r0n+0rD/n8t/+/q/40n9o2P8Az+W//fwf40a9gOSbw3fNqXnpbxrc/bJppL/e N8sLK4WI98DcgwePkzVd/Cl/b28cdvawPEbK1hniZs+Y6yFpTzwSQRyeveu2/tGwx/x+W/8A38X/ ABo/tGw/5/Lf/v4v+NGoHCSeF9Q+wJC1gjGGSdrWPejRIHIZQUIHTkZXBHOODXoVuJBbRCYqZQg3 lem7HOKg/tKw/wCfy3/7+r/jR/aVj/z+2/8A39X/ABo1EXKSqn9pWP8Az+2//f0f40f2lY/8/lv/ AN/R/jSdxkKf8jJP/wBekf8A6G9aVZFpPHc+ILiSGRJEFtGpZGBAO5ziteqYBRRRSAKKKKACiiig AooooAKKKKACiiigAooooAKoX3/H9p3/AF3P/ot6v1Qvv+P7Tv8Aruf/AEW9NbgXqKKKQGTrvTT/ APr9j/rXnvju0TVPEt1EbK/a4it08gtbLLE3Eudvzrj7wJ90UkYGK9B13pp//X7H/WuO8Y6dFc+L RJNJqFur2gTzbazNwHBEiMo+U7TtkPc54yBgZfQD0KzBW1jVsghRkHGentUxrK1F7iDw5dtYukVx HasYXnOFVgvylie3TOa57wPq97rF9fzz6klzAyK4gEkbfZyXfCjaP7gTJ5BJOO9JgdRp/wDx96j/ ANfA/wDRUdX6oaf/AMfepf8AXyP/AEVHV+hgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABjN RtFGxyyKceoqSigCL7PD/wA8k/75FL9nh/55J/3yKkooAj+zw/8APJP++RSfZ4f+eSf98ipaKAI/ s8P/ADyT/vkUfZ4f+eSf98ipKKAI/s8P/PJP++RR9nh/55J/3yKkooAj+zw/88k/75FUtUgiFnkR oP3kfYf31rRqlqn/AB5/9tI//Q1oAs/Z4f8Ankn/AHyKPs8P/PJP++RUlFAEf2eH/nkn/fIpDbw/ 88k/75FS0UARfZ4f+eSf98il+zw/88k/75FSUUAR/Z4f+eSf98ij7PD/AM8k/wC+RUlFAEf2eH/n kn/fIo+zw/8APJP++RUlFADUjSP7ihfoMU6iigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KoX3/H9p3/Xc/wDot6v1Qvv+P7Tv+u5/9FvTW4F6iiikBka9007/AK/Y/wCtef8Aj2Gym8XTpeXV nBvsY1R7uykn2/M+TGUb5W9cj09K9B13pp3/AF+x/wBa4PxnfTHxbKtpe3MbQWwDRG1uWA3rKpMf ljBY5ByccouG4OH0BnS6v9tg8DXS6jFb36G2kFz5TNCPJ2HJGQ5Jx+dZ3gScza1fi4uftV0LWHEo u45gIyXwvyIoBzk8561va9ff2f4Rvbh7xbRltWC3E44RyuASADnnHABrmvh2qxazq0cepRXsXlxk NHP5mPmf0UAcEDHJ4zxmkI7fT/8Aj71L/r5H/oqOr9UNP/4+9R/6+B/6Kjq/QxhRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUhOBWWdWneaVbfTpp0jcoXV0UEjr1NAGrRWV/aN9/0B5/8Av7H/ APFUf2jff9Ae4/7+x/8AxVAGrRWV/aN9/wBAef8A7+x//FUf2jff9Ae4/wC/sf8A8VQBq0Vlf2jf /wDQHn/7+x//ABVL/aN9/wBAe4/7+x//ABVAGpRWX/aN9/0B5/8Av9H/APFUf2jff9Aef/v7H/8A FUAah6VR1Q/6H/21j/8AQ1qD+0b7/oD3H/f2P/4qs3XIrzWNOazbTLmMMytuWWPIwwJ/i9M0Jagd MCDS1kR3t7GioujzhVGAPNj6f99U7+0b7/oDz/8Af2P/AOKoA1aKy/7Rvv8AoD3H/f2P/wCKo/tG +/6A8/8A39j/APiqANSisv8AtG+/6A8//f2P/wCKo/tG+/6BE/8A39j/APiqANSisv8AtG+/6BFx /wB/Y/8A4qj+0b7/AKA8/wD3+j/+KoA1KKy/7Rvv+gPP/wB/Y/8A4qg6jff9Aef/AL+x/wDxVAGp RVGxv2uppYZLeSCWIAsjkHg9DkE+hq9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUL7/j +07/AK7n/wBFvV+qF9/x/ad/13P/AKLemtwL1FFFIDI17pp3/X7H/WuK8YWwvvEX2hoftUAgCLDc W92yoyu4Zl8pcc+55Cg9MZ7XXumnf9fsf9axfEep+JLDWlj0zTnuLMwkqY4g+ZCr/eJYbQGEX1DH nin0A0PENolz4Zm3XMlqsMJkLLK0S8KeGOCdvrx2rA+H1/Nc6lqED3gu0jijYSx3ck8eSWyoLKuC MfkRXUa3JIPDF+7XQspfskhM4yRC2w/N68Hn8KwPBBuGv7qS41CWaSaESSW7+ZiNvNlU7VfhQNoX jk4yeopCOp0//j71H/r4H/oqOr9Z+n/8fmpf9fI/9Fx1oUMYUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUANPQ1m6L/qrz/r7m/wDQjWkehrN0T/V3n/X5N/6EaFswNPFYmtTz297pPlO4WS7dZFU4 3qIJWwfxVT+ArcrIl1/SY5Zle9i3277JAMkq3I28d+DwOaAOJk8U6ir22oJdW9w7aV5zwRZCQu8s SneN2PlDN1I6HOK17PXdWvp7W2V7ZPPuZI/OwHG1Yw/RXIznI69K1R4h0kXjRq8fk/ZvtBuBjYVL 7NvrnIxj6VYGu6KlrHcC8gWIsyqe4I+9x1GO/p3oA5m28Q390UkmmiHm2+nOIACuGkuGR2GDkjgc dOgPHVser3+lRZaTz3klYvNKXIjVroR7iNxG1VJPGMY7DNbh8SWS+IE0ryS5faqzqyeXkruC9c5x ggY+lXI9e0SWOV0vrcpGMu2eCM4yD3GSBxnk0COa1fxbdWUJFpe2d06wTzB0T5ZNhAABLjJzwQuf wq4niZ5Z53e7tIoon+SDBeWaPyRJvXB56+mMKRXQwXWnXFobqKSIwR5y5GAmOuc9MVnLqXh2a4TU 1u4fMhTyVbcRtV+cY99vHHOOKAOV0jxHcQJcAXYcvHayCWeUyLGJJCrkjeeBkHGeNwzxXSQa3dPo WtXirHePYNKIHhBC3AWMOMde5KnHdTU3/CS6Ck0Uf2yLbLBLOGwdoRDhyTjjBzwfQ1ZXXtGRooBe QqZMbF6Dk4H0yRgZ60DM3wxrV9q0k32kQGIQxurxupIZs5BCs3HAxnB65FYdz46u42umgEEii1vJ YlcYYNDkoCoYtyAeCAeO2DXYXOo2em3KxXLRwI0TzM7MFAClBn16uKo3HiHSomtfs4Fy1zd/ZcRr 91tu5t2fReffNAGZq2vX1jLNYXE8W6RoVSeNNm3zBIWGSwAx5RwSe46nrnL4hupUsplO/wDeR27o sjhc/bVi3cNnO3nkn3yDXXLr2iTRSP8Ab7dkjALsTxgnaD7jJxkcZNN/4SLQg203sAbI+UjnO0MB 9cEHHWgDmX8ZajFb3QcW0k8aqy+UA0e0zIhbcH4AD5IYKeD2zW3p+tX02g6neSQJNLa+Z5KwupMo VAwB2lgGzkcH0q62u6HFHFK17bBLgblfsRnGSe3PHPepzq+lwzyWouoVmjDFo92MYGT7ZxzQBxn/ AAk1zHeSXH9oW9zvsbYjyV/do8kpByC+AcHqSO2fdz+Nb7+zzPvtcRTXEcoUqXIQrtZQXAIwSTg+ mOtbumeJNKvbK4uZoxaRxMqMJtuSW5AAUnOe3r26Vrpd6dcWJvllha2UFmlPAXb1znpjB+lAi1aS i4tIpgciRQwOMdfY1NVLT9TstRRjZXCSqhwwXIK+mQeRxV00DM62H/E+vv8ArjD/ADetKs21/wCQ 9ff9cYf5vWlTYBRRRSAM0Zqhf3NzDNBFbojPM5UeYcBQATnj6Uz/AInHpZfm3+FFgNKiszfq+cf6 D/303+FG7Vz/AM+P/fTf4U7AadFZhbVx/wA+P/fTf4UbtX/6cf8Avpv8KLAadFZm7V/+nH82/wAK N+r/APTj/wB9N/hRYDTorM3auf8Anx/76b/Cm+dqmcb7DPpuaiwGrSZrN36v/wBOP/fTf4VBeXeq WFnNdzR2jRQoZHCM2SAMnGR1oswNqqF9/wAf2nf9dz/6LerqNuQH1FUr7/j+07/ruf8A0W9C3AvU UUUgMnXemnf9fsf9a5Dxhq+rW+vTRWN5cpFDarJGlo8GElJfJnEnITAGMejV1+u9NO/6/Y/61w3j DT4/+ExMraezpNaqVe2tbaR3dSxbd5x6AYPHvk0+gHc6hb3GoeHLq3i8lp7i2ZE38xlmXjqD8uT6 HiszwjoE+iyXRm07TbUyqo32k0khcgk87wMDnIGe5rpLUD7OvGDjoQB/KpTSYFHT/wDj81H/AK+B /wCikq/VDT/+PvUf+vgf+io6v02AUUUUgCiiigAooooAKKKKACiiigAooooAKKKKAGnoazdE/wBX ef8AX3N/6Ea0j0NZmjf6m9/6+5v/AEI0LZgatcpdeFDNHJsu8S/2k99GSpwCyldpwwJGGPII7Ut7 qupW2vjTETf58kcsMgj4SEA+aD6nKYHvKvpXOt4j1DULWNGmZ0uoY7hR5e1omE8Q2EDODtY5BJIw aANr/hDJI1LW98sLtEEbZEwVj5xlY/f3YOSDznnr2qt/wid/pG66026iluWmlIR7clAk3l7+C/Yx gjJ6ZBznNQzeJNVjt5ZkkV7o/aw9n5X/AB7iNXKMe5yVQHPB38YqxeatrNpq0tk11APKgikiMse1 biR2fK9Cdowo45GcnNAjR/4RmdpJEN+htJrmO6kXyMSF0C9GBwASgP3fUVSsvAws9PFmbi2nSK3F vA00DMQoKn5gXxzsX7oXpkYqxpWt3cviKSyuJRKjmbYIQNqBGwA2cOrY9iCeh6Ul9qOqQ6lcSJKP Ii1OCzEHlfejkSPcxbrkGQkY445oAuReHnk8P32lXt68wu1dCybh5asuMLuYtgdeSeSe3FVbXwl5 E0dxNPA0yTRSFkicAqm7AO52PVyevHpVTQPEV5fa7DBNKHt7q1kuACgVo3VlwhxwDhiSCSePwqE6 vqMWs3lrLqHlQPqLRmV41P2aMQhkAzxhmzyc9D3OaALd34Ma5E6pfKguIb2GTdCT8tw+8EfMOVIA 9x6VPe+ExeaxPe+fGYLjyvOglRznZ6YcDkY6g4IzWOPEHiCbS7i8BSI29vFKqGAkTbp5E3dcgFEV sD+91q1c63qNtezafLeFGW7eNLkwqoZBDHIASeAcyEDAOdvY5NAGvr/h461Okv2kRBbaS32lN2dz xPnr/wBMsY9/anvoCzX8ly0/yyXf2kqBg4+z+RtyD75zXJXviHUNS0VmkuhbyNb2jpbxxndK7keZ z1+UgjA6YOa1rTxHeSeKba2Mu61nnuIHiZADFszsPHIztP3jz1AFAEp8IzSJbJdX8cgtYY7eHZb7 fkWSNzu+Y5J8pRxgDJ4q/wD8I7/pctx9oGZNRW+x5fTESx7ev+znPvWJr+rXv9o3dobkwLBe2aQQ KnM0bPGzPnr3YccfKc1b0PWNTvtSiS4mhG8yia1OA8IUkADA69AcnnPFAFe78CTXNpPa/wBqYt5l mUq0ROwvLJJuUbgM/vADkH7oxirC6Hqq3d3ZR3qxWV2ks7XEcOJEmkG0hSW6ZJYd+MZ9auqaveza ndWrXIh8nVbOGK1WP5pYi0LM+evVnHphSKhtPEeuPp5u3Nv5/wBneW4tXUlrVgwGMAZIUFsgnJxx QBbj8E3EWofbxqEQuQYXTEDlA8YkUZzISQVlYYz1AIPGK1R4bVvD+o6ZPclm1BpnllRdoDSZztUk 4A9Cf51l3OrXSb3tdQtrny4ZylzJCwVGHlYDFeD948gcY9QaoXmryahaxWs11cRsLqT/AEldqj5E Vhh1ODnfx8uTgjAIzQB1WiaM2mPNLLJFJLLtUtGjjIXOM7nY/wAR7jrW0a85h8T6qdMSZCkM0Vrb PBalC32p3ADrz83DZXjkEZPpXfWlzDdI5hkV9jmN8How6g+9Aytbf8h6+/64w/zetLNc/d2d1eap fR21/JZv5MXzxorE8v61dtLG8htIYpdSlkkVArOUXLH16VUl1A06Kp/Zbr/n/k/79r/hR9luv+f+ X/vhP8KkCO8/5CWn/wC+/wD6AavMwVST2GaypoZo9V08yXLSje/BUD+A+gq3qOoQaZZvcz7tilVw oySzEKoA9SSB+NAHFW1trNpef27JaEG/LrcqJmLxRsB5OU2gAptUHBON7n6UrG41680bTpbS81R3 ubS1a6mki+7I0sWWj3Lj/VtKT1GAD610UHiuOe6vbWWxuPNjuFgit0QGSTMKyNkE4GAx744HrVm1 8TaSslpYWcUxHlLhEi2iJclACDgjBUggA4xzigRiL/byeJJIjPcrBHcosW5WdWgCDJ4Xbkndklgc +3Bp+d4ki02SKCW9uJVaATXBR1yu/EhCFNytt6hNwA6AGuy1DXrTTr2O1mWUs8LzllTKpGhG5mPY DIqivjXSvs8kreehBTajINzhztUjnABPrjHfFAGTZ2+uXMkEU99drbGC6cNEGUk5i8tWLqGzzJg4 GQOc85z7SXXlSS4uotR+03UdkZGUOFQeVmT7qkj5wQQoB57DmuwHiSy8uRnWeMx2jXbq8ZBCKSD9 TwenXtVOLxSP7bk02WzlyJZVEkYyAsaRsSR1/wCWg6ZoAwIdQ1SKC3TVpdSt4gJ44nihIkebzT5Q ORzmPGM8E53HNQzx6vH4mfULOxlFybieItLETlfKcREkIAFLrHyCThjk9cdJJ4l0m9iAltpXmjlj 8q3eMF2dt2wqM4z8rHkgjac4pth4tjmWVXs7lplmmVYYo9z+XGwUs2enJHHvxmgBvh1786giyNey W32NDO12hBW5zyFyB2znHHAx1rY8R/8AItan/wBesn/oJqtaeJ9Ov9QFpaiWU4QmRY/lG5A6++Cp HOMds5qz4j/5FrU/+vWX/wBBNC3A0ov9Un0FU77/AI/tO/67n/0W9XIv9Un0FU77/j+07/ruf/Rb 0+oy9RRRSAyNe6ad/wBfsf8AWuC8fpbnxWP3hgmazAkeW6hhR0PmIVUyAnOHbOPVfQV3uvdNO/6/ Y/61wPxBuVsfEc11D58M32ONZJTJEkZH71lHzxtk5Vh1HLKB1prYD0+zVVtIwn3doxznt69/rUxq GzbfaRHOflHOOvFTGkwKOn/8feo/9fA/9FR1fqhp/wDx96j/ANfA/wDRUdX6bAKKKKQBRRRQAUUU UAFFFFABRRRQAUUUUAFFFFADT0NYtleQWGnald3MgjghuJ5JHI4VQSSa2j0Nc+unrquh6zp7OY1u pLmAuoyVDEjP6047MCwPEWlMrMLk5V1QKYn3MWGV2rjLZAJBGeh9KmTVNPk0578SoLWPcXkYFdmC Q2QeQQQeDzkVQuvDCXGoR38dw0VzEYmibYCFKLIuSO+RKwqYeHYxoVzpzTuWuXeV5goBEjNv3AdO DjA9qQD/APhINLxnzW3Finl+S/mZADH5MbuhBzjoRTD4l0UsgF6j71jYMqsVw5whJAwATwCaibw/ ePdxXzaoxvYvMVXMI2BHCZXbn1jU5z1z24qCz8G29nYy2kdzKUkht4izAFv3RJB+pJ5oEWIfFOkP GZd8sf7yaMKYH3Hym2uQAM7Qe/Tn1q1/wkGlMAFu43Ztm1UUsX3LuUgAZYEAnI44PoaxpfA8Mkqy m4DOklw0fmwhwFmk8xhjPZuh9PWrkXhWCDULa+imZJrWNIIVVAEWEDBTaOOSc57YGOByASReKNIe zhunmeJJYVuAJIXBSNuAzcfKCe544Par9/qNlp5iFxJtaUkIqoXJwMngAnAHJNYn/CKN9gayXUHW GSySxmPlDLxJuC454OHYZ/StTUtKe8vLS8gujb3FsHVW2bgVcAEEf8BBB9qAK1v4o0uSytLieTyB cQxy42MwQOcLuYDC5PAziptY1mHS7mygaEvJduyxsWVEBUE/Mx/Qck59jWHceA47mxjtG1CTykt4 oV3RhmXy+QVzwuTjPHPtXQ6jp9xeiLy7sRhAd0bwiSOTPqD6dsGgCO21i0dB9pT7LP5TzmKTBIRD hmyuQRyD16EU7+3dMaVo0mLuvJ2Quwzs3gZC43bcHHXp61kL4NWKPFvftCzQzwOViXG2VgxCjouC OOvXvVlfC6pfxXYutvl4zsjCu4CbMMw6jjPI9PQUATw+J9Imt7eZ5mj86JJh5kLDYrnCljjCgnOC Tg0TeJtIi83FwS8fm5Cxt8zRg71BxgsMHjNZcfga2BiMlwkxWCK3cyW6ncseQMZPBxwevQcVek8L wzW6wGd8LcXM+QBn98JAR+HmHH0FAFiPxFpUghBldGlEeA8LjaX+6GOMKSegJGePUVWHirTha3Mj OI5YDcfLKGVW8lmDYfbjjbk4yRnkVUl8EvKUaTUnd0MDKTCDtMRUrt54UlQSB1555p9z4Oa8tJbS bUJDbt9qZF8oZRp9+4574EjYH50AWl8T2KTTpcmO3jhMu5nYkkIUGQAORmQDrnpwali8Q6fKbkMJ FENyLcDyXLs3lrIfkC7hgMe3aqN34Kiup5JftkqO/mFSEHyszxOD74MK/XJp83hSW4kkln1FpJJL n7Q6tCDGx8tY8bM9goIyTz60AS6j4s0qx0yS9ikE+23FygjUkMhJCkkDC5IIGfSrttrGli9ayhmV ZmldMCMhWkAywDYwW7kZzWKfA5XSn06LUZEgltEtJP3QyyozFT7H5yD6+1XLLwlb2OsPfoyNm4ku AGiBcM+7d83plj2zzjNAGpa869ff9cYf5vWjgVnWv/Idvv8ArjD/ADetKmxhRRRSAz7w/wDE00// AH3/APQDTtT0+LU7N7WYuqttIZDhlZSGVgfUEA/hU1zZw3WwyqSUbcpDFSDjHBHsaj/s2D+9P/3/ AH/xoAxYvCVvHPJcre3f2t5hMbjcu7d5YjIxjGCo6Ypz+ErSRLeM3FyYoSr7GYNucNv3EkZBJ6kE ZzWx/ZsP9+f/AL/v/jR/ZsP9+f8A7/v/AI0wK11o9re3f2idWcm2ktWQn5WRyC3/AKCKqQeGYra1 aCO+u8EIoYsuVC5wMbcHOec5zWr/AGdD/en/AO/7/wCNJ/ZsP9+f/v8Av/jQBhf8IXYLbeRFcXUS tDJBLscDzEdi7A8ccscYxjOKmuvCVhezTSyvOpmMvmBHxuWRERl+mEXpyCK1/wCzYf78/wD3/f8A xo/s2H+/P/3/AH/xo0Awx4Nsw6yC6uhMoj2ShlBUoW2kDGM4dx0wQTT4vCdvAC1ve3sUzNKzTpIu 5vMIZs8Y6gEEDjtWz/ZsP9+f/v8Av/jQNNg/v3H/AH/f/GgDKXwtZpeWcyyzeXZlTDCWBVNq7QAS NwGOwODVvxGf+Ka1P/r1k/8AQTVr+zYf78//AH/f/GmyaTbSxtHIJXRvvK0zkH680dQLcP8Aql+g qnff8f2nf9dz/wCi3q8BgACqN9/x/ad/13P/AKLehbgXqKKKQGRrvTTv+v2P+tefePXuNO168lin vxFNBGJN12Y4uRLgLhD/AHSOoOWX1r0LXR/yDv8Ar9j/AK1wt5d3+o+INSuYbfX43gmaz36akJid Y2JUnfk7vmNPoDPSbIAWcWM42jrn09+anNR2+fIXO7OB97r07+9SGkwKOn/8feo/9fA/9FR1fqhp /wDx96j/ANfA/wDRUdX6bAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADT0NZuif6u8/6/Jv/ AEI1pN901kWEzWRuo5beclrh5FKRlgVY5HI+tC2YGzRVL+0l/wCfW7/78NR/aS/8+t3/AN+GoAu0 VS/tJf8An1u/+/DUf2kv/Ptdf9+GoAu0h6VT/tJf+fa7/wC/DUn9pL/z7Xf/AH4agDiIltE8Q3z3 ywBxfkqZkmL7flxtI+XHpVwtr09yqrqVzEsy3hO23T935cuIwMr1IPfOccetdV/aCf8APrd/9+Go /tBP+fa7/wC/DUAcNZa9q1zfSq93MLhLizRLRYBsZZIoWlyduRje7dRjHPFSy6hr8WnaY017MouR LJPKYghjZdoRP9W2AfmPI5PfoK62GS1gnnmjsrlXnYPKRA2XYKFBP4AD8Kn/ALQT/n2u/wDvw1Aj kxqurRatZi5uWlDrCGt7eEryy/OcMmWGTnIYbehHFZsGva7JAdk9zvuokZBLb5ML+bGGUgIACFZs jLdOtd6b9D/y7Xf/AH5agX8Y/wCXa6/78NTGcXd3up2moX9mktxGDeoi3YhUF1FtGfmYI2SWJ/h7 Y44q94Iu7/UNSuL2/jkSaXTLPzA0ZQCUNPvGD0PTI+ldP9vj/wCfa7/78NQNRQf8u13/AN+GpAX6 MVS/tJf+fa7/AO/DUf2kv/Prd/8AfhqALtFUv7SX/n1u/wDvw1H9pL/z63f/AH4agC7SGqf9pL/z 63f/AH4ak/tJf+fa6/78NQBHbf8AIevv+uMP83rSrMsS8uqXdwYpI43jjRfMXaSV3Z4/EVp02AUU UUgCiiigAooooAKKKKACiiigAooooAKKKKACqF9/x/ad/wBdz/6Ler9UL7/j+07/AK7n/wBFvTW4 F6iiikBk68GENnLtJSK6jdyBnC88/rT49Y0tR8txGuTkgKev5VpEAjmjavoKLoCh/bemjpdL+Ro/ tzTv+fpfyNX9o9BRtHpRdAYlnq9hHdXxacAPOGUkHkeWg/mDV3+29O/5+V/I/wCFXdgz0pdo9BQ2 gKP9t6d/z8r+R/wo/tvTv+flfyP+FXto9BRtHoKV0BR/tvTv+flfyP8AhSf25p3/AD9L+R/wq/tH oKNo9BRdAUP7c03/AJ+l/I0v9t6b/wA/S/kf8KvbR6CjaPQUXQFH+29O/wCflfyP+FH9t6d/z8r+ R/wq9tHoKNo9BRdAUf7b07/n5X8j/hSf25p3/P0v5H/Cr+0ego2j0FF0BQ/tzTf+fpfyNL/bmnf8 /S/kf8KvbR6CjaPQUXQFD+3NO/5+l/I0f25p3/P0v5Gr+0elG0elF0BQ/tvTj/y9L+R/wo/trTf+ flfyNX9o9BRgegougKH9tab/AM/K/kaP7a03/n5X8jV/A9KMD0ougKH9tab/AM/K/kaP7a03/n5X 8jV/aPQUbR6Ci6Az/wC2tN/5+V/I/wCFH9tab/z8r+RrQ2j0FG0elO6Aof21pv8Az8r+Ro/trTf+ flfyNX8D0o2j0FK6Az/7a03/AJ+V/I0v9tab/wA/K/kav7R6CjA9KLoCh/bWm/8APyv5Gj+2tO/5 +V/I1fwPQUbR6Ci6Az/7a03/AJ+V/I0v9tab/wA/K/kav7R6CjaPQUXQFD+2tN/5+V/I0f21pv8A z8r+Rq/gelGB6UXQFD+2tN/5+V/I0f21pv8Az8r+Rq/gelGB6UXQGf8A21pv/Pyv5Gl/tvTv+flf yNX9o9BRtHoKLoDPGtaaDn7Sv5Gnf23p3/Pyv5H/AAq9tHoKNo9BRdAUf7b07/n5X8j/AIUn9uad /wA/S/kav7R6CjaPSi6Aof25p3/P0v5Gj+3NO/5+l/I1f2j0FG0egp3QFD+3NN/5+l/I0v8Abem/ 8/K/kf8ACr20ego2j0FK6Ao/23p3/Pyv5H/Ck/tzTv8An6X8jV/aPQUbR6UXQFD+3NO/5+l/I0f2 5pv/AD9L+R/wq/tHpRtX0FF0BR/tvTv+flfyP+FH9t6d/wA/K/kf8KvbR6CjaPQUXQFH+29O/wCf lfyP+FH9t6d/z8r+R/wq9tHoKNo9BRdAUf7b07/n5X8j/hVeS+tr2/sVtpPMKzFmwp4HlsMn8SK1 to9BSbRnOKaaAdRRRSsB/9k= ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image016.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEVAhwDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AFFJmj8aAFooooAKKQnAyelQw3dvOxWG eKRhyQjgmldAT0UmfelpgFFRyzRwJvlkSNem5iAKY95bxorvcRKr/dLOAG+lK6AmLAHGeaNwrM1K 2uZZRJbDDiMgNuA7j/P41CbXUHJV3bZsxjf1ODU8zvsBsbgTjvS5rIntbwXM8kICl2Uhg/OABkfn moGg1XcUSR8hc8vx19aTm+wG91parWizJERNnduJBJzxVmrQBRTXJCkgZPpVGxuJ5pZBI6so+6AB kfkaG7OwGhRSA8UtMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTNHaqMOqWs99JZo5 82PJOQQDjrg98ZoGk3sXs1nX+omymjzHujIYsR1yOgFaGR6iqd7HYkJJdqh5CKW9ScAUmxwtfVFU a9C6rsglZmXco456+/tQ+rmJwzw4j8lZG+YbhknjHfpSTtpVhdwJJGFmfhSFJwM459Bk9/WrcmnW UyrvhRgqhBnsB0FLU1fIrOzsVv8AhILfLjyZhsOCePz61btNQjvGdUR12gE7sd6jOmWRcMYl65Iz wfrU9va21rnyUVMgDg9hT1Jk6dvdTI9XnNtpF5MDykLEfXFcL4OlMOvIhziWNl579/6Gur8WT+T4 enGeZCqD8/8AAVy1tGdN1PQZzwJY1z/wJiP5MK5KzftE+xmtjT1vWmh8SWkcV6VgRlWdVOADu5z+ FdE2tadHHC7XSBZuYz/e5xxXK6/Y2w8V2SCIbbhlMoJPzEtg0viy0it5tLtYB5cYyq4PTkUKpOLk x2NvVp9K1TTpI570JBHKFd0PRvTpWH4pSGPS9JS3fzIVBCN/eXAxVnxFpdrpXhlorZSA0yFixySf WqHiAA+H9DHrH/7KKVWT1TWtgOxtdVsrq4a3guUklQfMqn/OaE1iwkM4W5Q+QCZf9kDrmuVs7WKx 8erb267IgvC5z1jzVWz+/wCI/wDrlJ/6EapVpJbCsdJrGt2p0Kaa1u1DOCsTKeSwxwPwpvhbVFvN NWKa5827XczhjyF3cZ/SsO0tYZ/A00skYZ4Xdoz6HgVY0m3ht/B1zfxJtuWhkVnBPIBP+FJTk5qX kFjo01/TJLr7Mt5GZc7QM9T9elWLzUbXT4w91MsSk4GT1/CvPbiygh8JWd6keLhpyDJ3xz/hWn4h YDVNJnvVL2ZjXcMZGe/9Karys36BY622v7bUbdpLSRZkHBx6+hqjpQC3U5O0ZHPGO5pmkaNHp32m eyufMS4GY1I+VeuOR1HOKztSiMWiag3nI5IU/KTkfN+HFaOUrKTA6iV8QOyEZCkg1kWGsv5UKXI8 yV2xlABxhT0/4FWLpEb2Oq2EKTSNDe226RWbIBIPT8qu2l5pH2uKzia6BEhRZScK7ccZ/AVPtG9d gNKXWsW8brAQ0qMyZYHkAn+lMtdczEiyRO0gDbyMdQD298Gs+4u9Kt7420jXTsh2SSAZUM2ep/4E ade3GlaZdiJjcl1GXMXITdnBJ/E/nRzve4HRQXImgWUrsDDOCwP6ipgc9K4fWbi2N/ZWWLh7OMbn VBzJkZBHrW7a67YRaP8AaEEqQQkRBWX5iccAetXGsm2n0CxuZpM1lQa/Zz2U91l41g4kV1wy+nFL p2tW+pvJHEsqSRgMUkXBwehq1Ui3a4i6L63MwiEqmQkgKDzkZz/I/lU+72rmrNt+rgk7WMrko23P f0P9Kuanqc1lcJGpt1V04aV8YOepHpj/ACKpM2lSakoo2c0uazILuaTSWuXaIPtZgw5XAzg8E/1p mm6jJeXMiM8ZCoG2qjAg5x3HNPdGL0dma1FJnijIoAWijIooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKSgBaq3V/HayIjqx3KzZHYKMmrBOBkniqVzaw 3ciuZiGVSq7WHQ9amTdtABtWtxPHEDne23d6Hng/lTl1S0ZsCYdsHsckj+hqu+kRySRuZpNyNu7c nLH/ANmNV7qxt7C0R5ZZmRXUAKoJJyccfVqhOdw0NiKVJ4hJG25G6GuN1GcG8vYYUkCvIjSKRgow kUHB9GHP4V1Vg8AsovLl3x7chjxweenbrVkmLnJXjk1bTa1NKVRQdzz+aR4tLljPm/OF2necA4fn 9Bj3xV+eBZLGaeYMxF5BuLE8L8mePxNdgfK6fL0z+FB8s8fKc84pchs8V2RgarLFDrVu0sBlR4PL VcfebeuPy6/hWF5jTvOF80RtIDtLEkHbJ1PrwP0rsYNRtri7ltxkPFnO5cA4ODg1YmljiQtt3EDO 1Rk/lTcLk08QorY4NXkEUALSbt+VBJznER/xp6SZhuxI7AIQCGJwSJJDgkdM8c/Suzmig8+O5ILP ECgC/wC1j/AVKZohIse3O7OSMYGPWlyMt4tdjlvF86jQ7CMBgHYMFfrgL39+awtRsNT05bSe9k3o GAiG/dtxzj26V3Gq6Jb6y0DyyyARZKhCMHNU9TOmavC9rcTSRC3nWMkD+M8AdOnNc9Si5Nv7jnV3 sZviKZF8TaTcMwEWEbd2xuzS+L3WS/0p0YMpY4IOR95av6xp+nTWkEFwZj5CYWaPGR0XB/Si40HT /stoJbqQJZKWUgjJGd2Tx7USpyd13sFn2F8af8i+f+uq1h+IP+QBof8A1z/9lFdXqFraa1p6xPOR E2JAynBx+NQXfh22v7K0tnll8u3XCFSORgDnj2p1KUpNtdhbbmNG6yfEIOjBl2jBBz/yzrPtZUST xEHcAtHIACep3Guls9C03R9Q+0LKVkfIjR2GF9cVA3h3R9Rubi8SbesmQdjjarHqR71LpTtfzDzK Gnc+AL3ju38xT9MlR/AdzCrKZVjlygPI5J6fiK3tP0q1s9NewVzNC+d28gk569Kr6b4atNMuJ5Ip JHWVPLKSYI25+lUqctLdrCucreSofA9lGrqXFw2Vzz/F/iK6O5urC7MGiXcT+ZJEpViBgHbwQfXi ki8GabHdibMroDuETEbf5Zq7q3h+11co8heOVOBJGecelKNKaQGV4Qlkilv9OaTzI7d/kbPHUg49 uM0mqgf2RqOMjCqDkH+971tabpVpodpIsRIH3pJHPJxVBLBdTsbqFZtqyjGdoO3DZ6ZquRqHK9wM 6351nQB6WgJ/Jqp2EE8tvZF57eK3S93JvJDs+eRXQ6Z4ej026F1NdvPIq7E3jAQe3NQweGlS9jf7 az2kUxmSHA4b61mqctLjuQXCrperyzTJHcadeSjzMgHypPf9aq+IZ43bUIrO3jBRU+1TnqeRhRWl P4Z826lxdstnLKJng2dW9jSXnhg3V1dyR3jRRXAG6MJkEj19qp052aSFcrN/yGPD3/XD/wBlrMPO hN/2FP6V1B0Um706cz/8ecezG37/ABj14qAeHFOmTWjXB3POZ0cL90/Sk6cguUorRL668QW0kgQO 8eGPQHBxVrRrlm+0Ws9tGmpW8YVmCj94v8Jz+VOTw0GsLqG5uXlnuWV3l2gYI6YFTadpE1i9xczX P2m7kQJuYbRgdBxVwhJNaDKGn+c2sgu0RIdtwCoDnnp8xNVtbmunvx5tqIVUFVfcvzjPGDvXt2rQ 0+2ukv42mCbBknbKX5/E/wBKXWlVr1FaCJy8e1Webbzu9M549q16HWpr2q9CWzJXw4MBRlHyQQMd eepB/M07SJmluJS6RhigIKqASM49BS2gP/COHAAzG+MMGB688nH603R3iaWYR7MhRkLGi/8AoJNa rY4qv8Rkdr4jW51O7t/sxS1tdwe6ZwFDDtj86oSeM3JlmtdMmmsYjh7jdge+BisvVx4fbWp8xX8s gfMyWw+Qt3p1/qmjXlvbWsltqNnZQnBVIwqsOOvNY8z7npxw9N2fI3f8PxO6triO6top4jlJFDKf Y1OKx3SYQ2503PkCIBNrDbjjHB68VJF/aDSZlJVAwxgjkZGf61fMea1qalFYzDVU+WMNjBJZmB5z 29sU6KTU2lyVby8/7I78/wBaXP5BY16KaD706rEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFJmis3UtSNhLCpt5JFkzlkUnGBwOO5NFxqLk7I0cmsS+1e8tdSe3jsmlQoPK2qfnY +rdABVjT9SkupLhJ7YweTgklsjnsT6jv9awdelT+1WJu4mHlriJ5JF2+42cHNTJ6aG9GnefLJGpa 315d2moxXkceYUIEkSsFY4ORz1x6+9edWdnc31x5Nohkl2lsAgcD613GiNu0/UsXSyL5fESM7CP5 Tzluef6VgeC/+RgX/ri/9K4665pxj3JqpRm0iXw5rl3Yaktjdu7RO/llZCSY26d/ftXZ61E89lGi B8maPlOoG4c/hXn/AIgx/wAJTc7Ovmjp64FbvifX9R0zVVgtpVRDEGwUB5OaKNX2afN0Zk1c0ZdP EPnqlu7xo8Sj5dxZAvP15qq1ncBJFe1mMv7stIFyCo2ZGP4uQTj2PrVfSvEd9qniKCPOy0+YFQvX CnqfXNN1vxLfy6o1hpRK7GK7kUMzt3xmuj6zHl5ifZmgLQgOjW1wFa2VWbZllwFxg9/cexqTTrad dVhla2aJfL54OANuMe3PbtWf4d8S3kupDT9S+Z3JVWK7WDDsRVnxV4im02VLO02iZl3O5Gdo7YFH 1mPJzh7PUJLS4e6vGEEgRXYlimQwMingfxcA8Ux7OUK6/ZLhn8lNrkfdA25B7H6dsVjweKNZ027Q ajudDy0ciBTt9R0rqvEGuDSNOSWIK803EQPT6mnHERcW+wvZmdeWc8kcyx2khzK5BK8kkNjPrgkY PoR6U+Sym2blt33s85YhTk/Nx+Yrnx4k1+2MV3M7PA5yokiAR/YEDNduusW7aH/anPlCPeR3B9Pz 4ohiYzD2ZNpqGOwVShQbnKqRjCliRx9MVyiWV0zyyTWjMksyzY2ljgSnORjrg/lWdJ4k1+7866gY pbxEbwiDag9yc11fhrW31iyczhRPCcOV6HIyDURrQqSsb06jpp2MuewlVFZbVySJi+EOSTKpH5gV Vt9Ou/NVHtZcNEcbk4HEuAf++hUV54m1fUdQeHStyRpnaI0DMwHc5rU8K+IrjUZ3sr0q0oXcj4wT jqCPxqY1oSlyo1WIklaxWFlMwH+izopgAOI+QuwAjH+9k4710+khhpsAeEQsBygGAPw7euK5TWfE 2ozao9hpQ27HKAooZnI6/QVN4d8SXs2pDTtR5diQGK7WVh2IqlXhzcpnUqOatY0/EiNK1skcKytl s5yTjjjAZcg96x77f/wi2oeaiJJ56E7eD26jJxjp17VqeJILZJYp2SEStkFn28/99MKybsg+EL3b 5O3zlx5W31HXaTzTq/CzXT2JzdpZX09tNc2quY4OXKtgr74611ng3XLi5lewupTIQu6Jm5PHUZ70 3wIoez1BSMgsowfoaxPCpMfia1APBLr/AOOmuKneDjJPc52eiTvdLOGhwY9oyCueef8A61QC51Hv Ag/4Dn+tYnibxJcWN2LCwwJsAu+NxBPQAetZ2n+J9VsdRjt9VLMjkBhIgVlz0PGK6pVoKXKTY6ua XUBgpCrAp8ykZGcn39Kbuvkz5dugJB52jk9u9VvE2uNo9pGIQpuJiQuRkADqa5RPEuv2hiuJ3Zop OVEkYCuPYgCipVhCVmCudZr9hd6toiwRKonLhiGO0ADNZ9jpl/pfh42zITM1x5mIjngAHr/wHFWt Z1uZPDUOpWTCNpWXGQDgHORUnhrVJ77RZbu9kDMkjAsABhQAad4Op52HFtO5E5vvs+D57FXGPkOR yfbntTFutUZd7rMGXIwI/UjtjnjNYU/ibW9RuJW08NHDGC21EBIX1JNbvhXxBNqolgutpmiAbeBj cPp6/wCNEa8JS5Ube10+FFyRtSutKuY4Ri5ZtitJ8oAI6jimeHNAbS42mupDJdPx94kKPQZ7+9c/ qHifU7/Unt9I3KiEhfLQMz46nmtHwx4kuL66awviDLglH27SSOoIqVUpyqIxlrqddTXGUI74rh9c 8SajYa/LbRTKIEK/LsBOMDP86teH9ev9W1q4ErbbYQsyIq8ZyMc9+pq/bxcuUViPw94c1HTdZW6u RH5QVh8r5PNTammoXl87/ZXQRkqhWNiSAeDkMB71W8N+INS1HWlt7mZWiKscBAOgqfxL4kubW9Gn 6f8ALKMb3Chjk9ABURnTjC62NKc3CVzSiiuxoUMMNqEdiRLG/PHPPJ7nnr3p+kW13BcSyXEMcYdR jae+eR1PFc9pXibUrXVEs9V3MHYI29ArIT0PHatfxFbat9usr7TB5og3b4S+A2fUd62p1lKOgo0/ aVNXa5iXyW1lql01h4iSzaSQtLEyE4bvzVeRxdoYbrxZE8DffVYzkioLVNQmvr6V9Biu5Xly6yc+ WfQGrn2fUP8AoUbX8v8A69Rv/TPYty6N6/8Abp1N5Omn+GC9m/ypAqwt9cBT/Ksy01+8C6REyPKZ 2dJm25JIyOPTGMn2q5q1rc3egWttDAY5HaIMqjPlAYJ/AYrMtdOv7S4sy8Msq295Llgo5Vl+9j0y a0d7nDTVNwfNvdl6XXlvBbyQi5hQylAdoxIQDx9OKbo/iVG06BblZnnAjDMQPm3nAP0zVaHTrxdM 0yM2zh4riRnBH3Qd2D+tUrTTNRS2DNYzAxpbjaQMttck459KLu5fs6Ljb9TZHiR5dQslhhf7NMH3 krk5Bxnr0GMmrMfii0kt3kWObIKhEIGZAxwpHPQ1kWVhfQLprSWco2ieNxgfJvPBPtUFpp14lpKJ 9OmZRDDAVHD5Xdl0+mRRdkulRf8Aw/mdnZ3a3trHcRhgrjIDDBH1qcHNUNJNyNLt/tgInCfPnr+P vV4OpwQcg9xVo4ZKzaQ6imiRScAjPWjcKYh1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNdwiks cADJoAjNxErBTIgJO0AnqfSub8QzpdSQwwTyeYrMGjQEgkY64ZTxkd6csok1ffE0bRNKCSB1xj/P WpNc01ZruBoba1Msm4M8qgkkDjjIz9ecVmpOSZtQspq4zw/aM8F5DcNMySKFKMCFwc5xlmP+RWTf QW+lahNFFNqUmyNC/lyKNi9sk9R+HFbPhlXSS6DQRRgbR+7RV55yOCc0ai16msOYrKKVXh8uJmC4 56lm64GOneiysdKm41ZIh0i4Etlqi5u9yx8i5lV8ZU9MVwtle3NjP51q5SXaVyBnj8a7zSraa2sd TjeGJYwGCyJEI95wc8Dt6Guc8FgHxAoIBHlN/SuSuuacUc9Zrndibw7ol5qGpx392jiFX8xmkHMj ZyMfjTPHH/IeX/rgv8zXW65cy24h8l8Ek7gHC1xfiwltRt2ZizG1Qkk5z19KKtNU6Vl3J5Wkpdzt 7aSOxS0tIbcBSi8jjHT865Dw6AfGrZ/vzf1rqZlzeWGVBO1SOee3auW8N/8AI6N/vzf1q6u8PUJJ JJoSXj4gLj/n7X+lR+LefFEmfRP5VJN/yUAf9fa/0qPxYf8AiqJfon8q55fBL1JOh8ReGrnWNQju IZoUVYgmHznOSew96y/GqNDFpkTHJSIqSO5G0V0uqeJLHSLhYLkS72QONi5GOff2rnPHMizf2dKu drxswz6Haa2rRioSa3EirrGqWV14YsbOGXdPFs3rtIxhSDzitXT7WS8+H7wxcyMrkD1IbOP0qL+y tAs9Fs72/hkzMi5KMxyxGegNdDo0unx6PE1kTHaZOzzDjnJz196dODcryfQGzkPCd/aAXGlXq4ju jwTxk4xtJrs7PRrHTkmFlF5RlXDfOxzjp1PvXL+KNBiMb6rYFdoOZlQ5H+8P61q+E9Xe/wBMZLh8 yWxCs5PVexP+e1FL3Zezl8gZyuhXi+H9ekS9G1eYpD/d56/Tiu6stE0u2uRe2sIWRgSHDscg/U1m eIdDt9Zha5s2Q3kY/hYHePQ/0NZ/gnVJPNfTJiSoUtFntg8iiH7uXJLZ7A9TO8Mc+Lzk55l/rRP8 vj8beP8AS1/pS+GP+RvP1l/rRc/8lAH/AF9p/MVivgXqPqbut24iu1lmlVTIzFC0kmAMDjg8VRv0 iTwnemOSOTdMpLI7N6dd1XdXunGpMAdRQIMZACxnp0ODVC8l8/wfdyNJuZpEJBl3lenB4GPpiuyr 8MjpnzKkrk/gL/j2vv8AeX+RrB8Nf8jRa/8AXR/5Gt3wIwWzvyTgBlJP4GsPwsDJ4mtSOxZv/HTX H0po5ibVpY4PHDTTNiNJ0ZjjOAAKj8UX9rqWqxT2ku9BGFJ2kHOT6+xqTVYUufHDwSjMck6Kwz2I Fa+o2HhfSrlYLmGcSMu4bWYjHT1o5ZS5knpcLlTx3/x82H/XJv5itC70KfWtA0lYJY4zFCCS+ecq PSs/x3j7TYY6eU2PzFb0etWujaFprXKyESQqF2DPRRWiUXUkp7C6GZr1lJp/gu3tJXV3jlUFl6Hk 1J4TiM/hS7gU4aR5FH4qBTvFF5FqHhSK6hDCOSVSNwwe4qXwTIsfh+RnYKonbknA6LVJL21ltYOh z3hi/j0rUp7a9XZHMPLYkfdIJ6/ma7W00XTtOEk1nB5bvGVJDscj8TWL4l0GDUYZNQsShuEGZAhB Dgf1png7VZLmznsZiWMKbo2PXb6fh/Win7j5JfJhuZXggD+35P8Ari38xTdHGPHJx/z3l/8AZqf4 H/5D8n/XBv5im6P/AMj0f+viX+tYx+GPqMh8SqH8XSowyrPGCPbArv1lgikNrGmwquAAMDGK4LxF /wAjjJ/10j/kK7B1J118ZHyH5h346VvR+KXqVGKluch4M/5GNP8Arm/8qfPz8QMdvtaf0pngz/kY 0/65v/Knzf8AJQf+3tP6Vzx/hr1J6h4tG3xSMcfLHXeNdbbxbfZ1Gd2enFcH4u/5Gkf7sddg5V9Y XnKgYxxwQPzropO05eonsctcyarqOv3toupTWkyM3kQqpAdQODkHvWRLf3cVo5m1y8S7Q7WtmDA5 zzznFdNF4j/4nd7JevbQWtqWRVI/esR3HseaoXmq39zG2r/YbCO0U/u1uUHmSgdxWsku57FJyuk4 q2nbftsdfbSN/YcUiu5b7OGDsOSdvU1xWn+INZhWzvrm7WW0nm8pkZBkep4H+cV26XAutFFwFKeZ b79p7ZXNect/yJ2nY6/bWx+VXPSxz4SMZcykt3b8z0efVLG2nSCe6ijlf7qMwBNLdajZ2WwXVzFD v+7vYDNcBqqPdanrcS2UtzOWQRyIufKxz+tXtVtxBdWN5qkDS2c1osErEcxN6+3/AOukqjJ+pwXL d7/5XOyuNQs7SFZbi4iijb7rMwAP0rF8U62bHSozZXEYlnYBWBBO3uRWfrltpdpHYEtNclIGS2tw A4cEfeJ9sjn2rDkhjk8F2ErorSLdGNWI5CnJI+lEpPVFUMND3Zu+/wDmdvot1G9iYJNVhvZ0BZ5F I4HuM1Xso7e7kZbTVEl2bdyxnpj6Gublijsb7xFFbIsSLagKFGAMgf41No9usWuaeluBEZ9NyxUd WOeT+lHNsOVBJSkn5/hc6CNbW5uTb2upRGaNQrIhyeM+/vVuHTbhJi7XTFd2QvJ4/Ouc8L2tnFqC Wt3EYdUs92DnHmqe/vXZxTxylxHIjbDhgpzg+9VHVXOWu/Zy5UyYdKWm54piTRy7vLdW2kqcHofS rOUlopAc0tAwooooAKKKKACiiigAooooAKQgEVDcXSWyqXVjuO0bRnmiO5E1sJkU/MuQp4P0oC5h vB/xNFKCVR54yoTC446c/Wk8TNHH9nleGZ2XcA6OVwCORkA8n/JpIoLl75Lh7QqzOC46BeeudxzU d9o+pXV9NKXjeJmyga4kTaMdMLxWMb66G9G3PeTsTaC9sst5NDC0MQVBu/gwAeBwOR369etYmrXF rqN/9qtppSpC4ZrN3C7ecqcjGa39K0y6hiuobyUNDKoVUWVn28HPLc805fC1iiBVmvFUDAAuXA/n VNNqxtGpThUcmyjowiaw1OVLkSO6nzEWIxhDtP8ACe59awPBX/Iwr/1yf+ldvYaRbaY0zQmRjNje ZHLZxn1+tTh7OJwAYUfoOgNRKlzOMuxhVkpzbjqZ+twIXjkVBvIIyEBJ6cZPT/P48X4q3G/tiwOf sqZ+XGOvbtXaarZ3l7Mhh8oxKPlyxBz/AJxWhBbJ9niWWKPeqBTgZA46DPairT9orDcrQWplzRL/ AGhYO3nFti42sNo6dRXJ3f2jw14na5MZdS7MhPAdW9/xrsdRB/tS0wmcY/h46j24qfWry3srHzZ7 cXGXVEjIB3MTgdaVSlzLfVCabUUupxWhxXGteKhfmMrGsvmuR0XHQZ/Kp/G1hLDqiX4UmKRQpOOj D1/Cut0fUIbyyLpbi2ZHKPFx8rDr0q++yVCrqrKeoPIqFh04Wb13IknGVmeX6jfXPiTVIvLtwspQ RKic9zz+tdN4w0qWXS7WaFS/2VdrgDJ24HP6V00UFtB80MMSZ7ooFRxahDcX1xZrnzIQpbPQg9Mf lTjh9HzPVhq9Ueb3esz6lpVnpggz5JABXkvgYHFdTPoM7eCo7ELuuI8S7PU5yR+tWb7WLPStSaJN PVvLUPNMiqPLBOAfet9ZAwGO4zShQ35nfoOUZRSbWjPMLbXZbLQrnSjBnzNwDHgqD14rofCmkSHQ 70zKU+2KUTIx8uCM/mTXUSWtq8nmPBEz9dxQE1PuA44HtThh2neTvYhs8z0rVLnwxd3MUtrlnGGR jjkdD9OtaHgyzmuNWl1FkIjUNhscMzen6/pXbywW85HnQxyem5QakQIqBUCqo4AUcUo4dxau9EFz zacz+GfEzz+TuTezJu6OjehqbQ4rjW/FIv3i+RZPNcjovoM/lXWS3hPmi5tUnjDvs3ADgMB3z6in Q6rHGgWGz2rlsKpA6ewHf/OahUkpavTcdzXCA9RWD4vVV8Nz7QBll6f7wq9HqwknSLycbzwQ+eMD n9aqJqzMsqTwiXDPjA4AXpmuibjKNu4lc8+tNSvLS1ntbd9qXAw4C8n6Gup8GaLPDO+oXUTR/Jti VhgnPU1snUkgVyLZRxkEY46dMdcf4VPDqrPdJG0RAkxjnoCSM1hToqLTbvYdzkvFNrcab4iXU403 RuyyKxHAYY4P5frVG4uLrxVrsRSDaSFTavIVepJP416a8aSKVkVXU9QwyDUccUFup8uOOMd9qgVU sNeW+jBM5Txxp8klvbXUalkhBRwB0Bxg/pXM32rS6nZ2Nl5IzbLsXbyX6Dp+FeorPDLlVkjf1AYG kjs7aN98dvEr+oQA0VMPzSbT33C9tzktbtXsvA9pbyjEiOm4ehOTj9aTw9ZHUPBd5arje8jhc+oC 4rfmuf8AiaiB2QxBSShAOeD7VBo/iCG/ujbJaNbqyebExIxIucZ46VXsVz3v0sX7OXLexxul61ca BDd2b23zSdmO0o2MZxWx4G0+XNzeSKVidPLQn+L1P8q6+W3tZ2zLBFI3QblBqVSqrtUAAdh2pQw7 Uk27pGbZ5nBNc+FNdkMkO8gMgB4DqehB/Cr3hO0uL7X21JkIiRmdmxwWbPA/P9K7G/ubKOW2iuol lM8nlplA2DjP9KZqepR6RaxFLcyPI4jiiTC5J/lSjh7Su3oi1GTsktziPEP/ACOL/wDXSP8AkK7N SiatJHsAJVmDBT3GTzn+lS6dd22p2a3fkKjFirBwCVYHBGaFs3XUzdO0RyCMAYOO1aQpcrbvuNaX UjiPBv8AyMaf9c3/AJVL4kt7jSfEg1JULRvIsqMRxkdQfyrvkjhQhkjjB9QAKWQRSptkVXU9QwyK j6v7nLci+p5uJLjxP4jSVYSqll3Y5CKOuT+dd2ZGXVhHnKFc5z04q5FFDANkUUcY9EAH8qzdSurL SHW9vbh1ySFXGSeOgGM1UKTgm29QScmoxRz2pX1vdaldy2/h+O8+ysRLO5AGR7d6dqeoi6sLC+ud F+0WaR+YWWTAQk4xjv0FZOoX/h28u5biOTUYDMcyLFgK34ZplqvhyaSOGa+1FYicbZMBP06Ci7uz 2lRSSbi9PXt6noiSJd6WsluPkmhygxjgjiuK03w1rMi2lreRxw2cE3m43AsT36V20zJaaZI0QASK ElMdgBxWD4c1iaaxvJb64LNDhgzgDAI46e/86uco8yTPLp4iVJNQ6lPVNE1j+0L9bBUNvflC0pfD R4P/AOup9W0vWFLW9oBdWk1sISkr4EZGBu5+laml69Bdacbm6lhidWw4B4XJ4/PFSXF2lxd2Zt9S jjj80qyAA+aRj5c0rxte+5X1qemi0/r9DAufD+qwTac1n5cxhtTbuXPCk5yR+dQnw/qZ8KWtj9m/ 0iO68wpvHC885rZ0XV99xdxXt2u/7SyQqxAOPQVrPqljH5m+5jXy2Cvk/dJ7GiLg1cf1ypZLTT/g /wCZzr6DeXGq60zoEhuoAkUhIOWwO31FQ6VoWrNeCW7C2pgtDbRPGwJJ7N+prZOuxrr5sC8Qi2D5 887ycba0V1Kza7NqtzEZx/yz3c01yPqL63U5bWRzOm6VrEms2dzqKKotFZTNv3NLnOP50si3SS3E kAmjUyFWZVOSd0hH16r7dK6Q6lZi8+ym5j+0H/lnu5rB8TarfQX9rp9jMsDyjJkYgfhk9OlaQtsj nxFV1LOWlh081yhdUa6Lfac78sBjPIxj0/DvSBbm2HlxG4GJcqMscnc2Pw6Uuo+JBpljBbRSJdag VVTtO4A45Jx1+lZNxP4n022XUbm5QISMxMR37YxWiRztpHW6QzmGYO0rESn5nzz9Aenp6cVpVWsr j7VYwXGMebGr49MjNWM1BqthaKTNLQMKKKKACiiigApDS0hoAyNeANtFn/np07ng+9Y3iG/u9O8I I0DiN3dYw6ZBCn+R4rd1RJptkaxSGPklkIznoBimyaXFqOiLZXqHBUbsnlT65HeiWsbIuhKMKylN XSZy3hR4dF0241S/1KF1uERggcs4IzwfU81my3+s+M9SaGzZoLRewbCqPViOp9qtP4O0WG4xLr6B QclCUDfnn+ldNZTaDpmnm0s720Rdp5Mq5Y+pNYJN6PRHrzq0oSdWmnKT7rRHFNFqHhHWrRVvRMJG G6NGOCMgEEfjxXqQOUB6cVwfh/wfbveJe3OpQ3hjYMEhbcCR0ya6/V7hrPRby4T70UDsPqAaqmmk zmxs41ZxjHV9Xax514x8ZXNzey2GnTtFbxEq8kZwXYdeewrimdnbczEsepJzTecZJ5716lo/g7Tr nwjD51sjXU8Pmedj5lJGRg/lXP71ST1PflKhl1KKa30ON8O+Kr3RbuMNNJLZkgSRMc4Hqvoa9mt5 o7iBJojuR1DKfUGvnplZHKMOQcEV7J4BuWuPClsGOTEWj59AeP0xWlCT1izgzrDQUVWgrG69lG90 twSxcDA6ED86p6/BbXOmGCeYQtIwELk4/edVx+VXJL+KKRo3yCDgccHp/jWdqcmnana/Z5nfGVdW TgqcgBgfqa3bR4MJWkm2c3d3Z1SHTkuU2yxtPFOFOMsqdeKjsTDFZ3nnzTrG9pAzbGyzMSeB9elb SadpMcUG2Wc+XvkDZ5feMEnI5q0nhrT5bUqJJikkUaA7sEBOVI461CVzu+sUrcq2/wCCc3bQi5Sz tJldIv7RePyw5+Vdv3c1t6XY20PivUdkeDEkZQ5PGQc/0q9B4btLd42R5iY5zcDcwPzEY9OlWv7J hGrHUVeRZSmxlDfK3pkVSizOpiIyuovRr9TDupbOLxJqT34U2wtE8wMMjG70qnO8R8VQyWxlbM/l ySFuB8n3APQda6C+8PWWoXyXUxlDAAMqtgOAcgNSHw3ZfbxeK8yuJfN2h/l3YwePehxYQr01q77W OFSBDpm8ltxspZD8xxuWTA71pXI/4nnnbm3rdWqggnuvP8q6MeFbFbYQiSbaIWh+8M7Wbce3WqsG hCXxBczzrKIYniaHnAcquOfXFTys2WJg7u/9aGNp4eW9ijSUozJdhXz90ljg1u+Fo4o4p4drx3Ue 1Z4y2VyBww+vWrCeFtPS4eX9628OCjNlcP1GKt6ZpFvpfmeU8jtIRlpGycDgD6Cmou+pjXrwnFpF w28LLtaJCOeq+vWsjWtV0fQljN9GqiYsF2xbs+tbZrzz4pf6rTf95/5Cio+WLZGCoxrV405bM3dL 8T6BqWoR2tmp89slf3O3oPX6V0H2S2xzBFzn+Ad+tePeBP8Akb7P6P8A+gmvZ2XchXJXIxkdRSpy 5o3ZtmOFhhqvJDaxg6neQWN2sC2toAY92+bKgjPQYU+lTaVeR31xIptoMxAESxZK854yQOf8ap6k Tb3kVvLdagI1hH7yL5txyeox1q5orxPLMI7q9mIUZFwhUD6cCoTfOcBc1XUItL02e9mPyRKTj1PY V4trHiLUdauGkuLhhGfuwoSFUduO9d38Tblo9ItbdThZZst74H/6q84060N/qVtaZ2+dIqZ9ATz+ lTWk+blR9Hk+HpxouvNX3/AgSWSJg0cjI3YqcGvQ/A/i64uLpdK1CUyFh+5lblsj+Env9af4r8G6 XY+HZLuyiMU0AUltxO8ZAOa8+sbh7TULe4jOHjkVgfoaj3qckmdTdDMcPJxWx7TPJGNaAkcGNUJb kYUYOc1zc062enalpcbiW2eD7RaSKf4C3I/OunlTfqsakL5cifMNgycg98VXj8JafHHPGHnIlTyx ufOxc5wvHHNdLTex89CpCC97yOctoVh1VChcbL6JQS5PDR5P5mmh0N1qBtzMYpLOc75H5kIbrj0B yBXWjw7aCbzd8u7zkm6j7yrtHbpioY/CtjEX2yT4eN4sF8gK3UDjijkZr9ap3uzFm0mzFvoJKFvP kXzC7k5yuT/IVreJMCbRx2+2oKv3Wi291YW1q0kqC3KmN0bDAgY6/SpNR0qDU7ZYZ2cbCGR0OGUj uDT5d7GHt05Rbe1/xOX16XTZ7FBZq7EecVij+RQR95z9DWfeL58jTO7mRbe1IYMQQSwBNdU/hfT5 IIIcyqIVdQVfBYN1z68804+GbNlIMk3KRoeR0Q5Hb2pOLZrHEU4xSVzlJYVaOG3Yt5a3V0FG48AJ kfqKhmdmsnLOSf7Nh6n/AKaV0WpeHwb2zihE5gknlkmdWwU3L/Krk/hTT7hY1LTKEiEQ2v1AORn3 pcrNPrFNWbKFtAsPirdcs/mSsWt5FfggLhkYe3WneLNK1DULmxmsYUm8gsWVyMZyMcHr0rVj0Czh 1L7chk37i4jLfIGIwWx64qhBcTQTuIywDz46cEZOevfntRLRWZy/WOWanHojMWPxcq4Gn2IHptT/ ABqpf6X4m1K38mbT7MKSDuQIpH45ro1ur4RIzTk5MYOUHdST29cChbu5jijIdhmVECBBjGAT/M1D t5lxxkou6ir+guqvJZ+EWWTiXyVjYZ7nAP8AWsnQntpb66hQrJG9mmQRxuUAHg+9a11Z3Gs6OsPn Lv8ANBZ2HBA9KkOieXrUN3b+VHCsRjeMLgnrzx9RUzhKU00cjd3c50xxr4GV1VQ7zjcwGCeTjNau oW0NtqGhxwxqi+aTgDv8vNNHh2+OlTacbmIxeYHhOOgyc5rUv9NlubzTpldALVtzA5+bp0/Kkqbt t2Fc5Py0Ikk2DzBqoUNjnHJxml1T/mM/9fcf/s1aw8N3v2j/AI+YvIa6+0MoBz/nFLf+Gbu6ubxo rmJYp5Fk2svORnr+dZ+zlbYdx0cELeMwDEhH2YPgqPvZHP1rKs1U/YpiB5h1TBfuRx3robvSbo6z b39pMiFVWOUMM5XPOPwqrB4euItQTM8f2KO4Nwq4+bd6VbhK+iC5Xjs4LTXGt7+M7Zrjz7a4Bxlv 7pNafiCw0q6gSTUpBDs+5IGwfp71W/sG7e8RZbpXso7jz0BBL59MntVDxlby/bLO6kheayQYkVTj Bz+mfWuihFpvoZ1HoN0seFtMnE63vmyr90yKTt9wMdabqbaBqupfa7nVWEYUDylRhnHviqd5pFvN pNrq+nWTiHJM0BcsSoJGc9e1Z19c6NJDF9hsZYrgON6u5II9Ouf5V0WuYt2VrHo0t0ltpJubaMyI kQaNFGMjHFYsHiS5knjUxQSB3C7YjJu5PXlQP1q3NCZNDSeKOZJRagLArkYyAcfXjrWZbGJp4R5G rh9w4Nxkdf8Ae6VjJu56NCEHTbaubN1dyDUooo5SBld6g+/09K1x0rGvSP7TgG5g2V4Xd689K2RV s5ELRRRSKCikzSZoAGOBXOHxR1ItowB2a4Ab8sVvTxmQIfMdNrbvkP3vY+1czE7tHmc6ysuTkKuR 17HFNESb6GpqJae0tLlNyEkNtY44K9DyKx/Fd3cWvhGNoCYzI6oxTjAP4+2PxrZurae8gto0B8sK DvdsODjHIxzx+tF1HZR6IINWMS25ARzIwAz9fWlLWJth5KNZSavY8907w/o13Yxz3GvRRSsMtGcA qfTk1c/4RbQP+hjg/wC+k/xp8vhzws8pMevhFPRTIrYpn/CM+Gsf8jGn/fSVzKPkj33Xu7qcl/26 Zkkceha9aNpWpC6JYZMf1+6ccHNeoavA13ol7AoO6S3dQPcqa5XRtK8LadeRyrqkV1cBh5e+VcA9 sAd67E3Kef5G19x4zt46Z61pTjozzsdXUpwavp1atc+fOcEEYNez+CtTTUvDVsuf3luohcemOn6Y rzvxnoraRrjuo/0e5JkjOOAe4/CovCfiBtB1ZXck2suEmX0HZvwrCEuSdme5jKX13CqpDff/ADO7 b4caVJNJLJPdMzuWIDADk59K6DSNHttEsTa2YcR7i/ztk5NX4pEmjWSNgyMMgg8EU5vun6V1KMVq j5mpia1Rcs5No8guPHuuLcSoHtyFdgCYR64rTf4hSRaDCqxxS6pJu3tswkYDHGR3PSuHuh/plx/1 0b+ZrrfDXgePWtJF/cXTxhywjWMDsSOc+4rljKbbSPpcRhsFSpxnUjZfmV9L8danbagj30iz2rN+ 9UxqMDuVwBXR+JfH0dmPsukFJJsfNKeVT2A7mvM3XY7KTnaSMiu00nwJHe+Hv7SnunR5IjJGiAYA xxnNEJTeiFisLg6co1aisuy6kWi+PtTg1GMajP59q7YfcoBXPcEDt6V6whDIGByDyDXzr95eR1HI r3zSZSdBspXOT9nQk/8AARWlCbd0zgzrC06bjOmrXMPxX4yj0Ei1tkE16y5wT8sY9T/hXAv448RP L5n2/b/srEu39RWRqV4+o6nc3kmd00hbB7DsPyrr7DwjZXPgWTUnDi9Mbyo244wucDHTkD9ahznN uzO6GGwuDpRdWN2/6+40/Cvj2S/u0sdVCCWQ4jmUYDH0I7Gu9P3CR6V87hmUhlJDDkEdjXv+nzNc aVbTN96SFWP4itKM3JNM87N8HChOMqeifQ8sn8f69HcSIssOFcgfuh2Nac3xCu4dAttojk1KYMXb bhUAYgceuBXC3X/H3N/10b+dbPh7wpe+Id0kbLDbodplcE5PoB3rFTm3ZHrVcJg4QjOokkjr/CXi DU9R0zWbq7uPNkt03R/KAAcMeg+lcNrHiLUdeSEXzxt5RJXYm3rXpnh3wkdFtNQtpLsSpdqFyq7S vBB9fWuI8X+F7Xw5Ham3nml84sD5mOMY9BWlSM1BXOTBVcK8XJRW/wAP3GBpuo3GlXyXlqVEyZ2l hkcjHSvR/BPiTUtevruG+kjKJECvlptIJNcF4d0uLWdbgsZndEkDZZMZGATXqegeE7bw5NPPazzS vKm3bIRjjnsKmipbrYvN6mHScZL37aMXUraVryKEXW/ZBko87Rng8sStSeHm3S3BW5V0wB5QkZ9p 55yw7/0qHUkknu7dZbS3aeSMbojdFdxyTtx/EBVrRnaW9upHjhWQAIfLn37cZ+XGPlFUl79z5noc z8Uv+PTTv+uj/wAhXFeGf+Rn03/ruv8AOu1+KX/Hpp3/AF0f+QrifDIz4m03/rutRU/in1WA/wCR e/meleKLh5fDmrIzghY+FwOPmFeRRnMqc/xD+de5Wqxz311FIBJHjB3YIbmmvFYpfpbCxtTk8ny+ QMZz0rSVPn1bPKwGYfV6cqfLe+oIwk1uLY6ny48MMcg4P+Nc34p8etYXT2Olqjypw8zchT6AdzXU 65P/AGfot7exqvnRwsVbHfFeEsSzksSSTkk9zRVm4KyNcrwsMS3UqLSPQ6BfHHiFZt/9obu+1o12 /wAq7zwn4yXXmNpdIsV4q7htPyyDuR/hXOeJvCNjpHheC8g3/aVKCRi2Q+evHbmuW0Kd7bXbCWM4 YToPqCcH9DUKU4SSbO6ph8LjKDnSjZr5bHtes3Mtlot7dQECWGF3UkZGQMivLP8AhYfiAD/W2/8A 35r07xH/AMizqf8A17Sf+gmvCO1VXm4tWZy5Nh6VWEnUinqtz0DWviFMsEVvphXzti+bcEZG7HIU dPxP5VH4W8dXp1FLTVZhJBKcLKwAKH3I6ioG8CJD4Xk1Oa7f7QsBmCKBtxjOPWuLxzjHPSolOpFp s7KGFwValKnTW3Xrc7/xH8Qpmma20VgsanBuCMlv90Hp9af4Q8a3tzqSafqcglExxHKQAQ3ocetU dW8Cppfht9Qe7d7mNVZlAGzkjj171y2kyNFrFjIvUXEeP++hTc5xkrk08Ng62GkqSvbr1ue46vcy WejXlzCQJYoWdcjPIGa8rPxC1/8A56wf9+v/AK9eneIR/wAU3qP/AF7P/wCgmvCOxqq8mmrHLk2G pVYSdSN7M7bVviJfShItO2xAKN8xXLMcc4B4Aqz4U8b3s2px2OqSCaOY7UkKgFW7Zx1BqlqnguHT vCSaotxI1wFR5FONuGIGAOveuRgkaK4ikQ4ZXDA+4OahynGSudtPDYSvQlGlHa+vW57zq1y9no95 cxECSKFnUkZGQM15WfiF4gA/1sH/AH6r07X/APkWNQ/69n/9BNeEH/P5VdeTTVmcWT4alVhN1Ip2 Z7Vreq3Vl4ObUoWUXAijbJGRkkZ4/E1wK/EHXjIo82DG4Z/ddq7LxN/yTl/+uEX81ryNP9av1FKr KSasaZbhqNSlNzinZs+hkJKAn0rgPFPj2azvHsdJ2boztkmYZwfQD+tdrqNwbXRrm4XrFAzj8FzX gTFmYljlickn1q603FJI5cpwdOtOU6iukdAnjjxCrl/7QLexjUj+Vdx4P8ZnWpTZXqJHdhdysv3Z B7DsayPEPg/T7Dwgt1bxEXcKoXkySXzgHI/GuR8Ou9v4j06YKwxOoJ2noTg/oazTnCSTO6dPCYuh KVONmvlse7/hXL+J9ZutKvLUQzR+U/8ArIymTjPJz+laup63a6Q0K3PmZlzt2rnpj/GszxHPocd1 B/asEskpQ7ChbgZ9iK7EfKTemhbTxRoioAt0qj+75bDH6VGNe8NiTzPNgD9d3knP8qwPtXg7/nyu Pzf/AOKoN14O/wCfK4/N/wD4qq5SeZ+R1Gqraz6VNds0mwwHDx9Sp56fl1rl4Y7b7Vb4KtGJUDyQ WyJtYkfLuB5Priulu2SPRxdQTzRWq23yoqgnBAwee4HH41gx3So1gTqMkmZR+6UQsYznA4A7+1Yy Wp6WHb5NDpru3sbcSX06keX+8Zgx4x7fhUEviKzhhgcrO0k67khWPMmPUjtVvVZIodJuXni82JYy Wj/vDHSuKgnSCCYQ21hH5y4Z/t58wD0BPIolJonD0Y1E20d5Z3cN7ax3EDbo3GQcYqxWXoEkEujW z28HkRlThM5xzzz3571qVS2Oea5ZNIaeAawJdYvFubi3jsSXVzsZgwQIB95jjn6Ct2aRIoXkdgqI pZiewFcPPJZXd5czHULdwZDt8/zAQPQbWxilJ2NsPBSbujqbGVtS06C4njaJ87sAkdCRn6Edj61z LQoYQ6TJKXBYfuCZQufvE7uK3tGEkmjWpjuZCAxJZ05Zcnjnt6GsjdvsZ5ku18pn+aMWkYMg9cZ5 FXHY5qySm0J4n1280bS9OfT5VYSjBeVN24bRg/WqninWbPUvCEflXcUk5aMsinnPfiui1HT9P1fR YY72QeWyqyS8IQcdR6fSuQ1LwE8Nn5+m3D3bFhhMAcdznNYVFLW2x6uCnhrQ53aSf3lTS/Dek32n Q3FzrKW8rjLRll+Xn3NXf+EQ0L/oYY/++k/xp1h8PHns0kurt7eZhlotgO38c1Z/4VtH/wBBJ/8A v1/9eoUHb4TsniocztXf3ENr4V0SK8gkj1+N3WRWVdyckHIHWuqC51wZRcj+IA8fL6/561z8Hw8j t7mGb+0mPlur48sc4OfWtqOWJ/EIMcik7iCNnPC4649vXtW1JNdLHl46oqjjabl6qxL4l0OLXdIk tmCiZfmhc/wt/h2rxGeCW2uJIJkKSRsVZT1BFfQ/GK86+Inh8YGs2yDIwtwAOvo39KzrQuuZHdk+ N9lP2Mtnt6knw88QmWM6Ncv8yAtAWPVe6/h/L6V6A33T9K+e7S6msbyG6gbZLEwdTXvGnX0epaZB eRHKzRhh7cciijPmVic3wipVFUjtL8zwe6/4/Lj/AK6N/M1694DH/FG2v1k/9CNeQ3X/AB+XH/XV v51694C/5E21+sn/AKEazo/Ez0M4/wB2h6r8jyCf/j5m/wCujfzr2Tw9/wAiJaf9eh/ka8buP+Pq b/ro3869k8Pf8iJa/wDXof5GijuxZx/Bp+v6Hiq/cH0r3rRU3+HrFTyGtkB/75FeCr/qx9K980Lj QNP/AOveP/0EU8PuyM8/hwMk+A/DoOfsJ/7+v/jTNcvtJ8PeHJtOWVUJgaOKENubkEflzWd408Zy ac7abprj7Tj95KOfL9h7151DaX+rSzzIkk7RqZJpGOcDHc1U6ii7RWphhcHVrRVXETaj0Kde+aR/ yArL/r3T/wBBFeB9K980j/kBWX/Xun/oIqcP1N89+GHqeE3X/H3P/wBdG/nXr3gFceELUgdWcn/v o15Ddf8AH3P/ANdG/nXr/gL/AJE+z+r/APoRpUPjZec/7rH1/QmkvNTVpoyY4yjMwf5SSvZVXPJ9 zXJ/EN5ZdM0h59vmtv3bTkZwK25YtMkecyNJFMJ3YM1v5nHp93kfXkVhePkjj0fRkicvGu8KzLtJ 6du1dFf4GeLlLf1yP9dDG8Cf8jfZ/R//AEE16np7s9/dBg+AxC5bIHJ968r8C/8AI32ePR//AEE1 6nZIYpLiYKuWG4hMnJBOe1RQ+FnVnn+8r0/zM/XZobfUPMBmSZYQWZJVT5cnGAQcnr0qfRPI/tC7 2tJJLtXMrSK4ZcnH3ehrLaS+u1V7z7X5nXYLBWVfoTWtoD3AkuIZInEShWR3txESTnIwKzi7zueS c38Uv+PTTv8Aro/8hXE+GufE2m/9fC/zrtvil/x6ad/10f8AkK4nwz/yM2m/9d1qan8Q+qwH/Iuf zPZLMlb6dMIEUYGEwevr3qo8SR68hBJLNkgnPY+9SxXENvNd3c0qJbjOZCcAc+tZ41HQ21Bbo63b u+7IBdePauhPQ+boxlq0n9x0F7ZwahZyWlym+GVdrLkjI+tYJ8B+Hcg/YT/3+f8AxrpN3yhs8YzX mPi7xvPPPJYaZIYoEO15lOGc9wPQe9FRxSuzbBU8RVl7Ok2u5qfEHV7D+xTpcc6vcl1OxedoB7+l ee6V/wAhex/6+E/9CFMFjdSWMl8Im+zowVpW6Ek9M96dpX/IXsf+vhP5iuWUnKSbR9Nh8PDD4eVO Lvvf1Pa/Ef8AyLOpf9e0n/oJrwg9K938R/8AIs6l/wBesn/oJrwjtV4jdHDkX8Ofqj2u/wD+RCm/ 7B5/9ArxUdR9a9qv/wDkQpv+vA/+gV4qOo+tFboVk/wVfU9n8Yj/AIoq8/65p/6EK8h07/kK2f8A 18R/+hCvXvGP/Ik3n/XNP5ivIdN/5Ctn/wBfEf8A6EKK3xIWUf7tU9X+R7b4h/5FrUf+vZ//AEE1 4R2r3fxD/wAi1qP/AF7P/wCgmvCO1PEboWR/w5+p694n/wCScyf9cYf/AEJa8jT76/WvXPFH/JOJ P+uMP/oS15Gn31+tKt8SNMp/g1PVnuuv/wDIsX//AF6v/wCg14Qf8/lXu+v/APIsah/16v8A+gmv CD/n8qeI3RGR/wAOfr+h694m/wCScv8A9cYv5rXkaf61fqK9c8S/8k5f/rjF/Na8jT/WL9RSq7ov Kf4NT1Z79e2/2rSp7b/nrCU/MYrwOeKS3mkhlUrIjFWB6gjivoROUX6CuA8c+EXuXfVtOj3SYzPE o5b/AGh71pWg5K6POynFxo1HTntI3fCPiGHW9MSN2H2uFQsqHvj+Ie1dHtGeAPyr5/sL+5029ju7 SQxyxngjv6g+1ez+GfEMPiDThMuEnTiaPP3T/gadKopKz3JzLL3Ql7SHwv8AA0rnT7W8Km5gjl2f d3jOKxvEd9plk0IurFbq4YYRCBwP/wBdbcl5BFJ5byAPxx9awfEmkXV1d21/YSILmAYCMQM88EZr eLuzxpaR0Mi31XTpr23t5PDkUXnSKgLe5Az933qS61LSbK/lt7jQIxCkhTzQo5x3xj+tR3ll4pvr m2uJrNDJbtujIZBzwefm9qlvLLxTq8YtrqKKKEtktlcfoSasz17HRahdQwaMTbzwQb4gITIQF6cf pXM6dLM95FHDNbb/ADQVYzRMdvGQQBz36etb914eFwlmFu3iNrF5S4RWz055HtVceHA0sTPqbSbH VwPLjHIOeoGawldvQ9OjKnGnZvUt6/LqkVoTpyQFdjb2kPI9MZ4P41gI16UANloW7HJYjNdVqoQ6 Tch2iVfLOTKPl/HHauB2WB63Gjj6QSGlPc0wtpQtY7/SRKmmQi4mjmkA5eMAKee2Ku7wa562WK18 KW8ccqToMASIML97r7VoaT81lkbeXP3a0Wxw1H77RosAVIIyK4q/ubiDULhIZRGm8nAnhX9CM/nX V6iJmsZVgMgkI4MbAN+BPFcidNumurhbc3sxWQh3EsHLe+VyKiZ04SybbOl0eWX+x45LqVWfBJfe COvHI4rnQZ5JZAYLWSRgcFBAcNnjGeSPrWtDo8k2gwWRLwFJN7CUK5PJPOODUb+GnkjKme2AIxkW ig/nWkNEcdfWbsWtQLLaW3ngb+NyrwoO09Dg4qhr2rS6T4XSez+WSRhGpx93Oeeg9D2rRv0Nva2y SOSqFV34brg8nB702TTINW8Pi0uAwR14bupzwRSkm46F0JRjVTmtDgYdG8RX1h9vjvXkRkMgUXJ3 EfSqulWOr6yXW01Ft6feSS4ZW/Kuy8NeFptD1eaY3UU0JiKALkNkkHkdO1Vtc8DtPeve6XcLA7Hc 0bZAB9iOlc/s3a57qx1PndO6t0dvwaOdSx1Oz8R2dhfXxVy6OC07FW+bp9eD1ruvFmsXGhaL9stU jaXzFX94CRz9DXL2PgfUp9QSe/u4vLVgWZZC7MAc4zXR+N7J7vwndLGMtHtlA9lOT+macE1FmGIn SqYimm011srHER/EHXJruJWkt0jaRQ22Ltnnqa9Uu7eO7sZbeVQ0cqFWHsRXz5njivVoPiBpn9hi SWRheLHgw7SSWx2PTFTSqXvzM6czwHK4OhC3oeXXEX2e5mhzny3Zc/Q4r1j4eStJ4UVT0jldR9Ov 9a8llkaWV5W+87Fj9Sc17B4DtWtvCUBYYaYtJj2J4/QCoofGzozl2w0VLe6PIrr/AI/Lj/rq3869 e8Bf8iba/WT/ANCNeQ3X/H5cf9dW/ma9e8Bf8iba/WT/ANCNOj8TFnH+7Q9UeQXH/H1N/wBdG/nX snh7/kRLX/r0P8jXjdx/x9Tf9dG/nXsnh7/kRLX/AK9D/I06O7FnH8Gn6r8jxVfuD6V7pY3H2Twl b3J6RWav+SA14Wv3F+le0yqzfD5gvU6d/wC06VDqGcq6pJ9zxued7m4kuJmLSSMXdj3J6163p2lR 6X4CmjVR5klo8kjY6sVJ/TpXkBGQRXpl5430xvChgRma7lt/K8oKflJGDk9MUqLSu2aZnTqSVOFN aXPMzXvmkf8AICsv+vdP/QRXgZr3zSP+QFZf9e6f+giqw/Uwz34KfqeE3X/H3P8A9dG/nXrfgmAX HguzRmdRvY5Rip4cnrXkl1/x9z/9dG/nXr/gL/kT7P6v/wChGlQ+Nl5z/usfX9CpPPF9tmWVrqI5 bAa5lHOeMgDAB9s1hePyW0fRm2SLnfxIxZhwOpPWuhjn8qSZF1a5tx5rnyzbBu/Y4PFY3xCjaXQd MuBK0yrIQZCu0tkdcduldNb4GeHlTtjInO+Bmx4us8+j/wDoJr1XTWzd3JDZVjuAz6k14xoWoLpW uWl64JSJ8sB6EEH9DXsOj+JdM1ueSGxkZ3RQzZQrgfjWNCS5bHo53Rm6qqJaWHaprTafdrAIozlN 26WXYOvQcHNO0nVzqUkqGJF8sA7o5N6nOeM4HPFR6j9tOpqttLDhoSAkj4288sVxzxijRTJ9puR9 tFzCuACXDHd3PHQe3tTvLnPE6HMfFL/jz07/AK6P/IVxXhn/AJGbTf8Ar4X+dd98TLVpdFt7hQSI Zfm9gRj+eK8zsLtrDULe7QZaGRXA9cHpWVXSpdn1WW+/gXGO+p7D4whjj8JaiURVJjGSBjuK8Zj/ ANan+8P513vibxzZanoUllZpKZJ8B964CDOT9TXE6bayX2p2ttGMtJKq/TnrRValJcosqpTo4eXt Fb/hj2LxXqDab4Tupo22yNGI0I7FuM/rmvGbWBrm7hgXrLIqD8TivV/iHGT4TYr0SVCfpnH9a8r0 +5+x6la3JGVhmSQj6HNOs/fSZGTxthpyjvr+R6b41sodP8DC1t0CRxvGoA+tebaV/wAhex/6+E/9 CFdr408WaZqmirZWUjTO7q7HaQFA57964jSzjV7LPa4T/wBCFKq05qxrl0KkcLL2is3fc9s8R/8A Is6l/wBesn/oJrwjtXu/iP8A5FnUv+vaT/0E14R2p4j4kYZF/Dn6ntd//wAiFN/14H/0CvFR1H1r 2q//AORCm/68D/6BXio6j60V90Vk/wAFX1PZ/GP/ACJN5/1zT+YryHTf+QrZ/wDXxH/6EK9e8Y/8 iTef9c0/mK8h03/kK2f/AF8R/wDoQorfEhZR/u1T1f5HtviH/kWtR/69n/8AQTXhHavd/EP/ACLW o/8AXs/8jXhHaniN0LIv4c/U9e8Uf8k5k/64w/8AoS15In31+tega34o06+8CLaRTA3MiRoYu6kE E5/KvP4wWlQDOSwqarTkrG+WU5Qo1FJW1f5Humv/APIsX/8A16v/AOg14Qa9314E+Gr8Dr9mf/0G vCDznHWqxG6Mcj+CfqeveJf+Sct/1wi/mteRp/rV+orv9e8V6Zd+DI9Pt5TJcSRxqV2kbMYzn8q4 CP8A1ifUVNVptWNsspzhRnzK2rPoTzEjiVnYKuAMk4FILmBztWaMsewYGud8dWzXHg+fYMmLZJ+A PP6V5Vo14mm6zZXrDKRShmwOcdD+lbSq8skjx8Ll31mlKoparodd4+8MxWmNWs49kbHE6AcAnow+ vesLwdqkmmeJLbaf3dwwhkHqD0/I4ru/Gus2MnhOZYbiKVrgqsYVgT1BP6V5voETT+INOjUZJuE6 egIJ/QGsp2VRcp6uCcquBlGtsro9f1KQrfRqA54U4VsZ5NYPjNyl9ZSJC4nVd+7qOD0I+tbt8Hlv VdPPUoyoVCHDDOSazvFWq3Wm3toYLsopGXiCjLAHrkg/Sumn8TPk6nwldPHEwUbtMy2OSJDjP5Uv /Ccyf9Aw/wDfw/8AxNai+L9FKgmdgSOhibj9KU+LtE/5+G/79N/hWr9Cb/3izfzpceHZJ5jJEkkA Y+X95ciuWhihW6tiXUxrIm+SC2ClGJGF3buvrjNdhdyvcaRLLaMmXi3IZOmCO+fb1rnIXuJjYmKW 0VEmVEiQxsCf4mYjofZaxluehh37jLWuQSXN5PF5+opEttvZIYwY35IwPVjmsEBwoVTr20DGBbiu t8QXVpDpc8VzcLEZY2Cg8k/Qd6wIbq4itUCeKrUIFGFMS5A9OvWplubYeUvZ6f1+BpwI8Hhm2jiD rGDhhcRYcfNxkZ45/StPSQRZclSdx+6AP5VUs1m1XQ7WQXIlYksZJItpbBOOAeK0NPtZbW1EchDP kklcYNar4Tz6l/aNssTu8cLtGgdwpKqTjJ9M1xc0LNNcXF5p8aO8hJP28x/1rsb2zS+tJLeXcEkG DtOD+dc1L4Lt40PlXskaj5v3kaNjHPXAOPxqZJ9Dpw06cU+Z2NfQRt0aL5oz97mNy4HJ7nrXOtBH 5QdbhZWfcQfLkMmB/EcPgV1OnfLaiEzwyyJwxjG0e3HasPbOLSaI2ttE2SZsKpMpzwAuenTk1cdj krO8mX7iBriyts3ETQCNSHkbazNjrkg9qzfFF3c6Z4SUW8iq7uIzJCeADnkH3/rWvfK32C0EqhWy AwRQQpK4454oGnW+paGtpdKWiYdwARzweKUk3GyLoSjCrGUldI5XwtLZ6FptzqN5qcMhuEU+UrZd SM8e55rOe51nxrqLR27NDZoemcKg/wBr1NXZPB2hQT7ZtcCgdUZ0B/P/AOtXWWK6RZaTJHYT26W6 AhnDggE9yfWsFFtWex69StShJ1aacpPq1ojgZIL3wjrdosV+Jy5G6NDgEZxgj3r0+VoXi8qZl2yL gqx6g1xegeDbNLqO8l1CO8MZ3BIuVz2JOea3NW+W/iLBtvHpzyOKqCaTMMXONWcUndpau1jz/wAQ +B7/AE25klsYWuLMnK7BlkHoR3+ormvsd1v2fZpt393yzmveby8isLNrmbO1QOFGST2Aqpca3a2t vDK8cnmzDKQBcyH8KTw6bujejnlSnHlkrtHmegeCNR1O5je7he2tAQWMnysw9AK9dSJIIBFEoCIu 1VHYVRh1OO/sLia3EsckeVZGT5lYe1P06aeZ5hMzHGMBk24+lXCmoLQ4MXjp4qScjxq50HVzdTMN MuyDIxBETev0r1LwXbz2nhO3huIXilBfKOMEfMccV0dHAqYUlF3NsVmM8TTVOSskeFT6BrBuJSNM uiC5ORE2Ov0r1bQ4J4fBltbyRMky2u0owwQcdMUuo3Lx6gYxK4VgpwJgvPt/9epdU1CezvbWOJk2 yfwsud53KMZ7cE/lSpQSk7CxeYzrwjGStY8eXw/rAUD+zLvp/wA8W/wr2nS7cnw/a286FT9mVHUj kfLgim/2xF5oiEE28yCMDaMngkHr04NNGtQusWI5V80cEgcdgevrVQpcjFi8ylilFSVrHkeveG77 Rb6SIwSPblj5UqqSGXtn0NX9E8FX+pW011cRPDEsbGJTw0jYOBjsM16VFrKNbGQwTSBFUswQDJKg +vHBq3bX8d1O8ccb4VQdxAxyAcfkRU+wV7nS87rOmoLfueJf2BrH/QMu/wDv03+Fe0aJ5g8P2KyR vHILdVZGGCCB0rLkudQt5LoxrM26VtuVLDGT0z7Y6cVJJPqe1RvdgS2R5eM4xjoPqaKcFDYWMxM8 UoqVlY8sudB1drmZhpl2QXYj90fWvT/CIbTPB9v9uU25jLlhKNpHzHFSx3upeZEreYQyoXJi7kjI HHvWpqVvDc6fIlwzrEvzsUPI28/0pwgou5njcdUr01Tkloc1dSxszTjVGZmkY7POkUFe3AHy4/I1 p3mijV/CosJJg8jRgrKCWG4cg5PWnW2k2l0rXEN7ekt8rMZCGOOxyK1bS2jsrWO3jJ2IMLuOTitW 00eZScoT5lujw3UdD1HTJ2iubOVcHG4KWU/Qiuu+GltPDqN5JJBKiNEAGZCAea9IDqzsmDlcZyDg /SnfKB0rGNJRle57FfN6lag6Uo79TnNekto73Mizs3kjzAkyoGTJ455POelWNJktf7QvPKQoyooG GUoEBOMbfxPPNN1lnTUYZJbcTWqpnZtQktk5B3cgdOlGjG4Bu3SEJbnmNCqKc85Hy9unvUr+IeT0 HxoNZsrm0u3WSKWPBxjjOfT8K8v1rwhqukTsPs73EH8M0S5GPcDkV6norbpZv9X0GNj54ya07uU2 9pNMF3eWjNg98DNa1KamdWCx9TC3cdV2PA4dOvbiTy4bOeRumFjJr0fwT4Pm02f+0tRULPtxFF12 Z7n3xW1pPiF7y6hgubPyPtCloWDZDAf/AKq6HIqI0FF3OrE5xUxEORKyKGs6cmq6Rc2THAmTAPoe x/OvEr7RtR0+8a2ntZRIDgbUJDe4I6175kGmnBqp0lMywWYTwl0ldM8fTwTqI0CbUJYJPtGV8q3U ZYjPJI+nasy20TWIrqGT+zLsbXVv9U3Y/SvXdO1We/1C4RLVRaQu0fm7+dw7YrX4qXh1c3jndZp3 SdzN15JJvDl/HHGzSPbOFVRkklTxXjH9gaxjjS7v/vy3+Fe8NjFcna6xcW9phZA7FmPzkt0UdDn1 PIp1IKTVyMvxlShGSgk7mjewTP4Llt1iYzGyKhMc52dMeteRjQNY3D/iWXfX/ni3+Fepyaveq4Qt GR5oT7uONqk9+vzfpSxaxcLDBl0+Zgu0g9ML3z/tUpwUrF4XE1cPGSik+Yl8VQTXPhG6t4ImklaN QEUZJ5HavLrDQtXTUrRm026CrOhJMTYA3D2r2TTZ2ubGOWRgznO4gY5zj3q5xTlTUmmY4bH1MNCV NJO5meIf+Rb1H/r2f/0E14RXvHiL/kXNS/69n/8AQTXg5rLEbo9TIv4c/U3dU8Kalp0UdwkL3FrI gcSRrnGRnBHb+VXPCHhq61LVoLiaB47SBw7M6kbiOQBnrXpDX7WGh2DRxCWWURxIpOBkjuat2Wpx T2aSz7beQ53RucYwcd+1WqCvc4qmc1XCVJrXuWp4UuLaSFxlJEKkexrw/WPDt/o9+9tJbyum7Eci qSHHbp3r3D7TBsZ/Oj2IcM24YB9Ka1xBkAypkjIGRyDWlSkpnJgsfLCNtK6Z5FB4L1E6HcahPBIJ Ao8m3Vcu2SOSOo47VlpoGseYhOmXf3h/yyb/AAr2vT9Qh1FZTDn93IUIJHOO/wBDVG31xptTFu1u FgeV4o5N2SWXk5HYVH1dHUs7rK90nf8AA1XhS4tGhlUMjptZT3BFeQeIPBmoaTdSNbQSXFmTlHQb io9COv416+Lq3Kswmj2qdpO4YB9KQXVu+QJozwTww6DqaudNTVmceEx1TCyco7PoeBxWF5PII4rS d3JxgRnNej+CPCM2mz/2lqKBZ9uIoupTPUn3rtVurXBYTRYBAJ3Dv0pWurZU3NNGF3bQSwxn0+tT Ciou51YrN514ezSSTM+8leG/ClpSj7TgNgDn6e3rVXxG2iwiKfVITLIQVjVSdxHU9xU93FLPeCUQ yYRlXOOCM9RWf4o0m7nura/tYVuPJ4eFhkEZz07/AEq6fxO55E9tDF/tHwp/0Cbj/vr/AOyoOo+F cZGkz5/3v/sq0LzRp9R0e1v4LKK2v4yS0IjCBgD0wfp3rJvpb++SO3XQlt5kcNvigIJP5YrbQxd0 dndtbt4ZZjDIbc24IjU/MBgYGa5iBrISWgE0k5lmRpIVkQlGBAHReenauouGnh8OnfIsFwtuNzYy FbHPSsS2tNSM8DrcBBvUlmuw4xnkbdvORWE9z1MM7U3cseJdQWOQW0ukG6jMefOYHC56jIBI6DpX PyauN0MccGkRKzBSTCSUHqxYCvRwOBkA1FNZ29wuJreKQejoD/Ohwbe4UsTCEUnH8SHScnTYMzxT nH+siUBTz2Aq9UUEEVtEsUMaxxr0VRgCpapHJJ3bYVT1KYQWMrlWb5SMKm4/lVyq95j7LLkDGw9Q T29qGEd0Ynh4yFpy6MoCqADEE9fSslYrT7JLMk6heUETiLey5zk57/Xmtbw+IvMneKNEYoobaG9W 4yff+dUVstRuh56DzSxOJFaLZn6Fc4/WnDYeK1qGpfCM6TZbEaSP5doYEsRt9eorJ8T3VxZ+DoxC WjaRgjFRtIHOa27qyvbgWxaSE+WAXVhwXxyf5+lQXl3oxsTYajdWYUja0fmdPp3pT1jYrDe7VjJq 6Rwmn+HdLu9LF1JrcUc5XJhyoIOOnJq34ZjsrzwzqFhd3sdr50wILOAcDB7/AExSy6B4WMhKeIAq nopIOPxxQPDnhpjx4iT8SormSaeiR786sZxalKW6a93YzZY08P8AiC2/srURdfMuTH35+6cHBzXo GqkNeW4xuLY4Izjkf4VQ0Lwjo9rMl7Dcm9ZTlCWUqp9QB3rR1OOCO9ST7Mru+CzEnPUDtWkYtI4M RXhVqRSu7LfuWtZ+yDSZjfA/Z8Ddt+9nPGPfOK5uzvtMs5JTHa6lJcumBJKN7qvtXQ68YBok5uIm kiAGQrBT14IJ71lsmkT2lt/xOfLniB2z+eBIAecGuhbHjy3F0ySzOi3flRXLFpCGaZN7u+OuKu6R MyW93JIhQIN3MQTsT261Wgis7PR7n7Nei6MjktKW34Yj2BwcVFJeCPw7qswYbFiKqRjqQR2A7mgS 0OKPinWiSRqEoB7ccfpXWeB9ZvNSlvIry4aZlVWTdjgcg/0rzsV0/gObyvEWztLCy/lg/wBK0klY wpyfNqdVqECQXr+SyKAVypeT8+DjH+NN12+0xNRiiu9QWB0Qb08ssSCQw57fdFS3VzNJdswS4VAd uApzweo4x71x3jj/AJGaT/rkn9a56KvJnRVlyo6rTvsUoOoRagkkMMwLt5ZHOCOT6/MKvx6OsiWj x3Kssabd2zO4ZyMelc14Wjkl8KXqRK7P9pUgRgbuNp4zWlFaX5miieGVYgsQbaxwcbc9+O/+TVyb TsbUaUZ0+ZuxffSDb6c0bXYVQyMWKZBCqF5Geemau2envb3PmtOHURCMAJg8Y6nv04+prBay1FRF tSfPk8jcfvZbIPP+7U5tr1fIURzgbJCzBieTuAGM/wC7+nSp52afV49yDxxqd7pqWJs7hofML7tu OcYx/OqfgvWNQ1HVpYru6eaNYSwVscHIroJdDtdXsLRdRhffCpwokYYJxnvnsKl0zw7p2kXLT2cT o7LtOXLcfj9K0uuWxyyhL2l+hheN9UvtNuLMWdy8IdWLbcc8iqXhjVdR1RNTiuriScC1OxT689MU vxF/4+bD/cf+YqL4ecaje/8AXEfzp2TgZ3ftLG0kdwJ7Y+TNjzywkZDuKlhnPof6Ypz2TraApC4Y WsRPBPJb5+Ppnipra4v/ADE3eagZjlWTPBIP8jikiutQU+WokCNnkoSQfY1zqj5m3OhLK2l8+3Ek cuxWU/MCOiHGfxxUVvHL+5ZoJsC4DCMIwAyFzz6jrnvg+taNrdXT3ESMXaPdgny+2OOfyP41rSFl iYqMsFOB6mk6VupSdznNZ+y/2somuIoW8kczwiRcZPTPQ1LpUNqPtb297BJI0YDCKLYqDnBIFUEb WBJHPLbXksu4GSN1QxkdwO4rctrlp4rgNp8lrhOGcD5uvpWcNZ3B7GPYeI9GtGcvqSOCBghG4H5f 1rfv3WXR7p1OVaBiD7bTXih/1Z+le0CJptC8pB87220Z9SuK7JRsYU58yaOVtOJ/DRH9yT+dJo80 kmp2cyNcNPJLJ9oYhihU5wPStDSdD1BLqzkvfKWK0RljVTkkn1/z2FP0/SdUtrmC3Zljtbd3cOkn Mm7oCPai6BJlfRIGOryGe5lj1CFn81HORKp6EewqtaAJ4ggt1vZLhpTKlxKCQrcHgfStGDS9Wm1O CW9aMG3V189WG6QN04A4xUOmaLqVtdaeZo4vLtXkyVbkhu5/OgdmZNtapConRnDrqYhHzHBXryPX 3qzcSS/2hcX3myedFqKwr8xwE54xV9NDvhAV8tc/2j9o++PuUTaHfnUJI1EX2SW6FwZS3zDHbFFw UWNjgL+Jp1ubmWG6EwkgbJ2vH/dHat2/uYLCFHaASF3CIqgDJP14FZUumarc6lGJzG8EVz50dwSN yp/cwBV/xBKsWnDeLcqzgETxs6/kKT1Ki2kyGfXbRJW8u2aaCNgJZkA2qx479T9K2PKiwDsXjkcV xZ1XMUEKR6dKkcgKRJBKMH1A/Gus1BgLFsjg4z7ciploioybMvXb6fT5rOOGX7NauT5kqxbsY7YH TNVJ9W1C/jlu7acWGnRdJpI9zSH6elS6tqdzZWtjDbvHEsqnM8oyq47dKzJ9Q1hZp7S7vrOJouds 0Yw47Ecc1UdURJ62NWW7nvvAt3cXIHmtbSZOMZ4ODivGM17ro0p1PQomuikxkDBxt4PJGMUf2Fom Cf7NssDgnyl4rCrS5nuexluYRwsJRavcr3ItpfD9jbTuUeZEELD+F8cH2rCvbn+0YY5p0UyLZShu P4lbGRXYz2Nrd2q28sKPCMFV7DHTFRnSLFkCG2TaqGMDnG09RWydkeVUTlJs5pkgiW7i8lW3XUfl x5wu7y85Pt1NO0OGO4vtOEqBwtkWXPqJDiuiudLs2glLWyPk+YQc8sBgfpxVG2aG0ki22GyZIygK k4AJJx9M07kctnqL4bjiSC82Iit9qkBwADgHiqen3ttbiWGZCzS3c+CMZTAyT6jitG3mgiuZWgtd ks+5nfnBIz1qtGbVbhrn+z1WdwRI+Dz6/TNA7aI587TZ3qpGscLpbsqA543cZPc+tWVhjivAY0VT 512nAxwE4FbNrZ2DMsI09UjlAzjODt+b+dX5tKt2icxwKJTvZWJPDMME/jRdC5WchGqJZyBAoUra MceueatNHE9kZX8uQRXNw7QMf9YnRse461v2OhW0Gmi3nt42Z0UTY6OR3qZtE054Vha0jMasWC88 E9aOZAoMzNd1v+yNItmtAPMmUCLfztUDOf5VjJL4v8n7YC5TG7aQnT/drX8UaFc6qLX7M8SLCGB3 nHXGO3tWUPDXiPG3+0hjpjz3/wAKasKXNci/tvX9fk8vTk8lUUb9hA59yf5VG+o+IdAnje+ZpImP SRg4b1APY1JF4U1u1DeTexRbjzslZc/pSzeE9duVCzX0coByA8rNj8xT0JtI2NdvbuWG2itYXa2u Iy7stuZeOMDA+tUtLWzVYludBm+0K+BIlqQOvB9q6uyiNvY28LkFo41U46ZAxVmsba3O+Ne0OSwx elPooqjAKKKKACq15aLeQGJndQSOUODVmkxQNOzujAu4jols01sZJHldUIZdwUc/NhQKybJtNUyr eWkrYIKPFHKA2euRnjmu1xUU08UGwSuF3ttXPc0LQmd5S5mzlfGepPYeGoUs2eMXBEakZBVcZ+vp XLaR4TXU7JbubU4bcPnCEZbr35Fdp4r0GfX7a3it5oozE5Yl888Y7Vyo+HmoMTi8teDjo3+FYTi3 La6PbwdalDD8qnyyvrpcn/4QK2/6DkX/AHyP/iqRvAVv0XXIc+6D/wCKqtJ4BvYseZf2i59d3+Hv SP4CvEhWZtQsxG2MMS2Dngdqjl/um/1j/qI/AraY0/hzxZFbC4WRDIsbmM/K6t7V3usMVvIOeCOn ryPeuQ07wTcm/jkj1Czl8iVWdUYkjBz/AENdpd2l3caojmNfs6DAIIyT9CDWlNSSdzlxtSlKpGUX d21EuzfXNneRy6fFKqsPJRpMCRc9T6ViC2nOcaBp5xyf344/Wt/xBC9xos8STJCWwNzttB5HGfeu eh0y+hnaSLQ4hDJAYniFxw+SCTnPtXQtjw5bnQaFC8drIJLGG0y+QsT7gwx1rP8AHDrF4blUcGWR F4+uf6Ve8PWFxY20wuEWMSSF0hVtwjGOmawfiJcEWtlbj+J2c/gMf1oXxBJ2gcPaW/2kzdf3cLSc ewq74auPsviOxkJ4Mmw/8CGP61oeD7P7bNqaYzmzZB9W6fyrn7eXyLmGXoY3VvyOa1et0cyVrM9c 8RXU1joF1dWz7JkAKtgHHIHevJ76/udSuTcXcnmSkAFsAcD6V7Nc20F/atBOgkhcDKnoa8s8WWNv p+vvb2sYjiEakKCcZP1qINXNqye5V0/XdR0qForO48pGbcRsU5P4ivQbzUruHwQmopLi6MMb79o6 kjPHSuf8I6Tp97o93c3lskzxyEKXYrgbQeorT1m6WTwpe28cCwxQxxhFD5IG4cfpSk1exVKnLkcu hz+n+LtXkvoluL0eSMs+Y1AwAT2HtTbrxbqeoaggina3gMgCxx8HGe561gW8ElzcxQRDMkjBFHuT ivRbPwHp0MKedJNJMMMWDYGfp6Vb5UZQ55LQPGmr32kLZfYZ/K8wvu+UNnGMdR71U8Ha9qWq6rLD eXPmRrCWA2KOcgdh70z4jfc076yf+y1R+H3/ACHJ/wDr3P8A6EKm3uFNv2li18Rf+Pqw/wBx/wCY rndE1yTQ/tUkMYaaVAiFui85yfWuh+I3/H1Yf7j/AMxWf4K0u01LUpxdxCVYo9yq3TJOKa+HUmSb qaFGLxTrMV2Lg3ryHOSjfcPtjt+Fepadex6jp8F3EfllQNj0PcfnXkWs20dlrV5bQjbFHKVQeg9K 9G8EEnwvb57O4H/fRpTSsmXSk+ZpnH3ni3W4b2eJLzCJIygeWvQH6V19zqV3H4HGoLLi6MCvv2jq SO3SvNtR/wCQldf9dn/nXfXf/JNV/wCvZP5im0tBQk3cwNK8V6zc6rZwS3m6OSZVYeWoyCfpWx40 1vUNMvYIbSfy45IiWGwHJzjuK43Q/wDkO6f/ANfCfzr1TVdH0/UV828tkleNCEJJ4pSsmFPmlF6n jmBius8PeJNVuNYsrOW63QM+0rsXpjpnFclk7Qe+K9UttK0jTY7O6WxAn2hlcN0bHXk1U5JLUilG Teha8Ra6mh2Hm4DzyHbEhPU+p9hXnFx4n1m5l3tqEyc8LG2wD8BWx8QZWfVraP8AhWDcB7kn/AVd 8DaRZ3mm3VzcwJKxlMQDjOFAB4/OlGyjdlycpT5UU9A8aXcN3Hb6lL5tu52+Yw+ZPcnuK9GBGM54 rxTVLZbTVby2TOyKZkXPoDXqUdzJ/wAIcLnJMgsd2e+dlKSXQqlN6p9Dk/EHjO8lu5LbTpPJgQlf MUfM5HcHsKxoPE+s27711CV++JDvB/OqFjEk+oW0Up/dvKqt9CcGu+8WeG3vYLU6ZZp5kZKttwvy 4/8ArVWi0M1zTvJM1fDOujXLBndQtxEdsqjpnsR/n1qbXjefYkFl5m8yDd5YGdvfrWD4M0fU9Jvr n7ZB5cMkY53g5YH2+prX8Usq6dFvK7TOoO9iFx745IrNpcxsm3DUxz/bSkNH9vLAjhzGRjPNbxvJ 7izfzbC4hYMoAwGJ754+lcspsN64TSs57NLXcXEcktnJHDJ5UjIQrgZ2nHBpSV0OBz+sX8tomnh4 DNEwJlhMO7PT16GmXHiHTbvH2jR7iUjoXgBxU+q/arOztfO1xbZ1BV5DHkyH1xWb9quDbmf/AISg eUG2FvI79fSmloJt3Op0yeK50+OWCBoIzkLGV27cHHSuaza7miL3M8W52hQW/wApbux5+bHvXR6Y xGnQmW8W5Zs4mGBu5OKxN6eS8M+lI481nykyLk+v3uDiuetujWJr6SyRaHCys5RULZdcHv27CsHw rrN5fanPFdzs6mMugYDjn/P5VrXEkdt4VnaOHyEELKqBg23OR1Fc3o8RstZ0ZuguLchvxLH/AAra C90zm/eR0dnrn2nXbqyZoRDGB5bA8sTj3rUF1bsQBPETnbgOOvpXJ6VpVp/wl17F5Z222Hj+Y8Hi m+GdMhutSvLqUvvgnygBwM5PJ9appdBKTLd7cX+n6DeTHUknmEy7HjwdgJA21uaZdLcWFvvmV5/J RpBkZ5A5NcTH/wAinqv/AF9r/MVa0e3S08SWSw5US2Yd+c5JXNNrQSk0zsxd25Tf58W3O3O8Yz6V lXOutb+I7fTwYfIdCXcnlThuOvsK5Jf+Raj/AOwj/wCy1q6jplrL41t7d4yY7hDJINx5bDHP6UWH zt7HXyXUELKss8aFvuhmAzSy3EUEfmTSpGn95mAFcRqNtFd6nrjzrvNtCPKyfunii8JfTdBubxWk slXbMBk+wJ/AUrBzs62/K3Wnt5RSUMRt+cYJz69D9KpeRqYfhmwXB/1nAGe3NQQ6QIdF8iymNxFJ IJY84wAew9qtJBetK5dpVTf8uH7bl9/TNZudnaxaV1ccbSURMpTzT5qsVaTqNuP55/KqksWqJBLK 7yAqjHCv9f8A61SpBqIILGX/AFZH3wDu5/xq7pq3Sq/2ovuIX7xzzjnH40Rqa7Byogtor9ZYjKzl Rt3Zf/Z5z+OK1xRS1Q0rBRRRQMKKKKACiiigAqhqVnJd+T5bBTHIH5z/AJNX6KAauYUeizhMO6F8 nkZ44bp+LD8qRdGnWCRA8e5hhScnA49vat6indk8qOeu4/ICo8gQ+Y7Ax7SQTjGc4PrT9Rmii0SF HkTLhApdMg8jsM4qfVsb7fL7PvHIYDPT1BzUGpzRx6RDFukLsqldmSTjHcVj9p3NqS99IboDbprj 5kYbVGVX68Z2gfhUJhkN0hFnM6ed8reZu2/Pz0HHrn04z2p+hCVmuQJJQ+1cGTLKOvTJ/wA8VAgi XUDhHB8/7oQ5OW6/e/z1rWGwsTpUsafiEI2h3CyMyRkDcwTfgZHaqFvpuqCCPyvEHybRt/dKePzr S117VNJmN4jPDxlUOCTkY/WuR8nTfOEH9gXvmkbgnmHOPWqWxzy3Oz02C6t4nW6vvtbFshtgXA9O K4X4gz+ZrFvDn/Vw5/En/wCsK6rwx9m+yTi2tJLZfNwyu+45A5rgvGE3neKLvnhNqD8AP65pxXvE 1H7h0Xw7gxBf3BH3mVAfoCT/ADFcPeReTfXEOPuSuv5Eir+meIdR0i3aCzkREZt5ygOTjHf6VQuL h7q5kuJceZIxZsDAyetaWdzGUk4pI9h0Oc3Gh2MpOS0CZPvivPPHX/I0Sf8AXJP612Pgq48/wzbr 3iZkP55H6EVx3jr/AJGeT/rkn9aiK942qa00bfgkZ8N3w3lCZT8wIyPlHrUd8+/w3qfybfkTqRz8 3oAPzo8IKh8L329C6icnaozk7R2ovnQ+G9UVY1Vgke7GR/F6Gs5fxDppf7tI5bQP+Rg0/wD6+E/n Xpup3j290EW4ZF2Asqx5IyeuenPSvMtA/wCRg0//AK+E/nXpGpSTG8UK7RsU2+WCrAjJwcFTjOK0 nuclL4Wcx43mafTtIkaTzCwkO7GM/dqH4ff8hyf/AK9z/wChCpvG7btO0htwPEnIx/s+mBUXw+/5 Dk//AF7n/wBCFP7An/ELXxG/4+rD/cf+YqL4d/8AISvP+uI/9CqX4jf8fVh/uP8AzFRfDv8A5CV7 /wBcR/6FR9gf/L4wPEv/ACMmof8AXY13/gj/AJFeD/fk/wDQjXAeJf8AkZNQ/wCuxrv/AAR/yK8H +/J/6EaJ/CgpfGzzbUf+Qldf9dn/AJ1313/yTVf+vZP5iuB1H/kJXX/XZ/51313/AMk1X/r2T+Yo l0Jp9ThtD/5Dmn/9d0/nXqMoxqMhYHJRgDu7Y9K8u0P/AJDmn/8AXwn869QdGOoSyBHCbGGSmB09 aitui6GzPH/4Pwr1i8kC2dlh1J8kZUjPGBzXk/8AB+Fer3Ic29oI4pDiFcsse4HgeoxRX+EKG7OT 8e865D/17r/M10Hw9/5AM/8A18t/6Ctc/wCPP+Q3D6/Zl/ma6D4e/wDIBn/6+W/9BWq+wKP8VnDe IP8AkYdQ/wCu7/zr1HRolm8M2cTjKvbKp+hWvLvEH/Iw6h/13f8AnXqmgf8AIv6f/wBcE/lRPZBR +Jnk2o6fPpWoSWswIdD8rDjcOxBr0Hwp4nTU4Us7ptt4gwCekg9R7+1X/EXh+DXLTBIS5QfupcdP Y+1eWXEF1pd+0UgaG5hbOQeQexBpq0lYTTpSutj27j1rL1xrpbEG0Us28biqB2C9yAepqv4Y1v8A trSxK/FxEdkoHr2I+o/rVSez1OHWZLtbQXfz7omNwUCDHTbWaVmbt3WhUuBq9tP5ZeeQlh5ZjtUK sp9+x9q2dXuZYmhWKTaSDuAYDjis67tdX1C6jl+xC1mXAEy3OQozn7vfqas65cBJY1C4ZR8zlto7 cdaU3oa4aN6mpX1KEXR0uQXSR3hQiMSpvWTIGc4GM0yLQtZi87ZcWOJn3sDFkZ6cDHFN1cW08Okr d3NxCHUAOjrgHjlif51J/ZNp/wBDJP8A+BK1SehjNe8zY03SYrLTYLWXExhbeGI/iyTkfnXOmI+f IJdPUFtw+SzLBTng5z83euo02JILBI47lrlVziVm3E8+tc5bz20Ubp/at5bfO37sR5A5PQ7elc1b oaR2Hay8kPg1EaAQM7KpjUYxznp26VmTaOuhzaTeLJI5eRS4I4Xpn+tdX9rFvoL3ccrXPloWDyDB b602z1mN4ZjfCO3aFlDfNkHIyMVrGoopRIlDmdzHiuv7O8bXIljcrdhVjYDjnHP061P4SBEuqZB/ 1/8AjW617ZiaKNp4vMkGYxkZI9qrXus21tZ3E0UsckkXy7A38XYVTqKwKGpx8YP/AAimqDB/4+1/ mKtaLI134jtGSOQCCzCPuXGCFx/Wunt9UtDZJNPcW4JbaxRvl3elWRd2v2oW4mj88rnYDyRTVRNC 9nruedCVl0oWbQyh0vt7MV4HGMfWug16Y6d4qsdQkjdoBGVyo7/MP/ZhXQXEs8U58qHfGQP4eh5/ +tTPOupI2LQ7cYIGzJ680nUVwVPQ5XVJ/sWp6ukscn+mwr5JC8Hp/n8Kttdy6Xp2m2l9ah7CWHE2 UJKnk4/UfrW2by7+UtZjPYEH8a0IszQgyIATnKke9CmmHs7GJ4PSZdIbzAwiMrGEN1210OBQBilo epaVkJijFLRQMKKKKACiiigAooooAKKKKACiiigAoNFFAGNqcV1cTBEtWdFHyuHxye+M81X1RfK0 m3Uwv52FTlDJt5GQcV0OKz9R0iDUtnmySrs6bGx+Y71HLuzSnJRkmyjoR/fTjykQBV5WMpnr2JNV YZ1ivfK3vnzj9y5bby3pj9KvWukNpNpcLYyb5X5QSKowfqAKpppuoNdQvJDCVjkDc7eecknA6/Sr joiK8lKd4jtW1m2lefTfsM16AMSiMcLWTPd2Fzaw29pYX84gHEqEh4yeozzWzJ4aZrue4h1O6gaZ yzCM4pkXhV4Awi1i8jDHc204yfWqVkYtSfQn8M/Yjp7vZiUbpD5gmOW3e9eX6nN9p1W8mz9+Z2H0 ya9TtbBdA028k8+ScYaZmfrkD/61eREkknqSauG7ZlV0SR1uneBZb/Tre7+3LH5yB9hjzjPvmsXX tGfQ79bVphLlA4cLt9f8K9Y02D7PpdpD/wA84lX8gK4j4iRbbuxm/vIyn8CD/WlGTuOpTSjdF74e ThtPu4O6ShvzH/1qwfHS48SsfWFP61c+Hk23VLuHP34Q35H/AOvVvx/pcj+RqUSFlRfLlI7DOQf5 0bSB60h3gNbe60i9tJ0Vx5wZlbpgjj+VaHiTTrew8M6g1ujIHC5G4kfeHY15vb3VxauXt5pImIwS jFSR+Feh6m7SfDgO7Fma3jJZjkk5FEo+9cqnUbg4o4fQP+Rh0/8A6+E/nXpOr7ft6bkUr5fVrdpB nPt0rzbQP+Rh0/8A6+E/nXeaozXt2++ylyuY0Yq5AAOc/cPX2z15onuTS+FmN45wbDScBQP3mNqF B/D2PSoPh9/yHJ/+vc/+hCn+MVCaRowCOgCuNrjkfd69KZ8Pv+Q5P/17n/0IU/sCf8Ut/Eb/AI+r D/cf+YqH4dkDUrzJ/wCWI/nUvxFP+lWH+4/8xXJ2Ml9bmS6sXljMS/O8f8IPr7UJXjYUnapcs+JC D4k1D/rsa7/wR/yK8H++/wD6Ea8ud3lkLuWd2OSxOSSa9d8NWL6doFrBIMSbd7D0LHOP1ontYdLW TZ5VqP8AyE7v/rs/8zXfXhA+Gq5I/wCPZO/uK4vxFaSWWvXkcikBpC6nHUE5zUSDUbzTZF8yV7K1 G4hmOxfTHvTaukTF8raDQ/8AkO6f/wBfCfzFepTYOpMOd2w54OPun2/rXluh/wDIesMf8/Cfzr1W OEvqskxiZeMAkfe4xWdbdGlDZnjZGARXtemSJNplpIpBDQqQR9K8n1/S5NK1eeBlIjZi0TY4ZSeM fyq34Xvboa5YWwuZfI8z/V7zt6HtWkldEU5ckrMvfEAY12E9jbj/ANCatz4esP7DuFyMi5JI/wCA rTPHWjy3ltFfQKXeAFXVRklT3/D+tcNYatfaaJBZ3DQ+YMNgA5/PvSSvGw2+SpdkmusG1/UCP+fh /wCZr0F9Sn0fwTZ3kMau6QxAq+cYOB2+ted6bp1xq+opbQhmaRsu/XaO5Jr1q90yK60WTTvuxmLy 19sDj+QolZWQ6SerRzWg+M7rVdXis7iCCNJAcFM5yBnufaofiHbQiGyuQoExcxkgckYz/n61x00N 5pGobHDwXMLZB9PceoqXU9avtYaI3kobyxhVC4H1+vFPl1uifae64vc6H4du41W7jBOwwgke4Ix/ M11uq6jqNpcxpbWBkjaRRv3D5s9Rjt9elZngbSJtPsJbq4QpJc42qwwQo6Z+uc1p+I1iexiMs7ws sytGY497FuwA9azk7yNYJqAyS/1qUBItKELkj55JlYD14FQ63LIs6hUlwi5JRG6n3DCs1dTn6/2p fkBtp/0MYz6e1dfI6RQNLIwCqu5mPYClJG1Goou+5zOsGza306Keykvbpoz5aq5HHGT71jpHZSGV U8OTlojhwJ2yv1rS1DWNL1ZFNxZXggRvluVXAX/61VNUvdM1CdrpbK/VR8r3EXyhh754qltYwm7t tHS6JPbR6FDKI1tYOSFaTIXk9zWPN5yRC4k1MsWdhtS8Chx2K9hj0rQi0y1v9AtYbGYpAHEqs67i Tz1B96qxeH/MmmaLUoWc/LIBbIce2O1ctZSb0RtHYtzLMvhGVZmLy+Q2W378/jWMx3k3aMY4DcRj zWTIG2MgnB7Z4rqLK3TTbCC0klDhfkVmGMk9sVdABGMDHpQ6TlZsq5ylu8dtcWARGdmSNGimTkry VZfcc5qiJPOttRcKi5gXCIuAn7w8e59/eu62DOcc0nlJjG0Y+lHsX3C5xtztjlnZuEEtwuccbjGA Ku2LpDq9vGE3u6KsiOnzRsI+GB9COK6by19B1z0o2DOcDPrQqNmFxQBRgelLRW4hMD0pcUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGKKKACiiigCOaNJY3SRA6MMFSMgiuc 0+bQ7yR0fTLa3KZIaSJAGAOMg/UV0xri4tJxpYmeKV5ZLtQUYE4TzT29D1/Gk21sa0oQknzeR1ou 7ZQw8+MbAC3zD5R71DcR6dfNGtwttMcFkD7W49RmuTns5lvbw/ZpNiyFmIQkMnmIRj14Bp8NoWvo 3FncRxGIFIwmSBtcEbj069PcUuZmv1eFtzpLeHSbWRZbaO0idiUVo1UEn0GKt+bBOkiK0coXIdQQ cexrkYIQtvZj7DIxjmKrmEgSr8vLDs3Gc9PlNXvDlvLDPeFoXj+UKdykZbc5P16jmjmuyZUIxi2m V7G18Oak0s0mmxwFAHPmHClTnB4OOxrduDYx2DWojhljSPItyVwVHTrxiuRgtLhrZZTbyrFGIlfd ETnBYk47jkVO1qyC5jaynaVrT925U/KPLAwccE54xS531LeGpp6M6MWmj2xaWO1s1lhG75UQFT25 7VPJqEaQqw2NKQpMfmLnn8a5qWDbd3hFnKyeYkjs0Rzw67gP7ykc/gahjsJxazl7VzKIrYKShz1G QPy5+lNyYlh4JbnU3q2NzFI0sNvdGAE7XAbaf6VBE2maZam+e3trIfdLKqjv04/lWZYQSRz6kzws qCNgxZcAne5/HgjmqniGE/2NZXSR77e2ud8sY5BXP+fzocny3IjRi6yhfQ6SP+y9chS4EdvdIMgM yBse3PSp4NOsrYt5FpBHvGG2RgZHoa5h54/D2kfb9LZZor64VlRuFUEHgYpj+LNUgFx5ljBm2mVZ fnPCt0A96Oe2jKeEcm3DY6GLw/pMN19pjsIVlzkEL0PrjpWnkCuW1jxJf2FzL5NiGtbfaZZJMjdn svbvSz6/qL621hY2kUo8pJAWOCAcZJ5oc0THCztdWNq+07T9UPl3UEUzL69R+PWo7ldK0zTGjnjg isxwUKjafw71zeivqH/CZ6hmKLDMPP5+6oHy4/TNW/GKiSfR4n5je5AZex6f/Xpc7cbl/VUqqg3u r/hcvRDRpLZL3T7K0lxIApSNQQ2fpwavHVIFyCkgIXdjA6fnWEtnceHYNSuI7dZ1lmD20EQJ29eo x7iqp1uZNO1JrmwtxeWZQEYJUg8D9KTk+ovq3M26WqOgvJdPvk8q7tfNTPHmIOOn4iqFrZaLYXzG PTljmjf5HGWP69KyJfEF9H9oB0q0DxxrOMnohx19TnFTahrc8d2UttPtnD2guW39eev14pc7tuH1 Kd9kdKdUhyFKtkkjp7VTGjaJqcrvJp8XmKfmKjbk/h1rJOt5ksmjs7cefaNcEkchgD09uKdF4guh p2nG0tbcXl+X65Cjb+tNTae4vqk3uv6/pHUWljaWEfl2lvHCvcIuM/Wsq51GWK5eP7WVAkwuIeOo yCT1xn9c1f0+6ubrTUnntjBcFTmJuMH/AArKkluBeyYuSIxLlhuBCnOD1jP861WupzTTi7GrqdlZ 3Nsz3VmlzsUkLtyT7Cs7TdK0cXTGDShGyjcryJnP59DWlqruNPlRYGl3qVIU9OKzNDTEtwI9qMYx g8YH4DimtibK5Z/tOYX3kAR7fN2E4bkfXoD/AFp3iB4l05fNg80GRQP3nl7T2O7tWZEwTWVMxTzT NjKpwT6A9fSrepvb6xIbCGYLLbv5ju0W9Fx1Bzx3oFfQyrhobu48yS1gBYgsE1FQGI6ZA6mup1CM T6ZPCZBGJIym/rjIxXHZt1uPLF7bMAwBkXT12A/71dvLCJoDEWKggDIpSCGpyy+G71LQ2y63i3wR 5ezjB/Gli8P3ywG3j10iJcpsCcD2xmtyPR4IiSGc5z1x3GKdJpcUkvmNI5IOQOMDnPpU88x8iDSL Madp0VmZVkZM/MBjOST0/GqY0i5FzLLvTDsxADEcEk56decVdtNNjtZBIrsTg8HGOav0031KsjDX S7snc/lAgoRhumAQe3uPyqxp1hcWsxaVlKlCOGJ5zmtSincLAKKKKQwooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjFFFABRRRQAYqKY7YnIYKQ CcnoKlpCARg0AYMeryxRxo4WQ7fndjjnOOwwRUttqU11JFhURDIEbPJPyk/0FagtbcDAgjxjGNop VtoEACwooByAFxg09CbPuZEmqSWyu5dZSXcbDwVAJA6fQVGNdlLKDBHzvz8x7D6VtNa27HLQRkk5 5UdfWmNY2xlWTyU3KCBxxz1/lRoFn3KC3v2uGdXVcIm4BHOW59vpWfqOqxafb2cE1qDaXTtHIXb7 gz9Pxrbu4Y4rKcxxomUIOAB2qvbWkV5pYiu4klQkkqwBHWlLbQulJRmnLVHBPIBoslvFIZLWLUlE LE5yMH/P41Y1MYXX+elzD/OuhsbiyewWK4sYfKVtyrEmVXAySc9xVlrnSZPNDWRbzB5kuYh1BIAP vkGsNH1PR+uxve39af5HK+Jr5ru61CCe5ZEtiiwQjgOTjLH1xW1pPPjOXnP+gJ/Ja0pG0q6Z53sB Kzou5jEDnJGFqaOWzElzNb24S4ihxuKYyAOn0BGKate9zOWKi6fJFdLfl/kZGmzx2/jjVIpWCvOE 8sH+LjPFO8ZERSaTO/EUd0C7dgOP8KsxXtk9wl3eW0f2tCQsqJ0GAfXPQ4qxJf2t9GYp7dpIn2gR PHzklvf/AGTRzRatczVZKpGdtlb8LGBeeJb2XTNTmgkTyluVhhmVeinOT+WPzrJxCmn+IBDM0sf7 nEjHJb5uTn65rrTPp32Ca0S0Vrf5tsYhG0AAHJGef0q3Zw6ZefaIktI+QBLmMAPgkD8iD+VJavc2 jiqcE1GNtf8AI4+9/wBbqHPTTIv/AGWkvpo4L4GRwobSQoz3JHArvn0uxcuWtYiXQI2V6qOg+lYk 2iNP4pE0lqj6eLURYOCMg9MVTgy6eKg9+i/yOaeVIF0l5W2KdOkAJ4ySGA/mKsQtYS+GNMtbppIZ yJJLe4HARgT1NdzJptlOIhLbRP5Qwm5Qdo6cU19I0+W1S2e0haFDlUKjC9+KagyHjIO109/8/wDM qeHb6fUdEt7i4H71gQSBjdgkZqm5KajJvwD52RugRjjthsg1usi21qRBEMRr8kajA46AVzZivJZw 76WQS4d2AIzkjPO7gcfj6CtY6I86rLmldI39Rx/Z0+duNh+/nH6Vm6OI/tk8iCNQ0YO1S2Ryex/w 61f1KC6uLdY7aRUJb59xxuXB46H2qppmmT2pnScx+VIoGE65787RQJ7lcOJdTCKZWxNuUrLxjJz/ ACH4cVZn8OWdzcyTM86rId0kSyEI59SKnj0a1jkjdRJmM5XLdDWiKLglpqZdzoVvcJDEGeK3j6wx HCtznn8q1FGAAOgpaKQ0rBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIp4VniMb 52nrg4oiiWKIIucD15oooApDSY1tYoPMbbHG0ecckMMZqD+wUww+0yfMuH4GGOSQcexY8UUVm4oB 39igKQLljmLy+VB44zx6cdPc1NDpaRef+9dhKmzkdOufryaKKXKgKw8Pw7VDTSE4YMcAbsjH4dBT houEwbuRiduSQOgJOP149MUUUuVDHJokaCQCZzvV15HQMAP6VYsdOSykldZGbzOx7ck/zY0UVUYp MRepKKK0AUUUUUAJRRRQIMUUUUAFLRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKAP/2Q== ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image017.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGVAcMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD36iii kMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKY8iRLudgo9ScU4EEUXAWijNMEqFioYEj tmgB9FM86PONwz6Zp+aLgFFJmjNAC0UZpMigBaKarq6hlIKnkEd6UsFGTQAtFJmlzQAUUZpM0ALR SZzRmgBaKTNLmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAoanEWRJQI3MJLGOTowwQfoaoSaheFJ54UYRI jY3Bdq4TIPXOc9umDWxPawXQUTRJIFOQGGcU17K3Z2doULMu1iV6j0rCdOTldOxSatqZ8lxdQI++ Yssco8yQIMhNoPT6n64qt50yyXE8cqRmNJGxtHzbZH4/xqzcXVsZZVltQzxspAJU7jnaD147damu Ft/MhX7EJZWy4UBcqAck5Puf1rJpvaRW3QomXdIjlEGZCuNox/r1H5+9SPdXSQyMty77nKxEIuTg HJPbH+HvUsl3bJLJG1oS6MMBdpLEt9ePmweaiLafHEhOnogMmx1IUbWBx689e3ap22kHyLFrPPdr du0m1VAVFA6EorZ/Wqtrc3gS1jjLyKsMTMcLghuucnPAHGPSrSXEYUNHE0MLSYDgLhwAR9cYUfpV aJoPNaUWOxIYkaJW2rjLNz147cU5Pa0gXoSpNdy29qwusNcnJwgOwbS2B+Xeo47+5kiSYyKu0xK0 YX7+7GT69+PpSNcQbI5LS2Kl3jdpFA+Xc2OffBPT1p/22xJEiWoLx4ERG3kE4GOePx9aXN/eC3kM t7mZLeLZKFSJYl8vA+fccdf5fSkN3OwgLyo6zBX2FB8n7xBj8Mn8RVi/MECqUtd06xMyFQMxgDrz 6ZFV7RY1vN8sSsGITzEiCrvOG55JJ4HPrQ+ZSULhpa5N9pn+yLL9ofzJ2xHGir8vU459hzn0qKG7 vLkRus6xq7Im0IDjMYYn65okS1hurx7iPAAMoi8sYkAGcg45Oc96nhu4fOWH7E8eH25IXAYLkdD/ AHf8Kd23ZuwfIiivr2aWFVUttVDIVC4OSQScnPQcYqFp7yW2hL3HMoikBVQNvzqCPfqPyqylxayt EVs8ypJ5ahdp2nG7rnGMc0m7z9KiJt40klIiUFQQAT29v6ilq18QfIlsri6mu33q3kguuTtxlWwM YOecHOaLC5up5GeRGETAkFtuFOeAMHPT19KQiHSnV2VpHlba0p2gjJA7Yz+Xaovt9vbyzOlk4Lb2 Z1C/MFOGbr2P51fNy2UpCtfZEcV/ciCFpJy7XEKuPLRcqxKjAzxzu7+lOiv7h0dnlKhI1GFUFmcs y/TsPbmmwfZLaD7O9mSg/dvLtXDsoz0znsT9asSz2kaiFbQMJFQbAAAd24gc8dj+dQr2vzD07FrT Z5J7MSS/fDMp/BiO3Haq9x4h061uHgllYSIcMAhNX4Yo4UCRIqKOyjAriNY0q+m1e5kjtZWRnyGC 5B4oxVWrRpJwV2OlGM5PmdjtLO9hv4POgYsmSMkYqxWP4bgmtdJEc0bRuHY7WGDWxXTQlKdNSluy JJKTSCiiitSQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooJxRQAUUUUAFFFFABRRRQAUh6UueaKAMsaUyiQCZSHDABowRgnJz61O9iw+zmGYo8KbMsN24cdf fgVdxRWapRWw+ZmPLpciDdHMS3mDbhB8o3hsn1p76SXIYzksSS5K9eQePToB9K1OBS1PsIdh8zM9 dOIQRNLuhVsou3kDnjP41H/ZUmObksyhApZM4C5xkd+taeR60Cn7KDFzMzF0koqItwwQbNw2j5ip yD7e9KumMlu8Cyx7GG1cxA4X0PPNaeKKPYwXQOZlCfTzIiLHMyFYzETjJZTjP48daRNOKTq3nHyw wfy9vVgMdfTvj1rQoxT9lG9wuzPutOa8ZhLOfLwwRQnKkgjOe/BNLLpqylyXYb5N/Hb5Nn/16v0U eyiF2Z9tpvkOrtLuIbdwmB93b/KnCwzZ/Z2kPytuRwMFcHI+uKvYooVKKVkHMzMl0yWdlaW5DMBg kR44yDxzx0pz6YrxspkIzHKnT/nocn8q0OPWlo9lHcOZmVFYSSyOZnIj81nEePUEZz6YPSg6TI8M kcl1v8xFjYmMfdGenvz1rVxRSVGIczIoUdFIdy5ySCRjAzwPwqWiitErCDFFFFMAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCnfymELKvJRXYD1wtRi6uVkxI IiofYdoOeVzVuaCOcYkXIwRjPqMGka3Q5O3knd1PXGP5VlKMr3TAom5mkji84J8/lyLt7fMOD+dL FfXMqqVQAPt2lkYAZz69ccVPb2EcMKKQSwC5yxPI9PbPapEs4k+6GwDkAsSB9B2qeSfcCn/aFwsY aRUywG0KCcHcFP165p3225KsdiAIgZtykEjJHA7cDNTzW1ukLNIvyIpJ5PAzk/qKiWS0I2ESYZdr M+enJwSfxNDUluwIjeTwW7uzozB3IXYTlVJ9+Pr2qz9plEN1KQuIt2weuB3qqi21xcyKySBGAIB3 Lktuz+BAFWGuLVA8JDFXPzcEjkleT9RSi31YBJdT+cYogmd+0Fs/3c0trdTTIxdVyY1kUL6Nng/l VdTDHcBIUclQ5y247iBjg9/SnRXFvBCN4YNs2NtVuFU459MZoUnfVgILuVlWQBWl2HOFPy/MoI25 7Z/Sj7XOhkfzEdWKBNqE9RnOM/WnMtuu6OPzAQwUyZY8lhkZz16U9IbaRpIwrrsVQRkrwOhH5daX vdwI/tt0SMIi4Cbg4IJLMV/AcZpft8oEedpbzNjqEJ/j25z2/GpIjayK7DdhQpYuTnAOVPP41Cxs xtlaOVeS+MN67skemTmn73cB93LK8hVdojSWINnqSWB/wp1pdy3BbK4QruQlCMe3PX8KjnltHmZy rs6c8ZAYryB6E0sE0MJL4cb8YjwxIJBPT8KL+9uBFazvBDbJ8jeYAXAQ5y3cn/OeaW1nk2RiIKrS qmN2SFGzPrk/nUqrZHZIN2EVCOTjBJC8fnUMpgSDy1B3L90pu+XB2jntxkVOq6gSDUpAmSi7sBsD +7gk/qp/SnR3dy7IhVQWfG4oyjGMnAP0xSl7WNyDGwaNdgBU8gnGB681HbywRRqzCT5XfbncdoB2 856Cqu76yGTPdTrM+AnlJIqHjk5x/jUSX87uETYxZwAxQgbSGPT/AID+NNuxHDNM7AtISHUDJC8A DI6dQcVLbx2gm2xq25OhJJHy5HGfTJFF5OVrgOgvGdp92GWNQ6sqkZBz69enWo/tk65VzGGKqy7U Ldc8Yzz0ogktIt5jDj5R94HkA4AGfc4/Gq0X2dQ0kylRgfLGWOzaSOT1HUjFJylpqBZS+mkjMmUR diEZUsSzY4wKRL+4kCttjC/JvBznLMV49OlJ/oqvJEcpEqjBGRyvofbj9acptolHyMkZUHawbcSG +X9T+tF5dwI/tE8YR32PJ+8APIH31Hr71oSSmC1eWTkohZtvfA7VUT7JJIqhHLOzHBz8pyCc+nIF Wb5WexuFUEs0TAAdzirjdJu4iP7XcAZ+xS4/3k/xqxDKJoElAIDqGAPvVZr0FCPs9x0/55mprJWS xgVgQyxqCD2OKcJXe4E9FFFagFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUARXMRmtpYgcF0K59MiqklgJJ5XKoVkHJI+ZflxxWhRUygpbg Z4tbnf5pePzBtxgHHGev/fRpVsn2yBnBZwASB33Mf61foqfZxC5nNZTncokUKA4XAOfmOeaRdPZY pEyi70dQFHA3Y/wrSoo9lELlH7JKA0e5PKMgkGeoO4Ej+dJbWLRNKZCp8xdpK9T15PvzV+ij2cQK EVgFtZYSsaF02FkHUY6mh7a5kGS8QcoUbAOMeo9+tX6Kfs42sBRNkSiqG4Ds34FSP60R2kgljkdl ypBIHfCsP/ZqvUUvZxAzvsMowFkTaQobI5+Viwx+dDWM3zBZEw/3sj0Ynj860aKPZRC5l/2dL5zS h0353A4OW+bIz+HFL/ZzFleQRSNliwYHHJzxWnRR7KIFG5tZZZHaN1CyIFbI9CTx+ZpbayEE7vsj 5LEOB83Jzg1dop+zV7hcz5LBpIo0LL8iFeRwTuU/+y1XuLcwxlIwqPMmwqiEjqcYP4nOa2KKTpRe wGc9hJIGQyKIwXZMDnLZ6/TJp0ltNNtdnQSKBjAOMhgR/Kr9GRR7OIGf9ilLo+5BIHLlhn8h7YAq 8m7YN+C2OcdM06iqjFR2AKKKKoAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAzbu+mgvNiiPylEe4EHcd7FePyp41a0KI4dircg7G wB6njgc9aebJW1B7p0RjsVUJHKkFs/zFVP7NuFtlhRo/nt1gkJzwBnkevU/pXO/aJtorQuNqNsqg lzzuwNpzwdp/UgUR6hbyypEjMXZSwGw8AZHPHHII5qpLpUjvcHepDMrRKcjbggsCfcirFnaNBIzl FTcgG1WLYOWJ5P1pqVVvVA1GxKl9DI4RWbJcoCVIBIBzj16Go/7VtdyAOx3hWBCHADdCTjjPvVb7 DdLMZYxEuJd6x7yV5BBPTjOc49veoY7K4DtajZsEMSO5znjOcev9Kl1Km1hpRL51W1XeTIQE6koc HnHHrz6UxNVhYy7lkXYwUZjbLZAPAx156e1Qf2bcMER2j2Q8RkE5YblPPpwtOudPlmldgEK+asqg sRk7NpBx045zRzVewrRLUl/AkEcu4lZfubVJJ4z0HPSorXUY5Y7ZZG/eyxqxwp2gkZxnt3oe0mVL doFjV4gVKMSVwR2P1FQWulvbywlljkCqgLFyCrKAOB0I4FNyq8y0C0bDpbq9hlugTCUhi80DYcnO 7A6/7NXZryGCREkYhm9FJx2ycdKhuLSSU3ZVlHnQCJc9iN3X/vqmXViZrxJfLSRSoRldyuMHORjr 1PFH7xXsGjLUl3FEzKzYK7c8H+I4H602O+hmICM3JIBKkA4GePUe9Vruynmud0ZQRt5W7cTkbG3c fWo1sLuNt8flKfMJEe4lQCMHHHHPOKbnUT2CyJ21KISRNvxC8Zk3FG54yMHGOmT60DU4ss5bMeF2 AIxYkk9sc9KonR7krGheMhIwoYk8fuyuAPTJzmrctjN9oWeIoWTbhWOAcBgf/Qv0qeaq+gWiWYr6 GaRUjZmLIHyFOAPc9uhqnFqqm4uPNfZHGWwDEw4UgE7uh6063sJobmGT5BtB8xlY/Pkk4x6AnINM l02Zw+GQbjL1/wBogj+VDdVpMLRLJ1O38kykuFDbW/dtle/IxwMU5L1PO8pjlmYhQik4Ax19OtU7 3TJ7jzwjIVlZjtYkAZRVB464wePepGsZxNG6FARIX37iCBxxjvnFHPVvsFojta1BtN05rhE3tkKv oCe5rA0HxBe3Gox2ty6yLJnDFcEcZ7V0d5Y/2jpptrhtrMBuZOzDnjPvWVpXhhbC8+0TSiUqf3YA xj3NYV4Yh14yg/dNIOmoNS3Oiooor0DEKKKKACiiigAoopjSqvfmgB9FQGc9h+dNMznvSuBZoqp5 j/3jSiVx/FRcC1RVYTP7H8KcJ/UflRcCeimrIrdDTqYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFVJrox3cMIAKvncf7vp+ZpNpbgW6Kqfbo2uNqnKqrFiAeoIHHr1NOOoWyqGMnBGe h9cc+lLnj3As0VVF/DiQtuAjbaTtP59KlS4jkkdFbLJ94elClF9QJaKrm+gEe/educZ2n8/p7057 mJHCFvmK7gAM8etHMu4E1JVY6hbqoJfGcnoc8dfypHvUjWQuy5BIXGT2B5/Ohzj3At0VVS9iEa+Y 21tm9uDjpk80qX1vI4RX+Y5GCCPf+VHPHuBZoqt9vt9u7fwTgfKck4z0+lIt/C0jrk7VVW3YOCD0 x+lHPHuBaoqA3cIhEpb5CcDAOc/Sla7hTZucfOMr7j1p8y7gTUVXW9gbG1icnaBtOc/T8RSLfW7F sSD5QWPB6DrS549wLNFVTqFuqhi+OvG05GOvFJJeIJ4okYFmbDccYwT1o549wLdFVhfW5AO/qwUc HknpQblUuGR2AXbuGQR9eenSjmQFmimRyLKgdc4PqMUhuIhL5RkUSYztzzTugJKKKKYBRRRQAUUU dKACo3lVeOpqOSbPC/nUVK4DmkZup49KbSEhRknAqB7tF4UbjUtjLFFUWuZG6EAewqMux6sT+NK4 Glmisuii47GpRWaJHXo7fnUi3Ug64b60XEXqekrL15FVUukbg/Kfep+tNMC2siuOOvpTqpdOlTxz Z+VuvrVJiJqKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVCeyaWaSYMQ4K+X8xA+U55H1zV+i plFS0YGZ9kugiqNg8tCikMQWG5T6ccDFRJazoWhVY8tGwOWPyhmJ9Oa2KMVHsUBmzWlwwdF2lCxP 3yucjHOPQ1NDaYD+Z1LhxtYjooH9KuUU1SSdwMr7BNncVG0FgsQlYAAgdwPUdPerMls/zmLCnygi 8nj8auUUKmkBjrb3EU/lqkeXSThmJCgle+Oam+xTxsTHsbhk+YnoQoz/AOO1pY5opKkgMiTTrlwV JUjYVBLnjKbcY6de9WJrJ5WbkANJuz3x5e2r9FP2UQM6CydHidlAZG+Y+YzZG0jjPTrTDYzeWE+U 4jjHDEcqenH861KKPZRAz5LNjBDsTBRyxTzW5znPzde9Oksi8aooCKIGi4JOM4/wq9RT9nEDN+yy hE2xqknmBi3msxHT1HOQMYqKO2muLeMnYoQHacn5juB5446frVm+jMkka5cDa5O0kc446VXQtbsj M0mzKM5OTyVYH9cVi0k7W0GPMDpK1zLsG7cCoOcZCqP5UJZzLtjJTYG3FgTn7m3HSqzEuF8zzd/y GMc/3+f8n2pRvlmkxvVXddwBbj58Hn1x6VN49gLEFi0bwsygGNhuPmFsgKwGM9OT0p01rLJd7yFe MEkKznGChGMdOveoYiElRZ2faCwhGTyQ5H48bcZ96riRjFI2TtyriPLfMcNlc9c8D8RTvG1rAasE c0dmUYjzOduTnHoM96htra3lsUeRFfzFDsz8kkjrmrkbiRcjPBI5HcVWOmwk4VpFjJ+aMN8rfh2/ CtXHa2oiTT2L2EJJzhdufXHGas0gAUAAYA6UtaJWVgCiiimAdKrSSbjgdP506aTJ2jp3qGk2AVBL cLHkDlvSmT3HVE/E1VHNQ2Ow55HkOWP4UgUmpYbdpWwoz79hWhFYovLncf0oSbAzliLHABY+wqdb KY/wAfWtMKqjAAA9qdmq5RXM4WEv95aDYSf3lNaNUhJcyh5ImQKCQqlfvYOOT2pOyArNZyj/AJZ5 +lQNEVOCCD71swSiaBJVGA6hgKcyK4wygj3oST1Q7mCQR1p0crxng8ehrRlsAcmM49jVCSFo2wRg 0rWC9y3FMso44PoakrL5ByOCKuQXG/5W4b19aEwL0Uv8LfganqlViGTcNp6irTES0UUUwCiiigAo oooAKKKKACiiigAooooAKKr3N2lsyKyyMzAkBFLHjr0+tTA0uZXsA6iq0t7HDIEYOWJIGFJzhS3H rwO1SpKkmdrZK8MPQ4z/AFFLmT0AkopM80ZFUAtFJmjNFwFopM01ZUYsFYEqcMPQ9f60roB9FMkl Ea5IOMgcDPU4p2aLoBaKTNGRTuAtFJkUhbAzSuAuBRgelQ290lzGroGCsoYblxwRmpsihNMAwKNo qMzqJhFhySM5CnA+pqTNF0Ax4ldkJB+U5FP2j0qMzKJ1i53MpYfQY/xqQcihWewC0UUUwCiiigAq OWTYvHU1JVR23uT+VDAbVW4nx8i9e5qWeXy04+8elUOv1rNspBgnpV21tDJ8zcJ/OiztfMO5vuj9 am1S/Gm2ZlCbiTtQds+9JtRi5S2DVuyLiIqLhRgU6szSNV/tOJy0ex0IBAOQc1pFgOpxVQqRnFSj sKUXF2ZieJJp4reEwSSIS/JQkdvajw3NPNbTGeSR2DjBck8Y962sqx4IJqO4mitYHmkO1EGScVi6 NqvtebQrn9zlsTVTNtOu9YpgsbEnBXJXPXBzVG38SWk86xbJU3HALAYz+dbVaRnCqrxdxSi47jI0 WKNY1GFUAAU+sjXtQmsLZPJOHkbG4jOBTdA1Ga/hkWcgvGR8wGMg/wD6qn6xBVfZdR8j5eY0rm5W 2VSQWJbGByfc0iPBewkr8y5xkgjn8ajurZpJI5ocLMDgsf7v9altYGt4fLZw+CTkDHU5q05c1nsQ Z9zatEc9V7Gqv8632UOpUjINZN1bGF+OVPQ02hpklvN5g2t94frU4JByOtZgJVgwOCK0IpBJGGH4 0kwLyMGUEU6q0LbWx2NWa0QgooooAKKKKACiiigAooooAKKKKAKN5C8t7b7JJI8I+WQD1XjkGskG QzTuY3WJiplVEYdGOfqcYzjtWxe3EkE1uBhY3bDuVJweMD2znr/jVCPUryaMMkar5m3y2eNgBuzx 15xwc1yVeXmtfUtXsQ3EZbJgR/LBbZhTwPJYD9aJUVDcp5JJkmXcTGzADyxg4HXkEfU1YlvpGbyX RCySgSdeB5ihT17g5/Cnrd3ckcTqYQLhsRAoTsGCeeeTge1Q1FvRjuxdKjc+ZPKH80hB82f7i5/X +VR6YGFwhCuH8o/adwIzJkY69f4unbFTWt9LNcxpIFRWUj7pO5gSDg/hnFXLuf7PayShclRkD1rW Ki4qSexLvexkxuYJQ212iW5JaRUbLZVuo74OBn6VXiDEIrLN9qCQ+Xw3B/i+nvntV+a6vIBIC0LN DH5snyEbhzwOeDwefpUDXd2kskkYg+cSHkHOIzj175/D3rGSV7XLRD5UjoioswkIUXRwRlvMXv8A Td07U6aARSzpGm1PPUyZRmXZ5eBwOo3VvRsHiVhxkZrIW5ltridy0QtzcMpyOR8uc9enFXKnGKV2 JNj7oFdNton/AHoOFLlGP8J52jnrj86juGBs9L+1byrEeaMEk/uz1A5606PUbgqN+0ATbGkMRAwQ CMjORnOMmpLOd764V5YjsXLxNsK7TyMZ78Gi8ZPR7i2KUEU7XUPmuyYCmLdGxO3njOcA465oWKWK C08pWa4e36MpyrFSd2egOeCD7VsXkskUSmHbvZ1QbuQMnrVAanNuiB8ssJPLlUIf75QNnPHI6c0p QjDRsd29SGOBJpkSOOX7IzLuDbhltr7s5/4Dn3qMGUS2alGDR7QGKMSVLEHnoOMfXNa1hcSTpJ52 0SK5UoFI2+3PX61X1TzBc27L5ZWNXk2uuckDjvRKmuTmTBPWxniPFjFDNHKN6xLuCMdg2DceO/b6 mlkMpuZTDE6JtIkCIwO0OvfuSu4jHrV+W9uDOkEPlBn2gMwJAyrE9/8AZqNdQnltnlIjVIot0qgH LHByBzx096m0dkx6kEjKbm3NlHhF27GEbcgk556Af41Y0sYfKpKv7pfN3gjMnfr1PXJ+lRJPNYD7 GiJvypVkRmABDds5P3PWrlpdzy3ISZBFmIMqFTk8DPPsTjFVTtzb6iexlBH2AxpKJPKAnZkYjdvX d9eM9O1bWmpss1HmbxkkHaVwMngA84FOvbg21qZEGWyqjjPJIHQdetLZSyzWweZCr5IOVK5weDg9 M1rTgoTtfUlu6J1dXztIODg4PegOpdlDAsvUZ5FY180tveMdOG+4ZczRgZXGOGPP3vT1/le01IBb B4WLlzl3b7zN3z7+3aqjUvLlE1pcu0UUVsIjmbCYHU1W6CpJmzJj0qrcvsjwOrcVLY0VJn8yQnt0 FPt4TNKFHTuahrXs4fLhyfvN/KpSuwH+dBCyw70VscKTTL6yiv7cwy5C5yCp5BqqXiRJ4plJld2w CuS/pj14xWhbhlgjV/vhQG+uKStO8XsG2qKum6ZDpsTLHlmY/M56mnX/AJf+j+cFMYl+bcMj7rVc oxVKmlHljogbbd2Z0H2Y36m2VAPLbdsXHcVeljWWNo3UMjDBBHBp+KKcY2VmIzodGsIJhLHAA45G STj860Aap3u7zY/I/wCPn+H02993tTrHbsbO7zs/vd3XP+HpUQUYvlirDbb3HXllDfQ+VOuVzkYO CDSWVhBYReXAuATkk9SatUVfJHm5rahd2sFV7i6itfLMrbQ7bAff/IqxWZf20puoZok80klDG5+Q Ag/N/n1pVJOMbxBJN6mhHKkq7o3Vl9VOaSWISoVNQadA9tZpFIqqy5zs6HnrUslykUoST5QRkMeh 9qFL3U5CMeWMxSFT2p9tJsk2n7rVYugLmHz1QgA4BI6j1qjUlLU1KtxtuQGqEL74we/erUDclfxq 0InoooqhBRRRQAUUUUAFFFFABRRRQBDNbRzsjSBjsOQAxAz15HfpUcdjBGflVsbgwBckA+w7datU VPIr3sFyubOBndzH8zlWY56leR+WKrx6ZFumDBtjPvQK7Db9OeOc9PWtCik6cX0HdlZLGCN42RSP LGFG44H4dM+9TSRpLG0bjcrDBB7in0U1FLRCKR0y2IQMrtt4+aRjkeh55HsalNlARyn94dT/ABcn 86sUUckVsh3YiqFUKBgDgVVbTbV5XkaMlmzuBY4JIwTjpnHFW6KHFPcRkTpZ2h8sxTE8yD5mIdgu cE55OF7+lJBdQRrmISRySbGZWDFV3MB0zgZJP86kn02Sa/8APLptzkZXLD5CuAfTnNKmnS+WRJIu 8iIEqOPkbP61zcs+Z2Rd1YZDqEU0ai4D7lYkNtIBIbHH0yKZMLKO9jXyXP7wl2BbCkfPk9jy2fzp 39l3DR7GmTCK3lEL0JIPPPbGKc2nTyZMkqFndi+FwNrKFIHvxQ1Uas0GgtveWkKsI0mDswO1gSzZ HBGe2AfypdVuI4YWbYWmWJ2XC5CjHU+2cVHJptxLFJ5kkTSMqoDtI2hc/MOeuTU17ZTT7vJlVfMi MT71zx6j8zT/AHnK1YNLkdsljHcrFGjhw2A5yQWAPGT3AJ/yKZJHaJLHKMpEgdH5b5tuTyO469as R2Uq3KkuvkpI0qjHzbmBzk+nzGmmxuPPY+ZGYgzsqFepYHrz0yaOWVrWC6I1SxELgxzJtCyHJbcv UDnOexpBNBbXU00glBjVUQNubIJC5H1OP8mkGl3CR+WkyAMu1wVJwAxIA57ZIoXSZPOaRpE5cNkL yQJA/J+gxStPS0Q07j5b2B4WS4DOGZiVVCCoUjk/TjmtGGNY4gqFivUEsWJ/E1nSadNudopUUyb1 bcueGOePcVoW6PHFscqcEhcDHy9vxxWtPm5veQna2gRwRRM5RApdtzEdzRHbxRPI6JtaQ5bHc+tS 0VrZEhQTgZopkpxGaYFUnJz61RuW3S47KKu9BWazbnZvU1DGiS2j82ZV7Z5rcAxWVZh0jkljTe4H C5xmrEN+LmZEgUsB/rCeNnt9fakpKOjG02M1rVrbQ9JuNSuyfJgXJAHLHoAPck4rzCL4z3P23Muk Q/ZM8qkp8wD6ngn8BXZ/EbSbjV/B1xFaqzzQuswjXq4XqPyJP4VxPga80DxFoC+FdWto47hWLQyD CtJkk5DdmHT3FbJKxjJu9keq6XqlrrGmw39lJ5kEy7lOMH3BHqDxXH6T8Sk1LxgdCawWJDNJEk/m 53Fc44x3x6967BY7TR9IKwxpDa2sRIVRgKoGa+aLK8uLLUYNWRSXhuFk3diwO7B+uKIq4pyasfTl 7dx2NjPdynEcEbSOfYDJ/lXI+C/H/wDwlmoXFo9gLV4ovNXEm/cM4PYY6io/iVrUcHgMmCTP9oFI 42U9UPzE/QgY/GuC+F0klj47iglUo1xbMuD6FQ4/MAGhLQbl7yR7txXnet/FKLRvEs2l/wBniWGG RUkuBLjHA3fLjtkjr2rutTvo9M0u6vpT+7t4mkPvgZxXzpHpN5rGiav4hZi3kToZCR98uTuP4ZX8 6IpBOTWiPpVWDKCCCD3FcX418eP4Svra2XTxdCaMybjLsxzjHQ1c+HmrjV/Bli5fdLbr9nk+q8D8 12n8a4L4y4/tzTc/8+5/9CNCWo5S926NfTPjHaXF3HFqGmvaxOcGZJfMC+5GBx9M/Stnxn49PhS7 tIUsFu1uIjJu87bjnHoc1wXxC1TwnqFraroMcH2pZCZJIYDGNmDwcgZ5x+Vel2ulwTeB7Q6hZwy3 MWmqu6WMMyHy+nPSh2JTk7q5xf8AwumT/oBr/wCBP/2NenvD9uRDIf3JUHYD1Pua8p+EGn2d8+sf a7SCfYIdvmxhtud/TNetT3trZ7VmmSPPQE9qipypa7FU7tXHRxP5LRzMH7A9yPf3rHkQpIynqDW3 DPFcRiSGRXQ91OazdQTbPu/vCpaVtDRbjbR8Fl9eauxnEgNZsLbZlP4VodKEDLtFIOQKWrEFFFFA BRRRQAU0uoYAnk9B606qGouybWQ7WVHIPocVMpcquBfzRWXvkWYwPcuE8zG84B+6DjP4n8qjmuZk jkkWcl/3oKcfKFBwf0H51HtfILGxmjNZTPJFOy/amLI8YCnHzZxnPH1pgnmZI9twxaVVL9P3ZLqM D8yPwpe2XYdjYzRWO9zL5sixysBggbiCQQyrnGPc1bvGeG1QiRsJ98ggMwAOce/eqVRO/kIu5ozW O890WlZZNoDlcbgcfMAMDHp/OnmWWNwrTOyJNtPI3HO3H1GTS9quwGkk0ch+Rg3APHPB/wD1U0XE ROBIpPHf1JH9D+VZSSP/AKwTFZPJjIQY+c5bj/PrTxI/nlhjOUHTtvep9sOxq+Yu/Zn5sZx7UO6o u5jgdKx45iPnM7O8kSZIIG0kn24FIZnmiQyTkFfLwoxh/m5PTnpR7ZBY26M1n2Uk8kzM7Aod2VLA 4IPHGOKgku5BcyBZWCHIOSPlw6qTjHHU/lVe1VriNfNGaoxyyLa3LK5l8otsJ5LYGfx5yPwqB5Cq KBettMbSeZkHJGOOnTnpTdRJXA1CaM5rKLzudzSuN7GMoMYHyZ/PNNhkmJhSOb5VRDlmAyD17c// AFqn23kOxr7qXNY0cjzmEyTsNswUYwMjacN+NTWdyxeIyTFvNj3Opx8jZAx+pH4U1VTYrGnTS6hg pIBPQetUL2aRJZAsxj8uLeijHztk8foPzqJpZ0ieXzCzbpdoIGF2kgfyodSzsBrZorHZ7kgr55UC OR1KsGJxtxk49Sa0oZJH5dFC4BBDZz/hTjU5gJqKKK0AKin+5+NS1DcfdH1oYFaQ4jY+1ZtaE/8A qGrPrNlI07aJ2sSqPsZv4gOlOh09LaVHgJQYw69d/uff3qa1GLZPpSNeRJIyESFl4O2NjjjPYU2o 6NiuF3dW9lbPcXUyQwxjLu7YAH1ryn4h+C4ILdvE+jOI1BWWZIzgckYkQjockZx9fr2Pjfw63i7w 8I7SUrcRP5kIYkK5GQVP+PqK8uOkePbixXQHtr82akKI2ACDHT5/QemcVrGz1MZ9rHbweJptV+EG oX10c3CQSWsj/wB5jhQfrhh+Nchp2h/a/hBqN4EPmxXv2hD6qqhT+HzOfwrrdT8I6jp3wyTQdOt/ tl5NKrXGxgozncTyRwNqit/wnoD2XgODR9Rh2PJFKs8eQeHZuOPY072Czb17Hj02qTeKbfwzoCk7 oB9nLEcZZ8A/goX9a6bWYl0P4y6ZJGAkUpgCAdlK+V/Q1L4B8C6tpni0Xup2Zigtkcxyb1YO/wB0 dDnoSfwrU+I3hnV9S1/S9T0iza4eFAHKuo2lW3L1I9T+VO6vYlJ2uWPi3q32TwzDp6NiS9lGR/sL yf12/rXA6P44j0rwlPoB0hJUnWQSymbBYtxnG3sMD8K7Dxh4Z1vxP44tM2LDSIfLjMxkXG3O5zjO c8kdOwr0EaFpIAA0uy4/6YL/AIUrpIpxcnc8r+DureTqV7pMjfLOgmjGf4l4I/EH/wAdpvxkGdc0 3/r3P/oRrS1Twlq+l/Ee31rRLDfZb0kdYiihARtdQCR1GT/wKpfib4Z1nXdWsZtNsmnjjhKuQ6jB 3Z7kUXV7is+WxyehaTY6H8S10nWYFniWby4Wk+7uODGxHQ54GPU+1e4al/yCbz/rg/8A6Ca4P4l+ EL3WnstT0mAy3kf7qRVYKdvVTkkdDn8666ybULzwqBfWzRX72zJJESD8+COoOOTz+NJ9xxVro8++ C339a/3Yf/Z69D1LQo9Qn8/zWjfGDxkGuQ+Fvh3VtBfVDqlm1t5wi8vLq27G/PQn1FeinpWdanGo uWSui6TcVoUtN0+PTYGjR2bccszetJqQzGjehxVKaR0llWF5Pse79868lD3Cn09fT+V67CfYgExt GNuPSsqbjblirWNHe92ZgOCD6VqVl1pIcop9hVoGXY+Y1+lOpkX+qWn1oSFFFFABRRRQAVVuZHWe BFjVldiGJPQYq1UM9uJ9nzFdpzx34xj9amSbWgFQXizgxi3jkkLY27gV6ZyTimGdIryYMgZinCqQ c9Bg8cdR1p72DxIGhlkMoIw2F6dMdMdKf/ZylmJlkOd2OnykkEnp6isbTYDrZVkmlkePbKrYIPOO B0P0pZ5PIkCRW4d3Bc4wvTH+NSwQeSGy7OztuZj37f0qK5gkmuY2WR41COCy47lfX6Graaj5gRC7 iZvMW3BjbH7zjJO3PT9PrVmIi5gR5IgAfmCtzj0NUVS1RlD3IjB5EW8EZxtB/IfnV1Li3jhiAmQq w2od33u1KDfUCteybXZY4RuGzdJwCMtx9elDXaec6eTG0iMNmGByScc8cGlnFtPPn7VtLEKyKw+Y g5A+tQRxwsJZGudojbCsGU7ec+n86l83NoA6O52xbmtw7Rl2bkZRQxHHr0P5VcgkSZ5AI1ARsdef y7f/AF6gWyiaEFZ3KMG3MCPnBOT/ADNNEkAnE4vEIdsckDIGeBj3IojzK1wLciRRxSN5SEYLEbet U/t0PmRB4EUkDqw3Lnpgfln61Y+0xOjRyssZZmjUE9e1QQtC7sfPCMoKvHkchSRk56U5PVcoEsE4 Z1f7OsZl5BB5IxnmoftiFGkFsuGC5ZiACWA6n8aFSAwx7b44VtqMCvpjb057UoW1W0YJdAR/KhbK noMY59qV5ASi7EbbFgxEG2blPRsZxj07fWn2wjngWTyYwCdwAwRn1+tVY0iFy6rPtjjAfaHBwduM nirVqYYrZ3WYOmSzOcAZ71UW29QIdQnaOKVIo8ssZdmBxt6gH9D+VEVxby3XkCKP5NwUjGQQcHjt S3EcF1G032jZEyFHZSMMP85pY3t4H3i6URyElUJGMk8479aWvNfoBNcFIbdpDGGC4+XHX0qr9pUS gPbBZA5ZsEYGB1z34P50+9nRrSRHkSMsSq/MB0NN22sbu8tyGcZDliB1GMcewok23oMRNQhmKs8a cchtwbbwT+fBpY7r96FMWGd8YdgNvygkDjrz0+tBjt2ga3kut4QBjkgFVH09v50SfZWwxugqyyB8 ZHzEYH9KXvAMhuEjeWJY1Z92FVWGOc8cDj7pzV+3mE0IbbtIJUr6EHB/lWf5FrEWX7Xh4wuDkZTG cf8AoX61bs4RGpZZd8bcg565ySfxJqoc17MQ27kktW+0Bt0QGHQ9vce/t3otHkuT9pLbYmGI4x6e p9/btUr2wluFkkYsqD5UxwD6+9JHbCG4Z42IR+WTtn1HpTtLmv0AsVDcdF+tTVFOPkH1rVgUrj/U NVCtCYZhce1Z9ZsZuW3/AB7R/Sq+Z4p5ytu0iuwYEMB/CB3PtUtkc2qe1WKpq6QjOlvYdJ0yS6vW ESIWY9zySQB6msFfF+oSRfaIfDl29r1Em45K+uNv9asatCNW8W2WnSjda20Ju5I+ztnaoP0/xrpQ oAwKpLlViNZMpaTq1rrNmLm1Y7c4ZW4ZD6EetO1TUYdJ0+S8nyY48Zx3yQP60Wml2tleXV1BHsku SGkweCR6DtWF4phOr3+n6GrlVl3TzFeqqoIH5k/pT6g20jqVO5QR0NVpL2OLUILNv9ZMjup/3cZH /j36Vn+Frx7vQLcS/wCvgzBKO4ZDjn8MVieKbuW18T6fcofksYfPlHqjOEP6Gi2oOVlc7TrVWC+i uLu5tkOXtyof6kZH6VNJMkUDTOQEVSxPoPWuR8GSXE2patcXA2tdiO5Rc5wrF8fpiiw3KzSLM/jC aK9uYIdEvLkW8piaSL5hkfhWvo2t22tWzywK8bxttkikGGQ+9UvDZAn1vn/mIyfyFQ6Q8U3jDWZb UgxCOJJGXoZMH+lOxCb7mvo+prq+mQ3qxGNZN2FY5IwxH9KS31NbjVr2wERDWqxsXzw24E/pis/w X/yKtn9ZP/RjUmm/8jfrv/XO3/8AQTSsVfRFSTxrsmeVNLuH0xJPLa9U8ehIGOmff/CupSRJYlkR gUYZBB4IrlvCjQNpc/h+8jX7Ral0licffRmJDD1HP8vWugvBJFYsIAoVVwRjouO3vSk7K4QuWlVd vGMH0qtfKFtCAMDgAVBp5BnkCPKYgo8sODjHt+lS6k2IAPVqiMuaNyzLrSj/ANUn0FZtaYGAB6Uk Uy3F/qxT6ZFxGKfWhIUUUUAFFFFABRRRQAUUUUAFBoooAy1sZfm3IvPl9/Ryx/Q0j2UnmHKMyMXB CuBgFs5rVorL2UQuZ32aZBHsQiQSu24EYCl8nP1FRJbXQl86RCzLtJBcfMRuBx2H3sitajFHskBn xxSvaT25UIzBsHPALZOPwyKbLHcSgkWwBeMxbSw+X3+n68CtLAop+zQGVLaXRXy1BZSzH7wHORgn 9aHs7iRTH5arteRw27hsk4H68/StWil7FBcz0t5nufPaMJ8xIBIOPlAzVYRXFuwupYySpG4FwSeC CfTv+VbNIVDDBGaHSQGXJbXU0zsy9A2MsMHkEDH4YNSm3mkt5yV2PI4cLuGeMd/fFaGKKFSSAom3 f7IAsbbxIJNjsCTg569KiNnM8cxKANJG4AyOCTwK06Kfs0BkvHKk4QRB2ZJeCegLCnGylRAQGYiT cQrAEjbjOTWntGc459aWl7FBcyns5gGjhRkj2rkFx8xG3GPTgEH8Kc1k7QyhUIZ4nUB2BO4mtOij 2UQuZgM6ia3SM7g+8srDJVmzge+M/lVixSWKIRSJgDkHdnOSeP5Va2gEkAZPU0tONOzuAUUUVoAV HMMxmpKRhlSPagCkwypHqKzK1Kz5l2zMPU5rNlI0NNbMTL3BzVzNZVhJsnxnhuKzNd1W7h1EwwyN EiAHj+Ims6teNGHNIcYOcrImLCDx/wDPx9osMIfUq+SPyro65jULG61rSbLULVhFqVsfMhPQN6j6 HFV18WamsflS+Hb37WOMIp2E+ucdPzroi+aKaMW+RtM67NcNHd6xP4k1HU9M0xbyJT9kR3lVMBfv AZPOTzWrYxavZ6XqGo3peW/uF3pbR8rGQMKoA79M1o+HtPOm6FaW7g+aE3SZ67m5OfxOKewn7xie Gp7238QahaahaC0kuwLtIg4Zc/dYgg9zg1ae2i1PxPqsMgyq2CW7f8DLH/Cp9dtpk1LStStopJHg n8uRUXJ8txhj+HWn6Zbzr4g1m5kidY5miWNmGNwVOcfiaYkuhhm+nn8HQaYWxfSTjTXxyVIOGJ/4 CP1rVhiW18axwRjbF/ZYVR/uyYH6Go4tDkTxtLqBB+y+X5qDsJWG0/oM/iKtXkM3/CV6ZcRxO0fk zRyOBwvQjJ+ooBJmFY+GNO1vUtYuLwSl0vpEGx8DHB/rXWadpdnpFr9nsoRHHnJ5ySfUmqHh+3mg n1czROgkv5HQsMblIGCPats9KTKjFWuYHgv/AJFSz9cyf+jGo0z/AJHDXfZLf/0E1lw3mo+Fprmy /su4vLJpGktpIATtDHO08ev+TV/R9MvJ7DUbq/3W95qRJIQ/NEu3Cj6iglPZCeKdNYQjW7E+Xf2Q 8zcB99B1U+vGa3bK5S/06C5A+SeNXwewIziuMl1PXTpbaA+lTveMht/tIB8spjG7P0/z2rqYLVrS zstOWQqiRBGdeCdoA49M0pOyKi7vQ0gABx0rO1N8uiegzVi3ZlnlhMhcIFIJ6jOeP0rOupPMuWbt nAqOa6NFuRxjdIo9TWlVG1XMueyir6jLAe9CBltRhQPalooqxBRRRQAUUUUAFFFFADZHEcbOc4UZ OKgtrsTxCRopIgfu+Zjn8ialuAWtpQBklSAKxEj221ttiuWkRx8syMwzgA9ense1Y1JuMtBpXNmO 4ilXcjgjcV/EHBpILlJw23IKsy4PXg4/pWDPbuto8MVoQ3mTMGWHJzuyuD2GD19sUslrM/mrDbul x5kzGXGMqQwA3fUrx7ZrL28r7FcqN43CedHGOS4JBHTjH+NP8xMBtwwehzWD9kka3fyUk+dHyDFs wcKMAe+D+OafFAkbxPJBJLCS2FMGNjHb/D26Hn3PrVKtO+qFyrubfmJz8w4689KXeoIyeT0965+O zdkxIjFt6CUGPAYb8k5/i7/nVy6i/wBMlzCWZoQsMgTIRvm7/wAPUc/4VSqyavYHFGn5iYzuGPXN KXXgZ69OetYcNoss8e2zMdvlN0bJjkK+SR36qM96aLRxcQq6uiLgR7Y923a5OM/wjG36j6VPtpdg 5V3Np7iKNlDOAWbaB74z/SnJKHj3YK+zdaxY7dBBbeZZkyxSr5xMWdxwQWz/ABcnOfenRWs4mgBR hG4DSZ7FCSPxJK/980KrK+wcqNN7tEhjkZWG8qAp6jcQOfzqbzEwTuGB1Oelc/FbuFhWS2dpgYCr 7fuKAuQT2wd3HvTIoZTN5kto/k7kaSJYsDdhwcL3wSvP40vby7D5Ub8Fwk8SuONxOAevBxUhkUZy QMdawILSQT23mI8a4TYBHu2kOSRn+HjHPcVZuLX/AEmWd4DIPPXcAuSyBB0Hf5uce1ONWTjewnFX 3NIXKG5aHPzBVbPY5yB/Kpd6+tc41o/7wNaOWeLbAdufLO9yv+7gFfpipmikcvFJDMFXz9zBM5DN kY9eKFWl1QcqNkXMRkMYcbgoY/Q55/Q1JvXbuyNvrmsHymTMpsV8x4UXiHIGGOePXBBx7Yp/kSjS oFKPtWd2ZTFk7CWx8v4jihVpdg5Tb8xc43DPpTI7iKWNXRgVboaxksNoVhEXdXhCsy4O0Yz9OM5q NLJjbFUtjG6QMn3MfNnBx9R3o9tPsHKjoA67d2Rj1o8xeORz0561kCAjTHwkjqZVdozFs+UEZAX0 4/HmmQQlLiCRIGCmRtiNHwiE9c/wnvj3xVe1atoHKblIGDdDnnFQXcz29s8kcLTMo4ReprEhWeKO CaG92i6nzIAMhSSScZ5H9364p1Kqg7WBRudHRSDpS1sSVJF2uRVO7T7r/ga0J16N+FV5EDoVPcVD GjOVirAjtWjLY2mpCOWaFWYDg5I/Cs0gqSD1FXrCfY3lseD0+tTZS0kh6rVGiiKihVACgYAHal4p ayr28lsrhgrCRZBu2n/ll23HH8NVKSgrsSVzU4pait1ZIVDSGRsZLnHNSnpVrVCEyM4PWlrB1GaV Lp3eQwvHG32fy/m3+ufyHati2O62jbeXyoO49/es4VOaTj2G42VybFJxUN1KYbSaVRlkQsB9BXMa Rq15LqiJLK0iSkgqR0+lRVxEac4wfUqMHJNrodd0opKzZddsIZzE83zA4OFJArSVSMPidiUm9jTx VM6gvlGX7PN5YGd2B0/OrMciSxq6MGVhkEdxVEw3f2I23lxYKFN28/4Upt9BF/K4zimSwxzgB1zj kHOCPxrG8TeethH5Zbyy2JNo/LPtU3h1pzpuZ92Nx2Fj/Dgfp1rL216vsmuhfJ7vMXZAlnbMEyC3 cnJJ9ayas3k/my4H3R0qBELuFHetX2Qki3aptjyf4qtwDMmfSogAAAOgq1Cu1M+tUkIkoooqhBRR RQAUUUUAFFFFABRiiigAxVS+eVIF8lgrs6rkjOMnFW6Y8auAGUHByM+tTJNqyBGML+8YMwXajPsD sBtU7wo6HJ4yee4qxLdTQSSRmRXKiHBIxnc5B/QVbNjbkyEwp+9+/wAdaT+z7XchMCEpwpx05z/O sVTqLqVdFFLu6VIJpX/dSMwO1ehyAoP1559SKYLy7MCsHDmSJZvkUZQEjIHrx0+hrTNnbkxnyl/d 8rx0pv8AZ9psdPIQK5ywA60vZT6MOZFa4upWMSwTKoaFpfMK5BxjH4c1VGo3BRrnKlA4XycckFAe vrk/kK1prSCdVWSJWVegI6VFFp8SXMs7IrSO+4NjkDAGP0/WiVOo3oxpooQXV/J5Af5BK4+dlHI2 kkAAnjgdfWkj1CeW4EKOQspUpIyDIUhzkDP+zxn1rUjsoIceXEq4bcMDocY4/CmjTbMIyfZ02tjI A9OlHsqncOZFFZpjdy28ciRtuJMmwZOETr/31+QpkV/cyBJ2ZViLKrJt6Axhs59ia0nsLWRNjQIV znkd8Y/lxT/s0JBzGvJ3dO+MZ/Kj2U+4uZGQt3cSsoChpBIfLMigHmMkdDxz+hqw17KLCJkMjyvJ 5Z+UBlOTnjOM8Yq2un2qJtWBAPYe2P5cU77HB9n8jyl8r+7jjrn+dNU6lnqF0UpHumjsDIxikMxD jA5+Vv8ACoPt9yttBI0m53w7KqDAUkDkk/Xp3rWa1haFIjGCiEFR6EdKY1jbP5e6BD5YwvHSiVKf RgmjOW7vSflZXMiSFFC42lWA49cg/mKDqbh4mjZ5ExhwUA52FseueBx0rSazgdNrRLjBHT1OT+oF ItjbK6usCBkGFOOgpOlU6MOZdjOmuJ4PIkZ45ZHidg+3hCSg49uaU3N59oNssy5Ut8+zqAqkcdP4 qvpYWsalUgQAgjGOMHqP0FOjtIIgBHEqgZxgevWn7Kd9w5kY9zqcrQFlG9HhIdWUbQfLL465P8ua 0bWdzdyxTHGMFFwMFfUGpf7OtC2Tbx527enbGP5cU4WVuJC4iXczBicdxyKI05p3bBtWsTnpWdFo 1mhZniEjmQyB26rk5wPTFaVFbShGWrQk2tgoooqhCMNykGqZGCQe1XagnTncPxpNAZ11Fg+YB7Gq 4JByK0iAwwehqhLEYmx2PQ1DRSZqWlwJk2sfmH61IsEau7BRuk+8fXjFY0chjYEHGK1re5WYYPD+ lUmnuJkkMKQRiONdqDoPSpKKpS3jwSGN03M5/dY/i9j6UOSitRFoxIZBIVG8DAOOcVHPcR22zzDh Wbbn0/zipI9/ljzMb8c7elVLq3k+0pLCAzHKkOcqox1//VSk2ldIC2jpNHlWV1Pccg1Wt9Ms7WYz QwKrnv6fT0qWzieC1jifbuUYyvepJXEcTO3RRk0cqdnJaod2h9Y83h2ymnaTMi7jkqp4q3511Giz SrH5ZxuQA5UfXvVw9KmUYVdJK4KTjsMhiSCFIoxhEGAKkrkNQ1rUINQnijnwiuQBsB/pXWRkmNSe 4qKNeNRuMVsVODik31HEA8GqV5cCNfKTGe+O1PursRgqhy38qymYscmtmyUhKuWse1d5HJ/lUEEP mNk/dH61fqUhtjkXc4HbvVvpUcKbVyepqSrRIUUUUwCiiigAooooAKKKKACiiigAoNFIelDAht7u K4B2Fs4BwykcHoealZgqluwGaw1jljji3MSpSLczKcBcNxx6HH508l/NiRSzFV2lgrfONh5+mcfj XOqztqh2NeOVZBkZ4x1GO2f60/IrGcqf3cokALj5gG4UIuen5fnSHfLLKoDqruoYKGGP3mDz9PSn 7V9gsbLSBWUHPzHA4pc1Svw4hUR7uFf7v+4cVXlSS3Z2gDnaRgcnJYEfzwap1GnsI1cimPMiZBOS BkgDJxWUYmWWWNp2TapXO1iSu3A5/X60g5y/lsjmMBducHDnOPwwfxpe1fYDZyKMisWWBmjkf97v Kztwx6hvl/8ArUsomLXLeYwkAb5VVskY4wenpR7V9gNgyKrAFgC3AHrS5FZTReXcJhW2rP8AISSc ZQfpmohjyGKmQAIu8OG+Zx2/xx7Ue1fYDazTUkDgkZ4JHIxVO9Y/ZI3wQQQ3lnPzcH5eP85qncEi GYyiX7svlkZ4bcfT2xTlUt0A2WcIpY5wBngZqNbhXmaMK3y9WxwD1x+tZ08bqskq+ZvLSL1PTYcf qBSPE6PcPErh2dsEZ/55j+tS6r6IDXzTBMjMFBznPIHHBwaypnTEK2ysFBDBsMSTkZHt75pI42Cs sIcFfOOMn7wdSv6U/au9rAbORRmsZ95BdvN3yJuhwDwxJ/XG39ferdlxcXKjLDdneQeck8c+n8sU 1Uu7WAvZFGRWMkcjl90jbi4EiAMD/rBzn6Z6djU9nE0dyh+fBMoOSTwGG39KFUbewGnRTXcRozt9 1Rk0kcqSxq6MGVhkEd60utgH0hGRilopgVHQo2O3ao3RZFKsKuugdcGqrKVODUtAZskbRNhvwPrS K5Ugg4xWg6K64YZFUpYGjOeq+tTYovQX2QFlP/Aql+ywy72b5zJ3J6DsBWQDipYrh4zlWI/lRdPc VjYjQpGqli2BjJ6mn1Qj1A/xrn3FTrewt1bH1FWmhDJ9Ss7V9k1wiv8A3e4qYNHdW52sHjcYyD1F Y17olpe3TXAutjOcsMg1o2cdtYWqwRygqvOSckmsYSqubU1oW1Gys9Q+z3LqsUkiGIYyQPmYDsau 1Wa9hHQk/QVXk1Bj9wBfc1qkokFiW1s8l5IISSclmUc1XnveNsXA9apyTM7ZLEn1NRk561Oi2K9R WOafDCZT6KOpp8Vuz8twv86uKoUYAAAoSAFUKoAGAKliTc2T0FNRC546d6tAAAAVaRItFFFMAooo oAKKKKACiiigAooooAKKKKACmv8AdP0p1BGRigDMhnm2Jt8sRgomNpJ5UH17E1FayyxW6LuiUCFH JEZJZmJHTPtWkttEq7VXAyDjPcAAfyFIbOAps28bVXgkHC9OfasPZy3uBRS+nkKAR5YffAQ8/MV9 eOhNOWaeSSIF0QiYqybDwNpOOvPTr9PSra2UClCqlSvTDEd88888+tAsoR0DZ3b8lyTnp1z+lHJP qwKqXc32UyuI93kCUYB/LrToZZlkw7KytI4HB4xn3qw1jbuqKycIuxRkjj096juLa2SN5JFbG7ec MevTjHr+tDjNa3GQJdzSQ78xplEwNhYlmAPTP+fwqS3uZJJYg+EV4wwG08nvznj6U1Psjx+Vsddo 5XkFdoHp7EVHFNbpJuEMgCEJHjJByueB60k2mm2BPdXEkdwIokzgBiNpOcnGPboakvJXggDpgDPz MV3bR64FQyT20km91kDJnawyN2CAQMdecVJdPFJAnmpIQ3RFznpznBqr76iK7X03710QMi7gMocZ Bx19+aW4upUEkLBGcKSeCAV2nnr6jFND26tOzKzKzcKhOCu1STjp3p8tzamVt0UjMVMeVU/MOpA/ nUX01kMU3E+xnUxhA4jVSpzkkDJOenPSopGeWaOOcjYshjdlB2sflIGM8Zz3z0pWNqbh2IYxOgzg nGcZ/PGD+VL5lsBHshlJWQcEnJzyGIzz070N33YFq5eVWiSIoC7EZYZxwT/Sq0d7NJGk2IwmY1ZM HJLY6H23CpWvLdmDsr5XlDj738PHr1A/GkaO2jNu3lPuIARRngAdxnHFU7t3TES2crzREyY8wHDK FxtPp/8AXqs15Oqu/wC72bZCowcjaccnPNT2jQBnjiVhnLZbJ3ds5PXt+lUrfyZdkhjcu0RLpg4f djO0dOvX60nJ2STGT3N5JEJ9pXdG3A2E7gFBPfjr1pwnZJgBtWNpSGbaTzxgdeM5qILYMm3y327S 7ks3AIwd3Of4f0p4MEkinY4KlmMZBySMH1x6Uru+4Fm4eRWjjiKK7k/MwyBgZ6cVFbXUksyB9qK8 YYDb9498H+lMuLq2kjUypLgbm4BBTHBOR06/rU1qkEjeYiMrR/JtbI28DoOg4xV3vLRiI9UE32Zi jYiAPmqOGK45war232VtUUwqduxtpAIUtnnHb8vetV0WRGRxlWGCPUUKgUAAAAcADtTdO8rgOooo rUApjxhxz19afRQBTZShwaTGauMoYYNV3iZegyKmwFOS1VuV+U/pVZ4nTqpx6itGilYdzLBpwYir 7Qxt1UVEbROxYUrAVd59KN59KsfYx/fP5UfYx/fP5UWYysWJpKuC0jHXJqVYkT7qgUWC5SSCR+2B 6mrUdsicn5j6mpqOvA607CuFOjQufQetPSEnlvyqwAAMCqSEIqhRgUtFFMAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACioknR5XjB+ZCA34jNP3D1pXQDqiuYjNCUBweCD6EHI/UUCdTP5 PO4Juz2xnFSbh60XT0AoGynJaTzUEjk7vl4AIA45/wBkU6OykR1y6lQyt05yF2/4VdyPWmvKkcbO 7hVUEknsBUezjuBT+xS4Klo2RQyoGXsT3/lRJYM1vAhKO8Qx+8XINXdw9aXI9aOSIGe+nbm3ARMc nCumVA2qP/Zal+xnep3DAdmxj1GMVbzjvRkUckQM1dMKk/6o7kxuKfMDt28H04qd7Ry+9HUNhMZH Hy5/xq3ketG4UezigM/7BIEClo2VEMaBl4IJHX8hUj2cjW8EW8Ex4y7A5yO4561c3D1qOSdY3jU5 zI20Y+hP9DRyRSAgtbT7O7HbFjBCsFw2PeoP7OmMSI0qN5ahE+U4IyCc8+wrSyPWo451kklQZzGQ D+QP9aThC1gKR01mjWMugUKykquCc54+nOfwpTp7mPA8qNtrD92uAc4/wrQyPWjNP2cAuZ66cwhd NyLujkXCrgDdj+WKspDIk7sGGx23EY5+6B/Sp8570bh3NNQitgFoqMSBpGT5htxyRwfpT8jOM1dw Foorntf1+XTZUt7dVMpXczN0A+lZVq0KMOeexUIubsjoaKxPD+tPqqSJMqrNHgnb0IPetunSqxqw U47MUouLswooorQQx4lb2NQtCw6cirNFKwFMqR1BFJV2mlEPVR+VFgKlFWvKT+6KPKT+6KLAVacE ZugNWgijoopaLAV1gJ+8cVMsar0FOop2AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKAMee2M1+VdGMTTDcOcEeUevtnFUxCYbeLzEl2ukBkHJLNlt344xmukwPSo5IUl27hna wYfUVzyoJ63KUjBaKXyXMausRxjKE/J5h4x1xjt6Ups2ZSSZJNqxbGVWXAMjZAHbA4+ldBgelLge lH1ddx87Odmt5fkiDGKINKEJiZ9p3cYwRjjoadNaM1vMRE5kkS4DdTu+b5f/AK1b+B6CjA9BS+rr uLmObu98jN9nidAI2UbY2BZfKJBz9eMeorSuV+zCxZVfyo5DvCgseUYc/iRWlgelLgelUqFr6g5H PR2jyxRtLHJuAhHOR2w3/wBejbMs9vGImHlSAK2xidvmEYz0AC4+ua6DA9KXA9KX1ddw5zHnIS6u 2kgeSYKTB8pIK7OmR75/OqaW8kkbqUcoqTGPajKM4QjA+ucV0mB6UmB6U3Qu9wUrHP3ULxxTQpE2 xn3KSjNg7B0x3J70rhvtQkaCWS4WQtnacFfLOBnp14+tb+AewpcCp+r+Y+cw7VZRpt8oVsFsoEQp xtXO0Hn1/Gq7wgmTykaO2abPzRMw+4BnbwcZz+Nbl5M0FsXQDduVVz0ySAP51m3Uz291A0hSV0wH 2xkYDEgHrx9OelRUgopJvYabZLMirJZrch5YxGQWCE5f5cEgdO9UhEzkKscok6XBwRuPmL378bsY 7VoWl5M5/fbCGhEy7AeB6defrVP7ZcJIZm2M8sMe0IhO3cx6jPOKU+XcFcZJaPFFN5EUgY+cgAz9 3GQB+PSpQovrgM0chgefPzAqCPLx+Wasm6uTb2w2rHNNIUy6HAADHOPcL096q215JDHboCjA/wCs UIeMsRndmk1BO19Au2RoreXCbqOVov3fmDBOfkPUdxmpYRO+qMYV8nKMuTE2OCu0k55yM49KEubn zFmYxb5oo9mFOF3N355x+GasR3k/2mKOTYF3MjOEOGYdAOeOPrRHlvv1B3NJAwQBiC2OSBjNc34j 0O4vrhLm1AdguxkJx9CPzrphRiuitQjWhySJhNwd0YHhvRptOWWa5wJZAAFBztFb9FFVRpRpQUI7 BKTk7sKKKK0JCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigApGYKCSQAOSTS1Xv/8AjwuP+uTfypN2VwJY5UlXcjqy+qnNPyPWsm4f ybnNsOWULJsx1LDHXjON3Wh7m5gUPKG/1bbR8pywDHnHsB096z9quoWNbNFZSPduVQyNGGBZWIUk 8D046mmm+n2HDKGEfncjjbt/+KP6Ue2XYLGqXVWCkjJ6DPWnVkyPN5wjSXzHQnYxA5JQnHH+eaR7 u4mKtb7irhmTG0dMDnPbOaPbIDXzRkVniWVbO6nZ+VZwowMLgmmSTyvO8Ucu0CQqCADgBAf5mm6i QGnRmskXM3lbWlYtIiOu0KMZDEjnt8tTLcSTx2Y8zyjNF5jMoHXA4Gfr+lCqpgW7iJJ4HicBlYYI NVYdMhVYjIC8qAZYuTkg5z155qCS6m+0MkcjBWOAWA4w4U4/M9fSgXE0efMlZlIkUYUZyrAD8efp WblBu7Q9S5Fa21mHdFCAj5iWJwB256DrxTF020VGRY+GAz8xyADkYOeMdsVRluJpbKZHl2bIpCc4 O7BIx/8Aq9atxXDtfFAWMZVuCB1XA479+9HNB2Vg1JpLW3kjS3fJC/MuXO7jvnOe/wCtMXTLRXVl iwVxjDHHByOM+5/Oqb3EquJ/M3OYpMKAPk+ZR/nPpVgy3CWJZyUfzFUM20naWA5xx3NPmg+gaki6 baKjKsWAwA+8eOcjHPGD0xThp9sAgCnCZwN5xk9zzyeepqo1xcI8iiXcIlkbOB8+ApAP/fR/Kned L54t/tGQxB8zAyMgnHp2/WleHYNTRjRYo1ReFUYA9qfmssTXbyTCMHC7lBJXGR0I75+vHNKbplCy NJJ5ZjODhc7hnOR68fTirVVCsadNd1RGdiAqjJJ7VTs553BV0LbXKliRx9cdevapb9WeylCqWOM7 R3xziq57xugI/wC0Dt8020og6+YcdPXHXFXFIYAjkGqzXdv9kMvmKUI/P2x6+1PskaOzhRxhlRQR 6cUot3te4E9FFFaAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUmQKAFpGUOpVgCCMEHvRmlzQBELaARmMRIEPVdowaFtoVIZYkBUYBC9BUtG aVkBElvDEMRxqo5+6MU4RRjoij5dvTt6U+iiyAjS3ijACRooHIwMYpGtoXVVaJCq8qCowKloosgG +Wm0rtG05yPXPWmJbwxgBI0UDoAKkzzilziiyAia3hYYaJCOOCPTpStbwvGsbRIyL0UjgU/NLRZA V5YoYUkm8pcgFjhRk45/pVb7TG77JLUqpOCTggbuf1q9KglieMnAZSPzqBrNWbJY8lTj6VnKMr+6 BSW6tZlREtUc5GxRtOMgn8PumnpcoJ3kFsBmNDkAbizEjH5jH4VYjsinlgyFhG2V4HoRg/nSGwHO JWGVA6DqG3A/gTU8sw0GExGGSTyRHJvCOAASckfnnIqvPOjWckcVvsVcuvTDbHGePrV4Wv7pkZyz M4dmx1II/wABTDYIYym9h8rrn/eOaHGTQFaW7ijjlhjjWN1jYLtIyDjJGP8APSlMkEUEiC2EiKXd l2qAAp/z+VWDZFlkQykrIp3DaOpGCf8A61Q3dowjZYvNLSB1JXGPmOec/wBKlqS1GJJdWiyygwIS FIJ4ycDJGP8APSk8xDLGgs0UhjE4IHC7c/l/9erLWZYSr5h8uQEFcDgkcnNK1oDL5gchjIHPH+zt x+VPlmLQbYXMEwZYUVAAGwpHQ9OnTpV2qsFs8CogmJRegwORjGD/AJ7VarWF7agQ/ZYBL5ohj3/3 tozU1GaKpJLYAoozRmmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABVC9Blure3LMsb7mbBIzjtkfXP4VfqC5to7lVD7gVOVZTgg+xqJptWQ1uU biZ4X+zon7mMxDO87ss4A/z3pn9qTNJJHGsbtuUIcMBhiR364x1FXfsERXaxdslCSzZJKnI/Wmxa Zbw42BuCuMsTgLnAHtyaycKl9GO6EnvHhklQKDsSNuT13MR/Sqkmp3abn8qLYokf7xztRsH8Txir 1xYQ3MwkfdkAAgMQDg5GfXBoawgZCpBwVdTz2c5NOUajejBONiKG/Z9Qa3+Vk2kgqDwQQCCehPPb pTGvp/spn/dKHP7pSGJI56gd8DtViGwhhuDMm7cd2AWOBk5OB7mmf2XDjAaUAPvUBz8p5zj06mly 1bbhpcqpqdzMI3hii2OUHzMc5ZQf0zThqrhoNwT5sCRQCSpyRnPQDI71cSwhjjVFB2qVIGfQAD9B Uf8AZdv5quAwwQcbjgkEkE/maXJV7jvEpLeTmQzv5aboVZOp6ngEDkn6VZF9LLaWzxoolmbbhs4B AJPv2pw0m3VcAydgDvOVAOQB6CpDp8Jt0hG9VjbcpViCDz3/ABNChVV9QbiZ9rfyxrbwiMtkLvwr MfmYjqBgY681PcajPFPKixqVV1RTgsSSM9B2AzVmPToYmjaMumwBcBjggEkA+vU06Wxil8zO4F2D 7gcEEdCPypqFVRtcTcblVNQndHk8tVSJN0obO7ODwB+Hf1ppv7tZFgaKLzmK4wxKgEMfzG01a/s+ IuGLSE7djZY4ce/r1NEWnQRFWG9mUghmYk8AgD6cmjkq9wvEpDVp1i3SRIrOqNGFy2MnHOOvrxSr qdyxB8hVVFUybsg8uV4B+meauNp0DIFwwwoUEMcjByP1pfsMWGDF23KqsWYkkKSR/M0uSr3C8exR +1zG6Sd/LSMwymPJP95AM/8A1vWpLXUJ7soiIgYFvMLZHAYrwOvOD16VN/ZVvlj8/IIHzn5ckHj0 5ANMbTFR4DCzLtcl2LnLA8ke/NLlqrUd4la3v3ErwRANJI42Oxbbghjnnt8p6cVYe8LW0ErJh/MZ SAxwCobP1GRT10m3RcKZAcKA285XGcY9OpFT/YoRBHFg7EyV57kEf1NOMKtrNibRnyXt6yqoWJHL RMMEkbWJ4+vFRS6jJcqo8tghmjKsFYceYowSeDn29603sIZFwdwOEGQcEbTkfzpBp0IBGXKFw4Qt wpB3cD60OnU7jvEpRahKIYzHGvlr5YfcxJyxxx9M0DVp3yY4QQzKEJVgOWC8kjnrnj3p8+mEzQrF GFjUoS/mn+Fs429D9c96tLp8S5wX27w4UscKQc8fjSUar0uF4lE6jdLIJHVNiRS70Un5mVgOP89z V+wuZLmJzIhVlbbnaVDcA5APPfH4UjadA5yQf4wRk4Ifkg1JDarEVIklYqCPncnrj/D+dXCNRS1e gm1bQ5zxNqeo2l0sUBaKAqCHUfePfmofDuq6lcaisMjNNCQd5Yfd465rr2RXGGAI9CKFjVBhFCj0 AxWDwtR1/ac7t2NPax5OXlHUUUV3GIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QB//2R== ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image018.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHsAjcDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD36iii kMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAoprsEUsTgDkmsbTvEdre2gnl/0diXOxz/CoDZz/ALpD fj7UXGk3qbdFY114gt0QCDc8vmwoUdGT5XdU3DI5xu7U5PEFkIInuJPKLxebnaxTAGThsYJABOOu B0pXQcrNeisXVPEdnp+lNeAmRjA8sKbW+cKM+nA6cnjkVYfXdPjeVHuArRDLZU44wCAcYY5IGBk5 Ip3QWZpUVkrrtr52xi67ioRfLfeSQTym3I4BpkXiG0aa6WVlRISArDcTJzt4GOfmwOM88UroLM2a KoW2r2d5MIreUyOU38I2AOnJxgHg8Hnioj4g01YzJ5zFA2wEROdx5+7gfNjByRkDFO4rM1KKx5PE 2lRyFGuwSMfcRnzlQwxgcnaQcDtz2pt34gtbK8tklYfZp4HnEygsAAVweAflw2c9BSuh2ZtUVmy6 5YQPKkkjK8eNymJsnJ2jaMfNyQOM9akj1azmuzapL++AztKkdgcZIxnkZHUZp3CzL1FZTeItLUMT cHhguBGxLE5xt4+YHa2CMg4NPg17Tbm2nuYblWhgTzHbBGEwTuHHI4PI44PpSugs+xpUVl3XiDTL N5FuLkIY2KuNrHGFVj0HQK6knsD7Gga/pxg87zm8vfsLGJ/lPH3uPlHI5OByKd0Fn2NSiiigQUUU UAFFJkUbgRmgBaKrvMScLwKry3qW7RLLMqGV/LjBONzYJwPwB/KlcLXNCiqnmv8A3jTZLkxRtI74 VFLH2AouFmXaKz4bwThmQuApxllK54B4z1HPUf0qXzW/vUXQ7Mt0VmS6isM8cL+duk+6ViZl/EgY H41Y81v71F0FmW6KybvV7exkRLmZkLgsPkJAAIBJIGAORycVb81v71F0FmW6Kqea396jzW/vUXCz LdFU/Ob+9TIbxbmBJopNyOMqcYzRcLMv0VU81/71Hmt/eouFmW6Kqea396pY5t3DdaLiJqKKKYBR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAUtV RJNLuY5LgW6PGymX+4CMZrnbnRtI81rRb9YVkmQCLOcMF2MuSf4kYLjtxXUXdtHeWkttKMxyoUYe xGK5z/hF7vZaK2oCTy3WWUsrDe4kDlgAcc4xznAHFJouDt1KCWdhLqE12dVgkiDLJ5owT/rlcKTn JxtCjjGCO9QXenWEclpENVinMipFGoALBXjMeQc428lsY5OefSxq+lW9ha2Ucl8izRRxRRxhihkI frwwOPm7Hip4dGTdJFaanaJFDJHLOoy7ROgAxktkDjPPv61FjS/W5JrRsL2zM8WrQQoYJLNyQG3B gCQORg4AP0Oar2Wm2N8d0V3bx3NyFu4lMYaWJyyy4Jz8wz2wOO9RHTW0zy5G1W2ku5XVMP8ANuEi Km75nzn5d35jmp9N02z0rVI3e8hnSJNzOZSBC6RrGcjfgZAP8ORzz0o3YtEtGNvvs91qbW76lbCf Z5s86LjyDEQPl+b5Sd/qehGDmn3GjWcunpczarCbWEbbZmjG1R5ithufmOUVex/Gmvokd48cQ1a1 KMkrWqpw7hpVkySGyQCuOMVcNvaw6dbQxX9lFPBdFwXkLo0hzlTubdnDHvnPNML2tYrJJp2nXsNz Hd2myGJlmS2AQ8q0nzAtyOCQMZ5znGajhKRLYwwavbhIIWeGVkHyRbcYYbvmOOcjH3D61Lcw2BuV SbVbVbie9clUxw5tzGV68dzz9O9U/wCyrS4a9kl1G2aJ4AXnMp8tHaMxZAD7f4e479fQBWLdjBpd jGj/ANoxrbQTo8cjMpD/AOjCIDg+nzZ/pU50eG6gt7C01NN9rYmyl+QNmNgmT14OFGOvWoWgSTXp mtLuFZlj8wGTa0exo1U8Bt3YHOAMZFP0u3XTrq1Ww1G1kt5lSJUEmTIEXBfrgthQOPXnpQhPvcrT 6TYRXl6JtUtWkCNuWZMlFZ1YbjuzkcBcYxxVjTINK0+/jkOqWs7TAGNpAPOZmG3O7Pcgjp1OM1PL pzS3d3aQahbE+el4sRGXRwythsHlePTPI9KzLCG1e1nurm9igNzHG5aXCqGMskmB83uR+GeaB3ut yeysNOsHgEd3amG3lJ81VCECNGGHJb5sBjyB2PrTbJtLktL+B9QjSI28elrIWAD7ELbx6f67GO23 3qK8s7dbeR21KDyRPJgRHckB8ssQQWzj5clR69MZNDaPb3t0bqXVrOSW43zNErsiNEyRqeFcEgeV 34OTSD1ZMlpp80t4J9agkuLlpYHKLgLIyRxbcZOCPLHBPU0670Sz125vYbbVo2LbxNEFD7CUWPOM /eHlnntk1MugveWdubTUopLbzZpsqCVYvN5gIw2CRyvOfWr8Xh9RcxSSTEoiTqVQlCTJKrg5Bzxj Hvmna4nJLqbg6VQvta03TE3X19b2/wD10kCn8q0BWNqnhbRNZJa/06CVz1k24f8A76HNU79DONr+ 8c7qPxX8OWeVt3nvGH/PKPC/m2P0rktR+MWozZXTrCC3Xs0rF2/oK3tS+DulT5bT72e0Y/wviRf6 H9a4/UvhT4isstbrBeoP+eT7W/JsfoTWEnVR6NGOE6v7yLS9f8Q+MPEllpt1q1wkM8nzrCfLAUAs fu47A9a93SCO1tBDCoSNFCqo7CvnjQ/tvhLxXYXmpWVxbJFLiQyRkYUgqSPXAJPHpX0UXWSDehDK wBBB4IqqN2ncyxqSkuXYr1z2q6Xeavfu8cy28dqgWAvHu3SEhi45GMFVA/4F2NdDRVtHJGXK7owT b3tze2z+W0VrcBJrqMtgpIgHyj13HZnthD61mGwuCttH9guftyF/tNx/DITE4znPzAsQQMce3Sux rH1TU5rHUbIKFNuVd7gHqFyigj6F8k+gNS0XGTbsihJZypcBr2ymubTLYiUbsNtTaxXuOGHt+PFS 3gNnbxvq2n3D27NIkUTN5hjdpnwDzyWDIAfbqM1oW2szz386kL9nleMW5HUIxdd2e+SmR7EVU1S6 nSG9gt2I+x2s/ltI5Y7kWMhyTzuG44NIvW4uqWcklvfI+nXM88tuFs2VsmLCY27s/KQ2ST3yOT0q Y2k/2shrSdr03Kul0PuiIMDjOeAFyNvf8c1LHqN8dVfT4I4jKxdmeV2KrtSE8DrjMnTI9aji1q5k v5lCL5rJHCsbOdiyeZKrNnHTCfU4Ao0D3hfEVnLc3MRSO7ZTbyoPs+MFiUIDZ4wcHrxUF5aXEgnW ewnlv3dGjniPyheOAcjaBz8vfk85q+2rXkcwglhhVo5xFLKCTHghSOnK53d+AR7ip7wyXWrxWPny Qw+SZiYztaQ5AwD1AHfHqKdkJNrQxrmxvH+1LBBIIftKySF4stKuXyuNw3gEqR0yOOcYp1vZTxRw vd201xYiSQ/ZxFjYSF2nZk8cPx23dB20Z5bmydLKKVp1kSWRpZW+aNV2/KCByfm4J/WqK6veQCUl TJ53kxwL8zFS0e4k4GTwCeByaNB3bRHa2UkUSG9026mtyZRFCTvaImViMjPdSuDzjHUZ5bBYyw2M CXmm3M5+yKkKqcmOQFsgnPDfd+b29uZ49VvBAliIGUrHKXmlLqWVAnzLuGcnf36EHrVpdWuvIe5S GM2kBWNw7kyNwMkduM9D156UaBeRHfWl6/h3TY1Vt0QjNxGV3kqEIIK5G75sHGe3fpUFlpEss1qL uOR7UCciN12KuSm0FcnHRiAentitnTb2a7e4WdEjeN8eWMhlHbOevrkcGtCnZMjmcdDn9DsJrU2E kkTpI1ni5ZjktJlfvep+9XQKcEGigdR9aaViG7l2iiirJCiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOb1fRby9v5JIDbmKYQBzKTuTy3L fLgc5z7YPPNP0nRbm0uUa5MJjhga3j8skmVSwO58gYPHTnqTnmuhopWRXM7WOKn8K6j/AGa1pFdR EPuRtzsvyBQsXIGTgLyDwSx/G5LoF6sW60lhjn8y4ctkjd5kgYc44O0YzzjtnFdTRS5UPnZy+k6F e6fd2sm6JVXzTOyzMxdWd2VMEc4Lg7s56+tRz+GZm2ECGRWa4WWMytGGSVw2cgHJwAMd/Xiusop8 qFzu9zl00TUI7pJEMCwx3ZmSEyswCskisc7eCfMB29ODzzVaTQbzTLO2uYFimksre3UQKDiRoxIG 6D/ppkHB5FdjRRyoOdnI3Xhq+vFliaS3ijZpZlkUsXLyKRtbgfKM9c8gLwMVZtdGvYb21uVWGCQO zXDLcvJuBx8uCoznA54x710tFLlQc7tYwbPRprfWZ7mQI8TM7xyea24F8ZGzGO3XPYcVn2/hi5Sa 1aSSBlhVQw5OcRyr6esg/I111FOyDnZyC+FLlfs6iSBVjijRsZ6rBJGSBj1dfwFOXw7dyTzSXMNv Msy7ihuXUI/leXtGF5BHfgjceOK62ijlQ+dmZotvf2tosN9JHIVGQysWbJZjgkgZwNoz3wTWnRRT IeuoUUUUAFFFFAEcsMcyFJEV1PBVhkGkigit4VhiRY41GFVRgAegFS0UAVXiZTwCRTcH0NXKKVgK eD6GoZbOKdmMsKuWjMZ3DOVPUfQ4FaVFFh3MiXSrSWLy2tgFCKg25UgKcrgjpg9MdKamkWaQGH7P lCjodxJLB/vZJ65xWzRRyoOZnP3Wg291qEV24ZSiSAhCysWbYNwYHIwI8fjUv9i2XlGMWoClFTjI OFJYc+oJJz15rbopcqHzMw/7Es/LRPJchX3nMjfMeOW5+boOuegqe70+C9CefGxKHKMrFWU+xHIr Voo5ULmZjw6VaQD93b4OGBJJJO7G7JPXOB+VD6VavC0RtxsbbnGQflHy4I5GMdq2KKOUOZmNDpNp APkg52spZiSxDY3ZJ5Odo/Kmto1m9wsxgO4bTgMwUlcYJXOCRgYJFbdFHKh8zMq20+GzaRoY2DSH LFmLE+g57deOlWdp9DVyinYVyng+h/KpYojnc3HoKnoosIKKKKYBRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFB4oAKKYkiPnawOOuDTRPEZjCJE80DcU3cgeuKAJ aKTNGaAFooooAKKKQsAQOOelAC0UmaXNABRSZpc0AFFMeRY0LOwVRySTgCkeZIhl3Vf944oAkoph lRV3MyhcgZJ75x/OnZoAWimpIkiK6MrIwyGU5BFOoAKKTNLQAUUUUAFFFFABRRTWdV6nFADqKj85 PWjzk9aLgSUVH5yetHnJ60XAkoqPzk9aPOT1ouBJRUfnJ60ecnrRcCSio/OT1o85PWi4ElFR+cnr R5yetFwJKKj85PWjzk9aLgSUVH5yetHnJ60ASUUgIPSloAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSfcb6Gn02T/AFbfSgDgdHE6aRYW9lcR27vx cG2tQjjETEBy2QTuA5x/OpNPOptObpZZ0mu7lDKvlrjAtFfAyuQCwx/9fNPttR1P7BCY5QkX7qAR LF03wg5z14JGKhtNe1RYbeOGeK4KWquFkZQ0/wAhJIHViGGOP7pz1rM3syxZ3WtXcNuramR5jnzD Eql4yI2JU5QBfmC8YJ96qJqeopaXM7XN1Hd3RhdVwAseYA2eUY4LBlxjk8cGrtrrd7cXyQwailxB vQvKkIJx5bsyjt1UD26daZaeI57gos2oR29q0n/H0wTIygYIT93OSfyx1oC3kbXh+4vbw3VxdzOR ujEcRQAKPKRiRxk8sevpV7WrprTSp5k37lXAKYyuSBnJBAAzknBwK5RNbdNVuFhmWGCaYCW4cKTA AzjnsMlVAz/ez7VrSardDw5b3bypE0kwje5KYCpvI8zB4GRg+g3elUmQ4u9y/wCHbq4u9Gimum3z b5FLY+8FdgD0HYDsKpeLLi6trWCa04mTziriMMVPkvjGRxzj69KxNL1e+jntrWKeExvK7q8hVBPu uJA2M8ngAgL3Ydqv6/fSf2otm1ysKLLatHCVBM+ZfmIPXjA6dO/UUr6By++Vr2fUrfUNgvbiaWCS UW6sqjzj5KsqnC8/MSO1LFf621tvgvRckRzSIEAYsyopCN8i4+YngAHtVGK6urSUXqskfmRQQl2V VEKnzCcM3TJGOeOfpVyXXNYjhEss8AQyxxM6bQigwhy+48YLcD60i2gfVrlXjQ6xcCzeXaLswqGP 7ssV+5jhgO3ciohq3iB4Lh5J1guEtS/2cr8x/cghlXbyd/8AtY6jGamkutTupYZZZ4w6uYh5KAhG NqXLq3f5uB2waZaa7qDNFDHfWzKsAIknkVRIPLJ3+pw3BxxhWzzQFhNXvb/zb+xWe4liS2eNgyBi WCKwcBUHXJ78nPHFNnnurq4ZfMlu7dN6xTvCNzDdAcZAHGS3Trjvitn+1Z38KC9jnVZg2GkmZFBw +Gw33eeQp6HisyDWbg3SssvlQ3NwFxtUTMWih2ttPUAsd2OnHYGgSfkQS3F0wht5JJYgLiFo7eOA BZf9JJYn5ewAPGPU5zToNZ1CeQ+dd3MFm8isZdis8eVc7D8mByoBGDg8ZyaNN1vUAmlWwu45c20L M0rqGkYkiReeWZcAYHOevWp7DVdXKW1xcXQkRo7WWRBABnzcgj8MZH60D+Q3w3c6msmmWkkqwwx2 sIFvJwXTyQSQNuch8j73G3GK7ZjtXJIA9TXE2niW5mSGRrpWhNygwCnmurKvy4HBILcheR0GSKte KL6QTS2bXS28fkxuiFQTOxchgM88ADp/eFNOyIcW2WfD93qN1f3Ru54yi7g0GfmibedvG0YGPUnP BFdLXNaBq17qF/crO0RiTcGiDrviYOQAVHOCPX04610jZxx1qo7Ey3FprMFGSQB6muJ8SDx6C/8A Y508wc7fL/1uP+B8V5L4gk8Wb2XXW1IAnpLuEZ+mPl/KolU5ehvSw3tPtI901Hxl4f0rIu9Ut1cd URt7fkuTWHafEqz1jWIdL0awuLmWRseZJiNFUdW7nAHsK8Hr0b4OGH/hI74MD5/2X5PTbuXd+u2s 41ZSlY6amDhSpuTd2e0s21N3eqpPUnrVmf8A1dVTW7PORhDxEYrUySWkkghtEuriRMBVVt2cAnJP yk4/ybyalJLORFZTPbrL5TTArjIOCQM5IB4J/Q1moml3MV7axNcujwCykKxscqrNGdpxg4LnJHSr b21va3sbi9uI0nnyIEYbGk5Y9sjOCSM4z9ajU1aj2GnxBGsKXElrMltKrNBLkHzNql+mcjKqSM9h zjio5PETwpM8um3KpDALlySvEZzz1+9wfl9qkGg2jAwtcTvDGrCOAsNsO5Spxxn7rEDJOAas3OnW t3DdRSMdtzb/AGV8EdMMOPf5jRqL3exE+tbZJj9jm+zwy+VJNlcA8cgZyQMjJ/8Ar4BrW5kYWU/2 eSbyUmyuCc4zjOQueh/xFRR6Mpnn8+8lMck5mNurjYwyMZyMjoMgECpBosBlUrdXHkxzeakAYbFf O70zjJ6E4GeMcUtQtFGaddvha+a8EqzCcp5QCHcv2gJwc9cEj9as6jrUsUTJ5cltcpuOwhXDDypG U59MoffK+hp91pdg7RW7zzI8srbNjcht5mPOOOV/KpG0O3uFbz7ieeQkhpGZd33HTHAAAAdj06mj Ufu9hINVlYmKKCW7m3OSBtTYoOMZz+A+nOOtR2WtzzW0WLOaebyRLKBtTYpZgByeT8rce30qSKyt J0M1peXELLLJGzoQMkMQykMCPvKcHH0NQQ6ZZLM1nbXd3DJBCI5mQj51ySAzEHn5icjB5NGo/d7B c+IXk0y4uLGzmk8u281myo2Fk3AYJ5IBBI9PU8U8+KLSO7+zuV+SRIpH81AQ7Y6LnJAJAJx/I059 AtWtPs8V3cQwPCIZBG6jzQF2gkkdcYGRjPFTjTIEufNjupkjLq7wq4Cswx7ZGcDIBwfxNGovcsJq etw6bcRQOFMkil8NKsYAHuxGT6f0qNfEMcqmWC0mkgWNJXlyoCq3I78kdx7fSrV5Yx3MySLcy28w UruiK5K+hDAj8aQabbCKe3LyETxhHDPlsAYzk8/nT1EuWxRh1y4/tG5tpLSQ/wCleVCQygbRGGJP OfU/iBUmneJLTUrqKGPaPOUtEfNRiQOeVByDjn/A8U+3js5NWm2i4E6yNI2+JlQkqE4JGCMDsfWp bLTI7SVTHdTyJGNscTONsY9OBz+OcUtRvl7GrExDAdjVqqiffX61brRGIUUUUwCiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSf6s/Sn0hGaAOIh1vUf7PjZD brDiKEAqzOGeEMG3FucEj6+tR2GqXVhpyQA2pWPZGYwjCRy8YcyA7umW59drHPau3FtCBgRJjION o+lN+x2/mCQwRbwu0NsGQPTPpU8rL512OLsrrU7JkSGS23z/AGdpXlR5GLS7gOS/RQo4789M0XHi GWaK1EsKShR5ksaLt/eIHddp3ZOTGONp69a7byIsg+WmRj+H06flTBZWwkEggiEgGA2wZA+tHKx8 66o5O71WVJdOd7mC5kZ0ZxbqyJtd1X/npyeeOD9BWjousXOoTKk/kMstsJwsakGHnGx+Tk/lyrcV pWejWdlCsawo5V2cM6LkFjk9B/nArJmvGEWpNClvbRib7ONiHzXlJUZO0jrngfQ5FLYLp6Iz4/E1 6YIWeW0eS4hWSIQxE+W2cbWy4HIzzkfdPWpU8SXk9p9pJgjLJCIkEW4l3jDnJLqAAM96g0vUIk0+ 3hTT7f7On2eOdZFBkkZ32A+hwRnnOeemKnnvjYajqAuIrd9PN55eJASYyLZXBx02jb068/mrlNK9 rFy71uc6Zps8bW0BurczM8wLIMIG2jkcnP5A9az38U3m3Ea27lrcNtaPAWTahI+8SR8/oO3JqtqO r3d/ZS2wiWD7HHcSy7VC7hGiEAKQ23PmD3GOtWX1eTS/PM2m2TJbloD5Wdx2weaOSOmML+vtRcOW y2JbnxFfW97NbRtbzFE2hzFsHmK8aNxvJI/eHsPxqtf6pqKPcCW4t8QWl2GRI2USsmwgg7srw3v0 Prxak1O6S9mtxZWDXYDNJMFO1gEDgeue3X0PtUZ1oyT3RitLcugkuM3ByAoiiJVeOCfM/Q9c0wt5 GoupXa6HqN/KICIXlESKhACozL83PPTPasu+8S3wuL4WJtGS1E7hmQtvEccLYyGGCTIwz9OKnuPE MsMFynkRRyk5ht3iYmRSrMTnODkKT2xg5z33rBLSeyikit4Y1eMHYqjC7gDj+X6Ubkv3dWjm7nxF eWRlic28lxbzHcFh2q6bY2JBL/Kf3gH8RJxx1rR1XWLmz1BoojAI4kidkdSXm3uVwpyMEY9+SK23 s7aRg0kETsDkFkBIOMU57aGWRJJIo3dPuMyglfoe1OzJ5l2OOfxNfQx7gLScyZ2LEmDCRMsfzZbB yGJ/h5U/WrH9t6phzcJbwNHFHhRGHZneVkXpJtAwo/i43deOegtdKtLS3eFIUKvneWUEvkk8+vWp vsNr5PlfZ4fLwBs2DbgdBiizG5R7FDRdSm1CzhnltGQyRBzKCuxj3AwxP5j8a16akaxqFRQqjoFG AKdVEMKa6LIpV1DA9QRwadRQBzepeBfDmqZM+lwq5/jhHln/AMdxWDZfDRdC1u31TRNSkRojzDcK GDqeCNwxjI9jXoVFTyR7GirTStfQjkUmPGKrVdqJoFY5BxTaMzkZbS/e8kEFlLDA0ySTI0i7S4nR t0fPQqHJ6c44zmm2OkuBaqdPCRwXfmKZgnmAeWQSxBO4htvzdTjJ9T132f8A2v0o+z/7f6VPIae0 Zw0WiXaRPH5NybwQyrJN+6CzFlYD5gNzAkggHpxn0Nq70DH9om1s0ybFFtsY4nHmZYejf6v5vpz1 rr/s3+3+lH2f/a/SjlD2jOQuNPleWRW01pbxrtZVuwygeX5gON2cjCjbt74+pq/pFrND9tVbcwKz ZR3Vd5Y5znaTuA4wTyc45xmug+zj+9+lH2f/AG/0o5ROo2cQ+k3MkVrHaaa1ndxRyLLdF1++YmUN kHL/ADEHdjP6itDQ9Oa1u3kW3uYE8nYyyCJQzZ9EHJHPze/eun+zf7X6UfZ/9v8AShRG6jascra6 EZJ5DfWyvHm5KBiCMvMzKceu0jntmol0i4SAyz2YmdjC1wgK7plWMBgTnn5ucHrtrsPs/wDt/pSf Zv8Ab/SjlD2jORh0eSa5eY2Xl22ZXggfaPKJWMD5c4GWVzjtnsaH8OQix2pZJ5n2AxkEjmXAwT6s Ofmrr/s/+3+lJ9m/2v0o5Q9ozjdS0yeaC+iOmNc3ky/ubneo2jaBjcTlcHPHQ59zixbRxxau0E9g ZL/znnF1leIyxwc5zgAhduP05rqvs/8AtfpSfZRu3ZGfXFHKHtDiW0i7YWMcFi0F9Cz+dfFlwxMT rvznLZZgenHtWnpdmYtQilh05rGNIGjmBK/vHyuOhO7GG+Y/3vrXSfZ/9r9KPs/+1+lHKJ1G1Yjj GXHtVumogQYFOq0iAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKzJNC0+a+nupraGV541jcPGpBAORnj6fkPStOigLlFdI09JIZF sbdXhGImES5Qex7dT+dSSafaTbvMt4n3NvbcgOW27c/Xbx9KtUUBdlGPSNPhiaOKxt0RlZSqxAAh sZH0OBn1wKlNjaly5giLFt5JQZLbdufrt4+lWaKAuylBpNhbRiOCzgjRc4VIwAM9enrTZNH06ZQs ljbuFbeA0QOGwAD9cAD8Kv0UWC7M+TRdNlLl7C1bzHEj7oVO5h0J45PJ596s29rBaqywRJGGOSEU DJwBn8gB+FT0UBqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUVnalrEOlmMSxTSbldz5YB2qoBYnntkdMn2qyL62IY+fENqh2y4GFPQn0FFwsyxRVSfUbaCJ3M iMUjMuxWG5lAzkCnR3sL2yzb1VGXd8zDii4almioVuoJCoSVGLDcuGByPUUsdxDKXEciOUOGCkHa fegCWis9NWtHuriDzkxBGjvIWG0biwAz65Q/mKsNe2ybt88S7VDNlwMA9z7UXCzLFFZZ1qE6sunx oztsDvIHUKuc4HJyc47A1ejuYZkLRSI6qSCVYEAii47NE1FZ8GsWc8lwFmQLC6oXLjaxIBGD+NW3 niiZEeRFZzhQzAFj7etAtSWiq5vrULuNxFt3bM7xjd6fX2qG51S2t1B3iQ+akJVCCVZiAM+nWi4W ZeoqhZ6vZ3mnx3qyokTornewBTcAQG54PNWluImYosiFgMlQwyBQFmS0VW+3Wuzf9ph2E43eYMZz imR6nZyvKq3Ee6KTy3BbGGxnHP1ouFmXKKjhninDGKRHCnB2nOD6VJQAUUUUAFFFFABSZHqKjmk2 jaOpqvSuBc3D1H50bh6j865yPXrfyt0qSB/MlUrFG0m1UkZNx2jgHb39/Sm23iK0ewtricsjS26T yBI2dYgwz8zAYUdeT2GaXMiuRnS7h6j86Nw9R+dYQ1qxa7NsHk3iTyi3lNsD4zt3Yxn8fT1rObxI fsZuY7duGKiNo5N+fNCA429OfrnijmQKDZ124eo/Ok3j1H51z66zDHEpm3PK7SAJbxPIcKxUkgLk dge2emafca7YWyl3kkZBGJGZImYIpGQWIHy9+vpRzIOVm9uHqPzo3D1H51itq9otx5GZGbIVmWJm RScYDMBgHkd+49apxa2H1c2pVBbsxjjlAk+Zx1XOzb2b+LtRzByM6bcPUfnRuHqPzrEtNYs7ycRR O+WBZGaNlWQDqVJGGH0+vSlm1ezguTbu77lIV2EbFEJ6BmAwM5HU9xRzBys2tw9R+dG4eo/OsC/1 Ca2vbS3iijbzt3zSvtBxj5VOD8xBJAOPumn/ANr2n2r7NvfeH8veI22b/wC7vxjPtnrx14o5kHKz b3j1H50u4eo/OubtvENpJZW00+9HlgSWTZGzLFuGRuYDC/jj1PFWjq1p9q+zgylgwQssTFA3oXA2 g8+tHMHKza3D1H50bh6j865i315ZNTFu4QQSMyQSgSYkYZJAJQKeFY5DVctNYs72URQtJuZd6b4m QSL6qSPmHI6eo9aOZA4tG2CD3papAkcg4q1E+9eeoqiR9FFFABRRRQAUUUUAFFFFABRSFgvUio2n Xtk0AS0VWM7dgBSea/rSuBaoqr5r/wB6jzX9R+VFwLVFVxOe4FSLMp68U7gSUUgIPQ5paACiiigA ooooAKKKKACiiigAooooAwfEGitrLwgSBBHFKP8AWMp3MABnHVcjkHg+9Yw0G5nuL7zdkjByyHz/ ACwGYq2B+7OcYHcj5Rx6a/iTT5LlYZ42VUQNFckn/lg2C/4/KKxrbw/dXV6089tF9mmljkdRsCOF ZznaoGeGX72Sec1DWprF6bjxod/eRtua1LSsHM53I4ZYvKKBdv3SwJznox4qS48MXUglKXESqFR4 V3YG/KeYDwQAfLGDg/ePFQjw/qI1C1drdfLhLndGyBirGTILY3fxLgA4696tto94fDEWn/Y4SPOO Y9kW4R5ODjBTd0yceuOaLDvbqP0W0gstWlErRifyxAAW3NvJeRsHavBDg8AdMdqfpWjXNox85reI La/Z1eBiWkOc72yBg/nyx5rO/wCEavmhgMsMT3CgKJWIZo2+zhN4J54cZ9e9Ft4bO9UMBV44Jj5M jx4V2VArAIAMEq3JGcjPWgTt3BPDWoYVgtlA0a26bYZTiXyxICSWQ4++COD0696Bpl1DctBYPbhC EilRpS+50CZBby/kO0Y9+OAaZfeGL0Wk1pZ2sIt5FQhVCZWQRspYbgQOduSOfSrH/CMzPNcL9mjh EkjuZl25YtEADxzkNnr6+9Kw7+YieFbr7JFCZbdJhFDH5qEll2K4JBx/tDH0q3Bod0dN1KF/s1q1 zapbItuxKKVVhuJIHJ3AdOijms0aVfXlzbuI0aeC4WS5dNgMcjMHdCxGcbCoG0jOOakubFtM8IG3 uLVFhS8hKxNtBdPMT75Xgk8jPcYz3p6A7vqLP4cvppZJvLs4Vkck28Mvy7TGqZyYzz8p/h6Hr66G oaHPdahaypKGgSNI2UzBWXa2dwOxsnp0K9Bz6ZreH9QaWz8u1jgiiuBNGqFMwqZdzITjIG3svHJH Iog8N3ttJoyxW0aCzSAu8ewHcD+93EjccjGMEA5OfSgL+ZatNDv7a7hl8uzlihMiJA8pPlo2zkNs 5IKsOR0brUFroV1K1tJ/o8awFV3AsGmAlDFmBUYPynHXJY8+uhbaZeL4sm1CSJEiKOm9AgDqdm3O BuJ4OcnHTFUIfDNwLiS4mgiMyyRGJyQSoE8jtj0yjD69KLCT8yKHw3O9naPZzWu2OCBG8t8LI8Yk DHJQj+MEHB6dutXU0uLRtD1WWV1iEluAsqHe6KsIXGcDOCCR/IVmLo8aabFKttbpHtWGMLgLKTN9 3jpvX5cn1wadeeGbya0uUXTYWSaOVbaAuoFoWIwR2GcZ+XoeOhNA9+pbt/C8jxg3K27MYZUKmQON zKigjCKBwpHTP1piaPJ/aUFtOImbz/tXmKjNnMDR5J24BDcjJ70Xekak3mqYYxBF9obc0oAmV5kk 2H0BUMpJ/lVe50+e8vNPuLS2j06KVDHbFFjUpuikODgFs5OcA7fxoGm+5v8AhnSJtKt3FwytIVRC yy7gdoIzjYuP1PvxW9WF4e06Wxa5drRLOKQRhbdGBG5QQzccc8e/AJq7qOtabpEQk1C+gt1PTzHA J+g71S2MndyNCiuA1H4t+H7QMLVbm8Yd402r+bY/lXJah8YtXnythY21qpB5kJlYfToP0qHViupt DC1p9D2snFMjmjkZlR1YrwwBzj61816h4t8QaruFzq1yQ3GxH2KfbC4Fe/eF9Gh0Lw/aWUSgMEDS t3dz94n8aIVFJ6Dr4Z0YpyerNKf74+lRVJN98fSo6pnOYsWj3FnLJJZ3caNNvEnmRFuDI7jHzDBH mMOc5qknhlFhEEU9pIVgjgmaa2EjAqgXcOcDIxwcj+uprTSC3hw0qW5lAuHhJDrHg9COR820EjoC a5zFwr3ItXufsT3g3SSvKjlREuPnA3bd2fm9hziodkbRu1udLJpavA0Qk27rpLnO3+66tj/x3FVW 0mLyBm8ULG5yxAxnzhJjr68Utlc3Nt4eaeYSTyqG8pcNuk5+QfMATngZP1rMjs73TYLi0niDi6Cz F4izgzBl3k5AwWyCB/smhgr9zTh0ya3mefT72IO7SLKJI96nMjOBwwwVLsPfPPQUk+j3bJdRwX6I t4gE5eHc27YELLyAMgDjkDGfWsqWC6tYfLi89bSS6nadmnlBzu+Qblyyr1PGOQPXkgTU5Yr15Li8 3x2K+Qyl1BZnmGcYGWChOo9DjpQOz3ubK22oW195dvMgs5D5sjNHlkPGVBz3wTnBx79mnTp0mt4p L6IWqTmSOMxYduGO3O7HHPQZ4+pNG5Se0vXtDLe/2fuiaaTe7OoYSZw33gNyx5weMnoKhjt2ur61 bffSQw6mTE0jyLhPsxP4ru4yeuT6nJoLXe5p2Gnu62MjXsdxa2q7rUxpgt8hQMxyQflJHAAOc024 8PrNfzTg2uyeRZJPMtw7ggAEKScYIA6g45/CpYHU3j06B3mKXEMNxNM7EMhRRuT23Ns4PUGT0qqH m36c32nUVu3d/tuQ7IhEUn8JG0ANjAHXjr1oCzvub+q6fPqMRgS4jjhddrq0W4g5yGQ5GGHvnt6V Ui8PLDe+YjWxi+0NcHdbhpdxYsRvJxjcSemQOPeoTNKvhG5kjknjkQOFkDs78H7yluTntn9aid5Y 1mGnzXr2mxDO772dDvXds3c52FiQOmBgA0aCSaVrki+FhHEkSS2rqYo4pWmtQ7HaoXK5OBkAcEEf rV2K1vre/wDIhkX7DIzTMzRZZSWyUzu7kk9OB+BrKSOSfV1tre51E2DPHuLSSc/JMWAc/MRkJznr x6VLC8gvbQyTX321rlhPF8/lhAGxx90L93BHXjrzQU79y2uh3H+iQSXqNZ2rEogiw7LsZApbPYN1 A7VYtNOuo5oHubuOVbZCkQSLYTkAZbk5OPTA5PtinqjH7fOLiW8ijWBTbfZ943Pls/d+8fu/Kcj2 5Na2mtI2l2hl3GQwoXLdd2BnPvTSIbdi1U1v/FUNTW/8VUjInoooqgCiiigAooqOSQJ7mgB7MFGS cVz/AIo8TxeG9JN9JDJKN4RVQckn19OhrVZixyTVHVbG21PTJ7K8UNBMpVvb3HuOtTJu2hUbcy5t irZeJdM1LUhY2twJZzbi446bTjHPryOPetevMLLwmfCVxp2qWs7TSwzFLs9FMb/LkD/Z4J/PtXem R5OrE1EZPqaVYxT9x6F9pUXqw/OmG5jHfP0FUgppdh9ad2ZFv7XF6n8qUXMR/i/MVU8s+/5Um0+o ouwNBZEbowP406szafSnJLInRj9DRcDSBKnIOKlSfsw/GqEd2CcOMe9WFYMMg5FUmBdBB6UtVEco eOnpVlHDjIpp3EOooopgFFFFABRRRQAUUUUAcr4vV3e0iMc00c0c0KxRPtJlIXYx5HAAbntmk0aw voNXzdtKrKp29CrphQAfm7cfw9e/PNrxBZTSXltdwxTyvBDMQsczICxUYB2kdawEsdUVxcBL9plh uIoJC0gwCUZchmOMjdgt6DuBiHuax1jYuSaTqSB5I0nLSNMZ1E5y6faFKqOcAmPcBjHWnQaXqglh MaSpbSyNujkly0UavvQHk9fmB9AwHaoTaavIZzZtfpbokzWomlfdu2xhQ245PzeZgMf0xUtnBqEU 1ixmvbhPOYGF0mjCqduSxZiTjBOGJBycdqQ9e5BbWOteUkklpMsguEkWDcPLztAbPzkgA5IOTzzj mr+sabePql1cWkLlpIIV8xWHIWQl1xkclT7Z9a29ZF0dJufsWftHlnZtOGz7e/p71zkkV2bmM2a6 oq4i+zeZJLhTvPmeZuPPGPvdulVawk29RP7Nv/JmRobqZmtGW0cuF8ljvyCN3B5UA89BzxSTaVfw yyx/Z7qawEpZIo5/myYkAOSw4Dhu/U5pltpurxGKbzNQaQJbuVe4cjeZSJAQTjGzHHTv1rR8Pfax fMJ3uiwgBuRcOSPOLcFATwuA3TAxjuDSQNtGW+k6wiSiaGednDYMMwU+d5MKrJnI4DK/PbrioZ4b 57+S1/eyX7CYtKk42uvG0Bd3y4zjkD9a6bXhMZLPK3TWe9vPFozB+ny/dIbGeuPbtmsSWDUDNPGF vYSvn750RjvBlUxgbSGb5cjjkDPQ0NDjLQjls9Xnl1Em2mQEgiNGBVnDkjI8zJBXGfu9enFbV691 qGjwutrNhZwJ4EfazopIbacjIyM9sj61iRWd3HcNNLb6jEk7wvcpHPKx8vysFQc5yHAzj5sV0nh+ 4nl0/wAq5EongOxzJ15GQCe52kZ980IU+5zt1aXz308FtFcR3BUyRHzgAsHk7QhG7rv/AF5zViTT L+1mj+zxTyotxHIqPJuU/IA5YlsjnnPPPY5qXxDbXb6t59tHd+YbUJBJAxCiXfkb8Hp9eMfhVRLL WZp5hNc3is1wBIiCRR5fmggq+7AGzI+UDg88igad0QnStVb7Ms1tcSTJJbvHKZhsiVXBbcM8nOT0 Ocj0pui2816bHMs8hjlD3CGQqpKxyDeDuJYF8c9DgccVPFZ6y1/DFcXF3HbozLGcSOXUSvwzBgBl NnzMD1yOc1FZ6ff2Nvp8MseofYEtbdZ0hlkMgfa+RkHdgMVyF9uwxSsO+gWOn6jqCETxyLDvYuiT YCv5bAjhyeHx1PXmnHS9Xkmgd4J/tyncty0w2IDblcYz18w+nfNS3UWrGWcBb8MWk+x+XI20P5nB fnG3G373GN3fr2Ewk8h/Kx5m07c+tNIlyaMfw7bXEBuTJDNBCwQJFNJvbeB8zdTweO/OCe9bM9vD cxGOeJJUIwVdQQfwNYfhWG+jtpWvp7h5G2bkmjddj4+bBZjkHjp8vpXQ1S2M5bnJan8N/DOpBibA W0jDG+2OzH4fd/SuO1P4NOoLaXqgYdkuUx/48v8AhXr1FS6cXujaGJqw2Z846l4B8TaXlpNMkmRe d9ufM/Qc/pXuHhDWF1rw5aznK3EaCOeMggo4GDkHp6/jW9imhADkAZpQpqL0HWxDrJKS1RBN9/8A Co6ln+/+FRVTOcDXPReIXjtpXktHkW3h8+eRSAFTcw4BPJwhP4V0NZo0O1FrdW+ZNlzD5MnIzt+b px1+c1LuXFq2pTi1q6TUbq1ktWf/AEvyYCGUAL5Suc/qfXkCpRr8aQx3FxbyQ2sqM8MpIO8BS/Qc jKqSPp2PFXV0y3W7a5G/eZTMQTxkoE/LAqtHoNqgVJHmngjVlit5SCkYYEEAYyeCQMk4BOKNSrxZ Vl1m6gv4RcWkkEDW0khXKsSQ8YHI6EbzxnHPer91qYt7oWqQvLcNsCICBuLbz17ABCc1m2dnZ31z cb5tRlMMb25+0DaIw2xiAdo54U55PvVuTRw1q7i7ne7yHjuZHUMpAIXGF2gYY8bSDuOc5pajaiNu 7+8ZIreG3kgvXLNtyrLsXGTnpgllHY/TkhLbWpbmONIbKWW4AfzlZlTbtcp64yxVsAccdacmkt5F u019OL5Bzco4LEtjcACCu0kDjHYd6E0SCBEjgvLqGQb8yK673DMWIJIOeScHqMnGOaNQ90nk1SNb G1uYonlN1tEMY4ZiQTjnpgAk/Q9eM58niE2X2g38Qhf7SsEaySIqj92GzuPGMZ9+2Kura2V1psEM JaKGJsQuhw0bLlcjPfgjnORnOc00aNAit/pdz57S+d9oLLvDBduRxtxt4xjHtT1EuVbkUmqxX/hq 9vYI43McUhCM25Sy54yp5GQOhpo14ecgkjKFIZDPBjLiRTGAo+u/j1yDV2K1hl0qS0d7hkk8yJml PztyQT0x9MDGOgxSXOlWN5dNNLH++eAwlg2CUJB7dwQCD2o1C8epH/a7RPsurR4Xyn8QYbWO0Nke hwD6Zz05oGsNNIY7S0eZvmP3wo2qduefUg49cZ4qSPR4vLuEuZ57s3EflSNMRnZz8o2gAdTzjP6U SaPDsgW3mmtTDGIlaEjJQfwncCCOPqPWjUXukNlri315HAls6b4/MPmEKwGSPu98FecdNw9a16zI NDt4JLUpNOY7UloomYFQxDDJONxOGI6/rzWnTV+opW6BU1v/ABVDU1v/ABU0QT0UUVQBRRTZHCLk 0AVdRvo9PsZ7qQMViQuQoycAdhXFaf8AEzRb2GyNw7QXFxIY3jbnyj6k/wB08c+/sa7Q/MSTzmuN v/Anh6a8u5vsmHuUwyq2FjbOSyjsTx7e3JrOTfQ2pez1Uzpv7Qgk3iCVJWjYo+052sOx9+lQMzO2 WOTXO+HPDDeHXZILt54Zl/eiQYO8Hhh+HBHsK7C3siwDPkD09aSuyZqKfuu6Ki2xnBTZvBGCO1XY tOwBvYD2WryIqLhQAPanVaiRcgS0hT+AH681KFUdAB9BTqKoQYFNZFbqoP1FOooArtZwsPu7fpVa XTyOUIb2PWtGik0gMF4mRsEEH0NJHI0Zyp/CtySFJRhxmsy5s2j+Ycr6+lQ1YdySGZZB6N6VMrFS CKyxlSCDgirsE4kGDgMO1NMDRRw65FOqojbDmrQIIBFUmIWiiimAUUUUAFFFFABSYpaKAExRiloo AKTFLRQAmK5nUo7+bXjFE1xFbyCBWkhXHGJt3zY9dn0yPWunpMUmrjTscO02p2kNqt3dahtnFu0r CMlwzCTeqgDI+6vA5FNF7rvm24hjvDKqOF82J9si7ZChbgKp4jznnJxgd+3kgjmKGRFYo25cjofX 9afilylc/kcPMl35tveWX9qSTCyuFVp4XBEp2EAggY6HHbIwPStvQrqUy3ED/bHhLlrd7mF1YqFX dksB/ETgHk4OOBW7ijFNKwnK6sGKMUtFMkTFGKWigBMUtFFABRRRQAUUUUAFFFFAFecHIbtUVXCM jBqMwLnqRSaAr0VP9nH940fZx/eNKwEFFT/Zx/eNH2cf3jRYDldQ0u5mjuv3btE18s7RoUJkQRqv Rvl4YA4P936VXt9KkgSGSXT5rm0Ekj/Y5DESpYLhgowgHD8A/wAZPUkDsvs4/vGj7OP7xpchp7Rn I3GhR3UN2TpkcYNj5NtExU+W+ZDgdlPK8jp2NPu9Nmku7kf2eZLmWZXgvdy4iAA7k7ht5O0DB/E1 1f2cf3jR9nH940covaM419LlUSi40r7d5kbLCQyHySXc9SeM7lORk8ewqjqaxRw39vc20d7fsI0S 5LIGU7FAABO7k5ICgg7uvJr0D7OP7xphs4mcOyqXHRioyPxpchSqdzkhpUsNzJJd6d/aELmYRRfI fKZpnbd8xH3lZeRyNvNSaPp1xZ3GniSyKvHZpFNI+xgpC9FYHdnPBHQ9fr1n2cf3jR9nH940+UTq NkFFT/Zx/eNH2cf3jTsZkFFT/Zx/eNH2cf3jRYCCrEAwpPrQIFBycmpaaQBRRRTAKqyvuf2FSXDl IWKjc2OB614fceOPE+jDUdO1OGVZrjeYjJw0JYn7p7gdv8ionNR3NqVGVW/Kex3EvlpgfePSqIBJ +tc74W1+61S2FrqkUkOpwoC6yLt8xezj+vv9a6+xt/Mbe33R+tSnzbEzg4OzJbO0AAkcc9gav0UV olYzCiiimAUUUUAFFFFABRRRQAUhGetLRQBl3lps+dB8vp6VTBKsCOCK3yAwwehrHu4PJl4+6elR JDRYikEiA9+9WYHwdp/CsuCTy5Bn7p4NXxwQR2oTBou0UituUGlqxBRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBXnOXx6VkavYWeoQJDeW0U6hgw3rnaR3B7VpsdzE+9 Z9y26Y+3FZyGtHoQC2jmmiJjVnQ/ISORnjg10EUYijVB2FZmnx7p9xH3RWtVRQN3K97e22nWkl1d zJDBGNzu5wAK5qx+JHhm/vhaR3pR2O1WljKKx+p6fjiq3xR0681Dwgws1Z/ImWaSNerIAQfrjIP4 VyPhXRfCHi7S7OzaJrPVLXHnqj4a4UdTz1B9uRWiWhk5O9keu3d3FZWc11O22GFDI7eigZJqhofi TS/EUUsmmXPnJEwV/kZSCfYgVj+Ppk0v4f36QnywY0t0APYkLj8s1518LNRk0zxV9inBSLUIflB6 EgblP5bh+NCWlwcrSseva34h0zw9bRz6nceTHI+xMIWJOM9ADV2xvYNRsoby2ffBMgeNsYyD04Ne NfFjUX1DxJFpturOtjCWcAdGYbmP4KFrvvhnd/a/A1hk5aEvEfbDHH6EUNaXGpe9Y6HVtXstE097 6/mENuhALEE8k4GAOTUeja5p+v2Zu9OnE0IYoTtKkEdsEA1518Vr+XUdT0zw1aHdJI4kdR/eY7UB /U/jUHw4uJfDvjDU/DN23Dk7CeAXToQPdefwFFtBc3vWPUdV1W00XTpb++k8u2ixvcKWxkgDgc9S KwYfiP4UuJAi6qqE95InQfmRimfEz/kn+pfWL/0ateVrH4Q/4QANKxHiDDYCGTOd5xkfdA24oSTQ Sk07Hter+JtJ0Ozhu7+6EcE52xuiM4bjP8IPasf/AIWd4T/6CTf+A8n/AMTWT4K0G08Q+ALCDXLV p4opXaAM7LhckDoR71yHgPw5pWteKNUtNQtfOggVjGvmMuMPjqCD0oSQuZ6HuMMyTwpNGco6hlPq CMio7uESwMAORyKfDCkEKRRjCIoVR6AVJUmpzx9Kv2774gT1HBqtdR+XcuB0PIp1o2GZfXms1uM1 IDlSPSparQnEmPWrNWhBRRRTAKKKKACiq95e29hB511KsUZYLuY9ycAfmaWG6inkmjjOWhcI4x0O 0N/JhQBPRSbhUK3cLXclsG/exorsMdAxIH/oJoAnopAc0tABRSZpaACik3CjcKAFopN1Q291FdQ+ bC25NzJnGOVJU/qDQBPRUTXEaTJEW+dwSo9QMZ/mKbBdw3DSiNsmJ/LfjGGwDj9RQBPRUBu4lu0t S3710aQLj+EEAn/x4VODmgAooJxUEN3DcSTpG2Wgfy5Bjo20Nj8mFAE9FFFABRRRQAUUUUAFFQyy 7ThetQ72/vGlcC5RVPe394/nVVNTgkvXtEmYzJnIIYA4xnBIwcZGcZxnmi6HY1qKz5boQhS8hAZg g6nknAFSCRj/ABH86LhZlyiqElx5UbSMz7VBJ2gsePYcmmwXYuIvMQyhc9JEZD+TAGi4WZo0VT8x v7x/Oozdotylu0pEjqzqvPIXGf8A0IfnRcLGhRVISMejH86pwava3E/kxTt5mGIDIyhgDg7SQA2D jOM9aLoLM2aKpeY398/nTIrnzo94LgbmX51KnIJB4PuPx6ii4WNCis5bpWuHgEh8xFVmXngHOP8A 0E1L5jf3j+dFwsy5RVPe394/nRvb+8aLiLlFVkmYEBjkVZ7U0wCkbhTS01/uH6UAcXeePNEhttQE N5Eby1EgEEuULuuflBPXJHaoNB8W6d4jQmB/Luer28h+YfT1Hv8AnirWoeAvDmoySTzaeFmkJZpI nZcknJOAcVDZ+GNJsraCFbSORoPuTSKDIOc/eAB/KsHzXOhujy6XudXpq4hZvU1eqrYDFqtWq2Wx zvcxfEPibTPDVqk2oysvmHCRou5n9cCvMPH2laRp62fiXw/fRQyzzAiOFwATgnegHTGOR05r1TX9 AsfEenGyv0JTO5HU4ZG9Qa4ey+D+lw3qvc6nPcRKc+SECbvYnnj8quNjOSbKPxD1qW++H2hPKNs9 8VmcAY+6nP6sDVPxnpUnh2z8LazbqRJaxRwyY/vL8w/P5vyr0DxB4I07xG1iLmaeGKyBEUUG1Vxx xyD2UDitDX9AtPEWjvpt2zpExVg8eNykHqMg/T8adxOLdzzHwTpsvii58Ta1cR/NcRSQxjqA8gJI H0G0fjWr8H79I9C1SCVgogm85iTwAVwT/wCOV3Hh3w7aeGtJXT7N5HjDl2eXBZifXAA9B+FY1j8P dP0+31SC2v75U1JPLl+ZcqMk/L8voSPxoumCi1Y8wtNQ1zV/Gd34j0nTGvZI5SVVoy6oCCqZwRzt FN1y/wDEcHiK18SappRsZo5EAKRMiuV5wck9QMfSvZvDXhmx8K6e9nZNK6vIZGklILE9OwHpUviH QbPxJpL6des6xswcPGRuUj0yD7j8aOYXI7GD8QLqK++GN3dQtmKZIXQ+oMiGvJZdG/s3Q9D8ReQL i2mdlnjflS6u2AfYqP0Ne0nwdZyeDz4bku7p7TgCQsu8AOGAzjHUenSnJ4N00eEf+EbZ5pLQA4di N4JYtkHGM5PpQnYcoNu5raVd2t7pVrc2QUW0kYaMKMADHTHbHSvLvhf/AMjprf8AuP8A+jBXovhz w9D4a03+z7e6uJ4Q5dPPIJTPUDAHGefxqh4f8Gaf4c1a6vra5uJJrpSGSVlIGWzxgClcbTbR1NFI KWpNDM1NcSI3qMVWtziZauan9yP6mqMX+uT61m9xrY00++v1q3VNfvD61cq0IKKKKYBRRRQBg+I9 MutYNvaQskcAEjySOu4Z27VXAIOfmY57bawHs9Va73NbyW2oXMqMlx567FxAoddobJOVbsexzwK3 9fS6N3p72rTsyyHMUe8K2SvLMpAG0ZOGyDyMZxjn47PXGtI5RLcy3aszFZInXypPJkBILsQQSVHy kL0x1NRI1hsWINF1GWeAi2uLWBXVmjlnDfOI3Bc7WOQWKfXGSKpWlldyxTi2sHkDJDBcf6RHI3mJ 5m9gd+M7ivU55JxmrVo0kF1axXt9fTW5Y7VUTROkp27VcFi5U7XIySvXtiordNTdna6j1GOxklSS aOIzCRCVfKq24uQG25K4HcDFIrU3fDdhd2qXFxqAk+0yCMZeTdwIkBxg4HzBvrW5BPHcwLLEweNx lWByCPWucuUv/wCxtLF59rIGPtn2dmEn3DjJQ5+9tzj+Waz9Ct9R+2WBluJ4YooowsYjdkZRHhlY htgO7PUZ6YNVe2hm431uamj22opr17cXNu0MEikAbl2MQ52kYYn7vcgemOK6NjxXG3hvZtcvFtXv zLHcoF2O/krH5SlgRnbnn65Ix3qO2S/Q2w82/kmUQYczM0YO79+JOcZ68N0429KExuN9See1ubg3 syW0tx5kqyJcRzrslt8qSincMcA9gD681WOhahcIXMM6oDGYI/tHMamfLDIbGdh9TwcA1UhtNV1K wAku7orJYARIFkKzAwYwXDbQd5J5GenOKvRQ36SIIDqcbZj8ouZGRIPLG7cG6uG3Y3fNnb2qStup Wm0++W7eyjguXmEcht2WcAQZmbY5yw4Ax0ycDGKsxaRqCXymeG5aLzGePyXT5P30jEHLDhlK9M8d cYrV8N3MhtGtZo5zPCm4yTF8yAlsH5yWUnbnaenFYMY1RkaS6XUltGfzHjjklV0YoflDM+4qGHYh c4OAKdgu3oTR6Rri2jK6TNIFfcftAO9D5eEBzwQoZc+vOeaim0/UreMvDp0tvALhrgEypujA8vGT vwBgN0z0xwKbDHrNxCZzd3nmfYw0KIkhEoMA/iDbA28k8jdx1wan1Gyv1jurVxqUtkfNWEJLIzlz FGVy2cld3mjk7c9eMUrDuRHSdUlcTx2k/mCNhNN5yN9pBlRvlG7oVVuuOODXX6PC9vpkUbiYMM/L MV3KMkgfKSOBwOemK5N49YkvnWJL2KMosbqhkwMNH8wJbaCV3cKBjnOTSyWWt28Uot5L9tzTKfMl eTbGsy7duWzu2bsEEE+vSmtBSV9LnVa1DcXGj3UVoSJ3iYJtbac47HsfeuQfTdUEM4stLmijluHl iAljLxsEjC878AZV+mSMDpmrUVnqKeUwvb6Xb5RhyZYt2ZSWBRmJbCf3s8c1SS0u7WNrO3bUlmAn NugmlJ83zeGbJ5TBXk/L97uaHqKOmh6COlLTRnHPWsbVfFeh6IxTUNRhikHWMHc//fIyau9jNJt2 Rt0V5nqXxk0qHKafY3N0wON0hEan3B5P5gVymo/FjxDd5FqLeyU9DGm5vzbI/Ss3Vijphg60ulj3 VnVBliAB1JpIpUmQPG6uh6MpyDXznpU+qeLfElhp+oalczpPMBIJJTjaOWwOg4Br6KghjtoEhiRU jRQqqowAB0ApwnzkV6HsbJvUgf77fWkpW++31pDTMQrmbuLUDPfx6dFPEZYpTIHOE8zgI6NngsM9 +OM4PWWy1x7jXZo3c/ZJdyWx8pgMx9Tuxg7vmIx2QHvStr9xDZ22oXFtGLK4ieYbHJkRQhcAjGCS B2PB4561F0zRRcWVLWyujkwxskQlhO0WxhXcG5O1mJyB1bGDx1xVe10/VVjdY98d4ttIssiwmPfI RxmQuQxJ5DAceq5wbzeIr6OFi2nM0h8oJ8ksabnkVCpZ0H94EHvg5Axzb/tO9NwbIQQfahNsLbyI wmwMW6ZPUDH45xnC0LvIpYtrmwuBpdjcxlHRblBlC4DAyJyeW25575+8ag+yMb2Z4rC6XSx5Jkh2 kBwBLnah5ADFCVwCcHg55t2F9efaJLKO3gWdp5WOXyiIuzOMAEklwe3U5PGC0eIr9rKe4NlCv2aO WSZfNLf6uR0Kqcc52E5/SnoGvQtWcF3/AGRqC2paAylzYrKCDENgCkg9Bu3Ng9AQMDpWTPYSSXCn SrG7tGFrKkpk+Uli8ZK/eGXKhvnDYzj5u40bjXruzLQ3NqhuG8ryxCWkHz78ggLk7QjdBzx05wtv rV9dTw2yWYSV2kBeZXjG1QpDBWUMc7gMdiDyRyTQS5lqP0G3kikuZNhjgcIFUW7QruGdxCMxIPQE 4GcZ561Wk0aZtGbe100+HEce4Dy9zclcAHOO5yQCae+rXKyx3HljZ9kZmgD9ZA4XG70zxnHqa0rO 5umupra8iiV0RJA0LEqQ2QRg88FfxyPcA0E+ZamNc6eyT3cSW0puW2/2fLGPlhXYo+8OEAbcSD94 HA3dBRWC7uUeVwZrXzrpUUwNNiT7RL2DrgkbQGPAweR32bHXpb+5hUWcn2ad2UN5Mg2qASGJK7SD jseMjrUWs6idJltbWxi2RwgzzJDCWHlA42YUcE/MR2ylFkUnK9iu+k3KmWZ4ZZZmtrZLh1OHm2k+ YOvXAGRnn8aS4s2NtJJaWc4thKrW1s0R2u+0g5Xgxqc8E42kbvrfGpzHUpbe3KSmaRfKLt8qII1Y kY69Rgdye1Pg1S8up/ssMEK3Me7zy7koMNgbcDnPXtjvRoK8jUtp1uEZlV1CuyfMMZIODj2zU1Y8 mpX378xW0H+ixq0ytKfmcjcVU49O5657cmr1pfR3SgKHEmwMwKMAMjsSMH8KpMzcXuWqtx/6tfpV SrUX+rX6VSIH01/un6U6gjIpgUu1Zh6mtM8Eis6YbZmHvWbKRp6ec230NW6ztNfh0/GtGrT0Je5z utz3d7qUGiWUzQGRDLcTr95I84wPcmoz4H0gRAwi4iuBytwszbwfXrj9Kmt2Efja8Vz80tpG0fuA SDXQVRCSerKGkx30NgsWoSpLOhK+Yv8AEueCffHWuf1PV5ofFlu0ZP2G0Kw3JzwGl6Z+mFrqLq4S 1tZbiU4jiQux9ABmuAguNQuNEvIJNAvJmv2aZp1PGT90gY7YFCFN20PRCeBXPeEdVbUbO5jm/wBb DMxAPdGJKn+Y/Cp9M1RrrwuL1+JY4WEoPVXUEHI+orI02L+yRoN7jbFc2620/oCRuQ/mSPxosDlq mXvFuqmwhs4Yyd8twjNjsisCSfTnA/GjxNZx6hqOjWczSCKWWQNsbaThCRz+FZ+qRf2rDr99yY7e E20GP9n5nP5gD8Kta7HLqNxoC2901u8rOyzIMlf3eeP896aE3e4yXS18Oajp0thdT+VcXAglglk3 KwYHkehGK0NNJPivWxk4CQYH/AWpLLw20V9FeX+o3F9LDnyhJgKhPfA70um8eLNa/wBy3P8A461I aVguif8AhMrAZOPssvGfcVjWujW+vXGqT3U0qalFdOkbiQgwAfcwPT/PvWxc8+NbEDtaSE+w3Co9 d0yW3lOt6Ydl7CuZU/hnQdQ3vjp9KEJo3baOSO3jSWTzJFUBnxjcccnFTVV0+8S/sLe7jBCTIHAP bI6VapGiM7Uz/qx9TVKEZmT61Y1B91xt/uiobYZmz6Cs3uWtjQT76/WrlVIhmRfzq3VokKKKKYBR RRQBzniafUIprRLMyJE6ybpEVjtk+XZnarEjluMYOOtXtZmmg0zKRyyMzorGEsCoJGT8oJwPYf41 T8STagjxLY3UkGIJpWKRq24qFKg7geOvTBrHur7W4Xa2F+VAmYLczKiAny42VTiMjGXboATtxnNS zRK6RCiXsklvcX8V4qNHCZpkt2MgcJJjAC5ByRnAzyB3q3b3upLazPqKXzXoijCwxoyoVKrubcqk bgxYnuMcCq+pXOrPbS7r24CSm5+WONR5QjmAUqdueVz1zn+enpF7qE2uzRTXatAu4LE+NxXja4AQ deudxHPAGKlFPa5RttRvI2xff2i7CKQ2sSxODOVZ+G+XrtCfex1zUENxqMdq0arfwW6iUweVC5Yy bUKA5XJXJfkgA45roPETGKSwl81rdRKyvcois0YKHpuBAyQBnHfHesW18QX5gtPNllklkEEmFhGW Qod5HGPvD8OKb0Baq6Rvan9oh0ZpYkaO4kMZna3TL4yocgDJJC5x1PFczGb1THaDzxa3E0uw3ET/ ALwmTOHXYcgp2bAwSfcLBq2s3VtKFvplCCaRJFRGLBY0ZVJ8sDqSDgeozxmkvdS1CW9hmWWZruGW V0s/JGxR5D7WyBk5z3PU4A4pPUIxa0Op1eK4MVlBaPLErTqrmEdEwfbgcDmuctr3V2hie+a7jiZ0 W7EUUjPGcOSV+QfKW2j5d2BznnNb3h+6nuRdh7qS7gRwIbiRFUt8oLD5QAQD3x7dqp6zf38OsrDB PJGAITDCsYYXBZyHBJBIwoHQjGcnNN9yV2KN/qGq+XNbWYv/ADYzMQ/2dsFfLzHyRgnOOOuRg1Hq FvPNPPZ3MVze20ckTGWSFnMaZAYBSuC2MncuTgnpgVveHb2e6tZhczGeRJinm4XY3APyYA4+uSDk ZOKoa1e6nBe3f2a4eOCJIB91dq72bc24ox4CgdwMkkehbQaetiCy1C7tLy3lvGu3tyjqA0boUUM+ xmG3DFhsGDgg445NbXiGa7gsI2tFdgZVEuzdkJ3Pygn06A1zQn1KO6d7jVJMSw2++SNUZVTc4Mi5 TGfu5OMDdnHTEsWoa1Mszi9mQIkKx/uE+cPO67yCvXYqnHA56UXBrW4ye91S2TEtxdPuiizLHC6+ X86AjDIAzEMeeucjFOFzq5uEjje6Fo0p+zTSxybiNy/fAQnHUDdjjnPFF3fakA9tNcSu0TN9nBgQ /a5Fk+VW+XAwAv3dvUntW9oN1czyX8dzOZ2jnIVwBsCknCjCg5A4IOTnvzSSG3ZbGH9rvvscU5S/ mvEeRrmFomAQ+VLgRnbjG7ABGe3Unmzo51GW/EpjkYLFKiPcBwMF0IG4rk98ZHOKn12+uLXUdvmy tbNbOfItwhbcFY7mDKeOABzjOMgg1iW+palb6eIop2hESyfZlhhUi5kDfKh+QDoR90LnJPbNPqC1 R6COnPWq15p9pfxGK7toZ4z/AAyoGH5GrK8jmlqzE4nU/hb4a1DLR28tnIf4rZ8focj9K4/Uvg5q EQLabqMFwP7kymM4+oyD+lezUVDpxfQ3hiqsNmfPFr4f8R+E9cs9Sn0m5KW0yuzQjzAVz8wyucZG Rz617/Z3cF9ZxXVvIskMqhkYdwanxQFAHAAohDk2CtXdazktSo332+tNYBlIPQ05xh2+tJTMSsLG 2FvDbiJRFDt8tRxt29MVk2Xhw299HPNNDLHFuEUawlcBhgg5YqBgnIVVBPbtW/RSshqTRjzWui6b t+1zRxFmUp9puD/AwZQu48AEA4HoKh1O40uK6WC5RQZWE3mi5SIqcbdw+cN0B+6OhxzzUuoC4tNS N5BAlyLiNLcxuxBQhmweFPB38+mBVW90i+ktdStLeGydb+MDMjFQh2BMYCnKjGRyOtJ+RovNlk2W hJOlh5sUV1uMixpclJtzDkg53HOOfXvT5LXRNMszazG3toJ1aMrJKFDhiSwGT6sfzqBtNu9z2uy3 aCS6FwZ2Y+YPnDYxt6jGAc9MelXLu3uxqIu7aKCcGLyik0hTbznIIU8Hv9BSDS9rkMtxo91BBPdy wwtdxxmPzJgjkDlcHOcgt29etFwtpo/2XyrKWeeaVo0COC7MVLMSXYZ4j7nPArPPh65SCFfLhkJs 47Z1FzJCqlc9lHzL8x44PHvxo6voo1O1srUyOscMhLSeYQ4HlOoIPc5YHnr3p6g7X3GJc6K1iklw 0FvHMJIdlzIFz8xDrycH5h2zU0Z0rSZ/LNzFFPOBgT3JaRwOgBYkkZJwPc+9ZzaHchopVggyLcQN FHcyQIuGY5G0HIbPIPTHU1ZttMurDzY4ILSeGRYwTLIwKhUVCOQxYYXI57n1Jo1BpdyylppcEwvF ZFPmPtLTHYr/ADb8KTtB4bOBn73vT4LvTHuW8q6tWnnGTtmDM4XI4GegwenHX3rNn0e+ZWtP3Atx NPMsnmHcfMD/ACkY4wZOueg96de6PczusFr5UELWpglYMTuG1gBsxxgkHOQcZFGorLqyVY/D8tk5 juLUW8BXdJFc7fKIG1fmDfLxx1HHFWhpWnT28JjRtigmOWGZlJDcn51OWB69eaoz6be3hM01tbIy Q+UscNwy7juVs7goI27Rjjuela9ik8dlAly6vOqASMowC2OT0H8hQgk7LRlaXRLCYKrQYURiLars qsg6KwBAYc9Dmr6IsaKijCqAAPQU6imQ23uFWov9Wv0qrVuMYjX6VSJHUUUUwMPW5bqOCSO20x74 yKQU81I157Ek5/IV5xofhTWbXWnk1O0u47KRiUCaiT5XcZ2kFh2r1ydeA1VZk8yMjv2rOUbu5tCs 4JpLcpWG21lQLnb05JP6mt0HNc/WvZT+bEAfvLwacX0MmZ+uaRNfGC7sphBqFsSYnP3WB6q3saom 98VSx+Quk20MxGDcNOGQe4Uc11FFaXIcTm7rRLv+wItMS4a4M0wNzNI3OwtubH+FdEqBECqMADAF OopDSsc3JpV7CmuQWyqYb1TJD82MSMMOD9etXr7SvtXh46cvyusKrGc/dZQNp/MCtaincXKjHttJ Nt4aOmg5doGR2z95mByfzJqtFpl4B4fLqoayUifDdP3e3j15roaKLhyoK53UrPUrPVzqmlwx3Hmx iO4t2faWxnDA+vOK6KikNq5z+k2OoT6jNquqRpDK0fkwwI+7y0zk5PqTVA2/iSztptLtoo7mJywh vZJeY0P95TySM119FO5PIU9Msl07Tre0ViwhjCbj3wOtWnYIpY9AM06qGoT4XylPJ61Ldi0jPkcy SM57mrNouFLHvVUAswA6mtFFCIFHYVCGTwDJJ9KsVHCu1PrzUlaIQUUUUAFFFFABikxS0UAJiuN1 jUZv7aWHzkDW90hitMDdKPLLbvXGTj04rs6TaOuBmk1ccXZnCR+Irx4bZrjVLKCGcndOCjbCE3FS Og5A4PODjrUcWu6jBaFIPstt5FqGFrIfmA8kMCFPzH5jj0wD3FdxLZwy3EM7L88JJQ56ZGDU+0Zz ilysvnXY4jU9XvIY7qyub+GJV85RcNGB5hCIVjx0yd7dOTt45qOHXdRWGZIp7VDBFtEDld4G1dr7 epBzn0wfUV3e0HqKNo9KOUOdW2OFudX1G2v5W+2b3torpFTaAs7J5bLkDuAx6dlPqat2muXJurET X9rNDNK0a/Z5Ed5OmMgdgSclenBPGa67aPSl2r6CiwuddjhdU1e5XVPMSeN57WW42WezLIFibaxw ckHr+PHSrs2pT3Hh7VXj1JXS3YeXewgDcuFJ5HHGSMiut2j0FG0Yxiiwcy7HFDXdRle5EV3afu22 BCys6jzFVX2jnDKc+nzDFEutapZwSvJeQn5ZwGaIAJ5UyRgnnnIYk12u0egqC7tIby3aCZcxtgkZ x0Of6UWDnXY42bxLdxJPtv7do4hK1vNsBF4y7MIMcZyxX5eSRx0NdnbTx3UIlidXQkjKnIyCQf1B qUIuAMDilAAppCk0+gYoxS0UyQooooAKKKKACiiigCKSLdyOtQ+W/wDdq3RSsBU8t/Sjy39Kt0UW AqeW/p+tHlv/AHat0UWAqeW/pR5b/wB2rdFFgKnlv/do8tvT9at0UWAqeW/92jy3/u1boosBU8t/ 7tHlv/dq3RRYCp5b/wB2jy3/ALtW6KLAVPLf0o8t/wC7VuiiwFdITnLflViiimAUUUUAIw3KR61T IwSD2q7UMyZG4dutJgZVzHsbeBwevtTLeYxSBlrlfF3iHUnlj07S7CSS3nzHczXFhNtQHAznA45P Y1J4a8GxeHIj55huLotkTqhGBjpyT7+nWsr66G/s0oc0nqegxSrKgZelPrEt7hoG45Hceta8UySr uU/Uelap3MGiSiiimAUUUUAFFFFABRRRQAUUVBPcrCvPLdhQAtxOsMeT17CsZ3Mjlm6mnTStM+5j RDEZWyR8o/Ws27jSJrWP/lofwq5Gu5wO1NAxwKsxJsX3PWqSEySiiiqAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACgjNFFAFWWPYcjoahkjWRdrVfIBGDVaSMpyOVqW gMuWJojyMjsaIpWiYEHBrQYBhgjIryzxL4y1nTNfOlC3tLFSw2zyMZBtPRs8cY9qzk+U2pU5VHaJ 6pDfqwAk49x0q4rBhkEEe1cpp1vNbWy+dePdSsNzSsAAf90DgCr6TOhyrEfSrUu5m1rY3aKy0v5B wcN9alGoccxj8GquZE2L9FUv7QX/AJ5t+dMOoHsg/E0cyCxoU15FQZZgB71mPfSsOGA+lVmkZzkn J9SaXMOxenvwOI/zNUHdnJJOc0iqznCgk1ZitQMF+T6DpU7gRQwGQgnhfX1q8qhVAAwB2oAxU0UW fmb8BTSC4sMf8RH0FT0UVYgooooAKKKKACiiigAqj/atp9uNmru0w4YLGzKpxnDMBgHHYmrprmTD fx22qafbwOXmeV4rqORQqlxkBudwIJxwDxg0mxpXOk3r602WeOLYHJ+dgowCeTXHDQLi5Z1Ni8Fm RIY7dpB8jbFAOFYjlgT9eeDRHpWrtOXWJ0kcxvJNIy7t4Qg4IJyoODggYzxnsrsrkXc65byF7qS2 DfvI1V2GOgOcfyNTbhXBf2DqGA0enPDCREJ4CyOZiquGOC2D8zKeSM9etSf2VdT6dP5ELXgkmWIy SMpkCxxbcjccBhIDk/UjPFHMx8i7ndBs1HNOkChnJwWC8AnknA6ViaDbyWTzG9+W8uWBAZ8llVFz jnsS35+9VNRtmk8RSlHBmZbYxp5mG2rIWkwM+gX64p3J5Vex1G8Ubvb9a42x0m8hmg+0ac8trG7+ WpMYcMdhWWQbtrMMMMg5745qpNpd7bacTNayo4SGOQMyOt1cbsb2BblSSOThuRx8tLmHyLud/mgM D0rP1GG6n0W4htmEd08DKjA8KxHr9ar+HrN7KxdHjki3yFhE6qoTgDACkjGRnr1JqibaXNSO4jka RVPMbbGyCOcA/wBRT9wrkdR0O8vLy+YxF0bzmh/edHMcQQgZ4O5W+lMuNKvpIrpfsTvcPPue4JRv Ph3giMZbPAwNpwDtPPNK7GoruddLPHEoaRgqkgZJxyTgD8SRT9wrjj4fne1kM1rJc7VtxEkzLu2r JudQM7Rxgdew5qvJpGpRrfk2ctxJMzoMCPYytJlW5cZKL0BwOwpXfYfKu53O4UoOa4RNPuLi8uIo bO4hhigNs4jePzCpjQqGO75mznqcAfU11mlpPFpFuk8McUyx4MaDCr6cDOPzpp3FKNupe3jFO61w kGk6kJHe601ntnkWSa1RowrPtcEgbsEZKfeOeM9sV12kwT22k2kF026eOFFkbdnLAc89+e9CdwlF LqXaKKKZIUUVUvNSstPj33l3Dbp2aWQKD+dAWvsW6K4vUPif4bsn8uK4kvJc4C28ZbJ+pwP1rq7K eW5tI5poDA7ruMTEEpnsccZ9aSknsVKEoq8lYs0wyoDgmmTsQAo71BRcks+cnr+lHnJ6/pVaorli ltK6nDKjEH8KVx2L3nJ6/pR5yev6Vzj6m0FnYXMplcvAXdEC4dtqnGMdc9MEDnn2Y+r3trdsLu0C ERr5cccgcO7OEUbiBjk88YGc80uYr2bOm85PX9KPOT1/SuYfXbyO6Fm+mr9qZkVQJ8odwkOd23OA I+eO/wCehd3txHOtvaWyzTlPMYPJsVVzjk4PJ7DHY8ijmFyM1/OT1/Sjzk9f0rnp9YuI/MMdgzJb oHud0gDJkbiqgZDEDnqByOaiOvXDSnytPLxeebdH80As/Y4x933657GjmHyM6bzk9f0o89PX9K52 fUppfDV9eRr5FxDHMOMPsePcOOOeV7j8O1ZtvrNyiRTLJd3ls0pWFnjWOSUiKVmUrtGRlABwDnjk Dk5gUGztPOT1/Sjzk9f0rnodYnu4oxaW8M05TzHAuPkVckD5tvJJB4x2OcUTazMhmaOxZo7VQbrd IAyEqG2qBkMQCCeQORgmnzByM6Hzk9f0o85PX9KxdP1M3891H5SosL7R8+WI55K44BxkHnINUrLx JHeagkAhAikdkjcPlsjPLLjgHBwcntwM0uYXIzp/OT1/SlEqk4BqrRVXJLtFRQMSCD2qWmAUUUUA FGKKKAKl1atLE6xStEzKRuUAke4zkZrmoPA2hQztcXFoby5bl5rtzIzH1IPH6V2FNZAw5FS4plRn KOzM9YIliWJY0WNRhVUYAHtUb2inlWI9qvtAR90/nURRl6g0NCKDWsg6AH8aYYZB/Aa0aKmwXM3y pP7jflSiGQ/wGtGiiwFJbWQ9cCpUtEHLEtVinCNm6LTsFxiqFGAABTgpY4AzUqwD+I/lUwUKMAU7 CI44gvJ5NS0UVQBRRRQAUUUUAFFFFABRRRQAh6Vxk2n3MV9elba+aB7tpH8iZgZAYxtIO4cBs5HH bsK7Q1yF8dXW5u41a6FtBIGLxglnjkZSduOpVfMHHI49qUi4FOPTdSluhHdXF2Zy481Y7pl+T7Mo yAG4Hmg8+tMmttfnLZju43Np5blJCNzbE+bO7AbduHAHTrzU0R1SNpL5Eu5BAm6IOh3yxCVvlOeS 209Dz0zzUc/9uwx3KPc3QultmaMJG7q58ok4IG0ESE4zzwB0qDQ6LWbaZNJihtVuHRJI/MWOQ+Y0 YI3ANnOce+TzXPWOnarFLbqTdW0Idnjzl9p852O878cqVySG7966HVYLmLRooLaa4MnnQI0inL7T Ioc5/wB0nJrn5U1iC3KiS9kjk3rLvDMQizhQRgZyY8njk9etNkR2HwW15cabbmM36OYH+0SCQyb5 CFwy/NyCc42kcZximvHrAAlZJ7a5/dmKRp/3MaeWAVbLctvz1yeV54poiu4J3lEt82+2tw0kccgz EJH34XH3gpXtu5JHJplx/aNxCsU/9otGdptQI2+cCZsmTjrsCH5sd+9JlosW9rqNvHaSs17IVuFL wyblUDADEt5hPHJ6kHnjmtfVzJqvhuKWG2nzK8E3lKdsgUSIx78EAHvWC9zqQWVDPerL5TNcq0cm A4kG1Y9oyFK7huXPGCea2tYupYtH05ybmAyyxrKseWkAKncOOSfpz6c01sS73Rlw2OrPeQ5e9hsz IWgBLO6DfnD/AD9x67sDjipLbStRRo5y195g+zsQ1w5G7zj5nG7H3McdMVSOp6hDfafbu93G77wg kDZmjPmbcjpuA2E5+bJ7c1etX1KLU9KhY3rDYvntKHYSbkYkn+FcNgevToKFYbua2sxTvfWTeXcS WgDh1t3KkOdu0nBBK43fmKxEsNWmeNGW+QFkW7YztiRvNUlk+bhdu7OMcEDtxc1+W/j1JxZi6kLW rbEiVwI2AY7s42sTwMZyDjHU1nXOo3U+pyhpdUht5PPaBYoXDnCQbTtxnG5m68ZODxmhiinYkj0/ VbeNMi/kjYfv189ixVZTgLluDs9MEgeta8cOo/8ACKXEUfnLeFJfIDvmRVLNsBOeoXAznrWQz665 vPNnnju1T/VxxOUIwuChxtznPv17YpJ5dWbUZ7e2a+hj4jJ2uxGJYwGDMNvKFjx7556FxtNkb6dq JaZreO/t7OSZjgszy58tArffBwCH6n8PSa7tNXM0yR/a2tvtIaSX597Aq4IChx8qttPGOD0ODnY8 QfaoLG1S3knEQlCzyRq7uE2tg/L833tuSP5ZrGnm1NFuka4vZm8mJzKsEyDI2ZQKBwW+Y7l5GSD0 pWsCk2WrXTtUivY5vtF0XNzsaSViV8r7N1Kbsf6wD3zXVQLIkKrM6vIB8zKu0E/TJx+dcYZtTle8 Mk93auEOYfIlcBMjbhlBGccErzy3px1emSPLpltJJG8TtEpZJGLMpxyCTyT9aqJEy5XO+ILrxNbo f7D0+yuOOssxDf8AfPA/8eroqKbVyYuzvY8D8ReI/HsbMupNe2MX/TKLy0/Bx1/M1xckss8jSTSP JIxyWdsk/U19XsoYEMAQexrndS8DeHNVybjS4Vc/xwjy2/NcZ/GsZUm+p6FLGwjo4fceE+EVifxh pCzY2G6Tg9M54/WvpgCvML34PW6TLPpGqTQSI25BOocAjkcjH9a9G0/7X9iiF6IvtIXEnlElSfUZ 9aqlFx0ZljKsKrUosdP98fSoqmnHINQ1bOMKbIgljaNvusCDTqKQzMj0S1W2FvI000aoUUSSE7VI xgenAoOiWzbzLJcSu6qm55TlQpyu3HQggHI5zWnRRYfMzJOn2VnewXEsk8lxLKAjyOWywR8ew+Uv Vm5tILyYSiaSOaMFS8MmCAeoP6HnpUGs2s10lqsMe7ZIzNyBgGJ17+7Cs+60KUW9vDZQoirbhJVy B5u1422Me+4CQZ/2j61Ja11uXn0ywmjaQTyCIoI5Ss5xIo/vnPPHGc5xweKm+y2UUaEMoXzjOuXw Cxz09uelY9/p9xfWiS2+nSWWydHkiXyfMmUKwHBynBKkZP8AD2OKdpmhyR3ttLdQM8Sx3GVn8tih dosDagCjIVjxxyeeaB2VtzSgXT7zR1UNi2vlZwGbDMJMs3/oR4ok0uyknJV2STzTNiOTBVyhQsB2 JDH8ea5+Tw9eRw2sS28pB0+K2ZIfIxG4zu3FwcAlhyuTx04FWJtMuLi8ug2mureUIY7hmjCyqNpf eQd2Xxt+7wB2yaLjsujNVNMsEhV4ruVCu7dMk3Lbjk7j0PJ/DtipJNEtZRjfOEdAkiiU4lUdN3cn HBPcdc1j3Gny3E09xHoslupjjCqjRby6scErnYR078j6CultVdLWFZFRXEahlT7oOOQPamtSZXWz I4bKOC5lnDyO8nHztkKMk4HoMmo4dKgt5leN5giMzJF5h2KW64H4njoM8Yq9RTsRzMKKKKYiWD7x +lWKggU8mp6aEFFFFMAooooAKKKKACiiigBpQHqB+VJ5KelPooAj8lPT9aXyk/u0+iiwCBQOgApa KKACiiigAooooAKKKKACiiigAooooAKKKKACkxS0UAJijFLRQAmKMUtFACYpCMCnUUAefNfan54u o5Z3uRBsuA8exbcmRdyghD0Hs3HNWZL+/QIbqQ3ZFsZE+zj7jAnDkmP0I+bHY/LXb4oxU8ppzrsc DbNqs15Dfs9wZVaOI/uwVZDclTyUB+5g5GPWpW1XVRZvILqUuIle4R4gvlybuYkO08kZAyD0H94V 3OKMUcoc/kV7K5ju7YSR7+u1g6lSCOCD+NSG3iaZZjGplRSqvjkA4JA+uB+VS4oqjMTFGKWigBMU YpaKAExS0UUAFFFFABRRRQAUUUUAIQCMGojACeDipqKAIfs/+1+lH2f/AGv0qailYCH7P/tfpR9n /wBr9KmoosBD9n/2v0o+zj+9+lTUUWAh+z/7X6UfZx/e/SpqKLAQ/Z/f9KPs/wDtfpU1FFgIfs/v R9n/ANr9KmoosBD9n/2v0o+z/wC1+lTUU7AQ/Z/9qgQAHkk1NRSsAgGOBS0UUwCiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKoz6nDBfR2ZSZ pnAb5IywUE4ySBxzQBeoqPzUxncMZx171Bd6hBaKhkJ+eQRjbz8xBPP5UBYt0VWtb2G7s4rqI/u5 UV1zxwRkZ/Opt688jI96AH0UzzEOORz70GRQSMjI560APoqlcalBbSJG+9mdGcbFLcKQD05/iFWf MQZyRx15oCxJRUE1ykETu2SEUsQoJOPYDk0Q3Mc0SSLkCQZUMCp/I80XAnoqGS4SNNxDMNwX5QW5 Jx2+tNlu4YE3SyKi7lTJPdiAB+JIoAsUVUur+GzjV5ScNIkQC8nc7BR+pFSQ3Uc0SSLkB1DAOCrY PqDyKLhYnoqPzUxncMdM5qNLyCV5USVS0LbJBn7pwDg/gRRcCxRTN65IyMj3pPOQngj86AJKKhe5 RXReSWyAQMgY55PapVYMMigBaKKKACiiigAoozR0oAKKgafnCioGv40mSF5ollcEpGWAZseg70rh YvUVVa58tGeRkVFGSx4AFL57+35UXAs0VW89vaoodRiuCwgmhkKHDbGBwffB4ougsy9RVbz39qRr koMsVUZAyfU0XAtUVW89/wDZ/KkNwwIBKjPA96LgWqKree3t+VRrfxySGOOWJ3UZZVOSOcfzBH4U XAu0VW89vajz29qLgWaKoy6jFA6JLNCjyfcV2ALfTnmpfPf2/Ki4Fmiq/nt6CpI5A/HQ+lCYElFF FMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArn7+xuG8R Q3iQSyQiJULR3JjCncSSygjcMHoc10FczrdtqM+s2bWkDhI2QiZCOPm+cNkjjGOgOfwpMqO5m2Om TQahHbyWUMywqWSB9u+IMRtkJxtY5VxnrgD1NOtvD18jwH7PFF5XlrKVcHz2XdmQ+5yOvPJqtFpO pqAxsbhf3cK3QMis07Lv3kfNyNxU8kZx+FPlsru2vbQTJdOzTRJFcSSD5U8sjYwDdd2T0I6HNQa/ McPC13DaQxRwIIVjt/NhjKfvGVHV/vAqTkqeRzitKy0/+ybe8iCoLy9by7cy/OX2wjAYj/dY+nX1 rJey1qWw8lrCfJgghOXUsGRHBZfmx97bz1wc4p0mnat9pjmNhNNeI8jmZ5RsZTAyquN3GCcdOuTn mmLfdk+naDfWt3bTG2AZLlnXeYyscbKm7hQAGypwVx79TUfiPS9Qkm1S98lfJFrMgZNoLKYxgHA3 E7ge+OmBU2l2OpQXlm0ltPtSaQbZdu2ONuQRhjg9sDNdlxQldEuVmcWfD94zTvDaxWsciuEt1YYQ nyhnjjnYx/KluNFvW06S0WwgMj3DNNP8hadTvIbLA4IJXORwM47Uy8+1f2zqM9vDIZIbkFZnmCxB fJX5Dz3Yjt1Oc8VDa2N8l0EaCXfHDcy21vJIEBOIduQrEAbt/fikUSRaXdFZ7GWzjmvR5M8k7MD5 sYZcxEnn+AjHQ8epqSHw5di9gmliKwBy8cUTp/o37wvgEgnGCM7SOmOmMbHhm3u7WyuI7qOSNfPJ hWTbkIVU9ASAN27jNW9cinn0mZLZWabhlVTgtgg4H5VVtCXLWxk2OkXUGhvZ+SseLqN4lJXdsVkJ 3FeCeG56kYzzVJvC8q2sQWygkYBHlQkfvGWdX5z1O3cMn1xUU1jd6hPcB0uI5kSWeOLzsMhaQGM8 HGcK305rqNItns4riBlKxLOxhBOcIcHj2yTQlcG2jnE8N3izSOUfzftSSb96BHTzxJnAAOQo/iJx yBxWVb2jfa7SwQwyX6SRKZlbLwbIdrLjH3QwJz0JPrXX6xKb+xurWxLSzQyR+dHGdpK7gWUMcDJX I69+1c7a6Tem4TEFzFbGZ2jWN1ZoTvBBb5vTjjOMEd6lrsVGV1qOs/DHnWyZgV12yK6u6MhfZtDL tAHUdTzxzT5/DV0zzk26ssk6TSbCm6QeSEIO4EEhgTz/AHsg5pLfRL2FreIW9xFCksmDCV+V/MyH xuHBXHPJ4IxzyS6DfPbJhLjzhE7ZE5BEhkXBznrsHHoKLDvruaek2D2GrXkWCFmhUgylWdyoC53A ZxjHB79OKz7DwtNZR2rra26TxRWo3gjIdciQ59wQD60kui6j5yW6RzC1WcgAS4xGZ429c42h/wAO KX+ztWS6tY0t5Fjgnfy5Q4OI/NfCkls7dmzgA/pTF8yvZaLcbbiyuYhv2mSWKIouA8RT5cAKMsrY 9sZrr9Hhmt9KghuUjSVFwVjACj04HGcdccZrkbbSb9GWV9OufK2QLdxGZS1wVEu4j5ufmZG5Iziu t0aKeDSbeK53CVQchm3FRk4BPcgYGfanEmbL5IA5rJ1HxRomk5F9qdtEw6oXy3/fI5q9fWNvqNq1 tdRiSJhypJGfyrhdT+EWh3e5rKa4s3PYNvX8jz+tEuboFNU2/fdhNR+L2hW+RZQ3N43ZguxT+J5/ SuT1H4va3c7lsba2s1PRiDI4/E8fpTNS+EeuWhLWU1vep2AOx/yPH61yGo6Dq2kti/064twONzod v/fXQ1zylU6np0aOFe2p7X8OhqWoaOda1a+muZrkkRKzYVEBxwo4ySDzjpiu0lOIziuK+FmqRX3g 2G2UjzrN2ide/JLA/kf0rtJv9Wa6IfCebW0qNFasDUnig163kTElxJ5UbQSRk7lDnDqexUlifbrj g1v1iDW3XULizFtJPKJXWJY8ABVSMncSfV6lihcwJbvUZ7a7SSVTM0M4uYRIzbPkbjZsAXBwAc8j u2c1de81H+23jaUI4ulVIjIxzDkZPlhMEEZO7PB+mK0T4hijeS4likSyFpDOrHaOXLAA89TwPTrz VS58TCSNUtyscqswlClJcL5MrqQQcdY+h9D2INSaa9hba7dwSL2dtV2uWszyobBwpXGFXIGG4zxy c81BcmKbOm3dxPM1lK8oZMkSDbjIxw3LfJ+g76z6jDazz3S2dxMoKRTXCkYJHAwpboNxzjvnrzhY PEtlPfrajgPI0SPvQ5YZzlc7gODgkflxliV+wulTK97JHbXct1aiIFnkbcEkz0DY7jkjtgdM1mvc GSWASXVwb43q+bbEfKqiTjjsoABDd/U5xVmfxIzaRNcQ2c8TvZvdWwk25dVA5Izxgspx6flU0/ia 0trxreVChjKrMWkQFGYAgbc5bgjJGfbPODQFe97FDQ7zUp763W5mXzmRjdQ+YzbDjpt2AJg8Dnke vWpdWj1G91Pz7GJGXTcFQ8hXdIcMwAwQcp8uf9tq2bG/W+a4CxMqwytHuLKdxBIPQ8dO/Yj8KNrr 0dx4guLDdEY0BWMhxuLr9/I/4Fgf7rUdBXd72MyfUxPLqU0d/crOuw2MCggOTGrAAY+bJPI7Z7U2 O4u4Zrxd0kUHm5kdF5RTNLuYfkv0HNXv7ZWKa2uVtJLezupWke4fBDoIWIOAcrwikcdB+FSQeKLO XeCjB9nmIiujs4yFAwpOGyyjB9evXAVrbREUlzEtvEY9RuG09piJLgsflwuQu/H3c9WyeeM+lSC+ cu63moXSaeJpFjnceXu4TYpbsMFiOm7+ezHrI+0m3uLOeCUGMYO1gd5YAgg/7JzTL+9t7l30/wCy y3Mu/HlBtoO0KxJOeg3r9SelBK7WM67kjLj7RfXKxrbq9o5TDSPlsnG35m4X5cfhzUFxfat/aG2S RYbjfH5UXmsNwKrn5AhDDJbJzxjtitiLXBcon2axuZJiXDRHapTY+w5OcdQcc8+3WorTXZJrSJxZ TzSeX5kwQBdgJOBgnluOg/wyDV+xJotw8l1fRPM8xSTO/cSoyW+XBHykYwR9PWtpDh1I9ay9O1iP UpdsMEir5SS7nKg/MoYAjOeh69Mg+laY+8PrVIyluXaKKKskKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAK53UJpU8QIjLcSL9n328cMhClwx3bwD05Tk8de9d FXL6+t2urQTQLOIhAUlkhUllUyR7sYHXAPTnGcUpFR3MuG01q5tpQ5vUAWV4wJHQ7vLXaOWLEbt3 U+vGKL7z7G7ht7qW/aGR3ZVSdi7fuk6HOcBz+GfSrMFzfoxa7/tF40jdrNUVwZSGfAcgdduzG71z 1qpGuozskrxTymISrE0kTkgF7c4+YZP8fJ9DUGvUsKuuFVtrg3qSAl5Z4xkAG328c8nzMnA781t6 Jfn7D5V3G8EkKgyNKxxyWxyxJBwAcHpuArm7i8vzaXT2rap5jSMYleOb91tB28Y+bce3QcZ97U1z JLDfRXH2x71pQskQEmyOIt8jAKOeAOnOc5xjhpicbo1tS+0Pqtu6C4e2aI+UYGOwS5GC+08jHrx1 rGghvyIDcS38FovlfammnZSHCvvIOfu52dOPSi0vdSgW2nvGu0eNImZfKYR+T5QMhYYxu3bvfgYq 14n+03G6MC8ET2wMSQoxDSbuQ+B6Y68cnvQ+4lo7ECQaurQoBdSSNbReaWLDYwZc85wxIznuMdcV VltdXad5oor1bhY2SeSQsynMyEhBuHGwH7pHHHWrEJ1meV1lnuY99yqSoiuCq+YeVJGANv8AdPoe tJEdXghUSy37xSLGZmIYuoEjKduBkHbtzjnHPWkVsP8As+qxQSyM93cDyYUjP7xMZkcsdgbcSF2d TnH40tvaa2Y4Z3kuvtCLbgK0h29xJuXODxjOc1Wlu9UiSNp5b5PniW1IQgOpnKnzOOuzZ97nnjnN TK+qLLpyFr4vIUeV23kEMxDLgDau0c5PPPHOTQGpT00zzyvcR/bpI1W3ivSspaQuvm7wMHOAzLnH bOK7LRUul0iAXm7zsHO85YDJ27vfGM++a46FNT0/SY7ZFvgrWlvtP7z91Jsk3cLz1CDHTkZroLm/ uLnQY5IzOrrJGl00SHeBxv2gDPfBxyOe4pxJnrsZGo2uo2cdz9kiuFaS4mnEgd2AIKleNwAB5OTx 8uMc0n2e8jgkW3TUCjNcmMxStzKzgxtnP3Sp6/d655qzcz3rTfY4BevE0gKs8bnMPkEckjrv7HnN V7EXemTbgl7sNyhlUI7DYbbAwMf3xjjpgZpDu7Dryy1rCkXV1GJJZg7KHk2ncBGQqsMDGfUc8j03 NEF0l5qCT+c8fmbkml3LuyWJUAnGBxgjAII7iud36uNMeWZtQM7mONcbwIv3CsW2qMnL5Hpk88Zr R1WfVnXTPJeSESQFncI5CzfLjcFBOPvcHjrntTQnroX9VFx/a9qdt01sUIXyGIUS5GC+DnbjPXjr msWztdWna0jkOoRoPKF2XmYEybX3lTn7udvTjpjpV/V3vDe36RNeLKLM/YhEreWz7XzkjjOccN7Y qs+oXtxeieNb37N9qQJCYpI9ylUBOccAEscNgHmhhG9iC3ttXtobXz2v5Ldo4WusSsz7sSBsYORz 5eQOw+tdToy3C6TAt1v87Bz5hywGTjcfXGM+9cnCL62hEMTagGRf9HG1yGl8xtwc4xtxt68YJI6Z rtbeZZ4FlVXUMM4dSp/EHmnEU2TUUUVRmFNZFcYYAj0NOooAoW2j6fZ3b3VraRQTSDDtEu3cPfHW rzKGUg0tFAXb3KbKVODVGLTIYdQe8Qv5jlicnj5ggP8A6LX9a2sD0puxf7oqeVDTaML+xrc23kEy bfJjhBzyuwkqw9wTn8Kjl0KO4i23N1PM24ncxUYyjJwAABw57dcV0W1f7oo2r/dFHKh88jkbzSL2 e6liibZaTSo7bZsDjGcrtznjoGAP550bfSUt7nzEuJ/KDM6wZAUE5zyBkjk8E4H5VubF/uijYv8A dFHKh87MF9DtntIrctJsitHtFIIzsYKD26/IKdJpCPePOlzPEsjK8kaEAOwAAOcZHCgcEdK3dq/3 RSbF/uijlFzMx7XTxbXNxcGaSWSbAJcKMKM4HAGcZPXJqNdGtY7e3iRSGgdXWX+MkdST33ZYH6mt zYv90UbF/uijlDmZzi+HoP3MctxPLbQBhFA5GxVKMmOBkjDEDJOKkXRVMTxzXdzMpUKm5gNmCCCN oGWBAOTk8Vv7F/uijYvoKOVBzyOaGhu95cyT3k0vmRwhJSVDoyMzcADGOR255qUaIqhZEup0ug7O bgbSzFsAgjG3GFXjHYV0Gxf7oo2L/dFHKg52c7FoKW0aC3vLmKVS5aUFSz72LEHII6k444oXQY4o 0SC8uoR5YicqwJkUZxkkHnk8jBroti/3RRsX+6KOVBzyMK00eK0uIJVmlcQQeREjbcKuFz0GT90d T61rRRksCRwKnCKOiinU7Cbb3CiiimIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKMUUUAGB6UYFFFABiolt4kmeZUUSOAGYDkgdP5mpaKAEZQwwQCD60YpaK ACjFFFAFSbTrS4uo7mWCN5ovuMwyRjp+VWgMdqWigBCAaFUKMAAd6WigAxRiiigAxRiiigAxRiii gAwPSiiigAooooAKKKKACiiigAooooAKKKa8ioOfyoAdRUH2j/Z/Wj7R/s/rSuBPRUH2j/Z/Wjz/ APZ/WncCeioPP/2f1o8//Z/Wi4E9FQfaP9n9aPtH+z+tK4E9FQfaP9n9aPP/ANn9adwJ6Kg+0f7P 60faP9n9aVwJ6Kg+0f7P60faP9n9adwJ6KgFxn+H9aPP/wBmi4E9FRpMrHHQ1JQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVmNq6rqM1qbeQRwKGluCyhEy CecnPb0rTNcrrGk77rUJyLMm5tiiu4JlQbCDtGOetJjik9zQu/EmnwG0EVzbS/aJTGGE6hRtGWOf YdvcVcXWNOcgLfWxJUuMSr90ZyevTg/kawZNIS/ieWOaOJbksY1dcHmDyun6/Sqmp6FHBcSq8iFL vbHGvmMPLdoxEPkHBHv7mldl8sXodIfEGlCS3QX1uxndkjKyAgsoyR1/zkVMmrafIIyl5bsJW2Ji UHc3oPU8isafSJjO9xZXNsjebkEjIQ+T5f5g4OKq6ZYLZaxDJc3EUjuJpgwcuB8sSHLN3yP1ouxc qsb1xrVnBqEVkZozM5YOokGYwFLZYdhgfrUqatp7+VsvLdvNyI8SD5sdceuK5i+0f7bc3Np9utUj /ez7ufMAlVl5PTGc9+gHSo47KRNREFrKlvdRIZZ7r7Q0gAfACnd97O3PtgetF2PkTNu/8T2Nr9mE VxbS+ezAMbhVUBcbiWP1HHvWgdVsQ8qG7gDxLukUyDKD1PoOR+dc5D4flSC5FxeQeZNHLyXZsb0j XJLcnlM/jStobMjo89pJBEZZF/eFWYyNu+Zh0xk4I64HpRdhyxOlfUbNEid7mFVmx5RLgb89MevU VVOu2JliCTxPC6uxmWQFF24zk/8AAhVC40Z7+1tLe4vUaeO2kjaQfeJddu4f41krpssVz5EEwW8A +d0keUHcQo+Y8rxGR7ZHWhtiUYs6qTWLCNI2+1wEyqWiUSrmTH93nmlXVrEkq13Akix+YyGVcquM 5PPTBHNc1babLpQY/aIJluVeKZiWYxZeWTIPPHzEHPoKhl0Q3GlsiXlvJAYpJ42RSZH3wmPG305J /ACi7HyI6savpzRJMt7btG7+WriVcFvQH1qFtesV1L7F9oiLLE8krCQYiClQd3p979DWPf6Bc3pu 47S7iSKdyzxBiu3MaKCdvXGxuOh3e1RP4euJJdpurPFuZWj4OW3zLL8/tlNv+cUXYKMe50seqWMr RCO7gYzZ8sLIDvx1x64og1GGe8uLRWXzYcZUOCcEdcDkfjXOGzk064OqPcQAq73FysDE/IQBsC9C OAcnHOSOtT20EkPihbme7WVZIZxGQxIC7ozgjouAMcdepouLlRrx61YMI1e5hjlkUsImlXdxz2Jp LTXNNvYreSG8hYXAzEN4y34ViwaAsUIBu4CzS27q/tG5YgfUZH51BF4dYy2vnXEEiCGOPEc7r/q2 YqwA4bqDg9CO9F2PlidIutaawLC/tSFYKSJlwCc4HXrwfyqe1vba9Vmtp4pgp2sY3DYP4Vx2j2Et zdi4kaNLezW3jWRoWiDGNZVPDc5+deenoTVzw7p7MzXt3fNJK5VBtmcb2jZ1ZiM4IJ5x0AoUhOCS OtooprOqKWYgAdSaogdRXP6j418O6XkXOq2+8fwRt5jfkucfjXJaj8Y9Ohyun6fcXBHRpSI1/qal zit2awoVJ/Cj02k3V4PqHxX8RXm5bcwWaHp5SZb82zXX/C6O71iG617U72e6nEpghErkiMYBYgdB nOPwqY1FJ2RrUws6cOebPSqpsxZiTVyqVWzlMTxHcS2q2EsLYZZ5DjscW8xAPtkD8qq302pCwmil u4xK8SSq0cRGz5sMvXnqMH61sajdWdskH2xN/mSGOJfKMhLFWyAACfuhvwzVaPVtJvM4ZWTyyd8k RC7V5YbiMccZHY/Q4zZrF6bGf/a+p/b2225+zx3S25yIwCMgE5L5yc5A29MeuaZPrF/HaWt6Lm22 3JYC3aP5kwjHGc8kFQDx69Kutqeh/avtMkQW7CBlaS1YSkEhRjK5OSwAx3OKqy6dBbzW9/Ev2lp5 QESdRGSWB++23ccAkYNBStfYnF1qLSmBry2jeK3Wd3aI4fcW4xnhRt68nmotN1W+1O1Fwbq3thFF E0gePIctGrlicjavzED/AHTU8k8FzdxWuoWFoJ4nXHmHzFCMGIKNt6/uz1A6fTNa5m0W5lt7iNIx JaxmSBZbdkR1A6glfujIIx7UBZdiKe4m+0NqqzQxlL1bTym3ZYeYI8n5sZI5HHQ/jV621C8eS0nk lhMVzM0XkBMMmAx+9nkjbzx3PpTEvtKnuJ7i4sU+0x3BgVjalpJCvIx8uT0J44GKeuoaTHci+ijg JkVw0iwMJmYOiYxtyeWAPfOPfAD7WE1K8ui2orFcQWyWkO4iVcl8qTnOflXtn1B9KorrOpLIVihZ oLcxRsW2Yfcqkkszgg/NxwfxzW1e/wBmPFDd3lvHLnAi3wbnyecAYzn29qaZNJktW1RoIWFqjEyN Dh49mcjkZBHpxQJNW2Ketwy3Os2EUcKzfuJmKvM0YBzHzwDkjP61Vs5b63vJdN+1gzGQBrmRd2Sk EWQBnqSSfwatFr66hkgub3T4o4nYRB1k3SRbyAA3HdtoODwcdetTTyaVcW6tcJbvDODN+8jyrbQM scjsMcn0osF7KzRjpqN89xHdGeOUW6XYaOFPlm8sqBjnr+eOabq17qA06aL7fbv9osJpgYoyCuAO nPI5xnrWrFqOlQxF4oPLMWAqC2ZXw5wNq7ckHHb09qqG70qCe+ji0+GMpCjlmtWQSGQkbT8nOeOB knJGOKPmNPXYRry7s4LkQy26xacEj8nysGX5Fbjn5c5wBzyKvabe3kql5o2lWSeRE8pVVYlV2Ubs tk8DsKhjvdPnijvL21hF3HJ5QURM8it1AAKhunPTpz05q5b6nYnyY4N374sQqQt8p3fNu4+U7j3x zTJltsaHvVtDuQH2qpVqL/VirRkPooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAhrjNQeVvE19YW1tDPc3EIkWdxnyAF27TlSOeSP8AeOR69pXKaroM9xqNxdQW 8fmO6lZMgNjymU89epFTIuDSepTTw5fLB5bLbN5gKCRpMm2Pms+V+Xk4YdMcqO1W9R0O7u9WlkjW 2KvNFMtwznzIgoAKgY6cE9e5qhfeHtRW3ntrS0TyJI0KhWTcsojILAt05xk9e4qzN4evjHLJCgW5 lacO/mYLI33QT6cfhSt0Lv1uVxpclj4b1G1ePdO0cQI37kcA4BGFHofU9M1M2hagGlnhjtIN7Mfs 6uCEUmHIBK4yRGxzjgkU680i8mRxa6WsNvLFGjQHyiUwZSSBkrnLJz6Z70kHhqeZ4pL62SRzIPNL MDlPswXHv+8H580WDm0vcZF4f1C1hKxxWjSvAiM5YZAWUsVBK91bg44Kjj0jh8PTWkluWWyknHl4 gL/60IHBGdvbehHH8I6Uw+HNVkgnWcTNcPbbUkWRNpPkhCjHO772T6ZwasX+gy27XMsMEcUKef5M gI/cBol+cDqBuVunPPSlYObzJIfC8nkfvktnbdbZ7gIkm9kHHTHA9cdqT/hHbq0gzZrbLkOsgBA3 KZtyjJUjhMgZHFTW+m3UuiaitrbiyW6VDDBvB6AbjkZA3dP1PU1J/ZUyaFFAttK6i5E0lpKYwWXP KjaduM4bGcUxXfcZoujXlhcxlhEiC1EUjK+/LAALtyoIAAI64PHFU7bw5eJEoZLS2MccMRkicksU 35foOTuB9fequl2V858qGHAaSJmAkH7kR3UrHOeuRwMelTJ4fv4tOYG3mmvgyE7zEYpXAb52GckH dzn5hxjpQVs9ylY2qXFwrrHbJArQ25a3V3R3EcyH+Hrl1znp3OavP4d1OWO3jKWkKwWxjwkgwuYn Q9Fycs2c5xjtmi60ae3Dh7CORJJbhUUOqgySsDHJ7YGRnqO2aRdInku9Qt7g3U90qB2eLygJVZwU zuIJxsPDcYBHelYbl2Zp2yXWiXVxO8CfYpW3uQ+4rhWZmzgHBIUAEnkmsq00afVIpHW1t4o2muMy Mx3zK0+cMMdML6ntVrXLK6mtdMgntYp5ZbaS2ECMFRJygYMM9gEcZ6jPFWtH0e6tdYluLlZd3zYl UpsZTjCn+LIxjHTjPen1sTfS/Up3nhu6lS6hiS0Vf35WUvgyBx8qMAOAvA6n7q/gTeHL24juHjS2 tfN3kQRv8oyIwBnbj5thzx3HWs+3sJrq/WOG3iuDbRYvNkyn7U3mgnPOMnBOG9MHitFPD+p7Io42 EEcqyM4358kqztCo9cbxnHHyAdKQ726ijwt5sWZYoSSYziVw5XE+9xkKByOwHfFK2gags8CRfZ/s 0Vx5qBXC7AZmcj7ueVIGAQOtNs/DtwFgL20ibC5aORk2h9gAK7evI6nnjPFQXvh3UVsTa2lopjkh jD4ZCwlCOCw3cZyUy3X0p28hX13NCHR7yLRUtPJt38m4WSO3d8hoxj5WYLyc85I7DNVLPwzcxX9r LKIvKUq2yGUARFZXcYyuSPmA4x0IqS50C+ZbmaFFS6leQeZ5mC0ZiACkjsWH4dabHaT6hd6Ze2Gm i0tEKOoAjVl+Zt4bBJxgjAXg5OaAv5naVHPBFcRNFNGkkbDDI4yD9RUlFWYnIal8NPDOpZb7F9mk P8du2zH4dP0rj9S+DUybm0zU1f0S4TB/76H+Fev0VDpxfQ3hiasNmfN+peBPEml5M2lyyIP44MSA +/HP5ivQfg/qaLp19o82UuY5fOVG4JQgA8exH616cRmq7WVs1ytwYIjMnCybRuH49amNJRd0aVcW 6sOSaLNUqu1TIwxB7VozkKV7ZG6ubCUOF+yzmUjGd2Y3TH/j+fwqnPoaXGnpZvJhQZcsq8/OGH/s 2fwrYoqbFKTRhS6Tf3U/nXVxaSMIGhWPyG2HLIcn5s/w/hU09nMthY2/2qP7TE6lXlBIkZQcjGc9 Mnr2rWbOOOtcXJLcSNpssEt1NqqPI8sEgOxJPIkABHRBuIAx1B79aT0Li3I2J9CkvWea9nWWSTCO salF8vY6hByT1kY5rKlea7uIrbUbqO2AtnjHnIsRLNgD+I7jwfu8fnxe0CW4e7IN208fk5kDM7EP kf3gAp6/KPyFHn29k2oJdpGLuWVmBmjLCZD90DHXC8YHcHj1W5abTsXW0uZJftNtPGJxK7jehKlX xlSAf9lTn2qsdAuGQs9xbyykS7g8J2Eu6NwA2Rjbgc+hqo9xL5I+2vcWMotkNrBb5C7sHjA+83Qb Txj6k1cZ9W+2fZgr42/afMz8uduPKz1+/wA/TijQWvcsXmkPd6faQtOHntirB5FJDkKVO4Ag8gnv 6U+00iOLS7iyn2Mtzu80RgqMMMYHJPTAyTXPQzajJBIsd7K0jQjzQu9mRyy84YYQ8n5R+VaDw3kE 91OtxdsIbyCKFGdipjIiD5H8X3mOT09sUXBp2tcml0jUri6tWuL6KSCFl3oqFTMFIZS3JAIIB4HP TgUp0GWaE2txco1qkMkUQSPDgP3Y5wcD0AzVK2upmuLPdd3f255SLuAbiiDa2RjoqggYI68daYW1 OzsrR0nupZJ7PzLlmyxUhoslV6AhXfgdcDg45NB69y7HoEyxT7jZmR1VB+6fbgHOfvZz06HjFWjp E2zcLvdcLHCFkdM5aMk5IzzndVF7iEW4NlfXklmZlFzLuZzGmG+6x5+8FBweAe1XdCkaQ3+J55oF uAIXmz93y0PBPJGSeaFYluW5Dc6FNef6RPNC135ocfIRHgKVC4znuTnPX24p0OhywtaFJIEMUhkd 0jKscnJAO7oQADnPTNblFOyI52FWov8AViqtWoxiMD2q0QPooopgFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABiiiigArm/E9lc3hiVLeW4gMMyeXFJt IlIXYx5HAww9s10lJik1cadnc5XSLTUo9eEs8DxwCBo2wRtbATaepyeG7DFVU07VLpoYZ4LhIo1i ikJlxv2yksRg5wV/Ou0xS4pcpXP1OJTTtat43mgSRpoEjECNLw2JJgQef7jqefQelMk0LUlluYVm vCQgSKRWwHj2qMFt2Qcgnp15zzXcYoxRyh7RnIS6ZqKXtyllHKIjLEUkdsEbeMA5OVA56A9etZ/9 k6isUwi064QTxwxyF5Q771Em5h8/94rznvnFd/ijFHKHtGcHJpWszSROYZ/t6lnFy0o2KDbMgAGe u8+nqe9b3h6Ke0hMEkV0FkLPmYKBGQFG0fMTzyfwNb2KMU0rA53VgCgdABmlwPSiimQFFFFABikx S0UAFFFFABRRRQAUUUUAFRyRB+c4NSUUAVvIb1FHkN6irNFKwFbyG9RR5DeoqzRRYCt5Deoo8hvU VZoosBW8hvajyG9RVmiiwFbyG9RR5DeoqzRRYCt5DeopDbse4q1RRYCjb2CWsXlQqqpknHPUnJ/U 1L5DeoqzRRYLlbyG9RR5LeoqzRRYCFIcHJNTUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKAP//Z ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image019.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIqAjcDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD36iii kMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACikJwK5fWfHGn6bI0EAN1OvBCHCg+7f4U0m9hNpbnU0V5k/xF1MtlLW1VewYMf61c sfiMd4W/sgFPV4D0/A/40+RkKrE9Boqpp+pWmp2wuLSZZYz6dQfQjtVupNAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiikPSgDhvHXiOS2xpVo+2R1zM69Qp6L+P8vrXnZEgmiiEEzPKMrtjJBH1q5q9219rF5csc75WI +meP0xXWW3izSrFNIiBn+0eQkbqsLEHCgdQKdWbpRTirmMIqrJqTON+y3BXd9nlx67DUVwktsqNL bzgOcLiJjn8hXpKa9paSzxCSU20oyD5D/Kfyqne+LdMtNPi+0NceajgRFYHOR+Vc31up/Ka/VYfz HKaTqt54f1JZlV1/56wvkb19x/I17HZ3UV7aRXMLbo5VDKfY15D4lv4tS1p7mLdho0B3KRyBz1ru fh7cvLoDwvk+RMVXPoQD/Mmut6xUjGm7ScTraKKKg3CiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApGGVxS0UAeE6hbm01K6t 2GDHKyfka6+38YaHpy6VG14VuWgSKSPyn5IUA84xVf4laeuln+3RG5t3IS42LnY3QMfY8DPr9a8g v9ftZ9Tt7iLcUgPGRjdTq04VYpNmNNypybSPd08S6Ikk8H2z/R5eQfLf5T+VVLrxloVtYRG5v9ks b7YiInO4enAryj/hKtL/AL8n/fFZes69Z30cUcJfCtuJK459K5/qdLuarEVL6o9H8S6hBqmsvdW7 bkaNBnBHIHPWu1+HULJoc8rDiSc7fcAAfzzXkmh6pFr+pW2nWaSvdTnG0ISF9ST6D1r6A0vT4tM0 6Czi+5EuM+p7n8Tk11OyikZQi+ZyZcoooqDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOeCK5geGaNZIpFKujDIYH qCK8Z8Z/BeBBNqOgXawIMs1pPkqP91uo+h/OvaqxPFExj0oIvWSQKfp1/oKAPmgeA/Ej3CwRaa0r scDZIpB/Wul0j4K+Jr+Vft5t9Ohz8xdxI+PZV4/MivT9C41q1/3j/I132aSBo5vwl4I0nwdZmKwQ vPIB5tzJy7/4D2FdJRRTAKKKKACiiigAoozRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyni2TM1tFnorMfx4/oa6uuI8Sy+Zr Lr2jRV/r/Wkxrcg0P/kNWv8AvH+RrZ8Rx3FxqNjb26yO0kM+As5iCsNmGJHpn9axdE/5DVr/ALx/ ka6fVrmS0u7WUSQxwqsrSs6ZIAXPXsOKEDMldc1bEoWCPYswtllfbgP56xZIDbjkFm5Axgdc1NLr V8tuJEaORpLprYRog3RbS4Jbc4BJ2dMjr3qjb6jc26XCJbQSXEKTSyzXCENIIxE49xnzB1PGB9Kv TXK3CTXMltaiBrxLd12/vGxIFJc9x14x0x60xFW01W+gvLuWRoPMkuIhJaD5n3G3jJ2kHoCD2PQ8 1b03VdWv2tVZIYkmO8yEKcptBIAVz3OASehzim2erCWzu7sWdv58LxxwyeXsBWQIFJ6kD5hn2HQd KrxX8+nvfiKGxMkLTXEjKCqsEVMqvoTnnrg+tAGprGry2OoWsMO1tzxCVWUfdeQIDncDnr0B6c4q bSNRmu7O5e42m4gcpIiLwp2hgAcncMEHPv0FVG1QFNSuLq0i86xXfEjJhthztbdyMHb26YOelQzX dzZyNZCO1SONYJJGtwY8mSYrgD/gPPrQBTt9Qubi+E7XEEjzxWxXy9wWMt5xwQG5I9+vpVXSta1K 00WEQwJIkFks0jEKNxMJk3nL7id2AeDn5jn0tW95dBYYltopZjPLK/kxbd4WUqF46EcnJ9h3NSjU C7wXDWdsJHVoIR/CimVY/m/U4H0oAW413VraS7UwwyC1iZpGACrnyTICAX3dcLjHqc9hZXVdQ+3/ ANnyz2scgkb9/wCWdpARG2hS3X5z36KaINQa41O3S6tLYbmlt/P8stvZSwKqf4eATg5zkjtzTvb6 bUUKGxjMJulCOykAMswQbifvevGOhGe9AEj+Ibwm+eIxmCELIrlBuCbnDELv5+53wevHStvUrq4j SyS0eNXuZvL3yIWCjYzZxkc/LWZZTvOZ0u7CyJZZJAI0zueNyjZz1ycEd+fzDrdzcSWkNvFbGSZI nVnyVQvG7np/uY/GgBlp4huJ9Q06BghE+I5gFwFby2fIJbJ+6O2OetWr+8uYtXeC2MayOkCh33MB veQH5cgcbarWmqlrGe+lsbVZY7WO4i2cYVwcKW9iDkjsakutUntb23gkS2nkO0SlIiAudxU5JPoe OT1PFAFOPxBqW2FZXtFacQEOUIEe9nUg88/dBH1xTofEV5Iclrb91IkZUKc3GZmj3JzwMLnvUb3d xeC2+12ln5A8ibbHnJVw21Tn0YHPqD2qe01Z3msFns7LMqRPE0Qz5SuG+Uf989RjOenFAGro99d3 dnBNcRBhOnmb4wAqA9FOTkn3xWrWBpOry3VxbxvFFDDNAZIgqk7yDzg9BjjgjnNb9ABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVwOtyebrNy3o238gB/Su+rzrUG36 ldN2MrfzNJjRLov/ACGrT/f/AKV0PiC5itpoWltxcBIJZhG2MEqUHcHnDn/6+a57R/8AkL2v+/XV am9obhIri2ErNbTPk9NqlNy/jkflQgZgNf8A2G7aP+yrKOGK3uvtEcfJYr5XCnbyCGTOcfoMumnD ahaXElgLaWRtsmExvImgCsCygkfN6A9frUl3qdmZZHOjPKNszF96gOAimTIz027Rz1IH1q7aT6bP qkemrbB2jjM0UhkL4AaMnJPIO4ocZ7UxFCLVIrey8uPRbVIryJJI44zuDq5wA6qnUD0B9KkinSQR Rnw/apDG8YYSfKUkf5QQu3pkLknHBB9qqWdvHaX1+t7bI9vLM0EbKqxIhQGXjnI6H5s8EcVcGs2i WjyLpsjCGOSaX587fJAI5PJPK4+tADNL1R2S2Q6TE8l5DFLdvAhIPmkgE4XB7k5I4Jxmti+js9L0 uW4gsYGChAI1AUHD5Xt2LE1hT3djEJoo7CW2lt4XXdHJuMbBN+0jOCADxngHirGpapbHSGs5LYx2 vnG2GXUkqjhSQvUjIx/kUARy6hHHJco+jWRubJpLmf5/lGAjlkO3liGHUDkcnoabd6gomDtp0JsQ tzEkYOTIVkVSGXbwC3PGfXGau6rDp+nJDENL+0YSW44fB2rt3ZJOWzkcHrgenCR/2Xcamw/s0GO4 d7fz2IKu23c4254BAOT3I/GgCvHqBiZJV0KGI2kRdmYlCibiDsBQHkZPOO/4xSXwTVo7tdOt1jnj kKANzLIJokRn+XggtnPPU1flurWzlubc6dI9tG6W0szSbs7wCo5OSMuB7ZqnHc6ZJm7bR9sUyoJp GcHYJWBUYz3O1jjpkHrmgDe0yRbiORmto4biGV4nCHcMk5ODgZByD061gWGpxBrL7PoUKGZI7hhA pOxXLKpyExkDcTnGB0zVtdch07T4NmmyRpMrTRRBwXZBglj/ALR3DjqSetRteackkYWxEZtZ1tY8 y7NgGcFvRflG3Oc5FADIdaf7Jb50m2Q3kMIhRZcqUY7QrfLxjPTng1FHfW32d7uPQYEjhx5MzRsq qhZgSTs4x1+XP3qs6HBp8T29mlkcBMxXDnJkMLBScZ+Xk5A9yagvprOOWT/QpFsPPl89hJxIURyy hc8fNnp1wc0APl1fcsyw6SrRK6wRSYKqSsojALbcdWJGCeh6VWtpI4I/sjabp6WyQuJ1c53yRvsU 5Cc5OO2eelXrW4s7u72QaY3nyPulXzMIu0oQ47HkqeB1Bz0qrFe2F1bIZbHzJWgRxkhGlaYr0Gem 4jJ7EUAXNFvI7zUFMOlW9uyQsJJB8rJiR02gFQcEpnnFdNWDoLWcCLbrEY7wBo5QV6lWJJyOOSxP 41vUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGvK9amuEeZrVo Vlebapm+6Mn0yM/TNeqnpXj3iJWa2lBKsjSBQhj3ZctwfvKP8/hSY0aHhCe/n1GI38YRhMAv7vZk bRnjce+RnPOK7PXxaTS29vPbzySvHKVaJtu1AAH3EEfKcjjvXC+Byn2+JFdXxKpJVCoGUDY+8c8G vTriwhuZhLJu3CJ4hg/wtjP/AKCKEDMKE6bczxWzWs2yXzIFmzhGdo9zqOc/dU9scHmofP0/TNV+ 2RQzxwReejzO+U4ALhRng7kHYZINbUOh20F2s6PL8jb0jLfIr7dpYD1xn25PFRyeHbOaSVpHnMch c+UHwilx8xA9T19j060xGIt1oOoNcSeTM7SMwZBLuUyNtjONrFd2JEGR2b1zTS1n9jEUUE8xuvLi uZmJwFmZVYHLE5KjqM446V0n9kQs9s88s08ts5dJJCM5PY4ABHQ/UCof+EftA8RWSdVj2Hyw/wAr FDlSeO1AFO2XT9WnuCIbqJbmESFWfakyMNocKD1wB1welU7ZdKv9Luri4DkWMk3mmOXqWIkYfIxB 528Z6jFbMGk22mQTMjyuoh8sCRsiONc4UY7DJ9/esOK70uy0i6tD9quFkhIcsjBWZYQdinHHyAfk e+aAHTaqkt3dNqFtLHHEZLcR4BZYmiidiSGx3znnipBqOiWesIFSUTGXYoMnyhy3lbgpbkkgrkA9 Dng8xRz6JA0hupLp5HV5Jmm5OTCCykADny1B4H61It3pNk6Mk17bfZ4dsmV5kCqZNrggktglux5P OeKAKzXVncvc6i0F0DcQm9jVyAoVIwFYpv8An5UkemRnHBqVzZLqNmkVpMbeJWjZi+EkMIOBgtgl W7t6deKsSWmnXMUFkwvDHa2hIiGPlUqyAk9dxG4cHHT2qlePpc0DvB9rkaRmPlfwwF3KOT6ZYN3I yCemaAE+06bJpaPpsN4xiDFGS4yLdd+zGQ33CVPCkj5far9u+j6vqV7aq87yknzT9oyHVGKlMBsh QWPBAznioZYdJilkgZ74Th9siqRun3uzDPbG4Me35EZ6C009LR5DHNKY5GLeUxBVSSSccZ6k96AO bg1XT7HUJb4QSw2zQh4TLIAG82Q5KZbChiATnFWJhpU8FvqC2lxc/bpGRIUkyNzIwbjdtGQpyf17 1oJ4btEXCzXAKhVibfzEFOVC8dueueDg5qXUNLku47FFupFNvN5jSggOfkZcjjGcsO2KAMZ9S0mJ 7NpDeCURyOha4/eYXJdGG7cR+79COOtV5J9NgLC6sLqC2htYVhMtwBt3NhQPn+U/u1OePunJra/4 Raw/vz7CDuTfwzFSpY9ycMf51ZudFguZfNM0yNsRBsI4KElWGR1GT7YPIoAqaHqVjMVtbKOTaU85 nd1YkliDk5JY5B5GR71u1QTS0W9iu5LiaWWKMom8jAzjJ4A5OB7e1X6ACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigBD0ryPxEjGCVAsrYmG4Rx+Ycbufl/iHqK9drx3x ddW8N3c21zBJLErtLKEKgbQxGCCRnPoPSkxo0fB4RL23SNWVFmGFNt5GOOwxz9a9RryLwDCkF6Ig I1dbkB1jVQPuLjGOvGM++eK9doQMKKKKYgooooAZLGJYnjYkBlKnHvWadAtWtkty8hjV2fqOcxmM 9vQmtWigDCPhi3bz/Mnkc3EPlSsUTcfk2bgcZB246ccdOubDaFF9unu0lKPMPm/do2Dt25BKk9AO OnH1zq0UAYDeFrd4Y4TcTbI42RQFQY3HJ7dP9n7vtSp4YgiGI7q4QN/rQuweZ+8Mg/h4wzHpjg4r eooAwT4Wt2iuo/tM225G18qh+Xczd165c8nngVs28LQxlWleX5iQXxkAnIHHp0qWigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACio5p47eFpZ nVI0BLMxwAK881rx/PJI0OkqI4xx5zrlm+gPT8aaTZMpqO56NmlzXiMuuarO26XUbon2lIH5CrNn 4p1mycFL6WQD+CY7wfz5q+Rmftkey0VzHhvxfb60RbzqILzHC5+V/wDd/wAK6eoasaqSaugooopD CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzfXLO3m1i586CKQiQkF0B xnnvXpFcL4ijKa5OSMBwrD8gP6UmNFXQLeK31e1WGJI1MmcIoUdPavRK4DRf+Q1a/wC//Su/oQMK KKKYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooA858f608lyukwtiNAHmwfvN2H4da5qDw1q96to9rHA0c/O6 SXbgZx6deDTNclM+v38jZyZ2HPscf0robK719tL0u1sdNtZE5KyyT7Ttyf16/lRWnKnBOO5jTip1 GpGYvg/VWEuBDmL7yl+aiuPCesR2qTQpbyb2wAZcAfXiuxF3rZupLldOtg0YxKnnnn9KqXd34gt9 OJttMs5Enf5Q1zgJ+lcbxNXuup0LD077M5DUNNvdBvYUuGVLjYJVMTZxye/1FereGdW/tnRYrlse aPklA/vD/Hg/jXmvig6h9vt11KKKOZbdQBG+4bct3+ufyrofh1eRwxahHLMka5Rl3MBzzn+Qrvu5 QTe5yx92bitj0Giq32+z/wCfqD/v4KP7Qs/+fuD/AL+CoOgs0VW/tCz/AOfuD/v4KP7Qs/8An7g/ 7+CgCzRVb+0bL/n7g/7+Ck/tGy/5+4P+/goAtUVW/tGy/wCfuD/v4KP7Rsv+fuD/AL+CgCzRVb+0 LL/n7g/7+Cj+0LL/AJ+4P+/goAs0VW/tCz/5+4P+/go/tCz/AOfuD/v4KALNFVvt9n/z9Qf9/BS/ b7T/AJ+oP+/goAsUVFHdQSttjmjdvRWBqWgAooooAKKKKACiiigArkPFcW2/hlAwGjx+IP8A9euv rnfFkG6zgnH8D7T9CP8A61JgjC0T/kNWv+8f5Gu/rgdD/wCQ1a/7x/ka76hDYUUUUxBRRRQAUUUU AFFFITigBaKie4hj+/Ki/wC8wFV31awj+9dw/g4NAF2isxvEGmJ1uQfopP8ASom8TaYpwJHb6IaL hY2KKxD4o04dPNP/AACm/wDCVWP/ADzn/wC+R/jRcLG7RWF/wlVj/wA85/8Avkf404eKdPPUSj/g NFwsbdFYw8T6bn78g/4AakXxFph/5eMfVG/wouBq0VQXWtOfpdxD6nH86sJe2sn3LiJvo4NAE9FI GB6c0tABSEgDJPFLXB+PPEDw40q1fDOu6dgeQD0X8e9NK5MpcquXNa8eWdhI0FlH9rmU4LbsIPx7 /h+dc1J4+1pnyht0H90R5/ma5r7LemSFItPu5fN5Uxwswx6k+lTjS9QKF/sVxtHU+WcCrTgupg3U ep1Fl8RL6JwLy1imTPJj+Vv6iu50nW7LWbfzbSXcR96NuGX6ivGrmy1C2jR2029YOcKEgYk1Ztbm /wBA1OOYRyQTpglJFK7lPYg9jRaMvhY1OUfiPbqKqaZfxanp8F5D9yVc49D3H4GrdZm6dwooooGF FFFABRRRQAUUUUAFFFFAHjfiuzay8SXisOJH81T6huf55qGbx5LpFlplgmnpIUfYJfNIOM56Y967 7x14fudW0k3GmpG+owAmNH4Eg7rn19Pf61846rrN9JeeXdW3kTW7EGJgQUYdcg96c1CceWZlFShP mie1/wDCdP8Aa/tA09QSMOvm8N+lZ2pfEJ9N0yXZpqyK7jCtKfl/SvLl8Y3QUA20RIHUk81Uv/El xfxrG8MaoDkgE81n7Cj2LVStfc9N1PWJNakt7iSMRlIVQAHPGSf61d0WIrA8h/jOB+Fcf4JXW/FW oxWVtaILaMj7RdMDtjX/ABx0Fe+x+HtMjgjhFqu1FCggkE1q7KPLEiMXz80jhqK7R/DGnP8AdEif R/8AGq7+Erc/cuZV+oBqDa5ydFdM3hE/w3o/GL/69RN4Suc/LcREe4IpWA8/8Q3t5aSwm1klULBL I2xVZcqVwXyM7Rk5281JNr4inliWBZCCoiKucOS4TBOMDBIzjOPrxXW3ngR711M5hfaCoxI6gg4y CBwQcDg1EPh7tlMojh3F9/8ArXIB3b+B0Hzc8UAcrL4hePH+hMxLS7VDElljYKxAAPJJ4Hf1FEOu SEzoIQVi3MZZn2jJldFXhT/c9P1rrH8CSv5eViUxszKySupBY5bkYOCecdOnpSf8IAdkihIVEmCx ErA5DlwQexDMTx60AY+m3o1CwjuRG0ZYsCjZ4IJB647g9qtVr23gy5s4VhhaBYwSQN7HqST1HqTV keE7vvPCPz/woC6OforpV8IsfvXq/hH/APXqZPCMQ+/dSN/uqB/jRYLo5SiuzTwvYLyxlf6tj+VW o9B02Ppaqf8AeJNFgucPbXElpcJPEcMhz9favQLG8jvrRJ4zww5Hoe4rF1nw8kqedZIEkUcxqMBh 7e9ZWh6kdOvTFLkQyHDg/wAJ6ZphudxRSA5paYgooooAKKKKACs/W7f7TpNwgGWC7h9RzWhSMoZS D0PWgDg9C/5DVr9T/wCgmu9ridNtza+J1tz/AASOAfUbTj9MV21JDYUUUUxBRRRQAVR1a/GnWLT7 dzZ2qPU1ermPFspC20IPBJY/y/qaAMmXXtSmJ/0koD2QAf8A16qSXdzL/rLiVx/tOTV7RNKXU5pP MZlijXkr1z2/rW5/will/wA9p/zH+FTqVocfRXXf8IrZ5x58/wCY/wAKQeFLQk4uJv0/wphc5Kiu t/4RO1/5+Jv0pP8AhErb/n5l/IUrBc5OuW1d9niZctFuEdtty2JOZXDbB34xu9q9V/4RK3/5+pfy FJ/wiNtnP2mTP+6KYXPLbPWbq9uYYobiJo5JlO8qCwQo7bSAcA5T9eaLbWNQkawDtETPFFNztQMG PKjLZyo54zyRXqX/AAiFsOlxJ/3yKP8AhELU9biT24FArnlFprE6aTGxkjhHlwRxAKMKzRBzksen Uf4muj0+4a6062uHADSxK5A7EjNdp/wiFr3uJPyFKPCVrj/j5l/IUBc5Oius/wCEVtB/y8S/p/hT /wDhE7PvPP8AmP8AClYd0ckkkkRBjkdD/snFW4tX1GEfJdyf8CO7+ddEPCtl/wA9p/zH+FH/AAil l/z2n/Mf4UWYroyYvE9/H/rBFKPdcH9K4LVLx7/VLm6k4aWQnHoOw/KvUj4Use80/wD30P8ACvLd WszYavd2pz+7lYDPUjPH6YrWnuYVtjqbXxPFa22kww6ZqctwqKhaG33Jgd856VrLrkK3EzDT9QNt KMOPs/3T+dYMfjfSNLg0mBjOLoII2AjyDjjrmtRfF2jrcygNN9nmHzDy+Qa86pTk6j9zr/X/AATr hOPIve6Db3xIlnpqrLpeqyfvP3Jjtsnn8elc34o1BtS1SOZoJoWWBUKzJtYkE849Oa2bzx1o1lpu Lh5yUfETLFn8KxPEmrRazqMd1FuwIVQ7hjJBP+Na4SDjPWNtDLEyTjo76nYfDm5aTSrq3Y58qUEe wYf/AFq7WuK+HFsY9LurgjAllAX3Cj/Emu1rrluRT+FBRRRUlhRRRQAUUUUAFFFFABRRRQAVzPiX wHoHisb9RtNtwBgXMJ2SAfXofxBrpq5jU9Ru4PECwxzzJEot/lCKYjuZw2443A4XjB649aAOBuPg DbGZjbeIZY4iflWW1DkfiGGfyq9pPwI0S1lEmpajdX20giNFESH69T+RFdRceIrm9gtpIbeS3t2l DvISylovLd+CU6/JyBkdMHnI0Br9yLqC1bT1FxK64UT5VUZGbcTjqNjDGPTmgDU03S7HSLJLPT7W K2t0+7HGuB9fc+9W65uHxNcPJD5mnBI5FhcsJskLKxVeMdcjkenfPFLLrzzfYRGvkiUQTMSwPyux BXp7daAOjorn7LxG97NFClqpd5vLJEh2hdobcCVBPB44/HHNWbvWntrwxLbb4Y3ijlk34IaQgKAu OeSM8jrxmgDXorGj1wnQrjU3gAaBWZoFcllwM7WyBhvaq0viWW3lkinsQrw7mm2y7gqBA+4HGTwT xjqPTmgDoqKwxrl0bhbP7DGt621lQz/JsIJyW25z8pGAD27c1XbxRJi5ZNOlZISQJPmC/LIEYsdv A6njdwD0xigDpKKwzrzmd7dLeMzl0SJTKRv3KW3Z2/dwDgjOcdBTrDXftt7HbmBYt0ZbLvyXVirK vGGwV5Oe44oA2qK5+48SGC8uYBZSukR8sSAHBk+XAJ27QCWxnPbpUCeILi0Gom6twzwJcTBFkyAI ljO0HAznf1I4oA6eisZtZnFvPcrbwiBHMSF5judw20jaqnvnGMk4HHNVk16XULCae2gMUMcab5PM AdXZFbCqVIOAy8nFAHRUVixa8PtBWa3ZIG8wROmZGbY4Q5VRkcnIxnjrithGDqGHQjPNADqxNY0J L4GaHCXAH4P9f8a26KAMHQL+TDafdgrcRcKG6lf/AK1b1VprGCeeKZ1/exHKuDgj/wCtVmgAoooo AKKQsAMk4qJpx2GaAJqKrGZj0wKb5j/3qVwKVxYMPEdreIpKsrCQgdCAcfz/AErYqpvf+8aPMf8A vGi4Fuiqolcdwfwp4n/vD8qLgT0U1ZFboadTAK4vxQ+/Vgo/gjA/Un+tdpXJtafb/FkoYZjiIZvo AMD86TGja0Sy+xabGhGJH+d/qa0qB0opiONu768tdVvNTiiby3Wa2iYjK5Rdy5Uc4DLL9d1VpNXl sv7Rltb37RJJcb45fkCShYY8qeOTzjC8nB6YNar6xdM7YurWMPdtbBGTJgClhub5ud20Y6cuPxhi 1rUJhHKptBCjQoyiInzPMlaPcp3YA4DDr1xmgClf6xezWl+kN/8AODdI0cSgNAqEhWz17Y59eORU 8+uXn297ayuxINgUO4VsNujG/CgcEMTyee3SotJ1C/txY2kCRz+aqzzSfKNxkkbfndJnI5PAPJAw Klh1u+uprNxNbxIt0YmRI2/eqIiykcjhuq9e3U8UAdfEjJEqs5dgACxABJ9eKwtY1aWz1Szt4XIZ 3j3KxUK6s+044ySOehGOKl0LVJ76V0mlt5h5EU4eBSAhfdlDyemB+fSmeItUvLB7aKygV5ZVkYO+ 3AKgEL8zKOc+ucA8egBvVzV5qk8VxqAW9WOSGRESAop2xnZulPc43MfTjnvXRKxKKzDBI5Gelcod dv2gaVGtnZ4fOKhRutwHAKNlgGbBb05U0AJJquomC6mguxJFaxyyo4iB+0BWGMn06jjrjIqT+2Jv tT28t8sMYuWRrhdhRFwSqg4wDxzu5yPcV0tvIsttFKpyroGBxjgj07Vzb6ndPdTQlYGuIpJTGvRA NjFMkNg5xznGPbg0AVPtdw+q28Y+zx+XcStG0hCByZ3VsccnaB05+b0NSxarqMdtbNdXapHcRQyS TmJQIN27Pt2Uc9M59qjbXL1HknSVJlNvBtiMQUqzSujNy+3jHrjpz6zjVdXlkETC1hZfJV1aPeT5 jsgPyvgYCg4yeuM0AR3mszWUsoglLO1wpV/kCzLtiznjk/Mfu449hXY1yKeIbo3VpCfILsWjlBXa obEmGBLZAynoQAetbuiXj32nLNMQZgzJJhcYYHBHBIP1BoAxNavJn1RbZp9giu7Yx24UZlXcCWz1 68ccDbz1rivE0d9cadJ4iaMXQSNPtEdsVZ4+DkkcYA4GDkjv0rt9Zv5n1JbcSxRpDd26iIj95KGY HcDnp26djVvw5qF3qtvJJdwIkbojpjZzuzkYDNwMDk4J544oTsTKKkrM+atQ8RQ3V5bzRxSAQncA wHJ/OtQeMbHHMFxn6L/jXpviz4LaZq00l5oky6dcvkmErmFj9Oq/hke1efXPwX8XwylI4LS4XPDx 3AAP/fWDVc7J9nEwtW8R29/CkUcUiqG3EsBnP510Hh7VW8RanbabZWdw9zKQGKgbUHdic8AVoaR8 C9buZFbVb21s4c/MsZMj49ug/WvYvDHg/R/CVkbfTIMO3+snk5kkPuf6DAo52Hs4mnpmnxaZp0Fn D9yJcZ9T3P4mrlFFSWlYKKKKBhRRRQAUUUUAFFFFABRRRQAVg393aRao0MthJJuNv5s4I2qS7eX3 zww7DvW9WDqE+nrqUkM9vO7kQNLIo+RAHbyyef72en40AZkV9pkcnlwwSMkEjP5SyecpHlScJ8xC 8BhtHHb3rZ0jT9Pa1gureEDJ8xG84y9iow2TxgkAdBntWNay6LFDHPDBfhPLDCQk5ijwUVuvA+Zg MZ6Z6DNXLXULLSo5JUF08Esnlw7mXEjAuzFct67iScZ4xnigCxq39m6NZrPLbKyKEQDzAp2x5dQM nkg5wKzbA6d9puI5NMZQbh4428wspVF39CxwOTgAAc/WrOoahpeqwFpIriSKJlRXjcJvMij5fvA8 hh1wPeoLltHVp2ljvI4xIz+YshCmRE2uqkHOduQegODzxQBB9t02xhI0+Bo7j7P58TvN5jL8q8MC SR8pGM9h9KstdWkt9BNPZzTTM8oEwdUQCJm5Zd2MLjhiOCRjBNX7XQNOlhWTyJkV0wImlJCgqF6A kZwo55rO1AaTFBPPHa3MrukyGJZmUOFlw4POPvOT/wDqFAEFxqFk+hXlla2twRPHM0zrMJSAoUM2 5my3Drjn8ql+1WdpdK0VjMbTM4Lu/mNO42oQNxJ6jaM8cdhUKfZUu5YjGSjrJFIZNxfLvCpU/NjJ BHI6Y4955TpCreTXFndrFHI8coeVdkZcBnKjfj0JxzntSAv6fp2nXcM0X2SaCW3mCuDOxkRggIxI Gzjaw4BxgkY61Q1yK3065jXbdxWciST3JhumUHay8ct8oJbkrgnPXrUsWr22m3XlQxTm2czPJcSA uZnTavynOSc/LyB0GKszXun6peRWs1rP9oZZImjYhTGPkLZIbH9wgqSf1pgZf23RpIXkSxnlCxF2 aKfIjWM4Hltu45x93Gc89KtHUdO0692tZyJNa225Y1nD7B8uRt3YDfP948nnn10NQs7Kzs2muVnu MqLc/MWdg7jA6+uKzJX0aWSS6kt7smTe065OIBuCOWAPHKDpnoT0oASe/wBOD3sl7plzAHRxMGn+ R2XaCNobbnBTDcfUYqAXGjXNrhNNnngj3PPIlxuAVjtclt2XB2gkc5A9RXQ39hp8drcXF0pEYV5J G3HIBAyRjoflHT04rFhvYTNeW9zZ3rswWFY3OZWXaXOTuxxk9D7daAI2nsDH5l5YyQtPdOmxbsr9 yQKHVQ/XOMkAHg+vOlpdlpV8sskFq0Kxn7O0YmIB28DcoOMj/aGQMVmvcaLJOzRwahKpkLKY2IV2 YLMVGSO3zc4HUd8VZttZs7Ca8kRbi5Eh8zcgLNsWNHJJJ6ASDA/maAJtSvNJ8M3IuXixNMJHx5uM DIZ9oY4BJIOF6muiByM1zl9f2bsZbgzlrcyMJLYFWjiG3cW55HT344HFdGOlAC0UUUAFFFMeQIOf yoAcSAMk8VA05PC1GzFzzTWYKMkgD3pXAXJJyTmiqsl0OiDPuartI7n5mJ9qm4y800a9WFMN3GPU /hVPaacIyaV2BZ+2J/daj7XH6N+VQeQ391vypDER2I/CjUehbW4ib+LH1qQEN0OazthpAWU8Eg0X EadPWVl68is9Lp1+98wqzHMkg4PPpTuBeWRWHFV7SwW1nuZgxZ533EkdB2H86aCQcg4NTxy54bg1 VxE1FFFMDkTfziS/MdtbNHCZHmM2WaRVlZdo/AHHYdMekVpqt3axXjMYZTE808nmBsugmdFROeCA n0+7xzmpIdR+x/avtVtbGCW4uY45GOSSGZgrAKeOvqc445pE1SK8EMp0W1YW7GRzJwY285kYoGTO cru5waAFutXuoUkmS0sSsQu51BQ5CwuFPPZmyTnt71Jea1PaxTLLDbST2sp3qsZw6KqNuBLDaQJA O/PQVOLxp402aZaMt1JJDAJH+8p3M5f5eAdmcc5J5osriy1m7RbjTbZfMiEyGVAzMxADFTjBA4Uk HPA7EGgCvdX0zaO08bRQ+fMwhihVg5KhyQzBl5ITJ6Ywevexb6w9/Na+bbwG2nnEIjcZdW8rzNx7 Y4xjHfOap+ILO3tk1PyLC3mmmga7lkkCjYVXapX5Tls5PP581c0u7trnXZVj0lYzErxLdiBgfkYK V3lQMHsAx4XnFAGlrk1xb6ej20iRubiFCzLuGGkVT39DWJcavNFbyytb2j7riUGIREl44pNhYsSA D09eo4NWvFF4/wBgvLOO2imH2N5ZDI2Aq9BgYIY5BPbp71Un1GzkvGsf7KtJ2STFszKdm8vh/mKY BzknbnnI60ARTapdT6laSu6rBLGwWGJ2Vl/0mFPmweoBP5kVLNqjxadbag8EBinaSRYY8rgCKRsO c4Y/KM8cH6VXsbxYRczyaZavNHPJJdycbgDOygKdvzEeXnnH3R36bmkLZ3j3Uv8AZ9tbzrOwcLGN +cEAt8o5IY+owepoAzn1C8Ny9nHDYNNEjZk8s7CgRX2gZ4+9jr0wfaopddLOIYoE+ztGrKUUxlGV owVyDzjf2AHGOealuL+LTJ5rW10eARxT+RH5UZO5miEjHaiEgYwOhyfaqq39rbPPdnTIS80yBo3i IkSPy4jggKehI+9gA4oA39Lm+2S3S3MEaTwyFNnl4ITPy8/xZHORjrjFMu76SzupYLeOFIbW3+0O u05cZb5UwQB90889RxVFdQSzgF1HZR2to9zIf9HwGk2pIWLjb32euenNNn1J5rq3jn0i0lvwymEv IGVAyO+d23IP7sjgenNAAdVvZbuK3WKye6dUZZ9pKKrI7Adc5BT1GQQeKv6DeS3YczQwRM8UVwPJ XHDgnB9SCDz34rGGr2cUCraadFBFLCZle3TaY5DHuwTs2btpPcn2wa3tJuEluruEW0du8DCMIMhi gyFJGBweSMEjr6GgDVooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsafRmu9YmuJbh1t 3jhUxIRhyjO3zZGccjoeea2aKAMiXw9bSRRRCadI0hWB1Uj97GvRWyPr0weTTW8PRMqoLu4CRymW FcIRETnIGV5B3Hg5x2xWzRQBjT+HYrh5nku590sQhOEj4TuMbec+/TtinJ4fhicmK5uFQFmjTKkR uwwzDIOScnrkcniteigCtYWUen2UVrCWKRrtBbGf04/KualTSHkula7vSXMkccapnmR8sYxty3zK fXGD2rrjWDH4Wt4JDLbOsMwlMscqQIHUnOQTj5hhmHP8+aAKGnpp95b/AGqeaVZ2dXfjHLygLxju 0Q47c1BLZaU2mFpb3U2tIy6mUwAgq/LtnZyCcnd+vPOvH4ZSIoFvZ9g2eYpC/vNkjOueOOWOcdaZ ceF1ubFLKS9kMEatHGpjUlEIK45HUDof8aAKNxa6c87otxcFBM0fzArHGztltjBeW3DIySAR26UL PpB8iV7y+lf7QswDW5LzuVJRgAmcbYzjbgEA561rf2ArBo3upGtvP89Yio+VixYjPUgkn86S28PJ Bc29w93NNJblQhcKPlVHQA4H/TQnPrigCvrGsWUmmhlLtmP7VAxRgjsn7xQTj/Y5HsasN4ftp13i aeMShvOVGGJFZi5U8dMk9MHBPNV5PCVtIQDcy7RGYx8q5HyMnXGcYYnHrW3bwvBGVeZpOTtJAGB2 HHpQAXdrFe2ktrMMxSoUcDjgjBrM/wCEdj3mb7dd/ai2TcZTd93aRjbjGMduozWzRQBlxaBZQBFj 8xVSTzFG7ofK8r/0H9aZD4csoFdUMuHjMZyw6FEQ9vSNf1rXooAyLnw7bXCuvnToJFdJQpH7xGxu U5HTjtg9eea1wMUUUAFFFIzBQSegoAbI4Rc96rEljk9aGYu2TUE8wjGByxqWxizTLEMdW7CqTyNI 2WOfQelISWbJJJNW7azMnzNwvr61OrArpEztgAk+gq7FYHHztt9hV2ONYl2oMCn1SiguQpawp0QH 681KAB0A/CloqhBRiiigCNoY3+8gP4VXksEI+RivseauUUWAxZrV4jyOPUdKg5BB6EdK6AjIwapX FirAtGAD/dqHEdytDc/wydfWrIOeRWaylTgipoJypCsfl7H0pJjNSKXPynr2qaqWelWYpN6+4q0y Tl5ZtN+1TtPpkaRyvPEJ3lwHkUktkfw5253Dn5fplthqFhJGyw6WkSeU7SNJLtUFZXGCSM8uCc47 568VqReG7PdcNcGSZppJH/1jgJubd8o3YUjj5hg1Mnh/T0ikjETkSDDEyuWPzl87s5zuJOetMDJa 502TS47r7APMurhl8syMqiVS245xlRw3IGTnkcmo/wC1LOK3kntbB7e4jt22A8GOIRK4IU8Dqq49 R7Vvf2LZfY1tQsgjWRpARM4cMSSTuznJ3Hv3pZNGspWlZ4yzSwfZnZnYkx88Zz79etAGDf31vLZt catY28myaWEKspLGMPtJ2456DIPHGcircM8Ytpr+C2e2d7tYch92/wDeqjNt6DJz796uz+HdOuCx eOX5mdiBO4HzkFhgHoSAcdM1b/s+3FsLfZ+7EglAyfvBt+fzoA5241K01Mwrd6TvlmQC2VpMiQMc EMR0AwD349+KZd3Gn2gupJ9HUou5ZXSX/lqE84gegyPvDHzdu9br6FYSRRxmJgI0CIVkZWUAgjBB yDkdetNk8PafKzmSOR96FWDTOQcpsLEE/e28buuO9AGEbmxtiRPoYhS3L4/eg/PsM4Bx1zgnnOG6 Z61aXWYdMgun/s/yZ8rK0bT7mkUqSCDg5bCkbegx1xzWpe6Ja3kFwmNkku478k4YxmPOM8/KelRf 8I1pzW/lOkzDOSxuJNx+XbjduzjHGM4oAwb++a5tLyQwIn72aSNom+Z2SIbWORwcAdD9adqUkMk7 xPZiC6iDO4DBw3+rwc9+Mfiv0NdA3h/TmEqmJtsgIZfMbHK7TgZ449KVdA09Af3bszZyzyuzHO3q Scn7q/lQBz0lyixSm1tCZEuQ8srMMLumaPhehJG7PTg55NWLe/0+K5+y2mnRvcLMvkbJSVbKOudx HGFRxgZA6CtiTw9p0rhmicENuIWVwGO8uMgHnDEkZ6Zpi+GtMTcUikUkg5E8mVxnG07sr95umOCa AOe0y409o7dJNMMspjxIV6jIKgBRwflUAnjt17dLorW9xbG+hiRHuDlyshfoTwSemMnjsSaWHQrK 2ZDAssWxNmEmdQV5xkA84yetTWem29gWMHmZb7xeVnyck5O4nnnr/hQBcooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AqvM+TtH41M52qTVTqcmkwGSyCNCx/Cs9iWYk8k1JcSb5MDoKdawedKPQdTUbsoms7Tf87j5R29a 0wMUKoUAAYApatKxIUUUUwCiiigAooooAKKKKACiiigCrdWolUsPv/zrJZSpwa6CqF/b5Hmr171E kNFe2mz8jdR0q4jbGB7VlAlSCOorRjcSIGHekgZeByKWooGyuPSpa0EFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFUtU1GHS9OmvJz8ka5x/ePYUCbsOv8A U7TTLcz3k6xJ2z1J9AO9cfd/Ei3SXba2Ekqj+ORwn5DBriNY1ifU7qS9vZOBnAz8sa+gqjFKk0ay RsGRuhHetFFdTCVST2PQI/iUu9fO0whO5SbJ/LbXU6R4j03Wl/0Wb96BkxPw4/Dv+FeM9Bzx9aZZ 3oLrcWk/zRtw6HlSKfLHoJVJLc+gKK53wn4h/tywImwLuHCyAfxejCuirNqx0J3V0FFFFIYUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAENw3AWqkz7Iie/QVPMcyEelUrxvur+NS2NFWtmy i8qAercmsu3j8ydF7ZrcpRQMRmCKWYgKBkk9q4e4+K3hq31D7LvupV3bTPHEDGP1yfwBrqdcspNR 0K/soWCyXFvJEpPQFlIFeLeExoMT3nh3xRp4t7qWQql3J8rxtgDbn+HkZB6HPPFaxVzOUmnoe4WV 9bajZx3dnMk0Eg3I6HIIrHsvGejahr8ui28zm9jZ0KshAJQ4bB79D+VWtM0zTvDeii3s1EVrCpdm JyTxksT3JxXz5peqXVhrdr4gYMSt3vkf++c5cZ9SCfzoSuKUmrH0fqWoW+ladcX1022CBC7kdcD0 96p6B4k07xLaS3OnSO8cUnltvXaQcA9PxrjvizrITw7aafbsHOoSBvl53Rrg8fVin5Gs34Pztbah rOly/LKux9h7FSyt+pFFtLhze9Y9XkkWKNpHIVVBJJOAAOtc/oXjfRfEV69pp80jTKhk2vGVyMgc Z+tZ3xN1oaV4RmhRsTXp8hQDztI+Y/lkfjXmGn2134H1jw7rU3+ou4xK/sjEhh7nYVP1PtQo3CUr Ox9BE4+lcWPip4X3YNxcDnGTA1djuV4yVIIK5BHcV8/+DrnwrbtqR8SxCTds+zjYzHjduxt6fw9a EglJrY9stvE+k3ui3GrWl0J7W3RnlKA7lCjJyp5BxWB/wtXwv/z3uf8Avwa5P4WWa3upa7GkTnR5 ojGY5P4gWO0H32ls/WqPifQ9MsvidpemW9okdlK8AeEZw258H8xTshOTtc9d0LXrLxFYG909naAO Y8uu05GP8a02UMCD0PFU9M0qx0e1Ntp9slvAWLbEzjJ7/pV2pZovMwp4zFMyenSpbR8Ep68ip9Sj +7J+BqjG22RT71k9GWasRw496tVSBwRVwHIq0SLRRRTAKKKKACiiigAopCwFRtcwIMtNGo92AoAl oqsb+zHW6g/7+Ck/tKy/5+4P+/goAtUVXF/Zt0uoP+/gp63MDjKzRt9GBoAlopAwPQ0tABRRVe+v IbC0lubhtsUa7mNAMlklSKMvIyoi8lmOAK5+68b6HauUFy0zD/nihYfn0/WvPNe8R3euXBMjGO2U /u4QeB7n1NY4NaKHc55Vex6zb+OtDncK00sOe8kZx+ma37a6gu4RLbzJLGejIwINeEVe0nWbzRro T2kpA/jjJyrj0IpuHYFWfU9vorO0bVoNZ06O7g4B4dT1Ru4NaNZG6dwooooGFcD8R7xgllZKcKxM rD1xwP5mu+rzr4kRMLuxmx8pRk/EH/69VDczqfCZPhrUdLsLTUv7TnSEMqMjOhbpuz0B9RXRxeId HurO2vLe7tvMTjHTcPoa53wxcaXBaakdSmt4vlRo2mx23Z/pXSQ63o9xaW13bXdluTjAZQGHriuH Fx/ePR7dDbDv3Fqtyb+2tFju2b7XbGCdf3gyPlNc9qfiHRtR8OXNpYXUUxWZdhRCM4OT1HpXSf2l oyXbf6XaG3nX5vnX5a5zVdV0W68O3NtYTWcrrMux4cZPPPT2qaCtVWj3ZVV/u3qil4Lu2tfE1uoP yzgxsPqOP1Ar12vD9IkeHV7aaPG+N9wz7V3P/CS6l/fj/wC+K9Co1c5qN2jt6K4j/hJdS/56J/3w KT/hJNS/56p/3wKi5tZncUVw/wDwkmp/89U/74FH/CSal/z1T/vgUXCzO4orzq+8cX1gyLIWcsjS Hy4lO1FxuY/TI6ZPtVkeK75s7bqLgAn5V4z0ouFjvKK4L/hKr8c/aY8cfwr36UieLNQZSzyrHhmH zoozg9f0ouFjvqK4ZPE2ouoZZo2UjIIQEGl/4STU/wDnqn/fAouFjuKK4f8A4STU/wDnqn/fAo/4 STU/+eqf98Ci4WZ3FFcR/wAJLqX/AD0T8UFA8S6kP44/++KLhZnb0VxQ8T6iO8J/4B/9enL4m1Jm AVImJ7BCT/Oi4WOzorn7a68QXOD9ngiX1lUr+mc1uxBxGokKl8fMVGATTEV3/wBY31rPuTmY+wq+ 332+tZ05zO1ZyGixpy7pifQVq1naYOZD9K0auOwnuUtU1O10fTpr+8cpbwruchSx9OgrzjxNP4V8 a+GJ9YS5itNQtkbaZGCyEjojLn5ge2M9fqK9PuLeK6t5IJ41kikUq6MMhgeoNed3Xwn8O/bcjULq BGORb+Yv5AkZ/nVoidzO8O67dt8INZe6d2FsHtoZDydrKoAz7FvwGPSs7TfDxvvg3d3CpmVblrxP og2t+gf9K9Kn8H6TceGRoEayQWGQT5LAMxBzkkg5JIBq9pejWmkaLDpUG5rWNSg8w5LAkk5/M0XF y9zxfwqbnxb4v0SG5GYdMt1BxyNkZJBP1YqDXRaHnSPjZqNoMFbsS/huAl/pXa+GvBWl+F5p5rEz PJMoRmmYEgDnAwB/kCnXHg/TLnxTF4gL3CX0eOEYbDgbeQR6cUXEotHmvxDnvPE/jZdH0yI3L2aF FjUjBYjc5zntgD6rTPFFr451nSh/a+jxJbWeZg8YQFAAc9GPGO2O1el6N4L0zQ9YudVgkuZry5Db 5J3DfeOSRgDkmugkVJYmRwCjAqw9QaOYOS92zk/hzrP9r+DoFdszWg+zv9FHyn/vnH615Do3h063 oevXMKlrqx8qVAP4k+feuPoAfwr2vw54R07ww1z9gmuCtxt3JKwIGM4IwB60vhzwfpvhc3X2F7h/ tW3eJmDfdzjGAP7xp3sDjdK5k/C7WLXUPCqW0cUUVxaHy5lRQu70cgeo6n1Brl/GH/JYtG/66W3/ AKMrutF8E6X4e1Se/wBPkuYzOCHhLgx4JzjGM8duaNU8I6VfeILfXruadLm3KFcSKE+U5GQR6+9K 6uPldkjpqKapDAEEEHoRTqk0K18u61b25rHrbuhm2k/3axKiW40aaHKg+oq5GcoPpVGL/VJ9BV2L /ViqQh9MeVIlLSOqKOpY4FV72O9kjC2cscTHqzjP5Vz0/hzVLmTfNdxSN6s7f4UwNa48RadASBKZ W9Ixn9elZkvi1snyLUD0Lt/QVX/4RS+/57W//fR/wpP+EVvv+etv/wB9H/Cpux6EMviTUpGBWWOM eiIP65qnJqd9KTuu5uewcgVpf8Irf/34P++j/hSf8Itf/wB+3/76P+FGo9DGZ3f77sx/2jmsLWtS uLC5iSInaYZJD+6LAlWQfMR91cMcmu2/4Ra//vwf99H/AAqnd+BJr51acxttRkIWZ1DKcZU46g4H FAjl5dfjjuZLdYGllV1RRG6ncS2314wetJJ4ihjBLQSYDyKOVyRG21mAzzznA6nFdJH8PZI5/OHl lt24AysQp3buBjgZ5qT/AIQOcFGRkRkd3BSVgTvbcwPHIJoHc5ZNc2tOjRM/lKztKzKi48x0A5PX 5f8APStOxvEv7KK5RWVZBna3Udq02+H0jLIP3amQqSVlYEFXMgI44IZiatW3g67tLdYYjEI1zjMj E8nPUigRlq7oco7KfY4qxHqN7HjZdzDHT5yR+VaX/CLX/wDeg/76P+FH/CLX/wDfg/76P+FA9CGP xHqaNkypIPR0H9MVjeLPEVxqNpDZMixru3vsP3scD+tdB/wit/8A34P++j/hXIeKdNn03UYknKHf FuBQ5HU1cNzKq/d0JvDvh+x1zS9Q+2QeaYimF3suV5z0I9B+Vb6+F9ChjtporHFqRsZPNc7SPfdm uf8AD/h+x1vS9QN5AZREyDbvZflOc9D7V0KeF9BtobV4rMi1I2FBM52n/vrNcWJlao/ea2NqEb01 omSHwlopuJrR7TiRcxP5r/41haxoGj6R4bBsbPyJ0uArHzXbIIPqTW6fCukNNPZy25O9f3Tea/T8 6wNX8PaPpHhsGwtPInS4CNmRm4OfUn0pYef7xLmfUdaNqb0XQn+H2oNBrL2RP7u4QkD/AGl5/lmv T68f8HIX8V2W3sWJ+m017BXoT3Oak/dCiiioNQrC8WaOdY0V4ox+/iPmRe5Hb8RW7RTTsJq6sfMm q69p62lxb+a3nYMZQxsCp6HOR2qLSte06306OGafYyZH3Cc9+w969b8d/Cmx8UyPqFhItlqjD5nx +7m/3gOh/wBofiDXjmpfDPxdpkxR9GmuFzxJa/vVPv8ALyPxAqudmfslaxpTeJtKELlbje2OFCNk /pWdoet2FnbSRTzbSX3A7SQfyHtVO08BeLb2QJF4evwT3liMa/m2BXpXg/4Krb3EV54nmjkYHctj E2QT/tt3+g496Odh7JWsdB4G8PQappzapceYIpRi3wCpK925HQ10kvhKPOYbplHo6Bv5Yro440ij WONVVFACqowAPQCgyKHCEjcRkDPOP8mperuaRXKrI4+TwtfL9ySBx/vEf0qo+hamnW1J/wB1lP8A Wu9oqbFXPOm0++XObO447+Wf8KhaKRfvRuPqpFel0UWC54trulT6hLAYooJFWOSNhLK0eN23DDCn OMdOKqz6Fe3d5vuHgkiDKDk8Ooljf7u30Qjknk+le4lFbqoP1FNZYlxuVBngcCiwXPEbjw87J+7R AGlnaREYLuVzwclTyBx9Ceexk/sa7iWR4jCZtsgjLcn5pS3Ug4O04zzz617T9ni/55R/98ilVIiS AiccHAHFFgueT6RaS2VgIZtu/wAyR8IxYDc5bGcD19K0Vikb7sbH6A16SEUdFA+gp1FguedJp96+ NtnOQe/lnFTpoepydLVh/vMB/M13isGGQQR7U6iwXOMj8LX7ffaGMe7E/wAhV2PwkmQZbsn1CJj+ ZrpqasisWCsCVOGAPQ9eaLCuZUPhvToTkxNIfWRs/wAuK0obeG3XbDEkY9FUCpaKYBRRRQBTb77f Ws+44natKUYkNZ92MSKfUVDGifTD87j1Ga06xrF9lyB/e4rZpx2B7mP4i1CeysUjswPtl1KIISei s3c+wGapweCtJWI/bI3vLh+ZJ5ZG3MfXg8U/xARDq2h3UjYiS5MZz0yykA/p+tdDVmdrvUxtG0mf SZJ4BctLYYBt0kOWj65XPp0x/nNHxhdXLQW+nWO77VMxmG3qFjG/8yQoFdNmuKGpXr+Jr6/tdJmv ooh9kidHChdpy/X3/lQhS0Vjq9NvU1HTre7j+7NGGx6HuPzrDi1gr45ubBwRE8KIjHp5gG7H4hj+ VN8I3EkZvtOuLZrV45DNHCxBKxuScDHUA5/OqtxbvdpreoQZNza36yRgd/KRRj8RuGKEF7pHRa1f jTNIuLsDMiJ+7AGSXPCjH1IrA843PwzaRiSfshUk9yDg/wAqt3FxHrmq6VBC262RBfy8dukY/Mk4 9qoEhfA+sWwAAt5biLA7fOT/AFpibuOvPCWlWWjyX1kJLS6hh81JlmbhgM9z0qzLcPd33hS5kADz K8jAdiYsmiDwq1zBGL/WL+6gIVjAX2qe+D6irOrIE1/QMABVllUAdvk/+tQFuo7xaudD/wC28X/o Yqlq1tbah4ttLPUhutTas0KMxCvLu56d8Vf8WZOjKoGWa4iUD1O8Va1fSbfWLPyZso6ndFKvDRt2 IpIbV2Gj6Uuj28ltHO8kHmFolfny1P8ACD3Gc1pVieHb66uIbi0vyDeWUnlSOP4xjKt+IrboZUdt CC8OLWT6Vi1qai+IQndjWWASwHqazluWjSjGI1HtVyL/AFY+lVauKMKBVIQtFFITg0wFooozigAo pNwzjvS0AFFFFABRRRQAUUUUAFFFBOKACuP8faS17pcd5Eu57UksB3Q9fy4P5114OfpSOiyIUYAq RggjrTTs7ikrqx85a1Mi6TOu/BcBQAepzUuj3jnSrdUuG+RApG4jBFanjr4OXUFxLqPhmPzrdiWe yzhoz/sZ6j26/Xt5NdWl1YztBd20tvKpwY5UKsPwNU5J9DP2dlZM9NvL147OVnuXC7SPvGszw9Kp 0wRl/mRjkHtmuBjiknkEcMbSSMcKiDJP0Fek+DfhDqus3Ed1rcUmn6eDkxvxLL7Afwj3P4A0KS7B 7N2tc9I+Hmktvm1WRcIR5cWe/qf6fnXoVV7Kyt9OsobS0iWK3hQJHGo4UDtVipbuy4x5VYKKKKRQ UUUUAFFFFABWF4gNyk1vLabhKsM211TdtJ244rdrB8RanNYGNY7qG1Uwyy+bKAQzqF2x8kdck+vy 8UAZl3d6tp8N3L9uuJRH56KXhTgKgZW4UZOSR6H0pk9zqKSTzWks10Io5FhnljCnBMO7omDjLY+U 9MYOKdqGvStb3Fs4glk3SK0H8RjEG8HGc43d6vx3s9x4Z1GadopyiPsKsrBl25w2w4zyRx2x60AU RPrjxJ/prgIqMrQKsgfMu3ligyQvoB0z9VF3rYv7e2W4/dpIV8yb5DLiVlIOIyCdgHQr1z9H3us6 hZPJKJITE0ksSIYz+7CYw5OckAZJFPfWJkuUSLUbe4CmLYAFzc73KtjB/hHp6HPFAFWR9Te0t2ur 67w4tbhyIkBRjIAwHy9MYOD6emRUsF9qt3ePEk1xFC80YBMalkUmQMOUABwq8c4z15qNta1GK2ie W+tVle0F0kXlY81icCMc59uOcmnya/fZfyp4DMzOjQbMm3xKqAnnPIJ69e3FAHXkZGK4aB9U8+xg jm3pHKzB7nCkyeYykcRnPyn1X7x59Lg1jVDcTRLNACkwg+faSpMqIH2g55Vi3PHK4q7pN7fyagkF 3OkyOs+MR7SDFIEz17g5/lQBUim1C7it0TUbuOaUsbhRCg8lgpIQZXpkDrnOPeorS9vZJEe5aWzi mdXkkigAJfyoiFOVPGS/J5+UDPan3Ov3C6jeQQXEQREdh5rIpQpIqkDJ4yGON3Ugdqv3+NRttGYl ZIZpkkdZI8hx5bMMr25AP1xQBlHVdUZLuRZJxCjo6IVHmEZcMiny8buFO3B9M85rswflBrkrXXrr UTZwW1zAsksUHnOi7vLkZJGcYzwQUHB6VCdemutMvDc3Fskkdq221K4+0Ha2W5OcZB4HoaAJoJtT WZykssUUMsZEKQqFk33Eitn5c/dAPBHqetJHqeqRRi48y4nEaLNdxGEDy23YZF+XJ43HufkHPPLp tcvVeUQ3EDSlpU8gpkwBWAVm5zg5/wDHhj3bPrt5a3ItJLhGniuhESVVRKpMfbOcgSH7vpk+hAIr jU9at5fKBneZICkv7sMC/lbyyqE6A8DLcnIxRFPcRS3RW/u1tXldhdfZwXdlii2LjZgg/N0HO3H1 isNQa0SKMTw2kbsqyXMgHyDM7cknHVQBn1+lR22v3Njp9jDbsrMlp88LqM7hC0gIGd3VQD25I60g LV1f6zHpk07vOl08m1I1RQse2Pdj7jFstx74AyOc7OjXVxNf30c7vIFKshxhFBz8v3QQRjnk54PG cVgjWJ4Zbr7JfQXAluSBd/IEJWFCASTt9c4PRTjnmt/SNQmur69t7iRGki2sFiZWVVJIxkc7sqcg 9xxxTA2aKKKAK845BqndLuiz3U1oyruQ1UYbgQe9SxozVJVgw6g1uxOJI1cdxWEylHKntV7T58fu mPXpSiwZLqmnQ6tp8tnPkI44YdVI5BH0NYcbeK7FPs32e0vgvCXLSbCR6sPX6V1NFaXIcbmBY6bq VtDeXtxcrPqk6YVQSIo8Z2qPxPX/AOuTe0LTv7K0a2szjeiZkI7ueW/UmtGii4KNjHvdOnOvWOpW 2z5EaG4BOC0Z5GPo3NP0bTpLG2uRPt8y4uZZmAORhmOP0xWrRRcOVGH4f0IaL9t+bd50xMfJO2Mf dX8Mmq82jXjaXrtogjJvJnkgO7+8F6+nINdJRRcOVWsRwqUhRD1VQD+VZuu6bPqFrE1pKIru3kEs LN90kcYPsQa1qKQ7aWOXW01zWLy1/tSGC1tLaQSlI33GV16fQVPqFpq1pqr6hpSpcJOgSa3mfABH RlPb3FdDRTuLlMbQdOurNLm5v3Rr27k8yXZ91RjAUfQVs0VBdTiGEt3PSk2NK2hn38vmXGB0Xio7 Zd0wPYc1CTk5PWrttHsjyerc1nuyywg3OBVyq8C5Jb8KsVaJCuXuJbGPWb+S/EL3sLo1jHOwBK7F I8sE9S+4ZHJ6eldRXOXms3kGoXIX7M0EM8cIi2EytvVTuznAAznp0B6YpgUrbWb+8ntre21GCVZn j3XEcQIQtFK7JjOOCi9eQDzTE1ye7+zx3EkLGaO2mWKPBC5ePcW53KctkZ4II71aj1zUEjjlnW0w PI8yJEbe3mnHyndxtz6HOD0pja3q5t7J7aC2uJruF7hERMBVUKdhLSDJ+b7w6YPymgDOXW7p7lbw XULStbKJAAALUtKAVYk4yOnPTqeDWj/bN9HDLLcXcCoscSK0IUqXZiNxYnaBgfQZ78VNNrOoQyTC SOFFinXzcwlvLgO4B8h/myQOmNvOQcVY03VLm5v0ik+ztDMsrIsanfFscLhzkgk59BjGOaAE8P6j eap++nlj8sQRNsRerMoJOfT0+ta99cLaWM9w+7bFGznaMngZ4qtqt1Narax27QxyXE3lCSZSyp8r NnAIz93HUdaw9C1bU7k20CwpNCoAnk3A/eydwJfOOg+6c880ARQeIrlkjZ7uFkE7xZjZGaQ7VKHA PI+Yg7fQe9RL4ivGhj231tIsqxGSdQEWBmDkoSTgHKqPm5Gee1dJr7TR6DeyWsixSrCxV2TcBx6Z FYdxrd7ptlMUFo8duskKx7GDbo4S+8/MflO3p6EHNABPqd3c6bqYk1CG2uYbYlIoWBLfuwxkUnkj JIBHp60h16581kiv7WSTdJH5b4ARVjLLMzZ4Unbz0w4/Gdtbv7S5mW8a0MUTyRl44WyCIvN3Y3dM cY79cjpVO713ULjS72Im2tpooZjI7KQWxgALhztPPq2Dj1oA6bR7r7bpkM+5nLryzADJBIPTjt24 qh4ivntljh+1RWkUscpM0gyCVUYQe5yffjil03V5rrWZrQ7GtwjmKQJtOUcIwPzEnnvhenGatard zwPbQ27QRyTuR5k6llUBSx4BHPHr6n2oAw9G1W58zT7Xz4ukcRtSPnCeSG8zrnGePTn1rr65Lw9q uo3KWEAhWWBIYlnlLDdlog27JbJ5IGNp7nPGK62gAqKa1guABPDHKB2dA386looAghsrW2JMFtDE T12IB/Kp6KKACiiigAooooAKKKKACiiigArH1eV5bm300NDGlzHIXklUtwu0bVAI+Y7ic9gDWxUU 1vDcBRNFHIFO4B1BwfXnvQBytnrl5cXf2S3W32F4limePGY2WQ52hyf+WfGcdegpbXxDc3VybSI2 8SyOphnkiwuxldvuhz12cZKnnp69PHZ20TFo4IkYncSqAZPPP6n86adPszG0f2S32OcsvljDH1NA HNXGr6rbXN1BCYrmRrpkjAjA2KIlbHzOuc59ezdegSXU9QkELi3t/N8+aOGEEjaUjc8ncAeRjsP0 I6d7C0kDB7WFg+C26MHdjpn1xSvaW8i7XhiZeTgoCOeDQByS3clxqJu3lSRTDaBUWNo2y0zBiMN1 46cg9ORnMt14gu7XSIr9GtpJZl84QxxfdQDJVmLjkZAz1z0WuoFlbAoRbxAoNqnYPlGcgD05ph06 yJJNnbks24nyxyfU8daAMtdVmiXWHmhVprNGlSJE5ZMMV+bJyTtPYEHPHQ1inWNRttSuEhe3u7ic xKGiACD927YAZx6f3unPtXY+TBbJK8cKKWyz7FALH39TXKJqZa3SD+zbEi5SCSJEi3Ku8SN8w7kB D0xkntQBrX+ptZwxNNFDGZLSWZg/TzFVSFznB6n8qoS6vqxJeE2SxkyhQ8bE/Im7Jw3fke3XnpQ2 pXd2RFPYWqKjpHslXcUdo92QOmAePcHtjldO1K6uPsUT2kM2beKW4lSPaP3gOSOwGBz65PTFAGjN fzNd2VvbtBAJ4jOzSoWzgr8qgEc/N1/SsmLxBfXl6tvAtuDLKBDNJF/yzaOVwdocn/lmOpB56V1M ltb3CoJYY5FQgpuUEA+opEsrWM5S3hU53ZVAOeefryfzNAHLwa9qErWqE2MUl2IZBI0bYRZI5G2k buSDH1yM56CrMOvu8cZcW3nM1uFAJ+bzHKsRz0wCR/Wtm40qzuTB5kMZWFtyrtG0/KVAI7gBjxUz WVszKzW8RZRhSUGVHoPSgDEjv5rrRFkulUXC3cMUyICoRjInAIY5ADdc4PcdRWfcazqbLD+9tozO 8LKyxH5U89Y2VstzkH2711kdrBFEIo4Y0jByEVQADnPSkazt2TY0ETLjGCgIxnOPpmgDlW1O9viq y2ojtRdoEYbRyswXGA5JyOeQvStzQrp59Oti1pJGGt4380sCrkqDwdxbj1b9avCzthI0gt4t7kFm CDLEdMmpURY0CIoVQMAAYAFADqKKKACqki7XPoeat0yVN6+4pNAZt1Fld46jrVRWKsCK0yOxqjcQ +Wdyj5T+lQ0UadrcCaPnG4dasVgRyNGwZTg5rXt7pZhg4DelUncmxYoooqgCiiigAooooAKKKKAC iimSSrEu5jgUAK7iNSzHAFY1zOZ5M9h0FOubppmwOFHQVCiF2CqKhsaHQR+Y/P3R1rQAyQBTI4xG oUVZhT+M/hQkBKi7VAp1FFWIK4/UHji1yS6S3iIS9WOWRiDIf3AYhePukbeM8nNdhXOu9oPEFw8t okk6khZGC5XbGrccZ/i7k9/pQBBaai99dWYXS7dLgxs8M0qMoWMBchSVBzlgOOMZNV2msUhlhnsL eK3l82YTSR7t8oZxwQuNwABHfB4zg1CLm2W3nEek286oWuxGzBBEixxkheDk/PgDgdeanutRsPtT xtpNtMTEQhUnBy6qynKYBzKOhPfOKQEdvfQCzkcaZau1sXuZ2mXDOVkZdy5XO/Ck84xwO9dbFa28 Usk0cESSy4LuqAM31PeuSOoWkMa/adBtk8pnEIjbfmRZVjbomcF2Bzgk4zjOKvp4luHZM6aVQeWJ i8hUrvlaMFVKgkZXPOOD60wL2tT5MVmLW3uPNV5GW5PybUAPoeckfqe1ZA1m1jto79tMtw8LFFKg bkX7OZjtOOPSkn1SS7sX/tHTLWf7N5k8v7zOyNXZcrlPmbCtxwDjrzird/BY6LDaSLYR3V6yiCNm jO4hUPJKqx+6MdO/p0ANLTriXUrWYXVsFXO0BkYLIpUHOGAPcjp2p09np9nbzXJsoMJAVbbEuTGB 936Y7dKrefHpmhx3FlYBfNMeLc/u8M5VRng4xkflVJvE0yeekunjdbqfPCylhu3FVC/LlsnHYcE8 ZGCAQ/2pcXAVTpVsXlVpN0qsqEeWM9VyTztzjGPyqJ9Ss/LSFdGtCyEMsZUbUDiMKenGfMAPsrVV F+La5hmj0pIIYo2AgQuu53cRg48vJTGO3TscCrc+qRvaz50hIy1tHFIWU7vmdkRduzJUEE5I6Hoc 4oAdHqC2urzT/Y4I2jzHcmPABzIgL5xzwRnPofSi88QrLbr9osIZ0MbS+W6sQpEbSJklduSAOOoz TbO/h8mK1OjR+QI0iuWk+UkSOycKUG4FlJOcZBzT3nt5/J1GfTLWNbiB2iLSA702cB/k+XIOMLnr jmgCa0umOrQLPpdkjLJ9mSWM5dcwmQYyowMZFdPXNWOqx3V7aIbCKFpHk3OxIxIgZMLlBk7R32na fY10tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhGRWPa+G7KD7V5sc UwuNoZDCip8pJB2gcnLE5rZooArJp9rGAEt4lAKkAIBggYH5DioRoumr5eLC2/dqVTEQ+UHOQPbk /nV+igBsaLGgRAAqgAAdhTqKKACiiigAooooAKKKKACiiigAooooAgmj/iH4ioCMjFXqgli/iX8q TQGXNbmPLKMr/KolYqcitOq8tqGOU4P6VDQ7kkF+RgSfMPXvV5JUkGVYGsJkZDhhilVypz3pqVgs b9FZCXsq/wAWf94VONQPdB+Bp8yFY0KKpf2gP+eZ/Om/2h6R/rT5kFi/SFgoyTgVmNqEh6bV+lVn neQ5ZifrS5h2NGa+RBhPmPr2rOlmeVssc0zlj3JqeO1ZuX4HpU3bBIhjjaRsKPxq9FEsS4H4mnKo QYUYFSJGXPoPWmkAscZc+3erWKRQAAB0patIQUUUUAFchO0Z1W/i1G1M8DXYCSxnZtPkLhSM5OQC D2ORx6dfVKTS7WWRpHTLNKJm5PLBdo7+nagDlNY+z3lvFZ2dmitOApUpliHiLYB3jHyx98gkDg4q b7ZpcdrLftpjK4CuqvNy6MBICozjJ2Z2juv41vW+gWFs0bRpIWjIKl5XcjCMg5JPG1iKSXw9p0sS RtE4VFVBtlZTtClcZBz0JFAGZNe6dJI8c1hiAmZVleQKrMcSt3yM4Bz2Io0++sLx7eAWjg3BZS00 pOTE5IAJOWO7J9cGtaXQbCaERSRMyBy4+dgQxXaTnPpUUvh61a3EaSXEbLvZHE7kq7Zy/J5PzHGe lAEOq2OmWFlJeS2hkCPuK+YQPmcZzzjbnDEHgYJxUeparZyWBluLaR1ilbHlyYYMsLSZVgR2BHXv 6VXttcS80CP7Zb3SubaOVtjrF5g4BZW3jAz6kH86oXK6NdWsgsrS9JkjWOJkLFA8kO1cKWxnY3X2 5NAFvV9WgmsTYXVu8EweOTynlUbo1IfO7PU7SOuc/nSSalpdrY3b/wBmn7KoKSF5BulGDI2ATliN 2eeck+maihuNHlcR25nWQSq3nNMzO6hHHysH3AYU8H8uc1ZYaRfywW09pdRi/wB7ozTbC+5eQQH3 YKrnpj154oASW+09Vlim0+d4xviR3lLM7I4+UEnIO4ggk9fTFRpeRIl7Dc6fLLICfMTzcskUYVvv k5JDOSO/uMVvSaHYTRlHhJBZ2PzsOX5Yjng8D6dqibw5p7x7Ss2SWLN577n3ABgxzkg7RwfSgBl4 NPsNPN68e9WEQBkkOWIbKZZj2LdTWQLnSPs7oNOcxrA8vl+cSOGIYRjPQFc5XAHynvXUXNlBd2v2 aVT5fGArFSCDkEEcggiq76PbO0bM9wTGpVCbh8rnPPXryRnrigDItptNi1HToI7YFpsyRtHcmRVd lZtxGecjf83U5rp6yoPD1hbXEM0SSK0JDKPNcjdtK7iM4JwxGTWrQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUARSQhuRwagZSpwRirlIVDDBpWApEBhgjIqFrVG6ZX6VeaAfwnHtURjZeq/lSsFyg1o69CD+lMM Eo/gNaFFKw7md5Un9xvyo8mQ/wABrRopWC5RFtKeoA+pqRLQfxMT9KtUoVj0Bp2C4xI1jGFAFO+l SrAT9449hUyoq9BVWEQpDnlvyqwAAOKKKYBRRRQAUUUUAFFFFABRRRQAUhGaWigDDj8L28ccKi7u ibcKsDMVJjC5wBxg9e+e3oKsWmg2tnDFFG0pWN0kUs2TlUCDt6CtSigDIi8O20SLGJZTGjbo0O35 OGGAQMkYY9Segobw9AZ45luLhGRVC7SOCEKBumcgE+1a9FACKNqgZJwMZPeloooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKM0HivOfF/i6V55NN06QpGnyyyqeWPcA+lNK5MpK KuzrdQ8UaRprFLi7UyDqkYLEfXHT8azV+IOjFsEXSj1MYx+hry3OaK05EYe2Z7bp+t6dqi5s7pJT /d6MPwPNaFeCRTPDKskUjRyKcqynBFeneEPFJ1ZDZ3hH2xBkN08wev1qZQsaQqXdmdbRRRUGoUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUVU1C/i0+1aaQ9OFX+8fSgBt7qCWssEIXfNM4VUz27n6Cr tcvoCy6jqU2o3ByV+VfQE9h9B/OuooAKKKKACiiigBCoPUCmmJD/AAin0UAR+Snp+tL5KelZ2tX7 6etrIpwpmAceq4Oa01IYAjkGjQBAijooFOoooAKKKKACimSqzxsqsVYggMOx9awbfXpLW6az1NQr qceao4PuRQB0NFNR1kUMhDKRkEHINOoAKKKKACiiigAooooAKKKKACiiigAooooAKKo6pq1ppFob m7kCp0AHVj6AV55qXj/UrlytiEtIuxwGc/Unj9KpRbIlNR3PUaK8WHiTWxIJP7Uud3pv4/LpWzpn xA1G2dVvlW6i7kAK4+mODTcGSqsWeoUVS03U7XVrRbm0kDxngjup9COxq7UGidwooooGFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAZPiS/bTdAu7lDiQJtQ+hPA/nXlfh60gvtftbe6XdFIW3AnGflOP1 r0Xx2CfC02BnEiE/nXnXh6zhv9dtbW4GYpCwIBx/CcfrirXwswn8aR1lt4S0SMXccVii3QbeSJGO 79fepm0DR/JgulslKA7ZU3t1/OoLTwdo1ut4sVltu929iZXO78z71ZbQNJ8qC5WzzHnbKu9uD+de R7R2+J/0/wBOp6HIr/Cv6RA3hbw/b6jPMbFCZYiUfzG4GOO/tXD6fePp2oQXcZw0ThvqO4/Ku3bw hoNvqc87WRLTREo4mf04747V5/Xo4SXNGWt9TixKs1oe9xSLLEsiEFWAYEdwafXHWXiiWCwt4jaq Skarkv1wMelT/wDCXSf8+i/99/8A1qu5ojqqK5X/AIS6X/n0X/vv/wCtR/wl0v8Az6J/33/9ai4W OqorkZfGTQRPLLbxrGilmYueAOp6VHb+N/taM8EMThTtPzEEH0I7UXCx2VFcl/wltz/z7RfmaYfG UomWIwQ72BYDJ5A6/wAxRcLM7CiuT/4S2bvax/8AfRpf+Eul/wCfRP8Avs/4UXCx1dFcr/wl0v8A z6J/33/9aj/hLpf+fRf++/8A61FwsdVRXK/8JdJ/z6L/AN9n/Cj/AIS6T/nzX/vv/wCtRcLHTTzx 20LzSsFRRkk1weo6hLql4GwdudsaDt/9epNU1qbU1RCojjXkqDnJ96teGtP+0XhunH7uHp7t/wDW pXHsdNplkLCwjgGNwGXPqx61coopiCiiigAooooAKKKKAOc8XH/Q7cf7Z/lV/wAP3JudJiyctH+7 P4dP0xVDxd/x7W3++f5VX8JT7Zp7cn7wDgfTg/zFLqPodXRRRTEFFFFABWJ4h0r7bbefEv7+IdB/ EPStug0AcDpmsT6a+0fPCTzGe309K7W0voL2ATQuCp6+oPoa5bxDpX2Sf7VCv7mQ/MB/C3/16xAz AEBiAeoBqblWuekPcwR/fmjX/eYCoW1SxU83kH/fwV55RTuKx3h17TB/y9J+AP8AhTP+Ei0v/n5/ 8cb/AArhqhu2ZLOd1JDLGxH1xSuFjvv+Ek0v/n4P/fDf4Uf8JJpf/Pdv++D/AIV47BrM9jaXBk3v LGolEMrl22BASdwzgZ9en4irkmt3UbM4tYzGhmJw5yFj6nGOp6Yp3CyPV/8AhI9K/wCfk/8AfDf4 U4eINLb/AJeh+KsP6V5BJrl2qrK1oysA3lqSyLJwnqM9WI/Cr9tqjy6oLNkQgxsS6bsBl2hhkjn7 3b0ouFj1VNY09+l5CP8AebH86mS+tJMbLmFvpIK85oouFj0xXVh8rAj2NDuqKWYgADJJPSvNAzL9 1iPocU2/1G9j02dVuptrJtILkjB4p3E9Fcytc1S48R63+7yyF/Kt4844JwPxNVofDuuSSTFtNKwx YHmGZOfwzkVBpryR6pZyRR+ZIsyFUBxuORgZrt4NZ1p9Qu5j4bZLTGGP2xDuJ9sZFTXqSp25bGVK Eal3I5Y+F9XURsbUYk+6fMXH86i/4RnXzqItF0zI25L+egx+Gea7L7bqq2awvorFZG3RN9qTg1G+ q+IH1eCCPw426JMvL9sTn2x/nrXOsTW7LobPD0/Pqcz4d1ebQNZG/IhZvLnTPbOM/UV7ErBlBByC M5rwi6ZnvJ2dNjmRiVz0OTxXsfhydrjw7YSMckwqCfpx/Su6a6nPRfQ1aKKKzNwooooAKKKKACii igAooooAKKKKACiiigClqliupabcWj8CVCoPoex/PFeI3SNYXUsE58uWFirDPTFe91598Qvhpb+L l+3Wbpbaqi4Dn7soHQN/Q1SlYznDmPJ9Evv9Pvz9ob94+5SWPIyf8RW39q/6eD/33Xn2teGda8PX Bi1TTp7fnAkK5Rvow4NZOSfWjmXYTptvc7q3vg3iW4czsUZNinccZ4/wrrNF0ybWr8W9qA+0bnOe AK4Hw18P/EPieaM21jJDat1up1KRgeoJ+9+Ga+ifB3g3T/B2k/ZLTMk0mGnuGHzSN/QDsKfN2B07 vVmJJomoxdbVz/ukH+VVpLS6j+/bTD6oa9IorOxtc8xPHWivTCinqoP1FQtYWjklrWAk9zGKLBc8 u1WF7jSLyGIZkkgdVHqSpxXNz2eqCKXyYLgl5Gljlcr5ocKgGcEADhvXAAGOa9x/smw/584P++BU Z0PTT1tE/DNFgueNS6VfMS8RlWbyrtlYynAkZ18rIz02g49MU1tOvZIlWP7UsTnlGOwxjfFkDDHH Cuevc17N/YWmf8+ifmf8aP7C0z/n0T8zRYLnk1jDepr0jvA0VsI3QgHKsQy7DnJydu7sMZxW5XfD Q9NBz9kj/WpP7KsP+fOD/v2KLBc89oHzHC8/SvRksbSM5S1hU+ojAqcIo6KB9BRYLnnKWV3J9y1m P0Q1aj0PUpMYtmX/AHiBXe0UWC5x0XhW8cjzJIkHfkk11FjZx2FqkEXRep9T61ZooSEFFFFMAooo oAKKKKACiiigDm/Fx/0a2/3yf0rG0KbydYgJOAxKfmOP1xWv4vPy2g92/pXNQSGK4ikHVHDfkc0n uNbHpdFIDkUtMQUUUUAFFGaKAIri3juoHhlXKOMEVzv/AAiIz8t4R/2z/wDr109FAHMf8Ij/ANPv /kP/AOvR/wAIj/0+/wDkP/69dPRRYLnMf8Ij/wBPv/kP/wCvSN4PDqVa8DKRggxdR+ddRRRYLnF/ 8K600xrHtttikkKLYAZIwe/+cVOPBECtuE6Bvm58gd+vfvXW0UWC5xsfw+so4xGjQhQScfZxgZx0 59h+VPTwHbR3TXKzRidvvSCAbj0zzn2H5V19FFgucx/wiP8A0+/+Q/8A69H/AAiP/T7/AOQv/r10 9FFgucx/wiP/AE+n/v3/APXqrqPg9m064Ed0XcISq+X1IGQOtdjQRmhA9VY8Jsrj7Hf29yV3eTIr lc4zg5xXQW3xIt5dbvLcaZIsYX5h5oO7P4cVnfEqwvPDd0dTtLA3GnTNl2VseS5PQjHQ9j+HpXld v4ilg1CS78kMZPvLuxn07U6kKdS3N0MqftIX5T20eNLc2rQNZyEBtyHePlqtP8SIxrNrbrp0nmiP cZfNAzjPbHtXlf8Awmh/58R/38/+tWe/iKV9TW98kArwFz29OlY/VaBp7Ws9z0KeQ3F1JIFwZHLB Rz1PSvadFtTY6NZ2zDDRxKG+uOf1ryz4Z6dd+IZ11e8sfI0+FsxFmyZnHoMdB6+vHrXsddEpJ7Gd ODWrCiiioNQooooAKKKKACiiigAooooAKKKKACiiigAooooARkVxtYAjuCKqR6Tp0MplisLVJD/G sKhvzxVyigAooooA5S/8TXNqmpqkcTS28oEGQcMgBLE89Rsf9K0D4gitsiaOWTDOWeJMLGiuUy2T 2Pp17Cs7UbTTp0vTBHPPMiTRMQr7f3h+cAhTkjJ6Zxk+9SJ/ZNwggaeUm8i2syKdmZWL43Y4JJOM 89KALQ8RxRMY2guJ2DlS0MYCrmRkUHLdSVx+vApx8QRhJbgQzNFHCJJIwqh0+Z1OSWxwUIwP1qlK lhp+sS2k5lCSLDL5gUkBvPkYZIGANx7+tF3b6QsQkN7cxeY+9TGm4sVmJxgqc/vJemPT0oAvS+Jr WCR45oLiN1jWQKQpJBKjoGJBBcDkD2zVm81mKwFq1xDIq3DKuSU/dkkAAjdk8kfdzWFbx6RcySTJ cX8zgbyhhIJPmKWwNoJIdFB9OelWL240fVbu1Z7m4DMFCmOM7SGYFQxKnaSyY6g8YoA1LrWobW+F q0M7H93vdFG1BIxVc855II4zVaLxRZ3BKQRTyyFgIo02kyg7iCvzYAwrH5sEY9xT4o7LVZrqYGZZ A0KSqylCDGxdeCP9qsu2GkyW/wDolxe4g2zW5jgwyryuUynzDDEHOaANGTxTZRyzRsku6IHOCnLA hWX73BBYAk4HXng0+XXELPGkTxvHJCjmQKQC7KNuA2c4br0+uMVQhbTdty1rdXbLLGJnEVsGA34b P3Dy2ckdOTwKZcWem2en2F6HubiD/RobfZz8m+MqeFyeVU857gYzQBbXxCGnkkW2n+yrbiVd2xTI C2AyksBj6kH25FK3iWG4e1a1SQ27unmTso2KGQvtPOQcYPTHPWqElrpNv5iS3d+j2/lpGpjJKDf8 gRdvzDIxk59+1VrlNOs4Y47Ga4c+dEgjkjZo3JHleYcDLfKCDg4OB7GgDoLXxFZXNjdXeJI47ZPM kDAE7MZBwpPUA8dfUCqf/CUJbPdG8gljKTbEhOwOqCNWZj82Djd2OefWmxPpkWnXGmSS3Miv/o7I 8JEmCpxjCgkYDHcc9DS3enWFnPEbi8ujdzOziYork/KqtkbdoXAXtxjNAF6+1iOxuId5LRyQtIFR Ms3zoowc+rjjHfqMc1m8TRLIC9pcLCIpGdm25RkcIUxnrk4yOORzioby90e8mgmlkuRKisqRLC28 gNHITt25/hQ/Qn8KmozaMtvcTrLcyBIppcRKSshbbLgNtIyMKw9B14zQBqJ4otHjMiw3BVEd5SAp EQUlW3EHHUHpmny+JrGG6FuQ5bzPLZhtwp3bc8nJG7I4B6HsM1mG+tbW4nhkDTM0EqbnQqNiorkS AINp/edh0x3qWCDS4RbyQzTedEhRlSPzGlCMC24Feu585GM7qANGy8Q2d2hdhJbRlUdHuMIHDZxj n/ZPHWtasPSZdNDww2bSy/6LGoLIcKiltuTjg53flW5QAUUUUAFFFFAHL+Lv+XP/AIH/AOy1zNdN 4u/5c/8Agf8A7LXM1LKR6NYyedYwSd2jUn8qsVn6I2/RrU+iY/LitCqJCszV5hBNpjGXy0N1hjuw CPLfr+OK06zdYnMYtIViheS5n8pTMuVX5WbJHfhSPqaAMDWNVuFTVLe3mgiUxTv5rktuCxRYC/Nw T5h5Hp0p9x4ivEvXtrZYmGMRvImBuEkUbDhsn757L04zUWjX8twLO1axjuEXDSPs37SzMAwboAAA PcemK61bS3WRpBBEHb7zBBk/U/gPyoAzru9uYtRs7JJYIzJE8jySKTuKlRtUZHJ3E9T0rLg17ULi O22Na77tIpFGxj5G9sFW+bkj8OQeKmutSll1EWMtrb+ebkJbiaMsFG12Eme+dhAAwQTg++dHq6QC 41L7Ko+YyPHG2FLLDIxIIHzAleCfUGgDa0XUr27naO78g5hWRfKQrj5mU5yTn7ufxqmuv3VzFapA 1qJ5UjLggsI2Z9p4Bzxz+VF3dahazbUa3W4/0bcyg7NrzbSACffrTBrAj1B7W2trXfPMFhm8squc tuLdz9zqMZPHvQBc0LVr2+mKXYg+a3Ey+UhGPmZSDknPQH8ap22uXzw2zXr2wS6jhkzGrJ5YdtpG STzyMHimT6tNp80t88MbInmW/lo7D5kjLk46AZU+4BB57WEvp5mt4L2wijtpZDCzvCQrjClRtJ+U EkjnIyvuKAK8Ws37RYsjaLbxMkS7lZywad4gQd3YKp9+elSwa9qc+oRWyWscnl4E7qFUH946Ejc4 IHyZwA3pXSiCJRgRoB6BR65/nXKalqLx3Ud61tbmG0muBGo/1hKRtn8CeePbrmgCSDX9QaK2lla0 BeO3kaMIwZ/NcjC/N2HscnPAq7qOq3VtLf8AkvbqtnambZIpLSHaxGORgfKPXvVjSi17H5t3YpHL A5SNzFtyuByoPIHOPwNSao0UH2ed7aKV2mSEM6glQ5wcH8aAMk6vrP2ye2jtYJWhXaz5VF3GPeDy +7GSB931OR2aniG6e3uJ0aE/ZbcyPE8ZV5W+fgDdgAFcZ5yQaS51gAzXU1lb7Egn8t2TcZShcFN3 bhM4PXJx0pmqajBFIVht4c2MvyiNPmKBY2OGH3B8+D69O9ACtrmsrbs7Q28RSCa4+dQ3mKgjIA2S EAksw6noDTH1rVoZJo4VjuZZLiXy12gbFUKQpLOo53Dn2JwezhqL2wicWVtEJPOSKNDhAPOjjyw6 HO7PsOKnS9E94tveWVoEMzRyzeVuWSRRxg/wnb656EdqAOieJLq2Mc8Sski4eNgGBB6g+teZeIPg jouoytPpVzJpsjHJjC+ZFn2BOR+deojGBjpS0AeDD4Car5+P7as/Kz97y2zj6f8A166rw98E9D0y ZLjU55NTlU5CMNkX/fI5P4nFen0UAMiiSGNY40VEUYVVGAB6AU+iigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAoooNAHFxvDcXWoWdxd+RbRXDzIsihlJViz5JGCP4sHkZ9hUkK 6TYi3U6rILdWjd4njwS0eFDN8uVGQmenQdAeYdVhgNzNZSahFMhNxN5UW1XiZkP3iWxgBj1x161O 1vpircQS6rp6TyKYpBH8vzbh2LE5+XHXtQBqXENhqNvc3/2orA8aI7kbdgjcseCMg5JBz6VjW/2B 55Zp7+ZYLa5Kwq0eMDdHOcjbkAHAJPQVoFrBrK8spr+GCS7nkKBnXIO4gYGeeV/pVS50xHf7TJeW lzcTTNlCmEZW8uJgF3joVXv3xzmgCriwne4We4a3hhkkVGkQnzM3Cs2VK4I34XAJ4Iq3DBpsNqI1 vGNufLkMmMPujl4XYFzktxjr7VPLaWEsCXI1O3EENwzM+QVBM6S7c5xn5cfjUc8FgLp549ZtI5lY TLvwQu5w4yM8gg47deKAF8OPY2FpjzmBunKoWjwDsJQEkAAE7c885zUNhpEV1oVrc3N+2IIFUFox sVVIYggj5h8o56cAj3aun2hnWWTWrORbSUPKGAwj+YzHHzfLkttOcn5cVZMNtaWMuiXl7FGLpC0b fcVQ3AVFJJxnnGe9ACppmnHRspessEBQu8sYwPLTbh0IHYA4I64NRxXWnyaIuntcvBFZSxRRSshL HyhG+5lxwOmc8D2q2YLRNFmtZb20ieUs5ljG1cqwXdhmOcNtB59uKz/sVjdyS3Lavp1xJl5Jgy5j 2MEU8B8j7g5JPUg0ALGmjW1/I76mTIJtxHlY5WQscsBzgnBOeBjOO6xWWh2Ukyi7hjMMyyllgCt8 kgJUvj5gCQD6d+afJaadcFbdNXtw9xDcpGuQSwnkDAjnnG0j3pHsrGRZVfWrU29vKzhRjMbPJuO8 7ueQQOn44oAgXTdLitriNtQcbo42Znt9r4UnDKcAmQs4+YZO7HritJrqw1TyJ7hpI1dp7VBtbDZb ZycfKTtGAe5xVS70aFNV8+fVYEuJWL24kT5z+9SQA5b5lBUKAMcH15po02C7FtJ/bNpKkU5uGwuR uWUStt+b5TyATzxjp3AJNP0dA1vJpdykcSRyoZorZU3k+WBkYwwwCdw44Haq7aNpEETw28sTLdRm 3BZFEiL8sLEPjPHoe+a0NOeHS5LjzNTs/sqne8aHasbNt2gAk7RgE4zyW7YqtLb2MGr+XHexvNeX MciRZB8pRukJxnkM24k+49KAFe20+423DX8ubxnTzPIID740jPUfLkqpBPHOBmo5INEulvJ49QY7 1hLfJkZDADC4+YOUVSBn7uOKiTT7OSG2b+3LRoIblSEX7iNuVlWMbzt+6fXhjjFXZ7C0hezsxqlv FeQRRpEjgZYqwYErkEg4xigClYi0jjs5Yr4QzKZIYyYuSvnFcsQOB1wDgbvpXaVx621ksU7DXLPb KfLvGwOcyPIAvzfKfncc5/SuwoAKKKKACiiigDlvF/H2T/gf/stedWB1SW/t5Gu2ltpCWkA8sIo2 sCuMB8hgMe2c8ivQ/GaM4swsjIcscqAT1Xjn16V5bpUts2vKy7DOZT+6VId6Ao5JbCBgQRg89Tye eUxo9o8OHOhwD0Lf+hGtWsfwz/yBY/8Afb+dbFNCCsvW5IvJt7eSziuzczCNI5ThchS2ScHoFPat SsjxDcWdvZwi8QMJJQsWZfLw+CQd/wDDwDzQBhpepLfLL/ZsEKQm2RGjK742eUow+7jbnd0x7YJ4 u2/iW6mMBk05Y45UgkLCfcVWZiqcbeuQcj09elWEh0v+yYdTS0SNBBEUSR9gVQQyA9sgn6/nzVtt S0yS3DLYMvlpapt/u/v2jQf8BYE/jQBWgvLeW3Bl0y1kjntY7mWaZwWJONu8BOpYnGM9Ccdqmi1i F9mzSIfLj2LMScFMyNDwCuTjaeuODjjpVWObTXwP7GljgmWIFxNgBCwjQ4B6gge4AB68VJaarpjp 5Fjpvm+a6LGFkB35MkgLEn5SGViQeRuH0AAzz7dZI449JthZ3EREMGRiQ+ciqW+X5QMk9+vrVu5j s7nRpVXTYI7m8na1dVx/rAxBO7HQFSwOPwzVaN7GV7yX+zFWJoIpAXm2nc8hJUHPy/MuRt7jI6ip 49S0+bT4oRp0q6flGaQvgozjeD13ZyeT1yc0APLRrDYXNppdotxJP9jmDYG1V3KwBC8jKcewFVbL U7WY2xsdBjBaQC1ZlMajcrnO4pwcIOmeo5p8V4JJRZPpzLFst3s7cSAfOTK24sORwnPXoeuedO0X T007+0ooDGq5lCSSYETAMCBk7VwSw445oAqweJ7idYFXTQs1x5ZiQz8bXDnLHbxjYeOeoqNNQtZr lrr+x7feGWK6lJG9WZzHgfL8w4PORxU0NjY6zptrcxwGBLeQgpGTnEe9QqkYPBYkGqiXWlhdOnFj HmQqiqk+Svz4XcvfDN36EnvQBauLz7BMLSwtI4LSC5ijlZGC8thiAuORgjnPf2pU1qLU9Dvrm70x jBDB5/lyq22RdpbHzKORjtkdOaoG/glaHU72yXzzFFIU3YjBLMFdmzgYwRkjjNLFdw2CahDNAzWU k5t1tzMCFjCgNtHXHzZI6AdKAJBfwQ3jxDw+rTRRNGwgjLYJQvsB2bcHIHXq3SmC605Y02aJYvbw pHNK0ZGEDsU+UFBkjZznB4qa/njlt7m+ggMBZjCkvn7fOxlThQevBAPXHp1ENjHp0+rQ3CWsptZR HDE7Oceau+XLDPzZ3Zyc/Mv40gJpdViNnuk0eAxSQ+ZEC2V8pmG4vhTtHQnr+lVLy6treyvmuNLs jDbs8UKwuQxi8vc23CcHDHngfN1HU2tXgtLQTWdrZtudY2mdZSoRGkwAOeh+b5Rx1qG9n0cy3wls A+xlDETkRkHMfzEcKPlwR06Z56MDsVwFGOmOKWkX7ox6UtABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHNXPh25uDJH9ohEJM7Idh35l9T7E/y9Kkm8OtLFKg mjBeK5TO3oZZA4P4YxXQ0UAc7/wj5SK9LzxjzlbDFfuZleT/ANmH5VkWoW6tFvmu7cQxLJcQxKQZ Xj85ZskA9cJj+ddu67lI45GK5E+GtRaG2tzJB5UFt5akOQAfJZD8u3n5mzknpxigCfZZy6TBaR39 ustjON26UxguVJwSCCDhs8dx9aW5srXRrVppZIUVZY51iU5YiNAu1dxyenH1pt7oWoyx3kEH2fyr iTcSZCpIMQTnCnowzjvntVjVdFu7sssItnEtssDNMxBjKnO5eDnP4dAaAKy6K8yNAt1bSS2sXkxB GKsnzBgzkHIYbRj8fWp7sWd0UjOo20k1zb/ZUfIO5x8xPH4cfSpdN0aexvLmV8bm8zy5fOZsh33c pjAwfc/rVC38PairCSd4Gkd8ufMJxmLYWB29c4OOPTPFADW05Hy8mqWP2VGkEbbhzunSUhjnGRtx +Iqa+sRbmR4r6GOdBNIY1cIxV5EfGcgjIUrn/azTrHw48flm5hhJVHRgZjKGJUKCMqMcDGPSobbT tStorjTokhaQpHKbreVLfdDJnaccKcHtkcUALYaRHHaxRyXsIknMEqKT8xCTNLgcknhsdTRJo7rE lq97aCeC3EVvhijhQc+YcHORtHt971pbfw7ew+XGxt2RjEXk3ktFslZ8LxznIGcjB55qxe6FdXV7 cgGBYZ5fO87J8xD5Xl7QMYx3znoSMUASaqJbH7VqS3cIRLMLOWXLqF3EMvucng9SBWRZaVM1tLL/ AGjaC5cM8yvMZfLR4kUktkknKA5zjmtU6TqF3puqRXYto5ry1ECCNyyqQrDJJA7nPSq134f1C6v5 Zy8BReYlZzhwJI3CFQMKMRlSeeufagCutu9xJL9mvEhtWO5yJCI5AnysSQ2VzlTleDt560troipb W9n/AGlatA+CCrfO7CAQnZz04z7dKfdaHdRqt5KbdTGXcxJudSWmjkC8LnHyEE475xTLTStSu4bS TbFFCt01xsLMm3/SGkzjbk7lxjOMenPABebQr6RzcNNbpdYiRJIgy+WEDfMPUnewweMcUt3pd3fa 1dr8kdq/2ZjIVO4mNy2F/ID2zW9bmU28ZuFRZto3hDlQ2OcE9qloA5yz8PTwvameaFhbLDGgRCNy xhsE/wC18w+mPeujoooAKKKKACiiigDlvF//AC6f8D/9lrzLR7gw6klm8t0HDuDEzwMgHPTHz49P wzXofxBvRp9lb3JTftJXBbaMsyAEnBwMnJPYZrzLTJ7eTV7III0CyNGqRTiQl1RwXPyA7SARnPPy kjNJjR7R4ZGNGj/3m/nWxWV4c/5Adv77j/48a1aaEFVryyivURZdw2NvRkcqyt0yCOehI/GrNFAF WaxiuLP7LKXZPl53kNlSCDu65yAc1THhzTw0bBJcoQf9c/zEOXG7n5sMSefU1rUUAZzaTYxwBfKO xFUABj0Vtw7+tYVtqWlQ2iXUdreLGgS6gSSZAuxgwDJufaBgkY46jjpXWSDKEdyMVz1h4Wjh0+zj uLqdrm3iiQSKw+XapXC8dPmbrzyPQUAUJptNmki+yWF5IDLDAJEm2AZUyKR8w5Af8mI9qfb6noaW /wBmgtpnQPEFXzFO/GVU5L8fc/iIJ44ORWzH4ftIrYQRvKoEscqsG5DIqqMcei4P1NNbw9AbOWzF zcC2k4MeVwF5yo4zjn68DFAGZc2mnademHybuV2SDyxHKxkBzIFwxcYGNwxx1NNbV7AWb2L2E6WC W8RXMiq25nZduS2QQV65xwTnoTvy6VbzXaXLbvMQIBg8fLux/wChGqr+HbVpC4lmQ4A+VhwQ5cHp 1BZvwODmgChaa5plrYSR28V15KjzHcuD88khGN5b7xbdznHHXpVSOfQ+bhYLtjHGtzI3n8sRIcbv n+YhgeeVHrW8+hwSRyBppjJII8yZG7KHKnpjOfah9ESWWKV7u4MkUZRGyuVz1PTr+ntQBi3EmjWq /ZLiG6hWW2JwLgElAGcphXLdC3t2z0qtNNpyC/uNRsrmGKK42bBMqMqtHGx3YfDDIBwCenStpfCe nqNu+fy9uDHv+Uny/Lz0znbRL4WtZ0lEt1ds8u7zJPMG5gyqpHTgYVenpQBW0+wtNRuL/H2hYI7k +WomK7HG4OVw2VyWbjA6/StW30OytZ45YkcGPBVfMYqDt27tucZ28ZpYNJjt72S6E8zSSMGbLDBA BAXAHQZP6VoUAULvSLS9nWaZX3gBTtkZQwByAwB5APPNQf8ACOWAjmRROqzLscLO4+XJO0c8D5jw PWtaigBFUIoVRgAYApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiimswRSzcADJNADqKpWGpx39uk6wyQxyANEZdo8xSMgjBPb15 9qmF5bNKsQniMjDKqHGSPUCgCeiq4v7VkDrcRFS20EOME+n1oS+tZFVkuImVjhSrghj6D1oAsUUV Vur+CylhSdwglzh2ICjAzyTQBaoqD7Zb72Tzo96jcy7xkD1I7CmnULNVLG6gCgBiTIMAHofxyKAL NFVlvYd7q7CPa+wF2A3HAPHPvSrf2riMpcwsJCQhEgO4jrj1oAsUUVHNPFbxmSaRI0HVnYAD8TQB JRVae+hgt2mJ3qP7pBzzjim2+pWd0jvDcIyxs6uc42lDhs/Q0AW6KrvfWkZw9zCp3BcNIByeg/Q/ lSRX0LsELBJGZ1SN2AZ9pIJAzz0zQBgeLuRZ/wDA/wD2WuYwB0Arp/F3/LmP9/8A9lrmallI7/RU 2aPaj/YB/Pmr9QWUflWUEf8AdjUfpU9USFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABTXztOACccA96dUcys8LqjbWKkA+hoA5mPSL+Blmt4bWEJcb1tBOxRMo6sQdvG SwO0DHHvVS00G7eOSyKQR+S8IN2Cd2UgRTtGOQTkdehPFNa1WOO2tJdMQyxxFJYDIMSSOMLLu7j5 HGT8wznFFlo66nA1wVW4Ll1M8isvmAxKFPI5G4ZHbvSAvWfh+eHy3ZIVnjR9u+TzAHKKqsBtGPu4 x6Yp+kaDc22pC8uxC2DIwG/eVLLCuc7R/wA826etMhsrmy1CO7uowuyYvLd78mRGTYI8DnhiPb5c 9a6M3UQuVt8/vWQuFx2BAP8AMUwJdwrJ1izmu57OaCG3nNuzkxTNtDZUrwcHB59KyNatL3zbpRGB BNcbkmMmPmeDyVTHXO8j25zUh0CS1ne4sraEOHLIGbgjyGUg+xfBPr1oAryeGdQmiSB5YHijt/JV txGVMQQjAH94Z6nt6Vcu/D8jSzTQLEC14JlRW2EoIBHtztOO5xir3h6znsbSdZ0Kb5t6I23KrtUY wvyjkE4HrVzVIZbrSru3t22TSwuiNnGGIIHNAHO22jyfaLk20kIkt1eKMyEv5cjQwheSOcbTk+/1 qWy0S/gvo7j92reeXdjMXxGVQFSNoySVznjH6VSvNEv5dPuYrTTo7ZbiRnSNWQtE3lKqnPIHKkkr z0x3re0q0mtdQ1B2hKQyuHR32lmYlieRzt5GAeRkjoBQBsVl6tazXLWcsEcMptpjI0Ur7VYFGXrg 4I3Z6dq0mPyn6VxOk6NJeWFhI1osNuYoTOGcf6QQwbccHsM9f7xHQUAXk069uSyIsCWySzmNmLBy WckjBXoDuwe4wRVe80K8Edxbwpb5uTeQhtzABZzv3HCnBXGMHg8c9qV9GmimLzqgla4/0Zi2SG+0 yS8enyEfqKrahZzw6DfRNbBLu2tpXuJwwzcZilUPxzktzg8jP0oAv32g3stjdQW7W4NzNMzktt4Z cLk4JOPT361NYabcx30FxGVASe4812JG5GkchQpX1YfMD69RVC/0e/lsbqK2sktoZiSsW5CY3EeA +TkAE9SPm4B4JNXbTTrqPUbS5EYkHmzu0hZWQRu7sNvcN8y9OCCc9BQAeLhlLQ+7f0rnLePzrmKI dXcKPxOK6bxcP9Gtj/tn+VY+gQ+drMHGQmXP4Dj9cUnuPod4OlFFFMQUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzh2hcRnDkHaT2PapKKAONstLvRcI32O4hUpCk5 kmBMjBZd5yDzyy88ZzS2+k3VrBaxy2k0toqxCWBJckkRYPVuQG7ZrsaKAOSktNUmfyPs04jjaY7m kG190yOmOeygjnpioBp1+sjyf2fK0piaOd3cMJSZUJZRu5+UE4OOw9q7SigDiU0vUm+yi4tbiSRJ LcxyGRSIkSbLBvm5O0DpnPHpTYNM1NLAtIJ5rtHQtFtAjkkUNksd+SDkHPGMLxxiu4rlPsdzHqN0 Yo73as8k21ZnVZTsUoM56ZzwPTB4oA0vEcdw+nRmFgIo5A9wNu7dGAc8ZHQ4PXoDWNa6W160bPJN cIkscbuZsHy/IGQwDcZbGR39+tVWh1WW0njnTUJLciYRLGZFbeUj2ZyxYrkyjk4z1HStOCG7jmtV uUvvs4LDELMMPiPbu2nO3hvb1oAuxJdXHguNI3L3jWIUMsgJaTZj7w7571mXWnajqMt7M8F1EjJM 9uhmClX8uERn5W/vK5HpUdtHqw8kSi+F1+62NvbyxHt+cPzgtnf15+5jpTPI1aLTo42F+7TQQNIx kkZo5Sj7yArA9Qg2ggAnNAG/osS28mo28bExxXICAtu25jQkc8/eJP41i2+l6jc6q5ubd47OSRTJ Gj7VOBNnoxJBzHk8Z9OK09ANzCZ1u4JhNOyys7LhciKIHJ9Sc/kfSt6gDil0a9hhtg9tcTJtt3uE 87LM4Egc5J9CoPPIwKQ6Xq5jKMkv2UlP3LESER7pyFK7hnAaHPPbviu2ooA5GHRbwtvlNxI/mBPM kkwWi+yhTkA4GZOvvz70aZpuoR6hZySrNDDFGgRQoOwBMMhbf3bJ6HOV9OOuqKe4htojJNIkcY6s 5AAoAwfF3/Hrbf75/lUHhK3zJcXBHQBB/M/0qh4n8SaVdQwxW90JWRiTtUkDj1rQ8Na5pC2Edut7 Es7Esyv8vJ+vXjFHK7i5la1zqaKQHPSloGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUYFFFABRRRQAYFFFFABRRRQBma5rMGiac11Nyfu xoDy7eleSarrN7rNyZruUkZ+WMcKn0FbHjrUGvNfa3DfurVQgH+0Rkn+Q/CpdO8K6ZqGiabf3ccx DO3mbJWXkMQOh6YFOc1SjzSMbSqT5UcnRXog8I6Qt3JbtA3zjML+Y3+NVpvB2k3emyoYJUmjb59s rAkZ+tZfXafZlfVJ9zJ8N+LbnSZUt7p2msScEHkx+49vavVYpUmiWSNgyMAVYdCK8i8TaZYaZNZp p6MkbwAsGcscgkdT9K6/4fai11pM1nISXtWG0n+62cfqD+lbXUoqSJg3GTgzsaKKKk2CiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooA8W8Rgr4k1EN189j+ZrZ0/wzZahoemXd1LeCNnYsIpyoBDEdvYUvj/S3ttWW/RD5Nyo DH0cDH6gD9a8913U7yCG1ghvZ40Eu4okpAA9cA06sHUp2i7Mwpy5Kl2j18eHrYXbW7z3eduYG+0N +Heqd14YtL/TJVeW9EiN+9C3LZIz9a4ddTvZFR1vbgjAKnzT09qzNf1e/i019uoXKySEDiZgTzz3 rleEqfznQsRDblOo8TaZaaZNZx2bytG1uCRLJvIIJHX8K3vhsG+06ic/KFjBHqctj+tef2t1JdWV u8kzSny1GWYnHHPX3r1rwLpTafopmlXE10285GCF/hH8z+NdivGCT3Ode9UbR1NFFFQbhRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAZ+t6LZ+INJn02+j3wTDBwcFT2IPYivm/xh8N9e8MTvKsct9p2cpcwqTtH+2Oqn9Pe vqCjFAHxZ5rjjewx2zT4kuLqZYYUlmlbhUQFmJ9hX11deGNCvZTLdaPp80h6tJbISfxxVix0fTdM GLGwtbbPXyYVTP5CgDxr4f8AwkvZbmHU/EivDBGQ8diT8znqC/oPbqe+K9yVQowBxS0UAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q== ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image020.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAJ1AiUDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD36iii kMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AopjTRp96RR9TUZvLcdZk/A5oAnoqqdRtR/y1z9Aab/adr/fb/vk0AXKKqf2lbf3m/75NH9pWv8A fP8A3yaALdFVRqNqf+Wo/I1ILu3P/LZP++qAJqKYsiN911P0OadmgBaKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqCS7ijbZu3P/dUZNM8y6k+5GsS+rnJ/IUA WqikuYYuGkUH0zzUf2Tf/rppJPbOB+QqWOCKL/Vxqv0FAEQu2f8A1UEj+5G0frRm8f8AhijHuSxq zRQBV+zzN/rLp/8AgAC0CxhJ+cyP/vOatUUAQLZWy9IU/EZqQQxDpGo+gp9FACbV/uj8qXA9KKZJ IkSF3ZVUdSxwBQA/A9KTavoKzD4i0dW2nVLMN0x5y/41fhuIbiPfDKkiH+JGBFOwrocYYm6xofqK jaztm6wp+AxU9FIZUbTbU9EKn2NM/s4r/qriVfxzV6igCh5N/H9ydX9mFIbm9i/1ltuHqlaFGKVg KK6nDnDhoz6EVajnilHySK30NK8Ucgw6Kw9xVWTTLd+VBQ+xpgXciis37Pe2/wDqpvMUdmpV1GSI 7bmBlPqBRcDRoqGK6hm+44J9OhqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKazqilmIAHc0AOprOqD LEADuTUHnvLxAnH/AD0fgfh60q2oLB5WMrf7XQfQUAIblpOIIy/+23C//Xo+zPLzPKWH9xeB/wDX qzRQAyOJIl2ooUewp9FFABRRRQAUUUUAFFFFABRRQaAMLxL4jh0G0B2iS6k/1UWevufYV5XqOrX2 qzeZeXDSc5CZwq/QdBU3iHUn1TWrq5JJUOUjGeijgf4/jXWL4I0hdQHmC4/eRARHzm259xTnUjSS bW5ioyqtqPQ4CrFpe3VhOJrSeSGQd0OM+x9a7f8A4RPTGtZGEUgmhb94vmHkUP4N0Q39rclLn7O6 4CidgAT6jvWSxtJlfVaiNXwp4rXWVNrdBY71FzxwJB6j0Pt/kdSOleIea2la20tsxBtrhthz2ViM fiOK9qtJ1urOG4T7ssauPoRmtpKwqcm1Zk1FFFSahRRRQAUUUUAFIyqwwwBHuKWigClNpkMhyhMb e3SoP9OtP+m0Y/E/41qUUAUoNShkwr5jb36fnVwEEZHSoJ7OGfJZAG/vDg1SNvd2XMD+ZH/d/wDr UgNWiqNvqUch2yDy29+lXQQaYC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRTJJFiRndgqKMszHAA9ajubiGC1aeaVY4gMlycAZ6c0ATZGM0yO 4hmDGKVJApwdjA4P4VzNzdO+jrYlLpt8UckbStmS4iBBkBx/Ftzx1IP1w95NKF3p76Q9uLlpVUpb YBaL+LcB2A556ECnYm509FRyzJCu5mx2A7k1DslueZMxx/3AeT9TSKHNcbnKQL5jDqf4R9TQttuY PO3mMOg/hH0FTKixqFQBVHQCnUAGKKKKACiiigAooooAKKKKACiiigAooooAKRuQaWkPWgDwNwUZ gw+ZSQRXoCeD9DXVo5ZIH814/wBzKLhxjI9N2O9c343sI9C1l5pZI47W7YvGznaMnll59+fxrz19 Ss/+EmjnFxH5apsLhhjOD39OadaHtErO1jGk+Ru6ue2jQLE2sh8uUTxH94PPk+Zf++qhm8K6BJqV peS27sjJtXNzJ8n/AI9715n/AGtYf8/9v/3+H+NY9xqdm3iK2m+0oYo02M28EZOf8a51hZr7Zt7d P7J1N5GkV/cxx8xpKyrzngE4r2bQFZfD2nBzlvs0fb/ZFeO+HLWLxHq8dlazxygYeYo4OxO54/L6 mvcY1VI1RRhVGAPQV1zfQxpJ6sdRRRWZsFFFFABRRRQAUUUUAFFFFABRRRQBWuLOK4HK4b+8OtUs Xen9D5kP+fyrWpCAaLAV7e9iuBgHD/3T1qzVC501XO+E7H/Q/wCFRQ30tu/lXSnj+Lv/APXpAalF NR1kUMrAg9CKdTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo rM1C5sTdW9vPMRcK4kiRNxOeQCwX+Hk9eKBFq8jhubaW2m5SWNkZQcEqRg1gqmoXmgi8M0M0csW/ 7E0Y2GPH3N3XdjjPTPamK1x9vubt5rKzvIo1+0C4hL7FGfmRty/IffvmprDTVv8ATN/2q4ggmL74 ImAjcbiCVyNyq3XAI+9TJ3JLGze8sEtZfMMKKktndAjeqkfL/wACXp6EfU1qMY45WWCJGmb7xAAx 9TSKxkVYLYBIUG3eBwAOy1aihSFNiDA/nSbKSI4rfa3mSNvl/vHt9PSp6KKBhRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAZmuaDp/iPSpdO1KATW8n4FG7Mp7EV4F4r+D+s6CZbnTnTULEH IOQkqjPAKng/UdfQV9IVzfi2YLb28A6s5c/gP/r0MD5ki8L+IJpPLi0PUZHxnCWrtx68Cun0L4Q+ KNYlQ3VsNMtSfmkufv49kHOfrivZvCv/ACFX/wCuJ/mK7KhA1Y5/wl4P0vwfpn2TT0LO+DNcPy8r ep9B6AcD6kk9BRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQz28c6bZBkevcVNRQBjst xpz7lO+Enn/PatG2uo7hMocHup6ipiARggEHsazLmxeB/OtiRjnaO30pAalFUrO+W4G1/lk9PX6V dpgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFNd0jRndlVVGSzHAArGi1DVd QBnsLe2jtf8Alm1yWDSj+8APug9iefagTZcvNUgtJhAyzSzFd/lwxlyFz1OOgrLs9Stbe4urpw7W 146yxXKxMwI2hdhwMggg9fX61TnF1e387G2n2Nsjv7SIr5nyg7drEgFGB7c8Y9RWzpkcyyXN1PC1 tC4VYoHI/dqoxnAJAz6D0FUTuJaIb1zfXUTR+XKxtt42MsZUA7vqQTg+1WxuvDxlbcd+7/8A1qRV a8OWBFuDwv8Af+vtVwAAYFSUkCqEUKoAA6AUtFFAwooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigArjPFMu/VFjB/wBXGBj3PP8AhXZ1wGtyCbWrpvRtv5AD+lJjW5d8K/8AIWf/AK4n +Yrsq4zwr/yF2/64n+Yrs6FsD3CiiimIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAz7yw8wmWEYk6kDjP/wBeks74ufKnOH6AnvWjVK9sROu9OJP50AXAaWsyyvjuEE/DDgE/yNaY oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiio5Zo4Yy8rqij+JmwPzoAeyhgQeh61jNBNo ztLao8tgTl7deWi9WT1Hqv5ehrR2lvqGqXyX8kpuI5B5Mazsm2LaMMoUjqc8+ox2xV/Q7h5rOUPK ZlimeJJj/wAtFB4Oeh9M+1Mm9yPS/NuLy51WWMwxTIscKMMN5aljuYdiSx47DFWwDfOGYYt1PA/v n1+lIxN9KUU4gU/Mf7x9KuqAoAHAFIaQAY6UtFFAwooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAK83vDuvrhvWVj+pr0djtUn0rzNjucn1NJjRs+Fj/xNyP8Apk38xXaVxfhb /kMH/rk38xXaULYHuFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA Ub6yE4MicSD/AMeplhelj5Exw44BPf2+taNZ9/Z7x50Y+cdQO/8A9egDQoqjYXnnL5b/AOsH6ir1 ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACHpXOahf2t48iz3FtZmzuR5TXLBt7gEHchxxhsjn3+t zWr2S3a1hW5W1SZn8ycgZVVUsQueMkDvnoeKpWJuV8kTjNxeCTyJ5o1MsSgAqGAAzkZJ9OBTRLYR 2pvtSijuiNTtjEZGllt1CIeCvlsByDzkZPQc+utJglbK1VY1Aw2wYCL6Co4ohpenxWsTGWXnaSOW YnJOBwOSeKuWtuII8E5c8s3qaTGkSxxrFGqIAABinUUUDCiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAZL/qn+hrzQdBXpc3+pf/AHT/ACrzMdBSY0bfhb/kMH/rk38x XaVxfhb/AJC5/wCuTfzFdpQtge4UUUUxBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAZN/bNBILmHjnJx2PrV60uVuIt3Rhww9KnZQwIIyD1FY0ivp12HTPlt29R6UgN qimRyLJGrocqRkU+mAUUUUAFFFFABRRRQAUUUUAFV764NrYz3CrvMUbOF9cDOKnPSsUy32paheQ2 1ylrDauIzmIO0jFQ2eTwvzAe+DTQmJ9kSfQ5JtSlN6JIxOwJCopAyNmPu/XOamsLS0ihj1LdcO7w gq1xIXZFIB2jPTtn6Vn6dpcF19otLlpQLaXZJbpK3kPwGBCnoCCPlzjr1rWl/wBLuhbr/qo+XI7+ 1DEh1ojTObuUctwg9BV6kACjA6UtIoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAZL/qm+hrzQV6aa81lUpM6nqGIpMaNfwt/yGD/1yb+YrtK4vwt/yGD/ANcm /mK7ShbA9wooopiCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKh uYFuISh/A+hqaigDIsZ2tpzbS8AnjPY//XrXrO1O23r5yD5l+9juKmsLnz4ME/OvB/xpAW6KKKYB RRRQAUUUUAFITxS0113Iy5IyMZHUUAYd9rcU8U9patLHI5NvHcsjCLzDxgOAcHPGemarQGN7iFLl 7rTNT2CIkMCs+B2Ygq/fGfmpJtI1CxtbW1hIu9Pt5UcxgBZsKcgZyFbnBPQnHet2zuoL+EyorgK2 CssZRlYexFMhasrrBFpNo4iLvLK2S8jbmdj3J+n8gKt2dv5EIB5duWPvVaL/AEy+Mh/1UXC+5rQ6 CkWLRVLUdUstLg869uEhTtnq30HU/hXOTfETS45CscF3Mv8AeCqB+pzTs2S5JbnYUVytn490e5fb K01sScDzU4/MZ/WumimjnjWSKRZI2GVZTkH8aGmhqSexJRRRSGFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABXnWoJ5epXSekrfzr0WuF8Qp5etz8YDhW/QUmNE/hb/kLt/1x b+Yrs64zwr/yF3/64n+Yrs6FsD3CiiimIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACikzWLqfivSNLkMc10HlHWOIbyPrjgfiaEr7CbSNuiuNX4jaWX2m1vAv8Ae2r/APFV uaZ4j0vVjstbpTL/AM83G1vyPX8KdmhKcXsapGQQe9YzA6ffAgHYf1FbOc1Vv7fz4DtHzrytIotK wYAg5B5BpaztLuNyGFjyvT6Vo0AFFFFABRRRQAUUUUAJiql/N5MG1Pvv8oq5Wan+l6iz9Y4eB9aA LdrALeBU79/rWd4j1yPQtNa4YBpWO2KMn7x/wHetjtXlvxAvHn8QLbH7lvEAB7tyT+WKqKuyJy5U cxqWqvcztd6hdAuxxvkYAfQegqLPvXT6breg6V4ehfUbiGO4SdvleEtkHp0Brof7b8Pi7LCeHyZl +dfKOUP5VlPEShLl5SY0FKKk5Hmks0UMZklkREHUscCt3w74kuNDu1w7SWbH95FnP4j0NdDd+IvD dtpzC7u4FET/ALtzCTu9vu1z3ibULPU9ShubIoY/s6q2xMDcCc/piqpV3UdnGwqlL2a5k7nsFvPH cwJNE4eORQysO4NSVyfw+vGuPD7QO2TbylAPRSAR+pNdZVPRmsXdXCiiikMKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAK5HxZFtvYJccOhXP0P/1666sLxRbmXTRKOTE4J+h4/wAK TBGV4V/5Cz/9cT/MV2Vcb4U/5Csn/XE/zWuyoQ3uFFFFMQUUUUAFFFYWq+IVsbhreGISSL94scAe 3vQBu0n41xcnibUX+6Yk/wB1P8SaqPrOpSdbyT/gOB/KlcLHf/jQWAGSQB715w95cyffuJT9XNQk k9ST9aLjsekNdW6ffuIl+rgVGdSsh1vIP+/g/wAa87wPSii4WPQ/7UsP+f23/wC/gpP7UsP+f23/ AO/q157RRcLHoY1OxP8Ay+W//fwU4ahZHpdwf9/B/jXnVFFwselLPE/3ZUOfRhT8+9eY4+lPWR1+ 67D6HFFwsel/jS15ymoXsf3LucD03mrMevanGR/pRb/eUH+lFwsd7RXGx+Kb5T88cLj6EH+dWJPG CLbSu9qVZUJGHyM4+gouJmR408VSLNJpWny7dvE8qHnP90Ht715+s0TyPGsiGRfvKG5H1FXLacNq kM9y+4GdXkZhnPzZJNdpBrfhN7+8so7mxyQGLeVgoe2TinVqOlayvcwhD2rbbOCyPWmrOi3GxJQJ lG7aG+Zff1r0U6toRt4n8+zE8LYxtHzr+VQP4g8LDUbmKCazeWSAl1EPzISPXHuKzWLbduVlvDJL 4i/4M8UPqI/s++fdcoMxyH/loPQ+4rs+teFafdvYX9vdRnDRSBvw7j8q9zU8e1bzVmKnK61Me5U2 V+JV+6Tn/EVsowdAwOQRkVV1CDzrYkD5l5FRaVPviMROSnT6VmamhRRRTAKKKKACiiigCveTeTbO 2eSMD6mm6fD5VqufvN8xqveH7RfRW4+6OWrRAxQApryfx5btF4nlcj5Zo0dT+G3+lesVy3jbQn1T Sjc20LS3dqCyImMyL3UZ7+n096qLszOpHmjochp3ibRtF8Pw/bLgxXKTnA8pmyDyOg9q6H/hKtDF 2zi4JhmXEi+U3yn8q8I1nxDb3ka2ywTxlHy4kQAgjPGM/WryeMLDYu+C43Y5wq4z/wB9VlPD05yc rjjVqRiopHrt14w0G105xc3hAjfMTiFzn26Vz3ibVLfV9ShurZtyiBUY7SPmBb1+orzXVvElrf2o hiinUbtxLqO30Nb/AIZ1FvEeoW2l2VncNcvgOQo2Io6sTnIH/wBYdTTpUIUneLFVnUqRs0dv4cvL qytJWt5mjEj84xzitn+29T/5/JPyH+FbMfg22hgSKK4lUKMZIBz71HJ4RlH+ru0P+8mP6mqlqzSC SVjK/tvU/wDn8k/If4Uf23qf/P5J+Q/wq63hW/H3ZID/AMCP+FQN4c1NRnyVb6OKkrQh/trUv+fy T9P8KT+2dS/5/JP0p50LUx/y6N+DKf60w6NqQ/5c5P0o1DQT+2dSP/L5L+dH9sal/wA/sv50n9k6 h/z5zf8AfNH9k6h/z5zf98GjUQ7+2dS/5/JP0o/trU/+fyT9KQaPqJ6Wcv4jFPGiakf+XN/zH+NG o9BP7a1L/n8k/If4Uf23qf8Az+SfkP8ACpF8P6ox/wCPbH1df8amTwvqTDkQr9X/AMBQLQq/23qf /P5J+Q/wo/tvUv8An8f8h/hWinhK6P8ArLiJR/s5P+FWU8IoD+8u3I/2UA/qaLMNDGGuakCD9rc4 7EDB/Sux0y/TUbRZk4bo6/3TWNe+FY1tibR5DMOcOww3t7VkaXfyaTqH7wMEJ2yoev1x6imB3tFN R1kRXRgysMgjuKdTEFFFFABRRRQAVBe24urKaA/xoR+Pap6Q9KAOP8KqV1aVWXBEJBHocrXY1j2e ntba/dzhCIpU3Bvcnkfpn8a2KSBhRRRTAKKKKAEPAzXnF5L599PL13yMR+degX0nlWFxJ/djY/pX G6DY/bNTj3DMcWHf+g/Okxovw+E3khR3udjlQSvl52n060//AIQ//p9H/fr/AOvXUUU7Cucv/wAI h/0+j/v1/wDXo/4RD/p9H/fr/wCvXUUUWA5f/hEP+n0f9+v/AK9H/CIH/n9H/fr/AOvXUUUWA5f/ AIRA/wDP6P8Av1/9ek/4RBv+f0f9+v8A69dTRRYLnL/8Igf+f4f9+v8A69H/AAiB/wCf0f8Afr/6 9dRRRYLnL/8ACIf9Po/79f8A16P+EQ/6fR/36/8Ar11FFFgOX/4RD/p9H/fr/wCvR/wiH/T6P+/X /wBeuooosBzH/CIf9Pv/AJC/+vVe+8I/6BcbLou/lttXy8ZODgda6+kIzQDPCbKSOG+tpZCBGkqM xxngEV3EHi3w3JfXlhHfLtADZMLjYe3Uc1yvxBtl8K6j9qa2uGsLlspLGoKo3UoeRj1Ht9DXm9r4 jt4tWnu5IpNk3BAAyPTv7UVacKtrvYypudO9ke8HxJpTW0Tfa0FxC2AdjfMv5VXk8Y+H/wC0bm3g ug8kkBMkfkv8pI9cY6kfnXkf/CX6b/zyuf8Avhf8ay4fEcEetS3rRyeXINhAxkDjB69eBWKwtNNN SZp7abTXKdtDE080cSAl3YKoHqTiveUGFAPYV5V8NLH+3JhrbW80dnC37gyqB5r+o5PA/n9DXq9d M3fYypRaWohGaxv+PHUsdEJ/Q/5/Stqs3Vososo7HB+lZs2RpUVXsZfOtEJPzDg/hVimAUUUUAFI xAUk9BS1V1CTy7N+cFvlFAFfTwZp5rk9zgVpVWsI/Ls09SNx/GrNCAKKKKAOI8XfDDQvFcrXTK9l fsObmAff/wB5ejfXg+9eb3XwG15JiLTVNOlizw02+NvyCt/Ovf6KAPDNK+Al40oOr6xDHGOqWiFy f+BMBj8jXrPhzwrpHhWx+y6VaiINgySE7nkI7s3f+Q7VtUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABisnV9Ei1FC6YS4A4fsfY1rUUAc1oV5NZ3B0u9Uow/1W7+X09K6Wqt7YQX0YWUHcpyj rwyn1BqyowAMk+5oAWikZgoyelVLq4kWCRoE3uFJRScbjjgZ7UAWi6qOTUbTjsCa8w074oBktbbU 7cRai96YbhcFVij3fe57jOMexNejF1UZYgCoU09jSdKUPiJjM59B9Kz9X1yz0OxN5qN15MO4KDgk sx6AAck/4VK11GOmT9K434i6ppMegpb6layztLLugSOTYwYDls4OAAfQ9aad2ZPRXOv0zV7XWLCO 9sLnzoHyAwBHI6gg8g1cEjj+I15t8PfFljLbroltpz2pjDSI3mFw5zlsnAwe/wDnFd6Lwd0/I0PR jj7yuXhM49DTxOP4hj6VRF1GeuR+FSq6v90g/Q0XHYvKyt0OaWvP9P8AiBFfeMZNB+wSR4keJJt/ JZAScrjgHB7+ldwkxHDcintuSnfYq6++zRLk+oA/MiofD1j9k01XYYkmw7fTt+n860Lq2iv7YwyE 7GIJx3wc4/SpwAowOgpjFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK19YWupWUtne2 8dxbyjbJFIuVYe4ryPX/AIEwTSPNoGom3yci2ugXUfRxyB9QfrXstFAHzwPgV4oLYN5pQHr50n/x Fdb4c+B+nWMqXGuXh1B15+zxqUiz785b9K9aooAjhhjghSKGNY40UKiKMBQOAAOwqSiigAqOeLzY HT+8KkoNAGTpUhWV4W4zz+Na1Ysv+jaoG6Luz+BraoQBRRRQAVmaifNuIYB3OT/n8606y0/fayx6 hAf04/rQwRpqMDFLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABTHkCD39KJH2L79q838Wa14o0DxB9tggF1pc0YgiiQE7ZD0LehLHjsRx1qZSSRdODm7I79mLHJ NRySpGPmP4VwekfECZry00XV7KS31QsYp3YbVDfwHH+0ePTOMcGusyXbJJJ9TUc19hzpyg7SMbU/ DOk6k2pSPaqk1+gSSUDJUjow9DnBPrjmtDThdHT4BdgfaFQLIR0JHBI9jjI9jWlBZvJzjA9TV+Oz iTqNx9TQoic21ZmUsLN0BP0FEujJdMjT2kUrJ90yIpK59M9K1Jr21tWCTTxxEjIDMBmpo5ElRXjY MrDII6GqSV7X1J1MtNNaNdqRoo9AcUGxlH8H5Gr9zIyBArbd7Bd3pmmxF47jymlMgK7vmxlefb1/ pQ7XsK5mNCydVI+ornvFFjr93aINEvVt2XJdR8rP6AP2H5fWu9wCORUMlpE/O3afVafLbYHroeX+ BLnU4tbvLfW9PzeLHvW7khAkIzgjzAPm+uT0616PHKkg+U/hUE9k6fMBuHqBVblSDyD2NJt31CKs rGorFTkVZSQOPf0rMhuNx2uefX1q0CQcjrTTGXKKZHIHXPfvT6oQUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGXq8f+rkH+6avWknm20b9yOai1GPfZv6rzUWlSBrdk /utn86OodDQooooARjhSfTms3ShvaaU9zj+tXLxtlpK3+zUGlrttAfVjQBeooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkY7Rmg1h694m0zQpbSLULjyftTlUOMgY7n 0HI59xQ3ZXGk5OyNFmLnJqrczADYME98jpVGPxJp1xqtxpkE6tdwxrJgEEMGGeD3xxn6ipOWPue9 Zt3Ks1uQS2Nvd71lgSTzFCsSuSRnIGfrz9a2YLRYk3zY9cHt9aLaFLeMSykKT0yelS3luLyykg3Y 8wY3DtRayutyW77jre6guVJglSQDrtOcVNWRo2kPpryu8ocvgADpgVdvJNjxAzGJGJBbj096VOcn C81ZhJJOyKWqaN/aUyP5/l7FxjbnNX7SEWdpFCXBEahdx4ziktHDvIFm81BjB4/pUOp6YmpRqrSM hU5GOn4ip5FG9SC1Y+Zu0W9C6wjlXB2up/EGmxwxQA7ECg9cVU0vS002JlWV5Cxyc8D8BV5lDqVP Q8VpFyavJaktK+hSt9Xsrm5NvFLmTtxgH6Gpb2SRLVinAPDNnlR6j1rNsfDyWd8LjziyrnYuMY+p rbwCMHpWdJ1JRftFZlS5U/dKtnJJKsnmEnDYXKFSRjrSXNmsgLIMN3HrU800duu6RwqkgZPqaerB xkEEe1aJK1iTBZSpIIxVi3ul3eU7jcBnrzirt5aiVCyj5h+teQ+O/DdxY3w8Q6V5iSBg03lk7kbs 4/r/AProS1sEm0ro7fw9480rX9VlsbITrIil1MqACRQcEjn3712IIIBFch4Z0DTbGJNQj0+O21Ke FftBUnhiAWAGcLz2HpXUwP8Aw1V0JXtqT0UUUxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAyRQ8bKe4IrK0pts7oe6/yrYrGh/dasV6Zcj86ANmiiigClqj7bMj+8wH9f6V LZLts4vdc/nVbVj+5Qf7WavQrsgjX0UCl1AfRRXN+J/FcOhoIYlEt64yEJ4Qerf4VSVxNpas6Itg ZponjJwHQn0BrxTUNa1HVJC13dyOD/ADhR9FHFUAApyBgjuKvkMXWPfQaWvHtJ8WarpTgCdriDvF MxYfgeo/zxXqGj6xa61YrdWzcdHQ/eRvQ1Li0aRmpGjRRRUlhRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAjcDPpXJ+KPCOneKkU3ZkjuI1IimjblfqOhFdTMcJ9apytsiZu46VMtSoScXeJ5lo/w 5OmSTTSaiVvYpQbW4gBwqgfxKeDnOCPQdea9F0yCSQK84XeAN23kE+2ardTWxa7IodgI3D73PQ1E YpF1KsqmshLiNhMkoQyKqkbRjg+vP4iltEMaNlQgZiwT+7ntTppwtq80Y8zahZQp+9gZrxHSm8U+ OJr++ttfaC6gwyWizvHkHoFA4A7Z/P1rRQTdzCUrHulGM1ieFf7aHh63OvlDfYy23Gdvbdjjd644 ry3wv42v5PiCpu7+4ewu7h4lieQsqbj8mB0HO0fjVctxOVj20DFB6VxPxO1+XRvDSx2s0kN1dSiN HjbayqPmYgj8B+NJ8LtYudW8MSfbLiS4uILhkZ5WLMQQGHJ+p/Ki2g+ZXsdMYJfMLBD5G7mLPJ9/ p7f/AKq0RXHfEjX30Lww4t5mivLpxDEythlHVmH0HGfUiuf+F3iS/ub6+0fVrm4lnAE0X2hiXGOG Xn/gJx9amMLK4OavY9Rpa5X4i3dzY+B764tJ5IJ1aLbJE5VhmRQeR7GvNrc+NIPCy+KofEErWykk xPOzsAH2cqwKnmqUbicraHst/ZtctG8bDch+6+SuO529zUtjbG0tlhLK23PIXGea8/l/4SHxx4W0 jVNJ1MadKiyi6VZXjEjAgZG0Hj5ScH1rk/CMXi3xXLM1r4huI0tWjMgmupBuBJ6Yz/dNSqavzdQd R7HtU935Eux0yW/1eD1+vpVS9gK7ZCAN33gOma0DDGS+UBLjDZ7iklhD25jHYcVNn1LMmB/LlHoe DWiDtIIrK6da0IX3xKT16Gkhs0QcjNFRwtmMe3FSVoIKKKKACiiigAooooAKKKKACiiigAooooAK KKKACjNV7y9t7C1e5uZBHEgyzH/PJrzrV/H99cSMmmgW0OeHYBnP58CqUWyZTUdz0zNLXiD63qzu XbU73cfSdgP0NaWn+NNasWUPcfaYh1Sbn/x7r+tPkZmqyPXaKx9B8RWmu25eElJk/wBZC3Vff3Hv WxUWsap32CsW7/d6qG91atqsbVRi6VvVf6mhjNmikU5ANFAjL1YndCvrn+lagGABWXqfNzCP89a1 aXUZXvrtLGxnupASkUbOQOpwM145axyeIPEEa3MrK91L87gZI+n5Yr0/xcHPhe/8vO7YM49Nwz+m a8s0WA3Ot2cKyyRFpABJGcMvuK0js2YVH7yR0MXgaFY7lmv7p5UbJjITCr7cZ/Opv+ELsA0DfbLn yJeC2Fyp/Krdt4dnie8m/tzWHud2WR7gEbf9nj/PFTHRV8uA/wBq6l9ll+9++Hyt+VeZ7ef8/wCH n/Vzt9jG/wAJizeC4LRNSlkv7lnhiaWKNlXbwM9hn9ap+DtVbTdehjLHyLkiJx7n7p/P+ZrYvPDj wLqs0+t6tLIsDskck4KEBScYx0/+vXGWsjRXkEi/eWRWH4Gu7DSc4O7ucldKE1ZWPdx0pa53/hLb ccfZZvzFH/CW2/8Az6zfmKdzWzOiornf+Ett/wDn1m/MUn/CXQf8+sv5ii4WZ0dFc4fFsXa1f8WF N/4S6L/n0f8A76ouFmdLRXOf8JdD3tJPwYUv/CW2/wDz6zfmKLhZnRUVzv8Awltv/wA+035ij/hL bf8A59pvzFFwsdFRXO/8Jbb/APPrN+Yo/wCEttv+fWb8xRcLM6KiudHi22/59pvzH+NOHi207284 +mP8aLhZnQUVg/8ACV2PA8q4z6bR/jWpZ3hvFLi3niXt5q4z+tMB1y6qyKWALdB61i3Or2J1BtL+ 0oL1VEnkk4JU55Hr07U3xf4ah8T2kFtLdS25gk81HiAznBHP51w6/DKWPVEn1HWZbyMIQHG5JVI+ 6QxJ6VlNvojenCm1eUrHf26b50X1NW7qxluZy6lUUAAAf8tPZvb2+tUNDtZLV44ZLqW525xJNjfj HcgDP1xn1zW5PKYVUhC5ZgoAxRypx1Mno9Ajysah1CnH3R0FeX+KfBctpdS+JvCVwEmidpJoYnzg g/MV7dQcofp7V6NcoNRt7iwnSWESxFSyvhgDxkEHg15evgLxppAubDR9UjOnTk7v3uwkH1GDg467 TWsGmtDKav0Ok0fxs2sfD/UtUdVjvLOGRZFXoXC5Vh3AORx9a8xj0R/+FeLr8IK3EGoEbxwdhCgH Ps/8zXo8HgK70/4f3mh2dxA9/eSK00zkqnVcgYBOMDHTuelbGl+FPs3gA+HbpojI8MiO6crvYkhh kDoSPyq07E2b3OAnv1+IfjnQ7YBjawQJJOvUZwHcfntStP4SyfYdW1/SGJ3RSAgf7rMrf0rZ+H/g a68LXN5dahLbyTyoscZgZiFXOTnIHJOPypdO8IalpHjnVdbtWtWtbqOTZGXIYM2G5G3GNw7HpRdb Ak92cX4/1y01Lx7b216zPpmnOscojGSxzmQD8gv4VU1XxZpy/EC18R6QsyRAobhJECk8bWwAT1TH 413fg7wA+l3F/d+IFs7+7uGBVtvmKOpY/MBySfTtWn4r8FWOs6FLaafZ2VpebleKVYggBB5BKjOC Mii6Fyvch+JUqTfDq9kjYMj+SykdwZE5rxuOG7EGk2+oahcQ6RfElMOzJGBIVY7c4yCMn6ivXrjw vrN38Nv+EcuJrVr5AiLLvYoUVww5256DHTtVWf4fz3fw7tNEmkg/tK0dnilUkpkuxIzjOCD6dQKE 7BKLbudfpel22i6DHp9oCIIYyFLHJbuSfcnJrzr4Kj5dZ/7Y/wDs9d54asdT0/w1Dp+qyQyXMKmJ ZImJDJ/DnIBzjj8KxPh54Q1DwoNQF/NbP9o8vZ5LE427s5yB6il0Ktqmbd/YatNemS3vNsRPyqGK 7fr61rW4kS3RZn8yQDDMBjJqSXBhfIJGOQOpFZttHcrPEbgSGP8A5ZjOSv8Av+vH+e9cygoSur6m zk2rGD4zszcaBqkCAl/JZ0x6r8w/lXn2jxeKfEXgo2unXMzfZbvAPnbGkUr0DEjhTzjPf2xXrmpK GuGVhkMvIqHSraCzi+z20KQwoMKiLgCtVK2hEo3dybwzb31noNnbalP516kQEr7t2T6Z74GBmtiq 8H3z9Kllcxxs4VmwM7VGSfpVXGPpMgd65671bV3yttpssa/3nQk/4fzrFuE1q6P7+O8f22MB+QGK LhY7GfVLG3B826iBHYNk/kOaz5fFFhH9zzZf91cfzrlf7Nvv+fK4/wC/Z/wo/s2+/wCfK4/79t/h SuOxvSeLh/yytD/wJ/8A61Vm8WXhPywQD65P9ayv7Ovv+fO4/wC/Tf4Un2C9/wCfSf8A79N/hSHZ F9/EupMMB41/3U/xpn/CQ6p/z8f+OL/hVP7Bef8APpP/AN+z/hSfYbz/AJ9J/wDv2aAsi5/wkOqf 8/P/AI4v+FL/AMJFqn/PwP8Avhf8Kp/Ybv8A59Z/+/Zo+w3n/PpP/wB+zQFkaCeJ9RUDJib6p/hU 6+LLwfet4G+mR/Wsj7Bef8+k/wD37NH2C97Wk/8A36b/AAoBpG/H4uHHm2h/4A+f5irkXiewk++Z Y/8AeTP8s1yv9nX2P+PO4/79N/hR/Zt8R/x53H/fpv8ACncWhn+Nde/tTUBa28mbS39P4n7n8On5 1BD4M1G4nttl3apHLEJMOrFmyMgA9Kwbjd9pl3ght5BB6g5rt7ew8SXEumBNat4YEgVkQ2gJYbQQ N2eP/rUq83CCcXYxoxU5PmVzK/4Qy6Nu8ouovkbDptORSSeCNQ+1WyR31p5MvJdkbn2Hv9a6NYda 8ue4XULfdnbLH9m7ev3vrVe603xA0tlFFrlulsx3EmzBLH0znI/+vXH9ZqfzL+mdPsKf8pycc1z4 a8QMY3DSWshVtvRx3H417LbXEd1axXERykiB1PsRmvFdZWaPWrxLiVZZllYO4GAx9cdq9R8Huz+F bAseQrAfQMQK9KWyZyUnZtG9WVq4w8R7kEVq1l6wP9SfrWbN0aERzCh9h/Kim2pzaRf7g/lRQIoa l/x8wf571q1lanxcQn/PUVq0kMr3tql7ZT2sufLljKNjrgjFeJXVvcaVqMtvITHPA2MqcEehH161 7rXD+PvhzZeMrdZ43W11SJcRT7chx2Vx3Hoeo/SrUrEThzHlej67qUmp3+dUu2LNlMzt93J6c9OR Wx/aV+E2/brjbnOPOOM/nXn2ueCPEXh6Rlv9LmEanAmiXzIz77h0/HBrBSGWRwqRO7HoqqSTSvHs Jwl3PRLHW7y61i9WTU7mWJxtjV5mII7gZNdJomm3OoXW+CB5UhwzlVzg9hXG+GvhV4j8QTo09q+m 2ectPdLhsf7KdSfrge9fQvhrw3p/hbR49N06PbGvzO7ctI3dmPc//qp3SVkg9nqm2cbJbTw/62CV P95CKjr06mPDG/Dxqw9wDUWNbnmlFeiNpti5y1nAT/1zFRnR9PP/AC5w/wDfNFh8x5/RXfHQ9MPW 0T8CRSHQtM/59E/M/wCNFg5jgqK74aJpq9LSM/XJp40jTwf+PKD/AL4FFg5jz6jBPQZr0ZLC0j+5 bQL9IxU4VV6KB9BRYVzzpLC8l/1drO30jNWotA1KX/l32f77AV3lFFgucjF4UuW/1txEnsoLf4Vo w+FbKPBleWVu+TgH8q3aKLCuVrfT7S1H7iCND6gc/n1qzRRTArz/AHx9Kz7vqn41o3A+6ao3YBiB 9DUSGhliQLpPxrTmhEygb2XByCuM5/GseB9kyNjoa3B0oSugZmahcR6NZT6hPJLLsTAU4yeeAMDu SKy4NK1rUUNzfavPZyONyW9rgLF7Mf4qseK8CysWf/VLfwmX027u/wCOK6CrS5VoZtXepi6ONWt7 iaz1IrcRoA0V2oC7wexX1FQ+KtYl0m2tvsys8zybyq9fLT5n/QY/Gt4muMl1SKTxRfTzWF7dQQR/ ZI/s8BkXPWTPv0FNClorHYwypPCksZyjqGU+oPNZWm6wt3ruqaeWBNs6mP3XaM/k2fzFVPB94ZdK ksnSVJLKQxBZhtfZ1QkduD+lZVuDaFdfH3RqM6XBHeFn2ZP0KqaLBfZm/wCKNWOj6HNcocSthIsf 3j/gMn8Kh8RTXWzTIrO7e2a5uljaRACdpUnv9Kpa1Cdb1K8t1G6GxspOM9ZpFIH5Ln/vqo9SlmvN I8NS28qpPLNEUdlyAxjPJHemJvcnLatoWoWRutTN/aXM4tyrxBWRmB2kEdeRWlYXM0uv6vA8hMUP k+Wp6LlSTVeLRNQuL+3udV1BLhLZt8UEUWxd2MBjzzjmpNM/5GbXP+3f/wBANIauON1P/wAJgbTz D9n+w+b5fbdvxn8qxrBNb1S1XWbbUz5rynbZuP3IQNjae+cDrWp18eEjtpvP/fyql/BN4avH1W0J fTpXzeWw52E9ZFH8x/kMWp0U9yIFQY3yNjagPJ9cU+CdbiLeoYDJHIxTJYo7qFeeDhgynHv1p8UK QR7EGFyTgnNZ+9zeRojN1A5uj7AU2zHzsfamXL77iRu2amsx8jH1NT1L6F6D75+lWKgtx941PWiJ CiiigAooooAKKKKACiiigAooooAKKKKACkNLRQB494u059P8Q3GV/dzsZoz7E8/rmsS58Ya3Dq+m 2iX+2BE27fLTjHTnGewr13xd4Xi8U6ObQ3EtrcId0FxExBjb39Qe4/kcGvmvxL4c8SeGb0rq0c4y cJcqxaOTHTa39Dg+1VJxkrSVzJQcXeLPTh4q1kSPJ9qXc4w37pef0rJ1HxjrcN3p9ol/iF3JdPLT 29sjvXmA1bUf+f8Auf8Av63+NSWkeq6zfLb2gu7y6bgJHudv/wBVRy0/5Skqi+0ens1zqN8WOZbm 4f0+8xr2vS7IadpdraDnyYwpPqccn864H4c+AL/Q/wDiaa7dyTX7LiK3MpZIAe57Fv0HvXpQ6Vcp XFCHLqwFZmsfdi/GtOsvWOkQ+v8ASpZoi9a/8ekP+4P5UUWv/HpD/uD+VFAFDVh88J+v9K1ByKzt XH7qM++Kvwtugjb1UGl1AfRRRTATA9BRgegpaKADAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigCK4z5TEKWIGcDqa868WWnizV5ojpFre2Ij4LLqKoJB6FFOM++a9KIzVNlKsQe1TJ XLhPkd7HLaNYPaWsbzyXxuCv7xLm8abB9Ou38cV0F7eTx6M81vkyrgZAzjnk/lUFxHslJH3TzUtl N5cm1j8rcVm02nFOwOV3dmfpwm1zTruzv90kDgKHIwQfY+3BpkVx4o0uMWjafHqSIMR3CziMkdtw Pf6V1IAA4qJ5445VjZtrNnGeh/8Ar1VKLpwUZO5E/ed1oY1nb60kd5f3bpJeSR4htI3/AHaYzgZP U56mruh6c2maPBbSYMwG6Vh3c8sfzJq7DMk674zuXOAccH6etS1pe5PLYx3sbmHxIt9BGGgngMVw AwGGXlG9+4qPStIdfDA06/QeZKsglAIPLMT1/Gr7alCs5j+ZhkDeo3Dce3HernalGaew+Wxj+H9K l03SjDdMJLqVmeZ853E8dfoBWfBo+oLpWgQPEoksrhWlG8fKoDDj16it691C3sFVp5Nu7gDGSalt 7iO6gWWJ9yN0NHtIt8t9Rcmlyaud1G21TT9Xl1LS7dLtLhFSe3MgRsr0ZSeOhxXQ5pD35p3Bq5ha VYX89xeajqai3ubmMQpFE+TDGM/xeuTms2a28S3NkdElgiMTDy21EyA7o/8Ad67scV0DTy7JnFyF KFsLtHbpS6hqkWnQxvKGZn4CqOvrUOtGKblohqF9EI+InSBpmiiSMbCGxkjjr+FSLOy2JkcndyAT xkZ4P5VJa3EV9apMgyj9mFUr+fzJNin5V/nSX8yZVraHnHjXxZd6drNlYaY/76N1kmAGd2fup+IO fxFd5putaXezyWdpfQTXEIzJGjZK84P1544rOtPC+kDWm1MWYN0zGRpHdmw3qATgH0x07VB4a8AW Ph3WZb+C6mmZ1KRo4AEanBPTqe3ar0aI95M7WFcRj35qSkAwMClplBRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAU140kRkdFZWGGVhkEe9OooAwH8D+FJJC7+G9JLHkn7GnP6Vq2Om2Ol24t9Ps7 e0hHSOCMIv5CrVFABiiiigArK1cjdCPY/wBK1ax9VOblF9F/rQwRpw8QRjp8o/lRUij5QKKAKWqr m1B9GFTWTbrOL/dApL9d1lL7DP5VHpjZtAP7rEUuoF2iiimAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFQzpwGH41NSEZGDRYDPljEiEH65rCuNY02zuWt7nULWCdMbo5ZV QjPTgmtHXf7Sj0+ZNLg8y4dSqP5qoUPZhuBBx16Vyeg+Dr1rpNa1+e4l1eIsgVpUeMrzjGB7nj1r KV72RrCMbNyZ3Wn3qTxKA4YEZRgchhUlzaLd4SVsxdSg/iP1rJUlTx1rTtr0EBZDz2b/ABp6NWZn 6Fi3jaGMRtJvA4Ukc496mpM5HFUZbt4pTFtViTw3Zf8Ae9P61TaihC/2ZEbhpdzqNwcIpwAw7/jV rzE3mPcNwGSM805QcckE9zWe1g5uScoUDhw0g3MfbPYVLXL8K3Dfcbq2krqflkS+W6ZwcZBBqzp9 kthaLAjFsclj3Jq0KrySyPcGGIqpVQzMwz1zjHPtS9nCM/aW1Y+Z25ehT1WxvbzZ9luvKAzlclc/ iKm021ubW32XVx5z5yD1wPTNWLeQyK24AOrFTjpkVj63eahbXUa2gcoUydse7nP0rOpyU/32pUby 91G35ETEkxoT6lagvtOt9QjVJw3y8qVOCKXT5JZLCF5/9aygtkY5+lR3N8qArGef71bWjKOq0ZOq ehG5hsLdba3G0AY+n/16ock+pNcr4z8XpoVuYLdlk1CUZUE5EY/vH39B3rofCUtzeeHLC7vv+PqS FWbIwT6MR7jB/Gjl002FzK9jYhi8uPHc8mrcCcbj36VGiF2x271aAxTSAWiiiqAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsa7/eaqq+6rWzWNF+91cnrhifypMDZooopi GSrviZfUEVn6Q3EqHqCDitM1lW37nVpEPAbP+NAzVooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigBjoHXH61WZSpwauU10DjBoYGbNbiT5l4b+dU2DI2GBB961XQ oeenrXmvxEuLi+lhstEu9QnvUO2e1s9zIF9XK9G6cVnLRXNaUeeSidzFqKwTLbmVBI4JWJmGWA6k Dr/+ur8dzbupVlC7vvAjg1xvgrRZrDQk+0aW1neE/vjIwZpT/ezkkfQ9K3zuQ4IIPvSTdhTilJpG 8hUqNuMdsU2dzHC7qhdlGQq9TWJ5xTLFtoHJOcYqVbyQjiQkH3zV8xFhllrV3c3qwvYOqk4JGfk+ uRWvJCkjBjuVhxlSQcVm/bZf75/IUjXcp/5aN+HFZU04q0ncctXojVREgTAwqiopLyJM4+c+1ZTS s3Xk+5rz3XfiV9luZbPT9PkaZDsL3IK4b/cHJ/MVqrvREtpas9ImvHk4zhfQdKrgF2wBkn0qHRYb 240izm1FfLuXiVpV24IYjpjtWskaxjCjFTYaehjyeFNFur0X15ptvNc5BLMvXHTI6H8c1z/h3wNq mm+NLjV7jUEeBi5AQndKG6BgRgAde/IFd6iFzx09asqgQYAq1clxQIgRcD86dRRTGFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2RgkbMegBNZWlLunkkPUD+Zq5qEm yzk9T8tR6UmLdm7s1IC/RRRTAKyb79zqEU3Y4J/CtaqGqR7rbf3Rs/hQwLw5FLVeyk820jYnJxg/ WrFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEAjB6VX a2UDCAAelWaKAKRBXgjFIQGGCMj3q6QCMEVG0CnpkUrAZd7p1te2c9tMpEU0bI+044Iwf5145oHh Ky1PxJNZaf4jRoIcsWijdJZFBGcdB+OffFe5tbkgjII9DXO6L4F0rQNTmv7GKUSyKVAeTKopOSFH pwOuaadkTJXaNNLFURVVztAwO/FPFmvdmq15T/3aUROe361Fi7lZbaJe2fqa5zxrpepXWj+ZoMSL qCyLmRAqymPByFY9Dnb36A11wtyepAp4gUdeapaEtXOc8I2+sQeHbeLWpGkvQTks25gueAx7muhS H+/+QqYAAYApaBrawgAAGKWiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRQelAGXq8n+rj/wCBGr1rH5VtGncKM/WsyX/StVC9VDY/Ada2aQBRRRTAKjmjEsLx n+IYqSg0AZmlSECSFuoOcfzrTrJk/wBF1VX6K5/nWqKAFoooPSgAqtc39pZKGurmGAHoZHC5/OuY 8W+LjpRNjYsDeEZdzyIh/j/KvNp7ia5maWeV5ZG5Luck/jVxhcynUUdEewJ4q0J3CjUoMn1JA/M1 pwXMNygkgmjlQ9GRgw/MV4PVuw1G80y4E9nO8Tj0PB+o6GnyEKt3Pc6KwPDHiSLXrZtwEd3EB5kY 6f7w9v5fz36hm6aaugooopDCiiigAooooAKKKKACiiigAooooAKKKa7rGjMxAUDJJ7UAMuLmK1ge aZtqIMk0+NxJGrgEBgDg9RXKvdN4g1mK3TP2OM7yP7wHc/XpXVjpQAtFFFABRRRQAUUUUAQtdRJd x2zEiSRSy+hAx/jU1cv4iuWtNZsp16xru+ozz+ldNG4kQOpyrDIPtQA6iiigAooooAq3OoW9nLGl wxjEmQrkfLn0z2qyGDAEHIPcVXv7OO+tHgkH3hwf7p9a5C21G90O6a2k+eNGw0ZP6r6UmwO4oqpY 6hBfweZC+exB4IPuKt5pgFFGaKACiiigAooooAKKM0mR60ALRRmigApCQBz2oPArzDxd4rl1C5ks LKUrZodrOh/1pHXn+7/OmlciclFXZ2GoeMtFsGKNcmaReqQLu/Xp+tZ0fxF0p3Ae3u4x/eKqf5NX mCSRybvLdH2nB2kHB9DT605EYurK57bp2tadqqbrK7SXHVc4YfUHmtAHNeBW14YbkSW1xtmib70b 8qa9Y8JeJP7cs2jmwLyEDeBwHH94VMo22NIVObRnS0UUVBqFFFFABUc8giheQ/wjNSVnarNtiWIH ljk/ShgRaVHuleZuSOPxPWtaq1jD5NqgP3jyfxqzQgCiiigAooooAoapD5kAcdUP6VPZzCe2R884 wfrUzoJFZW6EYNZlgxt7qS2buePr/wDqpAatVr+6Wx0+4un5WGNnI9cDNWayvEqM/hrUlQEn7O3A +lUhPY8msj/aWv2/2w+Z9ouV845xnLc9OnWuyh8H6Kk95Etp/pR+cN57ncPTG7AriNLjhm1ezinA MLzorgnA2lhmuzt/DnhxLm9jihtRdE7vMWY5bHY/NWOLbTjZv5E4ZXTLB8OaN5MNytgNgO2VPMfr 69arXfhfQbN76X7KPNa2ZoZPPfjC5HG7H6VYOk6H5UNwLaDCnbLH5h/PrVO50Lwzaz38sdvameS3 Z45BMSwO3I43ew/IVyU5y5l7z6f1/XU6ZQVnoupzPh7UW0vW7W4DbY94ST02E4P+P4V7UK8CVSxC j7xOP6V6cPFd4AB5EH6/416dTc46N3dHYUVx/wDwld7/AM8IPyb/ABo/4Su8/wCeFv8Akf8AGs7m 9mdhRXH/APCV3n/PC3/I/wCNH/CV3v8Azwt/yb/Gi4WZ2FFcd/wld7/zxt/yb/Gj/hK73/njb/k3 +NFwszsaK4//AISu9/542/5N/jR/wld7/wA8Lf8AJv8AGi4WZ2FFcf8A8JXef88Lf8m/xo/4Su8/ 54W/5N/jRcLM7CiuP/4Sy9/54Qfk3+NH/CV3n/PCD9f8aLhZnYZFcf4g1n7SzWlu37lT87D+I+n0 qK68SXlzbtFsjj3DBZM5x+dUtJsTqF+kOP3Y+Zz6L/nii4WOl8M2Jt7I3DjEk3Iz2Xt/jW7SKoVQ AAAOgFLTEFFFFABRRRQAUUUUAch4s/5CEH/XL+pra8PXHn6PECeYsxn8On6EVi+LP+QhD/1y/qam 8Jz4e5gJ4IDgfof6Uuo+h1NFFFMQUUUUAFYfiDSftsHnwrmeIdP7w9PrW5QelAHm1rdzWc6zQOVY dfQ+xrUk8T6i/wB0xR/7qZ/nV3VvDs014ZrJU2ycspOMH2+tUP8AhGtS/uR/99ilqVoQNrupt1u2 /BVH9KiOq6g3W8m/ByKuf8I1qX9yP/vsUf8ACNal/cj/AO+xS1DQz/tt2et1Of8Atoaabq5PW4mP 1c1o/wDCN6n/AM8U/wC/go/4RzU/+eK/99j/ABoDQzftE2c+dJ/30acLq5XpcTD6Oav/APCOan/z wH/fa/40f8I5qf8AzxX/AL7FFguiiL27ByLuf/v4f8alXVtQTpeTfi2atf8ACN6n/wA8k/77FL/w jWpf3I/++xRqGhCuvamv/L0x+qqf6VZj8UagnDeS/wDvJ/gaZ/wjWpf3I/8Avuj/AIRnUv7kf/fY o1DQbqfi65Gk3K+SiyMmxXRiNpPGf1rjvD0tnBrdu9+UW2G4PuXI+6R0+uK6PXPD1/DpFxM6JsjA dsNngGuc8O3Nraa3bz3pxbru3naWxlSBwPc1rH4Wc1R2mjp7PV/Ctzb3UFvcWG6GQkOIwhJ7g5A9 6ttqugB4LkSWOSNsqYXn36VVtPFPh+8t7mCG9Q+TIdj+UynPp0q4fEmkiSC4W5j8zG2VNh+YevSv K5ZW+F/0/wBPyO9tXtdGPdaz4Yks9XtNPls5ZSCA0cOGD56Zx7HmsjwpePZeJrJl6SOIWHqG4/ng /hWxd+KNBurPVrCxuVlYqVGIWGHz05HtWD4cha48Racigk+ejEewOT+gr0MKmqbTT+ZxV3+8Vj2s UUCiqNQooooADWN/x+6nxyin9BV+/n8m2Yj7zcCodLh2RGU9X6fSkBfHSloopgFFFFABRRRQAVma lGY5I7lOoOD/AErTqOaITRMh6EUALFKssSuvQilkRZI2RgCrAgg9xWdpshile1k4IORmtOhAeE+J orfwzrMljdzrGD88LPn50J4P9D71yGn6vYx6veSvOqxzHKsfb1r6I8UeFNM8W6b9i1GHO3JimTh4 m9VP8x0NeG698GPEulzs2mpHqdtn5WicJIB7qxx+RNXzsy9mhf7c0v8A5/YvzrGtNWsl8Q3Fy06r FIm0E/h/hVZfh54veTYvh+93e6gD8zxXY+Gfghqt5Kk/iCZLK24JgicPK3tkfKv1yfpS5hqkl1Nn wfpf/CSzSXFpMhgtzzIQdpfsoOPx9uPWuxfwzqKDgRP/ALr/AOIFdRpWk2Wi6dFYWFukFtEMIi/z J7k+pq7ilJ825UI8qsjgX0TUk62jn/dIP9agbT71PvWc4/7ZmvRaKmxd2eaGGVc7opBj1U03Br02 kosHMeZZor0sxIeqL+VHkx/881/Kiw7nmlFel+VGP+Wa/lTsAdqLBc80EcjfdjY/QVMlheSfctZj 9IzXo1Jj2osLmOBTRdSfGLSQZ/vYH86sx+GdRfqsSf7z/wCGa7ajFFguzlIvCMpH727RfZUJ/wAK 3NM0qHTImWMlmb7zt1NX6KdhXCiiigAooooAKKKKACiiigDjvFZzqcY9Ih/M1B4ck8vWoh2dWX9M /wBKl8Vf8hdf+uI/maztNfy9UtWH/PVR+BNT1H0PRKKKKoQUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFADJokmheKRQyOCrKehB7V4L4yZfB+rvaXUFy0TgtbzBQVkHpnPUcZ/8Ar177WbrW had4g097HU7SO4gbna3VTjGQeoPJ5HrTTaIlBS3PmLSvEdrZvcGaOXbK+/5QCQfTrWl/wmGm/wBy 5/74H+NdbrfwFmErSaFqsZQniG8BBUf76g5/KseP4F+KWkw91pSLnlvOc8fTZT52J04s5fTfEdra 3N1JNFJidt/yAHacnjr717b8N9Kaa2GuzW8sQlXFssq7W2Hq+PQ9vbPrVTwv8FtF0WdLvU5Tqlwh BVHQLEp/3ed34nHtXpqqAOlHMxqCvcWiiipLCiiq17cfZ7ckH5jwv1oAoXTG8vlhX7q8f41rqoVQ o6AYFZ+mQbIzMw5fp9KrahfX+kyG4cJd2jyBVjQbZVLEABez/pQgbsbVFU7LU7W+3LDIRKn34nUq 6fVTz/SrlABRRRQAUUUUAFFFFAGZqMTRul1GOVPNX4JlmhWReh7elOkQOhRhkEYNZlo5s7xraQ/K x+U0AatBGaKKAEwKUDFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFAHF+Kv+Qwv/AFxH8zWPG5jlRx/Cd35VseKv+Qwv/XEfzNYp6VJSPTgcgGimQnMEZPdR /Kn1RIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhOAeax 3J1C/CDPlr39vWrWpXPlx+Up+d+vsKW1jjsbQyTOkZPLM5wB7ZpAR6hc2qoLX+1IrKfgp+8Td7fK 3UVlXL6hdaja2U0aC7hJuYLiMboXABU71zleG7E8kc9qLa5sLQ3iXsPmCeZ5BMsJmSdGPAyoPIGF wf7taGgWxisI3lgMb5cRCQfvEiLEqpPXpjj6elURuSafYTQzz3d5Ikl3NgExg7UQdFXPOOSfcmtO iikUgooooGFFFFABRRRQAVS1C286Pev305HuKu0UAVLG58+HDH94vDf41brKuo2sroXEY+Rj8wFa Uciyxq6nIIzQA+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigDi/FX/ACGF/wCuI/maxTW14q/5DC/9cR/M1i9qllo9JtubaI+qD+VS1HBxbRf7g/lUlUQF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFPMsMRdug/WpCQBk9 KyZXbUboRpnyl7/1oYC2cTXNw1zL0B4Hv/8AWpLi2i1HVoGcwz28Eb5jLBsSEjBK9+M/Tml1Nw9p caXZSEXhhyqISCF/3uik84J/pXPXbWZ1B107yYLqzIhtYIQFkkkyMlgOdnbnjG4+lNIls2LE2v8A b8v9m7PJ8k/afJ/1fmZG3pxuxuz3xjNb46U1EVB8qqueeBTqQ0gooooGFFFFABRRRQAUUUUAFFFF ADZEWRCjjKkYIrMgdtPuTDIf3Tn5WrVqC6tluYih4PY+hoAmByKWs6yuHjk+yz8OvCk9/atGgAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDi/FX/IYX/riP5m sWtrxV/yGF/64j+ZrKtU8y7gj/vSKP1qSj0eMbY1X0AFOooqiQooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKo3135P7uPmRvTtQBFfXLSOLWHljw2P5U+RW07TJ5IIvOnS MuFHVyB0p9jaeSu9+ZW6+1Z0UK6hqWoJc3NyskUgWOKKdowke0EMApGcknn2xQhNlOCa0uJGk/ti QTz7Vnks49sbN0UFiG2nBA6gnFbGjwXMVs4ug+fMPlCRw7qnGAzDqc5/DHpVTT4Tqlrsu5pJltbl kDKcCYKRtLY64/LIP0rdAxTYkgooopFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFW8sxcJleJB90 0yyuzJ+5l4lX171dqpeWnnYkjO2VeQR3oAt0VTs7zzcxyjbMvUHvVygAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOM8VD/AImyH/piP5mqWjxedrFqvo+78uf6VoeL BjUoj6xD+ZpnheLfqjSY4jjJ/E8f41PUrodnRRRVEhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRVS8vVt1wOZD0FABeXgt02rzIeg9PeorK0IP2ifmQ8gHtSWloxb7RcfNIeQD2 qjPrV2IJLyK2hazDmNFaUiWYglflGMZJHAJ59qFqJsSLUtQuA2o28CyafnakI/1sid5F/ovce5xV 422ma3DHO8MNymCFdlyR6j1HuKzdLvZLHT4Y1tJ7myK5t5oFDNt7I68EMOnpx2q3pNtcNqFzqMsR tEnAAtsgk4/jfHG49OO3XPZiRqwQRW0SxQxrHGgwqIMAD6VJRRSKCiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAqXdn52JIztlXofWktLwuxhmGyZe3rVyq11aLcKCPlkH3WFAFmiqEF28Ti C6G1uz9mq8DQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHIeLP+QhB/ 1y/qaueE7fbbT3B/jYKPoP8A9dU/Fn/H/Ae3lf1NdFpNt9k0yCEjDBct9Tyf50gexdooopgFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhOKz7i9aR/ItRuY9WHagCS8vhD+7i+aU8YHa o7Wz2N59wQZCeM9j/jTP9D0qPz724ijJON8rBRn0GazLi8W8uZxObi4091AgW0hMqSDAyxdQSGDA 45GMDrQlcTZejn1HUJJ5LSaK3gikaKMSRFzIVOCTyMDOcY575qla2t5eSi7t2tYngLw+S8RZIZNx 3MmCM5688/Tmp7Oe9uLcWy3OAOY7wxbvMXoVYHG1weDn8uoGrYWcdjaiGNnfks8jnLOx5LH3Jp7E 2uGn2S2FlFaqzOEHLt1Yk5JP1JJq1iiikWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFAEU8Ec6FZBkdj6VTWSawISXMkPZx1X61o0hUMCCMg9qAESRZFDIwKnoRTqoPay2zmS 1PB6xk8H6VPBeRzfLykg6o3WgCxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUhoArahqFv plm91dSBIk6nuT2A9TXmer+ONSv5GWzc2dv2CH5z9W/w/WneOtWe71k2KkiC14x2ZyMk/rj8DTIP BUt01hJ/ankxXEKybfs4bcSAcZ3cU3KFNKUzF81RtROckmmmcvNK8jnqzsSf1rRsPEeraa4MF7KU H/LORi6n8D0/CtoeCCYZj9vIliPzJ5Xb1zmmTeBmL2jx6vsgc/OTbA/h97io+t0X1BYeqdf4b8VW +uoYXUQ3ijLR54Yeq10Y6V4ndRTeH9fkSCctLaSArIBjPGen6V7Fp14moadb3cf3ZkD49M9RWklb YqnJvRlqiiipNAooooAKKKKACiiigAooooAKKKKACiiigApksqQpudgB71Xub5ITsQeZKeAo9ahj spbh/Nu2+kY7UAMeSfUGKRZSHux71Yj+zWbx2wZVmlB2hjy+OtQavLLbWcMduwh82ZITLgHywTjO DxnsPcis69sJIXtYGvZ5YZ5dqNKQ0kMoUsrqcexBB45+uRITYw6iv9qpd3sBT7PG0MowXEDEgh/9 1h/F7YPfE+nm3vNRvms2ZbOaNfnjJQPKC25kP02gkU61tpZ9ajubuWKO7gt9jxQvy4LMMsP7vAI7 g5rVazRr2O7JPmJG0YAPGGKk/wDoIqrkojXS7MWkVqYFaGNg6q/zfNnO7J75yc1cHApR0oqSwooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqCe1jn5YEOOjDqK nooAoiW4tDicGSP++vUfWrccqSruRgw9qfjNVZLJd/mQMYpPVeh+ooAtUVTF1LBgXUeB/wA9EGR/ 9arSOkihkYMPUGgB1FFFABRRRQAUUUUAFFFFABRRRQAUGig0AeHawXOtX5k+99pkz/30a6210TUp xpRbX7yGAwq8caopXkDCnI6DpWX430t7LXpLhV/c3X7xSB0b+IfXv+Ncff8AiHVLfVNNgTVLlLdO sfmnao4xxRWpyqQSizClJQm7o9VFjqX+kS/2vP8AaYuGXyk+Zfyqpd6JfTLZFPEV5FaF8uEjTk8c Hj/PNcl/b+riQyC/n3kYLZ5NYms+JNVjurCBdUuEjMu6VFk2gjI5OO3X9a5fqtXuv6/rU6FiKbez NnXoHttcu4ZLhrh0fBlfq3A616V4Hz/wilpn1fH/AH2a8rAudQu1ALzXEzBQSclieBzXtelWK6bp VtaLj91GFJHc9z+ea7pbJHPTV5NlyiiiszcKKKKACiiigAooooAKKKKACiopZ44VzI4Aqqbi5uuL eMon/PRv6UAWZrmKBcu4HoO5qpvur3hAYYf7x6mpobCONt8hMsn95qt4pAV7e0itx8q5bux61Yoo pgRXMEV1bvDNGskbjDK3QiqVro1ta3Kzh7iWRARGZ5mk2A9duScfXrWlRQKw0RRiQyBFDkbS2OSP TP406iigYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUIdVhfT572YrBDDJKjtI3CiN2UsT2 +7mr9cbe6Lq1/pt9pMtvDFbG6a6huEvGDORcecqEBQUB6EhsjtQBvReIdLmsprtbyNYYMCUyAo0Z J4DK2GBORgEc5GM5FRp4o0iS3mnW9TZDtEisrB0Zs7VKEbtxxwuM+3Nc5JpE+m2k2qzQG3ljmgZU mvri83BCw/eM2dqjzCeF+UjccjgVUsL3xNdXWpCGHCT28kYtryWNZSscqsFnUKSR5udwGMjb2JoA 65/E2kJbQ3DXqeXMzJHhWLM6jJQLjO4f3cZ9qdN4k0mG2t7hr2Mx3I3RFAXLL3bABIAzyTwO+KyN K8P3FrdWd1JBHEUuZZ5Ea6kuHG6IRrmSTJY4HbAA9eSUtdI1XSb6S9tYLa6eczo8TzGPYrXEsqMG 2nqJMMMdh1xQBetvF2myadaXdxNHD9qVnRVYyfIDjeSo4X/aOAM9a2ra4iu7aO4hdXikUMjKeGB6 GuT0zSta0aGF4bawuZXtVgmXzjGsRWSRgQdpyv7wgjg8DrXQaDYy6boFhYzGMy28Cxt5QwmQMfKO w9BQBo0UUUAFFFFABRRRQAUUUUABGetVns03b4WMT+q9D+FWaKAKoluIf9bH5i/3o+v5VLFcRzfc YE9x0I/Cpaikt4pcF0BI79D+dAEtFV/Jlj/1U24f3ZBn9etL57pxLCw90+YfpzQBPRUaTRyHCuCf TPNSZoAKKKKACiiigAooooAx/Enh2x8TaPLp18rbH5SRDho27Mp9f59K+dPFXw58S+GZ3doJr6yz 8t1bhnGP9oDlfx496+o6KAPi03Eo6zyf99mtDSNF1nxDcrBplndXbscbkBKL9WPA/E19cSabYzSe ZLZ27vnO5olJ/PFTxxpEu2NQqjoqjAFArI88+HXw1HhfGo6rP9p1RlwqhiUgBHIHq3qfy759GAwM UUUDCiiigAooooAKKKZJLHEm52Cr6mgB9FUzcTzf6iHA/vycfpR9jkl5uJ2Yf3V4FAD5b6GI7d29 /wC6oyaiL3lz91RAnq3LVZit44RiNFX6VLSAqxWEKNvbMj/3n5q0BiiimAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACEgdaQMp6U2YusMhjTe4UlVzjJx0zXgVv4l8 UeDtfuJL2KVWuZGlmtpwdkhJ5Kn+o47VE58ptRourdJ6nvyuj5KkHBI49RTuPSvFfAvi3UdJuHm1 WOVtI1C4Y/aip2RTE8nPYE9R+PrXtIIZQQc5pxkpK4q1J0pcrFyKMD0rh9QmMK+I72O8uBqNvdhb GL7U+138mIpGI921gzEjGOdx781JF4j1ybUJUW3hSN3uIYlnMShGjD7WJEpc5KDI2DAbtjmjI7Tg dqTcM49a4z/hItQmsppE1Gyga1tWnka4t8eaweRSuBJgbfLwSC2SwI7AwRXt7ZS6lqs0kM0hYMhK sixDyIj83zHKgPk8die9AHeUVx0+u6taXMls91azRwNFJNeJBxscPlNm/qpVSSCTtccV2NABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFADHiST7yKfqKb5O37juvtuyP1qWigCMCYfxK34YqQZxzRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUyWQRRs57Dp60ARzz+WQiDdK33V/rTY7X5vMmPmS+p6D 6CltoSoMknMr8t7e1TkgdaADoKqTarZwIrNKTukaJQiM7FhnIwATxg/lUL6lDcTS2cMpWVlZY3KH YzDIIU4wxGOQP8cY0WgyXcwaeGaBFVXk82UTeZMBt3DJIK4yORz8pwNtMVzRvJZryewe11CSGznj c+ZAEJZsKy/eU8YD1ljxBqBuraFXttkm0LI4wLj94ykpzzkKCAM43AnjGda4GmQW8VneBbpkbeqS IJXLf3sY4PJ7DrxUovblwPI0uYqOnmMqfpmi4WMz+2ZZIWP2y3aRmWNrVPllgLSBeTnsCc8DJHFS Pr8/2HzktyJI18ycDLLEoJDBjwcgqw4DfdJwavNc3Gxln0iQowwwVkfI9xmqjQ6RdukP7y0cKieT kxBlVshdvQjrx7mi4G3HPHKzKjgsmNy91zyMjtUnWsbTNHeznt5JHRjbwNArIMNLuKku/uSv5knv WyKQBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ1Q1XS9N1OyaDUreKa DqfNH3T6g9j7itCuF+KWkatq+hW8emI8yxy754I+rrjg474Pb39qLX0E246o6XTNG0uy0SPTLSKN 7AKQEY7wwJJOc9c5NXrW1is7ZLeBSsUYwi5ztHoPYelcJ8KdG1fSNNvTqUUlvDM6tBDJwRwdzY7Z 4/KvQT0otYFJy1ZWXTbFbxrxbSBbphhpxGocj0LYz2H5UosLQTyzi2h86ZdskmwbnX0Jxkj2NYN9 4kubN9ZLWsLJp8DSrH5jebINoIbbtxsJ3DIJxt9cgXn8S6fHkSGZdrxxyMIXIjkfbtRjjg/MvHbI zQMvHS9PMcEZsrcpb/6lfKXEfGPl4449KmW2gQ5SJFPsoHYD+QA/AVjWniiymtFlkLCTKoyRqX/e HogwOWxyQOg5OBzUbeLLMXqoEmMXkSSviBy6FGAYMoXIxn8eMZzQBrJpWnxwxwpZW6RRyebGixKA j/3gMcH3q5WU2vWJu/s/mPnzRAZPLbyxIQCF3Yxk5A+px14rKPjG3Oj2t0kLPNK1qkiqjGON5iny l8YyBID+WcZoA6qisSTxVpcEUksskqxJuxIYXxJtODt4+bnsOo5GRzV2y1SG/aRYVlBjO198bLg+ mSOo7igC9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAVWlHm3Uafwp85+vQVZNQQDMkz+rYH4f5NAE9Yut3KHybZbkxS+YJHMJzLGmD8wXnjOAcgjBORi tiRxGhZjhQMk1y1tE2sSecluBa3bx3fnOFcqV2/KGV8g4HpxzyaYmWdL00SwpNdsWjiuHmhQoFUn J+cqVyDyTjOOc+gFwSz6oxFu7Q2YODMPvSf7voPeluwb27TTlJEQXzJ2Bxx2X8e/tWoiKiBVACgY AHakCILWyt7NCsEYXP3j3b6nvViiigYVFNbQ3EZjmjWRD/CwyKlooAyjBc6b89qXnth96BjllH+y T/I1ftrmK7hWWFtyN+nsamIzWVOv9mXy3ScW8zBJ17Kx6P8A0NAGrRQDmigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigBDXkPjyHxjretT21pY3v9lw/JEsXCy8cseeec/h+NevHp XK6142stJuWtYYWup0OJMNtVT6ZwefoKcdyJ2tqzhPBNr4y0HW7aOawvv7NlcRzRycoinjcOeMde O1eyAZX3rj9L8f2V7dLBd27WhchVcvuXJ9TgY+tdiOBmnK/UIWtozAv/AAy2pT3DXN/K0ckE0MSh FBiEoAbkDJHAwD+OcDC3Hht5Zp/K1GaC3uJ47iaFVBLOm3ox5CnYuR9emTW6HUnAPPpS7h61JZzE ngmzk08WXmBoFlFwkcsYkRZuctsPBDBjlemTuGG5q1p/hiDT4ikcijdBJEwjhSJfnbcSFUADHQe3 Uk81u5HrSB1OcHpwaAMQeHG85VN9KbIXC3RtsD/WAhh83ULuAbHr3xxVVfCDRWkVlDqk8dorwSPG EUlmi2Y57A+WMj6+tdPkUUAcl/wgOnguEFtGvPltHZxLIuWB5cLluPl7ZBOcnmtq00lrbVLy+Nxv NyFGwIFAAzjOPvHnGT2FadFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAVBaj9yfd2/9CNTnpUNtxEQezt/M0AU9dKHSZopFZlnAgwpAOXIUckEAc+h +h6VFokbD7T58cP2lJPLlkjRQWO0NksMbvveg+lTX1rc3VygjngFsYmWSKaLzAxJGDjI9D+dMW5t NFt4o7ua1h86URxrHH5Yd2I4C5OT60xDtJHmRz3Z+9PKxz7A7R/KtKs/Rcf2Rb4/un+ZrQpDCiim sTtO3r2oAdRnFUIZpAIZGmLrIdrhgBtb/wDXxRIXKTzGVlKE7ADwMeo75/rQBfqG6t1urWWB/uyK VJ9M1KuSBkYPpS0AU9Lma40yCR/v7drfUcH+VXKz9F504PnIeSRh9C5rQoAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAiuGkW3lMQBkCEqD3OOK8n0SWz8vN5PpizNJIcXcW6RuFO QSwwPw5P1r1w8968q8ZfDDVdQ1Q6n4d1SOFmyTa3HCqT94qwB4PoR179qUkpLlZOt7jdbfTjaSrB PpDS7RhLeECT7/Y7jx+Fej6G8knh+waQkyG3QknqTtHWvL/DPwq10arHe+ItXi8pOtvbfMZR12li AAPpn8K9fVQihQAAOABRGPLGwat3Z51Kby28X6tc2MVtPeLcSGK3EJEzH7KmGaTPMe5duMD5iDnI xUsl/ey3Ntbabr19dRy+WJ5TAmYmM0asMhMK20tlSMr1r0Hbz1pNtMo8/u7zW7aG1MupmOKfzXM8 0qw4cOFSMHynB+XnGMsR1PIqT7X4gMt3PD8s0Vs9wYIoMLNN5MG0HIDEZaTjqcAdsV3m33o2DFAH AXWqTRW90bTxBdXVrFHG/nFY1dnLMGjR/L2FzhfkI68cbhjv4zujU4IyAfmGD+NG0de9OoAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigANRRnBk X0OfzFS0wr+8LZ4IxQBj6bZR6jarf3vmvPLlgrOV8nn7gAPBHQnrkH8ING0q2GrajeyySXd3DOYY 55m3GNNitsXsMbiCep71qNpihpDBcT24kJZ1iK4JPU8g4J9sVPaWkVlCIYF2oMnkkkknJJJ5JJJJ NAFXST5cc9qfvQTMMexO4foa0azbzNleC/AJiICTgDoOzfh39q0EYOoZSCDyCO9ADjWaHEUu4tib zMOpbqCcA/TkVpVBdQLNA6sBkggEjoaAK0kcd1cr5RIKnLyIfToPQnP8qdHb5upRLI8gBVwDgDpj PH0qzAVa3RlAAKggAYpjDZeqf76EfiDkfzNAFiqWpXLQWb+V/rpD5cQHdjwP8fwq27rGhZiAoGST 2FZ1qrX94L5wRCgIt1PfPV/x7e1AF20gW2tIoF6RqF+tTUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAITjNcVqfii5kuXSyYRxKcBsAs3vz0rsp0MkEiAkFlIBHbivLpImhlaK RSrodrA9jXk5pWqU4pQdkzpw0IybbN3TvFF3DOovG86EnDHADL78da7ZWDKCpyDyDXlao0jqiKWZ jgAdzXp1lE0FjBE33kjVT9QKWV16lRSU9Uh4mEYtNBJe20N5BZySqtxOrNFGerhcbsfTI/Om/wBo W5t5plLOsJYMEQs2V6gAck8dB1rndQ0TVbvVZ9ZjnljntnX7JaZjKyogJOSQSpcs6nBHG3PSq8vh OPyrsw6VbI8kd86BUQZlkKbGP+1gEZ7eteucp1ltewXcZeB9yhnQnGOVYqevuCKW4vILWNZJn2qX RAf9pmCgfmRXHR+Hp2uZY/7GWC6e6uJjqnmJzE8jkJwd5JVgNpG0A5zkYp66DcarpNvZ6po0ZW0F pEFuTHIsvlyAyOoyfl25xnBOSMDuAdkJULYyM+macGDdDmuKl0B5p7iJ9GZXY3BuL6KSMPdxyK6i NTu3Z+ZOGwo2jBIArofDlvNaaHbQT2qWrIG/coiJtG44yqEqGxgnbxknHFAGrRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhAIII4 NZvkT6a3+jIZrQnJhz80f+76j2rTooAr297BdAmJ8kfeU8Mv1B5FTnpxUFxY29yweSIeYOki8MPo RyKqz293a20j295I2xSwjlAfOO2ev60AWrYhRJEAR5bkfnyP50XQH7qQ9UcEfj8v9aSJ90qyA/LJ GG/L/wDWKjur60CNEZlZ2GNqZZh+A5oAgkja/wBRltpiFt4QrGMf8tc9M+wx09q0wMDFZcbTz6nF cJazRRiNkcyYGehHGc9c/nWqOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAVm3+iWOoOHmiIkxjehwfx9a0qKidOM1aSuhptO6Muw0KwsJBJFETIOjOckfT0rTpaKIU4U1 aCsDbbuwoooqxBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhGRg9KWigDKe30+Aqk0jylBgRFi+B/uD/CpU mdV2Wth5adi+I1/Ic/pVuSJmVhHIY2PVgAT+tUZrTDANBLdnHLSygL+XT9KAHRzvJMqPeQ7s/wCr gXJ/EnP8hWiOlQW0bJFho44z/dj6D9BU9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image021.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFmAaMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD36iii gAooyPWsvVvEWj6Gm/U9TtbTjIE0gBP0HU0AalFcR/wtLQZj/oFvq2oj+9Z6fI6n8SBSn4k2y8ye G/E0a/3jprYH5GgDtqK4+0+J3hW6mEEupfYpv+ed9E8B/NgB+tdXb3EN1As1vNHLEwyrxsGU/Qig CWiiigAooooAKKyfEWv23hnRZ9WvUme3hKhlhUMx3MFGASO5Fc2PibARn/hFfFP/AILT/jQB3VFc N/ws2D/oVfFX/gtP+NH/AAs2D/oVfFX/AILT/jQB3NFcN/ws2D/oVfFX/gtP+NH/AAs2D/oVfFX/ AILT/jQB3NFcN/ws2D/oVfFX/gtP+NH/AAs2D/oVfFX/AILT/jQB3NFcN/ws2D/oVfFX/gtP+NH/ AAs2D/oVfFX/AILT/jQB3NFcHJ8UbWKNpJPDHidI0UszNpxAUDqSd1dVoOs2/iHRLXVrRZFt7lN6 CVQGAyRyAT6UAaVFFRXUxt7WWYLu8tC2PXAzQBLRXmmjfEPxb4g0uLUtM8DCe0lLBJBqca5wcHgg HqDWh/wlPjz/AKJ9/wCVaGgDu6K4T/hKfHn/AET7/wAq0NH/AAlPjz/onv8A5VoaAO7orhP+Ep8e f9E+/wDKtDR/wlPjz/on3/lWhoA7uiuE/wCEp8ef9E+/8q0NH/CU+PP+iff+VaGgDu6K4T/hKfHn /RPv/KtDQfFPjzHHw+5/7C0NAHd0Vy3gzxXd+JjqkV9pX9nXWnXIt5IvPEvzbc9QAO9dTQAUUV53 bePfE2p3V+uj+DTfW9ndyWpm/tCOPLIcHhhnpg/jQB6JRXCf8JT48/6J9/5VoaP+Ep8ef9E+/wDK tDQB3dFcJ/wlPjz/AKJ9/wCVaGj/AISnx5/0T3/yrQ0Ad3RXCf8ACU+PP+ie/wDlWho/4Snx5/0T 7/yrQ0Ad3RXCf8JT48/6J9/5VoaP+Ep8ef8ARPf/ACrQ0Ad3RXCf8JT48/6J9/5VoaueFPF+o67r eqaTqmif2Xd6esTOn2kTZ3gkcgY6Ad+9AHX0UUUAFFFFABVPUtTs9JsJ72+nSC2hXLyOcAVac7Vy TgDqa86sID8RvED6regt4b06Yx2Nufu3cq9ZmHcA5AHT9aAJEvvE/jn59NeTQNBbhbp0zdXK+qA/ 6sHsTzzW3pHw/wDDmjv5yWC3V0Tlrq9Pnysf95s4/CunCKoAAAA9KWgBqoEAVQAo6AdqXHHWlooA q3mnWeoxGK9tYLmM9VmjDj9a4+6+HcenyveeE9Qn0S8J3eUhL20h9GiJx+WK7qggHrQBxei+MrmP VI9A8U2i6dqz/wCplQ5t7v3jbsf9k812YOayfEXh2w8S6VJp9/FuRuUdeHibsynsRWH4J1m+Fze+ GNckD6tpmNsx4+1QH7ko9+x680AdnRRRQBxHxa/5JzqH/XSD/wBGpXaR/wCrX6CuL+LX/JONR/66 Qf8Ao1K7SL/Vr9BQA/FGBRRQAYFFFFABijFFFABRiiigDL8Sf8ivq/8A15Tf+gGsT4Xf8k00L/rg f/Qmrb8Sf8ivq/8A15Tf+gGsT4Xf8k00L/rgf/QmoA6+q2o/8gy7/wCuL/yNWarah/yDLr/ri/8A I0AcV8Gv+SYaZ/vzf+jWrvq4H4M/8kw0z/fm/wDRrV31ABRSZHrS5oAKKTI9aXNABRRmkyPWgBaK KKAOD+H/APyMnjj/ALC5/wDQBXeVwfw//wCRk8cf9hg/+gCu8oAK4T4Yf8eviT/sPXX/ALLXd1wf wv8A+PXxJ/2Hrr+a0Ad5RRSZA7igBaKMijIoAKKM0ZoAKKMiigCo+p2iXqWbTKLh87Y+5xgn+Y/O uO8Oc/F3xp/1xsv/AEXWpIZE8YBSpKSbSo8kHgI2W3Y+UA479T+eV4b/AOSueNP+uNl/6LNAHe0U UUAFFFFAHKfEfUJ9P8DX/wBlYrdXWy0hI67pGCcfgSa3NF0qDRdFs9Ntl2w20Kxr74HX6k81zHxQ +Tw/p1y3+qttWtJZc9Au/HP4kV2qnIyKAFoooPSgCF7qGORY3lRXb7qs2Cak3ZGRWLqWjT3epR3M DpCQqq7hjl1BJKsvQjng8EHoe1Z0Hh3WkubXffqtrEI1eKOaQbgqqD/I9+9AHWA5GaWqWk2klhpV taSuHeJAhYEndjvzV2gArhPGqf2T4k8M+I4jtdLwafP/ALcM3HP0bB/Gu7rhfishufDFlZxyNHNc 6paxROv3lYvnI9xgmgDuR0pScVw48Cauc7vHniHn0aIf+y0f8IBqRGD488Sn/ttGP/ZKAE+K8qP8 OtTVWBKyQA4OcHzU4rtov9Wv0H8q8N8Z/Dq70HRdb1ufxFqF0sssP7qR8+cN6DMp6MR2wBjivco/ 9Wv0FAEZvIBc/ZzNGJsZ8veN3ft17U9544ygd1Uu21cnGT6D3rntQ8NS3uqahfCRUkkto47Vg7KY pVEo3nHtJx+NRXHhzUZ5EzeZjjkLKplfLDJxk5yCobbkHkdaAOmSZJC2xg2w7Wwc4Poafu46Vyze HtXHnhNRBEiMA/mOjCTywoc7epJGSO2AatxaTqkcF6i3u15o2WJjIzeW29yp5/2WUcf3aANlbmJ4 2kWRCikhmDcAjg5+lJFeQTw+dFKjxDPzqwI4681ya+FdV+yXlu13F5Vws5EayuFjeRnPp8w+cdf7 tW5tC1h7p5Y7/YhY7V89+Ad//wAUv/fNAHRieNioDqSwyBnqOOf1qQHNcvb6Bq1vGii9Vvnd5Myv +83Mh59PusM+496n0bRtWsNQMt3qTXUOwqdztknbGAcHgcq5/wCB0AXvEn/Ir6v/ANeU3/oBrE+F 3/JNNC/64H/0Jq2/En/Ir6v/ANeU3/oBrzjwF4R1PUfA+k3cPjDWrKKWLcttbmMJH8xGBlSaAPW6 p6hKp0+7XI3CFiRnkDB5rkz4B1Q5z488SfhLGP8A2SsS7+F1+mtPq8ni7V5VhtCu55B5zkbiVLAY 2c9MHvQBq/Bnn4YaZ/vzf+jWrvq4H4M/8kw0z/fm/wDRrV31AGBrN3fWuoW5tlkmiJUPDEMNkt1B IIIxwRkEDkelUZvE99FYm5TTy4EPnYZXTIw24HI4KkDOeueK6wgda5zV9etba8+xzRxtDkpcrIBy DHuGAeo6ZPTrQBANd1PbG/2MMzqcFVfYR1BxjPt+Bqez8QXN1NdobVEMEJdVYtlmwOOnTnnA4PFV W8Tm2lkZrcR20ICiJdpY/umk65wBhSBjrTpNetba9fybREeUv5zAKDlRNk5/iOYcc+ooAb/wkeqR rLK+nOV42J5TAg+WWxkZBywI9KdZ67qUlwZGtJAk0kcYhkQqYWKng+uGGCalj8W2rQrItvK4O4An C8ruznnj7vHrmt+FILiOC58tGO3dG5UZUEdj24oAnXPelPSig9KAOD+H/wDyMnjj/sMH/wBAFd5X kvh7w3LrnizxlLHr2r6aI9VKFLGcRq/yg5Iwcmul/wCFfXP/AEO3ij/wMH/xNAHZNKiOqMyhm+6C cE/SuG+F/wDx6+JP+w9dfzWs/WfhTeancWDDxhrTrbymRnuZ/MdOODHgDB9/Srfwmha30rXoWlkl Met3KmSQ5Z8bRkn1NAHoNc3rF9qNlqivbQy3UWz/AFEIwwba55yCCpwB1BBA65rpKTavoPyoA5GT xPqQkiji08S+ZtHmLHKFGXVQeVH8LEkdtp5qZtY1Fr22kW3fywXSWLyn4/eRr1x1ALEEHBFWfEHi BNGaNcKW3xs4b/nmXCnaO56/Sq7+I3k1G1hjWNYXUMzBlctmTYMEHAB656+1ICXU9Z1G0uZY4LMv HEwO7yy28bCccdDnA6d/wFaXxBqovYYI7Esu5PMdYnxggEgZ4/iHPbB/BW8XRlYnit2+cxja7AAB 2iAJPsJhx7Hmn2/iy3lt4CsEsjStHH0C4ZwpGeeB8w555BFMBo8SXjtDGlvCJJE3qJN69mwpyBg5 UDv1PpW/p10b2wiuTGY1lG9VYYYKemR2OMVDbR2Or2kF69pC/nRceYisQp5259K0OBQByV5b+Z4t CxyNDJKFYvG0ZcBVPOChYDt1qh4b/wCSueNMf88bL/0Wa1FfT9S1Wd0N/BKZBG7KxjUSAEAepOBn pjBFclHoMmu/FnxWIta1PTPKitCTYzCMyZi/i4OcY4+tAHq1FcSfh9df9Dt4o/8AAxf/AImqvhy2 vtH+JF5o8uuanqNqNLS4UX02/a5kK8dB0HpQB6BRRRQBj+K9FXxF4X1DSmYKbiIqjH+Fxyp/MCqH gbxA2veHITcjZqVofs19ERyky8HP16/jXTEZFcN4i0XUtE1tvFXhuEzTOoXUtOHAu0HRl/6aL29f 5gHdUVjeHfEumeJbAXWnTh9vEsTcSQt3V16g9a2aACiiigAoopNwoAWuAvZR4p+JVlYw5fT/AA/m 5unH3TdMMRpnuQMmpvEXi24u79/DvhNVu9YcbZrgcw2K9Czt03ei+tb3hfw3a+GNJSyt2aWRmMlx cP8AfnkPLO1AG0OlLRRQBxHxa/5JxqP/AF0g/wDRqV2kX+rX6D+VcZ8Wv+Scaj/10g/9GpXZxf6t foP5UAPooooAKKKKACiiigAooooAy/En/Ir6v/15Tf8AoBrE+F3/ACTTQv8Argf/AEJq2/En/Ir6 v/15Tf8AoBrE+F3/ACTTQv8Argf/AEJqAOvqtqH/ACDLr/ri/wDI1ZqtqP8AyDLr/ri/8jQBxXwZ /wCSYaZ/vzf+jWrvq4H4M/8AJMNM/wB+b/0a1d9QAVE9tBIxZ4kYkbSWUHj0+lS0UAQfY7fGPIjx x/CKX7JB/wA8U/75Hv8A4n86mooAi+ywYI8pOevyipFUKoUDAHAApaKACg9KKD0oA4P4f/8AIyeO P+wwf/QBXeVwfw//AORk8cf9hg/+gCu8oAK4P4X/APHp4k/7D11/7LXeVwnwv/49PEn/AGHrr/2W gDu6KKKAI3t4pXDSRqzDoWUHH0pgs7dQAIYwFGBhRwPap6KAIBZ246QR+n3B/nsPypfssAx+6TgA D5R0qaigBqIqKFUBVHQAYApTS0UAcrYyTPexL598y/aHd5Z0AR+XARecj6YxwOhNZnhsY+LnjQf9 MbL/ANF1viTUp9XEE9qVtUO5ZEPyseedwcH0+UrWB4a4+LfjMf8ATGy/9F0Ad7XFW/8AyWa9/wCw JF/6Nau1rirf/ks17/2BIv8A0a1AHa0UUUAFIQD1paKAOU17wLY6lff2rp9xNpOsAcXlpxv9pF6O PrWeuq+OtB/d6josGvQL0utOcRSY9426n6Gu7ooA4hfijosPy6lZ6xp0g6pdafIMH6qCDS/8LX8I nhdQndv7qWcxP/oNdqRnrSbF9B+VAHE/8LEmvjt0LwrreoMekkkP2aL/AL6f/Con0Pxh4nyNd1KL RtOc/NY6YxMrD0eY9P8AgIrvBxS0AZmi6Bpnh+wWz0y0S3hXrtHLH1Y9Sfc1p0UUAFFFFAHEfFrP /CuNSxzh4TwM/wDLVaZH8W/BoQD+0psgD/lzm/8Aia7gqG6gGjYv90flQBxP/C3PBn/QSm/8A5v/ AImj/hbng3/oJTf+Ac3/AMTXbbF/uj8qNi/3R+VAHE/8Lc8G/wDQSm/8A5v/AImj/hbng3/oJTf+ Ac3/AMTXbbF/uj8qNi/3R+VAHE/8Lc8G/wDQSm/8A5v/AImj/hbngz/oJTf+Ac3/AMTXbbF/uj8q Ni/3R+VAHE/8Lc8G/wDQSm/8A5v/AImj/hbng3/oJTf+Ac3/AMTXbbB6D8qNg9B+VAHnWt/FPwle aFqFtBqEzSzW0kaD7JKMkqQOdvqa2PheCvw20NSCCIDwR/tGut2L/dH5UoXHTAFAC1W1AE6ddBQS TE4AA5PBqzRQB4l4C8dt4U8IWmj3nhfxDLPC0hZ4bIlTucsMZIPeum/4W7B/0KXif/wC/wDr16PR QB5x/wALdg/6FHxN/wCAX/16P+FvQf8AQpeJ/wDwC/8Ar16PRQB5x/wt6D/oUvE//gF/9ej/AIW7 B/0KXif/AMAf/r16PRQB5x/wt2D/AKFHxN/4Bf8A16P+Fuwf9Cj4m/8AAL/69ej0UAecf8Leg/6F LxP/AOAX/wBeg/F2DB/4pLxN/wCAP/169HooA88+F8819eeKtSksbuzjvdS86OO6iMb4KD1/pXod FFABXjfh3xk/hC516xuvDmu3TTavcXCSW1oWQqWwOTj0/WvZKKAPOP8Ahb0H/QpeJ/8AwB/+vR/w t6D/AKFLxP8A+AX/ANevR6KAPOP+Fuwf9Cl4n/8AAL/69H/C3YP+hS8T/wDgD/8AXr0eigDzj/hb 0H/QpeJv/AL/AOvR/wALeg/6FLxN/wCAX/169HooA84/4W9B/wBCj4m/8Av/AK9H/C3oP+hS8T/+ AX/169HooA84/wCFu2//AEKXif8A8Av/AK9M8A6hLrXjzxRrP9mX9jBdxWojW8hMbHapU+3bsa9K ooAK4q3/AOSzXv8A2BIv/RrV2tcVb/8AJZr3/sCRf+jWoA7WiiigAooooAKKKKACiiigAooooAKK KKAK95fWun2zXN5cxW8C43STOFUZ6cmsz/hMvDB/5mHSv/AtP8axPiuqv4BulZQym4twQRkH96lb a+D/AA1gf8SDTOn/AD6J/hQAf8Jj4Y/6GHSv/AyP/Gj/AITHwx/0MOlf+Bkf+NL/AMIf4a/6AGmf +Aif4Uf8If4a/wCgBpn/AICJ/hQAn/CY+GP+hh0r/wADI/8AGj/hMfDH/Qw6V/4GR/40v/CH+Gv+ gBpn/gIn+FH/AAh/hr/oAaZ/4CJ/hQAn/CY+GP8AoYdK/wDAyP8Axo/4THwx/wBDDpX/AIGR/wCN L/wh/hr/AKAGmf8AgIn+FH/CH+Gv+gBpn/gIn+FACf8ACY+GP+hh0r/wMj/xo/4THwx/0MOlf+Bk f+NL/wAIf4a/6AGmf+Aif4Uf8If4a/6AGmf+Aif4UAJ/wmPhj/oYdK/8DI/8aP8AhMfDH/Qw6V/4 GR/40v8Awh/hr/oAaZ/4CJ/hR/wh/hr/AKAGmf8AgIn+FACf8Jj4Y/6GHSv/AAMj/wAaP+Ex8Mf9 DDpX/gZH/jS/8If4a/6AGmf+Aif4Uf8ACH+Gv+gBpn/gIn+FACf8Jj4Y/wChh0r/AMDI/wDGj/hM fDH/AEMOlf8AgZH/AI0v/CH+Gv8AoAaZ/wCAif4Uf8If4a/6AGmf+Aif4UAJ/wAJj4Y/6GHSv/Ay P/Gj/hMfDH/Qw6V/4GR/40v/AAh/hr/oAaZ/4CJ/hR/wh/hr/oAaZ/4CJ/hQAn/CY+GP+hh0r/wM j/xo/wCEx8Mf9DDpX/gZH/jS/wDCH+Gv+gBpn/gIn+FH/CH+Gv8AoAaZ/wCAif4UAJ/wmPhj/oYd K/8AAyP/ABo/4THwx/0MOlf+Bkf+NL/wh/hr/oAaZ/4CJ/hR/wAIf4a/6AGmf+Aif4UAJ/wmPhj/ AKGHSv8AwMj/AMaP+Ex8Mf8AQw6V/wCBkf8AjS/8If4a/wCgBpn/AICJ/hR/wh/hr/oAaZ/4CJ/h QAn/AAmPhj/oYdK/8DI/8aP+Ex8Mf9DDpX/gZH/jS/8ACH+Gv+gBpn/gIn+FH/CH+Gv+gBpn/gIn +FACf8Jj4Y/6GHSv/AyP/Gj/AITHwx/0MOlf+Bkf+NL/AMIf4a/6AGmf+Aif4Uf8If4a/wCgBpn/ AICJ/hQAn/CY+GP+hh0r/wADI/8AGj/hMfDH/Qw6V/4GR/40v/CH+Gv+gBpn/gIn+FH/AAh/hr/o AaZ/4CJ/hQAn/CY+GP8AoYdK/wDAyP8Axo/4THwx/wBDDpX/AIGR/wCNL/wh/hr/AKAGmf8AgIn+ FH/CH+Gv+gBpn/gIn+FACf8ACY+GP+hh0r/wMj/xo/4THwx/0MOlf+Bkf+NL/wAIf4a/6AGmf+Ai f4Uf8If4a/6AGmf+Aif4UAJ/wmPhj/oYdK/8DI/8aP8AhMfDH/Qw6V/4GR/40v8Awh/hr/oAaZ/4 CJ/hR/wh/hr/AKAGmf8AgIn+FACf8Jj4Y/6GHSv/AAMj/wAaP+Ex8Mf9DDpX/gZH/jS/8If4a/6A Gmf+Aif4Uf8ACH+Gv+gBpn/gIn+FACf8Jj4Y/wChh0r/AMDI/wDGj/hMfDH/AEMOlf8AgZH/AI0v /CH+Gv8AoAaZ/wCAif4Uf8If4a/6AGmf+Aif4UANPjLwz/0MOlf+Bcf+Nc5pGpWOqfF++nsLyC6h GjRqZIJA6g+a3GR35FdL/wAIf4a/6AGmf+Aif4VasdC0nS5ml0/TLO1kYYZoIVQke5AoA0KKKKAC iiigAooooAKKKKACiiigAooooA4r4q/8iHc/9fFv/wCjUrtF6D6VxfxV/wCRDuf+vi3/APRqV2i9 B9KAAsqjJOBTfNj/AL6/nXFfFxQ3w31IHoXhB/7+pWenwT8HFAfKvuR/z9NQB6N5kf8AfX86PMj/ AL6/nXnf/CkfB3/PK+/8Cmo/4Uj4O/55X3/gU1AHonmR/wB9fzo8yP8Avr+ded/8KS8Hf88r7/wK aj/hSXg7/nlff+BTUAeiebH/AH1/OjzY/wC+v5153/wpLwd/zyvv/ApqP+FJeDv+eV9/4FNQB6J5 kf8AfX86PNj/AL6/nXnf/CkvB3/PK+/8Cmo/4Ul4O/55X3/gU1AHofmx/wB9fzpwZW6EH6V5ZrPw b8JWWiX93DHeiWC2kkTNyxG5VJH8q6X4XD/i2uhnuYD/AOhGgDr6jnuIbWEzXEqRRL1eRgoH4mpK 4f4vgN8MNWBAIzD1/wCuyUAdR/b2j/8AQVsf/AhP8aP7e0f/AKCtj/4EJ/jWDD8NvBrQRk+HLAkq M/u6k/4Vr4M/6Fyw/wC/dAG1/b2j/wDQVsf/AAIT/Gj+3tH/AOgrY/8AgQn+NYv/AArXwZ/0Llh/ 37o/4Vr4L/6Fyw/790AbX9vaP/0FbH/wIT/Gj+3tH/6Ctj/4EJ/jWL/wrXwZ/wBC5Yf9+6P+Fa+D P+hcsP8Av3QBtf29o/8A0FbH/wACE/xo/t7R/wDoK2P/AIEJ/jWL/wAK18F/9C5Yf9+6P+Fa+C/+ hcsP+/dAG1/b2j/9BWx/8CE/xo/t7R/+grY/+BCf41i/8K18F/8AQuWH/fus7X/h34QtvDmpzw+H 7FJY7SV0dY+VYISDQB28E8NzEssEqSxt0dGDA/QipK4z4T/8kx0Q/wDTJv8A0Nq7OgBkkqQxtJI4 RFGWZjgAepPaqX9vaP8A9Bax/wDAhP8AGq3i4Z8G67/2D7j/ANFtXI+DPAHhS/8ABeiXl3oNnNcT 2UUksjpkuxUEk0Adv/b2j/8AQVsf/AhP8aP7e0f/AKCtj/4EJ/jWL/wrXwZ/0Llh/wB+6P8AhWvg v/oXLD/v3QBtf29o/wD0FbH/AMCE/wAaP7e0f/oK2P8A4EJ/jWL/AMK18Gf9C5Yf9+6P+Fa+DP8A oXLD/v3QBtf29o//AEFbH/wIT/Gj+3tH/wCgrY/+BCf41i/8K18Gf9C5Yf8Afuj/AIVr4L/6Fyw/ 790AbX9vaP8A9BWx/wDAhP8AGj+3tH/6Ctj/AOBCf41i/wDCtfBf/QuWH/fuj/hWvgz/AKFyw/79 0AbX9vaP/wBBWx/8CE/xq1b3VvdxebbTxzRk43xsGGfqK5o/DTwWR/yLlh/37rL+EMaReDZo41Co mo3Kqo6AB+BQB39FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHFfFX/kQ7n/r4t/8A0aldovQf SuL+Kv8AyIdz/wBfFv8A+jUrtF6D6UAcT8Wv+Scaj/10g/8ARqV2kX+rX6D+VcX8Wv8AknGo/wDX SD/0aldpF/q1+g/lQA+iqd1qMNnNBFLu3zEiNVUknAyentU32mLaWMiADg5bGOcUATUVUttRt7qD zo5AF3MvzcEFSQeD9Kcl7C5b51ADbQSRg8A8evBoAs0VCLqFojKJYzGDguGGPzqCTU7WKXy3njXG MksMAkgAH3JNAF2iqkmoW0QXMyEscBQwJJzjgd6sRyJICUdWwcHBzzQBneJP+RX1f/rym/8AQDWJ 8Lv+SaaF/wBcD/6E1bfiT/kV9X/68pv/AEA1ifC7/kmmhf8AXA/+hNQB19cR8Xf+SY6t9Yf/AEcl dvXEfF3/AJJjq31h/wDRyUAdnB/x7xf7o/lUlRwf8e8X+4P5VJQAUUUUAFFFFABRRRQAVl+Jf+RW 1f8A68pv/QDWpWV4l/5FbV/+vKb/ANANAGD8J/8AkmOif9cm/wDQ2rs64z4T/wDJMdE/65N/6G1d nQBj+Lf+RM13/sH3H/otqqeAf+SfeHv+wfD/AOgCrXi3/kTNd/7B9x/6LaqvgH/kn3h7/sHw/wDo AoA6OiiigAooooAKKKKACiikNAGbZao13qE1v9klSOPIEzfdYg4IH+f5GuV+En/Io3P/AGErn/0O tDQ2VfEd78oSPfKFkYkeY28ZCg8AAg59SeOBWf8ACT/kULj/ALCVz/6HQB3tFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFAHIfEuyvL/wAE3UFjay3Vx50LrFEuWYLIpOB9BVUeP9QH/MjeI/8Avwn/ AMVXcYFLQB4V4w+IN94g0PXNHuPDl9aRwzQ4ndceV+8Q7ZB0B+hPbivcov8AVr9BXE/FiNF+HOol VAzLCTgY585Oa7aL/Vr9BQBQ1LSE1Ke1laTabcuVBQMDuXbyDVVvDkQmeVbmRTJMJnXapVm2lTwQ eCp6eoz1JzuVWv45pbOVICBKy4UkkDP1HNAGCfCFqZCxupirMxKkDGW3ZOcZH3uMdMA02Hwxp4uZ V+3ySSsyeYhZScoEI7cH5VJ9Q3PGKpvpevZBe4uWaK5iVtk7gTR4i3fQDD5PXrU9voGtWrvImoLI 7BdzM7AykLEvzcd9jDPUbqANCPw9BBYJbJcyIEkSQNhf4YxHgjGCCBznuc1G/hm0ncTid+WZwUCj OZVl6455UfgaibRtXe+jla7HkxsCsfnSHorDv3+Yc+1RDQ9cKQq+pMSmBJtlceYMqeSOQQAw46g8 80AWx4Ut2hiRp2YxKFD7EBOGRgTgdf3ajNXtI0WPSBcbJ5JTPIJGMgHUKF7AdlFW7GOaGygiuGDz JGqu4OdzAcn86sUAZfiT/kV9X/68pv8A0A15z4C8T69Y+CNKtrXwbfXsEcRCXMdxGqyDceQCcivR vEn/ACK+r/8AXlN/6AaxPhcB/wAK00L/AK4H/wBCagCL/hLvE5/5kLUP/AyH/GvO/GPjLxFrPhrx HpuoeGZ7W0hliH2ktxDiRDsY9HOeMqe/SveMVw/xcUL8MtWI4OYen/XZKAO0t/8Aj2i/3B/KnMcY 9Kbb/wDHvF/uj+VSEA9aAOMg1nU4IYJyk1yDbMZlkhK7Jd4CgYXPI3fTAP1uWviG7kvLaGSyb99M 6k+W42JltpORjoB+ddNtGc+lG0UAcw3iK8LsI9NdiryJtKODlGxtJxjLDkHpUcWsX0DFWikn3uEQ yRsFB3y4yQueQq8/Sur2rnpRgUAcrLr968UcsdpIUdASio4dW8yNSpJHUbm+uOvXDoPEd/KbcnTG jSQKWyGyuTGCvTqN7A/7v1x1G0elG0elAADntWZ4l/5FbVv+vOb/ANANalZfiX/kVtX/AOvKb/0A 0Aea/DzxH4hsfAml21n4Pur6BI2CXCXcSrINx5AJyK6j/hLvFX/QgX3/AIHQ/wCNO+E//JMdE/65 N/6G1dpigDx7xR468VOb/SpfB9xDbT6XKZQ0iu0QKuDIXXKhQOx544rvvAP/ACT7w9/2D4f/AEAV a8Wgf8Ibrh/6h9x/6LaqvgH/AJJ94e/7B8P/AKAKAOjrB1q6uLe8iSOaaKNreZiYot/zjZt4wcnl uO9b1JtHpQBycfiHUVMMc1gysir558tzhvLcso4/vKoyM9e9XJNemj0+C5+xuXedoigRvuqxGenG QM/410G0elG0UAcl/wAJRelIlfTpFeRkU7Uf5VYJk/dx8u8/98/Wi18QalFpURms2muFtopWbacs WUZyMcNuD/Lx27nFdbtB7VGltDE8jxxqjyHc7KMFjjGT+FAGLpesXNzfJby2kiIzS/vCp42uwGcg YBCgj6/TO8elAUCobqR4raV49m9UJXecLnHGT6UAcppUtnJ4muDM1sGEkgiDrCrlw+OAPmyMHryc 1x/gDX9c07QrqDT/AApc6lANQuCLiO5jQEl+RhjnivQdE1hdTu3hk+xmT5pCkEqyGMAgKWIJ5bJY Y6dKw/hJ/wAihcf9hK5/9DoAmPi7xUP+ZAvv/A2H/Gtjwl4jPijSZL42T2bx3Elu8LuGKshweRxW 8RXE/DDjQtUH/UYu/wD0ZQB29FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHE/Fr/knGo/9dIP /RqV2cX+rX6CuL+LX/JONR/66Qf+jUrtIiPLX6CgB9FJuHqKMj1oAWikyPWjI9aAFopMj1oyPWgB aKTI9aMj1FAGZ4k/5FfV/wDrym/9ANYnwu/5JpoX/XA/+hNW14kI/wCEY1bn/lym/wDQDWL8Lv8A kmmhf9cD/wChNQB19cR8Xf8AkmOrfWH/ANHJXb1w/wAXv+SY6t9Yf/RyUAdpB/x7xf7g/lUlRW5H 2aLn+EfyqTI9aAFopMj1oyPWgBaKTI9aMj1FAC0UmR6ijI9RQAtZfiX/AJFbV/8Arym/9ANaeR61 l+JSP+EW1fn/AJcpv/QDQBg/Cf8A5Jjon/XJv/Q2rs64v4T/APJMdE/65N/6G1dpQBjeLf8AkTNd /wCwfcf+i2qr4B/5J94e/wCwfD/6AKteLcf8IZrv/YPuP/RbVV8Akf8ACvvDwz/zD4f/AEAUAdHR SZHrRketAC0UmR60ZHrQAtFJketGR60ALUNyZBBIYY1kkCHajHAY44BPapcj1oyKAMPSrC4sdQDt bQqs8O6aSIEAOCNqhSTgYLdOOO1c/wDCT/kULj/sJXP/AKHXefLXB/CT/kULj/sJXP8A6HQB3hri fhj/AMgPVP8AsMXf/oyu2NcT8Mf+QHqn/YYu/wD0ZQB29FFFABRRRQAUUUUAFFFFABRRRQAUVxOt +LNft/GEmg6HoVvqDxWiXTvLd+TgMxXuDnpTP7d+IX/QmWH/AINV/wDiaAO5orhv7d+IX/QmWH/g 1X/4mj+3fiF/0Jlh/wCDVf8A4mgDoPFHh2HxToFxpE9xLBHOVJkixuG1gwxn3Fc4Ph3qYAA8e+JA B6Sp/wDE0/8At34hf9CZYf8Ag1H/AMTR/bvxC/6Eyw/8Gq//ABNADP8AhXep/wDQ/eJP+/yf/E0f 8K81P/ofvEn/AH+T/wCJp/8Ab3xC/wChMsP/AAar/wDE0f298Qv+hMsP/Bqv/wATQAz/AIV5qf8A 0P3iT/v8n/xNH/CvNT/6H7xJ/wB/k/8Aiaf/AG78Qv8AoTLD/wAGq/8AxNH9u/EL/oTLD/war/8A E0AM/wCFean/AND94k/7/J/8TR/wrvU/+h+8Sf8Af1P/AImn/wBvfEL/AKEyw/8ABqv/AMTR/b3x C/6Eyw/8Gq//ABNADP8AhXep/wDQ/eJP+/qf/E0f8K71P/ofvEn/AH+T/wCJp/8Ab3xC/wChMsP/ AAar/wDE0f278Qv+hMsP/Bqv/wATQBDN8Nr+eF4ZfHXiJ4pFKurSoQwPBB+Wur8O6JD4c0Cz0iCV 5YrVNivIBuPJPOPrXNf278Qv+hMsP/Bqv/xNH9u/EL/oTLD/AMGq/wDxNAHc1j+KPD0Pinw9c6Pc TywRTlCZIsbhtYMMZ47Vz39u/EL/AKEyw/8ABqP/AImj+3fiF/0Jlh/4NV/+JoAjHw61JQAPHviQ AdB5yf8AxNL/AMK81P8A6H7xJ/3+T/4mn/298Qv+hMsP/Bqv/wATR/bvxC/6Eyw/8Gq//E0AM/4V 5qf/AEP3iT/v8n/xNH/CvNT/AOh+8Sf9/k/+Jp/9u/EL/oTLD/war/8AE0f278Qv+hMsP/BqP/ia AGf8K71P/ofvEn/f5P8A4mj/AIV3qf8A0P3iT/v6n/xNP/t34hf9CZYf+DVf/iaP7d+IX/QmWH/g 1X/4mgBn/Cu9T/6H7xJ/3+T/AOJo/wCFd6n/AND94k/7/J/8TT/7e+IX/QmWH/g1X/4mj+3fiF/0 Jlh/4NV/+JoAZ/wrzU/+h+8Sf9/k/wDiaZN8Nr+4hkhm8d+I3ikUq6tKmGB4IPy1N/bvxC/6Eyw/ 8Go/+Jo/t74hf9CZYf8Ag1X/AOJoA6Pw1oMPhjw/aaPbzSTRWylVeTG45JPOPrWtXDf298Qv+hMs P/Bqv/xNH9u/EL/oTLD/AMGq/wDxNAHXapYJqmlXlhI7Il1A8LMvUBlIJGe/NcTa/DK8srWK1tvH HiGGCFAkcaSIFVR0AG2rH9vfEL/oTLD/AMGq/wDxNH9u/EL/AKEyw/8ABqv/AMTQAz/hXmp/9D94 k/7/ACf/ABNH/CvNT/6H7xJ/3+T/AOJp/wDbvxC/6Eyw/wDBqv8A8TR/bvxC/wChMsP/AAaj/wCJ oAZ/wrzU/wDofvEn/f5P/iaP+Fean/0P3iT/AL/J/wDE0/8At74hf9CZYf8Ag1X/AOJo/t34hf8A QmWH/g1H/wATQAz/AIV5qf8A0P3iT/v8n/xNH/CvNT/6H7xJ/wB/k/8Aiaf/AG98Qv8AoTLD/wAG q/8AxNH9vfEL/oTLD/war/8AE0AM/wCFean/AND94k/7/J/8TR/wrzU/+h+8Sf8Af5P/AImn/wBu /EL/AKE2w/8ABqv/AMTR/bvxC/6Eyw/8Gq//ABNADP8AhXmp/wDQ/eJP+/yf/E1v+EvDEPhLRf7N gu5rpfNeUyzY3FmOTnFYf9u/EL/oTLD/AMGo/wDiaP7e+IX/AEJlh/4NV/8AiaAO4NcT8Mf+QHqn /YYu/wD0ZTTrvxC/6E2wH/cUX/4mrnw+0nU9I0K5j1a2S3up76a5MaSBwodsjkUAdbRRRQAUUUUA FFFFABRRRQAUUUUAcRa/8lo1L/sCQ/8Ao1q7euItf+S0al/2BIf/AEa1dvQAUUUUAFFFFABRRRQA UhIAJJ6VkeIfE2leGrD7VqdyIwx2xRjl5W/uoo5Jrk/7O8R+PTu1YzaHoDdLCNsXNwP+mrD7g/2R QB3VlqFpqKO9ndQXCIxRmhkDgEdQcd6tVwl58PV0uVdQ8G3A0e/RArQjLW9wB0Ei+v8AtDmrOieO Vlv10bxFaHR9a6JFK37q4/2on6H6daAOyopAQaWgAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAoo60UAFFFFABRRRQAUUUUAFFFFABiiiigAooooAKKKKACiiigAooooAKKKKAOIt f+S0al/2BIf/AEa1dvXEWv8AyWjUv+wJD/6Nau3oAKKKKACig8Vi+IfFOleGbMXGo3AUvxFCg3ST N6Ko5JoA2GYKpYkADkk1xGo+N7rU76XR/Btsmo3iHbNeucWtt9X/AI256Cqo0nxF47bfrhl0XQWJ xpsT4uLgf9NWH3Qf7o/Gu307S7PSbKOz0+2itraMYWONcAUAc94f8EW2nXx1fVrl9W1tx815cDiP /ZjXog+ldZgVha1qE9pfW8UdyIUe3mkJKBssu3aP1PHeqC+LriG3i+1aa0UuwCXc2Fhf5eHP8IJb g89KAOsOKzNb0DS/ENi1nqdrHcRHkZ4ZD6qRyD7iqDeIpX024uEtlSSG4jiKs2RtZ1UtkDsCT7Y5 xVHRvFlzcQ2VvdW4NzLtBkLbVYlUY9vvYY8f7JoAzd/iXwAP3nn6/wCHUx845u7Vfcf8tFH512Oi 67p2v6fHe6Zdx3EDj7ynlT6MOoPsa0CN3FcbrHgcrfvrPhi7GkaweX2LmC59pU6H6jmgDtKK4vRf HP8AxME0TxNaHSNYPEYdsw3PvE/Q/Q8812YOaAFooooAKKKKACsDxrql1ovg3VdTsmVbm2ty8bMu 4A/St+uV+JX/ACTfX/8Ar0agDnbS1+Kl7ZQXUeu6GEmjWRQ1ucgEZ5+X3qb+y/iv/wBB7Qv/AAHb /wCJrttB/wCRe03/AK9Iv/QBWhQB5z/ZfxX/AOg9oX/gO3/xNH9l/Ff/AKD2hf8AgO3/AMTXo1FA HnP9l/Ff/oP6F/4Dt/8AE0f2X8V/+g9oX/gO3/xNejUUAec/2X8V/wDoPaF/4Dt/8TR/ZfxX/wCg 9oX/AIDt/wDE16NRQB5z/ZfxX/6D+hf+A7f/ABNI2m/FZVLHXtDwPS3b/wCJr0emS/6p/oaAOV+G 2u3/AIj8F2up6nIj3UkkisyLtGFcgcfhXW1wHwZ/5JrZf9dp/wD0Y1d/QAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcRa/8lo1L/sCQ/wDo1q7euCW7trP4y6g9zcRQq2iw gGRwoJ81uMmunvfE+iafZy3VxqlqIYhucrKGIH0GSaANams6opZmAUDJJ6Cuc1Lx74e07SItR/tC K5jnyLeO2bzJJm/uqo6n+XesAaL4h8csJfETSaRoh5TSYXxNMP8Aps46D/ZFAFm/8a3us3kuk+C7 ZL65QlJtQl4tbf8A4F/G3sK0PD/ge10q8bVNRnk1XWpPv31zyV9o16IPpXQafp1ppdlFaWNvHb28 YwscahVH4VboAQADoKr315HY2z3Eu7YmM7Rk8nA4+pqzVa+skv7R7eRmVHxkqcHg5/pQBk/8JNp7 BCBMzMxVVEfzbg6oV+oZgPTrTYfFOm3HkG3E8onZUQpCcbiM7SegOD0q7c6Bp9yysbdEdXVw6KA2 VYHr77Rn6U24sdJ0+OS9ltreJY8SNJ5YG3aMA/gOKAI7nXbKzuGglWXerbWITK/wd/8Atov+RVaL xVp0t2tuiTM5HH7vktgHaBnqQwNaAttKv7iUeXbzTKcydCew5/74H/fPtQvh7SAABp1qAOmIh7f/ ABK/lQBFpWtDUbi5t2iaOSF3AGOGUMVz9fUVr4yOarQafa20zSwwRxyPncyrgnJyf15q1QBm61oW m6/YPY6naR3EDdmHKn1B6g+4rjceJfAH3PP1/wAOp2PN5arn/wAiKPzr0SkK59qAM3Q9e0zxDp6X umXcdxC3XafmU+jDqD7GtPNcZrfgcNqDaz4cvDo+snlpIx+5uPaVOjfXrTNI8dNBfpo/iu1Gkaqe I3Zv9HuveNz/ACPNAHbHpVRdRtHleJbhGkjkETqDyrEZAI7cc0f2pYkcXtt/39X/ABrn73StOu7q a6XWIoJpWbLwyKCVMewA88lT8wPbkd6AOqDA9DmuW+JX/JN9f/69GrS02Sx0+B0bUbZy77ziRQAc AcDPA4z9Sa5f4geJdGvvB3ibSrfUbeS+gtDvgD/NggHI9Rg9qAOw0H/kXtN/69Iv/QBWhWdoP/Iv ab/16Rf+gCjUtVi02SBJELGbdt+ZVHyjJySRQBo0VnjWbFkdvtMY2OY35+6wzkH3GD+VMh1uykiV pJVhYkjy3YZ4LD/2VvyoA06Ky7DXrK/ijZJAkkgdhE5G7CnBOP1/GoLDxTpl+03lzBVTaVL8b1Ko wYe37xR9aANuis+TW9OiaESXcKmZQ8eW+8p6EUw+INKEixtfQq7AnDNjpuzn0+43/fJoA06ZL/qn +hqpaavYX8zxWl1HNJH99UOSvOOfxq3L/qn+hoA4P4M/8k1sv+u0/wD6Mau/rgPgz/yTWy/67T/+ jGrv6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDF1Twl4f1u7F1qej2 d3OFCCSaIMcDtmsq++GPhC8spbdNCs7cyDHmwRKrr7qccGuvooA4S6+FmhR21s2iI2kahZndb3tu cuD/ALefvj602y8Z3+gXUWl+NrdLaRyEg1SAE205/wBo/wDLNvY8fSu9qve2FrqNpJaXkEc9vIMP HIu5WHuDQBLHIkkasjKysMgqcgin1562g694IkNx4Xd9S0gNmTR7iTLxjPJhc/8AoJrpPDvi7S/E 0DmzlKXMXFxaTDZNC3Qhl+vfpQBvUhYA4NLWPq2l3V7crJDdpGghZNjoW2sejDDD1wfUUAa3mISR kZHUVXvraK+tJrWUny5kKNtODg1zcPhW9gYs2pK++QM67GG5Ru4yGzwGGPTFRaZoGovD/pNzLA5Y hlL7ieFAYfMcEbeD33HIoA3tO0yy0+7mMG/zCCTuJOAzsxA/4EWNaLzRx4DMAT0Fc0vhq6jMAW/j 8tYoUlUo3zsm4k53cbiVz6gY71DD4TvI9Q+1yamjPv3ACNhgZiJA+bv5R/76NAHWhhTq5X/hGLvz 4Zv7TJMYQY2nBKsh3fe+8QhBP+1+fUgcUALSEgDNQ3V3BZW8lxczJDBGpZ5JGwqj1JrhJfE2t+Mp XtfCCG000ErLrdyh2t2IhTqx/wBo8UAbviXxnp3h50tdsl7qk3+o0+1G+WQ+4H3R7n9awo/B2p+L riO/8aun2dG32+jW7fuo/QyMOXb9K6Hw14Q0zw5G8lusk99NzcXtw2+aY+7ensOK6ADFAHKD4aeD cc+HbHP+6f8AGl/4Vp4M/wChdsv++T/jXV0UAcofhp4Mx/yLtl/3yf8AGuQ8afDTwzo/hfxFrNrY BbgWxaFS3yQcAfIvr1OTnrXrVcr8Sv8Akm+v/wDXo1AGzoP/ACL2mf8AXrF/6AKmu9PivJopXLho t2wo2Mbhg1FoP/Ivab/16xf+gCtCgDJOgWn2jzwJhL5gl3CZs7tpXPXupwfYD0FRy+GbCYoWWUFC CpEhGGBYg/UF2/yK2qKAMqy0K00+R3t1kBcfMpkJBJ749ef5VWh8JaXAirFHKoXG0iU5XAQDHPYR J+XvW9RQBkXGhRXd0kk7M0SwiMR5wchtwbOeoIFVf+ESsWlmEoeSCRQBEXI2tmTLZz1/eHHpXQ0U AUbLTILGSWSLeXl272dyxbAwOtW5f9U/0NPpsv8Aqn+hoA4L4M/8k1sv+u0//oxq7+uA+DP/ACTW y/67T/8Aoxq7+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igBCOK5jxD4JsdcuEv4JZNO1eL/U39scSL7MOjD2NdRRQBwNp4w1Hw5dxab41gWEMdkOrwA/Z5v9 /wD55t9eK7qOWOWNZI3V0YZVlOQR7Uy7s7a9tZLa6gjngkG145FDKw9wa4STw7rnguVrnwm7XulZ 3SaLcOcqM8+Q5+7/ALp4oA7DU0v2a3FoSIy5ExQqGAwcEbuOuM+1Yctj4k8vzIrjdcBgw3sgHBkw pIH3eYz371e8N+LtM8TI62sjRXcPFxZzrsmhb0ZT/McVv4FAHLLaa+06u88hiAjYRP5X3t7FgcA9 F24Oe1XNPsbySe3n1EP50TsQwccjBChsH/bb64Ga3cVBeXlvYWsl1dTxwwRqWeSRgFUe5NAE5wBX M+JPGun6DKljGkl/q0w/cafajdIx9W/ur7msSTxHrnjaRrbwqhsNKBKya1cR8v7Qoep/2jXR+HPC Ol+GonNpG8l3Mc3F5O2+aZvVmP8ALpQBz9t4P1TxRcR6j41nR4lbdBo1ux+zxehc/wDLRv0ru4oU gjWONFSNRhVUYAFSAYooAKKKKACiiigArlfiV/yTfX/+vRq6qsDxtpl1rPg3VtNskV7m5t2SNWbA J+tAF/Qf+Re03/r0i/8AQBWhXndjqfxGsrC3tV8J6c4hiWMMdRAzgYz09qsf258R/wDoUNN/8GI/ woA7yiuD/tz4j/8AQoab/wCDEf4Uf258R/8AoUNN/wDBiP8ACgDvKK4P+3PiP/0KGm/+DEf4Uf25 8R/+hQ03/wAGI/woA7yiuD/tz4j/APQoab/4MR/hR/bnxH/6FDTf/BiP8KAO8psv+qf6GuF/tz4j /wDQoab/AODEf4Uja38R2UqfCOmgHj/kIj/CgBvwZ/5JrZf9dp//AEY1d/XI/DXQ9Q8O+CrXTdTh WK6SSVmRXDABnJHI9jXXUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQBzPiPwXp+vSJeq8ljq0P+o1C1O2VPY/3h7GsW18Xap4XuY9O8awqsLME g1m3X9xL6eYP+WbfpXoFQ3NrBdwSW9zCk0Mg2vHIoZWHoQetAHNa/wCOtN0torOyV9U1S4Xdb2Vn h2bPRmI4VeeprMtPBuo+IrqPUvG06T7Tvh0iBj9mh9C3/PRvrxTPhNpVhZ6Dfz29pFHM2pXMRkVf mKLIQq564A7V6DxQAyKJIUCRqqoowqqMAD2FPoooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKM0AcD8PJZ4PB+pyW0InmTU7wpEW27z5h4z2roYPE9nJCLh9ywSAPEyqz Epj7zAD5eQw59KxfhgAfDV9/2Fbz/wBGmunXRrBPKC2qL5SlEK5G1Sc4/PmgC3bXCXUCTRnKOAyn 1BqWo4II7eJYoUVI1GAqjgVJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANd1jQuxAV RkknAArDHjbwsf8AmY9K/wDAtP8AGtTU/wDkE3n/AFxf/wBBNee/C7wzoWofDjSLq80awuLh1k3S y2yMzYkcckigDr/+E18Lf9DFpX/gWn+NH/Ca+Fv+hi0v/wAC0/xpf+EN8M/9C9pf/gHH/hR/whvh n/oXtL/8A4/8KAE/4TXwt/0MWlf+Baf41XvPFvhe6tJoB4n06IyoUEkV6ismRjIOeCKs/wDCGeGf +he0v/wDj/wo/wCEN8M/9C9pX/gHH/hQBwfwwvtK8NaVfpq3iyxlnmu5Csb3yFQoY/OBnq5y2fpX d/8ACa+Fv+hi0v8A8C0/xo/4Qzwx/wBC9pf/AIBx/wCFL/whvhn/AKF7S/8AwDj/AMKAE/4TXwt/ 0MWlf+Baf40f8Jr4W/6GLS//AALT/Gl/4Q3wz/0L2l/+Acf+FH/CGeGf+he0v/wDj/woAT/hNfC3 /QxaX/4Fp/jWhp2r6dq8byadfW93Gh2s8EgcA+hIqh/whnhn/oX9K/8AASP/AArnPhvbw2mqeMbe 2hSGCLWGVI41Cqo2LwAOlAHf0UUUAFFFFABRRWD4l8V6d4Zt43umeW5mO23tIV3Szt6Kv9elAG8e KzdQ8QaRpIzqOp2lrxnE0yofyJrko9K8X+LT5usX76Bpj8rYWL/6QV/6aS9j7LWvpnw88L6Wd8Wk QTTnlp7oedIx9dz5oArS/FPwXE+3+24pD6xRO4/MLin2/wAT/Bly+xdet0b0mDR/+hAV1EVrbwLt it4ox6IgFR3OnWV4hS4s7eZT2kiDD9aAEstUsdSi82xvLe5j/vQyBx+lWxXH3/w08N3UxubO1k0q 77XGmymBh+C8H8qzpL7xd4L+fUs+ItFUfNcQxhLqAerqOHGO45oA9BoqhpGsWGuadHf6dcpcW0g+ V1PfuD6Eehq/QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFAFXU/+QTef9cH/wDQTXJ/CP8A5Jdov+7L/wCjXrrNT/5BN5/1wf8A9BNcp8I/+SXa L/uy/wDo16AO1orEuPEEFlqtxZzxsEijjkDqCxYt5nGAOwjJp1x4htYkhmG5rd3ZWlwcABXYkcc8 oRQBs0Vz9x4ssI57dEYsj3BgkYgjy2AfHbklkI/WpbzxDBbJblIZXaaMyoGUr8odFOc8g/OKANui syDXLK4R3id2RELswQ4AABIPvgjiqreLNJSJpHlkUIWDAxNkEJvxjHXbzQBu0Vht4q0tVc75j5ZK yAQsShyRhhjjlT/kipb7X7PTZkW5LJuj8wARsW6MeePRT+VAGvXDfD//AJDnjX/sNP8A+giu2ikW WNZFOVYZB9RXEfD8/wDE88a8H/kNP/6AtAHdUUmaM0ALRSZoLAUAYvinxFB4Z0ObUJ0MrAiOGFfv TStwqD6n+tZPhLwrNBO/iDxAVuPEN0Mu3VbVD0ij9AO571Uvk/4SH4rWdjIM2ehWv2xlPRp5OEyP YAkV3YGKAAKBS0E4FNDqw4NADqKTcKQuoxz1oAdSMMg0bhS0Aed6/pk3gfUn8V6HEx092zq+nRj5 WTvMg7MO/qPxrvLO8gv7SG6tpFlgmQPG69GUjINSzRLNE8bqGR1Ksp6EHqK4r4dltOfXPDDOzJo9 6UttxyRBIN6DPfGSKAO4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKAKup/8AIJvP+uD/APoJrk/hH/yS7Rf92X/0a9dZqf8AyCbz/rg//oJrk/hH /wAku0X/AHZf/Rr0AdTPpFhc3D3E1sjyuoVnPUgAgD/x5vzNVrnStHtbVzNbxR2+4s27O3LAr+u4 j8TWtVe9tEvrV7eRmCPjJU8jBzQBg29j4YvbZZxb2u1nKkSEAhyW6jP3su2D1+ar0qaG8ggme1Ml qu3YZBujGVPPOeoU8+1QReFLKG4WdZbgsuMhipBGc4I2/TnrwMYqIeFYptVub+4lbzDd/aIDHgbP kjU5yOc+X+vrzQAXD+HdPiulSe2heWFhJ5bgttC5Jx64/pVW+sNBfSlhni2vIgtzICpkTcpUM3OO gPJrQfwpYtAYQ8yJtZBtK5AMYjI5H91R+NLN4Xs7ht0kk27czAhgMbmLEdOhZiaAHQ6Zot4xIgge UxguAwLYJLZbB9STn3NXrrSbC+kElzbJK4XaC3pgjH/jx/Oq+l6DaaSf9HMhwGA3tnAZtzdu55/l WrQA1EWJFRBhVAAHoK8o8O6Rruo+JvF76T4jOlRJqzq6CzSbe20fNljx6fhXrNcL8P8A/kO+Nf8A sNP/AOgLQBL/AMIx4z/6H9//AAVRf40f8Ix4y/6H5/8AwVRf412tFAHFf8Ix4y/6H6T/AMFcX+NY /iHwb47vILRLTxo08iXCvk2y2/lgA/NlDk9cbe+a9NooA878E295ZfEHxRbalffbbwW9luuDGIzI Njc7Rx7V6JXBa848NfEbTNec7bDU4f7Nu3P3UcHdEx+pyM13gOaAGygmJgBkkYx61xmjaJrmlafF bhwGfy/MeNwCgEe3ABGDhhknuD7YrtqCM0AcXYweKLgGY3TiGQMAsoUOjiQ4OMfcKgDHXvS3OleJ TDuju3a48sYZ5FIRx5nIGMD70fIHY12dFAHKWra1FqlvBcyTum4sxVQQVLNtBOB2K57jHvXVL90U uKKACuH0D5/ix4teP/Vrb2aP/v7WP8q6++vINPspru5kEcEMbSSOeiqBkmuS+HEE9zp+oeIrmMxz a5dtdKh6rCPljB/4CM/jQB21FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQBV1P/kE3n/XB/8A0E1yfwj/AOSXaL/uy/8Ao166zU/+QTef9cH/APQT Xm/wx8ZeG9M+Hek2d/rdjbXMSyb4pZgrLmRiMj6EUAepUVzf/CwPCH/Qyab/AOBC0f8ACwPCH/Qy aZ/4ELQB0lGBXN/8LA8If9DJpn/gQtH/AAsDwh/0Mmmf+BC0AdJRXN/8LA8If9DHpv8A4ELR/wAL A8If9DHpv/gQtAHSUVzf/CwPCH/Qx6b/AOBC0f8ACwPCH/Qx6b/4ELQB0lcL8P8A/kO+Nf8AsNP/ AOgLWt/wsDwh/wBDHpv/AIELWH8NLuC+1LxhdWsqTW8usM8ciHKsCi8g0AegUUUUAFFFFAGbrujW niDRrnTL2PfBOm046qezD3BwRXJ+HfEd3oF9H4W8UyBbofLY6g3Ed6g4GT2k6AjvXfVm6zoWneIN Oew1O2S4t36q3UH1B6g+4oA0cg96WuATS/GHhE7NIuU1/SlPy2d7JsuYx6LL0b/gVTxfE7SbU+Vr tjqeizjgreWrFM+zrkEUAdxRXOQeP/CVyu6PxFp2P9qdVP5Go7r4i+ELRSZPENgfaOXzD+S5oA6e o5p4reF5ppFjjjUs7ucBQOpJ7VxTfEU6kfL8NeHtU1Z+0zRfZ4B9Xf8AwqJPCGteJ5Um8ZajGbVT uTSbAskOc/8ALRur/TpQBUurib4m6itjZiRPClrIDdXOMfb3U/6tP9jI5PevRokWONURQqKAFUDA A9MUy2tobOBILeJIoUAVERdqqB0AAqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKAGyIskbI4DKwIIPQg1zq+AfCXT/hG9L4/6dl/woooAX/hA PCP/AELel/8AgMv+FJ/wgPhH/oW9M/8AAZaKKAF/4QHwj/0Lmmf+Ay/4Uf8ACA+Ef+hc0z/wGX/C iigBP+EB8I/9C5pn/gMtH/CAeEf+hb0v/wABl/woooAUeAPCP/Qt6X/4DL/hR/wgHhH/AKFvS/8A wGX/AAoooAT/AIQHwj/0Lel/+Ay/4VqaVommaJE8OmWFvZxyNvdYIwgZsYycUUUAaFFFFABRRRQA UUUUAGKayKylWUEHsRRRQBm3HhrQbpt1xounSsf4ntUJ/PFSWuhaRYkG00uygI6GK3RT+goooA0A ABwKMUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Z ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/image022.emz Content-Transfer-Encoding: base64 Content-Type: application/octet-stream H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DBA321.4A6E9150 Content-Location: file:///C:/2669C6F4/2064_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DBA321.4A6E9150--