MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DBA2E9.E9938340" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

 A Relação dos Critérios de Decisão, da Qualidade da Tomada de Decisão Organizacional e da Inovatividade Gerencial em uma Instituição de Ensino Superior (IES)

The Relationship of Decision Criteria, Quality of Organizational Decision Making and Managerial Innovativeness in Higher Education Institutions (HEIs)

Eleide Rose Cristo de Oliveira Amaral

https://orcid.org/0009-0004-0754-6767

= Mestra. Universidade Federal do Pará (= UFPA) – Brasil. roseamaral@ufpa.br

Isaac Matias

https://orcid.org/0000-0003-4309-5364

Doutor. Universidade Federal do Pará (U= FPA) – Brasil. isaac@ufpa.br

Bruno Rafael Dias de Lucena<= /span>

https://orcid= .org/0000-0002-9300-4005

Doutor. Universidade Federal do Pará (UFPA) – Brasil. brunolucena@ufpa.br<= /span>

Welson de Sousa Cardoso

https://orcid= .org/0000-0003-1680-9376

Doutor. Universidade Federal do Pará (UFPA) – Brasil. cardoso@ufpa.br

 <= /o:p>

RESUMO

A pesq= uisa analisa a relação entre o construto critérios de decisão e sua proxy= inovatividade gerencial no ambiente de uma instituição pública de ensino superior, mediada pelo construto qualidade da tomada de decisão organizacional. Na pesquisa foi utilizado um questionário estrutura= do e aplicado aos gestores da UFPA totalizando 159 amostras. A Teoria da Decisão= e o comportamento dos gestores tornam-se centrais nessa discussão, que envolve = a inovatividade gerencial para a otimização das ativida= des no cotidiano organizacional. Desta forma, observaram-se avanços nas atividades internas da entidade pesquisada, já que as melhores escolhas encorajaram aç= ões mais inovativas por parte dos gestores. Observou-se, também, maior eficiênc= ia administrativa e efetividade das ações mediadas pela qualidade da tomada de decisão dos gestores da Universidade Federal do Pará (UFPA), lócus de inves= tigação, situada na região norte da Amazônia brasileira. A literatura aponta que, qu= anto maior a habilidade da gestão para interpretar os acontecimentos do contexto organizacional de forma racional e intuitiva, com uma expectativa de que a decisão tomada seja a mais adequada, melhores serão as soluções para os problemas que afetam as organizações. Isso contribui para alcançar a inovatividade gerencial, facilitando ao gestor reorga= nizar seus recursos por meio da adoção de novos processos gerenciais em ambientes complexos. Verificou-se a existência da influência entre os construtos e a = proxy, uma vez que as ações inovat= ivas tendem a crescer proporcionalmente ao aumento dos níveis dos critérios de decisão adotados e da qualidade da tomada de decisão implementada. <= /p>

&= nbsp;

Palavras-chave: Critério de Decisão. Qualidade da Decisão. Inova= tividade Gerencial.

 <= /o:p>

ABSTRACT

The study analyzes the relationship between the construct decision criteria and its proxy, manager= ial innovativeness, within the environment of a public higher education institution, mediated by the construct organizational decision-making quali= ty. Data were collected through a structured questionnaire administered to mana= gers at the Federal University of Pará (UFPA), yielding 159 valid responses. Decision Theory and managerial behavior are central to this discussion, emphasizing managerial innovativeness as a strat= egy to optimize activities within organizational routines. In this context, improvements in the internal operations of the studied = entity were observed, with better decision-making fostering more innovative action= s by managers. Furthermore, increased administrative efficiency and effectivenes= s of actions were observed, facilitated by the quality of decision-making among managers at the Federal University of Pará (UFPA), the locus of investigati= on, situated in the northern region of the Brazilian Amazon. The literature suggests that the greater the management's ability to interpret events with= in the organizational context both rationally and intuitively, while maintaini= ng the expectation that the decision made will be the most appropriate, the mo= re effective the solutions to the challenges faced by organizations. This cont= ributes to achieving managerial innovativeness, enabling managers to reorganize resources by adopting new managerial processes in complex environments. The study found evidence of influence between the constructs and the proxy, as innovative actions tend to increase proportionally with the levels of decis= ion criteria adopted and the quality of decision-making implemented.

Keywords: Decision Criteria. Decision Quality. Managerial Innovativeness.

 <= /o:p>

Recebido em 30/09/2024.  Aprovado em 13/11/2= 024. Avaliado pelo sistema double blind peer review. Publicado conforme normas da APA.

https://doi.org/10.22279/navus.v16.2026

1 INTRODUÇÃO

 

Administrar = as atividades das entidades públicas engloba decisões das mais diversas, seja = em seus processos operacionais, na disposição e aplicação de tarefas ou, ainda, por circunstâncias paradigmáticas que levam, em ambientes complexos (Melo &= amp; Fucidji, 2016), às mudanças organizacionais, as= sim como a processos vinculados e suas condições de contorno ou boundary conditions (Prado et al., 2014).

Um ambiente = complexo é a soma total de eventos, ações, interações, influências, decisões e acasos que compõem o ambiente organizacional (Morin, 1990). Desse modo, as mudança= s no meio ambiente das organizações públicas exigem uma permanente adaptação dos= seus gestores (Bergue, 2010).

Nesse sentid= o, compreender a mediação estabelecida entre construtos no ambiente organizaci= onal de entidades públicas, particularmente instituições públicas de ensino superior, e suas evidências sobre os mecanismos que explicam como seus efei= tos acontecem, ou em que condições eles facilitam ou inibem tais efeitos (Hayes, 2013; Prado, Korelo, & Silva, 2014), torna-= se premente, pois é a chave para a otimização da tomada de decisão pelos gesto= res públicos.

Da mesma for= ma, para qualquer instituição pública que precise regularmente otimizar seus process= os, os gestores devem tomar decisões mais assertivas baseadas na racionalidade (Melo & Fucidji, 2016), diante das alternat= ivas disponíveis (Pontes, 2019). As ideias de Melo e Fucidj= i (2016) e Pontes (2019) corroboram as de Gomes (2020) ao afirmarem que decid= ir abrange, então, um processo de escolha racional, direta ou indireta, de no mínimo uma dentre as divergentes alternativas, sendo todas elas indicadas p= ara a resolução do problema apresentado. Esse fato permite observar, nesse cont= exto, construtos que atuam de maneira direta ou indireta em relação a outros, afetando o êxito organizacional em função da interação estabelecida entre e= les (Hayes, 2013; Prado et al., 2014).

Sob essa per= spectiva, traz-se à luz a Teoria da Decisão no cerne desta discussão, uma vez que no processo de escolha decisória, os paradigmas subjacentes e os fundamentos analíticos da decisão, como o da escolha racional, estão contidos nela, e comumente, os problemas de tomada de decisão envolvem múltiplos objetivos e critérios muitas vezes contraditórios, sendo a contribuição de um critério quase sempre prejudicial ao outro (Lima et al., 2014).

Isso decorre= em função dos obstáculos para a tomada de decisão serem caracterizados por um número crescente de critérios e de várias alternativas, em que os tomadores= de decisão precisam selecionar, classificar, categorizar e até detalhar dentre= as alternativas técnicas disponíveis a melhor e mais adequadas à solução de uma demanda em curso (Lima et al., 2014).

Por essas ra= zões, no cenário decisório, as análises do ambiente organizacional e das atividades envolvidas devem estar em linha com a escolha racional nas tomadas de decis= ões. Assim, compreender a dinâmica do ambiente organizacional, pelos gestores pú= blicos é fundamental, a fim de que possam tomar suas decisões com qualidade e segurança. Afinal, eventos incertos, suscitam um maior controle das ativida= des da organização, pois podem afetar seus objetivos gerais de maneira positiva= ou negativa (Hutchins, 2018).

Tomar a melh= or decisão, diante dos riscos percebidos no processo organizacional, é importa= nte para a boa prática da governança no setor público, posto que, viabiliza o alcance dos objetivos propostos pela organização, além de favorecer seus usuários, quando essas decisões estão relacionadas à execução de políticas públicas, programas ou prestação de serviços (Melo & Fucidji, 2016).

De acordo com Hammerstein e Stevens (2012), quando gestores enfrentam as incertezas, os riscos e as oportunidades presentes no ambiente organizacional em constante mudança, conseguem aumentar a capacidade da organização de criar valor e fornecer serviços mais eficientes, eficazes e econômicos a seus usuários. <= /span>

A resolução = de problemas nas organizações públicas abrange ações inovativas que direcionam= o seu meio ambiente organizacional a desenvolver gestores com habilidades diferenciadas na solução de problemas difusos, pois, como apontam Hammerste= in e Stevens (2012), as tomadas de decisões gerenciais são basicamente feitas por escolhas fundamentadas na sua cognição, ou seja, baseadas na percepção de q= ue sua tomada de decisão é a mais precisa, pois alcançará o melhor resultado. =

No setor púb= lico, Soares (2009) aponta que as decisões organizacionais acerca da inovatividade tornam-se requeridas, uma vez que o Est= ado precisa atender às demandas da sociedade de maneira mais eficiente e eficaz possível. Portanto, o serviço público, para manter-se funcional, deve acompanhar as mudanças ambientais em processo, promovendo uma cultura favor= ável à inovação e às práticas criativas e inovadoras (Soares, 2009) dentro do ambiente organizacional e entre seus servidores, sustentadas em escolhas ra= cionais (Lima et al., 2014; Melo & Fucidji, 2016). =

Nesse contex= to, o estudo desenvolveu-se na instituição de ensino superior (IES) Universidade Federal do Pará (UFPA), cuja metodologia valeu-se da técnica de investigaçã= o – pesquisa de campo – sendo os dados quantitativos coletados por meio da elaboração de um questionário estruturado, aplicado de maneira presencial e= /ou enviado por meio eletrônico aos gestores responsáveis pelas tomadas de decisões, lotados nos mais diversos setores da universidade, no campus Belém/PA. Foram um total de 300 questionários enviados, dos quais 159 compuseram a amostra analisada neste estudo.

Como objetiv= o geral, a pesquisa visou analisar a relação existente entre os critérios de decisão= , da qualidade de tomada de decisão organizacional e da ino= vatividade gerencial no ambiente de uma instituição de ensino superior.

 <= /o:p>

2 FUNDAMENTAÇÃO= TEÓRICA

 =

2.1 Critérios de Decisão à Luz da Teoria da Decisão

 <= /o:p>

A Teoria da = Decisão é o estudo dos paradigmas por trás das decisões em sua base analítica, sendo descrita como uma atitude complexa, que envolve muitas variáveis. Esta teor= ia, segundo Gomes e Gomes (2014), propõe uma metodologia para solução de proble= mas difíceis, que visa um conjunto de procedimentos e métodos de análise que procuram garantir a coerência, a eficácia e a eficiência das decisões tomad= as, levando em consideração as informações disponíveis e prevendo possíveis cenários.

Malczewski (= 1999) declara que a tomada de decisão é necessária diante de uma oportunidade ou problema, ou quando existe uma oportunidade de otimização ou melhoria, ou ainda, quando algo não deveria existir. De toda forma, o processo de tomada= de decisão demanda a existência de um conjunto de alternativas prováveis, na q= ual cada decisão (seleção de uma alternativa viável) tem benefícios e prejuízos associados.

Um dos aspec= tos abordados na Teoria da Decisão, de acordo com Hammerstein e Stevens (2012),= é o de ressaltar o indivíduo como peça importante do processo decisório, considerando sua racionalidade. Pressupõe-se então, e em concordância com G= omes (2020), que os sujeitos expressam suas preferências, de maneira racional, ao tomar decisões sobre questões simples.

Para Carvalho (2013), a Teoria da Decisão é um campo de estudo de base racional que prete= nde alcançar resultados máximos por meio de um processo metódico e organizado. Neste sentido, os indivíduos são avaliados como racionais, direcionando suas ações de modo a adaptar os meios aos resultados da organização. Por essas razões, Ferreira (2008) defende que, a partir da teoria da escolha racional= , os agentes são vistos como agentes econômicos (homo economicus), com características egoístas, autocentrados e aprimoradores de sua própria utilidade, sendo capazes de fa= zer as melhores escolhas com base nas informações disponíveis no meio ambiente organizacional.

Entretanto, = diante da complexidade da disciplina, seria imprudente pensar que o processo é cer= cado apenas de racionalidade pois os aspectos cognitivos também fazem parte do processo de tomada de decisão, tornando o julgamento da decisão mais difícil (Gomes, 2020). Os autores Hammerstein e Stevens (2012) corroboram a ideia de que a racionalidade essencialmente faz parte do processo decisório, contudo, admitem, tal como Pereira et al. (2010), que os elementos cognitivos, como a expectativa e a intuição, de igual modo, influenciam nos mecanismos interno= s de tomada de decisão gerencial.

Cohen (1981)= alega que a intuição pode ser descrita como um ato cognitivo supremo à percepção sensorial, sendo uma capacidade superior à atividade racional ou, então, representada como uma inclinação que precisa de um suporte empírico ou rede inferencial, avaliada como aquém da atividade racional.

Neste sentid= o, Garcia-Marques (1995) elege o comportamento intuitivo como aquele inclinado= à necessidade de um suporte empírico ou rede inferencial. Este comportamento é denominado de irracional, justamente por ser independente das regras lógica= s e precisar de uma análise cuidadosa da situação.

Autores como= Cohen (1981), Einhorn e Hogarth (1981) e Isenberg (1991) consideram que, na literatura sobre o= uso da intuição no processo de decisão, há certo consenso em não considerar a intuição como um processo aleatório de adivinhação, nem, tampouco, afirmá-la como o oposto da racionalidade. O recurso à intuição deve ser interligado c= om certa experiência em analisar e resolver o problema, assim como gerar soluç= ões. Por conseguinte, a intuição deve integrar conhecimento, as diversas situaçõ= es relacionadas aos problemas e a abordagem das soluções e consequências, conf= orme advoga Newell e Simon (1972).

As ações int= uitivas do decisor/gestor, num estudo meramente descritivo, podem ser avaliadas de forma a separar o pensar da ação. Contudo, na medida em que as lições das experiências são lógicas e fundamentadas, da mesma forma será a intuição. Percebe-se então, o pensar e o agir como um processo simultâneo, na qual o gestor usufrui do resultado das ações para entender o problema em si, tal c= omo preceitua Isenberg (1991).

Pereira et a= l. (2010) assinalam que o indivíduo busca agir conforme seu padrão de vivência= e/ou experiências adquiridas ao longo de sua vida. Esses padrões são aplicados n= as suas escolhas pessoais, nas suas atitudes e na opção de suas ações, sejam conscientes ou inconscientes, ao realizar determinados trabalhos. Neste cas= o, compreende-se, a partir de uma perspectiva cognitiva, que a tomada de decis= ão é um processo de escolha ou curso de ação, conforme as alternativas disponíve= is, que envolve um processo humano que abrange medidas centradas na informação, deliberação e seleção da decisão (Azuma et al.,= 2006). Neste contexto, a decisão do indivíduo, por meio do processo intuitivo, bus= ca demonstrar o valor do senso comum e da simplicidade ao utilizar instintos e percepções individuais, baseado na constante reflexão, na experiência adquirida, no hábito e, regularmente, inconscientemente, como advoga Motta (1988).

Sob a ótica cognitiva da expectativa e a relação com a tomada de decisão, o estudo apresentado por Dequech (1999) indica a expecta= tiva e a confiança como determinantes imediatos do “estado de expectativa”. Em out= ras palavras, quando não há pleno conhecimento necessário sobre acontecimentos = que ainda vão ocorrer, e/ou há imprecisão sobre determinados eventos, os indiví= duos constroem expectativas, com certo grau de confiança, determinando o “estado= de expectativa” no qual suas decisões serão baseadas. No intuito de examinar e= sse “estado”, o referido autor lista elementos que interferem e se relacionam n= esse processo, tais como expectativa e confiança; aversão à incerteza e percepçã= o à incerteza; otimismo espontâneo; conhecimento e criatividade; e disposição otimista.

Da análise apresentada, conclui-se que o indivíduo tem capacidade limitada, não sendo capaz de compreender todos os cenários complexos ao seu redor, bem como, processar inteiramente as informações de maneira totalmente clara e precisa= , já que, de acordo com Pereira et al. (2010), suas decisões podem ser influenci= adas por circunstâncias diversas, inclusive de caráter cognitivo.

 

2.2 Qualidade da Tomada de Decisão Organizacional

 

As Teorias da Administração foram evoluindo e desencadeando diversas modificações e adaptações às mais distintas realidades. Por essa razão, diante de vários cenários e múltiplas complexidades do ambiente organizacional, tornou-se ma= is difícil tomar uma decisão com mais qualidade assertiva para resolução de problemas, a fim de alcançar o objetivo pretendido e mensurar a profundidad= e e extensão do alcance da influência da decisão tomada no espectro operacional= da organização (Martinelli, 1995).

Gomes e Gome= s (2014) afirmam que, diante de um problema com várias alternativas para resolução, = uma decisão precisa ser tomada. Embora, para equacionar o problema, tenha-se ap= enas uma ação a tomar, pode-se optar por tomar ou não essa ação. Focar no proble= ma correto implica direcionar todo o processo de forma correta. Decidir também pode ser interpretado como: (a) o processo de reunir informações, considera= ndo sua importância e, posteriormente, investigar possíveis soluções e, por fim, fazer a escolha entre as opções e; (b) solucionar, deliberar e decidir.

Neste contex= to, o processo de tomada de decisão, em qualquer organização, deve abranger o conhecimento dos colaboradores internos no intuito de descobrir as melhores alternativas para o problema existente ou o mais acertado caminho que a organização deve percorrer. Ele se relaciona com o planejamento da institui= ção e afeta, de forma direta, sua essência, contudo, pode ser também entendido = como uma fase do processo global (Pacheco & Mattos, 2014).

Na esfera pú= blica, a gestão das atividades engloba constantes decisões das mais diversas, seja em seus processos frequentes, como a disposição e aplicação de tarefas, ou nas circunstâncias referentes às mudanças organizacionais. Desta forma, uma dec= isão pode ser vista como uma escolha que pode envolver um ou mais sujeito no exercício de uma função pública, seja esta um p= rocesso antecedente ou simultâneo a ser realizado por meio de procedimento administrativo, ato ou contrato que atenda ao interesse público e a promoção dos direitos fundamentais, reconhecidos pelo ordenamento jurídico e implementados por meio de uma interpretação sistemática das regras e princí= pios constitucionais (Freitas, 2013).

As organizaç= ões públicas, que têm por objetivo a realização de serviços em prol da sociedad= e, onde suas demandas exigem um trabalho padrão, acreditam que seus serviços i= rão ser realizados com qualidade. No entanto, o excesso de burocracia é apontado como fator desencadeante da morosidade nos processos decisórios da Administração Pública. Isto é, há procedimentos e regras que carregam um excesso de formalismo (Pacheco & Mattos, 2014).

Além da buro= cracia arraigada na administração pública, Pires (2009) salienta a discricionaried= ade administrativa como um engessamento na gestão, na qual, embora a administra= ção dê certa margem de liberdade de decisão entre as opções igualmente legítima= s, não há uma liberdade total para agir de acordo com a vontade ou preferências pessoais do agente. Sendo assim, a decisão deve ser estabelecida no âmbito = da Constituição (1988) e de seus Princípios, estar atrelada ao direito e às le= is e não ser conduzida arbitrariamente por meios contrários às prerrogativas do Estado.

Ressalta-se a importância dos indivíduos no processo de tomada de decisão, que direcionam suas ações de maneira racional, contudo, expressando suas predileções (Hamm= erstein & Stevens, 2012; Carvalho, 2013). Portanto, o comportamento do agente público pode ser persuadido por outros fatores que podem interferir em sua compreensão holística na tomada de decisão, tais como: a existência de preferências e desejos que são adversos do interesse público; o grau de ris= co da tomada de decisão na solução do problema; o grau de incerteza do meio ambiente organizacional; o artifício psicológico que afeta a percepção da realidade organizacional e; informações distorcidas ou incompletas sobre uma situação particular, fluídas pelos canais de comunicação adotados na organização (Moreira, 2015).

No trabalho apresentado por Silva (2013), baseado nos autores Cannon-Bowers et al. (1996), são destacados três elementos intervenientes, que estão relacionados com o processo de decisão: (a) a natureza da decisão – que env= olve tempo, incertezas, qualidade e quantidade das informações, objetivos e consequências da decisão; (b) relacionadas ao decisor – a motivação, exaust= ão e emoções e; (c) relacionadas ao ambiente – influência social, exigências do trabalho e pressão das pessoas.

Pacheco e Ma= ttos (2014) elegem mais duas variáveis que estão presentes no ambiente organizacional e que são extremamente relevantes para facilitar o processo = da tomada de decisão, são elas: a informação e a comunicação. A informação é u= ma parte essencial do processo de tomada de decisão. A qualidade e a quantidade das informações têm um grande impacto na tomada de decisão dos gestores, po= is quanto mais informações acerca de um tema específico, melhor o entendimento= e mais facilitado será a resolução do problema. Desta maneira, a informação quando parcial, isto é, quando não se tem acesso completo aos fatores que influenciam na decisão, compromete no bom desempenho das opções disponíveis (Pacheco & Mattos, 2014).

Por meio da comunicação as organizações e seus membros trocam informações, firmam acord= os, coordenam atividades, influenciam e socializam, além de criar e manter sist= emas de crenças, símbolos e valores. Uma das funções da comunicação é demarcar os papéis que ela cumpre para as organizações e seus colaboradores. A comunica= ção possui a tarefa de comando e controle, de ligação inte= r organizacional, de ideologia da comunicação, de apresentação organizacional= e outras (Souza et al., 2015).

Gomes e Gome= s (2014) indicam a cultura no apoio à decisão e a análise do cenário como variáveis = no processo de tomada de decisão. A primeira variável faz parte do modo como os indivíduos e os grupos humanos são, agem ou se expressam. Refere-se a uma junção de criatividade, informações e experiências, e afeta o ser humano. Da mesma forma, o ser humano pode influenciar a cultura por meio de suas ideia= s, descobertas e invenções.

A cultura é,= ao mesmo tempo, o produto da vida e das atividades sociais humanas, e está pau= tada no desenvolvimento intelectual, crenças, comportamentos observados, ideias inatas, aprendizado, valores familiares, ambiente de trabalho, cultura organizacional, ideologia política, entre outros (Gomes & Gomes, 2014). Assim, o decisor utilizará critérios na tomada de decisão, influenciados por valores pessoais e conforme suas preferências advindas de sua “bagagem” cultural.

A segunda va= riável – análise de cenários – visa, após o estudo dos diversos aspectos do problema, delinear diferentes cenários alternativos e passivos de materialização e as= sim, desenvolver estratégias para cada tipo de ambiente. Gomes e Gomes (2014) afirmam que a análise dos cenários pode ajudar significativamente, pois a elaboração de estratégias é uma oportunidade de simular a realidade, construindo melhor o problema de decisão. Portanto, o cenário é uma forte ferramenta de planejamento e representa uma forma de ensaiar para o futuro antes que ele ocorra.

Diante do ex= posto, pode-se inferir que a qualidade da decisão é avaliada por meio das variáveis que impactam as decisões tomadas no ambiente organizacional, considerando diversos pontos, como: as questões pessoais dos indivíduos; o ambiente inte= rno e externo da organização; as informações de maneira geral; a boa comunicação entre os gestores e demais atores; a estrutura organizacional – que é regida por leis e normas constitucionais, limitando a atuação do gestor; o envolvimento de todos os colaboradores; a estreita relação com o planejamen= to da organização e; os indivíduos como peças importantes do processo decisóri= o – os quais possuem limitações cognitivas e influências emocionais e afetivas.=

 

2.3 Inovatividad= e Gerencial

 

Ao longo dos= anos, as organizações públicas têm enfrentado intensas mudanças institucionais, o= que as levou a investir cada vez mais em novas tecnologias, tornando os process= os de prestação de serviços à população mais eficientes e eficazes. Desta form= a, a inovação no setor público vem ganhando mais destaque, visando à importância= do papel do Estado e seu desempenho. Assim, diante das transformações e dos insuficientes recursos para atender às crescentes necessidades da sociedade= , a inovação é a chave para manter as instituições públicas atualizadas e buscar solucionar os problemas e desafios da administração (Soares, 2009).<= /p>

As inovações= nas organizações aprimoram estruturas, processos de aprendizagem e ajudam as organizações a se adaptarem ao meio ambiente. Uma série de inovações influe= ncia na capacidade da organização, na qualidade e eficiência do trabalho, bem co= mo aprimoram as trocas de informações e otimizam a capacidade de aprender e us= ar novos conhecimentos e tecnologia, principalmente em ambientes complexos e mutáveis. Denota-se, dessa maneira, que as tomadas de decisões ao longo do tempo acabam adaptando-se, como bem afirmam Hammerstein e Stevens (2012), de acordo com as pressões do ambiente externo sobre o interno.

Neste contex= to, Monteiro et al. (2015) afirmam que a inovação visa transformar a organização para dar conta das mudanças advindas do ambiente interno e externo ou, aind= a, como prevenção a estas alterações, já que o processo decisório ocorre em situações de incertezas. Conforme o ambiente modifica-se, as organizações precisam continuamente adotar inovações dentro de complexos processos decisórios. Desta maneira, Motta (1979) revela que o surgimento da inovação está relacionado com a necessidade de superar ou adaptar-se aos obstáculos ambientais, ao seu crescimento e desenvolvimento, e à necessidade de lutar = pela sobrevivência das organizações. Assim, é premente compreender que os critér= ios de decisões adotados podem ser comparados a catalisadores que influenciarão= no desempenho organizacional.

No ambiente = interno das organizações públicas é fundamental promover um ambiente inovador e motivador para as práticas criativas e inovativas, além de investir em tecnologia, treinamentos, capacitações, melhoria de processos e produtos. A= demais, desenvolver um comportamento inovador imerso na cultura da organização tamb= ém é relevante, pois envolve elementos que auxiliam no processo de implementação= de novos conceitos à imagem das organizações públicas.

Nesse sentid= o, Alencar (1996) aponta que as organizações públicas devem reconhecer habilid= ades e esforços de seus agentes, bem como apoiá-los, proporcionando satisfação no trabalho e motivação para darem o melhor de si. O estudioso acrescenta que = um ambiente inovador somente surge se os níveis superiores organizacionais valorizarem e apoiarem as novas ideias. Para isso, no entanto, os gestores devem possuir a habilidade de estruturar o problema a ser resolvido, além de analisar sua decisão inerente a essa tomada de decisão. Logo, o modo como os dirigentes guiam seus subordinados, lideram a instituição e tomam as decisões, represe= nta um fator determinante para a qualidade da decisão. Assim sendo, para atingi= r um ambiente criativo ideal, é necessário desenvolver algumas diretrizes para orientar o comportamento daqueles responsáveis pelos departamentos-chave da organização (Alencar, 1996).

Nota-se, ent= ão, que as organizações públicas devem apoiar novas ideias e mudanças que possam beneficiá-la, assim como seus usuários, de tal forma que a implementação da inovação e o estímulo ao surgimento de novas ideias caibam em uma estrutura hierarquizada (de incentivo e apoio), de cima para baixo, dentro do ambient= e de cultura da inovação adotado pela organização. Nessa linha, Gomes (2020) e Pereira et al. (2010) advertem sobre a necessidade de pensar nos valores, alternativas, critérios, consequências, possíveis riscos e relações de troca entre os critérios de decisão, a partir da expectativa e racionalidade de q= ue se chegará ao melhor resultado possível, mesmo que na tomada de decisão haja algum espectro intuitivo cognitivo.

Dabla-Norris, Kersting e Verdier (2012) definem a inovatividade como a incorporação de novos processos = ou a adequação de tecnologia já presente no contexto operacional das organizaçõe= s. Já na visão de Garcia e Calantone (2002), a ino= vação é uma ideia implementada que agrega valor para o negócio, pois envolve a estratégia da organização. Outro conceito, advindo de = Lumpkin e Dess (1996), é o de refletir a tendência de d= esenvolver novos produtos e serviços por meio de novas ideias. Isto porque, a cultura = da inovatividade tem como característica fazer parte da organização, refletindo a vontade de buscar novas oportunidades e criando, então, a capacidade de inovar e instituir inovações concretas (Hurley &= Hult, 1998; Subramanian &= amp; Nilakanta, 1996).

Em relação às variáveis relacionadas à inovatividade, destaca= m-se as que envolvem a cultura e o comportamento das organizações. Sobre elas, Hurley e Hult (1998) indicam que a inovatividade gerencial advém de uma cultura organizacional, com métricas relacionadas à cultura e ao clima na instituiç= ão, sendo essas as mais usuais dentre as pesquisas existentes.

O modelo pro= posto pelo estudo de Quandt et al. (2015) cita algumas variáveis relacionadas à inovatividade, quais sejam: a) estratégia; b) lideran= ça; c) cultura; d) estrutura organizacional; e) processos, f) pessoas; g) rede de relacionamentos; h) infraestrutura tecnológica; i) mensuração e; j) aprendizagem.

Destaca-se q= ue o objetivo maior da inovatividade no serviço públ= ico é otimizar os recursos disponíveis por meio de formas inovadoras de gestão e organização, promovendo mais benefícios à sociedade. Ações inovativas nas á= reas tecnológica, na gestão da informação, no atendimento ao usuário/cidadão, na simplificação/modernização de procedimentos, na gestão da qualidade, na avaliação de desempenho ou no controle de resultados, reforçam a existência= de um espaço inovador ativo, estimulando seus colaboradores a criarem e inovar= em dentro das organizações. Assim, é preciso inovar e fazer o diferente para alcançar a eficácia, eficiência e efetividade, objetivos intrínsecos na administração da coisa pública (Soares, 2009).

Diante do ex= posto, nota-se que a eficiência na tomada de decisão refere-se à escolha da alternativa, dentre as demais disponíveis, que possa trazer os melhores resultados para a organização (Gomes & Gomes, 2014). Assim, as decisões mais assertivas sobre as inovações gerenciais tendem a influenciar a qualid= ade da decisão organizacional, além de proporcionar eficácia e eficiência, e as= sim, contribuir para um melhor desempenho. A inovatividade<= /span> é, pois, uma excelente ferramenta para otimizar os resultados da organizaçã= o, considerando que as decisões acerca de um ambiente inovador e criativo reve= lam uma instituição receptiva às mudanças, com o objetivo de se manter sempre atualizada.

 <= /o:p>

3 PROCEDIMENTOS METODOLÓGICOS

 

Para o alcan= ce do objetivo proposto, a coleta dos dados quantitativos ocorreu por meio de um questionário estruturado, aplicado presencialmente e/ou por meio eletrônico (e-mail institucional e pessoal) aos gestores – público-alvo desta pesquisa= – que exercem suas atividades dentro da instituição pública de ensino pesquis= ada (UFPA). Foi aplicado um total de 300 questionários, sendo devolvidos 202 e validados somente 159, que correspondem à amostra analisada, após a exclusã= o de dados outliers para ajuste à normalidade da variável dependente.

O questionár= io aplicado engloba as discussões teóricas envolvidas na pesquisa, dando supor= te para a validação das variáveis definidas e para a construção das hipóteses = do modelo teórico proposto (Figura 1).

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

Figura 1

Modelo Teórico de Investigação

 

 

 

 

 

 

 

 

 

 

 

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

Assim, foi d= ividido em cinco partes, sendo as partes I, II e III constituídas de oito perguntas cada, que abordam as variáveis dos construtos de Critérios de Decisão, da Qualidade da Tomada de Decisão e da Inovatividade Gerencial; a parte IV, que destaca duas perguntas descritivas relacionadas = às variáveis da tomada e da qualidade da decisão e a parte V, que abrange aos dados sociodemográficos. Deste modo, as perguntas contiveram um conjunto essencial de itens que medem as variáveis relacionadas aos seus construtos.=

Para as ques= tões objetivas, utilizou-se uma escala de frequência tipo L= ikert de sete pontos, com os parâmetros: 1- raramente; 2- quase nunca; 3- poucas vezes; 4- às vezes; 5- muitas vezes; 6- quase sempre; 7- sempre, tendo como base a percepção dos respondentes no período anual de 2021.

De acordo co= m o modelo apresentado (Figura 1), o construto Critério de Decisão é dimensiona= do como variável independente, e foi avaliado por meio das principais variáveis explicativas (racionalidade, intuição e expectativa), diretamente ligadas à variável independente. Deste modo, sob a perspectiva dos respondentes, demonstrou-se de que maneira essas variáveis têm influenciado a decisão dos gestores e de que forma esses critérios têm sido utilizados, ou não. O construto da Qualidade da Tomada de Decisão Organizacional, variável de aco= rdo com o modelo, objetivou examinar a qualidade da tomada de decisão dos gesto= res, por meio das diversas variáveis explicativas, tais como o comportamento pessoal, os processos envolvidos na decisão, a informação e comunicação, a análise do cenário, entre outras. Por fim, a Inovativi= dade Gerencial (denominada variável de resposta) foi avaliada, dentre outros aspectos, por meio da estrutura organizacional, dos processos, pessoas envolvidas, estratégias adotadas e da tecnologia utilizada.

Observa-se q= ue os construtos que sustentam o modelo teórico apoiam as hipóteses desta pesquis= a. Desta maneira, entende-se que as hipóteses, elaboradas conforme a teoria estudada, precisam de confirmações por meio de uma pesquisa empírica. Assim= , a hipótese é uma suposição provisória, que deve ser testada para sua validaçã= o, ou seja, trata-se, segundo Rudio (1980), de uma proposição que deve ser “colocada à prova para determinar sua validade”. De= sse modo, este estudo, de abordagem quantitativa, investigou os temas relaciona= dos aos construtos: Qualidade na Tomada de Decisão Organizacional (QTDO), Crité= rio de Decisão (CD) e Inovatividade Gerencial (IG),= para validar as seguintes hipóteses:

 <= /o:p>

H1: O Critér= io de Decisão influencia a Inovatividade Gerencial;

H2: O Critér= io de Decisão influencia a Qualidade da Tomada de Decisão Organizacional;<= /p>

H3: A Qualid= ade da Tomada de Decisão Organizacional influencia a Inovativ= idade Gerencial.

 

Por fim, a F= igura 2, apresenta a confiabilidade da escala utilizada na pesquisa de 0,902, confor= me estatística de Alfa de Cronbach.

 

Figura 2

Estatísticas de Confiabilidade

O modelo est= atístico utilizado na pesquisa foi o Modelo Linear Geral (MLG). Este modelo descreve= a influência estatística entre um ou mais preditores em relação a uma variável contínua, posteriormente, aplicou-se a técnica Anova para realizar a comparação de médias, por meio do modelo linear geral, executando a comparação entre médias do nível do fator para encontrar diferenças significativas (Weisberg, 1983).

Desta maneir= a, o modelo linear geral examinou as características explicativas e preditivas d= as variáveis latentes, indicadas no modelo estrutural teórico, para que se observasse o grau de influência dessas variáveis em relação à Inovatividade Gerencial. Esta técnica se diferencia d= as outras técnicas multivariadas, pois aplica-se às matrizes de variância, covariância ou de correlações como entrada de dados (B= rei et al., 2006).

Como acontec= e na Análise de Variância, é preciso atender a alguns pressupostos para realizar esta metodologia. Um dos principais é o teste de Levene para a homogeneidad= e de variâncias. O teste de Levene (1960) é uma técnica útil para comparação de médias e variâncias quando as suposições básicas dos testes de igualdade de= variâncias e de igualdade de médias não são satisfeitas, conforme descrito por Almeida= et al. (2008). Neste caso, é aplicado o teste de Levene para homogeneidade da variância para cada variável dependente em todas as combinações de nível pa= ra os fatores entre assuntos. Se o nível descritivo (p-valor) gerado a partir = da estatística de teste for inferior ao nível de significância desta pesquisa (0,05), atende-se aos pressupostos de homogeneidade de variâncias (Weisberg, 1983).

Após comprov= ada a diferença significativa para os fatores em relação à variável resposta, a q= ual é modelada a partir da estrutura linear geral, é de praxe averiguar se exis= te diferença significativa. Portanto, utiliza-se do teste da diferença signifi= cativa honesta de Bonferroni, o qual considera a distribuição t-student como base para realizar a comparação entre todos os pares possíveis da variável independente em análi= se para a variável resposta. De acordo com George e Malle= ry (2021), para poucas comparações entre pares, o teste de Bonferroni se mostra como o mais poderoso.

Por último, = para um melhor entendimento na apresentação dos resultados, utilizou-se uma categorização para os construtos estudados, de tal forma que os dados estatísticos foram agrupados em quantidade homogênea, nas seguintes categor= ias: Baixo, Moderado e Alto.

 <= /o:p>

4 RESULTADOS E DISCUSSÕES

 <= /o:p>

4.1 Análise Fatorial

 

No intuito de facilitar a interpretação dos fatores e encontrar uma estrutura mais simplificada para a matriz de cargas fatoriais, Dias (2018) diz que é viável fazer uma rotação ortogonal dos fatores de maneira a conservar, originalmen= te, a relação entre eles.

Esta rotação fatorial é útil para contribuir na interpretação dos fatores, já que muitas vezes, nas variáveis examinadas, as cargas fatoriais são elevadas em mais d= e um fator (Damasio, 2012). Assim, esta rotação visa simplificar as linhas e colunas das matrizes de cargas fatoriais, no intuit= o de tentar reduzir ou aproximar, o quanto for possível, os demais fatores ao va= lor zero (Dias, 2018).

Dessa forma,= nesta pesquisa, o método utilizado para a obtenção das cargas fatoriais foi alcan= çado pelos componentes principais sob a rotação das cargas fatoriais. A Tabela 1 demonstra os resultados estimados criados pelo método dos componentes princ= ipais que exibe a rotação das cargas fatoriais pelo método V= arimax, relacionada com os componentes principais.

 <= /o:p>

Tabela 1

Tot= al de variância explicada, percentual de variância e percentual cumulativo de variância, por fator criado pelo método de componentes principais e rotação= Varimax

 

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

Assim, a Tab= ela 1 apresenta a relação entre as cargas fatoriais rotacionadas criadas (1, 2 e = 3) e as principais variáveis relacionadas aos construtos desenvolvidos na pesqui= sa. O resultado aponta que, quando rotacionadas, a primeira carga fatorial expl= ica 25,655% da variabilidade, a segunda carga fatorial explica 17,451% e a terc= eira apresenta um percentual de 17,093%. Em conjunto, as três cargas fatoriais rotacionadas explicam 60,198% da variabilidade do conjunto original.=

 <= /o:p>

4.2 Análise Exploratória De Dados

 

O gráfico Boxplot é um diagrama de caixa, na qual a aresta infe= rior da caixa representa o primeiro quartil (Q1), a aresta superior indica o terceiro quartil (Q3) e um traço interno à caixa representa a mediana (Q2) = de uma amostra (Lopes et al., 2019). Além disso, permite observar a distribuiç= ão e os valores discrepantes (outliers) dos dados, apontando, assim, um meio complementar para desenvolver uma perspectiva sobre o caráter dos dados, co= nforme Lopes et al. (2019).

Visando demo= nstrar o comportamento das variáveis: QTDO e CD em função da IG, a Figura 3 apresent= a os gráficos Boxplot da raiz da transformada da Inovatividade Gerencial para as três categorias do Cr= itério de Decisão (Baixo, Moderado e Alto).

 

Figura 3

Gráfico Bloxpot da raiz transformada da Inovatividade Gerencial para três categorias do Critério de Decisão=

 

 <= /o:p>

Ao analisar = a Figura 3 percebe-se que na categoria Baixo o valor mediano gira em torno de 2,5 e a distância interquartílica não é tão acentuada. Para a categoria Moderado, a mediana vale 2,84, o que coincide com o valor médio da raiz da transformada= da inovatividade gerencial (destacada na Figura 3), send= o que a variabilidade não é tão elevada pela baixa distância interquartílica do diagrama de caixa. Já para a categoria Alto, nota-se o maior valor mediano, acima de 3, sendo que sua variabilidade também não é tão elevada por conta = da moderada distância interquartílica, o que evidencia a expectativa de valores elevados para a inovatividade gerencial dos pro= cessos que envolvem altos critérios de decisão.

Em suma, per= cebe-se que existe uma tendência na qual quanto mais elevada a= categoria relacionada ao critério de decisão, mais alta é classificada a inovatividade gerencial. Desta forma, o estudo demons= tra que os gestores, nas unidades pesquisadas, buscam antes de decidir (considerando as variáveis ligadas ao questionário de pesquisa) o seguinte: obter informações mais detalhadas sobre as causas dos problemas; apoiar-se = em análises descritivas do problema ambiental; diagnosticar a extensão do prob= lema no ambiente de trabalho e; pressentir se um problema pode influenciar negativamente o resultado organizacional. Isto quer dizer que, quanto mais criteriosos em suas decisões, mais eles elevam suas capacidades inovativas = no ambiente de trabalho. O inverso também é válido, isto é, quanto menos criterios adotarem, menos estimulam a inovatividade gerencial. O exposto pode ser evidenciado na Figura 4.

 

Figura 4

Qualidade de Tomada de Decisão analisada por três categorias

 

 <= /o:p>

Observando a= Figura 4, a qualidade da tomada de decisão, analisada por categorias (Baixo, Moder= ado e Alto), aponta variações em relação à inovatividade gerencial de forma que, na categoria Baixo, percebe-se o desempenho abaixo = do valor médio dos valores da raiz da transformada da ino= vatividade gerencial, sendo que o valor mediano para a categoria Baixo está concentrad= o em torno de 2,6, e a posição dos quartis 1 e 3 abordam uma baixa variabilidade pela diferença interquartílica. Para a categoria Moderado, assegura-se que = 50% dos valores pertencentes estão acima do valor médio para raiz da transforma= da da inovatividade gerencial, pelo fato da median= a do grupo estar situada acima da linha destacada no gráfico da Figura 4.=

Por outro la= do, a categoria Alto aborda a configuração de 75% dos valores acima do valor médio para a raiz da transformada da inovatividade gerencial, pela posição do quartil 1 acima da linha destacada para o valor médio. Por fim, observa-se que, embora o limite inferior esteja bastante “esticado”, a posição dos quartis 1 e 2 indicam uma baixa variabilidade par= a os dados pertencentes a esta classe.

Diante do ex= posto, e considerando tal como preconiza Malczewski (1999), os gestores ao tomarem decisões entre um conjunto de alternativas disponíveis, podem trazer benefí= cios ou prejuízos intrínsecos à sua decisão, além de gerar oportunidades de otimização ou melhoria nos seus ambientes de trabalho. Assim, os resultados= dos gráficos revelam que os gestores nas unidades pesquisadas procuram tomar decisões mais assertivas diante das situações apresentadas.

Em análise às respostas dos gestores na entidade pesquisada, destacando as variáveis mais fortemente relacionadas, indicadas no questionário, observou-se um conjunto= de ações que contribuem para uma melhor qualidade na tomada de decisão, que refletem na Inovatividade Gerencial, são elas: = buscar tomar decisões tempestivas; agir de maneira proativa diante de um cenário q= ue possa gerar transtorno; acertar nas decisões para problemas difusos; utiliz= ar instrumentos de apoio às tomadas de decisões como, por exemplo, tecnologia = da informação e; manter um comportamento proativo. Assim, este conjunto de atitudes, gera uma tomada de decisão mais assertiva, aumentando a qualidade= da tomada de decisão, o que influencia no aumento da capacidade de inovar e proporcionar ações inovativas no ambiente da organização, inclusive entre s= eus colaboradores.

O próximo pa= sso foi uma análise conjunta. Assim, a Figura 5 apresenta os diagramas de caixa em relação à raiz da transformada da inovatividade gerencial, estratificados pelas categorias da qualidade na tomada de decisã= o (Baixo, Moderado e Alto) e do critério de decisão (Baixo, Moderado e Alto).<= /p>

 

Figura 5

Diagramas de Caixa em relação à raiz da transformada da Inovatividade Gerencial

 <= /o:p>

 

 <= /o:p>

Neste sentid= o, há seis casos distintos quando associados às três possíveis respostas do crité= rio de decisão e da qualidade na tomada de decisão e existem, ainda, alguns que apresentam certas peculiaridades. Quando há um critério de decisão Baixo e = uma Alta qualidade na tomada de decisão, percebe-se um desempenho superior ao v= alor médio da inovatividade gerencial, especialmente, quando se avalia os cenários Moderado e Baixo da qualidade na tomada de decisão, os quais não resultaram no mesmo comportamento. Para o critério de decisão Moderado e uma Baixa qualidade na tomada de decisão, a dispersão dos dados por meio do diagrama de caixa, apresenta um desempenho abaixo do valor médio para a inovatividade gerencial; para as relações com a Qualidade Alta e Moderada, nota-se que o critério de decisão Moderado concentra valores acima do valor médio. Ao avaliar o critério de decisão Alto, verifica-se que a Baixa qualidade na tomada de decisão é igua= l ao valor mediano, com o valor médio da inovatividade gerencial e; à medida que se evolui para os casos Moderado e Alto, ocorre um deslocamento superior à média da inovatividade gerencial, em ambos os casos.

Diante da an= álise apresentada, observou-se que os dados mais expressivos foram na categoria A= lto, tanto para o CD quanto para QTDO, assim sendo, nota-se que os elevados critérios de decisão e qualidade da tomada de decisão, contribuem para uma = inovatividade acima da média (2,84). Por outro lado, = na categoria Baixo, ambos relacionados aos CD e QTDO, a i= novatividade se mantém abaixo da média (2,84). Isto significa que, os critérios de decis= ão e a qualidade da tomada de decisão estão relacionados, ou seja, na medida em = que, os gestores passam a decidir de maneira mais criteriosa, produzem uma melhor resposta em termos de qualidade da tomada de decisão que, em conjunto, contribuem para a inovatividade gerencial. Em contrapartida, quando não se observam os critérios para tomada de decisão, = ou suas tomadas de decisões não são as mais assertivas para determinado proble= ma, pode ocorrer neste caso, um cenário prejudicial à unidade ou agravamento de algum problema. Assim, há uma implicação em termos de = inovatividade gerencial, ligadas a esses dois construtos da análise (CD e QTDO).

Neste cenári= o, sob o ponto de vista do CD, Hammerstein e Stevens (2012) afirmam que este envolve= a racionalidade, que por meio de um processo organizado e metódico, o indivíd= uo visa encontrar um resultado máximo, o que é corroborado também em Carvalho = (2013). Observou-se na pesquisa que os gestores podem, também, utilizar-se da intui= ção e da expectativa, uma vez que o processo cognitivo tende a influenciar na tomada de decisão gerencial, tal como visto em Pereira et al. (2010). Assim= , ao aplicar o questionário de pesquisa, constatou-se que uma parte dos gestores, além do uso da racionalidade para tomar decisões, assinalou entre 6 e 7 (Es= cala Likert), indicando que quase sempre, ou sempre, seguem a intuição para tomarem decisões ou, quando pressentem que há um problema que poderá influenciar o resultado organizacional de maneira negat= iva, antecipam-se para solucioná-lo, bem como, criam uma expectativa de que a decisão tomada proporcionará o “ótimo” em termos de resultado. Assim sendo,= os gestores valem-se do aspecto cognitivo.

Sob o aspect= o da QTDO, como citado anteriormente, tende a aumentar quando se consideram aspe= ctos como: tomar decisões tempestivas; ser proativo; tomar decisões mais asserti= vas; utilizar ferramentas de apoio à tomada de decisão; e buscar um comportamento inovativo em relação à tomada de decisão organizacional. Estes elementos po= dem ser observados nas respostas aos questionários, fase em que a grande maioria dos gestores assinalaram entre 6 e 7 (na Escala Likert= ). Isso indica que compreendem atitudes quase sempre e sempre, tomadas no proc= esso decisório. Neste panorama, Gomes e Gomes (2014) apontam que para tomar uma decisão assertiva, dentre as alternativas disponíveis, é preciso, dentre ou= tros aspectos, a reunião de informações importantes e o envolvimento dos colaboradores nesta escolha, abrangendo o conhecimento destes, para o alcan= ce das melhores alternativas (Pacheco & Mattos, 2014).

Nota-se, tam= bém, que boa parte dos gestores concorda que o uso de ferramentas como a tecnologia = de informações e/ou de planejamento, auxiliam os gestores a tomarem decisões m= ais assertivas, bem como criam um ambiente inovador. Isso ocorre porque, em tem= pos de constantes mudanças ambientais, as entidades necessitam, segundo Monteir= o et al. (2015), adotar inovações, para aprimorar os processos decisórios por me= io destas ferramentas tecnológicas.

 <= /o:p>

4.3 Análise do Modelo Linear Geral

 

Para atender= o pressuposto de homogeneidade de variâncias, foi realizado o teste de Levene= , na intenção de verificar tal condição no ajuste do modelo linear geral. Dessa forma, de acordo com a Tabela 2, é possível verificar uma estatística de te= ste igual a 2,294 associada a um p-valor bem próximo de zero.

 <= /o:p>

Tabela 2

Res= ultados do teste de Levene para a homogeneidade de variâncias do Modelo Linear Gera= l

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

Portanto, is= so mostra evidências estatísticas de que as variâncias entre os grupos do mode= lo linear ajustado não são heterocedásticas, ao ní= vel de 5% de significância. A Tabela 3 traz as componentes que caracterizam a form= ação da Análise de Variância (Anova), aplicada a um modelo de regressão. Para as variáveis e interações preditoras, apontam-se a soma de quadrados, os graus= de liberdade, os quadrados médios, a estatística F e nível descritivo (p-valor= ). Primeiramente, avalia-se se o modelo ajustado é eficiente em prever a inovatividade gerencial, ao invés de considerar que t= odas as categorias estão concentradas na média. Assim sendo, utilizou-se das seguintes hipóteses estatísticas:

 <= /o:p>

H0: O ajuste= do modelo construído é igual ao ajuste do modelo sem previsão, ou seja, considera-se que todos os servidores estão na média em relação à inovatividade gerencial.

H1: O ajuste= do modelo construído é diferente do ajuste do modelo sem previsão, ou seja, considera-se que a contribuição das variáveis independentes influencia no v= alor médio da inovatividade gerencial entre os servi= dores.

 <= /o:p>


 <= /span>

Tabela 3

Aná= lise de variância para o Modelo 1 do Critério de Decisão como preditora da Inovatividade Gerencial mediada pelo nível da Qualida= de da Tomada de Decisão Organizacional

Origem

Tipo Soma dos Quadrados

gl

Quadrado Médio

F

Sig.

Eta parcial quadrado

Modelo corrigido=

10,301¹

8<= /p>

1,288

57,828

0,000

0,755

Intercepto

1170,316<= /span>

1<= /p>

1170,316<= /span>

52559,566=

0,000

0,997

C_D2

2,449

2<= /p>

1,225

54,997

0,000

0,423

QTD_3

4,959

2<= /p>

2,479

111,346

0,000

0,598

C_D2*QTD_3

0,85

4<= /p>

0,021

0,955

0,434

0,025

Erro

3,340

150

0,022

 

 

 

Total

1317,410<= /span>

159

 

 

 

 

Total corrigido<= /span>

13,641

158

 

 

 

 

 

 

No= ta: Variável dependente: Inovatividade Gerencia; R Quadrado=3D0,755 (R quadrado ajustado =3D 0,742).<= /p>

 

Examina-se p= or meio da primeira linha da Tabela 3, que o valor da estatística F resulta em um p-valor bem próximo de zero, o que permite rejeitar H0 e assumir a diferença entre o modelo construído e o sem previsão, ou seja, considera-se que a contribuição das variáveis independentes influencia no valor médio da inovatividade gerencial entre os servidores, ao nível= de 5% de significância. Ademais, o valor do R quadrado ajustado fornecido é igual= a 0,755. Em outras palavras, o Modelo Linear Geral elaborado explica conjuntamente 75,55% da variabilidade presente na inov= atividade gerencial.

Posteriormen= te, verifica-se a contribuição das variáveis independentes e interações para o efeito na inovatividade gerencial. Em cada test= e, estuda-se a estatística F gerada e o valor descritivo associado. Nesse sent= ido, se o nível descritivo for menor do que 0,05 (nível de significância adotado= ), afirma-se que a variável independente exerce efeito na variável dependente. Fundamenta-se na Tabela 3 que o item 2, do critério de decisão e o item 3, = da qualidade na tomada de decisão, apresentam efeito no valor médio da inovatividade gerencial, pelo fato do p-valor ser bem próximo de zero, ocasionando valores abaixo do nível de significância (0,05= ) e, consequentemente, significativos.

Quando se ve= rifica o tamanho do efeito relativo, aponta-se que o item 2 do critério CD tem 0,423= do tamanho de efeito na IG, isto é, 42,30% da variabilidade da inovatividade gerencial pode ser explicado pelo item 2 do critério de decisão. Para o ite= m 3 da QTDO, observa-se um tamanho de efeito igual a 0,598, isto é, o item 3 da qualidade na tomada de decisão pode explicar 59,80% da variabilidade em vol= ta da IG.

Assim, o est= udo demonstrou que os construtos apresentados no Modelo 1 da Figura 1 estão inter-relacionados (CD, QTDO e IG) conforme a análise fatorial que explica 60,198% da variância das variáveis fatoradas (Tabela 1), indicando também, = que todas as hipóteses da pesquisa foram confirmadas.

Neste sentid= o, a influência direta das variáveis CD e QTDO na IG, do MLG da Tabela 3 espelha= o ambiente organizacional da amostra selecionada, onde tal influência contrib= ui para gerar ações de Inovatividade Gerencial, que proporciona melhor desempenho em novos processos operacionais no contexto da organização pública pesquisada, em função do Modelo 1 apresentar um R² que explica 75,5% da relação dos efeitos diretos dos Critérios de Decisão e da Qualidade da Tomada de Decisão Organizacional (Tabela 3), na Inovatividade Gerencial da amostra selecionada da pes= quisa (confirmação das Hipóteses 1 e 3).

Constatou-se= que, por meio da análise do Modelo Linear Geral (MLG) apresentado na Tabela 3, a relação da variável CD com a variável dependente IG não é moderada pela variável QTDO, já que apresentou uma significância estatística maior que &g= t; 0,05.

Outra descob= erta está na evidência de moderação na relação da variável CD e IG promovida pela variável QTDO, mas desde que em conjunto com as variáveis de controle de Te= mpo no Cargo como Gestor (TCG) como também do seu Grau de Instrução (GI), confirmando assim, a Hipótese 2 da pesquisa. Outro achado foi perceber que,= a variável QTDO medeia em algum grau a relação entre as variáveis CD e IG. Entretanto, embora haja essa indicação, não se pode garantir, conforme a Ta= bela 3, que ela é estatisticamente significante.

Nesse sentid= o, foi realizada uma nova análise, de acordo com os estudos de Hayes (2013, p.87), propondo uma relação de mediação por meio do construto da QTDO, onde o estu= do demonstrou uma significância estatística com p<0,05 e grau de confiabili= dade de 95% evidenciada no Modelo 2 da Figura 6

 <= /o:p>

Figura 6

Modelo de Critério de Decisão

 

 

Observou-se = que o efeito de mediação (efeito indireto) foi significativo; com b =3D 0,0534 (9= 5% Bca e CI =3D 0,0184, 0,0892), e a variável Qualidade = da Tomada de Decisão mediou aproximadamente 24,55% da relação entre Critério de Decisão e Inovatividade Gerencial, conforme dem= onstra a Figura 5.

O Modelo de = Critério de Decisão permite afirmar que quanto maior o nível de critério de decisão, assim como da Qualidade da tomada de decisão, maiores serão as ações inovat= ivas desenvolvidas no ambiente organizacional de entidades públicas de ensino su= perior uma vez que, apresentou um R-quadrado de 74,68% de variância explicada após= a mediação contra 35,42% sem a mediação (Resultado da análise de variância da mediação no SPSS, conforme modelo de Hayes, 2013, p.87).

Assim, quand= o o gestor tem por critérios observar o menor grau de assimetria do problema existente que afeta o processo organizacional, faz-se uma análise de forma descritiva e um diagnóstico da extensão do problema antes de solucioná-lo, capacita-o a criar um ambiente organizacional que reflete ações inovativas = com novos processos mais proativos, com maior empatia, com habilidades inovador= as, e criativo entre si e seus colaboradores.

Entretanto, = se o critério de decisão do gestor estiver mediado pela qualidade de sua tomada = de decisão organizacional do tipo: a) tempestividade, b) proativo, c) assertiv= o e d) inovativo na solução de certo problema, suas tomadas de decisões tendem a criar um cenário de inovatividade gerencial no ambiente organizacional amplificado.

 <= /o:p>

 <= /o:p>

5 CONCLUSÃO

Pode-se afir= mar que os gestores na organização pública estudada, buscam, diante de um ambiente complexo e mutável, adaptar-se às circunstâncias, tomando decisões de manei= ra racional e assertiva, desenvolvendo suas habilidades cognitivas holísticas,= ou seja, que ultrapassam a organização como um sistema formado por suas partes= em conexão. Nessa linha, entende-se que adquirir a habilidade de entender um cenário global, também é basilar, para que as tomadas de decisões sejam mais eficazes para a organização, e possibilitem, com isso, atingir os objetivos gerais e metas específicas estrategicamente propostas.

O estudo apo= nta que os construtos da relação do critério de decisão e da qualidade da tomada de decisão organizacional, por meio de suas variáveis intrínsecas, influenciam= a inovatividade gerencial no ambiente da instituição pú= blica pesquisada. Isto quer dizer que ações inovativas, no ambiente interno organ= izacional, devem ser norteadas, também, pela racionalidade que leva à qualidade da dec= isão a ser tomada, visando contribuir para o sucesso da organização dada sua coe= são operacional.

Observou-se,= no que concerne à qualidade da tomada de decisão, que as variáveis, em termos decrescente: QTDO9 (tomada de decisão tempestiva, após análise positiva e negativa no processo organizacional); QTDO10 (proatividade num cenário disfuncional); QTDO11 (decisões mais assertivas na resolução de problemas difusos); QTDO15 (utilização de instrumentos de apoio nas tomadas de decisõ= es – TI e outros) e; QTDO16 (comportamento inovativo em função do processo de to= mada de decisão) foram as que apresentaram influência na in= ovatividade gerencial. Já as variáveis mais significativas para os critérios de decisão= , na ordem decrescente, foram CD2 (necessidade de informações mais detalhadas so= bre o problema para tomar decisões); CD3 (Apoiar-se nas análises descritivas do problema ambiental para decidir); CD6 (uso do diagnóstico da extensão do problema no ambiente organizacional antes de tomar uma decisão) e; CD7 (pressentir um problema que influenciará negativamente no resultado organizacional, buscando solucioná-lo), o que significa dizer que, nas respostas ao questionário, os gestores sempre ou quase sempre (opções 6 e 7= na Escala do tipo Likert utilizada na pesquisa), indicaram ações que se refletiram na IG das unidades, nas amostras selecionadas.

Segundo os referenciais teóricos citados neste estudo, a boa gestão mediante cenários incertos e mutáveis, traz benefícios e contribui para os objetivos estratég= icos da organização, promovendo a eficiência e eficácia da própria gestão por maximizar seu desempenho. Sendo assim, o gestor que adota bons critérios de decisões, aprimora a qualidade da tomada de decisão, fazendo toda a diferen= ça no contexto organizacional.

A inovatividade gerencial aplicada pelos gestores pode = ser um catalisador que suaviza um ambiente turbulento e contribui para que as decisões, em função dos desafios propostos, sejam otimizadas. Ela é indispensável para manter as instituições atualizadas em termos tecnológicos diante das frequentes mudanças ambientais na sociedade e no mercado, contribuindo, em certa medida, para uma maior qualidade da tomada de decisão gerencial.

Do mesmo mod= o, a inovatividade melhora o desempenho organizacional, em termos de prestação de serviços públicos, sendo um mecanismo de promoção de benefícios à população e otimização de recursos, visando à economicidade. É importante também, criar nas instituições um ambiente propício às inovações, estimulando a criatividade dos colaboradores. Para tal, é necessário que os dirigentes que tomam as decisões e lideram seus subordinados possam estar dispostos a criar e estimular esse ambiente.

Enfatiza-se = que as decisões são necessárias em face de um problema e que oportunizam um aperfeiçoamento. Neste contexto, o processo de tomada de decisão abrange um conjunto de alternativas viáveis, baseadas em critérios, que acarretam prejuízos ou benefícios correlacionados (Malczewski, 1999). É preciso, entã= o, que os gestores avaliem as opções disponíveis e optem por decisões criterio= sas e mais assertivas, alinhadas aos objetivos da instituição.

Neste sentid= o, nas instituições públicas, é essencial que as melhores decisões sejam tomadas s= obre as políticas públicas, programas e serviços, tanto em cenários mutáveis e de incertezas, quanto naqueles relacionados ao ambiente inovador, pois a boa e= scolha se reflete nos serviços prestados e contribui para o desempenho institucion= al. Na área social, por exemplo, há um impacto das decisões sobre os serviços públicos oferecidos pelas organizações públicas, lócus do estudo.

Por fim, o e= studo, dentre outros pontos, pretende contribuir para a academia e para o conhecim= ento científico, oferecendo fontes para pesquisas futuras, e somando-se ao arcab= ouço teórico desta pesquisa. Acredita-se, por isso, que este trabalho se junta a outros, no esforço de oferecer um norte de incentivos para novos estudos.

Sugere-se, e= ntão, promover um estudo mais aprofundado sobre os construtos aqui discutidos: CD= , QTDO e IG, aplicando-os em outras instituições (sejam elas públicas ou particula= res), em termos comparativos; bem como apurar e discutir melhor sobre os graus de instrução e sua influência sobre os resultados em termos de QTDO e IG, assim como analisa-los por meio da Modelagem de Equaçõ= es Estruturais ou ainda de regressão linear. 

Também, suge= re-se que pesquisas envolvendo os construtos aqui estudados e sua proxy sejam realizadas em outros contextos da Amazônia ou fora dela a fim de comparabilidade de grupos de gestores de instituições públicas e suas ações inovativas. No contexto internacional, também pesquisas para fins de comparabilidade com as brasileiras podem ser realizadas.


 

REFERÊNCIAS

 

Alencar, E. M. L. S. (1996). A gerência da criatividade: abrindo as janelas para a criatividade pessoal e = nas organizações. São Paulo: Makron Books.

Almeida, A., Elian, S. N., & Nobre, J. S. (2008). Modificações e alternativas aos testes de Levene e de Brown e Forsythe para igualdade de variâncias e médias. Revista Colomb= iana de Estatística, 31(2), 241-260. Recuperado de https://www.researchgate.= net/publication/262446180_Modifications_and_Alternatives_to_the_Tests_of_Le= vene_and_Brown_Forsythe_for_Equality_of_Variances_and_Means

Azuma, R., Daily, M., & Furmanski, C. (2006)= . A review of time critical deci= sion making models and human cognitive processes. In 2006 IEEE Aerospace Conference (p. 9). = DOI: https://doi.org/10.1109/aero.2006.1656041

Bergue, S. T. (2010). Cultura= e mudança organizacional. Florianópolis: Departamento de Ciências da Administração/UFSC.

BRASIL. [Constituição (1988)]. Constituição da República Federativa do Brasil de 1988.

Brei, V. A., & Liberali Neto, G. (2006). O uso da técnica de modelagem em equações estruturais na área de marketing: um estudo comparati= vo entre publicações no Brasil e no exterior. Revista de Administração Contemporânea, 10, 131-151. DOI: https://doi.org/10.1590/S1415-65552006000400007

Bussab, W., & Morettin, P. (2017). Estatística Básica. (9a ed.). São Paulo: Saraiva.

Cannon-Bowers, J. A., Salas, E., & Pruitt, J= . S. (1996). Establishing the boundaries of a paradigm for decision-making resea= rch. Human Factors<= /i>, 38(2), 193-205. DOI: https://doi.org/10.1177/001872089606380202

Carvalho, C. (2019). Teoria da decisão tributária. Grupo Almedina.

Carvalho, E. D. (2013). Decisão na administração pública: diálogo de racionalidades. Sociologia, Problem= as e Práticas, (73), 131-148. DOI: https://doi.org/10.7458/SPP2013732811

Cohen, L. J. (1981). Can human irrationality = be experimentally demonstrated? Behavi= oral and Brain Sciences, 4(3), 317-331. DOI: https://doi.org/10.1017/S0140525X00009092

Dabla-Norris, E., Kersting, E. K., & Verdier, G. (2012). Firm productivity, innovation, and financial development. Southern Economic Journal, 79(2), 422-449. DOI: https://doi.org/10.4284/0038-4038-2011.201 =

 Damasio= , B. F. (2012). Uso da análise fatorial exploratória em psicologia. Avaliação Psicológica. Interamerican Journal of Psychological Assessment, 11(2), 213-2= 28. Recuperado de http://pepsic.bvsalud.org/scielo.php?script=3Dsci_abstract&am= p;pid=3DS1677-04712012000200007

Dias, C. R. G. (2018). Desempenho do método de estimação por componen= tes principais e da rotação varimax na análise de fatores (Dissertação de Mestrado).  Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.

Dequech, D. (1999). Expectations and confidence under uncertainty. Journal of post Keynes= ian economics, 21(3), 415-430. DOI:  https://doi.org/10.1080/01603477.1999.11490205

Einhorn, H. J., & Hogarth, R. M. (1981). Behavioral decision theory: Processes of judgement and choice. Annual review of psychology, 32(1), 53-88. DOI: https://doi.org/10.1146/annurev.ps.32.020181.000413<= /span>

Ferreira, V. R. de M. (2008). Psicologia econômica: estudo do comportamento econômico e da tomada de decisão. Ri= o de Janeiro: Elsevier.

Freitas, J. (2013). O controle dos atos administrativos e os princípi= os fundamentais. (5a ed.). São Paulo: Malheiros.

Garcia-Marques, T. (1995). Decisão: racionalidade e intuição. Comportamento Organizacional e Gestão<= /i>, 1(1), 67-76. Recuperado de https://www.researchgate.net/publication/287210938_Decisao_Racionalidade_e_= Intuicao

Garcia, R., & Calantone= , R. (2002). A critical look at technological innovation typology and innovativeness terminology: a literature review. Journal of Product Innovation Manageme= nt, 19(2), 110–132. DOI: https://doi.org/10.1111/1540-5885.1920110

George, D., & Mallery, P. (2021). IBM SPSS statistics 27 step by step: A simple guide and reference. Routledge.

Gomes, L., & Gomes, C. (2014). Tomada de Decisão Gerencial–Enfoque Multicritério (5a ed.). São Paulo: Atlas.<= o:p>

Gomes, L. F. A. M. (2020). Teoria da decisão. Cengage Learning.

Hammerstein, P., & Stevens, J. R. (Eds.). (2012). Evolution and the mechanism= s of decision making, 11.  Mit Press.

Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford publications.

Hurley, R. F., & Hult, G. T. M. (1988). Innovation, market orientation, and firm learning: An integration and empir= ical examination. Journal of Marketing, 62, 42-54. DOI: https://doi.org/10.1177/002224299806200303

Hutchins, G. (2018). ISO 31000: 2018 enterprise risk management. Greg Hutchins.=

Isenberg, D. J. (1991). How senior managers think. Open University Press.

Lim= a, J. D. D., Jucá, J. F. T., Reichert, G. A., & Firmo, A. L. B. (2014). Uso de modelos de apoio à decisão para análise de alternativas tecnológicas de tratamento de resíduos sólidos urbanos na Região Sul do Brasil. Engenharia Sanitária e Ambiental, = 19, 33-42. DOI: https://doi.org/10.1590/S1413-41522014000100004

Lopes, G. R., Almeida, A. W. S., Delbem, A., & Toledo, C. F. M. (2019). Introdução à análise exploratória de dados com Python. Minicursos ERCAS ENUCMPI, 160-176.=

Lumpkin, G. T., & Dess, G. G. (1996).= Clarifying the entrepreneurial orientation const= ruct and linking it to performance. Acad= emy of management Review, 21(1), 135-172. DOI: https://doi.org/10.2307/258632<= o:p>

Malczewski, J. (1999). GIS and multicriteria decision analysis. John Wiley & Sons.=

Martinelli, D. P. (1995). A evolução da teoria da administração e a hierarquização de sistemas (Tese Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://repositorio.usp.br/item/000743770

Melo, T., & Fucidji, J. R. (2016). Racionalidade limitada e a tom= ada de decisão em sistemas complexos. Brazilian Journal of Political Economy, 36, 622-645. DOI: https://doi.org/10.1590/0101-31572016v36n03a09

Moreira, R. M. C. (2015). A motivação das decisões administrativas. Revista de Doutrina da 4ª Região, Porto Alegre, 67. https://revistadoutrina.trf4.jus.br/artigos/edicao067/Rafael_Moreira.html.<= o:p>

Morin, E. (1990). Introdução = ao pensamento complexo. 3 ed. Lisboa: Instituto Piaget.<= /p>

Monteiro, C., Machado, P., Castro, M. de, Lara, L. F. de, & Angne= s, J. S. (2015). Processo Decisório na Perspectiva da Visão Cognitiva: Um Estu= do em Uma Empresa do Ramo Varejista de Confecções. Perspectivas Contemporâneas, 10 (2), 196–215. http://periodicos.grupointegrado.br/revista/index.php/perspectivascontempor= aneas/article/view/1871

Motta, P. R. (1979). Planejam= ento organizacional: dimensões sistêmico-gerenciais. Porto Alegre: Fundação = para o Desenvolvimento de RH.

Motta, P. R. (1988). Razão e intuição: recuperando o ilógico na teori= a da decisão gerencial. Revista de Administração Pública, v. 22, n. 3, p. 77-94. https://bibliotecadigital.fgv.br/dspace;start/handle/10438/12850=

Newell, A., & Simon, H. A. (1972). Human problem solving. 104(9). Eng= lewood Cliffs, NJ: Prentice-hall.

Pac= heco, G. B., & Mattos, A. S. (2014). Processo decisório no setor público: Um estudo de caso na caixa econômica federal e na Universida= de Federal de Santa Catarina. Anais do= XIV Colóquio Internacional de Gestão Universitária, Forianópolis, Santa Catarina, SC, Brasil. Recuperado de https://repositorio.ufsc.br/xmlui/handle/123456789/131900=

Pereira, B. A. D., Lobler, M. L., & Simonetto, E. de O. (2010). Análise dos modelos de tomada decisão sob o enfoque cognitivo. Revista de Administração da UFSM, = 3(2), 260–268. DOI:  https://doi.org/10.5902/198346592347

Pires, L. M. F. (2009). Contr= ole judicial da discricionariedade administrativa: dos conceitos jurídicos indeterminados às políticas públicas. Rio de Janeiro: Elsevier.

Pontes, H. N. D. S. A. (2019). Processo de decisão na administração pública: antecedentes gerenciais de uma mudança organizacional em um Hospit= al Público de João Pessoa (Trabalho de Conclusão de Curso de Tecnólogo em Gest= ão Pública). Universidade Federal da Paraíba, João Pessoa, PB, Brasil. Recuper= ado de https://repositorio.ufpb.br/jspui/handle/123456789/15686

Prado, P. H. M., Korelo, J. C., & Da Silva, D. M. L. (2014). Anál= ise de mediação, moderação e processos condicionais. REMark-Revista Brasileira De Marketing, 13(4), 04-24. DOI: https://doi.org/10.5585/remark.v13i4.2739

Quandt, C. O., Bezerra, C. A., & Ferraresi, A. A. (2015). Dimensõ= es da inovatividade organizacional e seu impacto no desempenho inovador: proposição e avaliação de um modelo. Gestão e Produção, 22, 873-886. DOI: https://doi.org/10.1590/0104-530X1568-14<= o:p>

Rudio, F. V. (1980). Introduç= ão ao projeto de pesquisa científica (4ª ed.). Petrópolis: Vozes. =

Silva, R. M. P. da. (2013). Análise do processo decisório na administração pública e sistemas de apoio à tomada de decisão: contradições= e paradoxos na realidade organizacional pelo não uso de ferramentas disponíve= is (Tese de Doutorado em Administração). Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil. Recuperado de http://hdl.handle.net/10183/79= 628

Soares, A. D. V. A. (2009). Inovação no setor público: obstáculos e alternativas. Revista de Gestão Púb= lica, 1(1), 101-113. DOI: https://doi.org/10.1590/S0034-76122013000100010

Solino, A. D. S., & El-Aouar, W. A. (2001). O processo de tomada = de decisões estratégicas: entre a intuição e a racionalidade. REGE Revista de Gestão, 8(3).

Souza, I. M. de., Moritz, G. de O., & Pereira, M. F. (2015). A informação e a comunicação no processo decisório. Florianópolis: Departamen= to de Administração/UFSC. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ead2.moodle.ufs= c.br/ pluginfile.php/187645/mod_resource/content/5/Processo%20Decisorio%20UAB%203= ed-alterado.pdf

Subramanian, A., & Nila= kanta, S. (1996). Organizational innovativeness: Exploring the relationship between organizational determinants of innovation, types of innovations, and measur= es of organizational performance. = Omega, 24(6), 631-647. DOI: https://doi.org/10.1016/S0305-0483(96)00031-X

Tukey, J. W. (1953). <= span lang=3DEN-US style=3D'font-family:"Myriad Pro",sans-serif;mso-fareast-font-= family: "Times New Roman";mso-bidi-font-family:Arial;mso-ansi-language:EN-US; mso-bidi-font-weight:bold'>The problem of multiple comparisons. Multiple comparisons.

Weisberg, S. (2005). Applied linear regression, 528. = John Wiley & Sons.

 

&n= bsp;

------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAdkAAAD8CAMAAAAMjy4BAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAMAUExURf///+np6bm5uYmJiVlZWSoqKh4eHhUVFREREQ4ODgsLCwgICAYGBgMDAwAA AAICAgUFBQoKCg0NDRAQEBMTExsbGyQkJElJSXl5eaqqqtra2v7+/v39/fn5+bGxsVNTUwEBARcX F1BQUIeHh8DAwPj4+NLS0pqammJiYikpKTU1NZKSku/v7+3t7W9vbwQEBBQUFCUlJbKysvf398vL y3x8fC8vLxoaGkpKSrq6uufn5/z8/Pv7+8fHx3JychkZGRwcHEdHR/T09Li4uFxcXFVVVbCwsOzs 7F9fX0VFRZ6enuPj4/r6+rS0tGBgYEJCQvLy8srKykxMTK+vr/Dw8G1tbTg4OJOTkx0dHSIiIvHx 8djY2FhYWA8PD1tbW01NTfPz85ubmwcHB9TU1ERERJ2dncbGxt/f36Ghodvb2zIyMiEhIb6+vl1d XTw8PMjIyJSUlBYWFuHh4SYmJkhISI+Pj6KiomRkZNnZ2e7u7jY2NiMjI7Ozs9XV1by8vKysrObm 5mxsbCgoKN3d3VRUVD8/P6mpqdfX1zAwMHh4eNPT08LCwgwMDDQ0NIaGhuXl5WdnZxISEm5ubmho aM7OzktLS4iIiIyMjI2NjbW1tSAgIJmZmfX19TMzM5+fn+Dg4ICAgCcnJ4qKis/Pz2NjY97e3hgY GKurq5GRkaOjo6CgoKenp+Tk5MTExJWVla2trY6Ojtzc3Ojo6Pb29uvr68XFxXV1dS4uLszMzEZG Rnd3d0NDQywsLGVlZZaWlisrK2ZmZlJSUs3NzQkJCerq6mpqamtra8nJya6urr29vYKCgjExMXp6 eoWFhTs7O5CQkOLi4tbW1pycnFFRUcHBwb+/v05OTnBwcFZWVoGBgYODg9HR0YSEhNDQ0EBAQGlp aWFhYYuLi39/fz09PXNzcz4+PqWlpZiYmKampqSkpLa2tre3tzk5OcPDw15eXnFxcXR0dDc3N1dX Vzo6Oru7u1paWh8fH6ioqH19fU9PT35+fi0tLXZ2dpeXl3t7e0FBQfIMTuIAAAAJcEhZcwAADsMA AA7DAcdvqGQAACHsSURBVHhe7d17XEzpHwfwb1K6Pl3k1pkoJKkkITUjyXU1aOmnRCR3IeVWEinK LcktkolySRuqcReWXFrsyuZ+W7RYYll23Xf7vc5MZXqaqZnmnKmZzvuPmvOZMrt9Z87leZ7zPAAM BoPBYDAYDAaDwWAw6hy1BuoNNTQbaWnr6OrpIwNDXSPjxiZNmjZr3sIU/1GGUiBYZi1b6SFzi9Zt 2lriTwK0s2pvbW6OOtjYsgj8OUadRdi162jfyaF9Z0f8GVyXrt2cDLs7u7DxJxh1D6eHa0+3Xlbu eC4Ru3cfDdS3X388Z9QlHOcBet8N9MDjanEHDW48ZKAnHjPqiO+HNu4+zAtPpcTt8T+D4QPxlFEH ePuMaOuLhzLhjBzlN7qm7wwGPTzH2Df0x8MaMBsbYDEODxm1pv94rQl4VmPj3IwnMufKdcKkvm6T 8UwuU6YGTmNqW+v6T29iRXljw/czugXhGUOhiJnBNmKamOQ3sUlfMzxjKE7IrNlqeEaVOdpz8Yih KPPMQ/GIQmHzrW3xjKEInuGj8YhiC/Qj8IhBO2Kh0SI8o1zkCFcWnjFotjgqGo/osERD9lZohjyW 0r0nLhNjEotHDBotW44ntGnbeAUeMejipTmW8sYJyUZqrcQjBj366zrjEa0cGzOlVQjHES3xiG6r FHK2Vt+x41bjEe3iA5jS0m/8GjxRgKAE5uKHbmtb44lC9HNgmizoFWSAJwqybi2eMCjViLa+nWqw RqzHIwaFNmwsf8huGaeZKNqHaqs5GTZtBoBhhi6lUXyg1bfn45PKNjirAo0TAld9e0rEFnsJG+P0 k0WeYVCr89byh6wBPICUBNFnt5UNmtleVllIFaksqJdtuKTBDnXoIvKUCBPRDdF/v81QkQ0GpcwC v+0Rd+4ivwanJu6G9ERwmbnHjKzs+lCAjC0jXOCHTZkAexNdrcBu3zBBg5Vgo/++fsLWqx3q5Bsl MQXs9odk2WVn5UBI+lwA/oS5fsCd7H2A/Bn+hLnaAAcTU0pfUkuQMmjww4Zvj73jyK+HDh85Ci6I G+h+jAfbJntOXwTHs3cauqwNyhkBc/c55lqFnTBrRQ6OmHzS8ZRV2I9mp/cIfp2sbPsz/fPObtbs ffLUMN5SsHA89wOne0q2IZyfdmEGuc/unjLFEPJ/OuAWJnxJ56hvL8+gkqNf5LeNgd3IrxcvjTsK gFjr42fYkJ/Zy4sAkXtjU+7PPmCdA6lWm6N+maUDANZqoG41qHRDUNkDmgBXxhd0AEBw4BSkFUz1 vtqd3BtP8VqeCwARG8i9sfYvv+gcKX1NHeYkih77RolsxPuRX02sBJVlz4jNKq3sGUFl9/3q5QPo AKRadU4X/jzqD+pWLb3Lfn2HOhToAvQoLK9sXEiW97UxZGVtJkSTlb1+g6xs3reXBNtAkQ0GdVCF G+za3+Sy91rD2UD/3cgj3H95KufyBDgWA4Y7HZtenZWS2STs1m3L23eyDXbf3QQAfe9YbruXbbD7 PrkB0Oc2wIN84rewSVuBgyDHOi3Kv6P6FMNsvpa7vsf3UWoAZw2j+Y3dm1uP3Fh2QkboMS1RdLDV rLjdwAKRVdr00PIRPP5f7AlWUVF+UZGt1+z03z2OPIkfmgM3Wz11hqu9VguajzqSGxG92gg2lhcV bQTLQ70iOEVFWWOKfi8qenboZvwOMG32R3uvvc0iW5G39wg24NHxu+UvueeEyOszqHI0BgvCujXE Err178S0MdJAHw8Anu/4GY/otWEQnjDkdoY8q6ltLwbgCUNui+vCkP2QpnjCkJtDtfOJKEInZj4L yvlx8KQ2FF7DE4acMgXtxFXjF+NJ1SrNfuDeAAsAXCqObrtCtjczqDRItAFKoLfby4vnju8VSTyF d75zrryCb917dmuOuf4pfh8agzfxe/GwAIisJRW2ixU1gr3+SEzFE1h3BeCq4Ug8hugu3/Xilm24 +9wlP/D8ij8ivXYVKztO0BHBoNBrvJ1CWFlYMx0ict8AxBy+DCk/Qub8eSvgjsYfANe2viE/uLv/ Ij95uan3T1wey++jofEWBl9aCc5z5hwFuJMNGhoa7+COhjfA38vWQvRvAOkaNnBgVPThheBfGJeC V9alZ4VNhvzmTcMTYWXnNs0ZSLzpOqEzEU5kToWlXFaXBjeJJPf7bYjnswHg3FvBj97I1nEM1bS1 Q74nJno1ITJyWamPiNkRQEDu+hdvCAS9nxEPxqXMh5s7ia7nWQnZLG345wKB8Mq6ix+Jwai5t2fw RFhZ9Wb3khwcliwlO/gip4K6zwWA/nMC3KPuAwTYAiSS5YVR83YuA7C3BCd/KDjWBBa9gefboFkE EI9vA9jxEIxuBwAF8yEpDDySwMkTVgHLdEelyhKowiZDficW4omgstz3vNQMgPghDQDsIqeCmv/Q 5dcXQ6B73ECAYD5ArJ8jAHvVSLKye1ul28DFGF+RynZ5APDqBCD4cw9ASMF8CPcAtUvCyp5zhkqV 9TeusMmQn2vlGZ8Kb0PKkjWglve/5R/yAzPewCRrGJXp8fDjjmEW/Qos7P4WXKHMHBzmdTMVumiy 4Z+g7z1g15bJ2heyBoP3b/Dke74uHxatHdBbz/mgyYTmYaa5MHYpMbClo7Ed5Fn6TH6Kpm0eU+E1 Q5wqbDLkl34RT4J4PN4f5F0ZObyJAEd4OSwe7/7eyYsgee7O3i4wiUxJIXuepgDweN/D6uZ9+zYP y7Db78Hj5fB4zjzeBR6Pt99sz8iD2XCVN4nN462AI7xx4Mzj7eG13PmH/1MWjzdF9EXvvxTdYlDA uRBPZDee7GLFQ9kseIgnDDnZCccvyWWOns8wOTtYN9rgCUNeCeWND7WpWQ88YchLoy7MT8v2w5ua GXJrXhf2g9l1oftf1Uxxw5NakF8bN++qPNFbqaQVAxAy7/gegOLjpI7kl8uCoaVXji/2Bcdj+C9U 4yXTPUuDwbLvjosI+GGwI2ukD3zggg7BaW6GbEHNeBN4atmC//AjwD2O/0qVXHwUOKdNPdIJD6qz rwH4mpPDz7eSQxx1yKogX4AIQ/eiXwFgZR4BpwvwX6rKnEN4wqCCcTyeVGN+CNx1IB9kWItW1hJd 0yLvr/NEIbBZlp50loEdHjGoMEzQbSOD4APQQFDZzeGilWWjzUZkZTkoG84exn+pCmeYbnd6cH3I njYZBB+AyACy+/3H06KVnaQfNnUYOTmbDl+2yuqG4AmDGgvJ21plEBcCxD9dATwDyBVfyirLibsI 9y0A4NZugGmCjnnpjB2CJwyKsLZex6MqzVkIwBkY2HQUuS5aEgqHME0UPuvTQbKTftSsJeQeYF2F npyqraJlxQIGaaKTbFcd88n2f/9Vkm/ZIL5NfFGtdYvxhEGdE+dkK+0Hwde1M8iPqRjcc3gi2bTG zGIgdGpaW+voeDkxi0zTKtsQTxTkxiM8YVDrpCyXKdTZNFy2wwBDdouL8EQB8t2kX4SaUUPE0PZ4 RDvTvDoxoEPVseJm4hHNbPWY02KF8HS4Iuc4Ndms0GIWG1aQ5CeLFXg+s8DpKh4xaHP6Ozyhza8+ snYeMuSx5hKe0ORzINMnq1iTjSrfnEeDnksF3QDxzEWP4hTkqdN+HtUub6zwQU+0lrnuoU2k6f2g lpv2lW9zZj/B55mgluUji/JVCx7rdbquwLO2+iUdIYTsRU9nThqKTiZPtR5N+4jsgwuK0FDx85gw 5OaHEKo4aY9dq1NpFQIK3UoqvUuzTD9d88qzoDDkl7wBIfQFawwiVvoMJkfCUG6C8SY2nnk+RFHM pS3lvgYg50+o8lKwZom6MvbGS2G/yWxxe15iUoL+n3jIkAeRpoeaE6D2Gn9CoLn55UqfLzkQF9Al WzwsY2OOZBxAyahCZDM0PwcPRS02+iqyeIRcPHebT61yTvn5qAO9p+T1B3812vUUDzH8e0lPfsLD Grh6TqthdYOKe7sZpDIXtxRo2Qk1l2Y46N+zGz2Wb5VY/ty/ts+UYok0s2Oo6be1BRg1E/0OHZX2 pqqCRJ/tv9e0+d5xyzvzNRIWVKskNgr9g2cMmfxoH3xBhjNfVuY+I6c1svemOqY21fstVoZdLGus QV6leVUZUrtujy7K2jZMcJ83NdBbK/HkthLOv7v00X++sr4OJxc51HgC1vqNCNEwr+msEJb7mvrZ v9sUe7aqGeo5YQU/9NXTadKxylNhyUJNUGKdmCddyfivQSPkGjXODvp5toa23/ABG/vtHRddkGPn acniutuqZe4ceaHBvv+NdzMMnHGzsxQnTJJ1tG9STVdi+zzzEljxCzJ5CAff627Bn1Z+LxITEx25 iYmJiUDkZ0lzXnkyIO8kFR8I37udvX9v+CDuVLhTQp65np9FUtSld4Xn1D/0KF+jVg5X/0JvSxe6 lKChEflV6zrE23A719ZK5nR6hKIBHH1ac+DButOobAVgiX6aik6cxcM6qQXSKV1SUTxhZXddB/K4 oIpzI38g70iG0+cBzgA8FvzfSmY7Rl+jcgNxHeV1Gn1borqy8sqSCxmfxJ9VAeWVJfewB6ueSuRX Q7SfynZgumWvMliLZ+UaooSEhARzsrLa5qo4N/IHlK2mptb9vGDDipxLXJLoVfqtpGlyqks+65tL 2seIfmbBr9L6Jcrv294YwKyZ5BH3LuORdQ0vQmrVMnRD/BDHCpXdrIU/rfxEKst6LLG1kL/NoJOM iynVFTG77NPFHUKElQ0WVnYBOQuVihGpLC8Tf7IU0WCE/n9K26zjtRh9icVDgEt6tgAuhpeh39Cg aaq4LrGwslPPA6T3W7FioLgxJ+5x6MFOPFQmKxJQpWnDrhUXF4NdcXFx2+SFxdkytIAri5urULBX sg+y9/lIDkBEYk6RzumjI7K23dYxrCyk8wIP6zlikJ5BpRUglJBZFOogV3ulqonuZn6clhGIite2 E5JzDQoV0v8zmkXFSJc6Yoe5BW1joJULTytgI54ptfWH0UNy0rh6buQXNErc0F5lRjxHCZVXBKtf WEfNe0ao4LWAbS8USEUfpNK6bW6+SAXrSsq2R6pwsl8jrHbB5jfwUIVctteRZoiB6okchabKMAOt EvK8hNqryLWcLFbrBWeIa0FXKQMTDP/FMxX3IgndrA8zP6gNENtNoLIi/zI/LLEnT8VEIMPf8ExV sZfr551R0TNiMVgzkW69uC+TdRUZXsZD1RYWhY6q/pnUpKnor6oH6Kqi3X5oEZ6pFvfzBm7T8LBe eIu2SxoDpwJYWzrZJ6r8lY4EE7ejdWLGG6iE6MOoYfnEWfUPZywKzsdDlVBo0ChayUfDyMn3C9LE M6XHjjE0TMTD+idCD41VqcMRMa6n/SelHW5KJdZiexMVurg92xB9kX2CARUV/QW9VpGDEjdVT5eZ 0UHESd2AgXimjP4OR1+ZcZoVRN5AL8mFjZWaWZz5VI/600Ysrfso4CueKRViOdIfhIcM0jYkuB1G ObEW6hisw0NGqUgHdEtJh66OfIIe1L+2fxmMzdNTxm4Cx+WGTXvjIaMC7i3BSLA+eF6nDdOyX62q 7d8UuuCG1hYjJZrC3sMabWWmAJaG2RykjwK88LiO4hSaG43EQ4YEnxBCp/GwTmINQwEqOAkdXdqZ kzeKK8MZSbv35kuqmsWSgVFrMPDmhk91viX5wHTzl3vxkKH0WFeMtCbU+XdfnRa7/870B90c3BJ0 DfJM3GZ1K/nz5/xQ/IcULm0EWqO8LWa1Ti29RNPgy45ne6+GuNj5m7EsPfu7hES8OvkwVz/p+Ezx 04gpxnikKWmiJ0Z19jvpajc39RS/w2N7xh4y0n3fGc8VxXcBnjCkwv+1U96NKmZbLVUwO89iLjMw RWmwxs1utE7afV3KDpMbV8V/rhl1S/KzXS9l6xX4MN9tgiKuKsO6tHy6JevisY/q+zL2/6T04wQU jO1tsU72e8Nj2zehc9FdyL7S/ZKmkdbSHa4Xr2QM++Pfjct/KwzXD7Yucq2fd3fUwFinP2t2q2nK W7e5eEaN6yUWuoGfV7h4mWHjYNj+BwqeHzXQcnjE9PNUJ/R995p3muQcD5+EZ3IiOFkGBi+rWckE /N/omZ+u5zcEVI11wkC+Y1eEwU0q/7795ya8PyblOImY+Ubts6l8cVVy10j+mY5H61LWOHW9l8Ua WRZ5ZW+5ZOGtatOzUeK2ZgQe1cD9ntRMahgza4js88Dv/F3bVTmW3VEg3+824FENjR8j/xi5mT6t a3Zjr7tNp9Gqfye/LNo1mkDVAGy2d08598hBu27VdFVXgOQ9qzriWT1230iuxf4wbXVkvyAW8d5Y vqMle51eAzyrr2L15CpFJVcNpW2arISzyXg3nsnMd9kXZRnFRa+VCdU3/csmU/sIHknHZdlpSpop 5+pspuroosSOmFA/cZ2/9n08kkaMSbXLTkopJe4tHtU7KwzpuFCINKrB/H8/UjmJ3mOfGh8SVENK zT5d1ZpoIvMftsNpSufV7mHUBY/qE0unv/GIIvlJMrbTJ33GEzll69fnc+RR9M1R7joPT6ri31P+ c2KcndOCense9XccnlDolAx7Q//wP/CIAl5NhIs61j8H8mQ+GMogRU/qhj6+9T48ooRa42t4VD98 +YAnlBp4CU8k0aCmH6GyeFTDK2vltvcLnlBM8wKeiNdqB55QJmRVfZxqJi8HTyjm0ghPxMrohCcU yt+KJ6rvTl88odyYOXgiRoo9pdexuD/P4YmqYxnRP9uip3b1I1jY28Ut6UwddlIPPFJx91zxhAY/ 2uBJJZsa4gnFDjrI2Gai7Hyo7uERJ9sBT3AuFjUfLimlhs/wRKV1/g5PaFFU3VDvofT/2X2169Wt RzOoHEYhmfNRPKkoZUT1R2K53ZGpoVPJqXUSf/7EOXXq1Ho8LNM/vPSXWpFvi4GNy3KP3P0iP1UB W6vqEcNLxuIJDQhDPFFhwyS9jQk0EY+ELF/jiUn5o0MSKwutqmzf45ddyqb81nSAcJXNXzsDuAMQ ToLly7nH8ZYGZ1T26IWfocOI6aaiT34SnjwcCGFVeEO9fiO6pdpuSJw6BvUAu+TMTAB+aAF4hYZC aDYRH+oPhYMzudEQGmrpGWrZnw/snSlawEqZYgngYrp2PziGij8j2z8KT0TNayP8/n2uGcDT7NJ0 5SAAvsQFrssrCy/mA2Qbr6zwrMCmB79UbFXMq7Clytx1xe+MBZXN2d4mJjjF6wH39fnkbj+BWe/N y+ON2QteQwsE+8IBDk15H8RaE3RNH9rsLm4GP321fb/fcShxWMyfGICjV9U1h4HwG7uJM/k13tT5 h0lpaZHvBx+B/CxffozHFW4LgMxHewAiUoVDm/bMQQDtUgWfb7KyYNMNHJ89A7BL/xc4+30h5sow iM76gQX8sfvKhz6/pKsbus6JfYIn5VAPOHENBky72QAs9d2dZ8ND6DLymi53wWvy40L4+ae1g1ZB 0UfJvXG+3eRcMCL3xnOObbwl/mx7mfjPsoCHhfC7FxKMxeLYPMk/OO8ZLB4EN9S+X5bp0++yKYKC PuznzaAhW3DT0IC0swheTeAHk0UTVPYI8h/jOPDP5NaOiZc9nDz+/t5rarKDZd+93OFhR0aUnRTf Py7yqiqt33k8KVdW2dO7AZAXzFIrhrTFIxuXVhasvmaRZ1Arh5KVHbQtKBfsycp2lbgoQ0OxH2Wh JTHC715IWIKF8wAeCSqr/Vccisw9S77kjwuBY2439aI/AaA2i0z+iftLN72ssj1QrOZfl3Y9FdzA e8rDNOmgBzvCdPsL0xkAw8umi+L7lb+mimtf+icVo6yyxSNYlg4AE3oS8N3K5FUHFrx2ISvrq7uZ rGymrh2YEIbusbn+Opvh0NOJJqaZj/B/SmDg//DkG+3S7xydzYLv3yqrS24KK/t2IABis3qTraEX NMikb7Tw1wSV/W9MBLnk6r+CE7xTHmD50NoyzmPtix5TAbqXj7Pr9aLskYoLlrSL5GijvK4Gurv1 dXNa+rW3BCCeAaTlNdge65WXfQr9B3CSgA/mftAjQf1wZIxJbBMXbu78rzGsQWiN+CvTzF14Uo6t X/YorWcki3sdigcD3POGxTHjNJekfGVZuwCB2GnGlp4doDnbhjy2NjroiAoydqUtIm8kyI8jOM6N D4DxyegT8fbtcm4T20MWpRB+XV76jmrhqBPJiStvomhxs/xVVRp3FZ7QKAAPyjXoXv7w7M2SrmBX UnI9tKQEVrTmw4lPYatLSoiOJR3hzPjVAA9LssgzKLXWG49mw+4S8lrqeklJyfFfyY6HG78BXD2a Clkl06+1KgmF15/vu0LYqHnfLn3GPSh/qNIcJX+OqFe2y61sMb1jOkSFBeOJauK/xxMaJeBBuThJ xwQa9JTlNmvl5T4LT2hUemUjRlNbPKHPUSlH7ig5T7pHQIlqggflnKQe3Ci/0WRbiOrzVeTgIMmr oDam5MY76dxsgScqqcafWTOz0u9cwTdC+E1I0mgmyZ/ZAEm/QoPViuhUqn3u2/GkjNmm4y8vHsPT csOEnTpes56S34grtt2QRjJxv+HW6QuA/1F8W7Tk46y5LDdnOHsC62DGQnduRkZGxgs7MPtD9G1V rZlX8EQlST43TiLb48LxtJKPgsrO7A+A4qHzeAD4A2Cc+PHg3zr7cEalewBp7IsGeFlsVjDeLgx5 mfVeVQyea/GfqcrnDDxRSY498aTUr1Hk1wgCpi0PhS4rN0barf6XsJ0Q/7gAWM//GwdpbSHk4j6z 0sqak42R8WAg6FLhA4TjfakCkq9nTaQfxZJzGmA4OcaV68Ulu/HGIYCfZTkp+m0YnqiQtjfL9l9c SX/tXasB1D59+rTooJdb/OIbL+63N1t+867RtN6B0DekwMmxubpZEv/YXGFlI8jhayheTQcAvn76 BLChLf7vkQRNwGL5SD/B0JY7AEj4ny+oLKD1cFCWlWeWqPLNW9OQ0WjhI0JLwvwtjchl01wQK2/7 dt1XNunwt8X29yi5EdkML3gzWKkTO0OW/SusrFUzQWX5euQzPsUAJ8RNRqAmuaViu/Tz1d/6UN7l XlpZK/D41gdfvSeCIRpKgahKWFjmzvXrp/XOzx+YlaX+uWPHAX9+WnqYXIbnhuCsZbSEfdNkI/Jp RAQQAIRNOjT4CEAIK6tLAEFYqXMOxyeWVXa2cG+MyG7tEa8A5omr7HPJk/492IknEpGVNRdOqCGo LBt5yVRZVh71s3FUjc02M3N0dPf09bW1639WzcUl06Ng0qToaFPT2NiIHj2uO+/fz9tis/HesWOu 56ZPb31jSIcOUVFOu4yNySpJZmBgbxgQYKRjbOyXkGDSycLCycntvQVCyP604Nj2odKgplLdbnjC WQNi9YiDF+PbrIYDeVkTp3uasLiIcHg96RBc2RYfrra2DceVXDvcy4D8M6dAUMJItqPmQYDx7fB/ juwrl3w0bFM6VkYKF9MBPv5C7gJGCiq7rgPAVRnu/o1viifS4Zq5u9vano2P90iZMuVqxN27R4Im Xru2cGFxcefO++fOtfo3MfF2169rFz98eOvW0KElS+efOpWU1MjEyAivSEWGhrpGfn6dgnv6aIaH O0R9+TJ16/CioiFDes0eOrSwYZ81a1xdP37cqG7z74SnHzp3/ulVULsVO3eqqblLeHsGIfvWpcO2 I4bgT5YJWlN4Ww1gy60VkwoLJ4FHnztEYWHXeYUfOV/XeRUUFkLqR9NjrMJCcpo1LfAtLCzkg3tq 4cO/AczEtn9slTwh2zgNPJFofXsAeHT08skG8Aa9+TzKlQBoIc1dQ6W6fBJ+z75w4Vpb5xedF7XY s2fsWG/vxEf3unY99Pv58zsG/LPkdPfuJSXv3l3qZh0YuGtXY21dXbwiFQUErPKzsNAcMSv3cIcO w4vGjx86Zsno0Tt2nF/s6nr59sVHj7y9x459/nRRv0HOC/fuPXM3Ijs6MjIsjC/9iaOU1m8oXxrQ V4obbqqXWXEU+Atx96qyjar4/5BhtOjbym/XE5Ujia6sFn4vwauDkJGRVidNTesvW98V9epVWDh6 9Ik1Ny9fvncvK33Llj0fYvLzBw1yvt722sELXe7fvXo1O6XAJcfOzt+/rNGmrhlPyalirOiEBffF nqNsHoonImS4vTK50h1Cm6U/SgM0KR28mhMSkhmfk3PALszTMznZ0pKjwGYwxfijijEslOojcfgr AKjLMNKBhTVYEbLUxEty47Wq8ZDUVkG1RlVOJCa4YFIA3ho8UV2XxO47KffqHZ5UoFP1vSGUSaBw dri67ocleEKLZsJBiZLsv4EntHCR4YCu/IJpv2+VnADEDU8q4ugp5EN7eCGeqLJDd/CEBl/v4QnG m7xOpZsd2XVRfyTriO9OpVJytfck++opYFzFEAltqaqq42I8oVz7rnhSSeo/eEK5ND3638N1iz7d rShmkjoLRY2ge+oXzqwazLWs3PKH4wnFogbhiRgTm1Z1GyYFNpE9k4oWuwEFNoc5mqg1gN3Pm/Cn 6eZT3fQg8nkhcUxOBQ1Lm3RpkkL/5DVi6ZD3IO4hRwusOCp9nxZFPLTo/J9WWyXdFQ0/uOxeSDok N5Fmx0EDQWVfCMaBHFJ4ZWFuLzyhUFFLPJHAyx5PKLThMp4oSO1Wlv3dTDyizM+tpe4oXJkg9Y/K 6tkIPFEUHX17e3v92qos8HWoWOdQnCBtGS5Ul3+h6TQ9RvKQWLrV7mcWIELPA48oYaor07pdrkdp OUFepKgeLTFqu7IwTV/6oaHSC9M7iEdVO79Elu5WKW1288UjxRFUtmUtVhZ2v5dhtyklR4vOeFQN 1sOllO+Qx7pJHoJFOw99clRBezQJwGzoJxretlL4NVz6Yb/SOetWg5U8HlO952zuUIvrHvqnpaVd hey0tDSA2LS0ChPNKQxR3Ina93aK1is8kka+IaXHhaOnaDvhVh4rDULwSA5TDCROyVm1aJ0MyorR P+AhHtVLe3VfyXLDY1WI3nln8Exanr+Mp2gHuqWR5PHr9cuBU1R16bWfKs9R+1HPQRS8xfqPL6nF k+K6ZlQ3KgaBTYqScycYeumJvEcG4qKJYKY+Rqn9xuJvbJbF7dJZ9uTRVl++N8eLnuuk64moP8I+ hcs3P9POpFFUHCa5lwMe45nU0tzeMzviSogeq+QYb0b80/gMBcdIgXl6X8XePl8N9pmEWVQcU1TR x4D/atYixXcNoLQD/ZjWrXYyzTACkHnFfkYoHjLKcNYaZ0m4H74KZ9v4UT1TP+uHokb3pL8ni79o huaxKm80YXh19Gso20x2B5eYvKFjNrb4jT7bz0vTnOVxZYhxn1eUtXKoLs6iOGsbaT+4alkOw4fR 1uCdsuiJ38v/qnqj5Vh9SrLYtr66cc2MUqHLE6y/Vt/kkOO63eSjTB2xsuNnPhturxW1JsMUOz/z Kv78nUVewuv1YVSduNUP7LPp9ka53pIvY8KuROXlnTygoEHati3O5wYY6usbmCOEzA0M9O31TE6n K+Z+QlXk4drYHr3b9opvxuWwWQRBsNgcrhm/bdfhyD7hkHxXv4xad2HO29z3wQnGuvbIPs84weL9 l3+8RWcxYDAYDAaDwWAwGAwGg8FgMBgMBoPBYNQL/wcGnX0JjAYgAAAAAABJRU5ErkJggk== ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAABBAAAAEtCAYAAACxuZMkAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEguSURBVHhe7d3fix1Vvv//yvfe5NM6V5IRseOF KBg8HXNwEkEhdkZFjhy1jREJGIxREfwxcewoIvlx0vGMB0RjZ1DIhdrmGBkZjCYKBuwwjCZKi4YI JmEQj1fRRP0D+tuv6vXurF5ZtVft3ftX9X4+oHqvXT9XrapaXeu968eCySkZAAAAAABADf+f+wQA AAAAAChEAAEAAAAAACQRQAAAAAAAAEkEEAAAAAAAQBIBBAAAAAAAkEQAAQAAAAAAJBFAAAAAAAAA SQQQAAAAAABAEgEEAAAAAACQRAABAAAAAAAkEUAAAAAAAABJBBAAAAAAAEASAQQAAAAAAJBEAAEA AAAAACQRQAAAAAAAAEkEEAAAAAAAQBIBBAAAAAAAkEQAAQAAAAAAJBFAAAAAAAAASQQQAAAAAABA EgEEAAAAAACQRAABAAAAAAAkEUAAAAAAAABJBBAAAAAAAEASAQQAAAAAAJBEAAEAAAAAACQRQAAA AAAAAEkEEAAAAAAAQBIBBAAAAAAAkEQAAQAAAAAAJBFAAAAAAAAASQQQAAAAAABAEgEEAAAAAACQ RAABAAAAAAAkEUAAAAAAAABJBBAAAAAAAEASAQQAAAAAAJBEAAFAT9q5c2e2YMGCOXeaz3z31Vdf zVrnCy+8MO/Xaj/99FP20EMP5ctcsmRJW5bZjWrtq93ggw8+yDZv3pytXr16Vt60n6ifhr399tvZ qVOn8vG1TQ8fPpynu5nyfPfdd+frYeu0bNmyfH1F20XD1GncZlHZ+OXod42odRwV7VvabiFNZ9tY n5pvWeG+YV1sOa0Uy4O6XqjHAaBpJgGgh01MTEwODAxMqjr0u8HBQTfGOSdPnpwcGxub7O/vnxlv ZGTEDZ2/hoeHZ9a3r68vL7N2UNnactWp3HvV6dOnJ4eGhmaVh7pO2r9//6xjQWkdHzpOzPj4+Kz9 xzr171Yqa79O0DppXf38h/umOn+950rz8svWukakjiNtCx3X/jix+k/9/HE2btzohpQTW6fYclpN 6+vnQV0v1OMA0CxcgQCgp1199dXZnXfe6b7Vdtlll+W/SJ44cSKbOnl2fZtPv9RqOe2gX1NTv77t 3bs3/5xqZGSHDh3Ky6xZai3/k08+calpUw0Ql+o9F110UXbNNde4b52lX561f95yyy0z20THg44L 9ddxYlasWJFt27Ytm5iYyKYa5a5vd1u7dm129OhR9y3LFi9enC1cuNB9m/bUU0+51Dk//vijS82d yvCBBx5w3+YmdRxpG1177bXuW7GDBw+61DS7oqQsrZOugOg0rS8AoHEEEACgAVu2bMkb1K0wPDyc nT171n1rHTUEH330UfctTpctq8HRiuBBavk33nijS03r7+93KXSKtpkuO7egkih4sGvXLvctTvvN gQMHun4ban8PG8pywQUXuNS0WDDk4osvdqnu0qzjaHBw0KWm+YEiAEDvIIAAAA3QL8KtuAph9+7d sxpnrfTwww8nf9X/3//935YEDyS1/Pvvvz8bGhrK02r0vPvuu3kanRP+Oq/tkgoeGB0ze/bscd+6 0//93/+51Gza9+14V0NawRAF+nRsqBsbG+vaBnWzjqORkZGZwInKQEFUAEDvIYAAACWFl9r/4Q9/ cKnm0IPYHnzwQfettfRQtTKBCl1+/vPPPzc9eFBm+WpwqkwmJyfzy+ObnQfUR8Gt8Nf5P/3pTy5V ji4fr8qtDCEFSrQvKnigfdOODXXtuuWoEc06jjTdkSNHZpUBAKD3EEAAgJLCe4lvvvnmbNOmTe7b 3OgEf82aNe5ba6nx/uqrr7pv7dfp5aN+unXh6aefdt/OWbVqlUuVt379epfqPuGzDgAAwGwEEACg BHt1W1kKCOiVb/aaMP1Cqdez2avQfLqyIQwe6Jde/zVj4Wvv1KDTL8KaV/iaOc1Pw0Pqp3yEjXc9 EC5clv/d70Kap5anh6NpuPKiAIEesKb8+VdttGL5RsvTci0f6pS2vBTRsNgrCPVd27CWerZxWVae 4XzrfWCdKH/+eqk8/O1Rj48//jg7c+aM+zZNl8M3ctn+hg0bCh9kpzxrfcN9WvtSbJ8WGy/sRNtD 87N+mld4LInKRcNXrlzp+pyjfhpm09m8wi42X1F/7Yf+NtX62f5SL9VFsf0upH42TtjVw8om7Ir2 8fBY1LrqGCvafkXmcmyK1t/fl5Qf7Uf1ih2TStf7PwEA5o1JAOhxsVeyha8X0/ewXxF7bZ1eBXfS vdpNr4Lrc69K8+ezcePGWcst6vzX3umVcprXVANupn/4KjYtW6+j82l8f55FnSjfmkdsmM/G0Xpo eer88vRfj9aK5YvK1oYrLf4rD1UuKrOQ5VPbw7bT6OjozHTqtF4x9WzjsvR6TL+MlBfRtlX/sq9x 9MtOn7Zdwn71iC27kXUsovz4y7B199elaDv66+Z3sePauvBVpLXGtc6ONS0vdtz6x6j466T9Rd9j 09o+G4rlqVZ9EdtXyx5H2pb+8HDbhvVLbBzxjwF9WploeyofYV6K9qG5HJtix6c6LVPzsLKPlaGW F+Ovty1P+07YDwB6SfzsAwB6SOxE3U5sdbJojYCik12fTlRtHjqJ9WleRfNRP5uuaByxeajTibEv nEfRya0/jrqik+dYufj8hnvYsLOT/di8bRrrGl2++Hnw11cn/v50OuH3+Y2RcDv506kLG3iNbuNa 1LjxG1fh9P5297uQ5mONG3XW+BJtI+tfb/78eTY6j1r84IHSPr+81dUKBvmd8qxyU5mEwatwGSbc b9RZI9hXZjx/nfw8x6b1t5OJrZP2Ea2TaD7hdokFI8ocR2HdEdu2qXGULz8/4XEdBgDUxZYzl2NT /DpBXa3tYl2YV/G3k/Yfnx+giE0LAPMZtzAAQITdQrB06dK63oqwb98+l8qy7du3z7pkVg8hmzrZ dN8a489PT8OvdUl6I5e918N/ov6999476zJqXaY+1Thw31rDLpU2119/vUtl2RVXXOFS08LL7194 4QWXmt5OtS4l//77711qWiu28euvvz7r7Qbhq/c0340l3vrx7LPPzqzrVGNz1i0GemaH0f5da51D Yfk1ky5H94+xa665xqWmaR2mGnDuW5Z89aj5+9//npebHvY31Wh0fadNNdhdqjW0b/rrpOOj1iX8 P/74o0vVpocXap1Et4GE+8QzzzzjUu2nW5H8/eS6665zqWmqE/ztWGQux6bK2K8TJLxdRvMsY926 dS6Vnbf//PGPf3SpLNuxY0fdt2cAQJURQACACDV+Jycns4mJifNOHuuhtyronl1rzOuVav/v//2/ PN0MX375pUt1lhoOulfcv9e51Y0ZNbr9BsvixYtdavrJ82NjY/kr9iTVqD927JhL1a8Z2/ivf/2r S00LG19y6aWXulSclu8/XyL1lPwPP/zQpTrrL3/5i0tNu+qqq1zqHN2/btT4L3MPvN9wXLRokUtN 84M17aD99IcffnDfGhduU78hKyobPYOj3bTvhW/oiD3nwt+OZdVzbIbP6ogFMcs8t0P7lx9kCvcf n5b32WefuW8AMP8RQACAGvRrn04m9WtuGXfccYdLnaMTa/3ypqsF1AAo0/gponev20mx5mlPxtc8 9Yo23+eff+5SreH/Qmf0697ll1+eP2BMDYhmvaUi5qOPPnKpOD1ATa/YUyAozIfehW+/hqo8td0U +Ig9ZC0M0jR7G2u5zfhF/Ntvv3Wpcr744guXSivzy3EjtO5hY77MmxA+/fRTl+pOaqT6Aazh4eG8 LlFD+6233sr7+RoNYIVX2sg///lPl2qfeve9WuZybH799dcuNTf1zuebb75xKQCY/wggAEAJzz// vEvVpoaDGgsxusRXT++eyy+EapzqMmY1ihUwOH78eP6rnhpU4a97/i9xraAGeiywouXecsst+XC7 GqEVwobnr7/+6lJpasyp/FSOb775Zn41gwIfsV8az54961LTmr2NtQ2bIWzE2G04fucLfzGu5aab bnKpc5oRoGp03e1qj27mB7B0VYourdfxYrcg+H755ReXqk/sKpNG5zUXzWxAz+XYrCcoVks4n/BN MeHbOsJX/ALAfEYAAQBK8O8fD4XPIdi2bdusXx99avTecMMNc25Y675gBQz0+kc17nbt2uWGtNeR I0cKG9O6B3zt2rXuW+s10ojRr5pqnKiBoDJUo6+MdmzjubLbcGp1Zd16660udY4CRVVoyHeS9gHd 1qNf1HVVyqFDh7Irr7zSDW2NSy65xKWqrdFjsxV0C1Ts+LFOQV0A6BUEEACgpPDBdqIGVOzXJ53s qiEZuwdXDS//QXz1UoNEv4Dpsnc1TDoVPDBqTI+Pj0cvc9ev3K26JztsvL/zzjsulaaGnZ5boOcX aHvoYXT1NlCatY0vuOAClzqnkfvlw19om3kLiwJose0712VcfPHFLlWfMvexd5r2++XLl888tE/H aezqg2aL3dbQarGrAxoNLs3l2AyfPRLe1lVWOJ9uedYMAHQDAggAUFLsfn41Ev3GjK5GsPvf1V+/ TI2Ojp7X2P3b3/7mUvXR/P2niD/wwAMu1X7+gwP1vAM9SCx2NUI9l8rXI2xUqDFf9s0CujLCz9c9 99zjUmnN3sZqVIbTNnIv97//+7+71DQ1vup500KK/9YNE+uX4j8fQuUXC0yEwqs5/DdudCPlV1eh +M+2qDdAVUa4fVWW7QhShMJ9Txp9LsJcjk2VuU/lH+47ZYTz0fNWGpkPAMxHBBAAoEH6hVGX14ZP xw+fKq/Xl+nSZb+R+G//9m8uVR+9Mqyb6P5ko/ux7dJ+X+yp+s0Qa1g89thj0RN9bSsLdig916BG s7dx2LiMvTo09SuoGo5hY1wPuiwqD13JUg8FicJtq3Ks54GReg5AGHTYunWrS02LPVBQwSGjMl61 apX71p0UWFQAp9XC53786U9/cqn2iu1777//vktN036YuiJgrsdmbL/Qmxl8WkZKOB9ty4cffth9 m037fz3HAABUHQEEAGiAfvmzX6nCBrIaO+G7yHWCfe2117pv579+LbwkW5eG64Rby9Ev/SZslOj1 fzZe7HLyWOMxPNG3WzB0z3G9jUpdDRGePPuNYTX2dBm3r1nLV4M2fA++yl7lZb/Mav11xcD69etn LrP+7bff8k/fyy+/nH/GnvQeK8NGtnEtTz755Kzgg345tfkr8KF0LKgQlv1LL73kUtM0H5WH3oph NI3K4/HHH3d9ytO2DYMIylv4S3hIZahptezwlZrq798GEjbwwkvh33jjjejDA7tJ7EGG2rdUDrG3 MJR98GFYFn4jXWWoQFanhPueXilq+6e2qfZD/4oMUZ3lb++5HpuqR8OroLR/2jJ0HIRXF4jqIL9s Y/PR8ad91eZldct77703q84DgHlvEgB62MTExORUg1ZPkzuvGx8fd2NNO3369OT+/fsnpxqtheNN NY5m+k+d0OfzF40z1UDM+2uckMaz6fxO09g8RPOMjTd1sjtr2X6nPPtGR0ej4w0MDOTrKFMn+vn3 cBxNa/y8aPmaRmz+ynu4bGnW8k24PcJO+bT5itK2LfxO/TT/oaGh6DBbv0a3cYrKKpYvdSoLlXFs mDrfVAM/Oo512t/9faoRmj7cF7UdwmNG35VvrZeG+9vBp/7+/Gw7+/uB5qF1C2na2DFsedE8ag03 mk9s2yv/Po0X2+f89dO8w+HqlA8Ni21nracvdjxrHNsP/e0c7uOmzHEUy4++++VTZhwpqoPUqXzC fcY69RetQ6xs1K/MsWmKlqOu1vERHrex7ex3ReUOAPMZAQQAPanWiW69nU/z1YmuTmiV9k/edfIb nnD7wkaZxg8bepqvjaMTZ53g2jzDho2WXbQ8NVatUWXzSTV+rLOTfX0qf+o0fTi/8KTe14zl+9Qo 8BsXmqe+xxqcomXY8vXpB0Bi28Ffl7ls4xTNU2Wh/Gt++tQyVDa2LOVNaa1b0bLCbaJO09q8mkX5 VVkoT/6y1Om7+ltZlWHb0dbf8u1vn5C/zLDT+sb6W6fhkhpPnY0bG+Z3Rutt66F10Hcr+3D/1/qF 20XL03Qqk9i+pulS+7iNG+tsP4oNs07Dy4zj03KVLxuu9bQ8apnqNFzTqRzCOm4ux6ZPy/TLS9PZ 8aKy03cdI8qH+hfNR3kM90lNW1TuADDfLdCfqcoQAAAAAACgEM9AAAAAAAAASQQQAAAAAABAEgEE AAAAAACQRAABAAAAAAAkEUAAAAAAAABJBBAAAAAAAEASAQQAAAAAAJBEAAEAAAAAACQRQAAAAAAA AEkEEAAAAAAAQBIBBAAAAAAAkEQAAQAAAAAAJBFAAAAAAAAASQQQAAAAAABAEgEEAAAAAACQRAAB AAAAAAAkEUAAAAAAAABJBBAAAAAAAEASAQQAAAAAAJBEAAEAAAAAACQRQAAAAAAAAEkEEAAAAAAA QBIBBAAAAAAAkEQAAQAAAAAAJBFAAAAAAAAASQQQAAAAAABAEgEEAAAAAACQRAABAAAAAAAkEUAA AAAAAABJBBAAAAAAAEASAQQAAAAAAJBEAAEAAAAAACQRQAAAAAAAAEkEEAAAAAAAQBIBBAAAAAAA kEQAAQAAAAAAJBFAAAAAAAAASQQQAAAAAABAEgEEAAAAAACQRAABAAAAAAAkEUAAAAAAAABJBBAA AAAAAEASAQQAAAAAAJC0YHKKS1fGggULXAoAAAAAgGqrSrO8sgGECmYbABpCnQeg11DvAeglVarz uIUBAAAAAAAkEUAAAAAAAABJBBAAAAAAAEASAQQAAAAAAJBEAAEAAAAAACQRQAAAAAAAAEkEEAAA AAAAQBIBBABApf3000/Z22+/nS1btixbvXq161vbV199lT300EPZhRdemL97ecmSJdnOnTvzeXXK qVOnss2bN+d5Onz4sOuLVmpk3+k0f99lPwEAtBsBBABAx6nxvnv3bvetHDX+1JC6/PLLszVr1mRH jx51Q2pTg3H9+vXZk08+mf3888/Z6OhodvLkyeypp57KG5HtDiKoEXj33Xdn/f392fbt27MzZ864 IZ2jRqqCGSoPBVisU6BFedW2UsBDZaXGd9Uo743sO530wQcf5GW9dOnS7NVXX+2K/QQA0HsIIAAA OkqN0B07dmQvvPCC61PORRddlG3ZsiU7dOiQ65OmRpgajE888UR22WWX5f02bNiQDQ0N5Wk1JPft 25en2+mRRx7JBgYG3LfOUeBAQQM1Uvfu3ZutW7cuD65MTk7m3bvvvpvdcMMN+bZSwON3v/tdXmZq kFfJokWL6t53Om358uXZkSNHZvZVAAA6gQACAKCj1GDXr6lqqOrqgHooiHD11Ve7b2mPPvpo/rl4 8eL807zyyit5A16N4lWrVrm+7bFixYq8u/POO12fzlDZK3Bw8ODB/KqMEydO5FcbWKBFVNYKuHz2 2WfZxo0bXd8s+/HHH12qGrTf1LvvdJryK9dcc03+CQBAJxBAAAB0lH/lwZ49e1yq+fTruoIUcsEF F+SfRo0z/bqrRrPfYO4VCh7oygwZGRnJgwS1qLx27drFr+EAAPQYAggAgI5Rw1WN+r6+vvy7fv1u 1YPhjh8/7lLTv6RjmgIrFjzQFRibNm3K02Xoyg3bdgAAYP4jgAAA6BhdcTA4ODjrcvi33nrLpZrr +++/dyn49PBIs3XrVpcqR1ci/PnPf86OHTvm+gAAgPmMAAIAoCN0pYGuONBzCe6//37XN8ufMF+1 h/JVlW0Do2ce1OuOO+7IfvnlF/cNAADMZwQQAAAd8fLLL+eXzN988835cwf8++lff/11l5obNZDt FYT+L+3+qwn11gGfghd6haFeWWjj6J37alw34/YKzUPz0jxt3lpemUa43lihVyj6r1dUPvVKwkZe P+lf7aErQRqhbRfe9qB1VJ60blZmWkd9Vxd7WKZN45e7XluoV3zWWjfNS+Wp8Y298lD9rHzLlo+9 4lHTWR5i+fX5ebCuTN4l3B/UafumlunTbSj+8pUmCAcAaInJCqpotgGgIfOxzjt58mS+XmNjY67P 5OT4+HjeT11fX9/k6dOn3ZA0m26qEez6nG9kZGRmvCITExP5stUpP6J8bNy4cWba/fv35/0bYfMZ Hh7Oy0C0nIGBgZn5q7Nl+5Q3jTc0NBSdVnnWOPXo7++fWabyNFejo6Oz5qlOefTLT124nbRs9dc2 snWz9VX/2Lppnurvz9f6+/2sU7nF2HDlyba/P50/PLZP2vL0acO1zjYfrUMRWwcdB/60tkxNGy7T 3481rqZVWvnzy17pKtM6AECvqFKdV8namX8qAHrJfKzzrOEUNo6swajODy6k2DRzDSBYAyzWmLZh tZZRizU0lY+QysFvuKph6NNwLT+2bH9ajROWaS22PHWxfDXK1lWd0tZAVv7Vzy9fP3gQkwqQ2Hax Zamz8RSM8PcpC074bJjmo075UfkrUOSvh7pwv7DGu7qw3P1h4fYUm3dsmJWTOgVlfP5+rHnou79s K0919RxD3Ub5B4BeUaU6j1sYAABtpUu69ZwDPXzP3m1vnnjiCZfKsmeeecal2meqgZl/Llq0KP/0 6dJ68Z8ZUJYuqdc6TzWCo285UDlMNQbdt/O9+OKLed6mGouuzzmaVpesi8b5+OOP83QnXXrppS6V ZT///HOeP+XzwIEDOkPKtm3blg/Tpffbt2/P0/5zMHyvvfZa/nnmzJls/fr1edpn20Wuv/76/PWS 9pYN3V7h71PffvutS8V99NFHed5WrFiR31qjeU01wt3QLM+rf2uA/2DOcF9evHixS2XZP/7xD5ea ZvvD4OBgvqyQnguifUXd73//e9f3fFpP7U/+sh9//HGX4sGhAIDmI4AAAGgre76BHr4XUkNTjSZR Y1gNrXbScxi0/Kuuusr1aY7nnnsu/7SGfkwsaGHU2JSi10/6Dfb33nvPpbrDI4884lLn0/McZGBg 4LwGuNE6a7gcPXq05j4RK1+/If/NN9+41PkUiFDAIaR5+sEdP0Bz3XXX5fuLAgH1sP3hxhtvzD9D Cl4o8KJO6SJXXnmlS53jl+OXX37pUgAANAcBBABAW+3YsSNvkMUaa6IrE8xLL73kUu2hB9eFjTZ7 QF4jVx6IfmVXw1f8hn5Zml6/vos9JC/s/AdEnj171qW6nz0osCh4YO68806Xqh0EaJVbb73VpbJZ D7vU1QPaX3RlhbGHcK5bt871OZ/tD61WpX0BAFANBBAAAG2jBqMaw/pFPdYQVuc3htVoVwO63awR qCfj6xf9++67r+G3FBw/ftylGvPbb7+5VH6DZLLzG7Mp/jp98sknLtUefmAkxb8ipBO/qi9fvtyl istJ+7bennDTTTflV5Ns3brVDZmtE/szAADNQgABANA2eq5Bf39/Nj4+XrPzG7Z2mXu7KHCgPOoW Cv1SrIZhrcvIU5p5H3ojr2qs5fbbb3epLPv8889dqj38wEhqvRYuXOhSWb5t2s2/QiK87UABAXuV pq46OHHiRP5cAv/WiSL/+te/XAoAgGoggAAAaAvdu65GuX6Z1aXftTr/AYq6WqFd77TXu/v1oDw9 rFCBg6LbLOpxySWXuNTcfz0v84BEBUDKWrVq1cwzJ3Q1gN1S0A7azqaeS/r98mwXf//zl699eunS pfltDN99913NZ1wY/zkWZcp7586dLgUAQOcRQAAAtIWeZ6Bfj8s0stS49K9C2Ldvn0u1jq50sIZs 0RsBGnHFFVe41PRT/uu9isBvaCuwUmt6rUOthzGGFCDxnzmRmn+Mxq8naOHzt3GthyP+8MMPLjUd 9Gg3/+0N1157rUtl2b333pt/6pkeqec4+OyhkAra1AoQqEz8Zy4AANBpBBAAAC13+PDh/HkGRfeF x/gPodODF+tt2NYSm1cjDbUyedIvznbZvRqMzz77bJ6uh70FQFdw6D772H30KuOnn346+naLWnS5 vTVoNf968qf1X7t2bXbXXXe5PvXR6wpNrQdmfv311/lnrYdvtpLlbXh4eNbyyz7Dwdj+4r+OUs/8 iF2JoOCBAhTNDGYBADBXBBAAAC1ngYMyVx8Yf1w11F588UX3rTF+gCD1YEO/Ea1Gn35h958RoH5q 9JW9MmLPnj0uNX1Lhu6X94MPavy/88477luW/eMf/8g/7dL5LVu2zNxqoKskdNm8brfQr9fqVFYr V67MryZopIGtBy9aEEH5U5AidduI8qyHC+p2j6LXS8qvv/7qUufTsyUsOKIAU6whrXJSnrT+KodW 0bML/G1ilCflTeWzbds213c25c8P6qhsHnvsMfdtet/TvBVskQ0bNsyUt6xZs2bW9lT6lltu6VjA BACAQpMVVNFsA0BDqlznnTx5cnKqEZSvg7rR0dHJ06dPu6G1aVybzrqpxmo+T9/Y2NjM8KlG5uT4 +Lgbco76aZiNNzQ0dF4+NF9/nP7+/snBwcG83/79+/Nl2zB1Wq96+Pm0TvOfakjmy1Ke/GH6PjEx 4aaezNN+/sKu3vzEaB3DctJ2UPlZp3GUZ+U93Baifhpu81A6Np7P30c0f9s2Wp6mV+eXhQnLRGUc 8ucdy4u/zvocHh6eWVebVp+x/Vbj2rzVqUxsW2p8f5jm7a+DhvvlFHax7RmWbSxf4fEQK7cqUP4B oFdUqc4jgAAAXa6qdZ4aYMp7rFOjrZbYNH6neafGk1p5sM7PixpbagSqvxpfaqBZg1PD1DhU/1T+ i2gemqfmoWVoftZgtoasPosa3Dae34hUOtZwbpSWoaCBBU9sOerUT43mokaplV2s07BaFKRRw9tf pqYpWrday9J2VznFhqnTMJ+/zjaOto22le1rRWy7aZpwW1iAQfMtKrNwe6oMVBah1PrU2tdTZd+N lG8A6BVVqvMW6M9UhitF7wmvYLYBoCHUeQB6DfUegF5SpTqPZyAAAAAAAIAkAggAAAAAACCJAAIA AAAAAEgigAAAAAAAAJIIIAAAAAAAgCQCCAAAAAAAIIkAAgAAAAAASCKAAAAAAAAAkgggAAAAAACA JAIIAAAAAAAgiQACAAAAAABIIoAAAAAAAACSCCAAAAAAAIAkAggAAAAAACCJAMI889NPP2Vvv/12 tmzZsmz16tWub21fffVV9tBDD2UXXnhhtmDBgmzJkiXZzp0783l1yqlTp7LNmzfneTp8+LDri1Zq ZN/pNH/fZT9BN6jicYTzadvp/6H+FwLoPp08T6R+QM+brKCKZru0kZGRydHRUfetnNOnT09u3Lhx sq+vLy8fdYODg25osbGxscmBgYHJkydP5t+1XJte/TXfdhofH58cGhqayYM69eukiYmJyeHh4bw8 /Xz19/fneVWZqfxUViqzqlHeG9l3Omn//v15Wfvbo9P7SStp/dDdqngcIU51iW1Djr3Ooew7w9/3 /a7M/9jw2Am7Zvyf1jw6eZ4YriPQLFXan7gCocvo16sdO3ZkL7zwgutTzkUXXZRt2bIlO3TokOuT 9sEHH2Rr1qzJnnjiieyyyy7L+23YsCGbqpjz9NGjR7N9+/bl6XZ65JFHsqnGofvWOfp1W1HmpUuX Znv37s3WrVuXTTUSdHTn3bvvvpvdcMMN+bbq7+/Pfve73+Vlpqh4lSxatKjufafTli9fnh05cmRm XwU6rYrHEeJWrFiRDQ4O5umRkZH8E+gVOr/RuU647992223J8xsdOza9ncfp086dNLwZOnmeSP0A TJk6oCunotkuxb8CQFcHNMKmT/36pV/QNV4YubVf0jVcv6p1gq7CsPVoZ2TZqOxt+amrQezqj07m t1lsHaryy2mn95N20fqhOqp2HKExqvvZxq1Dvdd5/rmQOp0blr0yVVcKappW/W+uwv9/lRdQlvbl quAKhC7jX3mwZ88el2o+/bquiLBccMEF+afR1Qz6dffEiRMzVyb0Et2/rCszRNFlXZVRi8pr165d /BoOAD2kE1foAe109913z/zaLrrK8uGHH3bfalu4cKFL9SadZ6u8gPmIAEIXUcNVjfq+vr78+8GD B1v2YJjjx4+7VJZdffXVLgVV+BY80G0JmzZtytNlvPLKKzPbDgAwf+l2w6efftp9A+Y3/9xGt3Tq 4YWo7amnnnIpYP4hgNBFdMWBIr0bN250fbLsrbfecqnm+v77710KPr/C37p1q0uVoysR/vznP2fH jh1zfQAA85F+hT1z5oz7Bsxv1157bTY6Ouq+Zdn27dvzH70Qt3v37vxHQGC+IoDQJXSlgSqbRx99 NLv//vtd3yx79dVXK/dQvqqybWB06V697rjjjuyXX35x3wAA841eHatfYYFeots5/R+4dBzoqk3M psDKgw8+6L4B8xMBhC7x8ssv55fM33zzzflzB/z76V9//XWXmhs1kPXeWnX+L+3WT1343nJ7z+6S JUtmxtE7d9W4bsbtFZqH5qV52ry1vDKNcF1CqiivvY9XnfKpf2oaVi//ag//nr96aNuFtz1oHZUn /13F9u5idbEovk3jl7veK693DtdaN81L5anxjd62oWnVz8q3bPlo+1veLQ+pXx38PFhXJu8S7g/q tH1Ty/TphMZfvtIE4TpH284/RrVttU3sWCjS6DGg/d22v7H9yuYT7hOan+Zry9JnM9/v3c7jSNNp PJtGZa9papW51fP+dLasuVA+662ju2H7Wb5VBsq70TLVT4F9o6Cz5UtdqN4yKFp2uH4ap0i4v9ny bD8AGqXnPdnbD3QFjt5EFduPm8mOf9uf9dmp80QpOkZF+bTbYI0tV11YBzeSP/9/g6nnPE/9/fpE 42t+6qd5AKW4hylWSkWzXUhvOtA6+W9d0BNl1U+d3ite9qm3YtPVejq0//TaIhMTE/my1dkTbsM3 Dugpu42y+QwPD8+87UHL0VNrbf7qYk/XVd40nt4FHJtWedY49bC3UqhTnuZKb2/w56lOefTLT124 nbRs9dc2snWz9VX/2Lppnurvz9f6+/2sU7nF2HDlyba/P50/PLZP2vL0acO1zjYfrUMRWwcdB/60 tkxNGy4zfAqzPTFa+fPLXukq0zpUjbaVtpk6v57wt5m2eUwjx4DGjR0D2ifUP7ZPKI+WT33XOP70 jdYDNn27jyM7hvzyVtrKTfMIabimUfnZsqzMbFmxPKbY9ipbR3fD9lM+lV9/HppnTGq41FMGRcu2 9fP7Wxd7Q5Dtb9oXbJn6tOOuVn67jfKLztM+4+834T6pdKyO0L6u4bF6pyyrC3Usx44h62LLqLcO Sik6RmPU38YpUm/+rH63+dq8rYzCTvMN2bZTZ/NWP7/OR+dUqfwruafMtx3cKoWwArZKRJ0O7rJs mlonCnYyoa6InazFTsJsWK1l1GIVnvIRUjn4lWT4j0HD7WQx5E9rJ5hl2fLUxfLVKL9yV1rbUvmy fzB++Spda/lF/1iMbRdbljobT/+g/H3K/mH5bJjmo075UfmrkeGvh7pwv9B62bCw3P1hsX/0Nu/Y MP8fcXjC7O/Hmoe++8u28lRXzzHUbZT/KtE20L4Wq9fEtom6cD+e6zHg7+Pab8N9xt+PtQydZPn7 neXdxonlP8WmbedxpLJQ/1i5aT4qr3qm0bi2rNiJaC1anta7kTq6G7af6kabvuh/XGp4o2XgL1vr oem1nn4Dw582pPLQsBjNpyi/3ahoPdBe2mfC/UZ1h+2H6nRchqwOCeudsuxYr1Wn2fLDZTR6/JVR pn5QfxsnZi75Uz+bt8pInf0vVN78+s/qDaP6VP1j28S2FzqnSuVfyT1lPu3gqhi0PrEK0j9ZVIVR lk1TVLGJlmfjFbHhsbylKsdadFKo6VRBFvEbfmFFZ8NijQfxTzDraTTaNOpi69wov6xrnYjbyby6 on9o/jj6JxHyt0ts3f19StshZMO0v4X/eMSfXp0/Tq19yv4xqQvL1vaHov1Vw7WvqAvz7C8z9muc HV+x5VaJ8l8lqSCAbbdwP2vGMeAf/7E6wt8nYidn4u/nsROtFH/+7TqObLowIGF0fITrovKrVQ8r /7a82HoUmUsd3Q3bT2z6onopNXwuZWD9tW1i0/vThutf1N/UGwzqJK0HOk/7eGw/9+sjdeH/YBve yDHYreeJxqYtOv7V38aJmUv+/HnH8u7Xf+E5k00b9jdVqh/mI22bquAZCB1mzzfQw/dCuidpqvLM 01Mnb/k9Tu00VZHky7/qqqtcn+Z47rnn8k+tX5FFixa51Pns/tOi109eeumlLpVl7733nkt1h0ce ecSlzmf3tE6d1OdvdIjROmu46P3CtfaJWPkuXrzYpbLsm2++canz6d44Pc8hpHlO/WNz37Ls448/ dqksu+666/L9ZeoflOtTju0PN954Y/4Z0nNBfv7557xTusiVV17pUuf45fjll1+6FFpJ91fqCd2i fSJGzwmZ+v+TnThxYtZ+1oxjwD/+Y3WEP1/t57Hl+MfJXLTzOLrkkkvyT5W9laNPD0BbsWKF+3bu HeV6unoR5d/4eUyZSx3dTdtvLprxf0rbJja9P+1x75XM0t/fn3/qnmr/OREm9ewNoCzVJ1ONVfct yx8c2Kzz1Pl+ntis/NV7nmf/j+69997oM3GoH1AWAYQO27FjR34iGTvJFL0W0Lz00ksu1R6qSMJG mz28pdHX09hJq/gVZFma3l6dZQ+cCTv/AZFnz551qe5nFXdRw8nceeedLlU7CNAqt956q0tlsx5i pJMJ7S8HDhxwfc49nG3dunWuz/lsf2i1Ku0LVRY2aOpRlWOgGZp9HK1atWom4KwTeTWuVZ5FD9L6 5z//mX+GDwH0O7+eL/t2mflcR5fVyTJ44IEH8k/Vqwom6GFsyg/QCmEwVA3Tue5vmn4+nyd2Mn/3 3HNP/qnlr1y5Mg80tvvHScwPBBA6SCd3OogViYxVIOr8SkQnc504EbCTVz2pVZHQ++67r+G3FMyl cSG//fabS+XX+SQ7/yQ8xV+nTz75xKXaw/+HkuJfEdKJX9WXL1/uUsXlpH1b/5huuumm/FeCrVu3 uiGzdWJ/RmsdO3bMpepTpWOgGZp5HImCLocOHZqpx3TVmp4Gfvnll+dP1w4DCRYQ0PixujPswrfL FGllHV0VnSwDbaeRkZGZYJLOL5YuXZrvR0Vv4QDmQm9m0BWrojp8/fr1hYHLMrr5PLEZOpk/Baj3 798/c6WS2hW33HLLTMAZKIsAQgc988wz+UE8Pj5es/MbtrFLU1tJgQPlUSejigirgql1GXnK999/ 71JzN5d/UDG33367S2XZ559/7lLt4f9DSa3XwoULXerc5art5P86HN52oEag/hHpVy/9WqpL1HVC W+aS4n/9618uhfnihx9+cKm0Kh0DzdCK40iXw+pkU5cV220eOqFXIFoBi1jArtn1qK+V866KTpSB 9hX9v9YvwxZIUENBvzjqfzrQbK+88sqsW8vWrl2bpxvRzeeJzdaJ/Okc/rPPPssDjfb/0wLOCjRS b6MMAggdokuGdMDqFyVFBGt1CjQY/ZoQu6+xFfQ+WN1Pq0pGgYOi2yzqYffpylx/OSxzT249J0v+ JcA66W5nNFbb2dile2X45dku/v7nL1/7tH7p0uXX3333Xc17F41//1+Z8tYvqehu/rMoUveW6kTF gqJVOgaaoZnHUUjTHDlyJA9A20m9/t/853/+Z572qaxT/1M0vJHgdbPr6CrqVBno/7V+GdY+pP/h Rv/T+aURzaaA6N69e2cFrB577LE8Xa9uPk9stk7lT9tLgUYFpxVw9rfbs88+m6eBWgggdIieZ6DI X5mTQ51Y+1ch7Nu3z6VaRyeLdhJ///3355/NcMUVV7hUln300Ud1Rzr9RoYCK7Wm1zrUeshOSCdc /jMnUvOP0fiNVvb+Nq51T5r/q66CHu327bffutT0Q76M7n0U/erl/7qa4v9SWitAoDIpex82Osc/ xnVCWeuy6RdffDH7/e9/775V5xhohmYfRzp2wjJTfalAgt2jrCCCbQ//AZfDw8MuFafhsYeUxrSy jq6KTpaBAv8+ayhMTEzMNBL27NmTfwLNpHMo3UZl6gkE+7r5PLEZOpm/2BUGaoco0GjnYvaAR6AW AggdoBM4Rflq3c8a8h+epQcv1luh1hKbVyMNtTJ50i/OdsmUGoyNRDr9k2FVhrHLclXGTz/9dPTt FrXoRMv/xa6e/Gn9ddneXXfd5frU59FHH3Wp2g/M/Prrr/NPlUMzrgqpl+VNjQp/+dqe9bD9RfdL Gl1qHft1TA0jNayaGcxCa6jBYvfDym233RY9RtXgVYDBvyWqKsdAMzT7OJL333/fpWbbsmWLS52j k1iri7UddBIZq8N1AquGgH/Sm9LKOroqOlUGRVeU6H+v5QloFe1n/psZGtHt54nN0Mn8xa560P/t 559/3n0DSpisoIpme8agew9rvTSNdXqHbBEbR8spoultvPHIO3rtneLqpio613f6Hdyatq+vb2a4 +um9s7H38MdoeTatzd9/Z7WGTzXiZ4YrLzJV0eafGtdfvjqNr/HU6T22/nT10vz95ascbdlFlOep f3jRd/r6ZVn07l2jsrBxVaYhW3d1fpkZ27fUxfhlHysfG6Z1ic1fedJwlU/IplXe/HIIt6f2H83b 3z/94er87WnDYvu8X7ZaTowNr3U8dDvlv0p0vITHqI5LbS9tR+1f6hc7HuZ6DPjTF7HhRfuEf5zE 8pBi07bzOLJjoajMbJ5+fvz1tM62k3/sFR1bRbSMcPv7x3StOrobtp+klmFl429jrY+V1VzKwMYv WramsXHCbaN+Wo6/nY32GQ2PLbMbKa/oPO1PRftikVr7aBn+Mayu284TbZ5F5WLHmjqrx5VnW95c 8qdl2jQxftmF02taLTd2rqr/x5qm3m2N5inapt2okrVzlQrYp4rNPzlSgzv2Tz5G49p01qliCBu2 dmKqTpVErOJWP7/iUkUV5iNsAOgkySoeVTJatg1Tp/Wqh59P6zR/VaBallWe1um7X+Ep7ecv7OrN T4zWMSwnbQeVn3Uax/65httC1M//J6d0bDyfv49o/rZttDxNry5W+YdlEjtx9ucdy4u/zvrUP0Fb V5tWn7H91v+HqU5lYttS4/vDNG9/HTTcL6ewi23PsGxj+QqPh1i5VYHyXzWpY7RWw87fT+s5BrRP +MvUtCG/LtW4mqdPy/LrHy0r3K9SOnEcaZnWX2k7tvVp6xMr81hd7He1tlMtqe1fdEz703Rq+4X1 RrgM8fdRbR8tJ1ynRsogXHa4n2tdtCx/Hv76WX+N4wfoNF/Nr5Hy6BStBzrLP95SP4CE7BiJHT9l xOqmbjhPLFM/hONYvv1jr5H8hdNoOSErd3Vapv0vEOVD/TUPTWv50TpoXPUP6xy0j7ZNVRBAaBMd nHZAh13sJMkXm8bvrPKKDbNOauXBOj8vqkT8ykaVklVEGqYKXP1T+S+ieWieVhlqfpqXKjR92rz9 ys9n46nSs/wrHatQG6Vl6B+oysHyaZ366WS/qLK1sot1GlaL/lHrn6G/TE1TtG61lqXtrnKKDVOn YT5/nW0cbRttK9vXith20zThtrCGkeZbVGbh9lQZxE5aUutTa19PlX03Ur6rSPuS9hvtP1oH7Rv6 XrT9fc0+BlL1n6T2q3q0+zjSNCov9bfyVmdlXlSPiob520md5pXKZ0o9dXS3bL/YtOqUP5/t2xqm Mi6afz1lYMNjnaTKSGx7h+MWLbObKd/ojFr7WngsFNG+r/1uLvVIt50n2jzCLlYmlj8N1zooL6F6 8pc6/jWf2DB1GmbzsPrB8qbOL1d0jrZFVSzQn6kMV8qCBQtUwu4bAMxv1HkAeg31HoBeUqU6j4co AgAAAACAJAIIAAAAAAAgiQACAAAAAABIIoAAAAAAAACSCCAAAAAAAIAkAggAAAAAACCJAAIAAAAA AEgigAAAAAAAAJIIIAAAAAAAgCQCCAAAAAAAIIkAAgAAAAAASCKAAAAAAAAAkgggAAAAAACAJAII AAC00eHDh7OHHnooW7BggetTXTt37szXY/Xq1a5P95tP5Q8AQLstmJzi0pWhf/oVzDYANIQ6b354 ++23s7/85S/Z0aNHXZ+s8tvVb4SPj49nK1ascN+6z3ws//mMeg9AL6lSnccVCAAAtMHChQuz559/ Puvr63N9qm9kZCT/HBwc7OrggczH8gcAoN24AgEAuhx13vyiy/0PHjyYp9mu7Uf5VwP1HoBewhUI AAAAAABgXiGAAAAAAAAAkgggAAAAAACAJAIIAAAAAAAgiQACAGDe+eCDD8571//OnTuzJUuW5P0u vPDCfPhPP/3khp7v8OHD+TgaV9Oo0/Tqd+rUKTdWMb02UA/s86fdvXu3Gxqn+W7evDkfV/kVzcfy rWEhm2bZsmV15dNfP6Xlq6++yu6+++6Z+Shdax7Km40fUv5tPmW6sGw6Uf5G+4XG9adXPrSuVlZF NNwvQ20XbR91tk0BAKisyQqqaLYBoCHUeeWNjIxM9vf352VmnWzcuHFWP+v6+vomJyYm8nF8Y2Nj +fCBgYHJkydP5v30qe82nfUPnT59Oh9P44yOjubfRfNUP3/5Znx8fGbe1mldLB9+57N5Dg0NzayH 8uWvr8bxKU9hGWn5sWWp07i2DkbzL1oXo/z75RfScJtW+fdZXtpV/j6Vo9ZZ89i/f3/eT/PQvGw6 rX+M5dtfruan9VN/rTPKKdo+ADAfVanOq2TtzD8VAL2EOq8+arj5DWQ12gYHB/PGnRrK+u43JNVQ 9KlhasOsAWn8YbHGoDVeNVzLCqmfTa8u5Dfi1Ui1hurw8HDez8+r8qZ+WrcYm0ad5hvygwxKaz5+ g9kfHpte/HIOaflh+Rm/HMIARSfLX/PXvqHOz5OxMldn28an6Yq2h/oTQCgvtn0AYL6qUp1XydqZ fyoAegl1Xv3UWFO5qYs19PSrsA1X5zeQ/UZmrBFqw2INRWu0h7+o+6yBqy5Uq2HtU39rvBc10v1x 1LBV49inxqwtK1ZGfmNd6xXjl3OoqCGtfPkBnPAKkE6Wv10pULS+YuOo88ve8u0HeXxaTwII5cW2 DwDMV1Wq83gGAgBgXtu1a5dLnXP11VdnU41E9y3L3nvvPZfKsiuuuCKbanjn3cUXX+z6pum++e3b t+fp//iP/8g/Yy666CKXqu2BBx4oHPfjjz/Ophr4eXr58uX5Z0jTTjV28/SZM2ey119/PU/H3HPP PS51zmWXXeZSWfbFF1+4VHkHDhxwqdnWrl2b50fGxsbybeHrVPnruQp79+7N03/4wx/yz5j77rvP pbLsueeec6lsJq9Hjx7Nn9MQPl9D67lp0yb3DQCAaiKAAADoSXfddZdLZTONcVED88SJE3lnjWh7 qJ4eiFdk3759LpVlixcvdqnW8AMetQISf/zjH12qsSBAs+lBggcPHszTGzduzB82GOpU+SsoYxYu XOhS57v55ptdajpYYJTXwcHBPP3qq69ml19+ef7QxDIPfAQAoCoIIAAAepL/y7ffEPTZmwDUGNQb Cl577TU35Hwa3i4fffSRS9WmX/PN559/7lKdoTdj2BUCAwMD2ZYtW/J0Le0s/0OHDrlUmvJv/OW+ +eabeWBEdJXFU089lV9JUfbNEQAAdDsCCACAnuc3CEW/eOsVfitXrswuvfTS7LvvvstvhQgvt/e1 s4FotwBIeKm8z786QQ3ZTlHZ3HvvvXm6r68vDwTUunKiE+V/9uxZl8qyX3/91aXi/Lz7Vzuov/I5 Pj4+c/uI6IoE7WN6tSQAAFVGAAEA0PP8xrUaovrFW5faqyGo+9ZrNXaN/8yAY8eOuVRr2KXycvz4 cZeqrZMBBDWmLejxxhtvJAMBnSj/G2+80aWy7JtvvnGp2hQMieVtxYoVebBAt8b4z6FYs2ZNWwNN AAA0GwEEAEDPu+GGG1wqyx+uqMaefjFWQ7Asv1H8t7/9zaVaw2/sfvjhhy51Pr+xWuvBgq2ky/ft FhGVrf8MgZhOlf91113nUln2zjvvuFScns8g/jMcdLuFnvHgU1BDgQQ9LNL4z2oAAKBqCCAAAHqS 7skX/Yp8xx135GnxL2UvS5fcr1q1yn3L8l/PW3m5uvKrfIsujy+6jeHbb7/NP3X1QeyBha2mMlD+ RFdNbNu2LU+H9IBENcClU+WvYIXdyqKAh+UnpGXZQzeffPLJ/NPYWxxCKvvwNhkAAKqIAAIAYF4r akjaK/h0SX3sMnQ1Iv1p9Wu+3wi3Rrt+Yf/hhx/yX5tHRkbyfqLL1dUw9ml+/sMM1UjVfGIBgF9+ +cWlzqdl2esp9Wv9s88+m6dDL730Uv65Z8+e/LOd9HBBlY0o2KEHDBbRuOErGztR/no2gwVmHnvs seh2sddhaln+bROiwIKtcxH/SgcAACpnsoIqmm0AaAh1Xv0GBwfzclPX398/OTo6Onn69Ol82MTE xMzwsbGxvJ9v//79M9OqGxgYmOn8aa0L57Fx48ZZw6capPk0yoc+NR9/mMZX3tT502rY+Pi4m2uc lm3jDw0NTU41YPP++tR3zUPrE9Ky/HxouSF/3rG8qCzU38ZRGZtw/rXWQ9NpHNOp8jf+emlcy7vG GRkZyfvrM6TxbL4qe81H/Oli5Yw4lRcA9Ioq1XmVrJ35pwKgl1Dn1c9vZKohpwadfbdGozXwYtSI VYNT4+tTDUBrZKrBqnmof6xxLurvL1MNUWvoWmNW322e1sAs6mrRemh9LL/qtDw/z75ay9IwvyEc dsq7+OUbdmJBgXo6X7vLP6T+w8PDs4INmkblbEGakMpN42u5/nTq1K9WEAXnU7kBQK+oUp23QH+m MlwpCxYsUAm7bwAwv1Hn1U+vANR98ELZAdVDvQegl1SpzuMZCAAAAAAAIIkAAgAAAAAASCKAAAAA AAAAkgggAAAAAACAJAIIAIB5Re/299/1v3PnTpcCAADAXPAWBgDoctR55amsioyMjGSbNm1y3wB0 M+o9AL2kSnUeAQQA6HLUeQB6DfUegF5CAKHFVMAAAAAAAMwHBBBaiKg0gF5CnQeg11DvAeglVarz eIgiAAAAAABIIoAAAAAAAACSCCAAAAAAAIAkAggAAAAAACCJAAIAAAAAAEgigAAAAAAAAJIIIAAA AAAAgCQCCAAAAAAAIIkAAoBKO3z4cPbQQw9lF154YbZgwYL88+677877l/X2229ny5Yty6dXp+m/ +uorN7S23bt3z5p2yZIleX5OnTrlxgCA5mpGvSc//fRTtnPnzrzeqndajW/1XqxTvQoA3aAV52of fPBBPq/Vq1e7Pr2DAAKAytI/hJUrV2Z9fX3Z0aNHs8nJyezvf/97dvLkybz/5s2b3ZhxOnlWxb9m zZps/fr1+fSnT5/OT8aXLl1a8wRY0+qf0YMPPpgv22jZr776ajYwMMAJNICmm2u9JzppVuDg8ssv z5566ql82npt3brVpc6nvK1atcp9A4DOaNW5murQe++9133rPQum/vFMunRlKNpTwWwDaCJV+Gr4 Dw8PZ9u2bXN9p+kfhk6Mz5w5k42OjmYbNmxwQ2bTL3Z79+7NRkZGsk2bNrm+0/QPR/9s9u/fn918 882u7zkKPBw8eDDbuHFjduutt2YLFy7Mjh07lr3wwguzTsYnJiayq6++2n1rDHUeAGlGvacrBz78 8MNs0aJF2Y4dO/LxZXx8PFuxYkWeTtE8FKwYHBx0fWa7/fbbC5dfFvUegLlq1bmazVdUDx44cCBP z0Wl6rypjFZORbMNoEmmKv3Jvr6+vC44ffq06zvb2NhYPlydxg/ZcM0nxh8eLmPqRDvvP/UPx/U5 R+MODAzMLHvqH4sb0jjNB0Bva0a9FxoZGZkZX/VaWarXhoeH3bfWUJ4AoFGtOldTvan52vTNOM+T KtV53MIAoHJef/31/Fez/v7+7KKLLnJ9Z/Mvn/3v//5vlzrnmWeeyT91FUKMTa/laHm+t956K3vj jTei0WrlR1c1GItQA8BcNKPeawbd9/v5559njz/+uOsDAN2nFedquvpKt33ptrGiergXEEAAUDkf ffRR/qmH4BRRxa5720T3ufl0AmyXrhVdsuZP/9e//jX/ND///HP0tgZz2WWXZUNDQ+4bAMzdXOu9 Znn00UfzQMby5cvzh5CpPgWAbtPsczXdJnbbbbflt72Wvd1rviKAAKBy/Afh1KJf6oz/hPH333/f pbLsyiuvdKnz6TkIomCD/1aGMg/cueaaa1wKAOZurvVeM6jus+CrPhWkuOWWW/KgBoEEAN2k2edq a9euzW666abznpnViwggAKis1CVnRf8Yjhw54lJZdsEFF7jU+S699FKXyrLjx4+7VDm//PJL/mm/ BgJAMzRa7zXDp59+Gq3TFExQIEFXJABAVZQ9V9Nba06cOJG98sorrk9vI4AAoHL8X9j8KwNCX375 pUvN5v+SV/apu99//71LlWOXGz/xxBP5JwDMxVzrvWbYtWtXHoCdnJzMn1qut0H09fW5odO3TRBE AFAVZc7V7LkH7777bk8/98BHAAFA5egSMvNf//VfLnW+s2fPulR76f3AClLohL/oIY0AUI9uq/cU fNWrJL/77rv8FWlGQQRuZwDQ7cqcq9lzD/Rq3LI/OPUCAggAKufJJ5+c+dVLT9GN3eemiLGeFG5q 3arQbPb08z179uSfADBX3Vrv6Rc5XZmgqxGMHrQIAN2szLmaPfdgw4YNrg+EAAKAytGTc3XCaifT a9asyVavXp3fo7Z58+b8gV5bt27NnxQuGq9dkWNdWqxf4HQy3etP6QXQPN1c74muRhgcHMzTeiaC ft0DgG5U5lyN5x4UI4AAoJJ0uZkuPdOlszpR1oPF9LpFnTzrPrXbb7/djTk9bjvoUrf169fnJ9E6 mQaAZurGes+n15uZH3/80aUAoHuUOVdTgIHnHhQjgACgsuwXOb3rVw/1UqRY3/Wr22uvvebGyrJ7 7rnHpab5DyOrxZ7OK5dccolLFXv22WfzzzfffDP/BIBma7TeawfloWz9CgCdUOZcTcEDWbp0abZg wYJoZ2/E0af101VhvYAAAoB5R/cB25sWhoaGzrs8zX8YWa33pH/xxRculWXXXnutS8XpUjc9nfzA gQNEqwG0XareaxfdSiHtfO4MAJTBuVpzEEAAMK/o0rR169blaV3iu3379jztu/76610qy3744QeX Op9+2RP9oqZf/YroYWbvvPMO/5AAdESZeq+dVGe28/kLAJBSz7mabscaHx+v2Q0MDOTj6tP6+bdx zWcEEADMK7o0TQ/wkr///e/Rhr/uDdZJtnz66af5Z0gn5DafBx54IP+M0T8kvfdclw4TPADQCWXq vXZQvanLefUwRwDoFvWeqykAqqu4anU2H31av14JnBJAANB1dBKq+8jsfjJ9L0P/HPRUXRkbG8sr 8yL2HvXYq9Dk448/zj8VaLj//vvzdMj+IR06dKjmPw1dMlfrVgkAaEe912oKZOjXuE48wBEAYjhX az4CCAC6zr59+2Y9nMYeeFNEJ9o6YdVJtBr8ExMTyRNYvdNXT+DV08t3797t+k7T/J555pk8/cYb b0Sj1fqHpNeoKRDx22+/5f90wu6DDz7I86GnpHfypB5A92tHvTcXelWkghvLli3Ln1Ae0gm63VsM AN2Ac7UWmaygimYbQEkjIyP5ce53odOnT0+Oj49PDg8PT06dPOfjbNy4Me9flsYdGBjIpx8bG8v7 nTx5cnJwcHBWv5CWGeavVqf1mQvNA8D81q56z6iuU/1ny0rNR8NtXHVDQ0N5npWX/v7+hvNRRMsA gEa1+lxN54qaTp/NoHlVRSVr5yoVMID66cRWJ6Q6QdZJanjM+yfaqrj1XdM0Qie8ml7L0/y0TJ0I F81vdHR0Ztllu0bzZjQPAPNbu+o9BSBsPrGu6GRYdaXqRqsr1SkAoX4TExNurObR/AGgEe04V+vl AMIC/ZnKcKXoEroKZhtAA3R52cqVK3v6mKfOA3oL9R71HoDeUqU6j2cgAOhqes2i3mkOAL2Ceg8A 0K24AgFA17Knkuu1O738TnHqPKB3UO9No94D0Eu4AgEA5ujUqVPZ2rVrs//5n//p6ZNoAL2Deg8A 0O24AgFA19Erdd5///1sy5Yt0Vco9hrqPGD+o96bjXoPQC+pUp1HAAEAuhx1HoBeQ70HoJdUqc7j FgYAAAAAAJBU2SsQAAAAAACYD6rSLK9kAAEAAAAAALQXtzAAAAAAAIAkAggAAAAAACCJAAIAAAAA AEgigAAAAAAAAJIIIAAAAAAAgCQCCAAAAAAAIIkAAgAAAAAASCKAAAAAAAAAkgggAAAAAACAJAII AAAAAAAgiQACAAAAAABIIoAAAAAAAACSCCAAAAAAAIAkAggAAAAAACCJAAIAAAAAAEgigAAAAAAA AJIIIAAAAAAAgCQCCAAAAAAAIIkAAgAAAAAASCKAAAAAAAAAkgggAAAAAACAJAIIAAAAAAAgiQAC AAAAAABIIoAAAAAAAACSCCAAAAAAAIAkAggAAAAAACCJAAIAAAAAAEgigAAAAAAAAJIIIAAAAAAA gCQCCAAAAAAAIIkAAgAAAAAASCKAAAAAAAAAkgggAAAAAACAJAIIAAAAAAAgiQACAAAAAABIIoAA AAAAAACSCCAAAAAAAIAkAggAAAAAACCJAAIAAAAAAEgigAAAAAAAAJIIIAAAAAAAgCQCCAAAAAAA IIkAAgAAAAAASCKAAAAAAAAAkgggAAAAAACAJAIIAAAAAAAgIcv+fx5shz3Iy6UDAAAAAElFTkSu QmCC ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/image003.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC82aT2zURRTHZ7dbKAhkwcXQWMi2gCKQsJRuLSe2ETGiJA2piJG0pa0JJBWrdkEP JoshXl0T0YSYyFEOJh49YPDA3bt/LsQoeJHEiweT+v389ve205+77W/d31aHfHfemzfz3ndm3szs Ainn3JxgZTrl3IIpqj9/yrmvNjuXf/bUCedS7uvdzh1Wn3VeH8Qz3frocu6GbL9EbNXRdW7+/S4n B+6gkBfk7kCqlHJ9krNCOvvtDxrqpkLQ95wwJtB3oJRxmyRTdpU21OU98mHthVI68JUJelWO9ZfW 122ZkqvLO2S3Mb2hvLi46HKhrOm6baGcVt0v9AgDYZv6LjZq2yh7VrBiffwYfuxG/pr13SWnjLUy o8UqS/mvfCi8ssG5dnh0wsdpcZqXY3z/waZ65Xa6ruRH3Vvuoju/LPfr1ljCq+WC+rHn4KhQEHqu TqRuZXOkyOLtrGy5je6dq5wqHY+tA0vt0m0M4+lQEC58ciiVu17D8S9fKSNPqs5PTJdzC+8VGNO1 NaVtX/KVGki5qdQ3G2RyN7fNpLDv07iRvoky/Zk2fq+p7ehjv16qja/Fp73v3bsbaCuoHyX76aFU QBhl5EDX/buflemDavrs5eBIuL1q4izR32Sdn4oIBu1MuF8y58fs9O1dsgd5befR8pw+gPwqqm50 NrGPC3NCVnhUKAjExvbXzoejL13/fTQrGVu38KLgl2BD9HFWjSeUDwvuDWVGjS+cuUuoGWv8mZ/J xuGa7CcF4nwgRDmYjUVsxmFKtjPiQGbec5fcTJChaccY42B80NcLphufKDe/vd09+UjxmO8DoSjk BPbNvy9tPapqvyGQ2/cE9hub7YnZHlFbs/WYlW3Mvab1mNHnJe1NOTixebX7a8I6sB7A1sNk9HHh 4xCPq/5Z2C/4fLBjYz4r8ZkVk3yDXfLj+9wy8me2td6v3xSbOXL7xNmvjPqlmb/qreFY2y+zrdV+ 3VT8PwXO08viEz1PZtsie7P9uiDbM8qZ14W54GxfdJd1vvOutou2T+w5e2R7RQ0sr6zd+ozLdk3o Ea89qo+rPqJaVT2/zUaMZvymZPvneV+e237stc4f5gNm9FFWfVqYl0yORN/WKh1rpcNv6/bgyg7e 1u1r+7Z+sePfv622OP7bWhla/raaHn1bWe+49zh9ewVyWgvV9G0dlp19Pak6F/ZvdI+Py7ZTGBF2 C88JbLXdC2ajrVmej8l2WCB//XmYDGfizAlnBWJdEaKxzNYtW7NY9DmiXxlFfbsalExMzhC1weJq vvV33DjMq98tAQ7fCVEOZlsn20ocBsXgoBvWZ7Eet1Ue27So8BhRHeVhtk7y8NdpQDw2CRy+ftU9 gtlZuzg5p2nU7xIbyx4k4fuF0Pek6pwAV/mu/44jNjkGyNlTAvl8TsDm5zM22prt75hsg1oC8smf h8msB3HmBPIRf1eEaCyzdcvWLBZ9BpVJQ/rDG0PMTFgjr8ZhXn3IWTiQz1EOZlstjw67pwMWRZ1k i9sqD3IWHuRzlIfZVuPBKhwUh4LOVqs8bH82J5Rz5Ii9jUn7ngp9L6jOCZsE8W6az9Oykc9vCvDy 8xkbbc1ybEw2yy1/HiZH8xl/V4RoLHIVW7fQLJbl8xHdzxaz1TwiZ4lDPkc5mG21PKrlcyFg0Woe jSvuvEDOwoN8jvIw22o8hpXJ5PNR3fSt8rD9+b/ns5YoKHZWnpS2Q+iqNbvvf/wpkGw+tGMn57H1 enKjs5CW/QmhTyCX/MJ484uN33hZr8Owp/O2WV/tRYUcnvX6YqdYk7Y9fA8fWpPqyrElxZeXWn3J 4vncSmEH44ZOXOu7Ejcb2yluVXGhGLeq5Ljc6EvpFLcHNfd1buhxudnYJLhZfneHfO7cuRNItn+0 W35js/wW1+DeJOfgQZkOBeOFTr73u4eYw+LnmS+bfXltPDhn+wTOmc8peuasv5+jxsvyAD3uWttY m1M7c0lqrYe0BvAqqoaX6e2utd0h+Hw+jMFvLl9PMsZEGGMyjGF6UjHktl4WJLHnFPxfFtrZS1sr LlDWpyQQw3RioCcR40P5IUZVwKfpSca4L7/E4G4hhulJxsD/2wK5SwxfJ04Sa3VeTvFrMUxPYh52 t7RzF4la8PdTdhehk4vme6X3kr5lgfmBdtbL4mXkx75nlCTj37ihx+VG305yq4b+jRt6XG42tlPr xpnx1w09Ljcb2ylunAOfG3pcbja2U9z4jk2xPZ0N9b1q451f6SzY2E5yK0a4ocflRt9OcuNd9tcN PS43e9Phl/Qdwr5MRrihx+VG306uG++Ov27ocbnZm5XgulUsdiu/i/nOa9/JkRv9O3RZ82rWPiAb 54vvQidUDwl8t+b/ruwv1f6dCP/h78MKgi8zpk/ICoxJl2r+pLotQg5BJSsg/w10a0z3uCMAAC== ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAoMAAAFKCAYAAABmYVVvAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAFfpSURBVHhe7Z0HeBVV+v/d34q4666uq1vsBf3v qmABlUUFxLIW1BUFUelFqnQJCaEEQkuRmpCEVEIgBEJROqFJgISQQEISUugEBEJRQJqg7//5vmGu N5MEEkhy5ybf7/N8ntw7c2bu3LmTM995zznvuUkoiqIoiqKoaqubzAsoiqIoiqKo6iOaQYqiKIqi qGosmkGKoiiKoqhqLJpBiqIoiqKoaiyaQYqiKIqiqGosmkGKoiiKoqhqLJrBEvTLL79IWlqajB07 Vtzc3GTkyJHi4+MjEyZMkPHjxyt4TQghhBBSkRieY/LkyTJ69GhxdXXV9zNmzDDbl+sSzWAJghlM Tk6WYcOGiZeXl8TExMjixYtl+fLlsmTJEmXp0qWEEEIIIRUKPMeyZcskLi5OYmNjxd/fX/z8/CQo KMhsX65LNIMlCGYwPj5e+vXrJ9OnT5eDBw/KmTNn5Ny5c3Lq1ClCCCGEkErjp59+ksuXL8vhw4dl /fr1EhYWpsGq8hDNYAmCGcTJhhmMioqS/Px8uXDhgly6dEkNISGEEEJIZXHx4kX59ddf5cSJE7Jp 0yYNVNEMVrBgBjds2CBfffWVtsnn5eWpM0d08Mcff5QffvhB/xJCCCGEVCTwHKdPn9aA1Pfffy/f ffedmsGvv/7abF+uSzSDJehaZpAQQgghpDKAGYT/+Pnnn2kGK1NmM4g+g0abvflHIoQQQgipKGgG HSSaQUIIIYRYAZpBB4lmkBBCCCFWgGbQQaIZJIQQQogVoBl0kGgGCSGEEGIFaAYdJJpBQgghhFgB mkEHiWaQEEIIIVaAZtBBohkkhBBCiBWgGXSQaAYJIYQQYgVoBh0kmkFCCCGEWAGaQQeJZpAQQggh VoBm0EGiGSSEEEKIFaAZdJBoBgkhhBBiBWgGHSSaQUIIIYRYAZpBB4lmkBBCCCFWgGbQQaIZJIQQ QogVoBl0kGgGCSGEEGIFaAYdJJpBQgghhFgBmsEStHPnTnnkkUdk27Zt5lVq5LKysuSjjz6SOnXq yNChQ+X06dO67sKFCxIQECD16tWTt99+W+Lj482bq8xmMC8vj2aQEEIIIZUOzWAJcnd3lz/96U/F msH9+/fLiy++KGvWrNGT2LlzZy2Pkzhr1ixp06aNGrtNmzbJk08+Kbm5ueZdqJKSksTNzU3N4IED B2gGCSGEEFLp0Aya9Ouvv0pMTIxMnjxZ7rvvvmLN4LJly6R+/fq292lpaVK3bl09ga+//rqeQEO1 a9eWIUOGyNmzZ+XEiRPKyZMnNZK4YsUK6d+/v0RGRrKZmBBCCCEOgWbQpM2bN0tERIRs3769RDPo 5eUlrVq1KrTs3nvvlZycHI0mLl261La8devW0rRpU9m6datER0fLzJkzZfbs2TJnzhwZOXKkfPbZ ZxIWFib5+fn6Q9AMEkIIIaQyoRm0E05GeHi49vu7lhns0KFDoWWGGbzjjjskLi7Ottwwg9hPVFSU RgFhCNGcPGzYMGnZsqWEhobKsWPH1AjSDBJCCCGkMqEZtFNgYKBMmDBBVq1aJcHBwXLXXXdJSEiI HD9+vFA5f39/+eSTT2zvcRIffvhh2bVrl9x///2yePFi2zoYwU8//VTNXnp6uprMjIwMyczMVGPY tWtXjUQePnxYm45pBgkhhBBSmdAM2glRwVGjRilffvml3H777TJgwAA1efZCU/LTTz+tJw5CMy9G DsPM9e7dW8aOHavLYQD/+c9/yty5c/UEGyfcMH2IIPbr1499BgkhhBDiMGgGS5C5mdjDw0Neeukl Hfxx8eJFbf4dOHCgjgiuVauWRhMhjBzGIBJE/8aMGSMff/yxac8FwkCVhIQEcXFxYWoZQgghhDgM msESdPToUZk4caI230Iwex07dtSTBMEU4kT5+vqqITR0+fJlSUlJEU9PT4344QQXJ+QZ3LhxI/MM EkIIIcSh0AyWUjB58+fPL9HclVXmpNNsJiaEEEKII6AZLKWQGmbv3r3mxdctmkFCCCGEWAGaQQeJ ZpAQQgghVoBm0EGiGSSEEEKIFaAZdJBoBgkhhBBiBWgGHSSaQUIIIYRYAZpBB4lmkBBCCCFWgGbQ QaIZJIQQQogVoBl0kGgGCSGEEGIFaAYdJJpBQgghhFgBmkEHiWaQEEIIIVaAZtBBohkkhBBCiBWg GXSQaAYJIYQQYgVoBh0kmkFCCCGEWAGaQQeJZpAQQgghVoBm0EGiGSSEEEKIFaAZdJBoBgkhhBBi BWgGHSSaQUIIIYRYAZpBB4lmkBBCCCFWgGbQQaIZJIQQQogVoBl0kGgGCSGEEGIFaAYdJJpBQggh hFgBmkEHiWaQEEIIIVaAZtBBohkkhBBCiBWgGXSQaAYJIYQQYgVoBh0kmkFCCCGEWAGaQQeJZpAQ QgghVoBm0EGiGSSEEEKIFaAZdJBoBgkhhBBiBWgGHSSaQUIIIc4M7lng9OnTJWKUKW0582eQyoFm 0EGiGSSEEOLMXMvgAdzTAIyGeR3NoHWgGXSQaAYJIYQ4K9cygkaZCxcuyMWLF+Xs2bOFTJ+5vLHO /DmkcqAZdJBoBgkhhDgbMAwwDvv375e0tDTZuHGjrF+/Xu9nxREfH6+YlxdHamqqHDlyhKbQAdAM Okg0g4QQQpwFmAX8PXfunJw8eVJSUlJkzpw5MmHCBPHy8lLTYM/EiRPF19dXBg4cKP369RMPDw/x 9vaW8ePHFyrn4+Oj4PXs2bNl7969haKLpHKgGXSQaAYJIYRYDZiCAuNXGGM5DAPMYG5urmzatEmW L18uS5YskWXLlhVi3bp1snjxYjWD3bt3lylTpsj8+fMlLi5OVqxYYVd26RWWyaZNG+XQoUN2x1P0 WAofX9HjJ9cHzaCDRDNICCHEShh9+QoGe1wNo39fAQX9ALEM0byCZegniCZfRAfd3NxlxYo4ycvL 076DBfc5Y1tju4JtT50yf1ZhcGzGYBQc82/msOj3IaWHZtBBohkkhJQW44ZXnpg/g5Cffjorly// Ir/88qtcunRtUO7XX4sHOnnyB5k82V9GjBgtGzYkyMkffixSzp6rfe7PV/jlSlmYFiNKCczfhZQN 1AmWNYMYhQSDZC+jY6mzi2aQEHItDNOGShp1A6Iq5QH2x076pDCnJD8/X/bs2SPZ2VmSlZUl2dnZ kpOTc1XQXGxPTk4BeXkHJC1tm4wa5SkuLi4SOzdWtqYky969u2X3rl22coW2L2b/Btk52cqOHTv0 uBBlPH7s+JUIo/m7kLJiaTO4bds2CQgIKLQMoeeWLVvK8ePHCy13NtEMEkKuBSpo1AvotI+6DxX1 pUuXSgTrr1UGYH+o+M2fR6ofBU3DZ+SHH09Jenq6hIeFyoTx4yQwcLyEhkyW8DA/JSz0Cnh9BWOd PWGhU5SoqGkSEjxZ+vb5Qrp2bSOjRw2WwICvZXrEVIkI97ftr8j2Zq6Uiwj3k/DwKTJh4hiZNNlX lixZpGYS0Uxg/l6kbFjSDB49elQWLVqkTxP/+9//tOOpAQ7szjvvlNWrV5s3cyrRDBJCSsOJEye0 fti3b5+OtETkBn+N18b7AwcOaB+tw4cPF1pnrDeXRT3L5mJy5gwSQp+VY8dOqAFwH9xXXF3aSeg0 V4mO8pDZUSNl1gyPMjN7pqfMivSQIP8BMtWvn4SFuEnU9GESPWNEkbKlISbaU+ZGe8q4Md3E1aWT TJ06SRISNsv58xfkwoWL7P5wg1jSDJ4/f16fUDp06CC1a9eWzz//3Ea7du1k7Nix2nnUmUUzSAi5 GqgPUDmjYk5ISNCRmUjlERMTo3/NxMbGyjfffCMLFy6UuXPnFllvbDtv3jwd6YmmNvS1YgqP6krB iNyCyNo5+f77fB3V+2XP1uLu2lxWLBkmm74bJxvXecmGtWMlfs1YicffUrJ+9WjdJmnj17Jl43jZ tN67YB+rx5RtXyi7Zqxs3uAtSRt9ZJp/F3Ed2FK8xnlI3Ko1cvFiQTScZvDGsKQZNIQn15kzZ8rl y5fNq5xeNIOEkKsBk4YH4127dklERIQMHjxYunTpIl98gWa3rgpSdvTo0UM6deokLVq0kNdee03e eecdfZDu1q2brjfKYluU69mzp0yePFkre5hBfIb5s0n1oWC6uLNqBpHyZeCAzjJuVDtJjPeWzFR/ Sd/qL9tTpsj25CkFf0tJWvJkSUueIjtSA2RHWoBkYD/JWF7GfV3ZJmt7gORkBEpMVH8ZNaKjTBg/ WlavXisXLtAMlgeWNoPoNPr888/rE2xVE80gIeRqoD7AYA80DyPaBwPn6ekpI0aM0L9g9OjRMmbM GHF1dVUzeM8992hrCnK7YR0wyo4cOVIT/6I8HrK3bNmiZhCfYf5sUn2wN4OrVsWJu1tPmeDbVZIT J0pORrBkbQ+WHWlB101m6m+Y15UWbLtzR6jszg6V+XPcxGdcd/Gb4iNr166nGSwnLG0Gjx07Jm+8 8YZ2eLYXmkKSk5MLLXM20Qxal4KcWSVTlvLmsoRcL8Xd7Iwm3p07d0pkZKQ0aNBAu9PgAfpac70a +zPvk1QvzGZwsFt3+dr7C0naOF6y0gLViKVvDXA4MKa5mcESGz1IvMZ0kymTvWkGyxFLm0EcEJpG MHoYT7VgyJAhcu+992rGc2cWzaA1MX4DcyoOe9CsZozsRPoj83p7sC/jhszKipQVXC8wdbje8FCM LjP2/JbP7aTO7vDqq69qUzAGkaCOAeZtAK5dXJ/YP3O0VW/MZtDNrbv4en0hmzeMl8zUQEnfGijb UwJke8pUh5KdPk1yMqbJ3GgX8RrT1WYG2WewfLC0GUQlVbduXe3rYs/9999PM0jKHYzaRD9V/BbI YYW/9mAZwHRJGLUJ8E9jLC+uPMoidxcrKlJe2Ef78GACc7d//36tR1555RVp06aNdrGB2UMKGSN6 aI5WMzJIQCEzGGdEBrvIlk0TJDvdaKYNlIxtiBJWPvhcgKjgrqwQmTfbVbztzOAFmsFywdJmEEpM TDQv0rkQ09LS9DWaklEhOptoBq0D/gEAjBvm2gwNDZVJkyYVSmkE/Pz8FEzMPm7cOFv/K/TlMtYZ oDwmZMe+Nm/erJEa43PMn0/ItbA3bgZ4WIbZQ8QQ/QrRTGyYQTQTGxHukrY3fwapnhhm8NChfJ03 eOiQXuI3qadkpQXIwT3TZf+u6bJvZ4Tsyw0v+FvJ7M0NVw7ti5IjB2bKsm+Hy6SvvxR/P19Zu/Y7 NhOXE5Y2g6jskE8QI5xKolmzZrJ9+3bzppYXzaB1sDeD+AeAkUPHe6QwAjB+AOYO82wOGDBAPv30 Ux21iSY5Ly8vXY6/Rllsh24NMIr4nfHPRTNIygvjxmeYQUQGzWbQ6KqAeoU3SVIS9pHBuJUrxXVQ d/Ee20kS1vvqSOK05KmSusVPtjkYRAmztwfJnJkDZdyoLjJ5kpeaQTYTlw+WN4P33Xef3HTTTSWC JmOaQVIe4HqDIcSNNCMjw0ZmZqaC6AvSfGAkZv/+/TXnJYwjplHavXu3rRxAnkxcl5jSCb8t+2WR 8oRmkJQXRgQ5P/+EBlh6dGsjPbq8JwFTekhESD8JD+4vodP6OpzpYQNkRvhXMsy9pXzZ/SPx9vKU 775jn8HywtJmEDfSd999Vw/MEG68aJ5Dh2rI29tbR9I5m2gGrY9RuRgVjDGNF7opIL1H3759NYkv KlIMJCluO1ZQ5Grgfx59+s6cPq1/ywrqQdQl6J8aNWOGNGzYUNq2bat1Iq5JgArevF1ZMB8zqVoU mMFzcvLkD7J82TJp3vx9ebnBk/LRhw3kk+YNpWWLxvJJ80b62pF8+klj+axlY2nS+Cl547UXxWP4 YFm/fr38/HPBNIysa28MS5vBrVu36uhhe+HCve2227RvF4QbsTn1jDOIZtC64AZY3A0UHfXRP3XV qlXaJIxr89tvv9UbLv6BjGZgo7zx+mrpPUj1BdeFcc1cD5hPFtcdBhTn5R2UGVFRGhksMIO7dIou mEXUKeZtS89PNIRVFMM84fo4f/6c/PjjKZ2B5N1335RHH71H6tR+SJ59+hF57tnH5Llna8lzzziW us89pjz80N3ydJ1/iZubi8THr5dLlxgZLA8sbQZxYK+//rq6f4zIRBNeYGCg1KxZUzvlV5SMvmPx 8fF6gkoS/olgSjG1E5oB7YUI5po1a7S5pjizSjNoXYxRl2bMZtDd3V1zXhqpZszlDcz7J9UX44al 18bpU/LDj6fk2PEf5MiR43Lk6Ak5ml9Kjp6QI0ePy48/IqpzUXJydktgUIg880w9adashaSlZcoP P5yRH348I/nHTmr5Ivu4CjgWcPIk/h/4QFOVMfoMGs3EXbu2kk4d3hJfr47iP7m7+E/uKX4Tezic AL8vJcj/SxnYv5l06fSBeI0bwWbicsTSZhBCioTPPvtMXn75ZU0zgz6EOLiKGkGMvl9G1n58Hp6y 0TRoFiKSGDwwatQoHSSA6Z4MQ7h06VJ5//33dSTpxx9/rH15zKIZdB6MCsbeDGKAiJubmyxYsECv D/tmYkJKwjBVSGGUk5srCQkbZePGeElKSpDNSQn6tzSg7ObNCbJtW4qkp6fJ6tVx4uMzTho0qC/N P24my5Yulq1bt8jWrcmyZUtimfYNEjdvkoTEjbJp0wZtoUH9xBtt1cR+NDFSywx1/1KmTOgu6Vv9 ZN/OcNmTGy67s8Mcyq6sUDmwZ7oc3BspixYMlfE+Pa/MQMLRxOWF5c0ghKgLOuQjzQyidhUpdPo3 InmISGJqJ1TcZmH06GOPPWYzipgLFP3HEMF86aWXNCoIwcw+88wzcuDAgULbwwxu3LjRZgbR54dm 0JqUxgziGjVvR4iBcaM6d/asNu/u2JEjMbNnySCXL8VzRB8JCx4lodM8JShgpEwLLCUBIyU4aJSE BY+WqVOGiueIntK543vS+8tPZPLEwbouJGhU0e1KxQjxmzxEBrt9KaM8h0tCQqLk5x/XmwWbjasW 9qOJC6aj66HT0W3dPEl27gjWmT+Q8NlhbJ8mWduDdCq6vblhsnDulenoOANJuWJpM4gDhGFKSkrS SFxCQoIMHz5c1q5day5a7sKoUfQJ8/f3L9LMi2N58803df5PQ8g9hzQ3qamp8tBDDxUq/8QTTxQ5 ZswcgKZuFxcXmkEnwd4MIn0MzCDmjKUZJNfCuFEhgnzq9BlJStoq/n6TpEvnD2X0yHby7TwPWRA7 XGJmusucWWVliG43a4arzAgfKFERLlf2M+QK5vLXZl7MEIkK/0r69flEen3ZSVauXCnff3/E1v/Q /P2I82I2g4PdemjS6aRNE9SEYTq6jG0FU8Lhb2VjPx0dzGns7EHibTcdHZuJywdLm0EYJBirxYsX 68E+8sgjegN+4IEHikTaylt/+tOf5Oabb5apU6cWaZLGTBX169eXgIAA27KwsDD5z3/+o9HLp556 qlD55557TpuOjemhYARhLNAnkZFB54FmkFwvNjOI6+TUGdmwYbP4+00U168+ldkzBsj+nSGyOxs3 XeRTA/6lA+W3FbzOSg/U5jTM1LAjzShThn1dAdvu3BEgqUkTxGdsZxn4VRdZtny55OV9TzNYBSlk Bo0ZSLwK5ibekYbZPxw/NzGmw8NUdL/NTczp6MobS5tBzDLi6uqqrzEjBKaigxAdrOjp6HByYPbQ R9Ec1TPMIAazGLI3g2hathfMIJqV0aQIFi1apKNQYShat26t26IpGj8EzaB1oRkk10sRM7gxSQKm ThJ3189lziwXObA7XPbkhMqOtADJ2h5YelA+reB1Tvo0mxksUq6M7M6aJttTJst4766ahHj5ihU0 g1WUa5tBzE9c1KBVJjCDaDLGtT2XZrBCsLQZxGAOzPKAm2+TJk3UhOHGi1xaiKpVhpBYeO7cuYWW 4WRhgEjPnj1ty5B3rn379ppwGBFMexmDXoxpymAyEXHETBYYYIKBJsePH7/yT0kzaFVoBsn1YjaD mzYlS1DgFHF3bS0xUS6yJxsmLkRveuYbYalJwU1zqlJkXRlA01xOepD2GYMZHOzWU1bGxUnewcNq GmgGqxbXNoOMDFYHcO7QH9jeDEZERFjDDELh4eEahUNEDf1tMCUYIm3GrCNYhpt0eQjNt4jQHTly xHZxIbEw+gGieRf9CI0BLFFRUdoXEANG8M/04Ycfar8abNO0aVM1kNgHUo80btxYB5Ls2LFDwWsk hZ01a5Z0795d3TdOPpuJrQ3NILle7M3gKZjBhGSZpmawjckM3piRKw/UDGZcMYM+3XQQCczgQZrB KgnNoPNjfPcbxTCD8DlImWcpM3gtzZkzR/bs2WNefF3CQBGYzRdffFFTxfj4+Gh/RSyH6USUskGD BloWN/9hw4bp1E8YSYxmYAwsgdBU3Lx5c01LA4woJk4ywP4AnDeig0g9w9Qy1odmkFwvRmVLM0is RklmcHM5NRPDyBmY15UGY1s2ExfG+K6Gb8B9CPcn/L1ecB/Dfe7YsWM6YBfjGZzGDCL5b2XNTYzI oX3T8I3ISC2DEckcQGJtjH86ppYh18tvZvBCQTNxwm/NxLNNZvB6b5rlSXZ6oKRsnihfe/9mBgua idlnsKpgXJP2ZjAubqW4uXazZmTwihk0IoOTJ3nJmjXIM3ix2phBfL9jx4/L0fx8GydOnpTTZ87o lII3yvnzmMLyohw5elQSEhNlemSkePv4yC+Y5ugGVWXMIMwbkq/CCJSHaAadB5pBcqNc3QwOLDCD GcG2Pn/20ZTKBjff38wg+gzSDFZFzGbw0KGjsnLlcnEb1FXG+3SW1KSJOpAoN3OaRorRj1T/lpJs lE8Pkl1ZIcrOHVf2U0awH4ABVvt3hcnCWFfxGdtFJk0cJ6tXr6s2ZhAmcGpktDze5H259V8vys2P 1atwajxeT+56tqGMmBQoP50tOvlGWVRlzCCigqgEYeLKQ+YZSGgGrQvNILlRSjSDbm1kzkwX2Zdb MMtCQW61QMlMrWTwmXafCwOwbctkmWDXTEwzWLUwm0FEBleuWCEDB3SWsZ5tZcO6cbI9ebKkbpki WzdP1m4DBeD11TDKFZCW7KfofpLKsp/C+8vYhrRHU2Xm9H4yakQHmTB+rKxeU33MYFpGljzSsKk8 884nsil5m6RmZlU4W7Ztl5Y9B8qfa78k38StM9uYMqnKmMHylmEGERnEYBR02EQli36H6MRJrANM Ov6a5yYePHhwobmJzdsRYmDMU/3zpZ/l9JmzkpCYIsHT/GX40PayMHawHDkQJQf3RMrOHaGyKwvG 0HFg+q8DuyM0zc2UiV/K0CG9ZdXq1XLo+6P64IM6yvg+5u9JnAfjN8Rvijrs+IkfZM2a1dK3d2fp /eXHEjS1r0RNd5OZ090lKmKwREW4XflbSqa7y4wINwkJ6i/BQf0kPGSgRIa7Fi13DbCPGeFuEh01 RGZHucvIYW2kT6+WMmG8t2zYsMnWB7+qX5MbklLk1n+9IHkHvy+yriI5fOSo1HisnkwIizLbmDKJ ZrAE0QxWHkb+Rpzb3zrL4nXpKNjurPzyS4EZRN5JDC7CDDWLFy9SI4h15u2uzW/Hgc8woi7m4yfO j9kMJiamSFCQn7gObCUzIwZIbmaQ7EjDoA1EYfxkW1LlsvUKxntEYTCAwHtcF3Fz7alm8HuawSqF 8Rvi9zR+07S0VAkK9JPx4z1lesQEiZ7lJzGzp8rsaH+ZPatszI8Nllkzp4jH8F7i5opm3eEyffoE mRMTIDHRU4uUvxY4DmznP2W0TJw4RhYumCc7dmRpnawz+1Txa3J94hZtujUvB0FBQTrAFX7CvA5R RWM9spfs3bu30Prg4GBJSUkpsp09+FzvoAizjSmTaAZLkGEGMZoYeQaRbgbpZZDaBn/JjQODDZAq CKOjjh8/cYXjVzDeX4uC8ufOnZdTp07L8uXLZfTo0eLiMkjmzZunc83CyP2239Lu21z2mP7+xnGb vw9xftDZ+/CRI7Luu40yYbyPdO7wnowe0Vq+mT9U5s9B5MNNiXEkM91kXoybzIz4Svr3/Vh69myn SfJ37d6jqbRYR1U1Dsvhw+B72b9/n6SnZ0hS0hZJSNisJCZuKRMJCUlKZkaWbNqUKK6ug6V7954S EhIuq1avlZSUbbJly1ZJTEgqoJh9FMuV/SYmbpbk5BTJzs7RmcgKjv1wMd+rarF87fpizeCyZctk 2rRp+vqee+7RXMb26/H/+t5772lXNGTBmDhxom0djOFtt90ma9asKbJfe5zCDGImEnxJZ5NhBnv0 6CGDBg2SkJAQzTsYExMj0dHR5IaZpecTf2fPni0zZ0ZLeMQMCQmJkGnB4RIcEqGvS0twcLhERcVI ZOQscXFxl2bNWsh///uu9OrVXyKmz5TIyOgi25SF0LBIiYrC8RYcewHm70ScFVyLIDY2VmbPjpHx 4ydK584dpUH92vLWG89Kh7ZvSLs2b0jrz19zOG1avSZtW78mn7VsLI0bPSNvvtlYRozw0JGFSOWF /yfz9yPOi3Ft4jV+29mz52h9OX36zOsC9SGYO3e+hIdHStu2HbS+HDJkuAQEBsvMWTEyI6rs+4+Y HqXMiMLx4jgLsD/+qswY3wnFmkHkLjZe+/v766xt9uvxAPfaa6+p8UMUEOcKyxFE8/T0lE6dOlnb DCKSs2nTJnX89srOztYcfsbcxMZcv84mwwx+8cUX+mOg/xl+mDFjxsioUaNIOYBz6ek5UlxcXKRb t27Suk0b+bxVK2nVurVOA1hqWoFW0qF9R2nXtr28/dbbUq9uXalTu440afK6tG3bTtq1b1+4vHkf V6GVlm8jHTt20iTnOOaxY3kdVEXwZD569Bjp33+A/O9/78u///WQPF37IWnSuI40blRHGr1SRxo1 tAavvPSkPPXkw/LC88/qVKAjRuC6xPGPLvK9SNUAvy2uUR8fb+0KA7y9y4q3MnnyZN1X8+Yt5N13 m0qvXr30Hoe8dcjLW3S7a/PbMXnrIL7qdC326DugWDNoD87x5s2bCy1D0/mECRPk9ttv1/Ou6WmO HdMAFKKGljWDMElIwozQJZI/v/XWW/qj20f//vCHP1T43MQVLcMM9unTR/850A9ty5Ytmr4Gf8mN k56erucY/wh9+nSRLp0/kv59P5dh7p1liFtHcXftUCaGuHUSd7eO0r/fZ9KzezPp3vV/0rd3S13m Prjs+3N37ajbDnJpK716fiptWn8sQ4e6y/r18ZKRkVnk+xDnJSkpSUnbvl2SU1Jk9ux54jF8iLRv +454Dm8l82LcZe4sdNAfKDOnuzicmJmDJCK0n/Tp1Uw6d/pU509fH79Rtm3bJlu3puh3MX9HUhVI luTkZP2NcS8CKSllJUXJzc3RfQ4dOkzvc5hpa/369RqRwqxeRrmi2xePcTwFx5Six1n0+KsukTGx VzWDuNcFBgYWWQ7zBwMNc/7mm29qszL8U+fOnbV8o0aNtHVy3759RbZ1qBlEHyrMQ+zu7q59vTAf MU4EniiMKGFVMYNGnkEMIMF3Q78zdIbFIAJyY+BcXr78ixw+fFTCw8Nk6JBe4unRWsKCesui+R4y P2aozJ01WObOwk249MyZ5S4x0YNlziw7ot1lrkEx25REbLS7xM52l+gZA2Xy112lW9cW4uU1Wg4d Oqwjl43ZHkjVAaMez/x0VjZv3iYhwVPFQ0cTuxeMJt5rjCZ2LLuzQ+XA7nDJSgsQvyujiVevWSPf H87Xjvrnz58r8r0IMTAMBO5xuJ/7+/vp/RsBD/SFxoA73OeMcubtSfHEJ6WUaAb379+vQY+TSEBt Wgfj3a5dO/0tkAqtf//+kpWVpdFA8MEHH2jzMvyWeVsDh5hBmKIXXnhBK0174WTAvWJO31tvvbVK mEH70cToIIrviNF65h+ClB2cy59/vix5ed9LaGiIjBs7QCLD+klivLemzdi1I0Syt/+WGPVaGIlP CyjIhI8kwZgv01hu3qYkjPK5OtfmNMnYNkWWfjNc3Aa1Ex/vMXLgwEG5dOkX/Q7m70Wck99GE1/6 LbVMkL8MGdxWYmcNkgO7ImRPdphkphaMKnYkWduRKDhYUpOnyATf7uI+uJfErVpVKLWM+fsRYmBc 6xAMiJ9fgRmE8cC0q3ig4H2u7JQ0mhiR0saNG2t/XhhuNP/u3r1bp7uFSUSfQUQEMbXupEmTigww sWwzMZ4YMC8w8reZhYsIc8HWqFGjyphBI+k0/klw0hHRMv6ZyPWDc3nx4iXJyzukZtB73Fcya/pX kpzwtXy/f4bs2xluy4y/u5QY5QuiJwX52BBFud79YNaJvTmhkpM+VVYsHiHubh3E12es7N+fJxd/ vqzfwfy9iHNiJI69+PNFOXX6J0lISJFpV8zgnFmDZF8ursewKwmng64LTBuG7W9kHwZ42Nm2xd4M xsnBQ0dsKZDwXczfkRBgXOvoy4++aTAfI0eOlNWrV+t9Dvd4+8kVzNuT4onfnCw1//WCHPq+cAQP I/0DAgJsINsFonxoGsaANWyL5nmsw4AbcwQQeXP37NlTxAAaHDmaX5BnMHSG2caUSWU2gxAiIkYf A2QWtxcuIoyMWbp0qb539gEknIGkYsC5xATmiLIhdc+4sV9JREhfWb9mnJo53PCuf+ovY7sb277g xh0g2zZPlG/nDRVXl/bi4zOmwAxeLEiiav5exDn5bQaSizoDycaNWyQwYLJORxcTNVAfCnbuCJH0 rbguMAvJ9VAwe4hxXV0vmakBmvdwa1LBdHTIM7hi5UrJy+MMJKQwxnVtD5oqAbq6GGZwxIgRajow 8BMPFLiGjHLm7c2fQQrYuj1DHmjwljz/weeya+9+OXz06FX55z33ypq164osLwsH8g5J+wFD5Lan GsjcpXFmG1MmXZcZNIRQMi4os1AhIfQJwRQ6c2oZmsGKgWaQWAnjRof+UqdOn5H4DZvF32+8uAxo IdGRfWVfbrDs2hEk6VunSMY2JH0uHSiv22z1k+ztgRqp3rkjWN8XophtSyJzm5/kZk6VrZu/Fq8x HeSr/p210znNIDFjNnI0gxVH/rFj4hUQKg+9/I7UrKS5icFfnn5Z+ozwltNnfjLbmDLphsxgaeTs Saftm4lpBsuPksxg/BovbY7bkTZNjVn6VsdhRHK2JU0qMIOD7M3gZZrBKoTZDCYkbhF/v4nSq+fH 4j+xi2z6zlfi1/hI3LIxsmrZWFm1vJRo+TGy2thO/462e38F83Zm7MquXj5Wvls9VpZ9O1yGDG4l /fp2luUrVsjBQzSD5Ldr2bhfGbM6ofkXGDM9ocWuYACJv6aAQVMlmigxHgAtfubt8Jr3v6uD85m7 e49kZOfI9h3ZSmZOrmTv2iO79u2X3fsO6F8DvLfHfp25DF7vOXBQ9uYd0v1+u3S5TPIPkOEjR8lF Uwvt9YhmsATRDFYsNIPEShg30HM6Eve0pKfvkMjpEdKndwcZ7t5FQoOGSXDQMAnwHyKBZSFgqAQH DhO/Sa4yZlQP6du7uQwa2EomT3SRoIChSpFtrkHQ1CESFOAukya4yID+HcXdfaDEx2+Q/PzjWj+h H5H5+5HqgxG9w7WAfvzG3MBmcI9DCx7MINLDIW8wIoUwguayhkE0ppUzfya5Ojhn5QF+U0R0MZA3 Pj5eu+oh9V15iGawBNEMViw4lzSDxGoUDAo6LQcPHtJcfbGxs2XevGhZvmyhsqzULJBlSxdIXNxi WbtmmcyPnSWjRw2T1197ST5t+aHMnh0hcSsXyaqVi2T5cvO2V0ePZekCWbwoVubOjZalSxdrFgcj bQWvy+oNrgEYQnRtQooSI++ffR5AgJkxcI/DjBg9e/aUiIgIWbdunaY6Aeby2Af2BwNp/kxydcxN 7dcLfluYcqQAwmhk/GY0gxUsmsGKxenM4HyaweqAfaVbYKzOyImTP8rR/JOSf+ykHDv+Q6lAWXDq 9Fk5f/5n2blzrwRNC5Nnn3tePvr4E0lPz5Iff0Rmgp/k+An0NyrLvn+QfBxPPiJAxnHyWiQFoBkY Dwa47yJdCRKSY25cpDRBXYu/ACnTMP0ZsoO0adNGhg0bpmlmYDCwjVHOANsuWrRI06EY/x/mzyYV B+qlgpRsP2uqO5hBRgYrQTSDFYvzmcFhNIPVAMMMnjr1o1a8Z8+i2Rg519D8WjZgJHGNo2/WgQOH ZPr0KHmxfgP57LNWkpu7S03ihQs/y5kzyAtYdPvSgOPDzZ/XIjHA9YBr2EhcPHfuXE1Zgr8A+e4A 0prgvWH8cJ+zL2cuj9dG+hk+gFQ+NIMOEs1gxWI2g8gzODNigCRt+Fry9sxQQ5iTjqTRjiM3M0TT iexI9Zfl347QKepgBvft42ji6gJ+Y3Ner9JScI1f0LrkwIE8mTEjSl555RVp27aN5Obmaqf8CxcK ZjQyb1sWzMdMqje4nmAcMDI4M7Ng2kzMh2uePs1YlpGRoeXQNIwp5IypGY1yxnuAcpgvF9c267/K xSnNICoojDyCYmJiNGGis4lmsGLBuURUBGYwLDREfL1cJHqGi6QkTJDD+2fKvp3TTcmjK5GsAvbk hMve3HDJzQiUlUtHyZDBHcXXtyAyeOECzSC5Oqi8UQ+i8z2a1jCnO8wgmuSys7M1gsOoHilvzP3M zOvty+EvDAYozXVYmv2SisEpzSCmVMG0KxBGHxWXi9DqohmsWHAuf/75knbUDwmZJv37dpKeXZvK sMGfyqSvu4qv1xfiPbajeI/t5DB8xnUSH69OMsazjbgM+Fhaf95URnmOUAOLeZVLU3mS6gvNIHEE hllDUAbXV0EE+kKJGKljSlMO+zM+w/y5pGKxnBmcOnWq1K9f/6r87ne/q5LT0dEMlh84l8YQeXRu btHiQ3ni3/fLk0/cLy88/7g8X+9xeb7ulb8O5TF5ps6DUqf2w/Kf+nVliLu7HDr0vfYD402cXA1U 3riBFmcGc3JybPneeB2RisIcJSwPzJ9BKgece0uZQfQzwKgjGKSSePnll2kGyVXBubx06bIaK5jB jh0+kzffeE6a/a++tG/zhrRp9Zq0/ryJQ8ExgE+avyzvv/eivP1WIxk+fKjk5R2UX36hGSRXB5U3 zSBxJGYjVx6YP4NUDjj3ljKDqNhQwZUkREyQ88qYjs5ZRTNYseBcYhBGXt4hCQkNkYEDu8rA/h/J eJ9OEhUxUMJD+klIUB8JDerrMMKC+ymBft3Ec0Rr6dj+QxkzZqT2Gfz5Z44mJlcHlTfNICGkPLCc GTQLlRlGLRmgL0z//v11WhZnFs1gxVJgBo3RxCEybswACQ/uI/E6N3GYZF5JLeNICuYmDpRtmyfJ Nzo3cTvx9i4YTcwBJORa0AwSQsoLS5tBVGSvvvqq3H333TbuuusuufnmmzWTuTOLZrBiKWQGw0Jl vK+rzJ8zWDJT/eWH/LlyNC9aDu6dIYf2RTkMjGo+cmCm5O0Kk/WrvcRj6Bfi6zuWZpCUCppBQkh5 YWkzmJaWJo0aNZJly5ZJu3btNAcRRhF7eHhoBejMohmsWOzNYEhIsIwbO0CiIvpLYryPHNg9XfP7 ZacHSnZ6UJnJyZhWKF+geX1pyc2cpmRsmyJLvx0mbkg67T1a9u87wDyD5JrQDBJCygtLm0EMJnF3 d1fjNHr0aJ3oGkK0EMkrnVk0gxULziVSy8AMTp3qLy4Dv5AxIz+XmKj+smHtOFmzYpSsXDJCVi4t PSuWeCjY9rtV4+S71djPaNtyc/kSwecuGSGrlo2UVctHypKFbhLk31W+6PS+eHgMkX37DrDPILkm NIOEkPLC0mYQlVjdunWlQ4cOmsUcr9FfsEaNGrJq1SpzcacSzWDFg8gg8gzigh7q3leGureVQP++ Mn+Op8TM8pBZM4bKrBnDSk101HCJnjFMIsNcJSRwgEwL7C/hIYMkOgrripa/FtEzh8vsmcNleqiL +Hp1k549Womvr5fOJgEja/4+hNhDM0gIKS8sbQah3bt3y7x587RiQzQQZtDX11ffO7NoBisenMv8 /GOSkJAoc+fGSGjIVJkZNU3mz5sh82IjJXZOpMTOvTZz50xXFi2KkW8XRsuE8aOkX98u0q1bWxk7 ZqgsnD9LvlkYXWS7a4JjiI2U6OhQiYwMkunTQyUuLk6OHs3XOWHN34cQe2gGCSHlheXNoL2QVgZs 3LhRKztnFs1gxYPzefLkSY0OZmfnyJYtWyVpy1bZkrxNkssAym9J3iqZO7Jl27btEhwcJr1795P2 HTrLxEl+kpqaLukZWUW2Ky1JSSl6bBkZmXpTxzGfPs0bOLk6NIOEkPLC8mYwPj5ep58bNGiQDBgw QKlduzaTTpOrggsbpsq4wBFpO3cO0x2Bc9cFmm5Pnz4jcXGrxMvLW9zcBsuCBQv1pot/IHP5snFe j8/4/XHc5u9EiD00g4SQ8sLSZhBNxLVq1ZJ3331X+vbta+POO++kGSRXxd4MYg5N3BQvXLh4ZQ7M slIwryZ+M/zFiHYfHx8ZMmSILFq0SPdZsM68Xekx5uakGSSlhWaQEFJeWNoMpqam6shhsyIiIvRA nVk0g5ULLvQbBXMd4+aLwUtjx44VNzc3WbBgwRWjeaFI+evFfOyEFAeuFZpBQkh5gPrEsmYQFR1S y2DmEXuFh4fb0sw4q2gGKxez4boeaAaJlcC1QjNICCkPUJ9Y1gzi5osb7/PPPy9NmjSx8bvf/Y7N xKTSsTeD48aNUzO4cOFCveFevHixSHlCKhKaQUJIeWFpM7hjxw657777pFevXjJs2DAbL774Is0g qXRoBomVoBkkhJQXljaDSDT9wQcf6E3YvBzmyZlFM+h80AwSK0EzSAgpLyxtBnGDxTR0GEhy7Ngx G6NGjeIAElLp0AwSK0EzSAgpLyxtBnft2iUNGzbU9DLPPvusjdtvv53NxKTSoRkkVoJmkBBSXlja DKKia9u2rd58U1JSFIwibtq0qSxfvtxc3KlEM+h80AwSq2CMPMe1V5wZzM7OVjMIUK9wlDoh5GpY 2gwiWfDIkSO1adheO3fulCNHjhRa5myiGXQ+aAaJVaAZJISUJ5Y2g5s3b9bZRjBgxF7GHMXOLJpB 54NmkDgKVNKoGwyDZwAjCB06dEiio6OlcePG0r59e529CZU61uP6NG+H/eFh2/w5hJDqiaXNIA4O cxEnJSVpZQeQgBrLMCWYM4tm0PmgGSSOAnUDzBtAhW2YOSQ7x3WJehH1yEsvvSStW7eW3NxcXYfr EnWKsY0B+xESQuyxtBlEhVa7dm25++675aGHHlIeeOABueWWWziAhFQ6NIPEEZw4cUIrZxi+vXv3 FgLL0Y1m27ZtMmHCBPnXv/4l77zzjiQmJtoeoNGEbJTfs2eP/kV9k5+fz+ZjQohiaTOIJ1v0f0Hz hz1vv/22rFixwlzcqUQz6HzQDJLKxIgGwtBt2bJF4uLiZNGiRfLtt9/K4sWLFdSDq1ev1nrR1dVV 6tSpI//973+1TsEgO4AHZ5S13xZ1D0Ycw2iyuZgQYmkzCB09elRNIQaNoPLC67y8PK3EnFk0g84H zSCpLAwjiMoZ/f/mzJmjlfLw4cN1FqYRI0YoGGDn6empc7h/+eWX0qJFC32AxnusA0ZZDw8PGTp0 qC4LDQ2V+Ph4jSqyziGEWN4Moknj9ddflz/84Q+aX7BZs2ZFRhc7o2gGnQ+aQVLZoE5AZDAhIUEj fPPnz5d58+bJggULCmEsN7Bfbv86NjZWr9k1a9bowDxGBgkhwNJmEAeGDtEdO3aUb775Rs0TDu6t t97SA3dm0Qw6HzSDpLIx+vShLjSPCDaD6xDXZ3Gjh82gnjEGkbDfICHE0mYQ/WS6du2qB2cIKWXG jBkjy5YtK1TW2UQz6HzQDJLKBhW0US8YZq8kjNHD+GteZwaG0IgI0gwSQixtBtGMgX4w9mYQTcQY LYdmDmcWzaC1wT+GGXszOHbsWDWDaH7DTRo3YHN5A/O+CbkezNfVjWDeNyGkeoN6wbJmEE+5SKD6 xRdfSEREhEycOFEaNGggL7zwgpomZxbNoLUx3zwBzSBxJObr6kYw75sQUr1BvWBZM2gIhun//b// J48//ri0atVK82M5u2gGrYnxG5j7WAH8ZjCDiEr7+PjIkCFDNF2HkfjXXN7cN4sQQgixIk5hBnGj PX78uM5HjBsvcmtt377dXMypRDNoTa5mBnEdYh0ig97e3pq+AwObjPlhzeUNM8jRmoQQQqyMpc0g Bovs2rVLRo8ebQN5sjAjSVWYgWTjxo0ycOBANYPInUgz6FhOnjypDxxIZ4Trzszhw4d1NodZs2bp lIgY5R4UFKTLkP7DXB4z6CBHHP6xkMIDvy+jhIQQQqyGpc0gpk5C0/Bnn30mffv2tfHEE09UiBnE yUBy1/Hjx2vzH5oEixMiRMj7hemfli5dqsbOEKJAMAvo34hE2cY6GFu8NsA+kPSVkUHHY5g0DE7K zMzUawvXgcHcuXMVzNyASCBGs7dr104+/PBDnfUB/QYxs4NRDmA7XAcon56ersnTjbllzZ9PCCGE OBJLm0GMJm7atGkRUwYDhhtseQtpbDp37izdunXT6KOXl5e5iGrlypXadxGGEINb/Pz8bOs6deqk JhFG77333rMlyEbztnHSYQjQhIj9wNxGRkbSDDoQ/AMA/ANgai/M1NCrVy/p3bu30qdPH6V///76 e3Xp0kUfUD766COd7QHrsNwoB7Adrif0K8Q0Yvh98dsCduInhBBiJSxtBnFQgwYN0mgNmvAM0F9r /fr15uI3JPRJhBEwhMjefffdV6iMoYYNG2rEB9q6davUqFFDmwQRCXryySd1gAsif4gaoV8ZhGZD 9DUDa9euVSZNmqSjpcPDw7V5EiaRZrDyMSJ2iN7h98Q8ryEhITYwdRcw3oeFhSl4HRwcXKScUTYw MFBmzpwpKSkptt8X/2zmzyeEEEIciaXNIPpbYdL1p556Sl5++WUbd955Z4U0E9sLg1QQ2TMLpq9W rVoatYQQtaxZs6be+N9++22NFhnCibznnnv0NSKFiBiCKVOmqBFEBAnT68E8GHOE0gxWPvYpNxCd NcxhSRiRRGBeVxxGP0HjYcb8+YQQQogjsbQZhNF69913ZerUqYV44403bDOQYBSnfZ+98hIMmn2k 0FBSUpL8+9//VqNq6NZbbxVfX1+pV6+eNg8aiomJ0XUQTi62BYg+AXyGkUMRgxNgHGgGKx/7Zluc f+S3xHWF6C7+msFy+/6f5vX25fCPZfymbB4mhBBiRSxtBqF9+/aZF0lWVpaO3oQwHRhGc5ancCKM ZMJmXa8ZhDCIxJ7ExERxcXHhaGKLYR8pLC/Mn0EIIYRYBdynLG0GryUM8ijPnIM4CYg6IqpTnLD8 kUceUVMIIQ3JLbfcoqNJkSbmP//5j60sjg3N2sUJZhADUJhaxnqYjVx5YP4MQgghxCrgPkUzeEVI ZYMvn5aWpqOVYfgQmYRRg2FDUy6Evn4YxAJjiAEEiAjCyOE46tatK6mpqZpXrmXLlmoSi5ORZ5Cp ZQghhBDiSGgGrwgjljHl3d///nd54IEHlH/84x/aBB0bGyu33367NgVDWIa0IYgCdujQoVAzNZqt mzRpIo0aNRJ/f/8iaXEMcQYSQgghhFgBmsFSCqNAkUi4vEQzSAghhBArQDNYCiHyh36EOEHlJZpB QgghhFgBmkEHiWaQEEIIIVbA0mYQxggDMHCQJQkpYIpLP2N10QwSQgghxApY2gwmJyfrDB4Y3FGS cOAVkXS6okUzSAghhBArYGkziIPr0qWLTgGHVC0A8/56enqW+9zElS2aQUIIIYRYAUubQczy0bhx Y3n88celfv36ygsvvCC33XZbhc9NXNGiGSSEEEKIFbC0GUSOvvfff18CAwMLAVNozE3srKIZJIQQ QogVsLQZhJDW5ezZszr7x/Hjx3W+4Ozs7HJN8+II0QwSQgghxApY3gyuW7dOHnzwQenUqZMe6Lhx 45zeCEI0g4QQQgixApY2gwcOHJDatWtLmzZtxMXFRZdhAAmmjcM6ZxbNICGEEEKsgKXNYFJSkgwa NEhycnI0uTSEA7711ltl+fLl5uJOJZpBQgghhFgBS5tBGKRevXpJQkKCjBgxQucHnjBhgtx+++2a bsaZRTNICCGEECtgaTMIrVy5UpuJkV6mSZMm2kQcFRVlLuZ0ohkkhBBCiBWwvBmE0tPTZdOmTbJl yxYdTVwVRDNICCGEECtgOTN46dIl2bNnj5o/pJC5fPmy9O/fX0cRR0dHKxs3bjRv5nSiGSSEEEKI FbCcGfz111/VHNWqVUsHjuB9+/btpUaNGlKzZk3l/vvvN2/mdKIZJIQQQogVsJwZRGTQzc1N9u3b Z1uGEcXz5s2TzMxMBelmUlNTC23nbKIZJIQQQogVsJwZRB7BsWPHFlq2d+9enYXEkIeHB6ejI4QQ QggpByxnBnEQo0ePNi8uJJjBpUuXmhc7lWgGCSGEEGIFLGcGcUAdOnRQU1ScMD/xAw88IGlpaeZV TiWaQUIIIYRYAcuZQQwYGT58uDRs2LCIIbx48aIMGDBAHn30US3nzKIZJIQQQogVsJwZhE6cOKEJ pl955RUZM2aMBAQEiKenp7z99ttqBJOTk82bOJ1oBgkhhBBiBSxpBiE0B48aNUrnIb7pppuUp556 SuLj450+KgjRDBJCCCHECljWDBo6ffq09g9EAurilJiYqCOQnU00g4QQQgixApY3g9eSl5eXbN++ 3bzY8qIZJIQQQogVoBl0kGgGCSGEEGIFaAYdJJpBQgghhFgBmkEHiWaQEEIIIVaAZtBBohkkhBBC iBWgGXSQaAYJIYQQYgWczgzCRCHdjCEkpM7KyipUxhlEM0gIIYQQK2B5M3j27FnZuXOnDUQBO3Xq JEeOHNH1+BKYps7ZRDNICCGEECtgaTMII4hZR4wZSOxZs2aNubhTiWaQEEIIIVbA0mYwNTVV5yPG QbVr10527dolmzdvFldXV6eMBtqLZpAQQgghVsDSZhDGz93dXeci9vHxsUUDGzVqJJs2bTIXdyrR DBJCCCHECljaDOLAmjRpIm3atNFBIjCBnTt3lpo1a8r69evNxZ1KNIOEEEIIsQKWNoOQcVDnz59X Qzh27Fg1T3jvzKIZJIQQQogVsLQZzMjIEF9fXzl37pw2FVcl0QwSQgghxApY2gyiz+Bbb70lkZGR MmfOHD3YqiKaQUIIIYRYAUubwUuXLml6mQsXLuhI4t69e0tgYKBcvnzZXNTpRDNICCGEECtgaTMI I5ifn6+vjx49KjExMfL888/L559/Lnv27DEXdyrRDBJCCCHECljaDG7dulXNUmhoqNSrV08eeugh 8fPzk/379zPPICGEEEJIOWBpM4g+g3fddZfUrl1b5yCGWaoqohkkhBBCiBWwtBnEDCTdu3fXA6tq ohkkhBBCiBWwtBmEkFIGB7px40aJj4+X06dPV4k0MzSDhBBCCLECljeD8+fPlzp16siTTz4pr7zy inzwwQeyfPlyczGnE80gIYQQQqyApc3g8ePHpVatWjqA5MiRI3Ly5ElNMVO3bl05dOiQubhTiWaQ EEIIIVbA0mYQA0hglswaNWqULFmyxLzYqUQzSAghhBArYGkzuHfvXvnwww8136Ch7OxseeyxxyQh IaFQWWcTzSAhhBBCrIClzSA0ZMgQadSokQwcOFA6duyoqWY++eQTczGnE80gIYQQQqyA5c0gFBsb K7169dI0M0FBQXrAzi6aQUIIIYRYAacwg0glg/mIAV5PnjzZ6UcUwwxu2rRJI54wg3l5eTSDhBBC CKl0LG0GMeUcRhKjWdigWbNm8uc//7lCB5BgHuTk5GQ5d+6ceZVNOLZVq1ZJVFSUZGVlFVqHvo7R 0dF6jMiLCMHI4iSDS5cu6XtEBg0zeODAAZpBQgghhFQ6ljaDaWlp8uijj0pYWJgkJibaeOeddyrM DCJlDaKOTZo0kcOHD5tXq3Cy0JexT58+mgfxueeeU2MHYd5kmNaFCxfKiBEj5IsvvtDlONFYBxAF xMlesGCBfPnll3rC8bk0g4QQQgipbCxtBvfs2SMtWrTQKJq91q5dK5mZmYWWlbfq1atXohlE1BAm 1ZgreebMmfLee++pkXNxcRF3d3ddfuLECbn//vtl0aJFmh9xzZo1yrp16/REo7m7Xbt2Eh4ernkU 8UPQDBJCCCGkMrG0GURKmYCAAFm8eLHk5OTY6NSpkzbRVqSuZganTZsm7777ru09TB+SY8O8Pvzw wzrgxRCimG3atNGcidgOA2DQ9A1cXV2lefPm+vrYsWNqBGkGCSGEEFKZWNoMoi/e3/72N6lRo0Yh /u///q/CmokNXc0Menl5SYcOHQotu/fee9Wo3nHHHRIXF2db3rp1a2natKns3LlTm58BjOzq1atl 4sSJ0r59e1tkEP0LaQYJIYQQUplY2gzioAYNGmRrXjXo2bOnmqmKVHmbQTR1I9IJMDDlwoULsn79 em1W5mhiQgghhDgKy5lBmCQMsjBU3IheRAyRl68idTUz+O2338orr7xie48+hM8884wOAmnYsKGO MDaE2VJg+IoTBsPA7HI0MSGEEEIcheXMIA4C5gnpXdAXrzgwircim4kRvXvqqafUoBnKzc3VvIA4 Ubt375bnn39eTSDK9ujRQ48J64KDg6Vr166aeiYpKUn7EqanpxfaP8Sk04QQQgixApY0gw0aNNDI XP369YvltttuqzAzmJqaKq+99prUrFlTo3wYBQxhsMeDDz6o0T8YOQxq+eCDD3QUMYwgzCuEkzp0 6FB5/fXXNcUMoojFiWaQEEIIIVbAkmYQJgwGKzAwsAgeHh46P3FFmcGShJlPkBcwPz/fvOq6RDNI CCGEECtgOTN4/PjxQn3uihPy+qG/XWUqIyND8wOiT2N5iGaQEEIIIVbAcmYQETgYpasJ669VpryF 0cDl+Zk0g4QQQgixApYzg9VFNIOEEEIIsQI0gw4SzSAhhBBCrADNoINEM0gIIYQQK0Az6CDRDBJC CCHECtAMOkg0g4QQQgixAjSDDhLNICGEEEKsAM2gg0QzSAghhBArQDPoINEMEkIIIcQK0Aw6SDSD hBBCCLECNIMOEs0gIYQQQqwAzaCDRDNICCGEECtAM+gg0QwSQgghxArQDDpINIOEEEIIsQI0gw4S zSAhhBBCrADNoINEM0gIIYQQK0Az6CDRDBJCCCHECtAMOkg0g4QQQgixAjSDDhLNICGEEEKsAM2g g0QzSAghhBArQDPoINEMEkIIIcQK0Aw6SDSDhBBCCLECNIMOEs0gIYQQQqwAzaCDRDNICCGEECtA M+gg0QwSQgghxArQDDpINIOEEEIIsQI0gw4SzSAhhBBCrADNoINEM0gIIYQQK0Az6CDRDBJCCCHE CtAMOkg0g4QQQgixAjSDDhLNICGEEEKsAM2gg0QzSAghhBArQDPoINEMEkIIIcQK0Aw6SDSDhBBC CLECNIMOEs0gIYQQQqwAzaCDRDNICCGEECtAM+gg0QwSQgghxArQDDpINIOEEEIIsQI0gw4SzSAh hBBCrADNoINEM0gIIYQQK0Az6CDRDBJCCCHECtAMOkg0g4QQQgixAjSDDhLNICGEEEKsAM2gg0Qz SAghhBArQDPoINEMEkIIIcQK0Aw6SDSDhBBCCLECNIMOEs0gIYQQQqwAzaCDRDNICCGEECtAM+gg 2ZvByMhIycvL0x8EPwZ+FEIIIYSQyuL06dNqBg8dOqRmMCIigmawokUzSAghhBCrQDPoAMEMbtq0 SVxcXGTmzJly+PBhbSI+f/68GkJCCCGEkMri3Llz6k2OHDmiwSo2E1eAcIIvX76s4DVISEgQNzc3 iYmJkePHj6sjx/qLFy8Si4PfysC8jhBHwWuSWA3Wlc7DpUuX1JvAjyQmJup4Bl9fX7OduS7RDF7R iRMnZO/evcr+/ft1wMicOXOkY8eOMnnyZElPT5d9+/bJgQMHZM+ePYpRnjge4zcB+P0QRkc0F837 /L2II7C/JvEedQee6NH5u7j1hFQmuO5wT8P1aNSVeM9r0nrY39vwW23fvl0WLlwo/v7+MmbMGLOd uS7RDF5RVlaWLFmyRBYtWiRLly6V5cuXi7e3t3z00UcyZMgQ+eabb2TlypWyatUqWbFiBbEg+H2M v3FxcbJ69Wr9a7+OEEeA6w/gmkQdYrzndUkchXH94XoEqCt5PVob/E7r169XP+Ln5yc+Pj7i5eVl tjPXJZrBK4LTRiQwOjpam4VBcHCwnujQ0FCbSQQwjcR6LFu2TL799lv93UaNGiWDBw+WSZMm6W+H debyhFQW8+bNk2nTpsmgQYNk5MiREhsby/qEOBQEPHAdenh4iKurq0aZcN8zlyPWAr8booLwKjCF eMAsD9EMXtHu3bttUSTjCWnt2rXab3Dz5s3aPo/XBnhPrEVycrI+NU2dOlV69uwpzZs3lxEjRmhH W6wzlyekojHqDtQnU6ZMkffff186d+6s9UxSUlKR8oRUFtu2bdOH5Hbt2smHH36oUSY8TNvf84i1 MPwHBrfiN9q1a5ccO3bMbGeuSzSDV3ThwgU5efKk9h3EX4BUMhjKbYCk08S6YLQ3/jHw5DR69Gjp 1q2bhIWF6W+KdebyhFQ0Rt2Bflm4LnHjRbcT9Ps5e/Ys6xXiMDAyFWYC6dPwgDJ//nzZuXOn7b5n Lk+sBX4j/IYY+FMeohmkqpQw4mrr1q2afwmGEM1wGIFFUY4UKu0tW7Zo1wU0xyFFFUU5WhiVir5n qCsRcUIQBKNVqeonmkHK0vr11181nY+R+gDGDhgpgLDeXiiDp1s0y6H/C27A5fXkRFV9GSmm7K+t 4pZdTShjpKcyyiMyjUFq4eHh2s8HOcPKKuzL+H/gDZsqi4xr2Kg7jWsJESb0Q0PfwR07duh7XlvV UzSDlKWFiglmDs34Bvb5lsw3ZyxDFAZNw0ePHtVQurkMRZUk48HD/toylpXWhBlm0L68cV0itQyi MVhXVhn7Na59iiqtjOsGdSeuZcMM4n1+fr5el3hAQRnWl9VTNIMURVEURVHVWDSDVJUUIoiYRpB9 syiKoijq6qIZpCyt8ePHy7333luIV199VWdzuJrQLIKRxWxOoyiKoqiri2aQsrzGjRunM8EYQu7A p556SlNzUFR5CQ8P8fHxOgK9OCHa/N1338mCBQs051dpRqmjHxZyuTVo0ECn+ipPYVCKp6en3HQT q3GKom5MrEUoy8tsBlNTU+X+++/XeRohzBzzxhtvKCkpKboMI4qHDx+uZYx1a9as0dQeeI1RxhBm KMF7JANG7jeq+gppNZAD8JZbblFTaFZaWprcfffd0rhxY03YW5pBIDCMeGh54IEHyt0MIuqNRME0 g9T1CA8TGN3u7u5uXkVVQ7EWoSwvmME333xTcnJyFDc3NzVvEMzf73//ex093K9fP82kj9GaDz74 oL7GCE7MQPKvf/1LDh48qJN6I7UHhCZoJFuFJk6cKO+88851pfygqo5wc8SDxjPPPKORQEMwfniQ ePbZZwvNBYobKmYvys3NVTNpPwIZIzSxHAmn7c0g+rFiGyPBL0wdRr2j68MPP/yg17iRQB3bIzEw 1hvCCFCUxTpzZBD7w36NbTgylMIDSceOHfW6sBeuMSTmb9q0qW0ZyhgP2VT1Es0gZXnBDD799NNq 2AAqNpg43HyRPgbRPZjCt99+W1566SXdBpEbwwxCSKz6xBNPaJZ9I7/Wv//9b53WB0LFWL9+fb1x U9VXUVFRer3VrFnT9tAA4TqBGWzWrJnNDOL669Wrl77H3K6IXsPIQdj2888/1zmyO3ToYDODMGiI 5oGuXbvqNbtnzx793Mcee0ynUsR1ib+4frF9y5Yt5ZNPPlETCGHu7b59++rnvvDCCzYziBs59unr 6yt9+vSRNm3aaNoQqnoLUx/++c9/lgkTJhTpQ41lhhlEy0j79u31IYOqfqIZpCwvczMxbnD16tWT Tp066fsnn3xSPv30U53ZoSQziCZi3DTbtm2rFSIqPtx80eQMIVrz1ltvyaFDh2yfQ1U/wZStW7dO rxPcGGHAECGEGcvLyytkBhGV++KLL/ThArnbunTpotccIiu4Jvfu3avr8MBimEE0PwcGBupyRKH/ +te/6g0ZTdD33XefZGdna1QR/QzxmSiHLg1/+ctfdL/Y53/+8x+9frEOkW7DDMJYBgUF6XI83Lz7 7rvy9ddfm74hVZ2E6xcPI3PnzpUXX3yxSD9rwwwiooyoN64ltLTgYQRCpPyee+7RlhbM6kRVXdEM UpaX2QzihlmrVi0dSBIZGak3Rwg36eLMIJrMUBY3SERO+vfvr1EdGEhEGRGtgQlEJAeVIlV9BTOI QSKIjiCSjFkZYNRwneFGam8GYfhwbRoKDQ2Vm2++WbslYMCIvQwzOHnyZO2jCuNoEB0dLdu3b5eH H37YFplG0x4eVPBZeOgxzOC0adPkgw8+sEUJp0yZojdwXL8PPfSQzn8M4YEH0comTZoUOg6qegnX EPpUo17DNTljxoxC6+0jg9Djjz+u1z6uHzy04GEHrSioTxGxnjVrVqHtqaojmkHK0goICJB//vOf cvvtt0udOnUU3PQwuToqKVR2t956qy6HufvjH/+ogwBQqWEbNCE/8sgj+nSMChE3Utw8u3fvrpGe 1q1bayWHPmLp6elFmlGo6iXDDCLSh64IzZs3VyOIG2RxZrBHjx62bXGjRaQP2+P6s5e9GfTw8Ci0 LjMzs4gZRCT7v//9r86zDQwziO0RwTYiPGYziEiOoWHDhtn61lLVUzB0eBhGvYZrBQOg8FBsqCQz iKg1Is0YNW8IXRY+++wz23uqaolmkKIo6ooQeYuLi9PXaC7Gw4WLi4tG6hBBxiCjoUOH6npvb281 hOgniKZdRAnxIIJoIrogIOKHJmYMbkITMB420OSLbTB3Npp8Fy1aJGvXrpWkpCQtY3TyR5cHPMAg Arhx40a54447NDqDskirhD6MuMHDmMIM4gbfokULadiwoXajQES8Z8+eMm/evELfj6o+wnX53HPP ySuvvKKg1QR9YRHBNh56SzKDuNYRVV61apVtHbbDwxFVNUUzSFEUJSIDBgxQo4bmNPTZg6Fq1KiR ZGRk6Hp0O7jzzjs1yodBGjBdGFSCSB0iJuiKgBHAiCrCCKKPVqtWrWTJkiW6X2OfGDyCfSB5Om7G iBh+/PHH2sSMrgoQmpqxDUbIwzAi4oj+gNg3DCAGO2HwCqKXOF4cI0bLo9kZhhV9HjHYyn5ENFV9 hIcIXANZWVm2ZXigwehhpEYyBhaVZAbRhxoDl9BMbAgPKHgwoqqmaAYpiqIoqooIUT/jYQQPCIbw IIGBJDVq1NCBReg2g+4yiGIjDRIGHsEMYvQxItB4iEH3BGRgQFcGNBsbeVypqieaQYqiKIqqIkKX BfSVRncG+xHA6JaA6DWWA5g94/Xs2bPVLKL7AiKARhYGdEcYOXKkRrONCDlVNUUzSFEURVEUVY1F M0hRFEVRFFWNRTNIURRFURRVjUUzSFEURVEUVY1FM0hRFEVRFFWNRTNIURRFURRVjUUzSFEURVEU VY1FM0hRFEVRFFWNRTNIURRFURRVjUUzSFEURVEUVY1FM0hRFCUiZ8+elcOHD8uZM2fMqyiKoqq0 aAYpinIaHT9+XMaPHy9DhgxR5s2bJz/99JNkZmaaixYSys6aNUvnXzW0Zs2aQmX69u0rderUke++ +67QcrNOnDih+9u2bZt5Vam0ZcsW2/EnJSWZVxervLw82zb2jBkzxly0TPr+++9l3Lhxsnz5cvMq m3755Rf9rGnTpumctTt27DAXoSjKyUUzSFGUUyguLk7uuOMONWwwZGD27Nnyl7/8RYYPH24ubtPR o0flpptuko8++kjOnz+vy4YNGyYjRoywlUFEsGHDhqWKCm7YsEH3FxkZaV5VKuEYvv76a91HUFCQ eXWxunTpksTHx8uf/vQn+dvf/ibr16+XjIwMeeKJJ+TOO++U+fPnmzcplRISEuS2224TFxcX8yqb Jk2aJLm5ufpZ99xzjyxZssRchKIoJxfNIEVRlhfMz1//+ld5/PHHZffu3YXWbdy4USZOnKhRLkT/ wP79+2XRokWydOlSWbVqlS5bvXq1mqqhQ4eqAWrevLlGAX/99Vc1ljBUxraIhiUmJur7FStWqFnE 65SUFNtn2EfIjGWgJCGCaZRBdNNsBu33XZy2b98uf/7zn+Uf//iHpKWl6TIcG/aD84LoIQSzaexn 586dtu1PnTolc+fO1eWITkILFizQ9zC4EAwn3sNAb968WZfh/BjHFhsbq+vsZXwWTSJFOa9oBimK srzat2+vpqdr167mVXLhwgXJz89XM9ioUSMthybfBg0ayDPPPCNRUVG67PXXX9dmWazD+44dO2rz MsxO27ZtpU+fPmrOnn32WTWDaDr94x//qPvo3bu3/P3vf9fmUkQhsb23t7d+9ldffaURSxgp/B0w YIAutxcijs2aNZMnn3xSVq5cKS+88EIhM4gIJz4Hpuree+8VX1/fQttDxZlBNNtiPyAkJEROnz4t Xbp0kSZNmoi/v7889dRTtrJ169bVdd26dZNatWqpeQwICNBtW7ZsKbt27ZIHHnhAz1erVq20LIQI aIcOHbRZ/eabb5ZOnTrpcpjLt99+Wz8L3x3nKjw83O6IKYpyFtEMUhRleaGJEqYFzaslCQNA0BSM cjBoMCiff/65RrUMM4jo3JQpU/S90UwM04f36H84Z84cjUDOmDFD0tPT5fbbb9dm2OTkZPHx8ZHo 6GjFMINoqr3//vvVPEH4i+3xmfaCAcS+YDqhwMBAmxmEiUXT96OPPiqpqalqYl999VU5efJkoX0U ZwYhbId99e/fX9atWye33nqrRh4RBYRBc3d3F09PT21iRrT0wIED8tJLL2kEFAbPMIM4D9gWTej4 7JEjR+r+n376aQXRUTQTw7RCMLA1atQQLy8vfd+4cWN55JFHbMdFUZTziGaQoijLy4ikoYm3JNmb wW+++ca2PCsr66pmcODAgfoe0T+YM4AmYsMM1qtXTw4dOmTbn70ZXLt2rb7GPuz3heZXe2Gfv/vd 72zl7M0gDCAicog8orkby2BK8X3sdS0ziO9j7PfTTz+1fRf0tUQEzzCD9rI3g2gqb9Omjb5/7bXX bE3HaKLHfnr16iV/+MMf5OGHH9bl+C1QNjg4WN9/8skn+h5RWoqinEs0gxRFWV6I9MFoYJAHmnXt hffA3gyiL52ha5nBHj166PuIiAi7vYrNDNavX79QP7nizCCODzKOE8vt5efnV6icvRlE1BFNww89 9FAh02lWcWYQxgv7gdFEkzcGe+A9mqrthQgponiIeNrL3gyiaRznMSYmRv7v//5PHnvsMfnxxx+1 yds4p4gM4vMhwwxilDHUokULfU9RlPOJ/7kURVle6M/24osvahPs1KlTC62DKdu7d2+pzWBoaKi+ Hzx4sG6HJl00j6KvIMwVDBnSxpTGDKKpFU28aNqF8Ld27dq63F6INN59993y1ltvaT8/9LvDPhBN w3dDX0dE3XBsEIwfytnLbAax3sPDQ/fTvXt37ZeI73LXXXdp38U9e/bodjB8iAii3DvvvKPLMPgF fQbtzSCa1dEnEucIfQkxKAVNw9gfvlNOTo6eD8MMImKIY0YfTAgRw//97392R0xRlLOIZpCiKKfQ kSNHtB8czAmiVgYwXhgljP5yGCUMc4P+ayiPkbXop4dlMC4zZ85UU4MBFIjEwQwhGoY+dhgc8eCD D6oxgilEHzxEyGrWrCmurq56DPisf/7zn7o/HAeM5sGDB22RNPzFe0TZ7IXjw+CKW265RfvVYbAK jCEM58WLF9V0Yb9Ik4P94DgvX75s2x7mD8eGCODvf/97fY39YIAI0r5g4AiEPIoYSIJyiDZiXzCy +HwsN44Tg0MQ9Xvuuef0u8Cool8h+g2iSR6GD2lnsN3LL7+sxw0zjsEi+HwcP44PRhbNz9gnzCPy QFIU5XyiGaQoiqIoiqrGohmkKIqiKIqqxqIZpCiKoiiKqsaiGaQoiqIoiqrGohmkKIqiKIqqxqIZ pCiKoiiKqsaiGaQoiqIoiqrG+v9rKguJch+bTwAAAABJRU5ErkJggk== ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/image005.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAoYAAAE+CAYAAAAQ+9H8AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAFZQSURBVHhe7Z0HWBVX+sZNNnVTN71sNslu/ilr erIxxthSjCU9McYaNbHGjl0RAQE7FpAq9m7somDvXSyAXbEbC7Fi9/s/74fn5jIUwcC9A7zv8/we 7j1zptyZw8w732lFhKIoiqIoiqJEpIg1gaIoiqIoiiqcojGkKIqiKIqiVDSGFEVRFEVRlIrGkKIo iqIoilLRGFIURVEURVEqGkOKoiiKoihKRWNIURRFURRFqWgMKYqiKIqiKBWNIUVRFEVRFKWiMaQo iqIoiqJUNIYURVEURVGUisaQoiiKoiiKUtEYWvTHH39IRESEtGzZUnx8fKRXr17Sr18/CQwMJIQQ QgixFQMHDpTu3btLu3bt9PuoUaOs1iZHojG06MSJExIUFCQeHh4SFRUlEydOlClTpsjkyZNl0qRJ +pcQQgghxJ0YTzJjxgwZPXq09OnTR/3L4MGDrdYmR6IxtOjIkSMSEBAg7du3l4SEBElOTlaOHz8u x44dI4QQQgixBQhmnTlzRvbt2yexsbESGRmpNZ1/RTSGFh0+fFj8/PykU6dOkpSUJFeuXFEuXrwo Fy5cUPCZEEIIIcQdGD9y6dIluXbtmjaDW7p0qQwZMkSrlf+KaAwt+v333/Wkwhhu3bpVTp8+rW78 5MmThBBCCCG2AGbw1KlTcvnyZQ1qzZ8/X41h7969rdYmR6IxtAjGsEePHmmMITAXAVgvDiGEEEKI qzB+BMYQUUNnY4i2hn9FNIYWZWQMGTEkhBBCiJ2AMYRHsUYMaQxzWTSGhBBCCLE7NIYuEo0hIYQQ QuwOjaGLRGNICCGEELtDY+gi0RgSQgghxO7QGLpINIaEEEIIsTs0hi4SjSEhhBBC7A6NoYtEY0gI IYQQu0Nj6CLRGBJCCCHE7tAYukg0hoQQQgixOzSGLhKNISGEEELsDo2hi0RjSAghhBC7Q2PoItEY EkIIIcTu0Bi6SDSGhBBCCLE7NIYuEo0hIYQQQuxOoTeG48ePl6VLl1qTHYqOjpYGDRrIvHnz0qSf O3dOAgICpF27dnL06NE0yzISjGH37t1pDAkhhBBiWwq1MUxISJAnnnhCoqKirItUSK9WrZpcunRJ vv32Wxk3bpymX7x4UUqVKiVTpkyRLVu2yMMPP3xDc0hjSAghhBC7U2iN4dWrV6Vly5ZSqVKlDI0h lj/zzDOyY8cO/X7gwAH5v//7P02fO3eulCxZ0pG3YcOGEhgY6LR2euFE9+3bVzw9PdUYnjp1isaQ EEIIIbai0BrD1q1bS1JSUqbGcMOGDXLXXXelSUN0cdu2bVKxYkWtQjaaMWOGfPDBB/r5ypUrkpKS oqbPRAURYTx48KBWPZuIIY0hIYQQQuxGoTSG69ev12pgKDNjOGzYMHn11VfTpCGCOHnyZLnvvvsk MjLSkY6TVqRI6k9G28P4+HhZsWKFLFy4UBYvXqxtGKdNmyZNmjRRQ7p9+3bNR2NICCGEEDtR6Iwh frCHh4dG9qDMjCEM4Msvv5wmDRFDGL1//etfEhoa6kifOXOmPPnkk/oZJxWmEGkTJkyQ3377TYGR rFOnjrRq1Up27twp58+fpzEkhBBCiK0odMYQ7fzuvPNOB7feeqvcdttt4u3tnSZfcnKy3HLLLdqm EIKRRF6crLZt28qvv/7qyOvj4yO1a9fWzzipqIZGtBDmcPbs2cro0aO1dzMihmi3yIghIYQQQuxG oTOGMGP4oYaPP/5YzSLa/B0/flzKlSun6VCZMmXU3EFjxoyRn3/+WT+jhzGih4j6ocfys88+K8uX L9dlSDtx4oRuY9++fbJ//37Njx7QXl5e0qFDB22niOOgMSSEEEKInSh0xtAq56rkZcuWyb333ivN mjXT7+gkUr16da16rlu3rnYggRBFDAoK0jT0SMYwNDiBZtm1a9ec9pAqnGzTKxlD3JjOJ/hrvSiE EEIIIe6g0BtDqzAeYfv27a3Jf1nHjh2Tnj17chxDQgghhNgWGkMnIdLn3KkkN3XkyBEOcE0IIYQQ W0Nj6CR0CMFJyQtxrmRCCCGE2B0aQxeJxpAQQgghdofG0EWiMSSEEEKI3aExdJFoDAkhhBBid2gM XSQaQ0IIIYTYHRpDF4nGkBBCCCF2h8bQRaIxJIQQQojdoTF0kWgMCSGEEGJ3aAxdJBpDQgghhNgd GkMXicaQEEIIIXbH7cbwwIED1iS5ePGinDhxwpqcr0VjSAghhBC743ZjWKpUKWuSXLlyRTp37izn z5+3Lsq3ojEkhBBCiN1xmzHs16+ffPfdd/Lwww/rX2e+/PJLefzxx+XUqVPW1fKtaAwJIYQQYnfc Zgyxw+joaHnwwQelUaNG6QgPD5erV69aV8u3ojEkhBBCiN1xmzE08vX1lbFjx1qTC5xoDAkhhBBi d9xuDCtUqCD16tWzJhc40RgSQgghxO643RgeOnRIBgwYIMnJyY409ErGAbCNISGEEEKI63C7Maxb t64UKVIkQ2gMCSGEEEJch9uN4Z49e2TcuHHWZBk2bBiNISGEEEKIC3G7MYQuXLhgTdLqZNMredOm TdbF+U40hoQQQgixO243hogWBgYGZknZsmWtq+U70RgSQgghxO643RiOHDlSnnjiCfn4448dvPHG G1K6dGnH90ceecS6Wr4TjSEhhBBC7I7bjWG5cuUkMTExTVpKSorUr19fp8aDwsLC0izPj6IxJIQQ Qojdcbsx/Oabb9QIWvWf//zH0fnk0qVL1sX5TjSGhBBCCLE7bjeG2GGzZs30YCCYxG7dusm9996r xqmgiMaQEEIIIXbH7cYQQlXxU0895Ri/8PHHH1cTxbmSCSGEEEJchy2ModHu3btlw4YNcvbsWUf7 woIiGkNCCCEFERiJ3MS6feJacA3cagx9fHykePHiMmnSJP3+0ksvyQMPPKBzKOOgCopoDAkhhBQU jIFDIOfcuXNZgiZiGK/4/Pnz+tm63Dkf/uL5aN0fcR1uN4ZoX7hmzRr9XLt2balSpYoWjlGjRumB FRTRGBJCCCkIOEf2YAzxzM4KmEJMWgGMOcwKGkP34nZj+NFHH2lB2L59u7YvTEhI0HQMfM0p8Qgh hBD7AUN48OBBWbt2rSxYsEBiY2OVOXPmpMMsy2y5Yfbs2TJv3jzZsmWLHDt2TD0AsO6b5C1uN4Yr VqyQ119/Xe6//341TRCM0zPPPKMFr6CIxpAQQkh+wNrmzwryIPK3a9cumTx5soSEhEjfvn11prJ+ /fqlYeDAgeLv7y8eHh7i6ekpPXv21Hz9+/dPkw9pvXv31vxLlizRZyZMIZ6V1v1bsR4/+WvgnLrV GEL79u1Ts3Tt2jX9jughIocFqQMKjSEhhJD8gNV4ZcTp06fUNGzatElWrlwpS5cutbBE07EcM5yh qZivr69MmTJFl69evTrdOosXL5bly5fLjh07NGKY3eOxHj/5a6ReXzcbwxtp6NCh1qR8JxpDQggh dsWYLETp0AEktbPIhevt/tAuMD1nz56TkydPSXLyH3LiRHI6Tp06re0KYSx++aWeBAUFy8aNm+TE iRNy5szZdPkNp0+fkXPnMttvanrqseEYzjqO3/qbyM2RL4zhgAEDrEn5TjSGhBBC7EpycrIaAjyX YAox4xg4fx4dRvA3PRcuIM9lNRAZceXyFR2PePnyFdKypYcMHz5S9uxJUlOHGkFrfnDp8mW5eDF1 28C6zz/3e0kuXrysVdo4fhrD3IPG0EWiMSSEEGJXTCePQ4cOaecPtP9ftmyZrFq1Kkswqgg6oIB1 1zHf4+LWS0JCvIweNUrq1K4tAQEBEh0dLavXrNYxi63rmXVRzbx61ep0+1JWr9Jjg9lcvz5Odu7c paaWnVRyDxpDF4nGkBBCiB2BETDDxMRt2CATJoyVwD5+EjKoh4waOSiVETklWMaMCpGJ46Okf6CP NGxQVTw7NZPQkB4ycuQgGTM6TPOkYl03E0YOktGjQiRqcD8ZFNRLQkMGyvQZ0/X5iupvmsPcgcbQ RaIxJITcDNaG9rmFdT+kcGLKA0wAzNXMmbPEr5untG5ZRYL6NZaZ0/xkxuRuMmWiTyq/5YCJPjL1 N1+ZNN5Lxo7sKBNGd5bJE7qmz3cjru972iRfiZ7mL2NHdpC+vRpKG4+60rt3D9m3b79WT9MY5g4o DzSGLhCNISEkp+BBZwYQRluqzECbMIN1mRU8/NlgnxhSjeFJbQuIcjZh4iTp3KmltPX4SkZENZY1 y3rJysXdZcl8f2VpDlgy308Wz+0mKxb3lPWr+smaZb1l+cLushjp8/2yvT2z72ULA2T1sl4SO7Oz RAyqLy2aVRFv786SlLRX20LiuWr9fSTn0Bi6SDSGhJCcAmOIhzV6dlob6TtjhvbCkF/WZVawLWwT 26YxJCZiiDJ0LiVFpk6dLj17dJHe3X+R2dO9ZPe2wbI9IUISNoRKwoYwSdx482zJIC07pO47VLZs CpedWwZL3Kp+MnVCJ/Ht2lB69w64bgwv0BjmErY0hmj86iw0Rs3vojEkhGQXUyWGm3JcXJzMnTs3 y5kjsBwzRgDrMkNMTIyuv2jRItm4caNjAGFWvxVu0hjDcykybdpM6dOrq/Tv01Dmx3STA3uGS9KO oWrIUom6Ccy6N7uN1PV2bxsi+3cPl4S4YIme0lX8fX+Vvn17SFLSPkmhMcw13GYMMZhl9erVpWbN mhIVFaVVIEYHDhyQ//73v5z5hBBSKDH3hr1796qZi4iIkNDQUCUsLEwJDw+XyMhInXWiV69e0rp1 a2nVqpXOKIFlwOQFyIe/I0aM0Bs9pjPDfvgwLdxYI4bTps3QiGEv/59l1tQusnPrYNkW/2fE0H38 GTFct7KfTJ7QSXy8GkofjRjuY8QwF3GLMYQxuvXWW6Vo0aLSuHFjqVixos6ZDENo9P7773OuZEJI ocQ5YoiZIzAjBCJ9CxcudPzFyzWGCoFxxJRipUqVkuLFi8uwYcN09ggzkwTym3UAlsXHxzNiSBRn Y4gmBjCGfn6dxLNjNRk2uIUsW9RLFs/rKfNjusv8WDcS010WzOkhSxf2llnTvCQytKl0aFdHevX0 k717YQzZxjC3cIsxbNu2rZQoUSJNu5jjx49LpUqVdPwkiMaQEFLYwQwRuDHv379fpw41IJKIiB/G b9u2bZuawffee0/nnZ89e7beb9AkBy/bzusBpGGb2DaNIUlnDKfPkHbtWkrl70pJw/qfiU/XGuLd pYZ06VRNvDqD6m6g2vX9VxcfrxrSvs130rB+BalV8wvp5ttVjeGFCzSGuYVbjKGXl5dWeWQkVI1M nDiRxpAQQk6e1HsFmtVYQQ9j9CTFvWXatGlSvnx5KVu2rA4O7NzJxLoeq4+JM8YYml7J06dPlya/ NpR33n5Riv3vBanw2btSvtw78tmn9qD8Z+9I2TKvyYcl/ivlypUUzy6d9cUJM6FgCj7r7yM5xy3G EG+tuInhADIS2sY8/vjjNIaEkEKPuVc4GzsAY4jaFmMM0STn448/VmOIhyTabWNoGpPf2RTSGBJD uojhtBnSuXNr+aVOBfHs+INEhDSVsOAmEjzgVxnkZkIG/iphIU0lsNfP0qlDFWlYv7L4+/kwYpjL uMUYQthxy5Yt07QrdFZwcLAeWEERjSEhJD0YLiazIWPSD0ptQBUy7iF4mKPKeMqUyfqyjbbamC5M I4VnzjiGpMmIzPf7577Tp5OChikPzr2Se1/vlTwvppscTBoh+3YNk11bo5TdbsDse8/2oXJgzwhJ 3DBIZk3tKv7dnHolp7DzSW6B8uAWY3gjIayNt2Fo1qxZ1sX5TjSGhJD0ZGXQ0ps5GkOS22RkDHv1 8JLe3evpOIYwZKnjGKYfX9CVYP9bNkXIri1Rsn5Vf5kyobP4dG0kffp0pzHMZWxrDJ2VmwNc40f7 +flJtWrVtHdeVsIQEXXr1k03jiI6yrRo0ULbSuIGnR3BGHbv3p3GkBCi//+o2kVVb04xVcqoKjZV ydOnz3CM7oCeyhm1MbRuJztgPT5sCzZpjKFWJc+Unj28pFfALxI9rYvs3BIpWzeHS3xcqNuBQdyR GCnrVvSTyeM7pTGGHK4m9yh0xhDDOkyePFl8fX3lH//4h/boswr/IG3atBF/f3994y5TpoysX79e l6En4AsvvOAYQuKDDz6wrp6haAwJIQD3lFSjliIpKZiiLiVHnD2bCtpUXblyVY4cSTWG5ctXkLJl jTG8IhcvXdZBf01+63ZuhDk23KfYc7ngYjWGU6fOkB7dPaWn/88SPdVTdm6JkG3xYRIfN0ji40Ik IQcgvyF1HERLWjZJ3fcgSdwYKjsSI2Tdir4yaVxH8fYyM5/QGOYmhc4Y4gcbFStWTMf3sgqdY+66 6y45evSofl+5cqW88847Wr3drVs3qVq1qiPvF198ocND3EjYb9++faVz585qDHGjpTEkpHBhqnaP HTsu+/YdlJ279sqOnangc3ZIzZ8ke5IOyKHDx2TjxkQZHDVcihUrIW+99T+ZOXO27D9wRJL2HpLd u/fLzhxsO3X7SbJjR5Ls3o2hbQ5pDQmqlmkOCyapxvDPuZInTpwkXb1ai3fnH2TSuFayZVOQbF7f X9avCpS41TlkVV9Zv7KPbFrbX7ZugjkMko1r+0kctpXT7a0K1HUTNwbJikX+MnpYC2nXpoZ069ZF 9uzhXMm5SaEzhkaoAq5Vq5b23rNq/Pjxct999zm+wyDefffdeoJgEDGkjhGqpb/66ivHd/xzobeg c+9B7APtgAICAhwRQxpDQgofuC+g1gHtAGNiZsnM6KkSGztT5s2bLXPnzsoRCxbEyvJliyR65lQJ 7NtDPv2ktJQp/YEMHRIuixbOlYUL5si8eTHp1rsRqccSLdOnT5HYmBjZvHmTHD58iA/dAopzxBDG EHMl+/i0l3atK0tUWBNZMr+nLIztLnOi/VOZlTPmOn+P9pe5s/2ufw9IlzdTru973uwAPZ7pkzy1 h3LrVj9J9+6+TnMl8+UlNyiUxhDm7IEHHtABtTNqI9ilSxedRcDo2LFjcs8992h1MiKJzm0TMRXV 7bff7viOf6ydO3fq/KYYNgLtE7Ee5ipFL2wM7r19+3aHcbReEEJIwQQ32kuXLsuGDRulm5+PdO70 q/Tq0USiIjvLqBE+MjzK6zpdb8D1fEO6yshhPjIk0lOCB7QWny51xNuztoSHdJARQ7xl+BBs0yl/ uu2kZViUlzJmpK+MGNpVvDr/Ih07NJFhw4bK5s0J2qYR9y08NKy/jeRfjDE013fZsuUSGhokHdr/ Kj0CWsuQSH+JivCXiHA/JTKbIO/gCH8ZNqSH9O3TTtp41BJf718laEBniYzoJlGDA9Ktkxlm34Mj /GRoVIAED/QUf7/W4uvbUYYPH6aBFzx7GdXOHQqlMcSPxRv7Sy+9JA0bNrQu1ipfVDMboX0gDCEM HcZXdK5+RlvFl19+2fEdJxVVz9HR0TJhwgRtzwgGDx6sHVkwsDeMIwoxjSEhhQf8v6NN4MqVq6RZ 08bStnU1CQ2qJ9MmdZLYaF+ZOcXr5pnaVWJmdFPwfYZ1eTaYMaWLMj/GX2ZP95Zu3tWkZfNq0r9f oKxevV4uXrykHVJoDAsmpi3p7t27ZcWK5TJ16mSZPm2yzImdKbGx0RI7JwfERktMbLRGn5ctWyCD B4dI7do1pKtXJxk3ZqTMiY3WiLduN4fbnjNnpsyaNU0j2jExMbJu3Tpt7sDnae6B/3GUBWdjGBUV 5X5jiLC2Ga4GA17nhdA2sEqVKtZkbbxdpEgRrRaG9uzZo1FBVBEjP6KERjVr1lRzaIQIJCKKGHB2 9OjRWi0Ng4jJ6+vUqSMeHh40hvkQ81ZtsC4n5Ebg//3y5auyauVqad26hfTt1UTmxXjLtvgQ2btz iDaqx7Ag+JstkNeQGKHjve3ZNkS/63aclmWH7QnhyqGkEZK0LUrGDG8lAX6NJTh4oKxevU57OdMY Flzw7AIopynnz0vK+Yty9ux5OXXqrJw6fU5On0nJNsgPsA1o+fIV0rRpC4mIGCJbtuyQM2dS5OLF K3L6ej7r+pli8p9Gj/nz2q7QRApZLnMP20YMEZXDgUEZtQPMDcEBDxo0SD9joG30Psb8ofjHeOSR R7TnMYQOJwMHDtTPmLD+6aef1hOGmyR6KOOvEcwj2iRiezCUSUlJGubGtlBF3aFDB+0JbdofWi8I cT1W05cbWPdBiLMxbNO6pfTu8avEzPSShA3Bsmvr4OvjtYXKlo1h2cKM76bfN4XpkCLbNoenGfvN LLOumxHYN9i3c6gayhFDWol/N2MMETGkMSzIGGOI5y56o5+/cFHOpfzZq/3sufNyFr3is8PZFDmD nvMXU5/dq1atlhYtWsmQIcNk+/Ydun38L/y57eyAtvt/9srHuIWmPT+On+UyFdN/wQxTdTPoy0FK igbn0JQOfgzGsHfv3g6vczPK0hi++eab8swzz2QJ2vTl9pR4cL4wct9++6307NlTRo0a5TCdU6ZM kQcffFAjexDC0z/99JM0aNBAq39xkiDcHGEUsQwgGugs54G5nYULhipqT09P2bJli+PisU2EezAG DucfN0L8M1jHcLtZsC1zXWkUicFhDFetlrZtWkmfnk0kVo3hICdjmN6wZcmm9AMB59QQGsy6e9MY w18lZFCwrFlDY1hYOXXqpJzC3xyQuu4fei/E8xBNt/AcRTDGPP9g6hz7yAk4nlOp6/H+mhY8y0wn MWuwIruYFwRsA//zR44cUWM4dOjQvI0YojrVtL3LjObNm+e6MbyRUMU7YsQIa3KuCK4bZpTjGNoD 8w+A64AbFCLAaL6QGTD8zliXO4OXDTxAsR/sgzcuAlKN4RU1hu3aekj/wOayaJ6f7NoaqdOO7d42 xBYcPTBG9u8aLuNHt5Oe3ZtKSAiNIck5KCdWY4i29omJibocwRbrOiR77NqTJN/Ubyl/f6WY3PbC Oy7hrfLfiqf3n83mbkZZGkNU12YlFCTcgDKKvOWVYAxg2vJKGQ1w/VedPbl5zD8Y3oZ27dqlVf3o Sb5hw4YM2bx5s97QEhIS9LN1uQHbiI+Pl7179+rLgDVySAovp0+ndj5ZvXqNtPZoId2868n40a1l 6YIesnZFf1m2qI8sW9hHli9yD9g32LA6SFYvC5TgAQ3Ey7OeBA8KkrVr43RA7bNnU40hITfCtFfM yhha1yHZ45sGLeTp9z+RHbv3OLxEXnLk6FF5vfz38lKpilZrkyNlaQwzEnaOYV0AhnhBNS0iOa4S 3mzQXT+v5DxXsnMbQ1YluwfTjgKmcMGCBTJy5EidAhFVHc6gXQVAB6jg4GAFn5FmzYubHpoioMMR yjBMJ8owI8MEmOjJmjVrpVWL5tKowbfSsd13EtirnoQMaCID+jZyK/2vExbcVIL6NZJfG1WUBvW/ V2O4Pm6TXNJeyYzykOyTUcQwo6pkkjPufqWY7NidlM7A5SV79u6TO15812ptcqRsG0P0DMaYgugF 7AzaGaJQFRQZY9i1a1ftmIJ/FuBcLWmtriS5jznX5twjeo0bFaY3xFiT6H1lmDdvnvYwX7p0qXZS at26tY5FCWO4bNkyWbJkSbr82AZugogYmqg34DUunDhfd1MDgogy5lovX/5DKfXhK1Kx/Dvy1RfF 5YtKxVL53E1c3/83XxaXLyu9J+++87xUrFhaX3Z27Nipx86yTLKDcxmB0Ga/Xbt2OlIHZhbDMohl 6eZA1a7VuIG5c+fqvSU0NFQNpHU5nnN4hmEIQNOUyoBnHIJW1nWcwX7/irJtDD/55BOtnkP16pgx YzQNvXq9vLz0BBQUwRhi5hOYC4xziN7KAGNGEdeDHuMA1Rq4acHkoYEt/nEM+I5lGKgcQxRhaKIf f/xR59tGRHDVqlVp8pt1YCZRNY1xL7EP675J4QT/77gPYGSDunXrSMkP35F33npeShR/RUqXek1K lXzVFpTBsXxYVF5++SkpVbKYzhm/cOEifaHFC4/1dxGSGSgvqDmZMWOGjhkMQ4IXZyxDebLmJ9kj I2OIKmbUVmFmJczqBnNozVO8eHF9LiG4gbwmHR4Ms70h4GFdxxmXGcOSJUtqWBkm8JVXXtEfh7dS d3Q+yUvB7Hp7e0vlypXFx8dHAgMD9Z+kf//+xA3A3AF8xnUw1cRWUPWBKRCbNWum82JXqFBB37iQ 5ly9bAXbNPsw+yGFl9QyMEBCQkKlffsOUq7cJ/Ll5x/KL7U/kVbNv5Z2Ht+LR4tvxaP5t6l/3UHz b5QObSpL21bfSZXKH0rFCh/q3PAdO3aW4OBBOmxX6m9hmSaZY+57KC+IOCNa+PHHH6thwXMQeXCf 5P3x5sjIGDoDg/fpp5+mS3/++ec1Uojg1MyZMzUNkUX4kqeeeso+xhDRlWeffVZq166tjfXfeOMN nY8Y7hVtswqKYAxhCGvUqKGmYdiwYdqubfjw4cQN4PwD9EJH9cbYsWNl3LhxaUAaBirHUEYYZqha tWr6D4QbG9LQe966jlkPQyE578e6f1L4QFkbN26CBAT0kK+//lJ+qfuFBPjWlIiQpjJscCuJDG3u ZpopI4a0liERLaVd6+/kp5qfS7169aR7914yZuw4LdcszyQ7oJygvPz2228adf7888+lcePGamyw HPddk8+6LsmaGxlDPIdQ02VNDwoK0iH7EPAwVc24LyEKCdNoG2MI4Qeg3Q2EOnKME4jChJ7CBUWo QsI/B+r/0dkBoVtUY6KHK7EnqA7GP8yOHTs0QogoNm5s+MfE0EYIyVvXISQzEhMSZdeu3TJ16jRp WP8X6dShlgyLai4x0b6ycG4PmTPLz63ERqeybEFvWRATIH17/qzz2+J+PG1atLYzRHtc/F9Yfxsh VlBOUF5QnTxp0iT5+eeftUkO2mJjOdqzWdch2SMrY4jnFfozmDF6ncFYyojUFi1aVD0ImkTBGGKZ 7YwhomkbN2509EoGGNqlIFUlm+FqOnbsqIYQVeZw7Oj8gHke8Ze4Hpz7zEAE20y3hBsboobt27fX 9jJmhHjrOlas+yOFlz/+OKlDvqxYsVJnPukR0EimT+ks61f3l8RNYbJhbZBsWBMkG9cG55Agx7rK Wmwj59sx6+9IiJSEuBAZEt5cfL0bSVDQQFm5ap32SD516jTLNrkhpozgGYfxL9H+GkERvGDDkCAP agRZlm6OzIwh2nOGhIToZwQv8AxzXl69enX9i3ae+IzZ2EqXLq3cddddWluL62PdrsuNIRpiW3sk GwqaMYSLh7nAECkYGgfAeFhnziB/HZzXvwq2A2HAarTH8PX10euHqLYZENu6zs1iPX5SsMA1himE 1q9bL+3beUhgnyYyP9ZHdiSEyf5dw2TnlkjZmRiZ+jeHYOaU3duiFOuybIN9J0bI4b0jJWn7EBkz wkO6+zfRRuxxcfFy9eo1x1SghNwIvDjDFELoqIeJLVBtjIgW/h9w/7SuQ7JHRsYQwSYYO2cPBd+B Dr4xMTGa57nnntPxdmHQUd3svL6tIoZly5bVem+Em53BgRdEY2gGuOY4hnlLRmH0nJPaKQoGfvr0 6TrUEK4fXmZgFi9fvpTBOtnjjNNnloHCAf7fMcD1yhWrpFWrZtK7ZyOZF+Ml2+IHyd6dUWoQt8eH 6d/ssP06OxLDZeeWCJ3Kbu+OIfpd03MI9r09PlQOJQ2TPdsiZdSwFuLn20AGDhwgq1Zh5hOOY0iy D4xKZuMYYjnMoXUdkj1g0JJ10Pw/nyNo9oTaLMPChQs1HSNloBkbPuPcR0dHa98ObMd5fQQ8Dh06 lO5ZZcD1dJkxxNuodb5hCF2uXTnAdV7LagzNycbFMdXK5K9hziPm0cQMDSkp5+X06XNy6hTmLs4Z J09iUOozghGTLly8LJMnT5cOHT3Fo3U7mRkdow/Ji5eupFsvO5zU7Z+V02dwjJik/s9J4FkWCi4O Y7hytbRs2Uw6tKsl4YMayfTJXWTOLH+ZOcVHic4BM6emMmOKt0yf3FWZcT09GmSwTmaY/S+I6S4x 030lwLeWtPH4SY0hpsSzznxi/X2k8OBcBnD/staAGPACDaEfQZs2bRzts03E0Jofz3z8Nc9GkjEl vvtJvmvYSg4ePpLOwFnBsEBZVQ9nhxPJyfJLu67yz2IfW61NjpRtYwj5+flpwcFAwoa2bdsW6Igh TjZnxMgbkpP/kCNHjsq+fRgnC2NFJsmePXtzxvX1jh47LoePHJURI0eLh0cbadK0uYwbP0GO/H5U Dh/+Pf162WT3dfbt2y+//36UD9pCAP7nMVfyxo2bJCDATzp1/FX8u/0qocEdJCqyq0SEdpGIUM/r f29Ear6oCG8JHdRJevdsLm09fpTWLatI/8DWEhnupaRfLyuwTU8ZOthbIsM8pVOHn6Vjh6YyYsRw iU9IlPPnL8iZM2dZVokDPKPxHDNtrq2gtgUGEFWUiBgOHTpUO+1hGUyjNb8B22U5y5wlq9bIvz4o L3f837saxXMFD79ZSuo387Bamxwp28YQ05Ddeuut6doXFtQ2hjSGeQfO6cmTp2T//gMyadJv0rdv dwkN6SlDh/STkSOCc8bwYBkxPFjGjQ2XsWPCJMC/nbRoXluaNKklPbp31LSxo0M1X7p1b8Ao/B0Z LGGhPaV7gLdMnTpF9u7dp+XdRA9JwQTXF9U1a9askQUL5sncuTGyaNFcWbJkfo5YvBiz8iySdWtX yty5s2TggED59NOyUqb0hzJyxFBZuXKJLF+xSJYuXZBu3eyA7c+JnSULF87XznKHDx9m0xeSBpQF PNfwPLN2HjWgZzLaFGLYmh9++EGb48yaNUuXYSQSa370ksV885gYwHReIRlz/MQJ+f3oMfn96FE5 8vvv+vcYOvIkJ2s1M8Bng3NaRsut6X+cPCnnL1yQAwcPyrz5CyRqyBDp06eP1drkSNk2hqVKldJ2 B9ZeNxg/jsaQZBeUFTTK/eOPU7Jl6zbp06e7NGhQRXoGNJTB4a1lWFQnGRrVSYYM7pgjsN6wwR0l LLiVDOzXVAkb5KFpYGgG69yIYVEdZdSwztLTv6HUqlFR+vfvLZs3Y/7Q0475Q/m2XPA5evSEHDjw u+y/Dj4fOHhjUvMfkcNH8OA8J9u375ERI8ZK8eKl5O23i0ls7AI5dvykHPn9hBw6fCxH23Ycz/4j cujwUTl+PFlftqzHTgieX6imxGDJaHeNDnoAbdgM6PSA4dkwl/yvv/6qtYOY4QzLsI5zXoC23DCO MI3oUYv7Ol9Gcoap5v+r4LwjqouXQkz5imvoMmOIgoPBgq3CWzXC0AVFNIZ5CwoxTNXxE8kSt2GT dO/eVVq1rCyTx3eQdSv6yPpV/WXdyv6yZnm/HLF6eaCyfmV/2bBmoMStGaCf1ywPtJB+3YxYu7yf HkvihmCZNK6dNKhXXvr09pO1azeqqUUvPlajFGxM9RuqZW+K02fk9Okz2oYWnaMOHz6iYyOWK/eZ lC5dRtswXrx4Wat+8bJkOrql206mnJHTjvzYFztIkfQg+g1jiI4leI6bTg/GIDobRQR6Jk6cqMN+ 4bM1jwHLkB9j9TkPtWLdN8lbjDHEKARuMYZob+Dr66shZAPeMDATCiOGJLs4G8P1cZukZ8+u0qFt VYmdiV6fwbI9IVS2bg6VLRtDUtmUPRI3DlLQYxNDeexIjJBt8aGO9C2bQPr1sgI9RvftHCyzp3tJ k8afS9++frJmzQYaw0IErjHuAda2VdniutFDeUePT9xbpk+fptM1fvTRR9peGzf01OGwMGwI2oBl 3g4sK2gKSWagXMC8odoXz3E81zICPWHNvPEYqg0DW1vzOOfFXxhOTN1m3SdxDXj+pLaJ/tMYDnFl VTKGqrG2LWQbQ5JTjDE8ceIP2bBxs5otzCwxe4a3JG4Mli2bQiVhQ6jEx4W4nS2bwmT3tsEya3pX ad70G+nfv4esW7dJTp48TWNIboip6knt5XxFa1dQ61K+fHk1hojg4H8Bxo5lieQFKFMwbihfeAEx 47pmBiLbeInBX+syaz78RaTb7Ifl1/W43RjizQCTbFuFxqwoHAVFNIZ5S1pjGJ9qDDvWklnTvSVh Q7AkboQpDJXN60PcTuLGMB2QOHpaV2nR9FsZMKCnrF9PY0iyR/aMYUoaY8jyRHIT5zJ105HvLDBR apZd9+B2Y/j111/L999/b00ucKIxzFsyMoadO/4ks2f4qDHcsjFMI4ZWk+ZqEDGEMdy9dbDMojEk N4mzMcSNO70xTI0Ysn0WyWuMectNrPsgrgXXwK3GECNwY5BrMxAmhHAyeiyxKplkF6sxDAz0F89O tSU22le2bg6RbfERsnVzuJoyd4NjwQwVMTN9pGXz72gMSY5B+aAxJITkBW43hj/++KPce++98sgj j8hjjz3m4O6776YxJNnG2sbQGMM5s7rpNF/oNLL9ujlMBZ9dyZ/73ZEYKft3DZU50b7SqkWqMVyn xpCdT0j2oDEkhOQVbjeG6IHcuHFjGT16dBp++eUXGkOSbZyN4aZN8dKzh480a1JZosJbaJXt7Bm+ Mmu6b+o0Ye5kmo/Mnt5NFsQGyODQplK71mfSp4+/xG3YzIghyTY0hoSQvMLtxhBKSkqyJunBcBxD kl2MMTx1EhOFb5VOndpL2bL/k88rvieVvy0hVSqXkirf24MfK5eWaj+WkfKfviVvvv4f6dKlkyQk JOq4cTSGJDvQGBJC8gpbGEMcyMiRI6VSpUpqnDDmEW54BUk0hnmLwxieSjWGnTu3k48/ek++/vJ9 qVqllFSvWjaVH8ukYr67DOwzdb81qn4ktWp8LJUqvCtvv/V/4uXVSeLjE3XQYhpDkh1oDAkheYXb jSEegi+//LLceeedUrJkSZ0i76WXXpLmzZtbs+Zr0RjmLY6q5OSTsmlzgvTs5SMtmlWR4UM8ZG60 r8yL8Zc5s/wlNtrP7cydHSBL5veSoZEt5efa5aVvnwCJi2NVMsk+NIaEkLzC7cbQw8NDvL2907Qn RBVy3759OY4hyTZpOp9swnA1/o7halJnKAmTxA1hOpahu9myKVx2b4vSMRZbNPuGvZJJjqExJITk FW43hqVLl86wLeHs2bPZ+YRkm7S9kv8crmZOdDedwm57QmrvYJgyd7M9IVL27hwqsTNTeyUPpDEk OYTGkBCSV7jdGAYEBMjcuXP1gYibXEpKiqxfv16effZZRgxJtrEaw4xmPrHDANcAYxmmmfmkP40h yRk0hoSQvMLtxhAPQsx8AiP4wgsvyNNPPy233367DB8+XOdWLCiiMcxb/jSGyRK3YZP06e0rnTrW lDkzvWVb/CDZnhAmWzeHSuJGGDPMV5wNrucFWzeHyTbHWIQYqPr6dnKwrdS8obI9Pkz27YySmBkw hl9Lv37dZd26jRzHkGQbGkNCSF7hdmMI4SY2a9YsbWuIHSNiWNBEY5i3GGN4/ESyrI/bKL16ekv7 tlUlZoaXbNkUpLOfJG4KkYQNg3JGXCpbN4XKtgTMWhKm5s6kp8ufDWBQk7YPlllTu0jTRp9LYF9/ Wbt2g/zxB40hyR7GGGKWKGdjWLZsWRpDQshfwhbGMCNt3ryZVckk28BMoRlCcvJJ2RyfKAEB3tKg 3tcyMLChTBjTXiaN7yK/je8iE8Z65ojfxnrKxLGeMn50Jxk7qqOMG91RJozupGnWvNlinKcex7TJ 3jKgb0OpXvUT6d3LTzZsiNeqZLS3xe+hMSQG3CdwL0T5NuC7mUb0+PHjMnXqVDWFxYsXl9WrV6th xE0d5cl5PQDDyHsPISQz3G4McXMLCwvTKhBnnnzySXY+ITkCDzyUmV279khERKi0ad1Yevi3kkFB nSU81FvClK7ZI6SrhIZ0lcER3SQyvJt0928uHdvXkfbtakvPgJaaFhnuq/nSrZsVIV0lPMRbIsJ9 pHuAhzRtUkeGDImU7dt36rHjgW/9XaTwcuLECb0x7927V9m3b5/j88GDB3X5tm3bdBxYdOSDMcQ8 80eOHJFDhw7J/v37dR1nkIZtYl3r/gghxO3GsGbNmlK0aFHp3bu3REVFOShWrBiNIckRKC8AERQM kr527RpZs3qVrF2zWtatXSPr1q2Vdeuzybo1snbdGtm6NVESE+IlPDxMmjdvJo0bN5IhQwZrWnz8 5tRt5mi7a2X9OhzLGlmzZrWsXr1KdmzfIceOHXP8BuvvIoUPUwUMAwijFxERoS/QoaGh+heEh4fr zTooKEg6duwoFSpUkHLlyom/v79ERkY61jGEhIToX7Tfnjdvnhw4cED3wzJHCHHG7cawdu3asnDh QmuyTpOHao+CIhpD12HO7alTZ+T48ZPy++/JcvTodY5lj9+PghOSknJZTp9OkXHjfpPWrTtIs2Ye MnnKDDl79oKcOXM+x9tFXt3278l6bKdPo1ovNdL5xx/4h0z/e0jhw5g1RPcWL14sY8eOTTefPED6 qFGj9GW6f//+0q9fPxk2bFi6fAD5wOTJk2XZsmV6w6cxJIRYcbsxRHRn8ODB1mS9GeLhXlBEY+ha 8LDD+YXpSgWfs89pcBqN+6/J+fMXZNq06dK1a1eNzCCCgyYQly9fualt/8lZdhAgWYLqXlQLI7oH k2gFVcNYhmpj3EsBqpit+ZzBcmwzOTk53f4IIcTtxrBixYpSpEiRDGFVMvkroPycPg1O5xhTLY1G /GjAP23aNIcxjImJ0d7DMIep+W92P6n7sB43Ic6klmNr2UkLXjBQJoG+2GSQx2DKtnU/hBAC3G4M V61aJe3bt9chFpzBXMk0hsRd4B8DYJw4Ywy9vLykQ4cOOisP0kwPYkLykuwYQ2fDZ023QmNICMkK txtDCNUgVqFKBG+/UEJCgnVxvhONYf6CxpAQQkhhxBbG8EYaMGCANSnficYwf0FjSAghpDBCY+gi 0RjmL2gMCSGEFEZoDF0kGsP8BY0hIYSQwgiNoYtEY5i/oDEkhBBSGKExdJFoDPMXNIaEEEIKIzSG LhKNYf6CxpAQQkhhxO3GEHPErl+/3pqcRjSGxNXQGBJCCCmMuN0YfvXVV1K5cmVrchrhQPO7aAzz FzSGhBBCCiNuN4YrV66U0NBQx2DWEKYhi46O5swnxGUYI+gM5pLFP0ZWxtC6jsG6fUIIISQ/4HZj +O2338qdd94p9957r9x3330Obr/9dhpD4jKsxo7GkBBCSGHE7cZw8eLF0qJFC5k8eXIaGjVqVOCM Yffu3WkMbYKzgcN1OH/+vEatnYHxu3btmv5zzJo1S/z8/KRr164yb948TUNk27oOwLbMtaVRJIQQ kp9wuzGE9u7dK/v27dOHMOZIvnTpkhw5ckQfzHkhPLhbtWolL7/8sjz44INq1nACMhJM6k8//SQN GzaUwYMHO9JxbB4eHtKgQQNdtmXLljTrWUVjaC+cDRuuxblz57RcWEFZxHVCxNDHx0c6d+4sMTEx jmXW/ADbwjat+yGEEELsjtuNIR6kVapUkSJFimhD/6NHj0qzZs0kISFBjWJeaN26dbJixQr9jL+3 3Xab47uz4uPjpWjRoo7vpUqV0nw4LkQ0UbUIwfS9++67adpJWoUTjZMKY0Fj6H4QjQYobzt37pS1 a9fqtV21apW2ezVs2rRJy0vfvn31BeGHH36Q/v37S1xcnOKcH+svX75c8+/evVu3jeuM/Vj3Twgh hNgRtxvDJk2aaK9kf39/NYYQDuypp56SlJQUa/ZcEQycs+msUaOGzJgxI00eqGbNmlKtWjXHd0QH P//8cz2uJ554Qk0AhJP37LPPanUjqhcRTUQeRI4AftehQ4ckICCAEUObgHMPEKletmyZDB06VIKD gyU8PFwJCwtThg8fLsOGDZPWrVvLd999J5UqVdJIMfLjH8XkN+sMHDhQRo4cqUYR1xzlwEQPCSGE ELvjdmNYokQJOXv2rCxcuNBhDHFQt9xyi8vaGJYpU0ajO1aVLVtWPD09Hd/x0H/77bf1uO666y6N NEEwg6+99pr07t1bTeGBAwdk+/btkpiYqCYQn5cuXSpt27ZVtm3bpr+ZxtB9GNOOa4ge8KZjEKLA AG0Jgbe3t9KxY0c1h82bN5d27do50k0+YDqnILqIf6T9+/frSwivMyGEkPyC240hdrZo0SKHMcTD GhGZRx55RD/ntRD1a9++vZo7q/73v/+pYTCCMYQBNMYVD37IGENfX181jatXr9aeq5MmTZKpU6dq +zT8zrp162rbxh07duhvo2FwH7hOKPgHDx7U6uK5c+fKzJkzNeoLcP2A+R4bG6t58NekmzzOeRF5 XrBggb4UoIkBXgBYlUwIISS/4HZjCNWrV0+KFSsmH374oQ5b8/DDD+vYhnktPLQR3clMqDaEaTRC RAnRRRi6+++/XyOBEAztiy++KKNHj5YTJ06oyR03bpx2VkFV5IgRI3T2FlRNt2zZUo0hqhhpDN0H Cj6Go8E1ML2Pc0t4UUDbWfxjYR/sfEIIISS/YAtjiJ0juoLeycBVVchjx47NssMITCPaFBr9+OOP jh7MMIKmXSK+P/roo1otCUOAaf5Qnbxnzx5JSkrSE4uoVJcuXbSqEVXJpo2b9YIQ12CMIcqaGa4G BtHawzinmG2Ya0tjSAghJD9hC2MIlS9fPlejNlkJD2sYPgw/gnaB6BSCDjAYfqR+/fry3HPPOToM IEK4a9cu2bBhg7Y5xAmDUO2IwbmRx7Q3gxAtyuh3wIAEBgZqm0W0OzSGhNWM7gfXNC+w7ocQQgix O3h+udwYrl+/XqNvbdq00fEKIQxXg6jbq6++qlSvXj3Ddn+5IfQeRbWuM2gXBo0fP17bAiKCCaFn Kap/UaWMSKCz5syZI7Vr19Zeq5mNg2iEzi2c+YQQQgghdsYtxhBVrOXKlUuThmnwgoKCdMgQULp0 6TwbriYrob0gTkBud3zhANeEEEIIsTtuMYYwgJs3b06T1rhx4zRVsIjcuaqtobMwqwVORG6LcyUT QgghxO64xRhiOJobCUO+uMMY5pVoDAkhhBBid9xiDDEYMHrmZiWYKBxYQRGNISGEEELsjluMIeaX xfzImXUuwTyz6Bmc1VAy+U00hoQQQgixO24xhjCEGNT6gw8+0MGenRUSEqIDXGMomYyGfcmvojEk hBBCiN1xizGEMEMIhqTB1HJPPfWUPPvss3LnnXfqsDUNGjSwZs/3ojEkhBBCiN1xmzGEEBHE/LM/ /fSTfPHFFzq2IaaTK4iiMSSEEEKI3XGrMcyuJk2aZE3Kd6IxJIQQQojdyRfGcMCAAdakfCcaQ0II IYTYHRpDF4nGkBBCCCF2h8bQRaIxJIQQQojdoTF0kWgMCSGEEGJ3aAxdJBpDQgghhNgdGkMXicaQ EEIIIXbHlsbwypUrsmvXLsfMJ6NHj7ZmyXeiMSSEEEKI3bGNMcTBLFmyxEG1atUkJSVFlxWEqfFo DAkhhBBid9xuDMeMGSN33323ToXnzIsvvijnzp2zZs+3ojEkhBBCiN1xuzEsW7as7NmzR3bu3Ckh ISGahoPq0KGDVikXFNEYEkIIIcTuuN0YVqhQQY3h+fPnpUyZMrJ37165dOmS1KxZU06dOmXNnm9F Y0gIIYQQu+N2Y5iYmCh33HGHfPrpp2oIH330Ufn73/8u9913nxqngiIaQ0IIIYTYHbcbQwg9kPfv 36+f4+PjZerUqRIXF1cgOp0Y0RgSQgghxO643RgGBgbK2bNnrckFTjSGhBBCCLE7bjeGJUqUkEqV KsnChQslOTnZurjAiMaQEEIIIXbH7cYwIiJCLl68KEeOHJFmzZpJ+/bt5cSJE9Zs+V40hoQQQgix O243hlbNnDlTnn32WalYsaJjgOuCIBpDQgghhNgdtxtDjFeYlJQkEydO1KFrHn/8calVq5YsXbpU rl69as2eb0VjSAghhBC743ZjiDaGt956qxpCT0/PAjVEjbNoDAkhhBBid2xhDEeMGKE9kwvS8DRW 0RgSQgghxO643RiuWbNGd17QRWNICCGEELvjdmMIwSi1bdtW3nvvPalatar89ttv2lO5IInGkBBC CCF2x+3GEDt9+umn5bnnnpPq1atLjRo15MMPP9TPBalqmcaQEEIIIXbH7cawTp06MmzYsDQRwitX rsi4ceMKVEcUGkNCCCGE2B23G8OPPvpILl26ZE3W6uRTp05Zk/OtaAwJIYQQYnfcbgwHDx4soaGh cvz4cblw4YLs379fI4j//ve/5fz589bs+VY0hoQQQgixO243hlD9+vXljjvukCJFiij33HOPHkhB Eo0hIYQQQuyOLYwhdo7ZT6Kjo2XFihVy9OhRa5Z8LxpDQgghhNgdWxjDjLR8+XId9LqgiMaQEEII IXbH7cYQ0cFWrVrJW2+9lYaHHnqInU8IIYQQQlyI243hZ599ptPiTZ06VaOEhooVK9IYEkIIIYS4 ELcbwxYtWsjixYutyWqk0Eu5oIjGkBBCCCF2x+3GEDvHDq2aMmWKLisoojEkhBBCiN1xuzGsVq2a Y5gaK6xKJoQQQghxHW43hjt27JDw8HBrsvTr14/GkBBCCCHEhbjFGE6bNi3N94yqjGGeOFwNIYQQ QojrcIsx9PDwkEmTJumg1hmxa9cu8fLyYsSQEEIIIcSFuM0YWtsTZgSNISGEEEKI63CbMRw7dqxc uXIlUxo3bkxjSAghhBDiQtxiDMeNG2dNSqfdu3dLSkqKNTnfCsawe/fuNIaEEEIIsS1uMYZ2Eabj i4mJsSanEU5OZGSkBAUFyYkTJ9Is27x5s/Tu3Vu3gROYlRgxJIQQQojdKbTGcOPGjfL5559LyZIl rYscwswr1atXl5kzZ0piYqJUqFDBEcVMSEiQjz76SE+at7e3GsesBFMJE0ljSAghhBC7UmiNIbRp 06YsjWFYWJh88sknju9Vq1YVPz8/bQNZtGhRGTNmjKZfunRJnnzySdm3b59cu3ZNT+bFixcdIA0n l1XJhBBCCLEzhdoYxsfHZ2kMv/jiC/n5558d3/39/aVs2bJq6B588EFZt26dpsMovvLKK9qhBibx +PHjcvDgQTWKBw4ckEOHDklcXJyawvbt28u2bdt0GzSGhBBCCLETNIZZGMPixYtru0CjgQMHyquv vqon7m9/+5vs379f069evSqvvfaadO3aVU/mqlWrZNasWTpWIwbzBlFRUWoy0SMbs72cO3eOxpAQ QgghtoLGMAtjWKJECY0SGgUGBso777yjJ+62226TvXv3arqpWkYbQkQL0Rll+PDhMmjQIImIiFB6 9eqlVdEtWrSQnTt3altFGkNCCCGE2AkawyyM4Q8//CC1atVyfMfYipUqVdJo32OPPSarV6/WdBjD 5557TubMmaPLYA5RfQzjiOpk9EjGvjCbS4cOHViVTAghhBBbQmNoMYZTpkwRT09PNXuLFy+W9957 z7EM7QtjY2O1M8n3338v/fr103QYQVQlwxRiPSy3CoN1I+LYuXNn2bJli36HMcRf60UhhBBCCHEH hdYY4sdWqVJFHnroIQkJCXGMQ1inTh3tYXzs2DH9jqpkX19f7TiCHslGycnJUrNmTW2DCJO4du1a TYcpzMgYYsxEjmNICCGEEDtTaI1hVkKkEEYuN8WZTwghhBBid2gMLcJA1A0bNtSexrkpznxCCCGE ELtDY2gROovkhWgMCSGEEGJ3aAxdJBpDQgghhNgdGkMXicaQEEIIIXaHxtBFojEkhBBCiN2hMXSR aAwJIYQQYndoDF0kGkNCCCGE2B0aQxeJxpAQQgghdofG0EWiMSSEEEKI3aExdJFoDAkhhBBid2gM XSQaQ0IIIYTYHRpDF4nGkBBCCCF2h8bQRaIxJIQQQojdoTF0kWgMCSGEEGJ3aAxdJBpDQgghhNgd GkMXicaQEEIIIXaHxtBFojEkhBBCiN2hMXSRaAwJIYQQYndoDF0kGkNCCCGE2B0aQxeJxpAQQggh dofG0EWiMSSEEEKI3aExdJFoDAkhhBBid2gMXSQaQ0IIIYTYHRpDF4nGkBBCCCF2h8bQRaIxJIQQ QojdoTF0kWgMCSGEEGJ3aAxdJBpDQgghhNgdGkMXicaQEEIIIXaHxtBFojEkhBBCiN2hMXSRaAwJ IYQQYndoDF0kGkNCCCGE2B0aQxeJxpAQQgghdofG0EWiMSSEEEKI3aExdJFoDAkhhBBid2gMXSQa Q0IIIYTYHRpDF4nGkBBCCCF2h8bQRaIxJIQQQojdoTF0kWgMCSGEEGJ3aAxdJBpDQgghhNgdGkMX icaQEEIIIXaHxtBFojEkhBBCiN2hMXSRaAwJIYQQYndoDF0kGkNCCCGE2B0aQxeJxpAQQgghdofG 0EWiMSSEEEKI3aExdJFoDAkhhBBid2gMXSQaQ0IIIYTYnYyMYVRUFI1hbovGkBBCCCF2h8bQRaIx JIQQQojdoTF0kY4dOyY9e/aUzp07y7Zt29QUnj17Vk/+qVOnCCGEEELcDswhPMqVK1fkyJEjsmDB ArYx/Ku6du1aGiBEDP38/KRdu3YaMTTG0FwE64Uh9sC8QeF6nTt3TnGO9FrzE+IO8IKZkpKi4DvL JrEL5v6JsslgSP4A1wzXyRjDefPmSUREhHTv3t1qd3KkQmsMcSLxD4CTak4u/hm2b98uHTp0kKZN m8qGDRs0gghw0ol9QRgdHD9+3PGwxWeTbs1PiCtBGcRLJ+4l5qaO7yybxA6Y+yTKJ8whqiiPHj3q WGbNT+yBua/gmu3evVumT58uwcHB0q1bN6vlyZEKrTGEEVy3bp3MmTNHpk2bJjNmzJCZM2fK6NGj pUWLFmoMJ06cqA587ty5EhsbS/IBU6dOlfHjx8vYsWNlypQp6ZYT4i5mz56tN26UzTFjxuj9JiYm Jl0+QtyBeRaOHDlSn30sn/kDXLdFixbpvSUsLExCQkIkMjLSanlypEJrDE+cOKGGD/8EOJE4oeHh 4TJo0CBtY9i3b19dBpMBxo0bR2wMbmR42AYEBEizZs2kQYMG4u/v71hmzU+IqzD3kOHDh0tgYKCW zXr16mmVD8smsQMTJkyQ3377TZ991atXlzZt2mjkadSoUbrMmp/YC1wjBLUGDx6swZHFixdbLU+O VGiNIaqRTbj84MGDcujQIQWf9+/fLwcOHNBQLZYDhGuJfcG1xDWDOcRNrX79+mrssSw5OTldfkJc Be4fqKLbtWuXvuE3bNhQ6tatK+vXr9cqZd5jiLtBsxuURZjDr776Snx8fGTJkiWyb98+XWbNT+yF c7W/uZZ/RYXWGKKNoelwQhUM4Zriwevr6ystW7aU6OhoTaMoOwgdotauXatls0mTJvoiQ1F2Eqok f/zxR+nfv7+2t+f9s3Cq0BpD557IlD1lrtHVq1fTkNl1u3TpkixdulRCQ0O1SmThwoU6vhNFZVcZ jVRgXZZdWbeDds0bN27UHoN4efkrxjCnx0JRzsqsnK9evVrat2+vVcjozHDx4sU061GFQ4XWGFL2 Fgwg3lbR28q5Vziqhc+fP5/hQxFpqPpAVGbFihX6OaN8FJWRUFZQ5vCCAZxfKrDswoUL+qDMTpmy bgvfUabRYz4uLk7LKCKINyNsC/8D2T0WinKWKT8YhQOYco7yinsmXqjNUG0os1ThE40hZUuZN1lj EA0mYpjZA9Gsk1VkkaIykilXzmS27Eay5jfrZJSWU+XGNqjCK1NurPdJ5zTePwu3aAwpiqKuC1W9 Hh4e8s0332iHJqvwcoL2gViOtoLZfXgGBQXJs88+qxHv3BQijx999JGOqkBRFJUbojGkbC10IBk4 cKADDC2EdoQ3Eh7e6IhCUTnVsmXL5Pbbb5e2bdtaF8nevXvl3nvvlZo1a1oXZSk0g/jHP/6R68YQ at26NY0hlWMlJiZak7R5Al5iSpcubV1EFSLRGFK2FwYcf+mll/QzbmbvvPOONGrUiO1fqDwRonDV qlWTf/7zn2l6ZaK8ffzxx/Lf//5Xunbt6khHe62dO3dq2XQeJgLRRIyXumXLFh1M39kYor0ien1i PnYMnQWhcwqMJ9bZsWOHro/2tdguvqOtohHWxz7RFgwvQc7GEMNXJCQk6LbY+YrKTJ9//rkO72UV ouavv/664zvaxaK3MlV4RGNI2V54gzXGEEIU8bHHHnM8UCkqNwVjOGnSJDWA6OFuBIPn7e0tJUqU SGMMy5cvr5PXY6DZhx56SA0ZtGfPHvnwww8lPj5ejaazMfzuu+/U1OEF5+uvv9ZxyDCw8Pvvv6+z Lj3++ONqDN98803dL4YQwQuSEQyqGdj2jjvucBhDpGGbSUlJ8sYbb+h4dBRlFWpdnnrqKXn11Vcz HJLGGEO89Lz99tsya9YsaxaqAIvGkLK9nI0hIig//fSTVKlSRW9omM/6yy+/lCFDhuiDEEMsIOKC B+fy5ct1UOEKFSqokcTwICVLlnSMCj9gwADx8vKS3r17azoephQFY2imBnvwwQcdZg4mC5E6Z2OI 5g2enp76GRFFVDFXrlxZq+Rg8hDpg1AujTHE7CfGyCHfI488or3o0fThP//5j77wIEqzadMmad68 ueZDT9F77rlHPw8bNkzNpImY//LLL47t/etf/3JELfF/gOPH76EoZ9WoUUOHprntttu0bFpljOGq Vau0DKFZBcwkyuvPP/+s5a1Vq1by6aefalmlCpZoDCnbC8bwgQce0BvS999/r2+5mAcZxhCzR2Bq sc2bN+tDETc76JNPPtG2YhBGgn/++eelXbt2mt8IRtKoVq1a0rFjR8d3qvDKGEMYq/vuu0/nIMXD E5E4yNkYPvHEEzrVnRFeRhDBQ5QPhg/Vw5BzG0NEBvFARXk2YJ8whsWKFXNsCxFDVDfjBQYvQkWK pN6usT6m7jQybQyxT0QanVW8eHGdJpKijPDiYMospmZEVNu5mQLkHDF88sknHRFDvIB369ZNP6OZ wnvvvaf3VapgicaQsr2sVckwf3j4YswtjLWF6e8wR+TLL7+coTHEAxZvvqjmQ/WeUdGiRR2fV65c qdV9FGWMIYTOTjB/6IGMtnuQszFET2M/Pz/HujCGr7zyio5ViE4qMJeQszGsXbu2mj0jRP4wpqHV GCLaWKpUKe0dje0aY4gpy1DdbGSMIUzkLbfcolFNIxhDVC9TFISyhmgh2gyiNmXOnDly66236ou1 szIzhqh+RvTaKCYmxhHJpgqOaAwp28tqDNFm629/+5tGcZo1ayY9evTQdNzMMjKGaMs1f/58bZuI KmMjdC4wN0SM9A8TQFHOxhAvHojCGSOGlwyYN2MMZ8+eLY8++qhjsOrg4GA1fYimwBhilhMILzGI PqItIdov4mGLcgkh4o12iVZjiM4B/v7+jv3AGCICiaroZ555xtHGFseGto8Q/gcwnZnRBx98kMYo UoVbaC4DY4gXZICXCZRv5/arUGbGEGV4xIgRjnwwhmj+QBUs0RhSthZMISKB999/v9SpU0eqVq0q 5cqVk169eunDF73qnnvuOW3rhSoRtBlED9CHH35YTSAewojg4CGMqCGiNkhHW5mJEyfqGHB169bV qAtMAFW4hTKB6jE8GFH2YARRhYwyhfKBaB8MH4xZly5ddDmmX0Q5atCggaZhNgkIvTtRdvGS0rdv X10H5REPW0QZ//73v2sHF+wT0UGYQrT5MlV16I2MiGSbNm006ofIDiI8MIfYF16WsD9UM+O7aZdY qVIlrW5GFZ95OaIoCPdJ6/icqC25++67HbUpKOcZGUN8xksHmuCYqfLwMu38IkIVDNEYUhRFUVQB F9oV4gUbUW0TRUbUuV+/floDgyYS6MyHF6E777xTxo4dq3nQrhuYlxp8RvOdoUOHyg8//OBoR0sV HNEYUhRFURRFUSoaQ4qiKIqiKEpFY0hRFEVRFEWpaAwpiqIoiqIoFY0hRVEURVEUpaIxpCiKoiiK olQ0hhRFURRFUZSKxpCiKIqiKIpS0RhSFEVRFEVRKhpDiqIoiqIoSkVjSFEURVEURaloDCmKoiiK oigVjSFFURRFURSlojGkKIqiKIqiVDSGFEVRFEVRlIrGkKIKsU6dOiUDBw6UDz/8UEqUKCEff/yx +Pj4yKFDh6xZcyRs9+9//7sUKVJE4uPj5cqVK/K///1P6tevnybfkSNH5K233tJ8tWrVSrMsK23d ulWee+45Xa9v377WxdnS66+/ruuXKlXKuihDnThxQm677TZ5++235d1339V1AT6/88478sILL8iF Cxesq+WJAgMD9Viw/x07dlgXZ0uNGjWS+++/X/7xj3/I5cuXrYszVGhoqPzzn//U/T788MPy/vvv a7lp3br1TR8HhHJRvHhxa3IaoawsWbJEDhw4oNfi/Pnz1iwUReWCaAwpqpDq0qVL8uKLL6oxwIP2 2rVrauA++eQTefrpp3X5zQrbeuONN9IYQ5jP5s2bW7PKli1b5NZbb82RMYSCg4P/kjFcv359jo3h oEGD9LclJSU5jOHu3bs1bf78+S4zhtjfQw899JeMIYQXgZwYQ2jcuHG632+//VaP48yZM/LUU0/J 3/72Nz0XN6MWLVpI2bJlrclp1LZtW1m6dKka8EqVKum+KYrKfdEYUlQhFSKDeMA3adIkTfrw4cM1 /c0331Rz+PPPP8tnn30mI0aMkDZt2ujn6tWry8WLFzX/5s2bpWHDhpo+efJkx3awvjGGHTp00OX4 azR06FD5/PPPpUePHumMIUxbvXr1dPmECRMc6SkpKdK1a1f55ptvdLnVGC5YsED3g9+WUUQJBnXU qFFqLDw9PdMZw127dknNmjXl119/1QhVZrIaQ2d16tRJjxu/D/uDEBHDcUVGRup+sf8pU6bouatS pYpG3Ixw3P3799f8OPcwpEbYb40aNdRg33fffWmM4enTp8XLy0vXa9euneP6WLVt2zb57rvvNA8i fs7GECbP399ft7Fo0SLrqipcD2MMjbAO0sqUKeNIi42Nla+//lqXnTt3TtOwn99++02+/PJL/W37 9u3T82DKFITf8csvv0jHjh01r7mOy5Yt0zKCvLjOzsK5Rnq3bt10fYqibl40hhRVCAWDZYxNeHh4 mmV4AJtlMCJjxozRzzAdMCn4jOpERMdWrFgh9957r+zdu1dNwO233y4rV67U7TgbQ5gUGJlPP/1U l8EMwAziAT979my55ZZbHMZw48aNup24uDg1nHfeeadWH0Iwpvfcc48cPXpUjY2zMcRxPvjgg3L8 +HGttkZeq2bMmKH7nTdvnkydOjWNMUxMTNTqbxwPTAkinJkpI2OI34ioV8mSJeXw4cNaTQuTCGG/ yFusWDE5ePCgPP/88/obcQwBAQG6zBjg77//Xk0OTBrOWdWqVR37/c9//qNG8uzZs7p9YwxhhhDl haGEmUJ6UFCQYz0jmF3kwz6Sk5PltddeS2MMYbhx/MeOHdOq4rVr11o3kaExXLdunaYhigmNHTtW r8XOnTvllVdeUTMM4aUD1xrp7733npQvX17TixYtqmUK+umnn6Ru3bp6zVFeYConTpyox4PPaALw wAMPyP79+zVq6OfnJ4888oiecxx7uXLltHxTFHVzojGkqEIomCdjbPAQd5azMYQxwEMZn2EMIXw2 xhBtvl566SWtRv3hhx902fjx4zWf1RjCKOBBjygaHuxYBqG9IKohnY3hyy+/LDExMdoODvlg2rCN u+66Sx599FHNh2pdLDPGENEqHNeaNWu0zR+2YdUHH3yg68BYwnjiszGGnTt3VrMGEwdTiWPKTBkZ Q0TisA6MCoS2d1j++++/q9nEZ1SHQjA3xuCGhIToMhhEqE6dOhpxxDXCeTLHt3z5cs2Hdn4QjBK+ wxiiTSfMsLe3t+N6NW3a9PrR/qmIiAhdhipZCM0GjDHEdcKyypUr6zlEeqtWraybyNAYIqqHNJhu XF9j9LAdRCXvvvtujT7j2iGfVTgfxhiacoNjNYYVph/Xc8+ePY62oYgqY19oa4oqcahXr166zBpR pCgq+0r/H0pRVIHX1atXHcamX79+aZZZI4ZZGUMI0UKYkgoVKugyVOdBmRnDkydPqoEwBsFqDBEF gmGCoahWrZrmg9ncvn27fs7MGCIK9+9//1tNEsioStH8royMISJxd9xxhyQkJDi2kZkyMoYwQfhu NYbYXnaM4VdffaXLcG0Q+UN1NswZfhPUp08fzZeRMYRgkmAqURWO9IwinqiyxrKMjCHOMZahit78 /owibxkZQxMxfPLJJ9UA/utf/0pzLQCqjc05s8rZGCLyh2NCZBHpMJ0oEygnaF9oOh3hePGbkddq DGEqKYq6OaX/D6UoqlAIBgMPUZgJZ8FoIR3VijAMWRlDtENDNR7MAtqMYZmvr6/my8wYwmwYYwjD YDWGiFLCNGG/proYHR5QvYnPqK6E+bAaQ1RNouo1K5ketaiGtBpDdIDAd0RBb6SMjCGimvhdVmOI Ht7ZMYZodwehDSGqX00HE2MMTaePnj176ndrxBCdfdA2b+7cuZqO/Vtlqq1RlQ85G0MTkUSva5jT zJSRMUS0FWloToBtoVMTzoVz+0hUA5tzhvPvLGdjCCEyiGpmbAMvBIgYopof5x3RYGwD5wPGECbU agwRbaYo6uZEY0hRhVR4gKPaEA9ctHWDEYG5QdUwHtSI7EFoR4iHbePGjbXKGJ/RTg2RHLQFw3eY GXSowGcYQ2zLVPnBcJg2hqjKhZAHESFsDx1W8BlmCFWAME9YD0bRVE/DBED4DkOF6lkT/SpdurRG mUwHiC5dumj7PBy3VejJjH2hjaExvOhRu3DhQjW5+I52gjBaiABmJnQaMSZnw4YNmobzAXOKyCmO D9XeOD+QaWMI8wmhWhTVqzCNAwYM0GVoGwfBJD/22GM6jBCqko0xRLvCxx9/XK8ZqplNG0MYdphD fEbk1pyXjIwhopfYJqKTOEa0MUSUFFFeHL9pv4dygLaQ5rc5y/QGh8lHGULVP6K4iPDiOkDGKHp4 eOh3dESBTIcnmFuc46ioKDWhqHrGNnAM2A5eJlatWqXnCMeBNpFYr3379vobTZlAOUMayiNMNqKk MI44VxRF3ZxoDCmqkAvGDEYFD1uYBBPxchYe5K+++qpER0frQxzMmTNHjQPGn0MHFnQWQON/9JiF qTT50F4OkSzzHVEdCNFArDtr1izttYttI6qECCKijegFjV7CWAd5EaFEBAqRKkSIYKiQjgifGVoH 5hD5cQwZVYPCoKJDCMYexPbR0QGm2BgJHAMiZjBfpsOLVTg+81sM6PBhhMgp0mB+zXHBiJm8ME3m M3riwmDhM0wZfi+MHSJv6ByCTjA4R2hPBy1evFgNH7YBI4nxDFGVj+NHhxX8bhgkRHtxjmCqrML5 wv4QaUUv8bCwMN0GhOreL774QpfjuliFZgfW347ra4y7s9DbHMthDs35xfnANUJ007SBHDlypGNb +A14AUGEEAYQ1wbCCwOu2aRJk3R4I4x96VxOe/furevjujlHKSmKyrloDCmKUgMBY4holTEhFEVR VOETjSFFUSq060IHDHTiQHs304mEoiiKKjyiMaQoiqIoiqJUNIYURVEURVGUisaQoiiKoiiKUtEY UhRFURRFUar/B86IKGddsKwCAAAAAElFTkSuQmCC ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/image006.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAG8AngDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iii gAooooAKKCcDJrkrDxmmp+OZNCtYN1rFbSyG6J4eSOREZVHoCxyfWgLHW0VxWq+MdSstemt7bToJ dPtLu2tLmZ5Ssm6YoBtXBBA8xc5IqpZ/EDUJrmOSTRt9jdR3T2f2eTdM/kHDAoQBlsHABoHYZ8Yy W8H28G5hHPfwxyAHG5SScfpV9/AXhaV2dtEtdxPJVdufyrgPH/jh/EWk6fZnw7rmnA6jA3nX1qI0 PXgHcea9iXnNAHM/8K98Kf8AQFg/M0f8K98J/wDQDtv1rqKKAucv/wAK98J/9AO2/Wj/AIV74T/6 Adt+tdRRQFzl/wDhXvhP/oB2360f8K98J/8AQDtv1rqKKAucv/wr3wn/ANAO2/Wj/hXvhP8A6Adt +tdRRQFzl/8AhXvhP/oB2360f8K98J/9AO2/WuoooC7OX/4V74T/AOgHbfrR/wAK98J/9AO2/Wuo ooC7OX/4V74T/wCgHbfrR/wr3wn/ANAO2/WuoooC5y//AAr3wn/0A7b9aP8AhXvhP/oB23611FFA XOX/AOFe+E/+gHbfrR/wr3wn/wBAO2/WuoooC7OX/wCFe+E/+gHbfrR/wr3wn/0A7b9a6iigLs5f /hXvhP8A6Adt+tH/AAr3wn/0A7b9a6iigLnL/wDCvfCf/QDtv1o/4V74T/6Adt+tdRRQF2cv/wAK 98J/9AO2/Wj/AIV74T/6Adt+tdRRQFzl/wDhXvhP/oB2360f8K98J/8AQDtv1rqKKAuzl/8AhXvh P/oB2360f8K98J/9AO2/WuoooC5y/wDwr3wn/wBAO2/Wj/hXvhP/AKAdt+tdRRQFzl/+Fe+E/wDo B2360f8ACvfCf/QDtv1rqKKAuzl/+Fe+E/8AoB2360f8K98J/wDQDtv1rqKKAuzl/wDhXvhP/oB2 360f8K98J/8AQDtv1rqKKAucv/wr3wn/ANAO2/Wj/hXvhP8A6Adt+tdRRQFzl/8AhXvhP/oB2360 f8K98J/9AO2/WuoooC5y/wDwr3wn/wBAO2/Wj/hXvhP/AKAdt+tdRRQF2cv/AMK98J/9AO2/Wj/h XvhP/oB23611FFAXOX/4V74T/wCgHbfrR/wr3wn/ANAO2/WuoooC5y//AAr3wn/0A7b9aP8AhXvh P/oB23611FFAXOX/AOFe+E/+gHbfrR/wr3wn/wBAO2/WuoooC5y//CvfCf8A0A7b9aP+Fe+E/wDo B23611FFAXOX/wCFe+E/+gHbfrR/wr3wn/0A7b9a6iigLnL/APCvfCf/AEA7b9aP+Fe+E/8AoB23 611FFAXOX/4V74T/AOgHbfrR/wAK98J/9AO2/WuoooC7OX/4V74T/wCgHbfrQPh74VH/ADBYPzNd RRQFzipPDWk6H438MTaZZx2xke4V9gxuHksefyr0SuS1of8AFX+Ff+utx/6IeutoBhRRRQIKKKKA CiiigApCcAn0pa57xT4pj8MtpIktnnGoX8dkCrY2Fwfm98YoA5fWPjX4a0PxLLo97HexmHKyzGBg FYdsdSD6gYra8GeP7LxvPqB02zuls7RlVLqVNqzEgkhR7YH5iuU8a2V9ZfEqx12wTSJUFiIp7e8u VhZxufkZ+o59sV0vhjxbFcTGz1H+xrGV2UW8dtqKSmUnjAXAOenrmi6HY7QgMCD3rjrf4c6Ppetn WdJE9reCKVEAnd4w0mMsVYnPTp09uBjshRQFzih4GnuLxbu81m6PnSW1xd28aRiOaaEJhslSQCY1 JAIqbRfAyaRqVrcf2pd3FvZ+aLW2kEYWLzDluQoJ9smuvooC5518YQqeGdPOAP8AiZwdvrXaL0ri vjL/AMivp3/YTg/9mrtU+7QIdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBhaz/yOHhT/AK63H/ohq6yuT1r/AJG/wr/11uP/ AEQ9dZQAUUUUAFFFFABRRRQBxut/ELT/AA34tj0jWWhtLSW0M8d20pOWD42FdvHHOc9jUWpQaN8S 7XT5tJ1qKRNM1GK7ZoV35ZAcIeRjO7rXGfGbU/st/HDDo2lNMlv5731/axyF1DhfKj3KcnL7iPSu r+GN1aXNtqYsLWwjtIp1SOeytfISb5FLEjHJBJH4UkxtWMH4leFtQu/Gem6/DpFlrVpaWvlS2E8w jL/f+b5gRgbgfw6Ve+HngS0gnutc1DRtKtp57gTWltAolNoAAMCTGM5GeBx6+lnxx4I1nxB4iW+0 6aySKXTnsJGuC+6JXY7mQAEE7Tjkijwzoun/AA51u5trjVBHDrNyiWFmFbaGVAD2wGJPt0FMOh6K OBSb1zjIzQ2NhJzj2rx2yaz/AOFrafd6Nq8z2mJxewPdXDyHbG/MiycKqtgDJ6kYoBI9j3KDjIzQ GUnAIzXjmu3Fnc+Ormf+0LxdTS/0/wDs9I55Asls5i8zaAdrLjzSfpVfwws1x4gtl0/V7+LW51vv 7SWSR3EbBsQlkb5cAFccUm7BY6b4y/8AIrad/wBhSD/2au1TpXj3j+w8X2OjabP4j16zu7NdSg3R x2wjwcnndxXqw1fSgB/xNLPn1mX/ABpgXaKp/wBsaV/0FLL/AL/rR/bGlf8AQUsv+/6/40BYuUVT /tjSv+gpZf8Af9f8aP7Y0r/oKWX/AH/X/GgLFyiqf9saV/0FLL/v+v8AjR/bGlf9BSy/7/r/AI0B YuUVT/tjSv8AoKWX/f8AX/Gj+2NK/wCgpZf9/wBf8aAsXKKp/wBsaT/0FLL/AL/L/jS/2xpH/QWs v+/y/wCNAWLdFUm1vRkOG1iwU+hnUf1pv9u6L21nT/8AwIX/ABoEX6KojXdFLbRrOnknsLhf8ad/ bGldtUsv+/y/40AXKKp/2xpX/QTsv+/60f2xpX/QUsv+/wAtAFyiqf8AbGlf9BSy/wC/6/40f2xp X/QUsv8Av+v+NA7Fyiqf9saV/wBBSy/7/r/jR/bGlf8AQUsv+/6/40BYuUVT/tjSv+gpZf8Af9f8 aP7Y0r/oKWX/AH/X/GgLFyiqf9saV/0FLL/v+v8AjR/bGlf9BSy/7/r/AI0BYuUVT/tjSv8AoKWX /f8AX/Gj+2NK/wCgpZf9/wBf8aAsXKKp/wBsaV/0FLL/AL/r/jR/bGkd9Vsh/wBt1/xoCxcoqn/a +k9tVs/+/wAv+NH9r6Tj/kK2X/f9f8aBFyiqLa1o6YDavYAnpm4UZ/WnDV9KIyNVsj/23X/GgC5R VP8AtfSv+gpZZ/67r/jQNX0v/oJ2f/f5aALlFU/7Y0r/AKCdl/3+X/Gj+2NK/wCgpZf9/l/xoHYu UVT/ALY0r/oKWX/f5f8AGj+2NK/6Cll/3+X/ABoCxcoqn/bGlf8AQUsv+/y/40f2xpX/AEFLL/v8 v+NAWLlFU/7Y0r/oKWX/AH+X/Gj+2NK/6Cll/wB/1/xoCxcoqn/bGlf9BSy/7/L/AI0f2xpX/QUs v+/6/wCNAWLlFU/7Y0r/AKCll/3/AF/xo/tjSv8AoKWX/f5aAsXKKp/2xpPfVbIf9t1/xpra3oqY 36zYLnpm4Uf1oEXqKwtR8ceE9KiEl34gsQCcYjlEjf8AfK5NZZ+LPgNeuvKP+3eX/wCIoA7GiuPT 4reBJGAXX4+fWGUfzWtqHxV4ZuY1kh8QaaVIz/x8oP60Aa1FUV1vRn5j1iwcf7Nwp/rTv7Y0r/oJ 2X/f9aALlFU/7Y0r/oKWX/f9f8aP7Y0r/oKWX/f9f8aB2LlFU/7Y0r/oKWX/AH/X/Gj+2NK/6Cll /wB/1oCxcpcVS/tfS/8AoJ2f/f5a5Lx9rCPZ6PbaZqbtLcanDFJFYXYjlkRsgqGDDHOO4pN2BK53 W0/5NG0+35155p0Fhe+Gr/Vml8UJJp8kkNxajVJXfzI/vBSJMMOeDmsjSNa0O9F89xeeIIY7WzW9 8yPWppV2OQFjO1+JSSBs557mncLHd62QPGHhUZ5864H/AJAeutrw/Qr2LUPiP4OvbO41X7LdQ3je RqFy8rRsiyoeGY4Py17eSFGScCle4NC0U3zE/vD86cCCMg0xBRRRQAUUUUAeLS+ONd8V+FJNbtPB 9jfRHUFt7OKeE3JCFW3u4HTBCjPA5rt/AWvSajb6np9zp9pYz6VdvayLZjELY53KOoBz0NYE3ww1 zS3kg8JeLJ9I0x3MgszbrMEJ64YnOPY1fS1034eaLbWV9cXNzd65fC3ub0cPJcShvnOPujI7dPzo e+gzo4PGvhq51iTSYtas2vkYIYfNAJb+6CeCfYZNcv4ribxP410CLSGjuH0PUFl1FQ4VoFIRlODg nIB6Z6VV0T4ZONLvPD2twWNxpcZL2F7CCt0rMzMSx7EEjBHpVLw3ptx8NPE8q61qEmpz+IbuG2tZ AvzYQY3SE9MBwOM9Kdg9D10D5QDVY6dZEzt9liDTjbKwQAuPQnvVmlpCKUOk2EH2Yx2cIa2jEULF AWjUDGATyBipY7G1iuZLmO3jSeTAeRUAZsdMnvViigDzn4ypG/hSwSVA6NqcAZWGQR83FdCvhnw9 j/kX9K/8BI/8K574y/8AIrad/wBhSD/2au1TpQMzP+EZ8Pf9C9pX/gJH/hR/wjPh7/oXtJ/8A4/8 K1aKAuZX/CM+Hv8AoXtJ/wDAOP8Awo/4Rnw9/wBC9pP/AIBx/wCFatFAXMr/AIRnw9/0L2k/+Acf +FH/AAjPh7/oXtJ/8A4/8K1aKAuZX/CM+Hv+he0r/wAA4/8ACj/hGfD3/QvaV/4Bx/4Vq0UBcyv+ EZ8Pf9C9pX/gHH/hR/wjPh3ofD2kkf8AXnH/AIVqjofoa8TtNC8Ra899qSfEZ9Pia9uEW2Y5MYWV 1A+8McAHGOhpNpasNzqvFHwe8MeJdQju/Lm05kjEZj09I40bBJyRsPPOM+wri7j4JaBH4y07Ro9Q 1JYZ7SaeRmZCcoyKADt/2j27CtJfB/iMcj4sn8AP/jlDfD3xFNdxakfiYrTwoyJN5QyqnqPv+w/K o9rB7Mdn1NfSPgZ4Y0bV4L4zX16YSSIbkxtG5xj5hs59a7j/AIRnw8P+Ze0of9ucf+FeYHwh4j6n 4s/y/wDjlUNZ0LxBpGkXOoN8VTN5CF/LXqx7Dhz1PHSj2sO4KLZ69/wjPh7/AKF/Sv8AwEj/AMKP +EZ8Pf8AQv6V/wCAkf8AhU+hTSXHhzSppn8yaSzieRz/ABMVBJq9WgjK/wCEZ8Pf9C9pX/gJH/hR /wAIz4e/6F7Sf/AOP/CtWigDK/4Rnw9/0L2k/wDgHH/hR/wjPh7/AKF7Sf8AwDj/AMK1aKAuZX/C M+Hv+he0n/wDj/wo/wCEZ8Pf9C9pP/gHH/hWrRQFzK/4Rnw9/wBC9pP/AIBx/wCFH/CM+Hv+he0n /wAA4/8ACtWigLmV/wAIz4e/6F7Sf/AOP/Cj/hGfD3/QvaT/AOAcf+FatFAGV/wjPh7/AKF7Sf8A wDj/AMKUeGPDpOP+Ef0r/wAA4/8ACtSigLniGuXmgWvirWLO51TQ9IS2mWOG2bRIpjjy0JYtsPUs fyqoNT8K/wDQ2aD/AOE5F/8AG69W1P4e+Eda1KXUNR0WKe6lxvkLuC2AAOh9AKqf8Kp8CD/mXYv+ /kn/AMVWcqbbumNM8xnu/CFw0JfxZooMT+YpTQY1ydpGCBHgj5uh7gHtT/7T8K5P/FVaB/4TkX/x uuu8S/DbwbZ3ugCDQolW41EQyosjjchhmbnn1VT+Fbv/AAqrwJuI/wCEcj/7+Sf/ABVL2Uv5mFzz WPUvC2/nxdoJX+6PDsKn8/Lr0nwbpOi6t4O0y/udG0qaeeLc7iyjUMc9cBcCnf8ACqvAnfw7CP8A trJ/8VXTWNjaaZZQ2VjAsFrCu2ONeiiqjBrd3Bspf8Iz4f8A+hf0r/wEj/wo/wCEZ8Pf9C/pX/gJ H/hWrRViMr/hGfD3/QvaT/4Bx/4Uv/CM+Hv+he0n/wAA4/8ACtSigLmX/wAIz4e/6F7Sf/AOP/Cj /hGfD3/QvaT/AOAcf+FalFAXMv8A4Rnw9/0L2k/+Acf+FH/CM+Hv+he0n/wDj/wrUooC5lf8Iz4e /wChe0n/AMA4/wDCj/hGfD3/AEL2k/8AgHH/AIVq0UBcyv8AhGfD3/QvaT/4Bx/4Uf8ACM+Hv+he 0n/wDj/wrVooC5lHwx4e7+HtJ/8AAOP/AArifGXwb0fxRewXNlLFpBjQq0dtaqFfnOSBjmvS6KLB c8Hvv2fo7K3WW21C81CTeAYokjiOMHnLtj0/OsbUPgnrDWpGn6Nqf2jIwZ7y2KY78Bs19I07e3qa BHztF8ELsook0vWA+OSLu1x/6FWsv7O9s0aM2uXMBZQTE8KsVOORkHFe5bm9aQ8nmgDivB/wz0Pw xpDWlxbWuqTNKXM9zaoWAIAxyCccevc10H/CM+H/APoX9K/8BI/8K1aKG7gZX/CM+Hv+he0n/wAA 4/8ACj/hGfD3/QvaT/4Bx/4Vq0UDuZX/AAjPh7/oXtJ/8A4/8KP+EZ8Pf9C/pP8A4Bx/4Vq0UBcy /wDhGfD3/Qv6V/4Bx/4Vyvjrw7ZW1npVzo+jx2txFqMTPcafpwkkiQZJbCoSfyIrvqUEik0CZ5zB qVu/heTRr+71cmadzNNb6HcxPJG2fl4j4J4y3fn1rK0/RPDEUEkGoPr9zblBGkMOjXFsgVWBUkQw ruYYHzE/hXrnmN7flS+a3oPyp2Hc8c0e006x+KXhO10mDVFs4kvTvvoJo/mdZGIBkUZxnt+OTzXW fGm8u7D4d3NxZ3M9tKs0f7yCQowG4DqK19bwfF/hc4AJmuOf+2D1B8UdV/sjwHfXBsba93FIvJuf 9WdzAZbkcDOeootYW7PCdUe3svEt3Z2/j3Vbiwj0xrmGcamTvnHSPIOOeuOvavojwLLPP4E0KW4l eWZ7CBneRiWYmNSSSeSa8h8Nah4U1WfQNAbwzpM0lzNOL1bY7/KdAuxw2SShywwTj8uffI40iiWO NQqKMAAcAUWaYX0H0UUUCCiiigDjfFfxL0LwhqMGn3q3c93Mm8Q2sQdgM4BOSOp/lWJfXlp8TbWG e1W+shoGpx3U0U9uPMdo1Y7Aobqdw/wrQ8WalpPh/X11i/0DU5X+ym2bULVFdVjZgxDAOGGCo529 +OtWPh6/hq4tL+48O6jcX4lmDXMlw8jOH2gAHeM9AKFcZTT4taUfkXRPEDFeDix/+yqKXyviLq+k X9tBqOnrot2s7Le2mzzskHCnd22jt3qp8QdA8T6v4li/si81K1sU092/0O5EYecFiFI3A8jAzg9q 0/hxY63Ytqy6pb30Vu8ytam+vRcTbdoBBwzAAHJHPfpxQB3v3V+lYdr4x0G91htJg1GJr0EjyuhY gEkDPXAB6elbZyFOBk+lcHBd6xdeLnn1fwxexWti8v2KaCeOVCNrDeyBgdxXgcHG49OTQBu3vjfw 9p2tpo11qMcd+7KgiKsfmbG0E4wCcjAJ70ad448OapqcmnWmqwyXUZYFDlc7fvYJGDj2rk77Tdc1 HWZWttJP2DVbqx1D7TI6o1sIvKLI6H5tx8vAxn7xzUeh+FdUfUbDTNY0uM6fpqXiNcmRWS6WdsgB eowCc59KTHoWPjFPFJ4Y05Y5FZjqcGAD/vV3C9K8n+IngLw34b0bT7zSdMitp/7SgUupJOCTxya9 YXpTEOooooEFFFFABRRRQAUUUUAArnpvAnhO4mkml0CyaWRi7t5YGSTkn866Gg0AcPqGhfDTSLpb bU7PRrSZkDiOZ1UlckZwfcH8q5O9t/hoPH2moraP/Zxs5vMCSLs8zcm3ODjON+K9Rv8Aw7oerzif VNGsbyVV2K89ujsBnOMkZxyarf8ACD+Dx/zLGk5/684/8KlxKTMCz0r4V393HaWcOiT3EhISKN1L McZ4ANbH/CvvB3/QuWBx6xA1es/C3hvT7pLqy0DTbe4j5SWK1RWXtwQMitXOapIVxERIokiiRUjR QqqowAB0ApaKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWL4j8L2XieO3S7u7+38gsVNrOY85x 19elbVFAHCTfCLQ7gRiXWddYRuHUG8B2sARkfL7n86sW/wAMNJtriOdNZ11nRgw3XvcHPYV2dFA7 h04yT7miiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFAGFrX/I2+Ff+utx/wCiHq340itJfDkv22exggV0Yy3sPmxqQwwSu5f51U1r/kbvCv8A 11uP/RD1a8cLaP4Rv477Vf7LtXj2S3WASiEgHGe5Bx+NDGczYR3Flfx2ll4k8Nx3k4ykcWmEM49c C46V6DZi4FpCLto3uAi+Y0alVLY5IBJIGc9zXk/gOx8H6X4jjTw3ql9aXFwp8y1vImUXajuu8DkZ z8p/CvXqAYtFFFAgooooA8o+Jl1p9v4hsftF/wCIrucx5Gj6PKRuQHmRwmGxnAzntx3rovhvqPhu /wBFmXw7YyWPky7Lq3miKypJ3Dk5LH3yay/GUegL4ytJ/wC0dVtddFqy7dKg892h3D76+W4xnpwP 0rZ8B6dp1hbX72S6qZrm5ae5m1K2eGSWRuScMiDH0GKEM4/4j6g8PxI0a0VtRljayd5ra31L7IjD LbTnenOc556AV1XgJpHF47abfWikqFa41c3wfr0/evtI/DOR1xxz/j6ztrrx/pg1TwtcanphtCJL u2t7iR4my+F/dnHXHGM/NXTeCrDw9ZNd/wBhaTf6fv2GUXVtcRb+uMeaOcc9PUUCOvoxmlFFACYo xS0UAedfGQkeF9OI/wCgpB/7NXaJ0ri/jL/yK2nf9hSD/wBmrtE6UAOooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAwta/5G7w r/11uP8A0Q9XvGPhe28Y+HLjR7qWSKOXBDp1Uggg/pVHWv8Akb/Cv/XW4/8ARD11lAzznQfh9q/9 t2Wq+K9cXVJtN3fYUjhWJULYyzYAJPA65/GvRaXFFAgooooAKKKKAPnHxl8QdN1/X7fU9K13VdJe CFoR5emhmYMQTljIOPlXjHavRvhHq02raTfSS63e6rtlUCS7tRAU46DDNn869F8pP7opVUL0GKAu eVfE/wAQ6roniTSzLLqVt4d8pjdT6dGpk8w7goJYEAcL+ZrV+F2o61qdtqV1ePdy6TJMDp018oW4 dMfNuCjGM4wfrWH8T73U5fGWl6Uuu32i6W9s0j3VrCz5ky3BKkHoB+ddB8OLVbZL0L4tv9fzs/4+ o3QRfe+7u9e/0FAHenpWBoPiR9a1fV7BrCW1OnSImZWGZNwJzgdBx+tb9ZcWkm0vtUvrZwLi9CcO PlDKu0HjtQM57VPGmqWGuXNvBo8M1hbXltaSzm7KuGm8vBCbDkDzV71U034h6hdXFq1z4fK2l4ty 1u9vc+bI3kkggoVXk44+Y1fbwXPdajHfXOpurTPbz31vGn7uaaHaVZSeVGUXjuAKk0bwSukavFc/ 2jLPaW3m/ZLV0GIfMOX+bqeememaGGhw3xG8Xwa9o2m2kelava51KA+Zd2bRJ1PGTXqy9K4r4whV 8MaecAf8TOD+tdqvQ/WgQ6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigDC1n/kcPCn/XW4/wDRD11lcnrX/I3+Ff8Arrcf+iGr rKACiiigAooooAKKKKACiiigBCqk5IGaQKB0GKdRQAYooooAKKMijIoA85+Mv/Irad/2FIP/AGau 1TpXF/GTH/CLaf8A9hSD/wBmrtU6UALRRxRxQAUUcUcUAFFHFHFABRRxRxQAUUcUcUAFFHFHFABR RxRxQAUUcUcUAFFHFHFABRRxRxQAUUcUcUAFFHFHFABRRxRxQAUUcUcUAFFHFHFABRRxRxQAUUcU cUAFFHFHFABRRxRxQAUUcUcUAFFHFHFABRRxRxQAUUcUcUAFFHFHFABRRxRxQAUUcUcUAFFHFHFA BRRxRxQAUUcUcUAFFHFHFABRRxRQBha1/wAjh4V/663H/ohq6yuT1of8Vd4WPbzrgf8AkB/8K6yg AooooAK53xv4m/4RLwtdaqIllkTakSMwUM7MFGSegyck+gNdFXCfFfTNK1HwkTruqXFhpkMqvM0E YYsc7VHQnqQeKARzVxqnxL0fSJvFMuqaHqempC1w1rCMDZjPyuFBOB7miuc0QxeIJI/C7+OtWn0y dfIjtIdIMJ8sjABcpwMdzxRSuPQ+g6KKKYgooooAKDRUc0KXEEkMgJR1KsAccGgDzfWrnUzr+pXc Ot3kKWmqWFvHaRlfLaOQwBsgqTz5j9+1U/D1xr813o0ya/cySaiL7zIbhEkijaNiEwAFbA443c16 EnhvR1Nm7adbSS2aKkEssYd0C/dwx54x61Lb6HpdpqEl/b6faxXkow86QqHb6sBk0DucT4h8I+Lv FFpDaahq+jxww3CTqYrGTJZc4zmU8c1s/wBn+M8YGs6Lj/sHS/8Ax+s34uzTw+E7ZIbmeAT38MUj QyFGKnORkVA3wr8OMxO7UMn1vJD/ADNMDY/s7xl/0GNF/wDBdL/8fpf7N8Zf9BjRv/BdL/8AH6xf +FVeHfW//wDAtqP+FU+HP+n/AP8AAtqA0Nr+zfGX/QY0X/wXS/8Ax+j+zfGX/QY0X/wXS/8Ax+sX /hVPhz/p/wD/AALej/hVXhz/AKf/APwLagNDZ/s7xl/0GNG/8F0v/wAfo/s7xl/0GNF/8F0v/wAf rG/4VV4c/wCn/wD8C2o/4VV4c/6f/wDwLagNDZ/s7xl/0GNG/wDBdL/8fo/s7xl/0GNG/wDBdL/8 frG/4VT4c/6f/wDwLej/AIVV4c/6f/8AwLegNDZ/s7xl/wBBjRv/AAXS/wDx+j+zvGX/AEGNG/8A BdL/APH6xv8AhVXhz/p//wDAtqP+FU+HP+n/AP8AAtqA0Nn+zvGX/QY0b/wXS/8Ax+l/s7xl/wBB jRv/AAXS/wDx+sX/AIVV4c/6f/8AwLej/hVXhz/p/wD/AALegNDa/s7xl/0GNG/8F0v/AMfo/s7x l/0GNG/8F0v/AMfrF/4VT4c/6f8A/wAC3o/4VV4c/wCn/wD8C3oDQ2v7N8Zf9BjRf/BdL/8AH6P7 O8Zf9BjRv/BdL/8AH6xf+FU+HP8Ap/8A/AtqP+FVeHP+n/8A8C2oDQ2f7O8Zf9BjRv8AwXS//H6P 7O8Zf9BjRv8AwXS//H6xv+FVeHP+n/8A8C2o/wCFVeHP+n//AMC3oDQ2f7O8Zf8AQY0b/wAF0v8A 8fo/s7xl/wBBjRv/AAXS/wDx+sb/AIVV4c/6f/8AwLej/hVXhz/p/wD/AALagNDa/s7xl/0GNF/8 F0v/AMfo/s3xl/0GNF/8F0v/AMfrF/4VT4c/6f8A/wAC2o/4VT4c/wCn/wD8C3oDQ2v7N8Zf9BjR f/BdL/8AH6P7N8Zf9BjRf/BdL/8AH6xf+FVeHP8Ap/8A/At6P+FVeHP+n/8A8C3oDQ2v7N8Zf9Bj Rf8AwXS//H6P7N8Zf9BjRf8AwXS//H6xf+FVeHP+n/8A8C3o/wCFVeHP+n//AMC3oDQ2v7N8Zf8A QY0X/wAF0v8A8fpP7O8Zf9BjRv8AwXS//H6xv+FU+HP+n/8A8C3o/wCFVeHP+n//AMC2oDQ2f7O8 Zf8AQY0b/wAF0v8A8fo/s7xl/wBBjRv/AAXS/wDx+sb/AIVV4c/6f/8AwLej/hVPhz/p/wD/AALe gNDZ/s7xl/0GNG/8F0v/AMfo/s7xl/0GNG/8F0v/AMfrG/4VV4c/6f8A/wAC2o/4VV4c/wCn/wD8 C2oDQ2f7O8Zf9BjRv/BdL/8AH6P7O8Zf9BjRv/BdL/8AH6xv+FU+HP8Ap/8A/AtqP+FVeHP+n/8A 8C3oDQ2v7O8Zf9BjRf8AwXS//H6P7N8Zf9BjRf8AwXS//H6xf+FVeHP+n/8A8C2o/wCFVeHP+n// AMC2oDQ2v7O8Zf8AQY0b/wAF0v8A8fpP7O8Zf9BjRv8AwXS//H6xv+FU+HP+n/8A8C3o/wCFVeHP +n//AMC3oDQ2f7O8Zf8AQY0b/wAF0v8A8fpf7O8Zf9BjRv8AwXS//H6xf+FU+HP+n/8A8C3o/wCF VeHP+n//AMC2oDQ2v7O8Zf8AQY0X/wAF0v8A8fpP7O8Zf9BjRv8AwXS//H6xv+FU+HP+n/8A8C3o /wCFVeHP+n//AMC2oDQ2v7N8Zf8AQY0X/wAF0v8A8fo/s3xl/wBBjRf/AAXS/wDx+sX/AIVT4c/6 f/8AwLej/hVPhz/p/wD/AALegNDa/s7xl/0GNF/8F0v/AMfpP7O8Zf8AQY0b/wAF0v8A8frG/wCF VeHP+n//AMC3o/4VT4c/6f8A/wAC3oDQ2f7O8Zf9BjRv/BdL/wDH6P7O8Zf9BjRv/BdL/wDH6xv+ FU+HP+n/AP8AAt6P+FVeHP8Ap/8A/At6A0Nn+zvGX/QY0b/wXS//AB+j+zvGX/QY0b/wXS//AB+s b/hVXhz/AKf/APwLej/hVPhz/p//APAt6A0Nn+zvGX/QY0b/AMF0v/x+j+zvGX/QY0b/AMF0v/x+ sb/hVXhz/p//APAtqP8AhVPhz/p//wDAt6A0Nn+zvGX/AEGNG/8ABdL/APH6P7O8Zf8AQY0X/wAF 0v8A8frG/wCFVeHP+n//AMC3o/4VT4c/6f8A/wAC3oDQ2v7N8Zf9BjRf/BdL/wDH6P7N8Zf9BjRf /BdL/wDH6xf+FVeHP+n/AP8AAt6P+FU+HP8Ap/8A/At6A0Nr+zfGX/QY0X/wXS//AB+j+zvGX/QY 0b/wXS//AB+sX/hVPhz/AKf/APwLej/hVXhz/p//APAt6A0Nn+zvGX/QY0b/AMF0v/x+j+zvGX/Q Y0b/AMF0v/x+sb/hVXhz/p//APAtqP8AhVXhz/p//wDAt6A0Nn+zvGX/AEGNG/8ABdL/APH6Uad4 x76xo3/gtl/+P1i/8Kq8Of8AT/8A+BbUD4VeHP8Ap/8A/At6A0NuDQdcuNd06/1XVbGaOyLskVtZ PESWRk5ZpW7Me1dYK81t/Clj4W8Z+HX0ye8Vbh545Y5LhnVgIXbkE+oFelCkwYtFFFAgri/inY2e oeA72G/1VdMtwY3a5aPeFIcEDbkZyQB+NdpXEfFfyh4Eumlnu7cJLC4ltIRLIrCRSCFLL3A70Aih 4ffUlu9GaTxjpt/bXgZoYk07YZ1QDdtYSnBGR2/CivIvDviPRtO8T22s6tqHinVHtneWKFrJECyN jJ/1zeg6DnAoovfcPQ+o6KKQnAzQAtFeb6v8avDWieJJdHvY72NoSVlmMDBVYdsYyQfUDHIra8G+ P7HxvPfnTLO6WztWVFupU2rKxBJC/TA/MUAdaTgE1ydj4zXUvHEmhW1vutY7aWQ3Rbh5I5ERlUeg LHJ9eldYRuUg9K4+3+HWj6ZrTaxpX2i0vBDMiAXDvGGkxlirE5PHTpzyDgYBqwap4t1Cz1aaO3sY JLG1vLazuHeUrJumMeCoCkEDzV6nnmqun+PLqe5tprnTQunXaXL27wu0kuITg7kC98EgAk1abwRJ dXUd1dazebnkt57uGNYxHPNDswxyhYAmNeAR0p2jeBk0jUbW4/tW9uILTzfs1tKI9kfmHLcqgY/i aB6HE/Efxjpuv6Hp9pbR38M39pQNi5spYhjnuygfrXqi9K4r4wqieGdPbaAf7Tg5x9a7VOlAh1FF FAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigDC1oZ8X+Ff+u1x/wCiHrrK5PWuPF/hX/rrcf8Aoh66ygAooooAK5D4mXFva+BdQmud TvdOjQIfPsT+9zvGFXkdTgdR1rr64/4mWumXngq6g1aW7jtmeMZs03Slt67QowcktgfjQB5X4OtY 9X1lNPvvE3jaznuoWNst5I8QlGD8ykM2cdaK6eLRLGTXdDuz411yPUbhJYrITxRKy7QC6lGiwG5G cjJ9TRRZBdo9drnPFnipPC/9kmS1acX9/FZcPt2b8/N05xjpVDXPiHpnhvxXFpGrvDa28tr56XTS k/NvxtK7eOMnOex4qDU4dI+Jdrp02j61FImmajFdu0S78lAfkPIxnPWhNBY5rx1Bdad8SrDXLJtE ZfsIimt7+6SEuNz8jd9Rz7V03hjxlb3E/wBi1F9DsppWVbaO01JJTKT2CjHPTpnOa534i+FNQvPG uma/DpVjrNpaWpil0+eYRtJ9/wCb5gRgbgfwq78P/Alrb3V3reoaPpdvLPcCa0toVEpswABgSdM5 GflGB69gX1sO2h6YKWkAwKXI9aBBRRkUZHrQB5z8Zf8AkVtO/wCwnB/7NXap0ri/jL/yK2nf9hSD /wBmrtF6UDHUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAopQpPY0FSOxoASilw392jDelACUU7aR2NM5z0oAWiiigAooooAKKKKACiiigAooooA KKKKACiil+QEBpFUkZwaAEorP1jV4tJtVmW1uL1i4XyrXYWAwefmYDHH61zl/wDEmx02za6utB1x IUIDN5MfGTgf8tPU0AdnRXLR+No5hlPD2tqfR4Y1P6yV0tvPHcW8cvMe9Q2x8ZX2OCRQBJRQGVgS jBgDjIooAKKKKACiiigAoopCQOtAC0UhZR3o3L6igDD1r/kcPCv/AF2uP/RD11lclrLD/hMPCvPW W4/9EPVzxpqB0zw1Pd/2wmkeWVJumg84LyONnfPSgDoaK8Lg8R+P9eaNfDOtG+R5Nv2mfTI7eHbz 82fMZuoHGyvZtHjv4tHs01OaOa+WFBPJGMK74G4jgcE5oAvVxvxRfSo/Al6+sy3kVkrRszWZAlyH XbtJBHXFdlXJ/EeDRbnwZeR6/JcJp+UL/ZseYx3rtVcg8lsD8aBo8x+HVlo0Hje1m1TTfEFnqMod 7BtWkDJKcfMR8i/NjH5/SirOhP4X8S6tYJa6x4usrxWlgtJbmdV+ZQu9FOCM4K5FFGo9GP8AjVqw s9Qihj0XSnmW3Exvr+2SVnXeF8tNynn5sn2rq/hZd2l1a6p/Z9rYR2cU6pHNZ2nkLMdiliRgZwxI /Cuau/GuteK/Bp1y08J2N9G2oC3tIJ4GuSIyrbncDpyFGRgc12vw/wBcfULTUtPudPtLG50q6a1l WzG2Fsc7lHbr0pWadmK6aujM8ceB9Z8Q+I1vtOuLKKKXTmsJGn3b4ldm3MgAxnacckdTS+G9G074 d65c21xqgih1q5RLCyVG2KyoAcYGAzE89OgrpLfxz4Yutak0eHWrRr+Ngpi8wDLHjaCeGPsCTXM+ K4G8UeNdAj0l4p20PUFk1FfMAaFWCMpweTkA9M9KYHozcr1xXlsDavpPxM0qGHWLzUNPvPtH215b kOittZ0VY8/IBtAyPXFepD7oBFZg8O6MjzSRaXZxyzKVkkjgVWYHqCQM80rAmcBruo3cnie8uYtd uYvsWpWFvBZxTbUkjkMO8lR97PmN16beKpaFqWuXOpafPaa8817qcd8HtbiQtFCyNiL5ByoAA6cn nrXo1v4V0K3e2lXSbNp7eNY4pnhVpFVQAvzHnjA71YtdA0ixvXvbTTLOC6kzvmigVXbPXJAzQO55 F8QB41h0nTf+Ekm0R7D+0oMtbGQODk9dwAxXqS6xpKj5tVslz2M6/wCNcn8aoI7jwhYwzJvjfUoF ZfUfNkVb/wCFZeDWJP8AYUA/3WcD8gaYnqdF/bWj/wDQWsf/AAIX/Gj+29H/AOgtY/8AgQv+Nc6f hh4N7aHD/wB/H/8AiqP+FYeDf+gFD/38k/8AiqLCOi/tvR/+gtY/+BC/40f21o//AEFrH/wIX/Gu d/4Vh4N/6AUP/fx//iqP+FYeDf8AoBQ/9/H/APiqLAdF/bej/wDQWsf/AAIX/Gj+29H/AOgvY/8A gQv+Nc7/AMKw8G/9AKH/AL+P/wDFUf8ACsPBv/QCh/7+P/8AFUWGdF/bWj/9Bax/8CF/xo/trR/+ gtY/9/1/xrnf+FYeDf8AoBQ/9/H/APiqX/hWPg7/AKAcP/fx/wD4qiwHQjWdJP8AzFbH/v8Ar/jR /bejYydXsf8AwIX/ABrnh8MfB2D/AMSODoerOf5mvILK38L2TXltcfDvWNTkhvLiMXVs0xjZRK4U Ag44GB+FLYR7RqnjjTdPn8uGCW+Xbnzbe4ttv0+eVT+lZMnxSso7yO1bRNT82RC6jzLYggYBOfOx 3rzgN4Q7/CjxCPoZ/wD4qpTN4SxgfCnxDx3KzZ/PdRdgerWHjmyvLqOGXT7m1Rycyz3FrtXjPO2Y n8ga2m1zRlz/AMTewA97hf8AGvDN/hAn5vhT4iP/AH//APiqoawPC50q4+yfC/XbeXYds0pnVYz6 nk9KTbGj6CGtaQRn+1rHH/Xdf8aP7a0f/oLWP/f9f8a5DRvht4QudA0y4fQ4t8tpFI2XfOSoP96r 3/CsPB3/AEA4f+/j/wDxVVYDof7a0f8A6C1j/wCBC/40f21o/wD0FrH/AMCF/wAa53/hWHg3/oBQ /wDfx/8A4qj/AIVh4N/6AUP/AH8f/wCKosB0X9taP/0FrH/wIX/Gj+29H/6C9j/4EL/jXO/8Kw8G /wDQCh/7+P8A/FUf8Kw8G/8AQCh/7+P/APFUWA6L+29H/wCgtY/+BC/40f21o/8A0F7H/wACF/xr nf8AhWHg3/oBQ/8Afx//AIqj/hWHg3/oBQ/9/H/+KosB0X9taP8A9Bax/wDAhf8AGj+2tH/6C1j/ AOBC/wCNc9/wrDwb/wBAKH/v4/8A8VSf8Kw8G/8AQCh/7+P/APFUWA6L+29H/wCgtY/+BC/40f21 o/8A0FrH/wACF/xrnf8AhWHg3/oBQ/8Afx//AIqj/hWPg3/oBQ/9/JP/AIqiwjo/7a0f/oLWP/gQ v+NA1nSCf+QtY/8AgQv+Nc5/wrHwd/0A4f8Av4//AMVTh8MfBmOdCh9/3j//ABVFhmNJ4pur7xBq 8cXjrS9LtbacRQRPFE5ZfLQlsswz8zMPwNUdRDatt8/4wLDszgWbRQfnsYE/jUuqfAjwpqWpS3cc 99ZpJj9xbuoRMDHAKk89eveuc8Q/Cj4deE1t21rxBqdqLgsI84fdtxn7sZ9RUSjJvRj0L39hwf8A RZtR/wDBh/8AZ1JDpMMMiuvxlvCVIIEl6GH4gvg1wmo+HfhXFLYCy8T38sUlztuGZGykflucgeWP 4gg79TWhD4R+ENxcx28fi7UN8jBFBUgZPA5MWBU8s7/EL5HpcGrTIu0/FHTZMDgNBb5/Q1ueFvFd lqfhawvNQ1ax+1yJmQ+aqZOcdM8VxR/Z68LbTjVNV5HGJE/+Iro7H4TeDbKxhtjpQuGjXBmllbe5 9TtIGfwq4prdhodR/bej9tXsD/28L/jS/wBt6P8A9Bax/wDAhf8AGud/4Vh4O/6AcP8A38f/AOKo /wCFYeDf+gFD/wB/H/8AiqqwHRf23o//AEFrH/wIX/Gj+29H/wCgtY/+BC/41zv/AArDwb/0Aof+ /j//ABVH/CsPBv8A0Aof+/j/APxVFhHRf23o/wD0FrH/AMCF/wAaP7a0f/oLWP8A4EL/AI1zv/Cs PBv/AEAof+/j/wDxVH/CsfBv/QCh/wC/j/8AxVFgOi/trR/+gtY/+BC/40f23o//AEFrH/wIX/Gu d/4Vh4N/6AUP/fx//iqP+FYeDf8AoBQ/9/H/APiqLDOi/tvR/wDoLWP/AIEL/jR/bej/APQWsf8A wIX/ABrnf+FYeDf+gFD/AN/H/wDiqX/hWHg3/oBQ/wDfx/8A4qiwHQ/23o//AEFrH/wIX/Gga3o/ /QWsf/Ahf8a57/hWHg3/AKAUP/fx/wD4qk/4Vh4N/wCgFD/38f8A+KosI6Btc0df+YtY/wDgQv8A jXjnxPhtdc8eWxtdc0m2iXTMGa5ZZEyJfujg4OGz9Aa9E/4Vj4O/6AcP/fx//iqmi+HXhCEYHh+y b/fTf/Mmk0NHhqeHfLkzH428OA/7MA/+N1I+jOqHzPHHh9lPUNbgj8tlez6r4B0s2Y/sHRPD9veb hlruxWRdvOfxzj9a5jWPhl4i1fSprAp4St1kKnzbewKOuCDwce386nkfcdzgTosrDB8caBj2g/8A sKj/AOEahYkHxp4bz7265/8AQK9RTwF4gXg2XgrbgDH9mn/Cuii8BeGGt4/tfhzRmuto81obRVQt 3wOwzR7PzC5yfwhubHS9C1a1utX0/cupyFXSZVWRdqjco4wDg16J/bWj9tWsP/Ahf8awZfht4PlO ToFov+4GT+RFR/8ACsPBv/QCh/7+Sf8AxVWI6L+2tH/6C1j/AOBC/wCNH9taP/0FrH/wIX/Gud/4 Vh4N/wCgFD/38k/+Ko/4Vh4N/wCgFD/38f8A+KosI6L+29H/AOgtY/8AgQv+NH9taP8A9Bax/wDA hf8AGud/4Vh4N/6AUP8A38f/AOKo/wCFYeDf+gFD/wB/H/8AiqLDOi/tnSD/AMxax/7/AK/41yvx A1t/7K06DRdUZp7jUIoXSwnQTSI2QVUkgA5x3FWf+FY+Dv8AoBQ/9/H/APiq5vxn4N0nw7Z6Xqvh /RVivbbUIn8xI5ZQqg5JYLk44FAIk0/TTeaJe6rJ4v8AFVvHYyPHcwvKGkjZOowu4HqOhNVPD72+ vWc1yPGHiezjigW4/f3UZzGeh+Rm2ntg4PtUjeK9NXwnc6Qtw1nd3krtcy22n3Z4f7zDchO49OT/ ACxWFor6DFps1nd3slmWt4IF/s3SrkbjE6urtujOWyo7dznPGFdjNLQb57v4i+EZYtX1O+sbhLxo 1vyN6lFkQngd9vevQviQJT4KvfLu9PtQApeTUI98W3IyCu1sk9AMHkivNvDQij+I3hG3hmvLpIhf sbm4sXtw5cSvgblUHrzjuTXpPxI0Kz8ReCrywvdQi0+M7XW4mYKisCMbs9s8fjR6g99DxTQfDmpe I78x+HvF+iWl3ENx/s+0azkYfVY0Zl/MV9D6Fa3ljoNha6hc/abyG3jjmmyT5jhQGbJ55IJrybwX plr4m8Y2Orv4j0m4k0mIxxWumRGItxgs24BiOe3Hp3r2mnp0J12YtZmu6LDr2nC0nlliAljlV4iA ysjh1IyD3UVp1keJbnWbTRpZtBsoby/Urshmk2KRkZ5yO2aGrgc34e+GOnaH4gm1qe9ub64MrzQi 4Pywu/3mUDjccDn2orjvFfiP4rx+GNRe58O2VjbC3fzLm3ulMka7TllxJnIGTwKKSVtB76m3L8Mt e0qSS38JeLJdJ0t3Mgs3tlmCMeuGJzj2q4tvp/w50e0sruW4u7vXb8QXV8Dh3nlDfOR2GR0HTPet PxZ8StD8H6hBYXyXc91Mu8RW0YYgZwCckdTWJf3Vv8SoIZrSO9sT4f1WO5miuIB5jtGrEoFDcE5F PcNiPRPhgV0m70HW4bC405GLWF5AhS6UsxYlm9QSMY9PSqPh7Trr4Z+J2XWL99Vn8RXcNtby4IYB BjdIT6bwOPSuij+KVi5KJ4f8ROV4O3Tyen41VuE/4WFrejX1vb6jpw0W7W4dL60MfnAkHCknts9O 9O72Dfc9G680tIOF+lZVl4m0XUdSn0601K2mvICRJAsgLqQcHj2pCNaisu68RaPZarDplzqNtFfT /wCqgeQB2+gotfEej32pT6dbalbS3sHMkCyAuv1HWgLHG/GX/kVtP/7CcH/s1dqnSuJ+Mbq3hbTw pyf7Tg/9mrtl6UDHUUUUCCiiigAooooAKKKKAFBxXEyfDXT/AD5ng1jXLZJZXlMUF5tRSzFjgbT3 JrtaKAPIPFEfhTwffxWOreLPFcc0sQlUR3BYFckddnqDXLzeLvCaavai38W+Kzppik+0HzTuEmV2 YJXpjfnj0r6GZVc5ZQ3GORTfJj/uL+VFkO7PF9E1HwV4i1eDS7Hxf4sa6uCRGrzkAnBPXZ7V2U/w t065ieG41/xDLE3Do96CGHoflruFRFOVUA+wpTzSsg5mMgijtraG3iGI4kEaDPQAYFPoopiCiiig AooooAKKKKACiiigAooooAKKKKACmTwQXKBbi3imUdBIgYD86fRQBT/sjSz/AMwux/78LT003Toz lNOtFPqsKirNFAATmjFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUZoooAM0UUUAFFFF ABRRRQAUUUUAFB5GD0+lFFADdg9vyoK59PyFOooAwdaRR4u8LEAA+dcdv+mD1U+LOiXGveA7uyt7 i3tzvR3luZNkaKrAkk9hgVc1n/kbvCv/AF2uP/RD1B8T7GHUPB0kE9xZwxefCzm8lMcTgODtLDpn GKBnmdjD4n1vW9P1HRZ/BV1eaUr7I7GVxkMAPmCtk9OOg5Ne6aY96+mWzajHFHemJTOkRJQPgbgu e2c4rxLwT4b0yLx9b3drrGiW8UU80trbWF15ksocAbGJxwoXPAPU17vQDFrkviTrup+G/BF/qmkx o91CF270LBQXAJwPQEmutrG8UXq2GiTTNf21h0AnuYjIi5I6qGXPp1FAI818KeKtbXxTpukXXiLT /FNrqSOZxbRxhrQAA5bacbTnHNFWNH8V3reNNK0qx1nSdUtrsyNcGysGRowoB5Pmkc56+3Q0Umws b3jK70PR9VOp6r4e1C63WxtnvLaJZEEZYMVYB8jBUHJX6GrHw9m8NXlpf3fh2/uL3zp911JcPIz7 8AAHfz0ArnfiXd2Fp4hsjcaj4jupmjz/AGPo8zDcgPLuFwcZwM57cd66L4cal4bv9GmXw/YSWPky bLmCaIpKsnfeTksffJoQNmJ4/wBC8Uap4kR9IvdStrFNPZgLS7EQknUsQrDcDyMDODjitT4eWOu2 L6qNWt7pIJJla1a8vRcTbNoBDEFgADnHPc8evMfEzUZYfiFpFpGb6aNrJnmtYtS+xowy21t29ec5 zz0Arqvh9LJMt476fd2o+QAzawb5W69MyPtxn2zkdcVQrnbn7p4zXm0R07/hNoCPCeo2SaWk7wSx 2UaxOxU7juRu43YH8RYZ5Ar0sUhUHsKQ0zyS+trjVPEM8sPh68kfU73Tr22vTEgSKGMQswdi2VI2 v8vOS1Q+H/DUt3qen6ZfaBdWy2qXyX10wVEmE7HGxlbLHB69q9gCgYAGMUuKVh3PEPiB8O9B8MaV p17piXEcv9owrh53dcEnsSfSvX06VxfxkOPC+nEf9BSD/wBmrtE6UxN3HUUUUCCiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMLWj/x V3hX/rtcf+iHqXx5q+iaJ4YlvNfsPt1gJEDQeSkuSTx8rkCotb/5G7wr/wBdrj/0Q9U/isdFTwPP Lr8dzLYRzRu8VsQHkO8YXJ7evTjvQMwPsPgxfGfha8sLSDSL13uEW3js4xvdVQFJNnCsMnB5788i vVvSvJPDdromkeLrCO+8KX1he3fmvZXFxeG8XcApcn94+xiMZOPbNetjkZFAMWuf8aagml+Gri7f UZNP2FMTxwCZgSwAAQ9ck4/GugrkPiY2mL4Ju21a/uLG1Vo38+2GZFYSKV28HnIH/wBagSMHTLe3 vvEfh/VdQ8WS3kzLN9igFsLfecLvVsHnAx8pxRXH/Dqx0Kfxzb3N9N4kXUPnnsl1lNqzMR8zp6nG O/p1oo0Y3fodv4vh8Pt4ytZv7T1S215LVhs0uAzyNDuHLr5cgxnpkD9Bja8D6Xp2nWt69kuptNc3 DTXM2o27xSSyNyThkQY+gxXj/jH4habruv2+qaRr+qaTJBC0I8vTQ7MGIJyTIP7q8Y7V6J8JNYuN Y0u+kn1y81bZKoEl1aCApx0GGOaSBlPx5p8F78QNMGp+F59S0o2hEt3b288jxNlyF/dHpnHY/erp vBul+HdOa6/sLSb2wL7fN+0288W/GcY80DOMnp61zHxM8RatoXiXTGkl1K28OeSTdz6fErSeYdwU FmBAGQv5mtP4X6lrWqwaldXj3UukyTA6dNeoqTumPm3BQBjOMH60wPQqKCcDNYmjeJLfWtS1Szgi lU2DojO4wH3DIK+2KBG3RXGan48bT/FA0tNIuJ7SKaG3ur1XAWGSbbsG3+L765OeM96qWnxOt5b+ VbjSby308xzyW94cMJhBxJ8vUYIOOufai47Mr/GX/kVtO/7CkH/s1dqnSvHvH/xF0DxXo+nWOmzT G4/tGF9skRXjkf1r2FelANWHUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKAMLWv+Ru8K/9drj/ANEPVH4uf2N/wgF4dcN19jDo dtqQHZtw2gEgjr+lXta/5G7wr/11uP8A0Q9bHiHw/YeJ9Gn0rUovMtphyAcEEcgg9iDQB4LofhnR NU12x07VpfFmi3sybrBri7X94O4VvL+U4xxxX0FpliNN0y2shPNOIIljEs77nfaAMse5OOTXOaX8 O9J07W4dYmub/UL6BPLhkvZhJ5Q/2QAMV11AC1x3xOh0W48E3UXiC4ubfT2eMPJbLlwd64wMHvjt XY1geMfDNt4t8PyaTeTyQwSSRs7R43YVg2BnpnGM89aAOKGi6VPrGhzN4x1yLUJVlSxE8cCMCAu9 SrQDDYI6jJ7UVv6T8PNF0rWYtUa8v725hd5IzdzBwjuAGYAKOcKPyopajudl5aD+EUqqF6DFOopi PIfidf6ofGWl6Yuuaho+lSWzPJc2cLP+8y2A20g9h+ddD8ObdbdL0Dxbf6/nZzdRugi+903E9e/P YV3hUE5IFIFAPAxQAtY8OjvY3+r6hbOpnvQhVWXhWVNozzz2rZooA89bwXr1/qa3dzqtvDb3ctpd 31ssG5vOhEZwjZ+6TGP/AK9TeH/A+paVrVrNdatHcadYed9jgWDaw805bc2ecdq7zFFA7nnPxgRE 8M6c20AjVIMf+PV2qdK4r4y/8itp3/YUg/8AZq7VOlADqKKKBBRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGFrXPi/wqP+mtx/6Ieu srk9Z/5G/wAK/wDXW4/9EPXWUAFFFFABXCfF61a5+Ht4BDNOiSRPJHCcMUEilsfhmu7rnfGurXmj +HnuLBbc3Uk0UEZuSRGpkkVNzY7Ddn8KAPEtX0f4XR+Fbm60bVLltS8hjbRLM+9pdp2jaR/exRWh 8OtRuU8axWup6boN7LNdTxLcWVnEktu0YBLkqo+U7uD14P4lTdMrVHv9FFFUSFFFFABRRQelABRX mms3epf2/qNzDrd3EtrqlhbxWiFfLeOQwBsgqSc7379qztF1LxFJNpk1nrMtzdXyX5e1utpiR42I jHChlGcA80DSNf4yY/4RfTs9P7Ug/wDZq7ROleX+IdE+J/inToLS/t/DkaQ3CXClHmBLLnAPXjmt NpPiwGIFp4Xx7Gb/AOKoQWO/orz/AMz4s/8APp4X/Ob/AOKo8z4s/wDPp4X/ADm/+KoCx6BRXn/m fFr/AJ9PC/5zf/FUeZ8Wf+fTwv8AnN/8VRYVmegUV5/5nxa/59PC/wCc3/xVHmfFr/n08L/nN/8A FUWHY9Aorz/zPi1/z6eF/wA5v/iqPM+LX/Pp4X/Ob/4qiwWZ6BRXn/mfFr/n08L/AJzf/FUeZ8Wv +fTwv+c3/wAVRYLHoFFef+Z8Wf8An08L/nN/8VR5nxZ/59PC/wCc3/xVFgsegUV5/wCZ8Wf+fTwv +c3/AMVR5nxZ/wCfTwv+c3/xVFgsegUV5/5nxZ/59PC/5zf/ABVHmfFn/n08L/nN/wDFUWCx6BRX n+/4tf8APp4X/Ob/AOKo8z4tf8+nhf8AOb/4qiwWPQKK8/8AM+LX/Pp4X/Ob/wCKo8z4s/8APp4X /Ob/AOKosFj0CivP/M+LP/Pp4X/Ob/4qjzPiz/z6eF/zm/8AiqLBY9Aorz/zPi1/z6eF/wA5v/iq PM+LX/Pp4X/Ob/4qiwWPQKK8/wDM+LP/AD6eF/zm/wDiqPM+LX/Pp4X/ADm/+KosFj0CivP/ADPi 1/z6eF/zm/8AiqPM+LX/AD6eF/zm/wDiqAsegUV5/wCZ8Wf+fTwv+c3/AMVR5nxZ/wCfTwv+c3/x VFgsegUV5/5nxa/59PC/5zf/ABVHmfFn/n08L/nN/wDFUWCx6BRXn/mfFn/n08L/AJzf/FUeZ8Wf +fTwv+c3/wAVRYLHoFFef+Z8Wf8An08L/nN/8VR5nxa/59PC/wCc3/xVFgsegUV5/wCZ8Wf+fTwv +c3/AMVR5nxZ/wCfTwv+c3/xVFgsegUV5/5nxZ/59PC/5zf/ABVHmfFn/n08L/nN/wDFUWCx6BRX n/mfFn/n08L/AJzf/FUeZ8Wv+fTwv+c3/wAVRYLHoFFef+Z8Wv8An08L/nN/8VR5nxZ/59PC/wCc 3/xVFgsegUV5/wCZ8Wv+fTwv+c3/AMVR5nxa/wCfTwv+c3/xVFgsegUV5/5nxZ/59PC/5zf/ABVH mfFn/n08L/nN/wDFUWCx6BRXn/mfFr/n08L/AJzf/FUeZ8Wf+fTwv+c3/wAVRYLHoFFef+Z8Wf8A n08L/nN/8VR5nxZ/59PC/wCc3/xVFgsegUV5/wCZ8Wf+fTwv+c3/AMVR5nxZ/wCfTwv+c3/xVFgs egUV5/5nxZ/59PC/5zf/ABVHmfFr/n08L/nN/wDFUWCx6BRXn/mfFr/n08L/AJzf/FUeZ8Wf+fTw v+c3/wAVRYLHoFFef+Z8Wf8An08L/nN/8VR5nxa/59PC/wCc3/xVFgsegUV5/wCZ8Wf+fTwv+c3/ AMVR5nxZ/wCfTwv+c3/xVAWOj1n/AJG/wr/12uB/5AeusrzrSNN8dX/ijTL7xGuix2dj5jBbIybi zRsg+9kY+avRaBBRRRQAVy3xD14eGvBd9qhsY70whdsMg+UsWABPsCc/hXU1j+JEuJNK8u2v7exm eWNFlnhEqklwAu3cuSSQOvegDhtD12XT/GGlabLYaLKdWt2nE+lW5Ro17M/Jyp6ZopbO/wBWPiZ9 Fj8ZaM+pxIB5D6UwOMZwMTDOBg496KWo7HqFFFFMQUUUUAFMmiSeF4ZBlHUqwzjINPJwK5Ox8ZLq Xjd9DtoA1otrLL9r3DDukiIyqPYscn1HFAWNRfC+iiSylbTbaSayRY7eWSMO8ar0wx5/Wp7bQtMt NSm1G3sLaK8nGJZ0iUO492Ayeg/Kuf1PxZqFpq88dvZW8lja3ltZ3Ejyssm6Yx4KgKQQPNXqR3qt pfjq7uby1ku7COPTr1bhreSJ3eX9y2DuQL3AJAUk9KQ7Dfivf32n+GLVrC8ntZZb6KJpIX2ttOc8 1MPBMLDLeJPEZPf/AE8/4VzHxR8UaZq2h6daWklx539pQNiS1ljGBnPLKBXpidKYHM/8IPb/APQx +JP/AAPP+FH/AAg9v/0MfiX/AMGB/wAK6iii7C5y/wDwg9v/ANDH4k/8GB/wo/4Qe3/6GPxL/wCD A/4V1FFFwucv/wAIPb/9DH4l/wDBgf8ACj/hB7f/AKGPxJ/4MD/hXUUUXYXOX/4Qe3/6GPxL/wCB 5/wo/wCEHt/+hj8S/wDgef8ACuooouwucv8A8IPb/wDQx+JP/Bgf8KP+EHt/+hj8S/8Agef8K6ii i7C5y/8Awg9v/wBDH4l/8GB/wo/4Qe3/AOhj8S/+DA/4V1FFF2Fzl/8AhB7f/oYvEn/gef8ACj/h B7f/AKGPxL/4MD/hXUUUXYXOX/4Qe3/6GPxL/wCB5/wo/wCEHt/+hj8S/wDgef8ACuooouwucv8A 8IPb/wDQx+Jf/Bgf8KP+EHt/+hj8S/8AgwP+FdRRRdhc5f8A4Qe3/wChj8S/+DA/4Uf8IPb/APQx +Jf/AAPP+FdRRRdhc5f/AIQe3/6GPxL/AODA/wCFH/CD2/8A0MfiX/wYH/CuooouFzl/+EHt/wDo Y/En/gwP+FH/AAhFv/0MfiX/AMGB/wAK6iii7C5y/wDwg9v/ANDH4l/8GB/wo/4Qe3/6GPxL/wCB 5/wrqKKLsLnL/wDCD2//AEMfiX/wPP8AhR/wg9v/ANDH4l/8GB/wrqKKLhc5f/hB7f8A6GPxL/4M D/hR/wAIPb/9DH4l/wDBgf8ACuooouFzl/8AhB7f/oY/Ev8A4MD/AIUf8IPb/wDQx+JP/A8/4V1F FF2Fzl/+EIt/+hi8S/8Agef8KP8AhB7f/oY/Ev8A4MD/AIV1FFFwucv/AMIRb/8AQx+Jf/Bgf8KP +EHt/wDoY/Ev/gwP+FdRRRdhc5f/AIQe3/6GPxL/AOB5/wAKP+EHt/8AoY/Ev/gwP+FdRRRdhc5f /hB7f/oYvEn/AIMD/hR/wg9v/wBDH4l/8GB/wrqKKLsLnL/8IPb/APQx+JP/AAYH/Cj/AIQe3/6G PxJ/4Hn/AArqKKLhc5f/AIQe3/6GPxL/AOB5/wAKP+EHt/8AoY/Ev/gwP+FdRRRdhc5f/hB7f/oY /Ev/AIHn/Cj/AIQe3/6GPxJ/4MD/AIV1FFFwucv/AMIPb/8AQx+Jf/A8/wCFH/CD2/8A0MfiX/wY H/CuooouFzl/+EHg/wChj8S/+B5/wo/4Qe3/AOhj8S/+DA/4V1FFF2Fzl/8AhB7f/oY/Ev8A4Hn/ AAo/4QeD/oY/En/gef8ACuooouwucv8A8IPB/wBDH4l/8GB/wo/4Qe3/AOhj8S/+DA/4V1FFFwuc v/wg9v8A9DH4l/8ABgf8KP8AhB7f/oY/En/gwP8AhXUUUXYXOX/4Qe3/AOhj8S/+DA/4Uf8ACD2/ /Qx+Jf8AwYH/AArqKKLsLnL/APCD2/8A0MfiT/wYH/Cj/hB7f/oY/Ev/AIHn/CuooouFzl/+EHt/ +hj8Sf8Agef8KUeCLfP/ACMXiT/wPP8AhXT0UXC5yA0mbQPFugrb63q1zDdyTJLDd3JkUgQuw49i BXfDpXJ61/yN3hX/AK63H/oh66ygTCiiigArjvic1lF4HvJ768ubRIXjkjntRmVJBIpQqMjJ3Y7j 612NcX8U/sA8C3j6le3NpBG0cgktVzLuDgqFHqWA7j17UMEcd4fsfC8E3hXVLnVNQmupHu7xJbsf PLNiNX8zBJBGBgZPTr6lZfgjT9Bk8SfZL+68U2+o3MMn2X+1H8stvADtGVJw+AOc0UtSlbqe80E4 orI17xHp/h4WP29nX7bdJaQ7VzmR84z6Dg80yTHuviV4as/Fi+H59Rt0lMRczmZPLRwSDGzZ+VuD wav6B4x0vxJqWp2WnSmU2DoryLgo+5cgqw4PII/CvNPiDbXWkfE6x1uz8Ivrdo1gUmjjhLAuWfnI UjOCOoPFdn8P9bbUorqJvB83h2OMqyq6BVkJznA2ryMDt3p6AduQGUg9K5G0+Hmj6RrMmsaT9otL swyxqomZ41aQgltjEjqM44Ht0x19FILnHDwRJcT/AGi81m7LTS29xdQxLGscs0Ijw3KFgCY1OARU uj+B4dIvbOYale3ENl5v2aCXy9kfmfe6IGP4musooHc85+MKqvhnTzgD/iZwdvrXap0rivjL/wAi tp3/AGFIP/Zq7VOlAh1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUoUmkAlFO 2n2o2+4pgNop2z3FHln2oAbRSkEUlABRRRQAUUUUAFFFFABRRRQBha1/yN/hX/rrcf8Aohq6yuT1 n/kb/Cv/AF1uP/RDV1lABRRRQAVk+JPD1l4o0O40m/D+RMBlkbDKQcgg+oIBrWooA4vR/h1Z6drk GsXmpahql5bR+XbteSKwhHcqFUDJ9Tk0V2lFAGJceJ7K18TRaFcLLFcTQGeORwBG4BAKg5zu5zjH Ssjx34cvPFEeh/2fLAPsWqQ3chkYjKJuzjAPPIrl/ib4h0HSNbCXnhvTtSvEs/OaS92JlPMChELI 25ssTjsATXR/D66sJjqlvYaXYWKQSoH+wyK8bsUVjyqqMjIH4UlJDasct8T/AAXJrvi/Sb+60+/v tKjtjDMlgy+arDcQcNxgkj8qqfDX4X28GrT6xfaXe2P2a7D2CzXQLlQB99VGOvvz0xxk9J48sPGk viKCXw4sklrcWTWjH7aYktpGJ/fFc/MQDxgE8VZ8IWmreGNS1C21/WmmtLm4ii0xLu5Mkrts+fBb nknpn+E+vL3A70cCjI9aG5U84rym0bV9K+JmlpBrVxqOmXwuDeSPdeYiNtZ1AjzhACAAR9D7oErn q2R60ZHrXmOtalcv4kvbmPWriNrPUrC3t7WOYqjxyGHeSgOHyJW656cVT8N6pq02saXdxavJc3Op JeiaznmPlRtG37r5edgwAMgc55zTCxrfGT/kVtO/7CkH/s1donSvM/ihPr7aLpo1Wy02G1/tODLw XjuwOTjho1GPxr0hZ4xnLp/30KAJqKh+0xf89E/77FH2mL/non/fQoETUVD9qh/vp/30KX7TD/fT /voUAS0VF9pi/vp/30KT7TD/AH0/76FAE1FQ/aov76f99il+0w/89E/76FAEtJuGcZFMS5hJP7xB x/eFeD6tB8S013UjaxajPatdytA66sEUxlztwocYGMUAe0aj4k0XSJvJv9Tt7eTaG2u4BwazT8RP CAlEZ8QWm4843V4tLqfxE0+Tbc6JrMzEZBW9mlH5qxqs2seLH1CPUH8Iao97GhjSVpZyQuc4496m 77BY+grHxToGpXCQWWrW00r/AHURwSeM1rEqCRkcV84x678RLphHD4f1qMt0PnzoPzJH86kktviv cgJFBfQEkfOdXbK8+jS/0ppvqgPoqiqlpMUsLZbmZHuBEolbeOWxyfzqX7TD/fT/AL6FMCaioftU P/PRP++hS/aYf+eif99CgCWioftMP99P++hR9ph/vp/30KAJqKh+0w/30/76FH2mH++n/fQoAmoq H7TD/fT/AL6FH2mH++n/AH0KAJqKh+0w/wB9P++hR9ph/vp/30KAJqAMmoftUP8Az0T/AL7FKLqL cP3if99igDlr/wCINhZazd6bHpesXktowSVrW13oCVDYzu9CKoX3xI1YbBovgTWrzrvNwBAB+QbP f0rE8SfD3xHqXizUdS0nxgNNtLtkcQx3Ei/MEVSSFwP4azx8NvGoOF+JEoPteS/41L5r6Dujf/4W N42/6Jnd/wDgb/8Aa6fF8SPF6yL9p+G18kWRuaO6DEDvgbBn6ZrkNT8DeNtOuNPib4iXbm8ufIDf a5QE/du+fvf7GPqRV3/hWfjcZx8SJ/fN5L/8VQ+bpYLncL8Rbd2APhnxIrdwbEf/ABVdJpGp2+t6 PbanaCQQXC7lEi7WHOORXkP/AArTxqwOPiPKTj/n7l/xr0/wvYf2B4V07Sp7uG4mto9jyI/DH155 pxv1DQ26Kh+0xf8APRP++hR9qh/vp/30KYiaioftMP8AfT/vsUfaov76f99CgCaioftMP99P++hS /aYf76f99CgCWioftMP99P8AvsUfaYf76f8AfQoAmoqH7VF/fT/voUfaof76f99CgCaioftMP99P ++xR9qi/56J/30KAJq8p+JvgbxN4j8RWd7oQtjGlr5MhmlIwdxPTHvXqH2mL/non/fQpDcQn+OP/ AL6FKye40z57f4R+P5AA40oj3c//ABNZXiL4beLPDWiTatfrpJghKhhGSW+Zgo/hA6sO9fRuq2lv q9mtu2oXVqFcPvs7oxN0IxlSOOentXP3XgPR9Qt2tr7WtbuYGwTHNqbspwcjjd6gU7IR5Kvwb8cF FdBouDzwx/8Aial/4VN8Qtm0PpIHsx/+Jr1tfB9igCp4i8QhR0H9rP8A/FV0duYLa1htxcNL5aBf Mll3M2B1JJyT70WQzkvhf4Z1jwt4cuLTWWhNxJdtMBE+5QpAHoMcg8V29Qi5hH/LRP8AvsUfaov7 6f8AfQobETUVF9qi/vp/32KT7TD/AH0/77FAE1FQ/aYf76f99Cj7TD/fT/voUATUYJqEXMX99P8A voVzXjnXtR0rTbD+x5P9Kub2O3CRoju4bIwochc5x1IoCx1hBHY0AE9jXnlnf6/e6He6s3iy4t1s XeO5gfSY3kjdPvLhWIPXsTVLw94k1fXLWe6PiyazjihW4xc6bBzGeh+SRtvJxgkH2oA7LWgR4v8A Cv8A12uB/wCQH/wrrK8X0bxBqOs+P/CMk+ovd2lwLySISWqwMpRZIzkAn+6a9ooG0FFFFAgooooA KKKKAPAvHHi218WeE59XPhy1v9PTVEs9Pkmd0klyjlm+UggZVcDI9+ld18IprVfDl3p6aPHpN3YX TwXdujFhv653EkngjuenpWZZ+CfF/hBJdM8M3GkXWkTTtKkeoxPutifQqeeP5dOa0LCwg+H2l3B1 jV5Z9S1/UNhuEh2jz5AdoAGcAY6mlbsM7iLWNMuL17KHULWS6j+/Akyl1+qg5FcR46tJtV8XeFDp 6i5Onair3ixMGaBSUILgHIBANc54e+ElylldJfRix1mCczWWt2twzSOSxILKTj047g+vJueFhqXg /wAdX7+LXga68QSQw2s9sCUkeNdvI6rkMvt1oWwbPQ9bA+UA1nDw/pKvPImnWiSzqVlkSFVZweuS BmtKimIx4fDGiQNBINLs2mgREjmaBWkUKAF+YjPAA71PbaFpNndtdWum2cFw2d0sUCqxz1yQM1o0 UAebfGqCK48IWUM67on1KBXXJGRznpU3/CpfBLDJ0yYnv/ps/wD8XTfjJz4X07/sJwf+zV2idKBn G/8ACpPBH/QKm/8AAyf/AOLo/wCFR+B/+gVL/wCBs/8A8XXaUUBc4v8A4VH4H/6BUv8A4Gz/APxd H/Co/A//AECpf/A2f/4uu0ooC5xf/Co/A/8A0Cpf/A2f/wCLo/4VH4H/AOgVL/4Gz/8AxddpRQFz i/8AhUfgf/oFS/8AgbP/APF0f8Kj8D/9AqX/AMDZ/wD4uu0ooC5xf/CpPBH/AECpf/A2f/4unD4U eCQONKm/8DZ//i67KigRysPw48MW/wDqLe+iH/TPUrlf5SVP/wAIHoPd9V/8Gtz/APHK6OigDlZf hv4Xn/10F/IP9vUbg/8AtSq5+FHgo9dMnP8A2/T/APxddlRQO5xf/CpPA/8A0CZf/A2f/wCLo/4V H4H/AOgVL/4GT/8AxddpRQFzi/8AhUfgf/oFTf8AgbP/APF0f8Kj8D/9AqX/AMDZ/wD4uu0ooC5x f/Co/A//AECpf/A2f/4uj/hUfgf/AKBUv/gbP/8AF12lFAXOL/4VH4H/AOgVL/4Gz/8AxdH/AAqP wP8A9AqX/wADZ/8A4uu0ooC5xf8AwqPwP/0Cpf8AwNn/APi6P+FR+B/+gVL/AOBs/wD8XXaUUBc4 v/hUfgf/AKBUv/gbP/8AF0f8Kj8D/wDQKl/8DZ//AIuu0ooC5xf/AAqPwP8A9AqX/wADZ/8A4uj/ AIVJ4I/6BUv/AIGz/wDxddpRQFzjP+FS+Ce2lzf+Bs//AMXWLrvwW0O8MLaRc3GnMud+ZHmDjjH3 m4r02igLnjjfBCR4hGfEsoVXEgxbnhgCM/e9zT0+CGbiNp/EM0sQcF4xCULLnkZDcZr2DFFAjiU+ EfgsKA2mzMe5N5N/8XTv+FSeCD/zCZf/AANn/wDi67SigLnF/wDCpPA//QKl/wDA2f8A+Lo/4VH4 H/6BUv8A4Gz/APxddpRQO5xf/Co/A/8A0Cpf/A2f/wCLo/4VH4H/AOgVL/4Gz/8AxddpRQFzi/8A hUfgf/oFS/8AgbP/APF0f8Kj8D/9AqX/AMDZ/wD4uu0ooC5xf/Co/A//AECpf/A2f/4uj/hUfgf/ AKBUv/gbP/8AF12lFAXOL/4VH4H/AOgVL/4Gz/8AxdH/AAqPwP8A9AqX/wADZ/8A4uu0ooC5xf8A wqPwP/0Cpf8AwNn/APi6P+FR+B/+gVL/AOBs/wD8XXaUUBc4v/hUngj/AKBUv/gbP/8AF0f8Kk8E f9AqX/wNn/8Ai67SigLnF/8ACpPBA/5hc3/gbP8A/F0v/CpfBH/QLm/8DJ//AIuuzooC5xf/AAqT wR/0Cpf/AANn/wDi6P8AhUngf/oFS/8AgZP/APF12lFAXOL/AOFSeCP+gVL/AOBs/wD8XR/wqTwR /wBAqb/wNn/+LrtKKAucX/wqPwP/ANAqX/wNn/8Ai6P+FR+B/wDoFS/+Bs//AMXXaUUBc4v/AIVH 4H/6BUv/AIGz/wDxdH/Co/A//QKl/wDA2f8A+LrtKKAucX/wqTwR/wBAqX/wNn/+LrmfGvgvw/4Q tdK1fRLT7JdQ6lCRNPNPJGgBJyw3HjjsM161QwDLtYAj3oC55ZH4t0GXwtc6SmuafZ3V7K73E1tD OQQ4+Ygsudx6cn/CsDS38JwWE9pd+IbO0EltBCp02zmGWidXDvuTBbKjt3Oc17cYIT/yyT/vmj7P D/zyT/vmlZBc8Z8MT2B+JPhK0sNTbUhAt+z3Bt2iBL+a+MEAZ+bnHrXtGta5p3h+w+3ancrb2wdU MjAkAk4GcCsDWIYk8Y+FXWNQ3m3AyB28h60PGWrHRvD0l0ukS6qxdEFrGuS5ZgPQ+vpTB6mjp2t6 Xq8bSadqNrdquNxgmV9ufXB4q+DkV862fwv8QzW8kUejafpMl1cPI15Jeu0sKEgqqrGQuRz19e1e 86FZS6boVjYz3TXUtvbxxNO3WQqoG48nrjPWgHvoaNFFFAgooooAxdZ8W6D4elSLVtUtrSR13Kkj 4JGcZx6VxniO6tfiEunSeHr23li0XVre7upX3KoRQxIU45PP096TxfN4UtfHDTa411byS6WbeSdr cvb7TIGXkA4YFSfStn4d6FZ6VYXl3Z67/bCajKLg3GBzx7E0k2PQvD4geFFAU67Y5HB/fCsDWxb+ OfEnh250HULO5i0i8FxdbZMkKcYAwDydpqLx5qWv2fiOC3067msrBbCS6kmishcF2TcSvJABxjHv TfhLqeqav/bV3qR1SQNcKIJrxBGrIFHCxgkLg5yR1yOeOGB6YOF57Vk2XinQ9R1OXTbTU7aa9hLC SBJAWXBwePY1qt908Z9q83jFhH4wtCnhDUbKLTFnaGSK0iWIkqckFG7jdgY5LDPSgEjt7nxFo9nq kOmXOo20V9Njy4HkAds9MD37UWniHR7/AFGbT7XUbaa8g/1kKSAuv1FedX1td6nrs00Ph68f+0r7 Tr2C8KIFiij8gsHJbKkbH4561F4Z0G8fVdMsp9EvbFrNb1bq9DLGJPNfKlHRtxPvxikOxr/GRh/w i2n4PP8AacH/ALNXap0rzL4l+HE0rRtOuU1PVJ/+JlAPLubx5U6nsxNemr0piHUUUUCCiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM LWv+Ru8K/wDXa4/9EPT/AIglx4TnEehDW5GkjVbMjhiWGCeD06/h1FM1r/kbvCv/AF2uP/RD0nxJ 0vW9X8FXlroE8kWofKyeXKY2cA5Khu2RQwPNrjQdbj13SLb/AIQPQJLeeTE+yRpPLUYzuYjC8E9m zjjNe32ltFZ2kVtBEkMMSBEjQYCqBgAe2K8d8H+DtV0jxpY3WiaVqOj6YIj/AGj/AGhcpJ9pPYBV ZuQec8fh0PtFJKyG2LRRRTEFFFFAHmnxEl2XwtdS8XHTNKvIDD9jtrUS3Erc7sEKzBce1anwz07w pp/h9x4UnM8DPi4kdm3tIBg7g2Cp9sDr0rmvid/ZGleJ9P1weJLbStWSIxbJ4DcCSM/7ABK8/wAX HpWl8IV0trDVrmx1capc3N20t1MluYUDtzhVIGBioT1Kexz3xl1W9i8R6Vp1vqmsQwtbtK9tpMZ8 1jkgMSCMjr64weOa1Pg40+NUEsviZ1/d4GtLhQfm+5yfx/Csb4rXWgQ/Eaxi8QTX9pBJpwCXdlIV aM75OCMHIP0rqPhX/wAIuYtQPh3XdS1Q5Tzvt0jMY/vbcAquAeefb2qyWekUhUHsKUUUANCgDAAp doHalooA86+Mhx4W0/H/AEE4P/Zq7ROlcX8Zf+RW07/sKQf+zV2idKBjqKKKBBRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGFrX/I3 eFf+utx/6IeurrlNa/5HDwr/ANdbj/0Q9dZQAmKWiigAooooAKKKKAPGPFGu6fceMLfXtB8SeF1k jtGtn+2SbiwLA/wt7e3U9c12vgHWrvWLS7e61DRr0xyAK2lFiqjHRsk810n9j6d/z5Qf98Cpraxt bPd9mgji3HLbFAz9cULQbdzy34oaxq0HijStKi1eDQ9MuoWaTUpYA+113HbliAM4X0PNanwp1/Ud WttTtLuVL+3sZxFb6rGmxboYyeOmV46f3h+Of8QPG15ofjzTdIOrWul6dNamaW4mtTMQ2XwMAj+6 B+NdN4I12LW1umh8SWesLGV4gtDAY856gsSc49uhot1A6/oKxdG8SQa1qeqWcME0Z0+RY2aRcB9w yCvtW1WPDpD2N/q9/bODPehCFYfKrKu0fXtQBi6p48bTvEv9mJo9zPaxTwW91eq4CwyTbdg24+b7 6554zUOm/EiC81Qw3Omz2enyLO9vfSsNkqwnEhIx8oBzgnqB2qu3gvXb7Uxd3OrW8NvdzWt3e2yW 5Y+dCIzhXLcKTGO1T+H/AARqOkazaS3OrJcWFh532SAW+xh5py25txzigehzfxP8WaBruhadZ6Zr FldXH9pQN5cM6s2OcnAPvXpqdK4n4wIieGtPfaAf7Tg5x7mu2XpQSOooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAwta/5G/wr /wBdbj/0Q1dZXJ61/wAjh4V/663H/oh66ygAooooAKKKKACiiigAooooAzNS8O6LrEqS6lpVleSI NqtcW6SED05Bp2m6FpOjmT+zNNs7PzMb/s8Cx7sdM7QM9TWjRQAUUUUAGKMUUUAec/GX/kVtO/7C kH/s1dqnSuM+MeP+EW0/J4/tOD/2au0TpQMWiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBha1/wAjh4V/663H/oh66yuS1r/k b/Cv/XW4/wDRD11tABRRRQAUUUUAFFFFABRRRQAUUUUAFBoqOeITQPExIDqVJBweaAPNtb1nxAni y8ubPVki0/Tr+ys2sfJBEwm8sMzN1B/e8Y/u1X0HxF4ruNXsLlr61u7fVlvGisWj8sQmFtqDeMnn jJIPXpXWL8P/AA6dUstUmsRPf2iRok8jEligAVmHQsMDkirGmeCvD+j6zPq1jpsUN7NndIvbPXA6 DPfGKRVzj/Gmn+NPFekQWX9gWcDw3SXG9dQ3A7c8YKD1rohqvi4AZ8JW2e//ABM1/wDiK66imScj /avi3/oUbf8A8Ga//EUf2r4t/wChRt//AAZr/wDEV11FAzkf7V8W/wDQo2//AIM1/wDiKP7V8W/9 Clb/APgzX/4iuuooEcj/AGr4t/6FG3/8Ga//ABFH9q+Lf+hSt/8AwZr/APEV11FAHI/2r4t/6FK3 /wDBmv8A8RR/avi3/oUrf/wZr/8AEV11FAHI/wBq+Lf+hSt//Bmv/wARR/avi3/oUrf/AMGa/wDx FddWX4h1238OaS+o3UU0saOibIQCzF3CADJA6sO9AGMNW8W/9Cjb/jqa/wDxFUp/FHiaDV7bTW8J 2xnuY5JUxqYwFQoGz+79XX8619N8aabexXMlylxpwt1DyfbUEYCnOG3AlSMgjrTs6bf+I7HVYZzK Us5RFKjqYmRmjJ5znOUX260rlWKf9qeLP+hTtv8AwZD/AOIo/tTxZ/0Kdv8A+DIf/EV0F5q+nadD 515ewW8e7ZulkCjd6ZPeraOkiB0YMpGQR3piOT/tXxb/ANClb/8AgzX/AOIo/tXxb/0KNv8A+DNf /iK66igRyP8Aavi3/oUrf/wZr/8AEUf2r4t/6FG3/wDBmv8A8RXXUUDOR/tXxb/0KNv/AODNf/iK P7V8W/8AQo2//gzX/wCIrrqKAOR/tXxb/wBClb/+DNf/AIij+1fFv/QpW/8A4M1/+IrrqKAucj/a vi3/AKFG3/8ABmv/AMRR/avi3/oUrf8A8Ga//EV11FAjkf7V8W/9Clb/APgzX/4ij+1fFv8A0KNv /wCDNf8A4iuuooA5H+1fFv8A0KVv/wCDNf8A4ij+1fFv/QpW/wD4M1/+IrrqytW8QWWjXunWt2zq 9/N5EJC5G7GQD6elGoGN/avi3/oUrf8A8GS//EUHVfFuOPCVv/4Mx/8AEVeXxnop1jU9NkufKl01 I3uZJcLGocZHzE+n860H1zTEtIro31v5Mv8Aq3EgIfjPHrx6UDscpe+KPE2nT2UU/hS3DXc3kR/8 TMfe2M/P7v0Rqvf2r4s/6FS2/DUh/wDG6lmvdE8TJ4fuGvVidmTUbWF3VZHBiYDK9eBJnj0+ta8u uaVb2k1zLqNqkED+XLI0oCo4/hJzweelAamF/aviz/oU7f8A8GQ/+Io/tXxZ/wBCnb/+DIf/ABFa uqeKdI0nTmvZ7yNoxA86qjBmkRFJJUd+BU8Wv6VLqC6et9B9tZN4t/MG/HrjrRcLMw/7V8Wf9Clb /wDgyH/xFH9q+Lf+hSt//Bmv/wARXXUUCOR/tXxb/wBClb/+DNf/AIij+1fFv/QpW/8A4M1/+Irr qKBnI/2r4t/6FK3/APBmv/xFH9q+Lf8AoUrf/wAGa/8AxFddRQByP9q+Lf8AoUrf/wAGa/8AxFH9 q+Lf+hSt/wDwZr/8RXXUUCOR/tXxb/0KVv8A+DNf/iKP7V8W/wDQpW//AIM1/wDiK66igDkf7V8W /wDQo2//AIM1/wDiKP7V8W/9Cjb/APgzX/4iuuooHc5H+1fFv/Qo2/8A4M1/+Io/tXxb/wBClb/+ DNf/AIiuuooEcj/avi3/AKFG3/8ABmv/AMRWX4h8ba/4X0aXVdR8KQrbRFQxXUgSNzBR/B6kV3V/ ew6bp9xe3LbYbeNpZG9FUZP8q4DxJ4j8K+MfhtJdahcXVvpM88cUzBAJImEqnDAZxyB68Gi40bCa x4rljVx4TtsMMjGpj/43Tv7V8Wf9Cnbf+DIf/EVpWvibQfsdg6araiO7X/Ri0oHm4OOM9eeK2+oy KAOR/tXxb/0KNv8A+DNf/iKP7V8W/wDQo2//AIM1/wDiK66igRyP9q+Lf+hSt/8AwZr/APEUf2r4 t/6FG3/8Ga//ABFddRQByP8Aavi3/oUrf/wZr/8AEUf2r4t/6FG3/wDBmv8A8RXXUUDucj/avi3/ AKFG3/8ABmv/AMRR/avi3/oUbf8A8Ga//EV11FAjkf7V8W/9Clb/APgzX/4ilGqeLf8AoUrb/wAG a/8AxFdbRQBxS2/iPVfFGj3l9pNvY2ti0rsVu/NZi0bIAAFH96u2oxRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/AIz0OfxD4dk0+3W3ZzNDLsuc+W4S VXKtgHghcdO9dBRQB5ddfDrUpLG4+yW+jWTSywMbCFT9mcRvuJPyDDHpkL0UVj6R8INXtIr6KWfT oEuYbmFTC8khjWXy8D5lGQpQ9+9e00lKyK5meYXnw2vpdFs7YnS9QuLVJoR9tjbY4cg+acZIl4HP PU812Pg3QJfDHhSw0ea7e6kto9rSMT1JJwM9hnA9gK36KYm2wooooEFFFFABRRRQAUUUUAFFFFAB RRRQAVz/AIj0GfV7vTrm3mSOayaZ4y4z87ROin8CwP4V0FFAHlDfDHVZbUyXdzYX1462hnFxuKXD QyyMQ52kkFWQdP4ain+FeoQfZ5bKPSJWH2lmtbgN5EDSlCDEAh6BSOg/CvXKKVlaw+Z7nj9r8JLt dXsri+SxuoYLa2iDfaJUZGiiCEgBcEFhnmr6fDnUbfwro2miLSbqezvZrq4SbcsUpfzMY+QnIDr1 H8Neo0UWQczPIh8LNRi0cWqDS5Jn02WwZ5S2IN0krho/kJP+tHp90Vox/Dq6HitdRe30ry11IX4u 8MbnAUDy/u425GfvV6XS0WDmYg6UtFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz/i/Q7vxHov 9l214LNJpF86XbuYIOcKPUkKOe2a5K/+HetXGm6lp51e1vItQuILmWS5ttpDo0e75VyGBWNRjjp7 16bRSsO55Lqvwv1G9sooBa6DM/8AZqWRkkjZfs7B5GLwgIcZ3j05FerQp5cSp6DFSUUwbuFFFFAg ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuZ8e69c+HPCV1fWIQ3mUjg3jK72YA E+wzn8K6asjxNotp4h0C60y+D+RMoyY2wwIOQQfXIFJ7DW5w1poXxO02/wBPvW8T2mpwvMv2y0kt ljVEJ+Yqw5OB06Vpp8Qbu78WXfh+08P3kgtZhFPeqw8uMFQ27p156d68u+HN7qnjXx2ul63rF9Na aKpntUSQJuaNwFLkD5uK9T8HnOueNAcfJqhA/CGIf0ovqNnIS/E/xHpFp4Tjj0xtVOpo7TORiSUh 9u1NoABAwckHqPc1q+JvitaaV4qFtGt3JZ6cduoPAybVZztAIZSWxg/dYc+uK8/8Wanc6R4H+HWq WjBbm2edkJGRw6cEenFUvigln4d+JM6w6daXY1EJPKLtS+1mJztwRjOfek27iPY9Z+JJtNastM0n RbrVmvLVbqKS3bC+Wx4bpwOhyfUVFB42Gi6d4s1bVJrme106+EccW1dy7o4sIMAcb3IyaTTLeG2+ LMVvDEkcMXhxUjRRwqiZQAPwArCl06HVvCvxIguC4VNRlmUocEMkcbr+qCmr9R77HWeD/iLB4nv5 NOutMudJ1ERiZLa64aSI9HXIGRVvxh4zPhlrW2tdJvNVvrrcyW1ohLBFxuY4B4G4fnXn/wAEFfxF Pf8AijVp5brVI2FlHI5GEiADYUY45P8Anmtb403Fzoen6V4h0y5kttRgufsyuuCDHIMsCCOeUWhv QlEej/E5rDQPEOua39pMUWryWtpavEEkUY+WMjHBGDnPTBrqfBnj618XTXlmbWSy1GzI862kYMQD 0II6/wBK8htNLg1P4V+LZL55biSz1mS6Vnfl5AoGW9chjnGOtb/wBu4dTXVrv+zbK0nQrHutoyuV xnByTQnd3H0NzxZceI9T+Kdt4d0nxDJpMDaX9pOyBJMvvkHf6Dv2qz4Z8Qa74fvte0zxdqEV7Hpl ql4l7HFsLRHfncBxn5OmM/WuB+NHiTVPCvxPstQ0i4EFydLVNxUNwZJOxrrvh3osXiP4e6hqurXV 1dXmuwtHdyPIOFXcqhOPlHzGhgjU8L/FzT/EWtQaZPYTWEl1GZbRpXDCZRn0HBwCfwq9p/xFXVfE cunWuiai+n7nij1RImaB3TIIyBgDIYZz2rxz4Ky2t745Syl0uxBtLZ2jnVG80nIXJOcE4Y9u9dVo tvPY/Gi98L2Wp39totupu0tI5fl3MocryD8uWPH60Jtbg7WNWw+KEmk+G9f1PUY7m+kttbns4Y/l X5AV2jIXgAE9cmuhj8a6hqXga+1Y+HtVs7xcxxWsabpXyowy5T/a6lSBg9a8xtNWutH+F3ji/tvL My+IZFPmoHVgWiBBB65GfzpfDunw3/wH8Samxkgmllkn2QOVjRowpXavYHv60Xd2Gmh2fgfx/wCZ oHiLUtYl1TzNKYefbXiRmSLg4A2RpkkgjBHGO1bPhD4lxeJNUXTb7R7zR7uaLzrVLoH/AEiMdSpw O3P0rz3woTruoa/Z3h/d65oMGoXZT5SJsdV9B8xODmrXwSebxbql7r2uXEl5faYqWtozkYiRg24g AfeOOT7mlcGe6UUUVQgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKAP/Z ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/image007.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC81ZTW9bRRS9z07SpKTIjVxIqGmT0C8ooW6ISkIDdaR+bIoUNWkFagj5AjUi0KjE KEggOWlXrLIplVAXLGEBS1ZF6SLhF7CCsmADbBCVKnZI4Zznd+zpk+081c/ASMdz79w7c8/M3Jl5 aT0zWwBUVj2zk1JQT/WZNe8w6z7z2lkzz+7uNfsL7S2OD8VLzfhJmn2O/r+GbGsjLba4mjQMYM8D 3QCGO+rlPMtATgGJ1N2f0NWmAtB3AhgF6Nuba7J2yCz7cm0l+QDGUHs2l/DHavK9Cqd6cjtKtqac leRO2NWnK5C3trYsHci7UHcEcgJ1D9AK9AZt8N2q1LYT9hSgIh83hhu70njVfPdhUPZVuY7FGoby X42B8MgGs3p4NGKMC+C0iIE59gNuqlPuJEpK94hds3mbfij3S9ZIwuV8Fn7cc2IIyAKtK5PeV6k0 U2TrTgq29E5bXpkhHUvu7i23Q1cf9qdDFrjy2TEvfbOI01+/kaf8FuruyZl8eumTLPskd3vY9vJY Xq9nU953bTDZFx2zHu1H0G8wM5mnP6fNcW+gbeiJ394v9i/GZ3vmo402tmXhx5K6dczzCVMZPJr8 feN2nj5Upc996B8JO4gmniX6S8b5KYCg384J90Dm+ZGdvl1lu5/XOo/Kc/oQzK9DqCudTdrHgdsA yT0GjAFPAbT9/fT9kYs3/xyRjef6POAWf0PwcwWNZ+wDW0JOLNkfvjRvs9C6cW/1Hyf/FoB3C2XW hNoo45os2dz5cj3cuUuOY50mEZNz3QS2W6eP4bMM4Jq2b4AOwF0n2ci92jpNwHYOZ2fa8liZOXsb v8zfZoD9CK2R5HG0rQHvAmngW+AZwI0tG/ewWuw53zZvM4h6DbGng/jHbWxWscTB5aM28uIeuesv mVwkx7Ev32M8jvkCfqLsyy/w5b48Cf/wvsjGeVRbm3r25QeMy33Zj9jhfZHtUfal38by/7d9wRT9 fbkOYbt9WYbvCPw496uow/eKbMypWvsyan12Cdm6YFeRt6tJ3kfMRdbu+jBn3RyUTM6S48hNjkdw DYZRXwAWISdQh9/MNToWS4PfzD3+Vey/mXv+3Tfzy85HfzO1OO6bWRh4+M2UHn4zud5R95W+XUA7 gIWq+mYehp37ehI1zzT9kTOl71lu5ziwAOwHngVeBQYB2vRmytaMtvOAW/Rmvo7GfnzR9+NLZsDe meY5YF6zFtz5SeZcyIH9PwXI4RYQ5iAb/atxGIXtJXsxcrwH8Gc8TjYcT7bt4g3ZiUjxOMeLiMN4 lyvEk43rXmt+WXvPX1utH+8AyeQqebu7gb5dQDtQK4fIR3dDnGNjWL9o7MPQOgG+eyw/3vvZrxWT 7bSTL23iTjkdtLu5zfnxTs8AzEO3sI/GpW0vkHIcTjg681u+yOMC92bO8VX+q4nrxbYeu68m1IVT ZcWVy62upHgutzcDB3GjzjjyrcVNfRvFbTPEjXpUburbKG785mLRulGPyk194+Cm/G4u0rH19XVf Oohf5jTbld+0Kb/B1b8PmHPBVGw1EMSLOvM9jpzjOTsChDmFz5x4uzkqXlpr6lHXWn01p3rmEtda c47kdQg1eUmvd63DdwiG9t9orhULx38FqGcNFGMC45A77wB+B0hnDOpxxNjAOIyxGYwpPc4YfQjA GDyT5C09zhgc/2WAe84Yrs44cazVCgbluIohPY556EzWc4ZBzf87QGeYOnNRY9d6Z+g7DHB+RD3r pXju/cIc5vjiRj0qN/VtFDfmvsuNelRu6tsobjwzLjfqUbmpb6O48Ry43KhH5aa+jeLGb1MW5duN QFdu1joL6ttIbnyXXG7Uo3KjbyO58f50uVGPyk13L/nFdIcUFHsXPsZ7MW47wLe2B3UrIDvvYX17 8ZtH32SUK/17NHO3Wrsb5yz8BgB+W/H/sJ7LmR2AzPGDvw8KFFyZfTJACmCfRK7IG6o9DqQpoKQA yv8Aq7p7G8AbAAA= ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/image008.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAmkAAAFJCAYAAADANbp5AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAIMrSURBVHhe7Z0FtBXV24f/dreCititKLZY2AJ2 gWJgImJhoiIGKoioiBIGSiOpEhICSnd3hzTSne5vPa/fPs4dzr3cOPfcE79nrVn33Jk5c2pmz2+/ +T8nhBBCCCESjv+FVwghhBBCiIJHIk0IIYQQIgGRSBNCxJ1//vnH/fXXX65bt26ubt267t1333Uv vfSSq1Chgrvnnnvc9ddf7y6++GJ32mmnuWOOOcadfPLJ7oILLnAlS5Z0d9xxh3vkkUfcc88956pV q+Zq167tOnbs6KZNm+a2b98efikhhEhaJNKEEDFnw4YN7s8//3Qffvihu/nmm92ll17qzjrrLFe0 aFF32GGHuT333NMdeeSR7rLLLnMPPvigq1SpknvttdfcBx984D777DP3zTffuJYtW7pff/3V/f77 765Lly7up59+ct9//72JOo5btWpVV7lyZRN2iLciRYq4PfbYwx188MHu2GOPdWeccYa76KKL3HXX XWf7du7c2a1YsSL8VoUQImGRSBNC5Jpt27a54cOHu/r167unn37a3XDDDe6kk05y++23nzv33HPd Qw895D799FPXokUL16NHDzdy5Eg3b948E3H5wZYtW9zChQvd2LFjXe/evV2bNm3cl19+6Z566ikT igcccICJuauuuso9+uijrk6dOq5Pnz5u8+bN4UMJIUSBI5EmhMg2GzdudEOGDDFRdu+997rDDz/c nXDCCa5UqVLmfsTSNWLECNsvEcEdOnHiRNeqVSv3+uuvm+sUC99ee+3lbrrpJvfJJ5+4P/74wy1f vjz8VCGEiDsSaUKITEHUzJw50zVv3tzdeuutbrfddjOXZYkSJVytWrXcrFmzwk9JSlatWuW+/fZb swQS/7bPPvvYZ8S1iqiTpU0IURBIpAkhMoALc+XKla5Ro0bu0EMPdfvuu687++yzzXq2adOm8O4p ydatW127du3ctddeay7S//3vf+7tt982VyouVSGEiAcSaUIIY82aNRa4f8QRR7i9997b4rb69u3r 1q5d63bs2BHePS0gC5X4OaxpZcuWtcQEhGvFihXd0qVLw7sLIURMkUgTIo1BfFG+AtceFjPizLp3 7+4WLVpkAkVkBAvjwIED3bPPPmvWNSyM9erVkztUCJEvSKQJkYbgtqtevbrVISNw/uuvv3YLFiwI 7yayYN26dZY9es0117hChQq5Z555xrJKhRAiVkikCZFGYAUqX768O+SQQyyzkfpj6erKjCXDhg1z jz/+uDvqqKMsS7RTp06yrgkh8oxEmhApDhma48ePt+xMCsjiqsOdKWIP8WuU8aAsyfnnn2+12tIl 2UIIEXsk0oRIUbCQzZ0718pKEG9G2yUJhvhBdiyZoZT0GDNmjFpWCSFyjESaECkImYfESlGklaKt ZG4qESD+YFlr3Lix1ZejB+mkSZPCuwghRKZIpAmRQlDjDFG2//77Wy9MmpiLgoeeoQ0aNDCLZrly 5VS+QwiRLSTShEgRunbtaiUhaDY+atSo8GaRAOB+piE8VjVEmxBCZIVEmhBJDg3LH3nkEUsKaNiw oWKfkgAENaVPENSjR48ObxZCCEMiTYgkhtZFlH24++67rTOASB4o0YFL+sADD3S1a9dWUocQYick 0oRIQugf+fTTT1uME7XPRPKCOCtcuLBZ1SS0hRBBJNKESDIWL17sDj/8cFe8eHHVO0sRNm7c6B56 6CGzqg0YMCC8WQiRpkikCZFEtG7d2hqg09KJTE6RWjRr1syE2ttvvx3eJIRIQyTShEgSKK1x9NFH u549e4Y3iRSC7hBYSUuVKqU4NSHSHIk0IZKAihUrulNPPdVNnjw5vEmkIKtWrXJXXXWVFSReuXJl eLMQIk2QSBMigSED8M477zSBtmDBgvBmkcLgzr722mutB6iK3wqRnkikCZGg0Mrp3HPPdcWKFVPW Xxrz6KOPuiJFiqh7hBBpiESaEAkIbYS4MZcpU8asaSJ9oThxzZo13aGHHupmz54d3iyESGEk0oRI MLgpX3/99e6+++4LbxJpTL169dwJJ5zgtm7dGt4khEhRJNKESDAefvhhi0WSBU0EIUatSpUq7pxz zrG6akKI1EciTYgE4sUXX3RnnHGGW7JkSXiTEG7Dhg1mZb3uuuvcunXrwpuFECmGRJoQCcA///xj /Rvpwzlz5szwZiEiYGHFmobFVdZWIVIbiTQhEgBaPe2zzz5u2rRp4U1CROXkk092jRs3Dq8WQqQQ EmlCFDBkcu63337up59+Cm8SIlNGjx7t9tprL/srhEhNJNKEKGCog3XjjTcWaC/O4cOHu08//dQe 04qI9xStefuyZcvcE0884davXx/eFBUC3KtVq+aWL18e3pQtfvjhh6RqOP7rr7+69u3bh1dni7Fj x7qvvvoqvDpLatSo4S666KLwaiFEiiCRJkQBQkPtQoUKZVv0ACLqzTfftOWzzz5zr7zyinv22WdN QOUGjkfW4N13323/U+Lhxx9/dKtXr95pv1atWrndd9/dCu3uCo6DaGH/aIJvV4wZM8Zirzp27Bje FJW77rrLvfHGG65u3brupJNOcrfffrs9rlChgnv//ffDu8ecWbNmuRtuuMF9/vnn4U27hO/z5Zdf drfddlt4U5YQk0b7qKeeeiq8SQiRAkikCVFAUEH+2GOPdT169AhvypQtW7a4Bx980L311ltux44d kfVNmzZ1Z599doZ9cwLiy4u0rPj777/dnnvumS2RBgg9XHK5EWlwyy23ZFukBS1YV155pSVieBCL 8eCFF17IlUiDtm3b5likwfTp0y3hBFErhEgtJNKEKCAeeughV758+fDqLOnWrZs75JBDwqvNorLv vvu6r7/+2g0dOtQNHDjQSjQQ78Zj1gEu1YkTJ9q6OXPmRJ4fFGnsQwJD0P06d+5ce86IESPcHnvs ERFpZKKyfsKECZah6iERgvXDhg0zUedFGiUkRo4c6YYMGWKCMxpYFdlOrBWlJoIibdKkSXbcXVkN wyINeG2OyfP5XoDCwVjAKHkyf/5824awxE3LZx0/fnzk+TQ65/PwXQZFKhbGUaNGmcv4ySefjIg0 Xo9j8Fky673J60+ZMsVet379+hlEGu9p0KBB9pnZLysQ6Ycddlim36kQIjmRSBOiAEAEIXZy2o/x 1VdfdWeddVZ4tYG7jxs1YgkXKsIBiDU78sgj7fFLL73kPvzwQxNNZJN6sRMUaWQM/u9//zNRAv37 93elS5c20XH//ffbNkRK586dTVSw/pRTTnG//fab7c9nu+aaa0wIvfvuu7Y/r4fou+eee0x8IKBo HB4WFRzr6KOPNiHZqVMnc5Ui0vhMTz/9tOvbt6/7888/3THHHBMRWtEIizTe7yWXXGJWJwTR3nvv beIM0Ys1k/p0uI3pk4rLEtcj1kr28xm31K9DUBEnd9ppp9k6rJmlSpVyXbt2NZHGb+pF2mWXXeZ6 9+7tunfvbi2+wvCZOBZuaz4LllAv0ngdjst3xntq1KhR+OkZQJBjsezZs2d4kxAiiZFIE6IAoKMA giunIHJouh6NZ555xh188MEmfCjP4EUaosaLNCxTiBS4+OKLIxa2sLszKNJOP/30iCUMgeUtacR5 +WQDhAZB7HD11VdHjrtq1aqIJY3+kz6DlWNzHMRIEITVN998E/kfwYRImzdvniUzeGsdBV1JSMiM sEh75513It83x6hUqZK744477H/cxw0bNrTHfHe77bZbRDwS6/fFF1/YY0QlICARdsB7w8Xp4Tfw Io3fCfHFd8bvEgbBiLj1tGzZMiLScPN6d3bz5s3t99wVJFhgTQ3HEgohkheJNCHiDOLpoIMOytQF lhXvvfeeO/7448OrDYSLt7JlJtIAMYW4whq0K5GGO5PHnnBMGsICgcZzvUjDQucbgQdj0hBZH330 kVl7/BKObaOJeJ8+fSL/+5g0rFlly5bN8NysYrDCIg1LIK/twTqIlQwQaSRKeIKfF8tjnTp17DEu 3+eee87EqRdpF154ofvkk08i+wdj0shorVy5siV3RBNpLVq0yBBHGIxJO+KIIzJ81uxYyEjUOO64 49y3334b3iSESFIk0oSII8QW4b4i/ig3UKYBkRSMJwPcltRa81ayzERayZIlI27J7FjSOC6PideC oEh7/fXXI8IsaElDkCCCICjSECwsQbC0BeF9I2o8XqTNmDHDXLi4Qz3EtmVGWKQ9/vjj5g728J3g ToTsiDSsYZdeeqm936AljdIpwczKoEhDBC9YsCBTSxqJDkHBHRZp/NYeXjM7IFwLFy6cqwmAECLx kEgTIo5w80Tk7CrwPSvq1avnihYtagHluMSwWhErhkvPc8UVV1g8GIHniCdEAvsRG4U7kVgp3JgN GjQw1x6lKm666SZ7LkkICBXfnqpMmTLuzjvvNGHYpUsXixP7448/zBWJZWnw4MH2+iRC8BrEjiGS Jk+ebGINtybCEFF1wAEHmGAixorneJeqhzg3Xrtfv35u6tSpZqmqWrWqCR1EGq9JcgRiyAvMMATy 40bE9ehdhghWPjvvAXdnuXLl7DMQ84VY88LKi1JivBDUWP94fTJw+c75rNQyO/zww00Qc9wDDzzQ hCSfHZHF50JU4Xrs1auXuXh5TMxaMAaPc+HEE080SxxiDispLlJi5XgNzhOsdojEoLVuV5x33nmu SZMm4dVCiCREIk2IOIIlCZGSVxBoBKYjKBAMiIEgZFti5SEJAIsMwg5BQikK4uFwKVKjjbguhEyJ EiVsIVie9+f/R0hgvXr++edNzGCpoaYaFiXeA8fCvUYW5H333WdZkYDgIP4NsYUg8gkSiBeEDFat zArctm7d2hIPCKqvXr16hmK2FNLFrestddHw750FoeZBNCI2b7755oiVkSQKvy+fjffMY4TW999/ H9nG++e3o18mggr3KdY9QOxxTN4rApKEBwQe3y2vRzwdApb9wiAK7733XrNiIvRq1aoVsRZi3aMG 2gcffJCjHp0IPH4XIUTyI5EmRJxA2BCU7l2HsQDBwzGzEi0i/aBMCyJaCJHcSKQJESeosYXbC3dc rMAKRlkKSlJQQiLsPhTpCda51157LbxaCJFkSKQJESdwkVGGIj8g1gnLSTAzUqQvxAAScyiESG4k 0oSIA2RFUpqCMglC5DfEH9IqiuQLIUTyIpEmRBwgE5AaVkLEC5IRfI03IURyIpEmRBwgU5A6W0LE C8qKULJECJG8SKQJEQcowUApBSHiBbXwTj311PBqIUQSIZEmRBygQj21xISIF4sXL3b7779/eLUQ IomQSBMin6FSPwVnYwnV6ymgGlwotEo/SILGcwtNx+kqkJ/wfVAuhPdM2yXERDygNRVdA2IJhXzD ra7yCgWEn3zySat1lldoTcW5IoRITiTShMhnqLrvG5/HEirkB9s3TZ8+3fpI0hIp3NszViDgaApO 94F27drluOQHFfnphEC1ftozjRs3zqr80/1A/AftvGIh0u655x7XsGHD8GohRJIgkSZEPkPzctr7 5AeItIULF0b+x4pG/0cCxvNiUcsML8oQW/QKzUm7Ito7UcyXtkpBRowYYc3hEZniX2Il0mjzFWyN JYRILiTShMhnyLKj32R+EBZpgBhiPb0q6aX55ZdfWmYpPSjnzp1r+0yZMsVcapdccom5OFevXm3t qqhU36ZNG7NytW/f3qxct9xyi/WhhGnTptn+F1xwgatUqVKkewK9Lfmf45UtWzZi3QvCsTPLNjzz zDPds88+60aPHm3vs2vXrtYQnaKs9CGlL+hFF11kLbAo0sp2+oDS/J31jz32mH1W3kf58uXtM7/9 9tvuyCOPtAB6oCE7jec9uALpf8p3Q9P4W2+91YQtzdtpEM82LH3AeoQpPTHPP/98e1+8Xu3atSMi iH2wLvKe2Ifm9dTFw6p5++23u549e1pDerpD+DZe9O7k++S1cP/ikoVYibSPP/7Y+qAKIZITiTQh 8hmaeCMy8oNoIs2vp9H3u+++a2IG6tev7y688EITEwgb4PE555zjRo4caf8jGBBpdDA48MADI5Yy GqbDoYceaoIOEGRY1tatW2eJEV6wEaeFNY+WVUEuv/xy9+CDD2ZY58F9WrJkSRM+e+21l+vWrZs1 JqcJe6FChSLtrnC1+veCddI3Sj/55JOtPRZQH4wG6cBxEH2AIOIzeRCcgHg64YQT7DGf/dFHH7XH WEARWwhWLFIIML+/b2DOZ61QoYI9pnk97kXPeeedF3E14u72bZr4Hfx+VatWdfXq1bPHiLQvvvjC HsdKpLVt29behxAiOZFIEyKfwaKDdSc/iCbSsIixnl6hxYoVsyK6LIgd1jdu3NiETDS8SEOYYHVC pNBuCvEES5YsMfGFdfCAAw4wkTZkyBCrbu/dq/yluwIFfIMgQrAoRQPRgyXLizRi1mDFihX2nj0V K1aMiDQEHPsjhHCXepFGAgWfERBxfAYIizTgu8LahiAEhCYiFIsez2Ph8yJCvagLEhRpfKc//vhj ZFuNGjUibm4EKsILEHt8Vli7dq3bsGGD6969u72PWIs0RKoXoEKI5EMiTYh85s033zThkB9EE2mv vvqqxX4hYBAZ69evz7CdIH3cedHwIs3z+++/u+LFi7vHH3/c/v/kk0+sij1uU6xxiLQ//vjDslex vnlwSeJeDIJF8cQTT8ywzoOFDvESFmnw8ssvuypVqphwPOOMMyKWQdyJxMUhsDhubkQa38N3330X +R93KVauwYMH2zF47vbt203gIkbDBEUax+IzenAXYx2EzEQa3x8Cns+ESzzWIg2rH25jIURyIpEm RD5DEVvitPKDsEgjfgsrFm4uQAAgCIh1wmLDeyFWDSsY1htAcGF1g6C7EwEEa9ascSeddJKVhkD8 edGHGw2RMXv2bLfnnntGxBPWISx44aQCjkMsG7FdQRB+N910kz2OJtJw2yIsP/vss0itOV4DwcVn AqxFiDTed3ZFGuLPCywgW/bOO+80KyF888039lzcuQgoYup4Paxt3kUZFGl169Y1N68HFynvGTIT acTFjR071h4T/4dI43uLlUjr0KGDubOFEMmJRJoQ+QyWJ4LJYwluOroYINIQXj/88IN74403zL3G jdlDAD8Cgf2OP/74iLXpq6++MusQYqpcuXImPHr16uWOPvpod9ddd5nYYX+sgAgH6pkhoIjvQmgR X8VjhMuqVavMYsOxsG5hyeP/aCAoEVHVq1c3IYUrmEB9hBAgfkgO4PV8HBpWOWL6WDg24gkhg4sU AfL666+bOHrkkUdc69atzW2IaxXXLMkMe++9t+vYsaP76KOP3B577GGfnbIorEdY8d3hMsWC1rRp UxNHL774oh2XYyFmed98j3xniCnEMOuwniG0SDDgM/B94JLF7UlCAaKOJAO+f5IbSCLgdfieO3fu bK9x8MEHW2wa66+++mr7jYipQxCzT14g/i0zq6kQIvGRSBMin2nSpEkk0FzkDMQYljesXBTqbd68 uXv66afNuiZ2DXFx+eVqF0LkPxJpQuQzWKiwMomcg+sRkYGlD+seoo1m9T7QX2QN7m7vchVCJB8S aULkM9QkozaWyDm4EIntIpaM5ALckOFECZE5JHcwSRBCJCcSaULkM5SkOOywwyyOTIh4QawgpUnC CRxCiORBIk2IOEB9MALWhYgXZIiS/CGESF4k0oSIA8RW0VhciHhBFqwyO4VIbiTShIgD9I+k1pgQ 8YL2Vr7nqhAiOZFIEyIOUMme4Heq5qcTfF6ajCcStHkK9xVNNfjeTznllKhdEoQQyYNEmhBxgJsm 1euDLZfSgffffz/SkB2mT5/uHnjgAYuVosAvxXY9tKBifbTlsssuM0tkcB0i5Mknn7TCsmEovIsV iX3IcPz5558j2yjlQQHd4PtKNYYPH24Fc1NdjAqR6kikCREnKMBKo+5EsyzlF19++aW1nPJQ8Z/u BmS5IlppVUWcnm/DRLcAWk9B5cqVTcwBYoouCEDvTjorAGILS9FBBx2UoYE9jd3PPPNME2/03eT5 tWvXjrRiAkp74A6k/loqQrcD329VCJG8SKQJESdoU7T77ru7xYsXhzelHPTYDAatT5061doc0RYp CN8JbZGw/ARLlARFGtB2CegX+t5770XWA8+jxROtqOgPihBu1KhRhn0QxrSzeu655yLraG0V7iOa KhQtWtRaXwkhkhuJNCHiSKlSpcwFmOpQgDYoiGjcTu/LaFx44YXW7zJIWKR5ook0wBXKMbp06WKC LRq1atVyRYoUifw/YMAA6z+aatCnNNjoXQiRvEikCRFHZsyYYQ3E169fH96UUlx//fXWZ9Nz9tln u7Jly2bYx0Mz9JtuuinDupyKNEQJ23BrFi5cOLzZaNu2rVntPHQuoPE58WupBPF7derUCa8WQiQh EmlCxBG6Dxx11FEWJJ/KnH766a59+/aR/y+55JJMm8wj0B566KEM63Iq0k477TQ7RqtWrdz+++8f NYv2u+++20nAIdJo25Uq4Naly8C0adPCm4QQSYhEmhBxBncUQo3A91QlLNIaNmzo9txzT7dhw4YM +wGuSrYHyalIw0L2008/WeN1hNfgwYPDu1gwPRa+IKkk0sjkJO7uzTffDG8SQiQpEmlCFADFihVz devWDa9OGbBq1ahRI/K/D9x/++23M+xHfB5Zl+Esy+yKNJ533XXXuauvvjriQiZblP2CDB061J1w wgluxYoVkXWzZ892hx9+eIb9khmSM0hMIWtWCJEaSKQJUQD06NHDHXPMMW7lypXhTSkB9eBKly6d YR3lNUgmuPPOO92rr75q/UwrVaq0U72yqlWrukMPPdQdcsgh7oMPPrB1iDxKbxxwwAEmcMnMfPHF F939999v+wctdLiUmzRp4ipUqOBefvllV6VKFff888/vlFnaoUMH98gjj2RYl6zQRP2cc86JlDMR QqQGEmlCFBDEYpEFmYogmhBjiIcwo0ePNhF25JFHWsmMgoKabZQKSQV69eplHS2iuZOFEMmLRJoQ BcSgQYNMqKSqe4puApS9iBbEj/UMlyRClZZZWL/iBe+HumvEBqYCa9eutQ4MWA+FEKmFRJoQBQjx VSeffHJUIZMKYNlp165deHWEBQsWWPxZPKvjz5o1y5ZUgPMGt+7FF18c3iSESAEk0oQoQMjwvPTS Sy1mSoicQistuguket09IdIViTQhChgK3JKVF61shBCZgRXysMMOswQIIURqIpEmRALwyy+/WLan bzAuxK6g9AhZskKI1EUiTYgEYPv27VaSgqbkqVqWQ8QGzhXi0GiFFaz7JoRIPSTShEggSpYsaWIt XNxVCCALltpxhQoVcosXLw5vFkKkGBJpQiQYxYsXd4899ljKZnyK3MH54HuThgsACyFSE4k0IRIM 3J0nnniiq169eniTSGMoWEsXBhIGhBDpgUSaEAnIhAkTrGn4xx9/bI2zRXrTuXNnd8QRR9hfIUT6 IJEmRIJCVfxjjz3WvfLKK1HbK4n04LvvvrPzIFU6JAghso9EmhAJDNl7Z511ljUCp/2PSB+woNJW i9IstBATQqQfEmlCJAG0/bnlllsKtCG5iB90oqhatao76qijUqaFlRAi50ikCZEkXHPNNWZV4wYu UhfKbNxzzz3uoIMOkvVUiDRHIk2IJIHaaa+//rrdvBVAnpoQh1i4cGF3ww03ZGo1JT5RdfSESA8k 0oRIIqiV1a1bN+v1+cILL7iNGzeGdxFJytdff20ZvXXr1s00o5dG6meccYb17Bw7dmx4sxAixZBI ixGnnHKK+9///qcltJQqVSr8VYkA9Ops3769q1Klilu1alV4c6bMnj3bWkhdfvnlillKcrZu3erK li3rTjvtNNevX7/w5p2gXtq+++7r9tprLzt3hBCpi0RajECk/frrr+HVac1nn30mkRaAWKOJEye6 tm3buqefftqdc845ETFLiYXclNngOEcffbRr0KCBYtWSDHpwdunSxRUtWtRdf/317u+//w7vkinT p083tyjnzldffRXeLIRIESTSYoRE2s5IpGVk3bp1rkiRIjtZG1mohZVbKM9wwgknuDPPPNPNmDFD 7aSSgEWLFrm77rrLsjebNGkS3pwtNmzYYE3WOX/IBBVCpB4SaTFCIm1nJNJ2BmvZgQcemEGgIdxi QY0aNdwee+zhnnvuObPaicQD6xmCfLfddnP33ntveHOuuOqqq+w84q9+dyFSC4m0GCGRtjMSaTuD S4v2PkGRhqiKBVjQFi5caLFqvEaHDh3Cu4gChMzNk046yZ166qluxIgRmSYH5BQyPZ955hk7l04/ /XQ1XxcihZBIixESaTsjkZaR/v37R+KInn/+efuLVS0nCQPZBYGGCxR3WJs2bcKbRRzBHV2iRAmz chI/RoZmrCH5gD6vnFNkf5JYIoRIfiTSYoRE2s5IpP3Hjz/+aNl4BxxwgOvTp4+te/fdd90dd9wR 3jVmELOEa42b9iWXXGKZgNzMRXwYMGCAK1OmjFk133vvPbdy5crwLjEFS+oPP/xgmZ/HH3+8vX66 0a5du53iPdNxiZV1XhQ8EmkxQiJtZyTS/rVwvPXWWzZwnn322W7evHkZts+ZMyfD//kB7rB69erZ OXrppZe6Tp06WRKDiD383ljO7r77bleoUCH32muvueXLl4d3y1fIGEUYYqX97bffwptTGkQa11k6 8+yzz0qkpRASaTFCIm1n0l2k4daicjwC7aabbsoXN1dO4TfByoKAqF+/vmUZKhs076xYscK6QJBh y3eLO7sgWzoR/0bmKC7Wpk2bxiz+LdGRSJNISzUk0mJELEQada6eeOIJt/fee7svvvgi04GVDLFP PvnEbv633nprhvpKPOfbb7+1wZlej2HLDRmAQbM479vz5JNPZth25JFH5sk9lq4iDdGD9YqYML7H xx57LLxLgUO9tvPPP986F9C4HbGW2fkmosPvzDXLTZFszWOOOcb98ssv4d0KjGXLlrlDDz3UzkHc rekgxiXSJNJSDYm0GJFXkYb7iRk4rWEQRtxAH3/88fBuBtXJg2KKFjF+1l65cuUM2+jz6N0t3FAQ XsHtBBt7TjzxxAzbmjdvHtmWG9JVpE2aNMkdcsgh9h1irUrUIrOIfbJB33nnHYuVoxTIRx99VKAW oGSAMirEfnG97LPPPu7hhx+24rKJ+DvzW15wwQV2LqbDtSiRJpGWakikxYi8ijSCfBlIafkCV199 tcWUhJk5c6b7+eef7fGUKVPc/vvvb88jpZ8bbrNmzWzbX3/9FSmc2rNnT1s3f/58N3To0AzH80yd OtUNGTIkvDpPpKNIozApggcLFVaVZLFO4a7j/CWWigQHbuxvv/22mzt3bnjXtIQMXHpqXnHFFdZf k5pkXGtcU4kOk75y5crZWMC4kpPOBsmGRJpEWqohkRYj8irSqlWrZoOod08ymPJ/jx49wrtGQAD4 kg5Umg/ji1yOGTPG/n/llVfs/5NPPtmVL1/ejRw5MrJv6dKlbRuZgLjnYtG8Od1EGlXf99xzT2vx NGHChPDmpIGbeKtWrcxiu99++1myAZmo9JXMi/s7mcDKOHr0aBNmN954o/2uN998s1lGmSglI9Wr V7drHBETj4SVgkAiTSIt1ZBIixF5FWlcVNFEWosWLcK7RsC9QswJ7pZo0BsS8QVYAjhecCFVv3v3 7hbQ7i1yfsEalFehkS4ije+vQoUK9r3R8Dy/Sy3EE2LrWrZsaaVCOMeJdbzttttMrAwePDhfarwV BHxORBnWMSYwhx9+uFmiEWhkxqbKb8rvhvBmcodbPtWQSJNISzUk0mJEQYg0XKRkcEVzXyCwiD8L u6twiVKz66yzzorMqj28NkkHPjaNGDksCrklHUQabkIKxuLexPK0cePG8C4pBWKFgqyIUUQMrlES VEh0GTVqlBVRZZ+8nDf5CcHza9assXN9/Pjx7vvvv7cemgT+c77zWxJkH80ynSpQloNYVayDhEmk UkKBRJpEWqohkRYj8irScKsgjLyo8iKNVPpoLFmyxCxh3pIRjH1CKGBhI84svC0ImaS4PqNx5513 Wq2lvLi3MhNp3BR27PjHbd+xw23fvsOtWLPBTftruRs2aaHrMyo53DB8BuL+vOXx/fffD++SFmDN bd26tWUZk5WMpQ3Bg7WGdRTTXbp0qe1HX0nEG+djfgmDf88tzqvt9nqcv1wjbdu2dQ899JBdF7w/ 3icCkxZaXHuJUB4lnpDowHfAuYv1ML9+j3iTF5HGefPGG2/YeUE8ZmbjJut9cWrOn6DrmO+RUBEm wYzPDRs23Om75fmzZs2y85G4Y5I7WMfk5+ijj7Z1L774Yq77sEqkpRYSaTEiryIN1wMDJoVGAZHm BRTZZGR7klHm/ydOyFvQuAnikgGfGeotAVh6yN7DnXPRRRe5P//88/9f0dn7pY6XPz4xR57ff//d XFzhASYnZCbSEGQ1mw90HzYd4D74sb97P7C07pU3F2u8+OOPPyIuYh5nNqCnEwgjrFSU82BywU0H 1yjijRsaNx/ciJSqwFrLDe6pp55yn376qWvcuLEJKWIwKQZLiRAmLAgszmluZAsWLHCTJ0+25BcS bDp27Gg3S8596pJxLnPNYOHDioy1iNfGYoS178MPPzQXLcfxx01nmOgR1oBoRZSkArkVaYxzJMsQ t4s4ws3N+RmNl156KUNoCOe1z6Bn3KReXrdu3SI9eoM9dDmPGdspz0OiFl1BgLGWCQTbyfTneVh4 c4NEWmohkRYj8irSuGG88MIL7umnn7b6RrgxvauTshxctMx8Fy9evFMJDhYCvaFSpUo7baPMBoLO /49ripspNy2Ox8DArI/jN2rUyBo0M6Nkn7yQmUiDYZMWZBBnfln4d95eMx7UqVPHbv6IAdzKeRGy 6QLnGJZHxBciDJcbVja6MWBR4CaFyMKNWqxYMWtETtyUz5TFMofw4ubGTZg2V9dee62JQDIXubly nTDJoUcqIhGRl8iu10SAa5zvkXEhEev55ZTcijTOE8Y/P9l94IEH7BoPg7BlQgFk9vpaiF27drWJ Gi50T8WKFW1bcPJ72WWXWWIR10KQ0047zSYyPg6Y5zEJzA0SaamFRFqMyKtIAy5yrAOIKmJFPAyk FK/lpoUlgO3hhQGDeLPwepZp06bZcYgX4jis42bmZ3FAOQ/EB9tIJsDylleyEmk7/vnH9R4xeyeR 9kWboa7XiNluxerEi+3iO3nmmWdsMKdhdjjeT4hkBEu6T3zByhOLa7+gyK1IY8LA5/fFiBFp/I8r PyvI+GW/4HgNWNeLFi1qk27Pl19+afviXg9z++232za6gRAnifU3q8z+rJBISy0k0mJELERaZiDe EFWvvvpqeFNCk5VIA2LSWvYcHxFoLXqMd/U7jvjv/57j3dR5y93mrbmLzYglWCJ9i6f77rsvqW9k QkTj5ZdftvMb6xAW9mQktyKtZs2aUUUaE9eswEVKy7cguOIJH+H5TOjwiOBCJTGFdQgo3iPhJz5R jAmzj0NmwVuSW3e8RFpqIZEWI/JTpBHU3L59+/DqhGdXIs3z7a+j3EfNBrr1G/+t2L5w+Vr3TadR rlaLQSbWPmk52PUfN8+tXrepQFyLxPcRd4LbDfecEKkKMX6c5wgFXNPJRjxFGnHEuOBJAogGFjPi /XDdY630XUiIEyaukse480mqwU166qmnWsIAXSzYRixxbpBISy0k0mJEfoq0ZCW7Ig3I7IwGsWs1 mgyIWNca/jzSrVm3ydyl+Q2CELcFAyaDLS4RIVId6sXhbuO8z6xDSaKSW5HWpUsX+7y+m4sXacRP RgNhRfiJjyHLLHGIDGfcnr6mJcdkXMFSyWNigYnXJL4VlyfwHrxFLTd1CCXSUguJtBghkbYzORFp WVnItm3b4ZasWGfuUC/W6rQe4noOiz6DjRUkWDCr9YV9s3qPQqQKnOdkwGL5IZi9QYMG4V0SltyK NEQUgfpkGgMijZ7IHrI96WsLuC7PO+88yzQGkg7oNsJfOrYE2+uR2EIGMyKOrGaEF6WRvEhjbMHK RtazF2nB0j65KQ0jkZZaSKTFCIm0ncmJSMsuK9ZsdMOnLDSRhlj7uPlA16zbODdl7s4FffMCWbK4 fShu6hMvhEgnaH91+umnm1UtWeJhcyvSEKaIMOpDUk6DuDwv2DgmgonxANcmWfheRPkF1yT10vz/ xJeRNVumTBkrqQEkblGWg/ZcvXv3tgkgf4GeuQg1xhruI7xWmzZtMrzH7CKRllpIpMUIRBoB5dQb 0vLvQqB9rEVakGnzlru2fSZFrGsNfh7p+o6e69Zu2BzeNdsQwMt7ZqDFVUHGrBDpCoKlZMmSdj2Q AZrbAqtZMXvRKjd00kI3Z/Eqt3Vb3sql5FakecioRKz17ds3so7i4FjVzzzzTDds2DDbHl68VW3g wIGuVq1aJvCCNSk9ZIRTKobjhfsjU2ONYzG5Jds+t0ikpRYSaTGiSpUq7sEHH9QSWij5kd9s2brN dR8y030dyAz9ud9UN3fxqhy5KJkJMxBzQ3r88cfNBSJEusPExcdo4ZKjjmIsmb1wVeS69XGnnQdO cyOnLnILlq0N754leRVpmdGnTx8bE5IBibTUQiJNpBRzF69233ceYx0N/KA/fuZSt25D1oKLAGli UoIFLYUQ/0FxVhJoqOVFV4lYsXnLtgwizS81mg5w/cdmLPq6K/JLpCUTEmmphUSaSFn+HDXHfdDk v0H/+86j3Zr1mzNY13hMHSOsBFS1D/bhE0JkhI4kXCtkJfoaXzmFa47s7CUr17uOf0629nBhgcYy ORdxphJpEmmphkSaSGmIcSHZoHHXMTbwI9o++2mo6z/uLyumi5uaDDZ6Sfp+p0KIzKEsDdcMmYnE UWWX9Zu22HXX8JeRrnarwRExVrvlYNe027gMAm3uopyXngCJNIm0VEMiTaQNy1dvcMMmL7TiuNwI PmrSzz3yyueu3KMVk7bCuhAFAW2QKFGBUMus4OumzVvdhFlLXce+U9zXHUZELGY1mvZ37f6Y5MbO WOKWrFhvE6mlK9f/e002G+gW/p2zOLQgEmkSaamGRJpIOxYsWOiuvPEOd/+zNdy73/9hNwdm9/3H znMbN+euFYsQ6Qb1vs466ywrF0HF/k2bt7gFy9a4AeP+ci17ToiIMv5+13m0+334LDf9rxUWgxYG 9ycJA8tW5rwuWBBEGl0AqlWrlrbLhRdeKJGWQkikibSCFHpf+Zu2LUtXrLWG7l+1Hx5xtZAZSjmA 7dujVxEXQlBl/x83dcYcd8EVN7m7nnjLvftd739DCn7s775oM9S1+n2CGzRhvlv3/+3e4gGFZMMZ 5um4NGnSJPzViCRFIk2kBdu3b3cdOnSwgGcSBKIVHp46d7lr9Mu/fUS52XzZbpgbNXVRXG8yQiQq BPxv2fpvjOeAcfNcvXb/TWw+ajrAvVS7jXvq1Vpu7oKl4acKIXKJRJpIebi5fPjhh2Y9w4pGy5td 0WdkxszQn3pPdBs3bc1R3TUhkh3LxNzxj5s4a6lr0HFkhuB+ro/mPca7JSvX2X7ly5e3a+y4446z SZEQIu9IpImU55ZbbrG4mfPPP9/64mWXLdu2u3mLV7tm3f/LPMONM3jC/PCuQqQM1rtz2Rpz+9dr PzxiWWb5ttMoN2bGYkvCwaoWhhqDXqgpGUeIvCORJlKWVatWuWLFitlN4/7777f/cwM3reVrNro/ R891n/5/6YBaLQe5Nr0nWUsbIZKdVWs3uiETFphl7PM2QyOirG6boa7bkBluytzlO9UYzIxffvnF rrkDDzzQjRo1KrxZCJEDJNJESkJfPJpDc7N49913Y9biCevBpDl/u+bdx0duZN/8OsoNm7Rgl10N hEgUNm3Z6mYsWOE6D5pm7dQI9rfJR4tBrnmPcW7IxAXu71XrzdWZGwjgP+qoo+z6a9myZXizECKb SKSJlIMmyQcddJDN5Js2bep27MifLM2Vaza6X/tPjVgePm420HUaMM3NX7omvKsQBQqZyouWr3Mj py60wrGRmmVNBlgNs04DprsZ81e4bdtid60Q+0kLKYRajRo1wpuFENlAIk2kDAQrf/XVV3ZTKFSo kM3m48XE2Utdg5//K9iJcOOmp7proiDALbl+01Y3a+FKm0jUaj4oYvnFZf9tp9HWwHzjlvw/P33I AbW7Nm/eHN4shMgCiTSREnBTqly5st0MaPG0fn3eimLmFkRZ54HTIzdElja9J7rNW7dlK55HiNzA ucWyYfNWN3jCX9ZqKXgOftJikOs+dKZbvX5T+KlxgeQdrs3LL7883yzbQqQiEmki6dm4caM777zz 7CZw7733urVrc99WJlZQVX36/OWubtt/XaG4lb7qMMINn7IwvKsQuYaWSlPn/e2adR9vFjJfNgaL LsVkZy5Y6dZu2Jzr2LJYsXXrVvfmm2/aNXraaae5bdt27joghNgZiTSR1EycONGdccYZNvhXr17d BFuisejvta7n8FkRq0ad1kNcp/7TLDBbiJyA2Fr891rXa/hsK4fxcfP/ymM0+nmkFZml9yWW20SD cISvv/7artUjjjjCzZ+vUjZC7AqJNJG0dO/e3R177LHWReCbb75JeDcKmaGjpy12TbqNjdxYKXkw ZrrqSYnMWbl2k1lgcZvX/v8SMCx12w1zv/Sb6ibMWubWb0qezOK2bdu63XbbzR1++OGud+/e4c1C iAASaSIpIWtzr732smbKffv2DW9OeCgW2rHflMhNFzdVr+GzLANPpDfENc5ZtMr1GTHbisn68hg1 WwxyP/421vUbM88tX7Mh4SclWTF58mQTaVjV2rRpE94shPh/JNJEUoHL5OWXX45UNR83blx4l6SD mlT0CfUWkm9/HeVmLVppcW35Ce6m8ePHR13mzZuXYd8BAwZY8Pdhhx3munXrlmFbEH6TJUuWhFdn G4THhAkTdno/M2bMcEuXLt1JmODirl+/foZ1yQZxZavWbnITZi3N0N0C4f5F22Gu3R+T3cwFK2y/ VGL27NmuaNGidi1//vnn4c1CCIk0kUxs2rTJXXjhhTaoX3zxxQkZf5ZXWv8+MXKTZiGWbev27fmW GYrI4fsMtssaNmyYu/nmmzP8T8cGwAJyySWXRLaFISh8xYoV9pj3/NZbb4V3yRYc54YbbrBjUYi4 VatW1trrvvvus/PAw829devWGZ6bXXCRFwTWD/Off9zfqze43wbPyPB7s3zVfrgbOmnX/WVThXPO OcfOwQcffDDfznMhkhWJNJEUYNk59dRTbTB/6aWX3IYNG8K7pAwbNm11U+ctd5+2GmI3bTL1cHtN +2t5eNc8g9UrLNLghRdeiDymvhXlTXIKSR0nnHBCeHW2ePrpp90DDzyQYd2aNWvcMccc48qUKZNh fW45+eSTw6vyFdyYtBZr+MtIVzNQt4wq/xRBXrxindu0Jf1KtVAup3Tp0nYekqUdFOFCpDsSaSLh GTRokDv66KPdnnvuadYP0vnTge07drgFy9a6LoOmuxr/XyQXtyg39PUbYxMoHk2kTZ06NfK4SpUq VnfulFNOcffcc09kfbt27VzZsmWtrIIXzByL/+mROnjwYFe4cGG3//772/OoPg+4TcuXL28ibObM mZHjhUEUhkUa0GKI90scIucBySM///yzbcN9+8Ybb7i///7bPfroo27OnDm2vkuXLnYs3OQIAlym F1xwgR2H99axY0fbb9KkSe6hhx5yTzzxhBs5cmSG180NuCcnzVnmfvp9oonsGoHyGG37THLjZi61 nrD8zukORW6xuvKbYC1X5qcQ/yKRJhKa5s2bu0MPPdRioXBrpZuVwUNfUDL86BPqLTAte06wOKZt eYhVCos0rBgIrSAIKqyXnvfee8+aaOOGfP75591NN91kN1li1fbYY49ITNqnn36awZJGsgfii30H Dhxo+9JjNRqZiTTeH+/3ww8/tNi1iy66yNWqVcu2+W4T/EVsIb5whzZr1swEHa5d3OSACGNfD6KS mDuOjwXwpJNOch06dIhszwnbtu9wLXuOj3SfILaM363vmLnWASARy2MkAtROq1Onjk3GzjzzzEzP DSHSCYk0kbB8/PHHdiPHijNixIjw5rTlryWrXds+k81Nhgig7tqSFbnLCvUi7bbbbjPL2N133+2u ueaaDPsERRqFgvfZZx+LESMr75133rEsW88hhxySqUjjMQLIw+tdeeWVkf+DZCbSgNeoVq2aPX71 1VcjIm3KlCn2WYKxilhgW7RoYe+1Zs2adj5BUKQhNosUKZIh4eH99993xYsXj/yfE6hl1rjLaLOW Iaw3JFF5jEQAMU/vXWqp6boX6Y5Emkg4cJ8hFriJXnbZZW716tXhXcT/Qwughj+PzHXmX9iSBkOH Ds2wT1Ck4UrE0hHOsvRkJdJ4naCLs2fPnhmsWUEyE2mLFy+25zRu3Nj+jybSghxwwAGWERwmKNKW LVtmj4NV8H///XcTeKJg4PvHes659ttvv6WtBV2I6COkEAUE8UwUqOWmicsKK4fIP6KJNPC9ICEo 0si2xHIWjBkKCq9dibRg+Q5cnpTsiEZmIu2ZZ56x4/gM0l2JtIMPPtgyUj2U8YBoIg0x4CHmjUQV UXAgyCl6y2/z3XffSaiJtEQiTSQM1MPips7AXK9ePfX3iwOZibR+/fq5lStX2mNEGuURgNguMiwp kUGCAc8PZoIi0vyx+A2pg8XNlYB9+qreddddkX05ZufOnSP/B8GSGhZpiCgsKyQLeBBpb7/9tj2O JtJwWZL4QD09hN3jjz9u60kSYF9co7NmzTL3Ju414uXggw8+MFeuKFgQ1cQH+kmbEOmGRJpICAjS JkHgwAMPdD169NCsOQ40atTIArS5ARI0j4hiIREAEYZLk4xI3E5YpB577DF7Hu5nBBSCiX3JosRF XapUKTuWj2nDgsXzSDRADC1fvtxVrFjR6p8h/Hj9sBBHJJUrV87Og6OOOsrdfvvtJtjIwuQ5o0eP juxLhul+++1nLs0+ffq4K664wl6/RIkSkX0o24Eww/p31VVXuenTp0e2FStWzOLiFi5caO+PhImr r77aPfnkk65u3bppk0Wc6HBuETPJb8t54IW0EOmARJoocD766CO7iTJjHj58eHizEEJYORiE2qWX XpqnrhZCJBMSaaLAWLdundWkwr1JEcus6mYJIQSubT+hC1pFhUhVJNJEgUCsCW4pZsbXX399SncQ EELEDkqqUAYGl7gmdiLVkUgTcWfu3LlWiR6BRsuhcFySEEJkBYVuGT9YRo0apRhWkbJIpIm4Qose ClVSVJSilRpchRC5gaxcRNruu+/uGjRoEN4sREogkSbiBiUZyMSj1AE9HIUQIi9QV/Gss84ysfbi iy+GNwuR9EikiXyHgrTUs2LGe/7552doDSSEEHmBkhy+/Mt9990X3ixEUiORJvIV2giVLl3aBtCb b77Z/hdCiFhDHT3GmUsuuSRSiFmIZEciTeQbtA7CcoYFjeryShAQQuQntAhDqBH3Om/evPBmIZIO iTSRL9CiZ99997Wq9L4ZthBC5DedOnWKZH7S/kuIZEYiTcSc+vXrW4kN2gnRA1IIIeIFGePUT2OS yDj0yy+/hHcRImmQSBMxg16HlStXtorgdBCYMGFCeBchhIgLWPOLFClihW9r1qwZ3ixEUiCRJmIC qfAPP/ywuRhKlixpHQWEEKIgWbBgQSQu9pVXXglvFiLhkUgTeQbXAhlV9OC866673Nq1a8O7CCFE gUCm5y233GITyAoVKrhNmzaFdxEiYZFIE3li2LBh7uCDDzYX51tvvaUOAkKIhIQJJEKtWLFimkiK pEEiTeSaNm3auL333tuWHj16SKAJIRIWxqfq1aubUCOhYPHixeFdhEg4JNJEjtmxY4d77bXXrLzG 0UcfrQQBIURSgFBr3769CTWyz4cPHx7eRYiEQiJN5IiNGze6cuXKWfxZiRIlrMmxEEIkE7169XKH HHKIO/TQQ62umhCJikSayDZ0ELj++uttFkoHgTVr1oR3EUKIpGDUqFHu+OOPt3jab7/91jwEQiQa EmkiW+DSPPXUU21Aq1atmgY0IUTSM3fuXHf22WfbxJN4NZq1C5FISKSJXdK3b18LtD3ggANcixYt wpuFECJpWb9+vTvxxBNNqD311FMW0iFEoiCRJrKkYcOGbo899rAWK2PHjg1vFkKIpAfPwK233mpC 7YorrghvFqLAkEgTUaHF0xNPPGEJAmeeeaZbuHBheBchhEgZtm/fbqEcCDVCO7CwCVHQSKSJnVi+ fLm7+uqrbbAik5OWT0IIkQ40btzYxj7KC02aNCm8WYi4IpEmMjBu3Dh37rnnmgWtUqVKbtu2beFd hBAipenSpYslSdHzs3v37uHNQsQNiTQRgdpBRx11lCUIfP755+HNQgiRNkybNs0deeSRZlXDuiZE QSCRJixolhZPzBop7ti1a9fwLkIIkXbgSfCZn++9957F6goRTyTShKtYsaINQljQ1EFACCH+g1ZS vpYaTdqFiCcSaWnMunXrXOnSpW3wKV68uFu5cmV4FyGESHs2bdrkypYta2Pl5ZdfHt4sRL4hkZam UGn7oosuMhfnM888owKOQgiRBbg+6UqAUDvvvPPcihUrwrsIEXMk0tKQ/v37uyJFirj99ttPCQJC CJEDGjRoYEKNpIIRI0aENwsRUyTS0ggSBDp16uQOOuggy+Ls0KFDeBchhBC74Oeff7YuLPvss49l xQuRX0ikpQlkJTVq1MhmgCeccIKbMmVKeBchhBDZZMaMGe6II46wMbV58+bhzULEBIm0NGDz5s2R BAGylNasWRPeRQghRA5hLD3uuONsbKX4txCxRiItxVmyZIkrVqyYDSJPPfWUZSkJIYSIDbTNK1Gi hHVpKVOmjGqpiZgikZbCDB061J1yyilujz32cDVq1AhvFkIIEQNWr17tnnjiCZsMlyxZUv2ORcyQ SEtBKL5IB4GDDz7YkgTU0kQIIfKXLVu2uCpVqlhZI8ob/fXXX+FdhMgxEmkpBgPFJ598YgPFscce 6wYMGBDeRQghRD7ABLlOnTqW9Vm4cGE3YcKE8C5C5AiJtBSCgrSPPvqomdxPPfVUt3Tp0vAuQggh 8hk8GdSh3H///V3fvn3Dm4XINhJpKcKGDRvcBRdcYALtyiuvVPCqEEIUINOmTbPxmKVr167hzUJk C4m0FGDevHnu5JNPtsHgjTfecNu3bw/vIoQQIs7Mnj3bHX/88Zb5WatWrfBmIXaJRFqS06VLF3f4 4Ye7vfbay/3444/hzUIIIQqQ5cuXu+LFi9sk+uGHH7a4YSGyi0RakkKLp++++87tueeerlChQkoQ EEKIBIXwk3vuuceE2h133GElO4TIDhJpSQgJAq+//rpd8GeddZabOXNmeBchhBAJxrPPPmuZ9xQY nz9/fnizEDshkZZkMANjJkaMw8UXX6wOAkIIkUR88cUX5gGhRMeCBQvCm4XIgERaErFu3TorrYEF rWLFilaTRwghRPLAuN2jRw8bx+kGM3369PAuQkSQSEsSxo4d6w477DC7sJs2baoMTiGESGJo28d4 TuHbdu3ahTcLYUikJTiIse+//96KInIx//LLL+FdhBBCJCG0jsLtiVj74IMPwpuFkEhLZChQ+9pr r9kFTB00tRgRQojUgmbsl156qY3zzzzzTHizSHMk0hKUv//+25UrV84u3Msuu8wtW7YsvIsQQogU gYQwxvsbb7zRJugwfvx417hx4/CuIo2QSEtAEGhnn322pWrffvvt4c1CiASCEji0AAovixcvjuyz fv169/HHH7uiRYtaV5BoBU2HDRvmLr/88vDqbMO4EX4Pc+bMsYzwYJLRyJEj3RlnnJHhufkBE8vw +/ELBV5zCzUiqQt53nnnpVzy1BNPPGFCDRconWROOOEE61igGOT0RSItwSBG4cgjj7QL9f3330+5 QUiIVAPBceKJJ1rbH4qWsixdutS9++67kX3efPNNEy0IDMRFtBpZbNu2bVvkf4TdihUrMuyTFbzu 448/bmPHokWL3Nq1a13Dhg0tg5CxxMOYkpvevnxOb+HJDqVLlzZLEK918803u1dffdUed+jQwQRr VgwcODC8KgLvf9KkSe6oo45KufGRz0PnGH5Dyizxl0WJBemLRFoCwYVIgsC+++7rOnXqZIO2ECLx KVmypPv0008zrAuGKHBd5wTEzFVXXZVji5PPGAwyd+5cG1OaNWuWYX1O8O8H4ZhdqAfmRVSpUqXM ggiMa3Xq1Ant/R98j61atQqvzsDUqVNTUqQBtS+xoHmBxsL3J9ITibQEgAGQzB4uxiJFipg7QgiR PIRFGpYe6hpC+fLl7drmb40aNWwdbsgXX3zRVapUKbIfz/nkk0/s8csvv2yWlHvvvdd169bN1lGG 57nnnrOq9bjCohFNpCFksLDR4xdL2IwZMyKZhAhJ3tPo0aPd888/b9twrTVv3tz6TLZt29b2Yxvh F2XLlnW9e/e2dYxTlStXtm0LFy7M8JphgiLNg7WPzilPPfWUGzx4sK3r2rWrO+CAA9wVV1zhPvro I1vXuXNn++7Yd+XKlbYuVUUa9wK+z6BAY9l7770jn12kFxJpBQwuCQrTciGWKFFCCQJCJCGINIQI bjzExemnn57BVRkUTli2EGdYpVq0aOFOOeUUs558/fXXkVixNWvWWFV6b0n7/fff3f3332/xZX37 9nWHHHJI1HZw0UQa9OzZ09Yj9OrVq2eviUULt+Khhx7qateubcLtjz/+cFWrVrXX4LVwzWKBQyBQ Ashb0hBTiDjeJ+/twAMPjOrC9YRFGhmNCDEq7iO4KNJNgVc4//zzI5Y0xBtWJd4rohYBA6kq0vie q1Sp4q677joTxUGhpszP9GTnq1nEDQa8G264wWbMDz74YHizECJJCFrSEBQvvPBCpiINqxYxYtQ8 /OGHH+z6x6pEiZ3MRNpNN91kIRAeBI4XLEEyE2mIL9ZjrcMChkjzEE83ZswYe0yyAwKwY8eO9v7I NCS2LCzSrrnmGte9e/fIMYoXL24xZ5kRFmmI1Pr160f+/+6779xxxx1n311QpBHThnURwcjz/TiZ qiItDL8ByQSI5Xgke4jEY+erWcQVBrv33nsvvFoIkUSE3Z1hgsIJwYJoCpOVSENIdenSJbIvAufK K6+M/O+JJtIQMrgK99tvP7d58+YsRRpu2EKFCu2UTRgWaQgqrHMe4s/4DjIjLNJwaTZq1CjyPxYz EqZ43aBI4/2y32OPPeZq1qyZdiItSDCpJK/wvW3cuNEsmghzfvcRI0bYpAFL3gMPPGC/GZMBKg0Q hoO1lHOSzjecM/xO/OZUIHjkkUcsUaZ9+/Y2EcAdT/IM53FuklTEf0ikFTDMHNNpoBEiFclMpFEq AoLCCcGBq9CDqxNLUVYi7ZZbbrGbpweXJMIoTDSRRswbAu3bb7+1/7MSaVj09tprL3PJehCUYZHG 561WrVpkH95bUHSFCYs0Yuv4TJ5evXqZtShsSatbt6575513IlmP6SzSYgHnGN8n7njOLzJ/vVsV EYabFUH/1VdfuZYtW7rffvvNBDTfN6KL3x+3NhbOfv36maWvSZMm7vPPP7fYQiyqHBfrMMfl+JxP 1157rZ0fCufJORJpQgiRB6hPRtwUwf4exA6uQiwVxF1xE0SIAIKHIH5vjaA8BdYG3JlYsQjuR1jx HGLcEHrjxo2z5/z5559m+aB2VjiQHIGDEOJ5bMMKRbkLrCC+PAhw4z366KPtMeLwiCOOcL/++mvk GLwmoq5YsWLuzDPPdH369LH9uPGSlUk9t1GjRtn74b1RNuiYY44xYRkN4m4Rn/fdd19kHe+N5zRo 0MCeh2DjewSsN7fddpu5QLGeUVvOCzQ6r/A9kbxw8MEHKwM+C7BmIcjOPfdcd+yxx9pvigX0ySef NIvXlClT7LdjIoBVLVbwm3D+Iuqw0CHo+J2xuJHlzO/G9YIXiZaHPnFGREciTQgh8gClc0gACC+I GwiuI4sSEFo8D8GBYAnu512hWLx+/vnniLjiptumTRvLdoxWCoOkgPB7IMCf53mLE4LJbyNzk+P5 /9kG3GQHDRpk6yZOnBg5/vDhw81y4t1u3IB/+uknc8NmdZMnvs2/hk8OAGL2+HwIhmB2KI95bwhN PifvEasN749j8VrBzxhLN2AygyhC9Nx9990mZrGMPfTQQ/b98duxvaDBnY2VlsQUEliuv/56y1zF Aod43NW5lI5IpImkhFn1W2+9lTZLMP5HCCEA9yFto7DGYinDXUmMc//+/ZNGvGJtRqxTWgbLMrGJ hARQeiYcG5mOSKSJpCTdsmEl0oQQgEURSxRWMhIwLr74YvfZZ59FbTWWjBD/RvbvaaedZpnG1atX t5jJdE1AkEgTSYlEmhAincDihNUM9yAxha+88krKB+LjwidekVp+WNmwEKabO1QiTSQlEmlCiHTh pZdeskxJki0mT56cdm5AXLcIVFy6JLoQZ5cuSKSJpEQiTcSSjZu2utkLV7ohExe4jn2nuO86jXZf dRjuPm8z1NVuNdh92HSAW7N+U/hpQuQbCBOyXA866CBLBpg2bVralxwhE5QOF2QdI1jJRE71DN+0 EWlkKZFJ9eWXX9qshJ54BFlSm4eWJKS0Fy5c2Ar14eentgsp55iWyZJBvXNSkDqMr/zCCy+0FPty 5cpZXRlqwFCBe9asWeGXFvmARJrILms3bHZzFq1yI6Yscr2Gz3bt/pjsmnQb5775dZSr23aYq9l8 kHv/x/4ZlhpNBphIa9ptnIm2vmPmuo2bYxMTgxWAkhbJBBmoFNClnIfPxLz11lutnEeswHX34Ycf pkxsVW5BiLz99ttWqoKMR4rDiowQn0Y5mksuucTKu5BlnKqknEhjAKEeEcX4KK532WWXWW0W6sPw +M4777QeaDQVproyKeHU/aGWC82FqWlEajh+b0zKpIBTv4d6Msxk8JEPGTLEUoW/+eYbq0PDhVSm TBkTbhRYpH4QxftoDUMBSfzowRYxIu9IpIkd//xjAmzBsrVu+vwVJsL+GDXH/dxvqmvRc7z7st0w 93HzgTsJMKxiX7QZ6r7tNMr91Gui6zJouus3dp4bN3OJm7N4lVu9bpPbng+zc8YTJnXJOhYQsE5B 2101U/fweRkDiZ9inKTW2a6gvhy13pIlMzGWIE5x6VE+g3aBvum8yBp6y5500klmdKEXbaqR9CKN ekOIIHrhUbSP2QemUOqv0EuOuj7xDq6kfhD1exCDV199tVX3ZnDjMZY8RGG4EKXIGRJpqQ0iaf3G Le7v1RtMhM1YsMKNmrbI9Rk1x7XrM9l93WGEia1oAuzTVoNdvfbDXeMuY1yLHuNNhA2dtMDNWrjS rVpXcEHHWPJ91f9kJKcijQkuYouJLxNZJsXZARcfxWrTCQrLkqVJJwDq54mcgVHlzTfftPIdlStX TjpLdVYknUhjdoYww71IRex9993XZmpYyHA3JmpAJa1fEG60U8HaRusMlD/1YbDUpXusQU7JiUij ojluaM6bXcUv8DtkVYGbmw6/V2ZubSwBvigocBxEOwUcfdHS3JBKIm3Hjn/clq3bzX2IJWzZqvVu 5oKVbvCE+a5D3ymufseRO4mvf12Q/d3HzQa6T1oOtlixr9oPdz/1nmSuyAmzlrmVaze6rdsS8/rn t6ecQFDgcG4QU4PlhAkmlnzgPH300UdtfdmyZd2SJUvMvYNL59JLL7XCpIx55cuXt8keNaV8N4Ig jIW0ieLGz/laokQJcw8hmmhaTlgHLkyuCRa6DrCdcA48B8D5TnkHuiPccccdFrzOZ+A90d/RCwo+ H70beS1eh3OeY1Kolt6PrKcQLXCNUdSXcBE+I10MguUVmFjn5PpOZvh+GzZsaCE1ZGuKvIE4O+us s+xaoxdpKtxXk0qk0SYESxk9wRgIqLzN4JCowiwanDRcmLxvqkMT48bAh7mW4n0ie2R3EEdwMQDS bw5LJvGDmYG7gZ6C/B7RzOZUbudmw2wt2myX1j2cm02bNrX/uYHSjoU2PcQ3+r6MuSFZRRrn++IV 69yIKQtduz//s4DVaDrAfdCkv/sgihhjQYw17T7O9Rw2y42bscQtX73BBNj27QiKf+y4yTQAI96Z mAUt6NSCoqsAn+Ojjz4ySwBQaoAxgvVYn2iL5EUU4oyxA1HDmIEw8i2lEGrBsZDnI854XWpP+UB0 Ysk41xGDbMPTgAD8+uuv7Tmcx6xncoNVAiHHej4D5zcijdcpXbp05Dog1IO4X/bzISAcl2uJ45CR yPsFRCLijM/EcRB/FDL1YFXiekl1GJvwsvBZEejJdD4nMnyP9BPlXGU8T3YSXqS1bt3aBgButFdd dZUFqtLeIlVOaAYpBAQ3dmawPp7NN2YW0cmOSONmRmYUsYhAUUQSQrg5heHGgEUCQcUSFmm018HV Q/X/aFY2gn25CfFcfktuQIhCrLv874+bXZdPmLyKtI1btpq4iSWIpoV/r3Wjpi12nQZMc01+G+fq dxxhsWB1Wg+xeLBoIoxsSQLyec7QifMtnmzpyvVu5dpN5uLkuKlyfXsQSSQh+f6WnEOIrzBkruH2 CkLSEiEdnIN4DzwXXXRRpOcmMbVYD8JB90wssJjRDxQQhs8//7w99o3XGX/IHiRM5IILLrBkKs5V rgnEFLG4EHZ3IvYQadTv4roK9+5EFCL4uN6ID/YiDYvRBx98ENmPRIpgw3fg9bHGpSp8b9T+IiRH vSvzB85rLMNYqXmcrCSkSOOip7UFWZfnnHOOWZxmzpwZ3i3l4MbOoIYrghkzAyZuXbEz2RFp3KAY 7IkNBM4p/vcWi2hEE2lYELgJXX755Zm6LPnNuNEFRRouIQ8xk2z74osvMjwvu+RWpBHbNWTCAovT 2rQl+8HYm7dsc4v+XusmzFrqBoz7y3UdNMO17jXR4rwQYrVbDo4qwHBFftd5tPup1ySLHxs5ZZGb Nm+5m79sjQXkb96a/feQSoRFGucUAsmLJ0/Lli3NXROEcZAK8/kp0rBmhd2lwDnrXfuZiTTc/1jM wpMfQjxoqs71wPXkRdpdd93lnn766ch+JGIhBoOkskgjMYJKAb5Hq8g/OO9r1qxpVRuYACUjCSXS GGhefPFFi9nClI4JP11bQTCAYnXBCsQFjTskuwG76UB2RBouFgb7l19+2f73Io0YmcyIJtJw37Du tddec7Vr13atWrWKiDUsPgg0bnS0afEiLQwDBTfp8I0su+RGpC1dtd417zE+IqDWb/r3Bk4s2JIV 660sxehpi13/cX+57kNnuja9J7lGv44yQRcWXwgyBNjXHf8tS/FL/6mu14jZJsJmzF/hFi1f5zZs jr21LlXwrj8EjYcZPjdsQNDgosEViPV3woQJkf2YqBJrk58iDesWY83s2bPNuk9oCe+Z1yNuDrxI 81YJL9KwCmIVInYN6xlClIk1rlzGLiYsZMUj0jg23hBiib0FCUsa144HccZnSTUYM4gjJOyB30vE j+bNm9vYzHmdTOFRkBAijaBqUrVRuwSjEtsg/oMZF0kGlBLBEhMc6NOVeIo03E3EjRDs7C/2Rx55 xLbhzvQ31MxEGjcurHC4U3NLTkQa1jPE00fNMpafwAJWq8XONcFYqBX2RduhVjsMEUYAf9+xc93Y GUvc4v8XYCJvYCHzrkMggxHhQpgDLk4EFWBNw4rOJJWJAdc/gonzBws75xznA4+feOIJi2eirhaT gD59+kSOj/CrVauWxZchhBBKCLErrrjCHiOk2Ia4QgQSToKQRCTWrVvXjoF1jaQBxmf2I+yEMYj1 1Ezz1wHXC+5bXz6CyQiWZPavUKGCTVIYv3hNJt733HOPrSdJgM8VjNUjPg4xmUowwUaUE8oS72oD 4l8YvzlnMQSFLdiJTIGKNGZcWIgYXLCcBd1DYmeYfRGfh2jAmhMtNipdyI5II6YmmkjjBpgZYZHG 7Jf/CUL19a2IG8T9iSXA7x9eglBPjxtgXsiuSCOeCzEWFmEmxFoMsuKtFHLtNmSGGzZpgZu/dE3M irSKrMHliVU21eLtgmBpJiA+L3CtpFIBVyyPjBcVK1YMbxIFAGKZeoVhq3OiUmAiDWsDszhmkdzs UnngiiW4DkaNGmVWR2amPE5HsiPSEP0IJh//4kUaJu/MCIs0YPaFJQ1XFGD9yK5Iw33E7Nmb2AkA p35UTsmuSOM62rZ9h2sWcHP6pcOfU3SdFSB891WrVnXTp08Pb0oZsLh5F25uQOBRlihVzlNiD3E3 MwalymdKdvBs4MYn0zkZiLtI40aHuR2zODfCXdWtEtHBwkM8CrEdzApSqXhfdsiOSOPcws3o43i4 QRYqVMhmUNSB4rvDKundTBBNpOGSYZ0PPCXO5pprrols94TdnViK6XRB4DcWUCx4vF5uzvnsirQg GzZttfpjzbr/K9hocyQKHpIAEO+pBpZCkgJwpeYGXMEU+s7N9ZGIMMbgAvYxgCJxwL3OmExcZaIT N5GGev38889tVkEZg2RtjZJoIDAQaQwGHTp0CG9OWbIj0gAxS/o/+zNzwpIFvn4arnYEGa5R4iG9 SOMCpkULcO4So8M6iiYT/BstriQo0ngOoixsYcPSkBtyI9KCUN5i4uyd37MQIvYwvlBTkfgnkZgw hhcvXtz6eCdyG7K4iDSydXD5YNGIluYt8g4B7bjlCMJNpqDI3JJdkbYriH/x1dUTmbyKNCFE/Ljl llssqUMkNohpvCt+Qp6I5LtIo4E5XwI++WRLfU02yKgqVaqUdTHA9ZDK5FWkER9CQgGuzGRAIk2I xAdXLe5NMnnTLQQlWSE7mtIyiVpHLd9EGoKMdiLE/dCzUsQP3MkEuqdyzF9eRVqyIZEmRGLDxI+y KYT0pGoh3lQFjYJWyawnc0GSbyKtTJkyVqpANc/iD4MFNZg46YLtV1IJiTQhRCJBVxzqzFH3UyQf FHSmb26iEXORRu0uTL0UNFRyQMFCUgGZhb7gZCohkSaESBTIGCdRgElxqnovUh1+QypP5KWETH4Q U5FGEB6tSrCiqWlsYkBQPA2TyUhMJSTShBCJAl0YfG9SkbxQd5Ssf7rVJAoxE2kErZcoUcLKHCRy Oms6QsVrzLiUmEiVXqgSaUKIRIDAc5LjRowYEd4kkpAPP/zQXXLJJeHVBUZMRBpuTT7UHXfcEd4k EgT6fZ555plWU42efsmORJoQIhG46aabrBajSA1WrVplRcjpM5sI5FmkYTW7/vrrk6bFQjqDODv2 2GPdu+++m/RxExJpQoiChob2Rx11VHi1SHJIeCQJZO3ateFNcSfPIu25556zhqVycSYHBEfSmoj+ eMkMIm2//fZLm0UiTYjEg7ZzdNIRqQVGDO6TTZo0CW+KO3kSaVTpJciO1GORPPTr188dfPDB9lcI IUTOGTdunN3/6AOZLlSpUsV17tw5vHonnnnmGevDGmb9+vXWKoskw+yA9+eTTz6xnt/xhuQB7pO4 PwuSXIs0bw70vRBFcvHVV1+5o48+OtsXixBCiH/B0kIcdp06dcKb8oXhw4e7hx9+2O65n376aVzL WwVFWa9evSxRYld0797dLVy4MMM6ktZYT6H1JUuWZNiWGRgS2H/27NnhTfkOBfmPP/5468VckORK pK1Zs8bqbzVs2DC8SSQRjz/+uLv77rvDq4UQQmQB98C99torrhYeDCL7779/XMtbIarefvvt8Opc g9URoZldkUYf6t13371ARBp07drV2iwWZDhXrkQaBfvOOeeclCnnkK4wwBD02q1bt/AmIYQQmVCj Rg135513hlfnK2GRRg3M0aNHW+Y+YoLi5R7EzYABA9xvv/1m+8H48eNtPxYPj0eOHGlWI9y3/n9E CS2SKExftmxZ62uJ9ZCe0Bxv0aJFkWMtW7bMjoWVjUQKnjthwgR7Xx66MLAv2xFdXqRhlWM9n41O OR6Oj0DkmEFLGsXyBw0aZNvi1Ru1SJEibvDgweHVcSPHIo03y4lS0H5aERu4COg1F68TXgghkpnN mze7//3vf1b4NJ4ERRqi5+qrr3ZXXnmle/TRR62lEWKGbSSH0fEHAUdYEs/hMaEtiC7ixTyPPfaY mzRpkmvdurUVoeezETCPuAOaxXtLGuuoDvDDDz9YrBjJWwgYXymgVatWtiDoaFhOa0JA/N18881m RaMGGd8dIm3MmDHusssus/d7//33u+rVq9v+GA+uuuoqE3+UwWB/RBpCku45CDsS34gXI8Ytv7n9 9ttd1apVw6vjRo5FWvHixe2LFqkBFxgzQk5EIYQQWTN9+nS35557xn1iG7akff3115HapIgVtmFN I06OUBbAOvXdd99ZbBV06NDBFStWLHLMevXq2V8sg74uGCEwPpQpKNIAUYVIA8QSiRMIO3jvvfci 1jAEpBdpZMB6QUssnbektWnTxr388su2HpFIvTm49dZbI9UH+Fzekta2bVv32WefRdYj3rCq5TdY 7Wj5VVDkSKQ1b97cnX322QXqnxWxhxkWMx9M2UIIITIHIwWWoaB7Lh6ERVr9+vXdXXfdZY9xb+IR QaTde++9VhrLwzZvvcJqRYwV7khcj8Exn+NhzUJgZUekMcGnODpicenSpRnKOgVFGrF7c+bMscfh mLROnTqZNY9+mV6kFS1aNJKQGIxJq1mzplm0yBr1S9Clml9gweM9xUMQRiNHIo3WQqhykVow2FSo UMHaRgkhhMgcrCoFccPOrkijTEapUqUiz0PIBPuKYpHC7fnQQw+ZAIGXXnrJNWjQwB5n15IGlN/a d9997f4RLPwaFGmHHnpopNxTUKSRpcrxIWhJO+OMMyIZlUGRhhjEyhbEx9vlN3xX1apVC6+OC9kW aS1atLCTMz+TBZo1a7ZT2m5O4QSMdXNUZgH42gsSgivzMwaCGINDDjkkX19DCCEKmryMcd7rUBDg qkQQYbUCxNMtt9xijxFuFL0mOQDhgrWsY8eOJsKwqvkYM0C0se/YsWMj66699lr37LPPmnWNHtyV K1e2+x7iDdGGiOJYF1xwgatbt27keegBRNWXX34ZWcd+rMOdCRwLccfrUZQb9+Wvv/5qx6VT0Z9/ /ulef/11d9ppp1mcGpZKnj9kyBCzlrF/y5Yt7f0QA3fjjTda7TRi4nzSQn6Dm5WYvYIg2yKNkhs5 FSoof5QybaOw0tSuXdvMo5nxwgsvuClTpkT+5wcLwglxzDHHRBR6NDhx+dFjBQqeCyHox88KTkI6 MKD+OfFLly5tcQOYdMm2yS3MOjANZwYiiyQA//0RWJpTmA2VL18+vFoIIVIG7keXXnqpBbj7eKrs Qr0y7kHxhsLx3Ev88uOPP0YeI8KC24j7mj9/vvUT5d4TzeqH0SVocCF5AMGEsCK7E2scrlESD7DW YaEjbs2/RlDgsX+wpAYdGPx+vkQJoorj8F54XxhjeA6Zo+yP8CR5wFvjsNYRJ42YQzMQBwgcj3i7 e+65xzJA4wXild7XBUG2RBqpuMwectKYmx+bMh2YK4NgjctOwCVmUX7kIJxIPgMknjCLyK5IA07s gw46KMO6X375xXzzXbp0ybA+VjDLIsOH18U0mxuhygWCKTpesxMhhIg3iDRitFhwAyK8shtn/dNP P+XoXiBSA/QI1kfvHo4n2RJpKNqcFrQL+qGDcEFkp5AdlifMmkH4guIdrAmxEGlAcCQBiPmBH2SY GWL6zu33dN1110UyfoQQItYwjlPCiQWLClZ/MgUp1eAXvDAsVLv3C9YfFmKx/PLxxx/bQrwQ4ysL JSZY8ArgwSF7nRgtFlx5hQsXjog0vxDPNWLEiPBb3Qncf7jvRPpB0mRujB95ZZcizaf2kg2SXTBV +mySaCxevNhMmAQvclFhpeM5mJH5EhAZXHi03cAnjVmWi5C4rFq1allKL351sli8//zII490PXr0 MJMkogrIXKFezNChQ919993nnn76aVuPeZbncOyLL744g4vVQ4IEwpTBAfelF2m4P1999VVzubI+ WpG7zEQagw7+daBitY8BwC1KPB4gbHndvn372mfBQsb7xQL5xRdf2D74x1nfvn17d9hhh9k6YvGw oHE8vgtf/A+TPnV0eO2SJUtamnRWEDx6zTXXhFcLIf7f2sziBQYLwdPTpk2zhWuVheuYsYwF6zkL 45JfaNzMGEOANtc1y0cffWSFwt955x332muv2VKpUiVbmLRyfbMgOvyCVYiFa5vxkuXCCy+0hXJJ JHudd9555tXwC+MKCyEsfsGixEKpBr9QE4sFUeMXxhaWww8/3CbixLEy1rFwn/DL3nvvHVmwzrMw 9oXFUSItfO+78hZxz0EcivQDd7AvUxJPdinSEDJcjDnx3RNYyEmfFe3atbNBhDReL+YYWLxSRXR4 SxoD3ptvvmmPvUsO4YWAIpARcNFhPWJA8iINgeZTjHn/p5xyih2X1+aCBIITwyKN90SAor9gGzVq ZCKN9QhLH7iJoEFdh8lMpCF0+V4GDhxowsz72RFcBHoSA8B37Rv28hkJBAUGZ3z3QMAkr8Hn5TE8 +eSTNssEBm18+cD7Iz4BCHrFZMtzM4PXZuDNawKHSCwIO/ALExwWrjtiTVgQGFwHnG8EVrMQQ+kX Yi1ZmAjhumfxgoPzjpgZFnrCsnCuEofCpOrdd9+NLF58MEnyCwKEBcuHX5hUsRBcTFwNi7eGMC54 cULRSxZijPxy0UUX2djCwvnPQiAyYoQxwIsQetey0HUD0eEXaj+xeJFBmEL4hp7IC9c4C2MQhUkR VVjw/cJ3wcLY6ReKorKQYecX/71jjfLLE088YQvCkXhjLEvegsXv+/7779tCDK1fvNXrm2++sVgq BCqB4CyExTAeMwYyZvmFLigsTIb94q1rjIt+oUgrC+ct4xoL4yoLgeZY6ViIX/IL55D/rvh9K1as aM/zRVmzAjFMQL5IPxijCqJGbNZKyjkL9sOqlROop8YFkFVXAi5MLGJBMhNpJBwwIGPB8gviEZGG ey6IF2nchHgPQXDbYgbnQuUx2RpkvYTjEXg+A1bwfy/SGPAIqvTvg5lvmMxEGlYuiiBi7ufmgCXN HwdLIVZLBGg0giKNAYvvisGFWbwHqxkzcgZiBjqyfILfAa/LTYibaVYQlFkQJ2M0sKIillmIZfQL QpmF35LPyeIHZ8QGgpjFWzZYCFpl+eOPPyKLvxlgpfXigxsHCzcRLJws3377rS3cbLwQoWgkC98V QbUsb731VmShUCMLNzNuavxeJGewIK4JmmXxN0MWf4MkhZ0FAYK1l8VbQpgoIDZYjjvuuIjFA6sq CzdossBYwjfwRF6wqPuFauIsfB5EFAuflXMbi4+3APnvBKHhLUh8V1jYWZgMsTCWeJHnrVD++0d8 UMncL1jcWfjd/OKvUyZ3LMTGelcb5wDXJguWMRY8A4gRFn8+BUUI4w6il2uWSSgLE0bCQRDI/vzl +mZBaBA0zUJguF9ok8OyKwuQ+A9+Y8ZhxtSceIggM++JSH385DLeZCnSEC+czDmtRYK1C5M3g1AY hAiz+ZyINCxzXFhBcBdmJdJ4D8ySEHMexAeze59BgkuRm1s4axLLWbBob1CkcbMIWt6iCdHMRBpK nBuKF2nBrBtcvHw3zNqD37fPjgmKNF+UkP/5fRAqCEcvrLwlDcsZog8rCWB5Q2RiycsK0qnD32sQ bgqkTHvhweItIIh6v/D7sWDR9DdNvkcWvt+TTz7ZFtzchQoVshsysSEs4Rt4Ii98x/wOLN6K4S0Z LFgmEcdYNficLHxmrLUsWFH94sWHd0mx+O/MWz24TrzViO/UW0GY5bPwffvv3gsTb5li8UIRiwiZ YSwIEKwhuNqZeLAExQdWEBaEqo8NonglC9cPYoPFC2HEBrFFWDi80GDh3GXhfPeLEPEEDwjJcLkB l68vzCrSC7QDGiLeZCnSEAvMxnMzkGL6PvHEE+2ERuwgEBBWviAcVgriJ4IQP0EZCUDEYUVgYMcK wuyaGS2xVnxZ/MVEjrUhaKZmpoMlD3gtbm4IGhZuZLj+uLEQqAoEyQdrvADH4yaLhQVBwo2JmDC+ B8QLrhJmvghA0obDMBPGXeJFHsegEB83aj84UG4EMYIFh5sZs3nEG1YCxBxxe5j2GVD47ngdLIqA xcYnBzBokPXKzZzZOtYl3Dx8B7wuJxXH471ggUIc8DtkBZY6atZkBs/3biEvRLzlA3etX4IuJB/L 4kUKi3c38Z68NQhribeYsPC985uyXHHFFZHFiw/iBLxFhNRuFmY7ZLqyEIPnXTA+9se75lg4z1g4 J3DlsTBTZuF39C4Ub61D+HprnhAivWASLatlekI8GveeeJOlSEOEYN1A4OQUBATigxspVjVcM8y0 ESLcCDnZCSTFdQNYB/jfFwokxoxaYwgPjsWNEqsLwob6aSxYyniOt7gRv8L/rMdaxGtxU+b1cSX5 YHqEETd9joUVKFwmhNfj+IgFhB0uLkyduN44Jq0psKBQryXsKsU1xmdgO6/La2A1IjYjGNeHECRe h/dKFWX/HbMPn4fneYFGOww+F98ZFjLEKlYZRBFClX2Ik0BQIwYRaLh4OBbvGbHCe8FysiuBBsSj IcAyg9djoOL4fvFCOLjw2n7he2Lh+wsvfBd+4dh+EUKIRAKreDxaEYnEA2OOLx4cT7IUaYgELFW6 YaYX/N5YC8PFhIUQIp3B2OCTueIJwhCvACEOhLMQDpRVUff8xsdzZwYTfWJDX3zxxfCmCHyPxAAT txlM/AmWQsHYQmgG64knJ4YQIw+TezxdPvkuHhCHilcq3mQp0rAy7apkg0hNiF3y/duEEEL827sy Wqx1fkIoBsYSwl+854IkNEJBEhliWQnriQZx1EFtQXgJ3icf78dnxFOF94fsc7wshPKQkBUUSmz3 Mdf5DYl+vH68yVKk4SLcVSagSE1wqfqyJ0IIIf61IGH5iReE/RB2gygLQ6x0bkKR4kVWIo0Ep6Cn BosYIi1Y3ookwDB8XhKaPMSYo1PiAXHhBVHoPUuRxqyBODKRflBYk4xSIYQQ/4J1J1rZpfwCF1tW SVwekpzwfBHbTYIZYgZXInHcWOKIYaYqARUNsAjhPqSMEHHCJPERe802n5jlY5c5Lm5GnylOHU2S 34ijJuEKKGWEgMHax74+TjszkcZ7IzEvGAseFmkkwmXXi0eyXTzcnny+gqiRl6VIIy4pXOhVpAdY UNV5QAgh/gNhQ1JWvKDETthSRPFeRBeihox54r8o7eSrHFBVgeQ43ISUBaJM1OTJk01cUUUAqA6A UMKaRWwYj6nFh8AiaYxCwbgcEXPAeqox+LpyWBQRaV5weZcjLlhfLD0zkYZVkPcbJCjScIXyGHEZ hNqSJMfxmYIlooh9o0hyfkIMHMl8XkTGkyxFGpmH4cxHkR5wkTNDEUII8S8IjHiOiyQJ+AoIQSgF hJChow4WMDL/facMqiIQroJI439KMQECk3u634/nE3eMQKJGo4eqAdQ6RCRFKzEFXqSRZIbgQyBS 5ogqBLsSabQ1RHwGCYo0jsXjaAXVqbKARSsIgi27VrfcgpClpmVBkKVIo9aV0o3TEy7AnDSVF0KI VIcyTpThiBeUU0L4UAszDEKGep+ItGhFVsMijXiqaKIpM5GGdSosiDxepGFhojsHpZ8oUp0dS9qu RBogTqO9Nq5m4tmCxEOkNW3a1Oq2FgRZijT8wvikUxWKk/ruA3mFrJTMGsonI1x0pUuXDq8WQoi0 BbcfIo1i4/GCNnF05wl7tbxIIyQJSxo1M3E/ItooTxEWaWRQUvcUcYW1imzRsWPHZirSuKfh4uvS pYut94XlwYs0WpPhfuTeR+1MjsMxITORxnGo2xkkLNLoWMJrc4xgCbBoIo1evXQfyk/oUUuh9IIg S5HGl0HwYSqCz52T2oM/nj6LnFQUf8XUijonUBAVzcnHjIYfC1MyJSpIBQ72fkPYcHKlArQHIghU CCHEf5QrV866vsQL3Il08CFYn3EZSxRjM0kMvi0hhdGJU0OsISYQT3ReoWUdz/GF1CmqjlBjPcdg Pe38iPWiaHurVq3MJUonF6yGZJDSEQaXK8dlf+6JxMIxiUeYYWEi2YBOQPylLAYJBjwHy9qAAQNC n8hZxxkvdLkXk6SGSOPei7gEiuFznyXRgWQI3Km4X2lPF4TadbxefsLn8p2M4k2WIo0gw4JIOc1v EGRBcyuzALoCdO/ePcN+nLC+ZRRp1+Hm56h6ZlXBE4TvLDtV/RMdLjQyPIUQQvwHLQHpKpPI5S8S HbJW6Z6TV+j17Xta5xeU+cDyl5v2mLEgS5GGqqVxd6rBDCJYWgS1zuwoGr76cTSRxqyCGQENrb1J 9uOPP45q4k02aH9BarYQQoj/IE4brwrhMiL3VKpUKU99UBHJDz/8cIZ2i/kBBWwzS6CIB1mKtE6d OllGQyq1hcKvT/ZLsCk7Tb7pj5kV0UQaIMrwyXu/PzVjkj3gnu+Gz5oKFkEhhIgl3A+JE2PsF7mH +L5wmY3swn2chuckLuQ3FNWlh3hBkaVII96KIEIvQFIBYsaOOuqoDOsKFy7sWrRokWFdmMxEGhkw rPcuT+rFEBeQzJBJhIVQCCHEzhCsT1B+fltxRMGC1dTXmisoshRp/g2uXr06vClpoWEroiwIdW8I qMyKzEQa7mC+Ix+fQEYMAZDJTPv27d35558fXi2EEMI5t3XrVgvUV0ee1AWL6e23326JCwXJLtUE mR1DhgwJr05aSA8muyXIo48+mml1fZIMIJpIo9IzAaRffPFFZB0p0aQOJzPVqlXLNEYvGUAkp+Mi hIgfdevWtSr88XC5ifizfv16SxigYHBBssuRnSyMu+66K7w6aSFQkSK9wUwN/Nu0qXj11VcjdVqw HlJ+BNcfMVrErCHSeIwvnbouBNeTqhykV69eVrclmbngggsK1AefV9JRsKTjZxaioKF1YrgqgEh+ sKJR4SARjBW7HNlxeSJOli1bFt6UtFStWjVqo9RGjRpZAV+SJaiHhpKG5557ztYFl3vvvdeKA4Yh mPSdd94Jr04aKF6c7PFo6ShY0vEzC1HQUIaJ7H6RWuAlI4OXPqIFzS5HdnzvJA9QnThVQHhSZC8/ qFChQlKbvxGnvglvspKOgiUdP7MQBQ1elWOPPTbXWYoiMaHVFUV6E6GyRbZGdqoZh916yQ6xY1jO YglVkX0MW7JyxhlnWHP1ZCYdBUs6fmYhEgHilU888cTwapGkYJAibj1RSlBla2QnZosAOnpupRLL ly/PUzG9ILiDY9UHtKCgejOzwmSvpJ2OgiUdP7MQiQDWFowYDz74YHiTSDIQZlR7oMVjopDtkZ2+ Ya+//np4tUghLr744nxvsREP0lGwpONnFiJRwDNDi8BgL2eRfNBdILNKDwVFtkd2irQedNBBbsGC BeFNIgUgixUTbyokiKSjYEnHzyxEIkH4DGOoTzgTycWgQYPs9xs/fnx4U4GSo5GdjEb6XorUwge/ NmzYMLwpKcmNYCHZg4QSJiG76rBB9Wn2y6wKNck24awgSrvwnODC64XB/Y5QxhWfE3LzmYUQsYMx hGDzMmXK2JgqkgdKcnEPpINQopGjkX3ixIlu7733jrRAEqkBVjRu8itWrAhvSkpyI1hw5b/44otW goR2L/Pnzw/vYpByzzXAa/A3nNVF2zF6we67774Z1nNMnhNceD0PcS3fffedZVIzyGO5zgm5+cxC iNjCJItOBO+99154k0hQqH16wgknuBdeeCFDT+9EIccjOx+kZMmS4dUiScFic/jhh0etG5es5FSw /Pbbb/YcBBYX6ZFHHunKli0b3s0tXrzYUrMxixOjyXOoIejbppHdSwVy1gdFGsKP9iI9evSw57JQ a++PP/6w7VjuSpQoYXV5hg4dmqsSLjn9zEKI/AErOv2hwxM4kXgw3uMhxAK6Kw9KQZHjkZ2b+imn nOKaNm0a3iSSkJdfftlO0FQyz+dUsDz55JP2HEzeXLQMsPwfdjlS4NBnA+Oq9CItaFmm40RYpP31 11/mAvVwHNqt+ebM9evXt+fkpQ9gTj+zECL/oIwRPaL79esX3iQSCIrP08Yxs9CVRCBXI3vv3r3d fvvtlzLusXQFUUCLrGixUclMTgULFcP9c4IiDYtXZpCqzT6nnnpqBoEbTaSFqVSpkrlNge+e/q97 7rmnBR7TDzA3gas5/cxCiPylQYMG1r0F67hIPD799FPzmiR6abFcj+xPPfWUu+6662JWZ0zEFwQ2 LbASqR5MrMipYMmNSGOGTO3AcILArkQago6Be8SIEfY/x2F/0vextuEuJdYtq9eORk4/sxAi/2Hi xUR48uTJ4U2iAKlTp46N8zmN/S0Icj2yU+CWm83bb7+dqxgaUXAgFBDYqdZFwpNTwXLTTTdFFWlD hgwJ72p4MRUtE2hXIo34NczrPv6hU6dOtv9dd91l/zP7Dv6fXXL6mUXBwPlF9i7iPugCD8I5Eo9q 57xGMhfgJtmG+5CPCU1U6Eiw1157WS01UfDQQYkEralTp4Y3JSR5Gtl9JstPP/0U3iQSGILfL7jg gkxvEslOTgXLK6+8Ys9hsA+KtMwyfdjflythn19++SWybVcijWKJwYLBAwcOtP2ZbUO7du0k0pKQ 5s2bmzU02tKzZ8/Ifvfff78VPL3lllssmSQar732mqtevXp4dbY5//zzM7w+iUF33nmnGzNmTIb9 3nnnnbgUr6ZIdvg78Uvfvn3Du2ebWbNmWdkE4moTGcQk90gs5Mneci+Z4Xd45JFHbGxOJstmnkd2 rA0MAnm52ET8+Oabb8wPP2/evPCmlCGngoWbJs9BMCG6mHhwAwMu6t13392VL1/e/sdMzizsiiuu sAWxS2kaT1YijUkNsZzB8h4kD5x99tkWl0YRzGbNmtnzW7VqleG5uyKnn1nEHrKDOTeCYDXzvyXW U1zknGMkqVD6JjuQSZwTsJTffPPNNhkD2rxxUzruuONcxYoVw7vnGKzwOaFx48aRVnOcp3xPMG7c OGtFlxlcC7v6jsioTnSRBggEYtMYe9W5J/4wAWecveiii5KuIH9MRnbimqgNFZ6picSiS5cuFqA+ YMCA8KaUIjeChfIYWBvKlSvnnnvuObuJArXMuLHyvZFowWOO7xcEHIVq4bPPPrNSGqynnMZjjz0W 2QaY1xFvPqvTw6DBa999992WaYuQzim5+cwitiD2wyItCOdUTn+n0aNHm7DPKZxLlStXzrCOhBSy kXGx55aRI0fahCIn4JL0BEUaZJZ85qsIpIpI8/B5zjjjDPfAAw+kVEZ9IkPcmf/OE7XMRlbkbMTI gg8//NDcRMyOROLRoUMHExp5GaCThZzeCHcF1mIu8EQm1p9Z5JywSMMyihsU5s6d65599ln7nRD+ TGgpxfLGG2/YpODKK6+0LDPKtTz00EOuSpUqFo6A1cU/B2sYVluOw/833nhjpNZemGgiDZhE0Agc ay5W4vfff98mDWQbX3vtte6jjz6y0hFYfb///ntzz+OapVQB63xoAK8/ffp0+xzB97OrCWBYpBGb 9+qrr7rnn3/elSpVyn377bdmaWSigjv04Ycfdq1btzZx+MQTT1jCGu/Hi7tkE2lAvUU+Q/HixU2E i/zjhx9+MJc4sfPJSkxHdlJasTTsavYj4kubNm1sNk7R1nQgloKFmwNWrkQnlp9Z5A5EGpYqxArL 1Vdf7V566aXI9rAlDdHh+zwiqO655x57jHBDpHn8c7AC4LLxDB482GIZowXOZybSOJdx0wMufV8Z H0syVdcBMYibFgEHlInBYozQBP9+sJCdc845/39kZwKN95NVMkJYpN1xxx2RmD3/Ov7+QXkb/7ho 0aKR5uW4cn0caDKKNECI8v1zv/zyyy+T0sKTyCD+77vvPisa3r179/DmpCLmIzsB1VyIuan1JGJP y5YtLWCV2nbpQjoKlrx+5u3bd7gVa3SjyAthSxr0798/8jgs0rBsU9Q4uEBmIg1RduKJJ0bWA26c Fi1aZFgHmYm066+/3m5eEBZpWPM8CAdijYPvjSxF8O+HOGReP8hJJ53k2rdvn2FdkLBIQ9TNmTMn 8j83Vax5EBRpgAuUmNCDDjoo6UWaBzGMpYfkCqyoIm8gfocNG2Zt+LgGwqElyUjeRvYoECBJwCcp x7jYRMFRtWpVm9mnW9XrvAqWZCS3n5nrdeLsZa5O6yGuWXdNrPJCNJEWJCzSCA+JRmYijeuYwPMg WMW6deuWYR1EE2lY3IiJpEcs7EqkZZb56d8PMZrEIgchMJvkmcwIizTK0XBT9ZAk4d9fUKSR8Uqh ZyxOlMxJFZEGJFXg1mYyTXkIkTvo/OLb9XGtZJadn2zkbmTPBhTjZPYVi2wikTOYPVx++eXmGkmW WjCxJLeCJZnJ6Wdev3GL6zNqjqvz0xD3/o/9bWnZUyItL2Qm0oizgrBIQ2yQKUlsGnFK/gadmUij zhYijTItHiww0Vxl0UQaMWfcxLx1ISuRRnkLBBQxPYC1zlu8wu8n2KOS95NVgfOwSMN1ST9oIJAe K5l/HS/SEHG4QWfPnm3rGdsQabhVU0GkeQitQORiLVVZq5xBTCRWWTKauZZSiZyN7DmEi/jCCy+0 IMl4FGcU/2YQnnXWWRbfEi1WJR3IqWBJBbL7mbdu3+469p3iPm4+MCLO/II1rfXvE12HvlPcL/2n ui6DprveI+e4AeP+ciOnLnLjZy5xU+ctd/OWrHZLV653K9dudJu2pGatvZxCPFbJkiVNTDz66KM2 OWWhm8Unn3xiAoPt/E4Ew/M/YoTYNdYh1ljXtm1bu0mz+HY1ZDlWqFDBrmdEyzXXXGP9Zgm4j9Zy CKsTYvHkk0+298D7oe4eItDHixH+wCSa16EMxmWXXWYuIh+HBl999ZWJMIQTljXP8ccfb6/PmE7i AJ+LgH6SCkaNGhXZL8iSJUvsPfBZKVvj42NZT1IO9eMQp0FXKd8Tog/xy82X1+W7pBwONebI2qOs CAuZ66kAAheBRnwgonlXiRjpDgkmnBdojKD4TyWyN7LnARqXMsDgd2e2liomyESDWSgtSKjx9e67 76Z1end2BUsqkZPPPHfxavdD17E7ibRPWg5yn/00xNVsMWinbbtaPmo20NVuOdg1+Hmk+6bTKNes +zjXsucE1/HPKe63wdNdz2GzXL8x89yQiQvcyCkIvqUm+GYsWGmib9Hfa93fqza4Nes3u01btrmt 29TFRKQvjN9UTCDDleSKdIop3hVMDuj2cu6557pixYqlfFhV9kf2PEKcAQKCmR0BoCJ2MCMnIJig XV3MORMsqUJuPvOY6UtcvfbDIkKr57CMjYa3bN3u1m3c4uYvXeNmL1rlps79242ZvtgNHD/f9Rw+ y/02eIZr98dki2Vr8ttY933nMa7RL6NMqNVrP9zVbTfMRB/i7+NmA12NpgN2Ene7WrDufd1+uPux 6xjXoud493O/qa77kJnuz1Fz3ZCJ8826N3PBSnt/fy1d4xYtX+eWrFjvlq/e4Fau2Wiib8OmrSb8 tm3XBFEkF2T/YmHEWnjeeedZyZVg3bl0goxNarLSjpKuGpS3SYeWlDkf2fMIpm58x3369JFVLY8w 22JGQRo31krxL7kRLMlObj8ziQO9R84292e/sfHpQrFh0xa3eMU6N33+CktaQGz9MWqO+23IdPdT 74nuu85jXN22Qy1e7tPWiLzBttRqMcjVbD7QrHYfNh1gou+DJjsLu10tHOfrjiPM2sfrdR00w/0+ YpZZ+SbMXmqC7+/VG9zaDVssdm/9pq1u4+Z/hd7mrbLyiYIBQ8dhhx1m1zqPCZRPdZFCUgUZsNTR IxkR/ZCqbs3MyN3Ingc4qQj6JP2cJtWpkCJbEBC/Qoo82ZsUuJTg/Y/cCpZkJq+fGeGxbFVizdAR kDv++cdt37HDSoRgCeN9YuFDLG3ess1t2rzNBNSqdRvdvKWr3cTZS93oaYtd3zFz3e/DZ7mO/aa4 Jt3GugYdR7rPWv+XJJHd5QOWJv1NECIMEYh12/6XjShEPEG0UFybWG+yQSmBEuwdnCpgLaTAMrGV Ps6TEiWpLkqjkbeRPQ+QgUHgK0VWqbCdrkHuOYXEADKiiFXA9JtV4ch0Ja+CJRlJx8+cWxB9CD3c oLhzV6/f7Fat3WTWM1ylC5etNdfp7IUrI5a+/mPnud4jZltCRacB08KHFCLuIFrIuqWgMOVcuC/Q J9YXSE42yHImMYQMV7xDxOLRTzmz1mHpQoGP7GQrIdLwM1erVs2qToudIe4MlyZxfW+++WbSNYmN J+koWNLxMwsh/vVO0V6K1l1khJKNS5kSul0Qo5yo1ifu9RRb5/5PRQJq+FE6hhAeFfb9j4QZ2amr Rt0gUr6xsOHCw92RzuDCZCZBKjoWR1LVfa0gkTkIlnRcRHLBtR0s5JroEANLTTRKe/haVJTuiGWM EPXZyNZL5+z0vLJ06VITP/RmxR1KaRXfoqxp06bWuSLeyXu0FKP4Md6fxx57zJIgvJikzh2twRSy E52EG9mnTJliNb5ILkBVUwco3eLWcGFSRfzSSy+1it5kxKrOnBCpw6+//mqNw5MRQi1yUjCUQqPU skJ8BdtkZQbCtUGDBuHVIpdQi47aa9xHuKdQgw2r1WmnnWYuRbodULSYennUuaO+6fz58+15iDnu PRRM3rp1qwkp4uJwqRKihDWMrEssX9y7+e3olVmvXj0rpkz9P5IdOGdOP/10q6lHs3MsfNGKMIud STiR5qGoH8URUdu4QvnRUzmbhROfi4J0ayp9I1KZdQghUguu9VKlSoVXJw05FWlYdvCMFC9ePNKX c1dQnHTs2LHh1SJGILbocECWKGKK9mLcZxFUWN7w3Oyzzz6WnECSHwlqu+22m1ns+cv/ZFuyHcFH DBn3apLZKBfC+U1YDt0x5LrMGwkr0jyobVyhV111lZ0UhQsXtirDqPpUAKsZ7VnIYuHEL1eunFUa ZyAXQqQeVPVnMuZh4okrihscoQ2+0wBJQrR2Y8FdBFTWx92I1YJOBByLCa0vGB7thsi+HAPrCDdj PBRAkDbhJV27do3sS89DuhAgqChE7qG1Fe8PqxiTSEQalpRKlSpl6DLAMdkPC42nc+fO1uKJuCNi pzxYbEqUKGH1HTt27BhZD1988YVaCsYZbyUjs5IWZtybsKJxHmAgIYAfyxp/+Z/fn+3sh2WN85D7 crqHKcWahBdpQTCr4gakLQqihqyWZ5991kRcssBFwEBLfBnmX2YrtERRFosQ6QHCxPfEBIQRdSOJ w6pRo4abPn26mzx5ssXmIuBwHxUtWtTGB9xWiCTiwNgP6wfCCGFXp04dK80QhGPSVokJIB1fSEAi uJx4JcQbxVE5HjdZXLCfffaZ3WTJEjzzzDMt1ISA9E8//dTW87qURECkUb+KMczHpN15550Wd8R7 Zlym8wlgaeEGzutTIR7I5CtdurSJAT4X9a+YfHuIUSKeSoh0J6lEWhAC6IlxYDBgZkkKMokH1FZB yGFiL2gY1JgBM0tkwMUaiKuAWWrVqlUT5n0KIeIH4iPYygaLEoIIixbiBcsFljZ6VD7zzDO24GYi notejrikPFjGEDRAfFC0BBKOhxfClznCahe05BFawQQYKz7iLfiaiEUyyoNlHYLuTkShF2lMnKMF /PNZEWKMeVjTgIkpbew8iEIsgT6cBStitM8iRLqRMlcBgwlxa1z8tIxgdkiAJE19EW4MFFiraMob y5psmIgZHCklQuAlgw2+eGIqEI4MqARrMviRWozLQQiRvoRFGiB0iOMhW5KJHZNPxrQw+SnSaFqO pS0I1rrwMTMTaVjYotVtfO+99ywWrU2bNhGRxtj4+eefR/Yh4xCroESaEBlJ2asAK9aYMWNc3bp1 zQyP9cpb3HAxEuRI0Txmq6QAY5rHXcDsjvTlTp062eBHynmzZs0s2wi3ArXcGOTIQKXBqw+aJFaO bJmLL77Y4koaN25sLgj554UQQRBWQStS3759I+KGZCnivhi3mGwingArGsH3+SnSCCAnlsyHXRCW QYwbFjLGRA8iDYsfBEUaYyCTVMC9yWfg/d522222jkkyIo0xsXbt2jb++thbxtsyZcpExkuq6mNd FCLd2fmKThOIpyANmNkcA+OTTz5pwuvGG280oUWga5EiRWzWy+wWy1jZsmUtmJWU5YYNG9qgE23m KIQQmcFkEKHkIVaL+CxCOHA5Ep+GsPJ9GoknQ0ARH1a9enXLviNMAqsXQfc1a9a0BCsaTrN/MHkA yxTHZz3ZkgR6U5keQYQLc8SIETZpRShiwUOAsS8ZfbxP4Lis//77723sI/OPMRNhxwSVCSzi6quv vrJjIS594gEeBo5VpUoVS1jAw0GyAx4I9nvrrbfMWkdphiDEpz3++OMZ1gmRjqStSBNCiIKADLhg CQ6sSWTLkTlHIH1wP9b50kPsx/8sWMUQQf5/BJx/HDwGz/Pr/Tb/GGHnH/tMTv8a/O+LiyLAmIyy nveE0OO4/PXP9xYw9kPMBWtgcSzeL8/BSufj1vjrswbD2ey33nqrGz9+fIZ1QqQjEmlCCBFnKEtB WYtUhPhbSmjklnnz5mXI9BQinZFIE0KIAoBuKiypBC7bvJRFIo6X+LRULVouRE6RSBNCCCGESEAk 0oQQQgghEhCJNCGEEEKIBEQiTQghhBAiAZFIE0IIIYRIQCTShBBCCCESEIk0IYQQQogERCJNCCGE ECIBkUgTQgghhEhAJNKEEEIIIRIQiTQhhBBCiAREIk0IIYQQIgGRSBNCCCGESEAk0oQQQgghEhCJ NCGEEEKIBEQiTQghhBAiAZFIE0IIIYRIQCTShBBCCCESkP8DmRs4zfUNT2YAAAAASUVORK5CYIJ= ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





A Relação dos Critérios de Decisão, da Qualidade da Tomada de Decisão Organizacional e da Inovatividade

Gerencial em uma Instituição de Ensino Superior (IES)

Eleide Rose Cristo de Oliveira Amaral; Isaac Matias; Bruno Rafael Dias de Lucena; Welson de Sousa Cardoso

IS= SN 2237-4558  •<= /span>  Navus    <= /span>Florianópolis    SC    <= /span>v. 16 • p. 01-26jan./dez. 2025

9

 

                  =                                                                           <= /span>       

 

ISSN 2237-4558    Navus  • &n= bsp;Florianópolis  •  SC    v.9    n.2    <= /span>p. XX-XX    abr./jun. 2019

 

 

------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/image009.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCR9A4Do9sB /v///wAAAAAAAAAAXwAxADgAMAA1ADAAMAA1ADUAMAAzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA40sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb9iXb76z v9mZc/bM7M4/e35z+3zee11Vt+4ru7fqDQ/hLuVUgJYR/kZEEJAQ7u4fIaD8VRrin/whOAgID/78 f3d/f/+X5Pt/y/8pgQMg/zmGf+HXmKMCoAE8AkAHeAyAAYAJgAWA/XsKIOAC4AHgAxAAEAIQARAD kACQAoAAyADIASgAngBQAlABUAPQADwFoAV4BkAHQA/AAMAIwATADMDy53v+W/51ooJgC/ycgLGQ RLAB7g4Ibn/rCv5bIUJ4+J9r/pc/0NqUNQofS2yQtGBVuNjpjv/rslRnJ1hIebOISMBz23/6FEWE dwim/5TNvxZ0hAeIf92ef1SP4M87EmDfCMEKQQZovRnQE/+s4AH2Ef+o57fv+0d0fpX/i199hSCB oAL0vSvQ96Z/jIDjP2Wf6M/2I/8T9n+NE86fz3+97v8t//8J4u/p8L8QpP+3J/gfCHUsCAEiioRw ZEuNkDv2v6np3/I/kVcIJoDPfwV4vl++xxDBEribAimqf8QCUyDl/X+rTwdMn7+eT/+IzYcAMwr/ irf/Lf+s/X+1/F+2rySHhAzEQjQ0hHkFOxnr2fdXmUBoqhD6vYsztrVxMrVxYjcxdDL848LJBlz3 teXfkUkSeLuAcKmKck59cRI8s5kIZfDp5WW08gOmnuXTOoPo5bWr0SObIyNu8a/osUSD0OyXxmkC oq8dEXIcxFZ866jsw6PrcqQDyaioxdoD0QKK6gIuFvZcfVacm6wLg7hseQQruW1b3E42BmY19xXQ ZUkSl2lPjXrEMN5kY0jyQzgHNSLkGFvRHiL0rOiCuKaYokp4pJco1h9/msiLLFFNvGMiT7/55kBc 7v3IA19o0GuvvS6iyhst+dadts+0WkIg8bV5lRpLUo/FK3oEz7feOBJMn+UUVSmoL5dqkQ5P55EO MbqkIDA1FT6fIpy7ts8RfYvLEehH83DXz7ufI7ntCAQbwj3LjJoSWB6kLxQpTTfGm890J1O8xcam FJmrZeSAzeMkd9wP7GSgH8kVw470+kYRc6GF/TfPN0TrjxULAhh7WWZjhD5jl10zLNB4x0fMYKfP FV1ynm0LHC3fdi5/KYNt8m41oRIdf1+Ig8Gt7+brn3gKTGEdmr1cQ4pCWWp2FC6nhDou+d9wPw0l mLa8WhStCdrgq7XVob92kfjksG1jOPi2axHTq1dZq3jojRmdPr3eDKe0e9FjF2puFuW0z2x2E3YX 3xawdaXCtUJdAhrESyYJ+36AXm6gaE7ufoNcun1ZVuUNn6QVme+77chou3mIJk6JYbzXOMQaPGPw 4UwmlkhsaDVAE9fF9N2rdia6bIFiBUJnNwFwhkr7p1pwUUb5TRnYZKf2axuWDcMVF9S4AU15gc3S tUw6hkYylIBRJf/vHtSyMime+ySmwNfPB87aYE/PnVivpvGtzUurynRdCx0fhEYHsbwTf4QeDeFf YLy+V0Eziv4eHcSlJYHw6apfHc/dkGhMneWxoTxiu9sGMhrvuNUDBwtttdR1fWdZzNpwB11Ebeue RdQVDy0sf4jpSmGeZtMGbkEtWJekpCH4ikQu+7vcWzARpZ+kq/wm0tZIgT04czUrvItzww3Dobmp p45xg+2NlCQ/c4/6S5EfJKvs3qez41xG8nY2j3bNl51ZRt7h8demf0+lkZO4luW+eGDFGtGQyx4u 7sPsWiYmOUls+dKiuagWLblL8pj9yHyRpGa/Otw83eMMomKGOVjOA9oFr75gpQq99PpqMpIieMvJ ot85+kBbCgtP3eOI5r10rUyEuc5KXRJTeKXM0/5vpq5irinOsRC+5MqOr3kpMZJO+4VTd0lChmhp oScCeHMI8CfKse8+LzU4G7useb9TrjlFf20URnLfJX2WRCIKs0R5tkKeONZ3ZraoDKUXtpbTgvIk dbDqTTZHbiiBBs79pVnZl73jB7alXU2+6gjue32Yk8l0LmG8N++2KLmozOXbvCl+qyecRdjZvFhZ YzuxqznSdCnE/JEvSuNx3gjhu/ezTLbmku8XJn92OdaG7pOYjjumf3je0awyv14vaTmnrTU7cZJg szk3VZloJ2kiFFHgvDARaQ0d9d2tifDQqqRHW7IRHLgZRaY5Pdb1+7A6dn13wZJrak9feqR40/h0 3KpWdfYMJ3dPH13oow6h4imF2ECfrjOu9rkBuTmFsignHDMP+jS71tctE1c80kiRUxcCjvnxlmzT Hs0jrBybIIiM5t1Q/hmeznD3T1loGBtHRG0YBw07LJp1Ci8/7ElMDx6eUJAZT15mcYa3oXCXBi5k OWDXm+1ohqqZDrQVd03mtJfXFmQy+q62SrvnkHz9SyVYyJRFrlwfo41AuzhZMiQWfCq2Zy59L/YB 5t63I3xWvyUjQkbThN+3tUDbsSvasitQYbw+tRnzgctJp9jf7knHjS37vWXaz4vwZ5nsy9WJbrpr Tj5bPExIUhuD1G/Cu199QyTv5m+/DAAZ6CcPd0dv6MS/z8sXfR+WqIkDu+Csofz8dFpFep1o9hFr h7fwkJ4Lilz34TRvcE5aFl9hRTGZ3LV9iRJoDbSCZgRac4PxllDiuoOg0692waZ6XsJNNB8Zzk48 5hRrOh3xJfvDjmxUhaSi8nxAbc7CeznYxl5CJNytjkIxX2o60AkyXepsSKy+bDKO6+U2NNqFPRU2 tJ6sl5j/TLlMOL9KKjIhM/rQ6wM1rcjxRJwdvAJefkZ/UD54Vz1P2uASj1Uuj+jllT3HODz0Xqg0 a/aSYOLTDsX+VW5aaV6t6EWrUl6Nx2AFUqu9S9GiB+qYKNw1OLJmWDlhRIPuaqvPcWnHFc/LxY1s DRfH3Ysjy20aZE80oGV7UPLiemuSCDu0yNnfITXs+pTyv0a0yBYu8WsgkpE++P0N4r9EtPeGjk6m DkqG5qa/wtrNxf29Dx0KCgrOHarJ/dM2GOooy0uWBx2gl1CkDqKXe4gdIi91sDqonrMnk5KwlXNz CA0bGzCktrdFt47vcITNycOeKb+/DYdciM2QkoilavrhIN8hcTYiIGEttUf3RncDDqtHCZrdHz2o hL5G/6DTPPeFFE6Yo5mR/WCEV6BqmIbUtWIzPhPVh/gBnANyuiJHX6qHtY5YXASc+Q8ostuiH+QT ksj63kpAaKkGEQW4KIuM2FLb6yr437ERBT0Cp2aezaat1Saduczaa7ajhdsJuG7hZNo5oAoirzCQ pAxFY2CU6VCxY28pRa+qvYSIU9Aj/fyMQIj6Ahn5bzYBoaIxyppUwNEQDfHvNwF2QGf93gRkPNKJ /3lxj93OxYKEkbvR5WtmsZHqEW+UG8tsxmZZGuxhVWerLy/PMclD6NhbZvnps6aVldkKaCNV1mY9 VnawnWv146E65KRx8wk4vmi5f/fs+d0du6uXY9amyEX9UMbyVbrjZnrQO4n0kSlSG2xm7OmVzXeo Z4YISyyy9spMoUY4BZ8YcnIDQsRvFLcRS9+gBuux7Vjrv1gyahi2kp8kbVGoLh02XJJArQ+1vRZX PgVfhpU1FZ442jWciDbVWnQk2dZqn1pL5W1Ha5dIFY6tpyt4nsF3xwbwO59tOiU4lpb6MSznVhGZ vlZI0x5UzHS5qohz7muq4DlFug/WlKG0abnR1zO1JkF7ZYhwCsFVwrxuZ1CGsdYMQbnJe8z5uU9I sZpmzmUb1/m0S1NqmgdNneDwofaU0QNbyEnTVhNfuD9DMIQq+wVLazbG1OLDr0P8L4q1OzltXiCV pYwxY16zKjcEcwWjsMqGMoxPxOkRKUeu6WDo9sBYO7P95A4kMPHHuDG+vMq3oMyo5JOIf6SEeB1i SUbTwtzG/E1ERafdzp5QrYyqSxnxSygXWMFF/8rnvvtcPtYjKKSXkvE6u1k5yj3X+Dp0HynTQvRR Ka8IfjnTtsPLsvSY4fhc1xK5R6M1Ky9sBS7S4euFPotzX6d+dp3vPpp9bjnhG8KaOrXbXvb+blB9 r7XhcLEBL+Pj+XStbeoTtEmoAEf644DPck5Yu/DOtV3HjVaswzKlDuMTH+Xw3W8MwpKN0spFzeYK HmPGZZ0Z6ZM/7iQny6U0oqdLE7hn2w2qPCkxiQM3nEwyNfxrW5kXbEdWLj/lwnGUcx21ngfyHvJW 4bEKiqNaoNiGZlmJvNnpu7cOuXfrj1v8iX6pumD7ZBqN80Cak8i9jMDG6b6/QjJUWSIElrMCbV+X 3j/p2yx5ukl30cg03j99cQFzkirTsL3S5l5TbFWPlIrXvgwWyR3wTV/s3IhqTsrcq6wV0jCvyPK+ mQnJQ+ltOYnsFzmgXgleHpa4JWCtibhSjUJasyY9S2LNXXNN7dMDr03zSVcVHrWcJV0kNF2gZVbg vjgxpHQs6daTcd+MincUPh9ZaIJlz70Ig55geeJrte0efnMt2b1bbzz0OcHaYy6z9sVZNjS6ddO3 t3lVpiNawQfTUbxNI5KXiNjMi/L0AQufM72+DfvhNcIJ7wy+O/C8qma8Jb0ijHI/FRx/MSSYfWBc dvxy2rEq3r10enZqUTuvw00qVNhJPyIeFup3fHCSv+K57EjXlkaw7KY4tRcP6UA6UR2JX0I82/1k tD8I5ZU5iL0RcQqCn6SMZ9bRCmBqh8EJFfJ7zyUEMuuUT6Vu9uFkK6uFs/edM6bZVt1u7GCdevK2 59bGl7Nlc/BI028EPOXbTV9rSj68oF7uyVt1GS+7zfrSredBGwdvmmQNJr4xV2+IGXa22paatVYz I00XzDQdVtbtzY+VeRYnS5fwWsSa64WLT3mIiYMWcaIwTa+JWaJeX+7mu40T0xS58waZFFqVG36x 2O/oRqK9NNX0o0cSO1Hnszc+O1zTk+vPC3/0mUwSrVN3aKDeoCQEYfGlk08Ynz6M6+3NHeEBptxf rDClsPRxkTpxTanJzwUGzZ/4h5RZSHs2t0Lkyq6+J16BavQ7WYQD6wX7sGONeG6/xVF6nrBjfjg9 9r+efx5OuoOqAOfxtE2lDMDGPXsGxXbhHluFZ7+m36hdBpmhudh+Wt5R9o6m2gIdoPrrG5338OSl Gdw/Njvd2kbVh/HmUSem1KVejSqIllPwGs/6e9utEnMPCnZ47gZTVoXyGYujVGo2UOrwm3XlrDQM 6prx1r8H35zxTsFQic+geGygCfx32EKDLzTNmli7fJh/hrPyXX0//Wq2h9t9Gml6rXjon2G2IUN2 YvcCU7H40L+GsL51d2gzk777NZrHg1NVEjj5XR0hp/CtZTIu5hs6EnRrMMlOfJCYn8DUXJ1QwIKT w1t95Ze2HjEWtWrxhH2zg1JfEkhzoGimYAbuXIYU3E0fLN6rsEa79BDTpLcONZBPJqtPZ2rx4Trw NngqpPYA9Mx6gUt8VJPuyXh5osGMCyZ9KLx5wrquqzNKM9aSEUZ/gf8ZjiEmcFcZO1fGWehz44Yh rn+PaB/hUo8cSKihT3Gz9PPrIf1O5I7mw9MRWAg4JdeEkVKYElF15UuHeshXvMlc2tKCSJQ0PdwP y/WzERwFzZCOFJgVyVUJbupjyqZlLKLpLeyUeaOIwxs76lBOaL4M+PLU6/t38Ha7ou1AunbituFZ 4ChSMqH+8LAqB5Pm5VJnBIdHFmmrxeBtNd9Jxgj4cqeONEzx+Y9PzGav3cJNFTi+FvOuhviB3wrp X64tQ6ufJ0/Kki2383MvcJHkTDFxs33gEi+wNytetw0oCwpd/UJGbe9LegHh9tnpTxdKuMDWMwog haUdtYGfkt9NhVd2ejbVJ2zTenreCCXg7C+yDtz26LefwcgM88Xai3vBJEyeR8erEYe9wtzgUHuQ TUqFEb2Zg67ZZii4nu7l7Yu37WwfI2h4br/k4DZgjdvp0ZvdUEMxRvSV+DBvFHG7FOogZB1XfYGW DpkLttD856g3dRhRt3fdiYjHbBhCltVCkrOm6f0Q8Vm2MQVUmdl8hzfRt7dtysIlvo+RZHIz6GRT tUgux+Y1p9n6XJRrwr7phibux9azTqkpzAV2N+8yv484Bb0mJtafmsuq/0oztt9AGjVxmrB74+ef PMic4qFw80OulTNMfcKujMprAafJ74YsbawVLnQWdCl+aoDpATXuKjkMVEzjlukPieHlFuEbI2bR GHB9x8Fd8fykE9JSzpt2pTQloY5cVjN8aPL4YGihNUOxlFUIngBhZFtFL5kwPkcRSzkWkBbCo03a pviJ9LhoYijExVTykZpVRhQNU/Ubq5Jxrc/Oyiq7iEff6fAScK291ri8+q50zvmspWf38/cdNOGW Pdrhcq456yXz5C68MK/+wU95DQ7ghCZGN9XjT2v7mnG1dUh74XRJhzEKRvcnC7HGvO5y5vHSgwwx 6SOTbK5ym45inJS9IwMpz+kupX9lWMiLOYBXF9a89+Gz9Tl1UU54ij/N3UO9e0ifxXLL0po7mbFS bnvyMg2+izlgrb9NrXUCh6yFl+LQmleF/NQ+rxX5tQ7uLM3HH3o/ZinWutjqtfJ8LyCYFrkjW5Kg xfxHo641VXcRPd6WwH24pM0dI1mTvMgsYnMiePbi3vsmc2B6fdeGJCran0GSGi0uM1r50vG/kKuk TLOEk84NkvFKcHhMmKm0MhducOXn0NXbp0OkGisThg8JzbpVoAYZfBhZ+cv7r/1v+b3lUCq1GsS8 MUSp/Ka3ghE/RU5Gl/oPKpIPR6asSmw+QhqKQGXfsZqvE/lqb5BERULlaS51lvZQbXdRotE6d+7v BiFD0F/etFP38mId5VKoM3yTmMQAysqtd9eGoG2bXPFTeuPxfkrtLoj/u2x51qGfMfJk1ShHczXi J+xhE4+Vc1KoY27rZQtoQtvM96qZh7ypCwHfiGeOyNz3IrAvEmeTWl2PdICnpaMYZuJ715wSHy3J M8+zOsOEwnDRTPoKldMnvYuH9XkPFd8tFOExVtqIt7Ci64ih4nzB+ceIQKLtZj2WH2NWFWiCX4iZ DWjrCy3WnspyEspkRuEwxbyhKZHQCnFSxtu+hPnLi62w3c45swf7KLSrfbdZ5xGya5czY8QvVB87 zDboLwUJZJzG0rh78TpqMpv1EzcbvOH7dHHyGu+sAVdPRUKQxcD7mvDkOkpPRa1b5/AjnhQ0+byS OABN2XkR9lAqLsD+sDpJx46yJX7anIW7Oo04f4FzNUnXrenc3pbgTJjaKB3mKqPRMkrFvu1eOGTC O9ujUznwmKjqZ/l3XhtbUTbb185TcXLripIjYd8DxJmvayeRvg/l+xOKNKEdFC1U+dp8CLaYfBv/ qW9/UOp5Qi6zpEZoKUEzA6P75YJBXFDdY/27LlU2ug8Kfetf9S3581omn7o0MEx1n+BaClKYFwrn Mu9ZSjonQBIDE9v8yJAKxrT2nbKdtCh+Jqh+pVWSyY59+cxvKBW5i75c1WO0XVUgyFpYuEBV8Hu/ qkC1hIMVPXqsaiPzvH/GdAkUa+S1bkCQk1XI2jhe72d5in3qjLdlutDBVo6kAjfpwhrI8CMHq0lT d+lC3rtEoFzGkIc0fY2DUCW0EFqtKpyvSnbVEkRe5jXnJZmRPhYyJpSv6mHaEuRkxPfecEaBe7F+ jTpDa1cS6JRSBv5qMaWG4VARVw7mGnvl7PB2FzWNGH3Zkd8dcFfMeD24T36VwD+TQSk+Ez09O6vb ZYnPqJAmHaq1TfiBNEnYHrlyU8BsW3/eNJ03ZqWqH00l/Xy8ZC6r2UdQ9Mk622pha5jxws3cX9Ts Z54S1fXX7fXlJVcLcJo3HbCtVoUQFFI8BXLYqzfviDZObUWHRCkKdR/ZpKB/ndAVR6Kezfe/lH5j LHV2dPBQdddiRKGJ/FuzinXBxO9lz9ZnRXGjWh6ytjPo3OzZRBjzhPrJYaXelx32k2RmCOcrwZ31 px3WPJP9UsFBElvAs7DHVoHAYtREvxSEzCj5iT5X9/sRIBOfcdCjiUpYvEklXk9E/Lb92v0KzZ5G WDxdOgona/YNe4nflXGyLbuBjWZhUhSOaLM6OyWFnpHgya1Csw66LRz1pAez2TOAX5f4t0qtPuxC f3c9rznktK58/uMpmj2IXrIugmC1UCo4S6c0KQrjXhhyNUKyESv2pyEhhegn1AuGkXrgYmWfqkhD UUUYrjvJTQEEE7xjOI0lr6eRRskjxBdCKhIhc3IxZoNpX/rEKtRFOGnLcIQvN0vxbNi2ElLNx+F/ zuVzJYNtfG6B9rGW3drV8fFY0sZNPISVb2d5kBMzQ9ScTadz7ugR7AP8LfbqkNXlDgsnNrEruWGr 5WUn/8ZHho1RNncLb7X2MNsT56myzVZ3nmtR8kgNCheCGYdrjauX/BqyqMKvprgc1DR2yfscVBLj vqXHr58WayogORyPpO25+DOJp4TEc06Ym7IRSx25CF40clFamL17AkNhT+db/ZFnw6H2lqEaf57K OIuUb9EujkhBC4VbeYhoKBXPvQjuT/oVZSunyWKyPl1PZMvJU0b49DXXKoOo8FyjZZfSh40VD5vY SdV5gx2KDVl2+dgux5F8HwkQ+/vaSluhqLjSMH/0476zsTDuIiRHIBTWjtCKOjMQt9kjR+7sPyYx P4RYjIPjz5kGqSgl1f7wwNUqu7n5ExoXyGlMIY12RhBmp+vecBmb4po7RBuuJ0sGuma3BhuFFTYO wn5vqfvDnZHTEkfsoCR8DOry7RDbBr9FZlCNBZVaw2fI7pfG73t8yZRORtdSVpcRU4q7lKbanP1O 5pkeSep1BxZ8Kbi19qFk0JTSZWiMzbBrIiTJo773LNGMNUXTNHngfanSO4JKCY+NXhRQl1tjb11Q badzMXvOclGNzbH9trlAxU+xpjTDrsqPJwFnMcMz8t47ynlPTg5PXu9sfjBUrxqtR9QCMrj1r4R6 hPaG0jJDxXAewAhmqLa8Ex+KbvnJoLfkNaALqaH4caHFi2VjfDQfoNr66YeEra1nl4DoKbbyRsEv 6OKh5fdMab8gCXShYq8edXS7EEsovnxy3ANd0yXqGORkIAsptVH2lRGY5eRUy6yXUsd0aRkSV8p1 WO758SuGkKdpIXBNrxpUh0h68kbVWzBwb8lrkLq6vvjYbU15QahciPADoyLrAXbjuUOCHyShkKO7 1Ozu23d1lCdYC237+92EgW3tn5QqhkO9PVMetXBsZ09z4hcTh+4X6VX4huop8KDjFeSqnHqqqTI2 qDgVbMmOhMXmZhGH6onNBQqa1LV55fQ0Em/EPiEk9mBIOlVK7qDUWZO6gHntPzi741g9Tnjtpb8x WdbwUs5W/psX2XLfY4GhsUM9UeIrZU/4UPLnI6iXuY7BHR2mfuPBg6cik4ftPMR17irtUaX1LxMq QS6iezSi4vpw0kovR7PohYcNJSN2jWmP0y16MTBGh7XmHpYKc+RpOBNbIqZjfvBj/GGE5jb5sAHG mef8ovLa26w7je04h88Jbtid4gSHlDf5FO5lHc5o/5j3/WF1u/xkL2EofVCvPq/heCahizlCA1TG c6c5dlmRMWWdBY+pPPW+YbFL1PPwDxwctaaPnVSgLfMapzXfLviAZQii3KK9yByTKcuQ1hOMaTrH nBbYLqAPEJC7vjBwId1naT5fIzHfrpZSsE/Uu+lYBipYnB3TtDodIII6focuZAIJ2MdLRzPdunrj vTc2S+uAxnpBekGSSDniSWMpVCXml8p40OxsFDO6ngcyOWNVLuVXs1ifhHeW9HEYcY5qlOovJX00 eNwV45VlR06U5X8Nza8wwi4bmnn4pnz7mT2xC2lZnE9G+JRhFeRnNyd30HY2DBV0txCRcCNuvOFM aUaRg3V6MSRKSPvYVzoqGPN0tLe8Hq+My6N5gAe8S6XJ4Lrvs22C0NptsrF34cxluNRZlkzBu7u2 +CqrLoQVaaXw3nCm23IzFtis+WCudtT5ewZ0cr5B5RYKSBIVR9U9SD16w55BPtn+BsrGzjkmu23y AzFmFIv14ynD/KBRq6SORusEVJ8mJUFqx0CSGPMi7A4WYFmnlg57WQQZXLm1hXBklWUJsr1aaFVW +Fnus4cd9wFSJ06GOWCLKs3no2rPi07+0xjdguc1UcSnELy8cIhngCYpZp+FEtifCxQaO2KwT/Du C93Bj8fXAr0sIjSmrAeWMNqIjyPgDes30U2paFzWR2uG0ZphSQp+UK05O1KTiZWVRqq8Y96dDNrJ 1g4W3X4ZM1Y8RuuKcCpT1jtXfJMJo4QMqkqikPhq6fzizh16MRDZc+6Ue8YNWlLlaaAseNI+diRw dperm9cpFizl4LPRxkCfUi09KakZJtGnVaVvW5uUYcJLHfONKMREYpgfqNpVHSjAz9ImA+JTnU+p 7nANPosT8z4VA+pH+Rhf7To5C9Sr4mPyenroRN/0QhiTO5f+lKmKlHPNyff1iHUcHtUAspRzwo/C 32dh8RTcoVRS3NlA1cvSQN/Xzk9V0NPZOJII8hWBQ4aBO03B4bPAj6+Xv86DTNAXUyKp4tBnwBV7 QxT95IT9GNoYXIGwKfRoRk/SfrFPhwmaD7gCyzoeRDN6aBinnIE5CzEfpvyQyicQoYkwvy2szz8a dRFkDBzy1r13QtcnGGeu0tKf/qHQvBmCcDUNOD7ZZdW/uHtzhRJBB/TFoorg+NhzMQyaz/sThMGn pF5rtVA9Rij4CVWGNfBqGc6oKT80uPBjVC4Hs8D5BC35GcHxPyZvmSVkl4GGUALpMzDx/E7feamU RXgXeQZEeifN9Vey1qOQbIIW4jFcxkDb0ecSWp51V/iO09/Sr2l/q+rHUhUc/swKk65AS5kFCpVd ygAZYSJB0m9QAXUwGlDkfjU4/tuHY22zcRDd2StGz15VoOCQiL4kQ6AtWh3RDBWaJi6C/wPnw1li xOOhVf4vZQzZNy3SVdpMfejrLZtPG/qolH47eqV4jI9XMOS0207dOmsyCa3n9LE3HiVObPuzIebW Txv0xw770aEez3DjBrmOqLjfN0JyjHzKzkBYRQN7i+H1zz9e4H/2ckWmVLz53Mr9Aj479MrmQrSc VwQvMom5uK6Fmwdh5nLL4BiPSFHqzP4hweSFRKNybrjqSmqUL6O9+h/fI6yV8SZVxHW8gCNOxM60 yuuz1cqC4NLFnvRb31pFwZ6mY03eUWN4UAm0K9hIHDnJbPVlBqSrc7ruqOZQRdTM3atjln1gsGs+ l2JwadVGyl70/ERYq3LDtbqQOh3fwC0nsNKIWw/S8jw4KYfip3poKp7Cs3RZ/gQ7EesfbtXMhUUR LGkRx2Ks699iVMY/PvgWY/QlOD4XGNDqg+t39Sxzl9HyXI4gR11bMpVQUExiYAhBcAvVBF1Sbe1t h+clKjfBL73B6/9g3Duj4Xq/tiNadFGDIBLdDMKoCRKdUaJEG9GZYJSooydEF73XECX6aKP3bvTe Re89+uDx+//fd73r+X16v9zrnLPO2fve17rO3vde69rmr3J+V530yyqqhbobSSmqQaBIppxs+vuk q3aqDTrGuUj18Xnq2TX4/mquaE4yNrCcKee3sqGNlKKCdXNG7TUOubqNPIdVqHpN421NVmTWubg0 td7IoQT1oxglUXaavpKSB4qqaTw0HZ8eCttfqPIIeZ1jiN7FRUX27hs4hHt38im+t++VjAPVKKaF lrnFcp1iWxU2XTpliW1YPZHQp9ertIZ0Jaqk+Pt2Md1DRFAcUJXxxC8LfQqTdo1ei72zciJ+T9A8 OpqoUHPEXusnEbnh2PAYKoDCSyW7GeZ6/WDJMm95XFYwVfxrkiR3rVFxFe1BgXW7oavVpR5C+C4y AGkiiBZXa8/gK7ffKqWdFO9N/Ssw5qVGxWpIOvWqpGKUR+nGuU2LKPCwr22q2jLR6QVBns0UolV3 Y9KJ9cfuyWb/eZnS9U80Xdn9yRytRaqFuo+LenOAXKulDz6vD18dehuA2SEZ85BPp1JwWvtlB+09 dNymJw02EbZfjEDzZKuKT9dJRth1KVA+xqDnaNwwnJsfPBdIHXCQUaNcdWdC5jcjr+NipSfmkuzk kkmk9z6JpE/bvv/mOejlR4e0RnPmy+vP8WFX/z31G6COGVkaYq/1KH5/YkxRAXPENHtr1PU9W74k Oe7lhd188ss58jkK/jbW1p82SqraEkE1HdmnbngHBx1K+lEh5C50TA6GnE0aSW5uyRFmpmx2vfcg wXcVVpbRBiVUni/goDC3lTBsw9tqjLopxMo3ebtn0zMhM4zuUvcGWns+w3QGW3YyvNctUL/imuwU ksQAyHHMoedP10pKsYIrRW6vhCRQNzVrc6tSD0Lefa/SKHX63iRVBsnmTb7/SqQjIuk2VCgbiDTK wFzkXTYlGPSYopu30LO/3V3k9WaP6QKjE9J1HQ1pkwU9/L6Y01Ldt8iV76Bkew8XT2Oyp3Jc6Df6 DdCiI2iadJAKA89V0ZdpVzE+bULl+8AypynXH1/MSpz6uQUz+uP8jWkCGYW0RfX5FByZQcJPDuS2 nk+6Ug7rX+mBZrn7uM1LhEF4sbVZ/ZTmJeyOOexJXG88sFKsgj3KD3dLSFehMibBQsXTFRGFsftr E/3HU0k5YvNGO7xctheufquYxfCydLr+HdvO1mVbI3xzdQkpLO0J5bgOFAcclpECMrSAjYEPijaZ BhJKJsRYrGFH33G0k2zock0u9VSfHFfLp1uZtBovubcVigHhlw1sSgywVu8pscxBDyr09AIBWk7v qNg+1wdweiDKc1mGGXNdWzkCPgenjnFjq376G2tB/cNPmG6BxSYh0Yss8dM579SekcvcBvEAlml1 XXsQQa+ObdkbT29xGg8lJ1ySVuTtvHFnrRlhsH2gqG+pkAMu6Z5WjO7VRyEFxtdD5rPZ8qM1e6d2 8LY2+OjJE5TCOkpo8MjHEg74dmpOUK9yYn76KHFkmqYSixxkXeyo4wr8uWxMfrrFTFvH2d6eWcPV LkXD0Hf0IUBOje/tfD1OinyRIHNtyxRlkfzbbXPKtr3HXW+oAK4t2LJserxO8eRmiypdPiTOvmp5 0ccGdGzTSCGawqaeMAdjb3tMo/1es9RXtneMOtHHlzC60WMWuZnIa+u3wwHjElGDcoCZgZDSzpmj H6+1PM/EHT+ewXrB9BVRhKlrrTPw3GLKG+0vvnw0HDoXufwfxNCZFaCvuZr2GFb3ctq59yqsn0jO 7Jqb3u7in3d49k7nMa1wGX/KlGn45KBbK8rLA3jnnbj827u10ejlXcXnBHb8Ku2XJdL6wTVkX1hW 7g+D4Oi51tzzlXQ0QpvqOgwssxK7nQ/XOZr21dxjgd9XaFb+7W87mdM4BrYqyqm/zpWjctdX7qRf qDiKuMnXUTwKh9J6n6pQxXMlBAxgbUvh+bS6MSlNUVlenmYq9S5tvoY493bUleYsO35LenZhQnsg nPJNOczyclmbRmcmmnNmh/fUALiBX63ZkJb4bcw2908mflLNuTR++k5kMF2TamtcBX+UFlsBPbSr yiOoUnS5wV/3flDq70yML09Cf1shm8Yw/1sC62SNNWce7qEp1VP7n4FEF/68HrLZRn4DuvKFuEPV buwip7DctfXJ/tpNvqOYh+7NzQwn3I0Ju1vvwLTxN0VDzbG4wVJ7qv6rj+XTTBsBXZY6Auvi3BDW DdMPOIuiGQHU5HyIqnrsTVCf9OYLgkWxvuwrl6f6lFH+p7+A8KNRKbR5EnbMEcapeIV0H6Y+UPiy DxPGfrmwjQvfIycQFL18ZI1vsHT96FWC3rDh0S9hgpUNXHnGUU9keK2TyBgVau9t0NUXyg3BIdya l+kKhfRz2JZVwedjO2RVbA9dTqbZqiNJmbQhFwMequ0LsAhOCrvUes11QH2qt0MQuqbypfH8ShDd KQeKIL2B8gMyAlklFibiqnjrhgN0r7DNs5cF2MqKQA3PJya6Rft4NQKS+Ppjjc9hdBbtHqfdolCp w1cyMaQcdcysW00gYQYDhQRC3U6nlMhwRx9w1/v2seOz3d7pBmXRUc6+yUinBlP5qGzvIDFOXea8 BtPWq6ZtHbtybMhhTSDBJl67yYKYkr5Rq+HmQrt6KKDGfloM1jztC5xdaBcBAy4P/3iMkupEe2uX a9y+iY5K7+8UsjWFjgy6bwnaUndX67vSeUkgja7n5y575aj60+F09YOUtw1wOpsYABy3+NnkjytJ BDa/jZbSsUrcnvtbbPAnZNZSLsVeeXRtNi5/eSbloWecr4RW9crsPofwqFEn5EYdsS5F0OTsr3D7 fQZwOXBK1TsmyuXOiFBsX1uyOZQfdZb3M1evYx44VYSy/ugWvw9o0OpdQv8dX1HYKkQEdCOer34j 9AvJggera8R+UGtzOM8YrYgibXzecrhf1z13sD3mErGbQyOBM77z8geO3+UQJVz65vwQt/G4lHvv /l9ihL+AN1H/zI38MyPy7F9iBFlLmLmSpaPTP3IEsAJAATT+sC73KQO4FYD48kqq2I4EXwkR/5Y3 KP0aTBLBfvRoj/G/Kvj/a9HBzu4/lopnDJUgH5/jHo3x5eQHfxOPDFJ6ES3yQJ8N6YRa1pSWFUK6 6PcgsrvYOVj98CyVPWtICg6zhUswTnc7frtubswyI6BdIhZXmozlGAPUJWBhIWWotWnWIUP9NuG8 L9Nz5pDhL2ugh+N1Y3P6kEh1dU7x9Cd1B46UsrR6TsW4SVk7WlNYlB1Vk+u87YrPmE7h1FTRRUrC 9cwoEnoRE8fQZHdcIDJbxu9ddLIBDpVLTAPamdz/ajM1ub9tcHt3r7XoG2xarXq8ddvu+Y4f5vb2 1PPQSWgNJMDOLXbqQGxamtsRIbYoK3PI02O0F94g3by0O3VTdesXAZiab7/ow5gopYd2RtDBHXeu RBcZyE+szSUlLUI3jgq9XUMNJ/grGnJswc9irnmYr73Qz72Agk8cCyeK1lDr+Y4CnAUoNovn/U76 qPGp+oyxa2W8X021u7v3+0NPGcasDP54JNTf/XTZ+9NttWBs5+DFxZ9Gus8p8d75ze7fZIzFkO/J 1hNlpM7u8NBnv09jtyedVU60bPRqDXpp9struM26KiaTIUgT2wHr/mKa/uLks6UNrcLtO8YNrdIx 65/hcWWQyZHJaxXjxeeuq6Jhv8dyimM+bA4piWsbqA4WiMZfxrIO3bPyp98XB99RZVToFpFrHuha qtIOfVw8T9E24PcuWRnIh1q5cSnoDioBxO5bJ0wF+QloHdmxI0RSfbvnucJqacNmOg/HllgGP6Jx NRsN6w2QEEtwTGRUlRKkjMWqM14cMz5FC/YldyxeyD+syFycHiI4jVinMN5WWr+gpkOmNoYi0exm ZsA5vrL1YyXYNhuA7arueV8HFZjbhoOKrzyevHbagZUassgK8Dl1TurrjA/2nOXjefgiDnt6BdAS P/adpWtqPe4x7Fj8HeT6wUcnrJsqhR6yyASYmTepNkU1mcw6SPf06HFTmaIOO6fJ+BDc2ySmqBXi WfUtnWaWPy3xBrhIwmcI6efTfDqKkCxJ2cnyRkJIOnt7PP/3db5qUJwxWEbERoTzwadEgimqygHm loCYvvTqR1JDTgo+g3MeoiXUNkZJUyIb5HRcTpxrNf2BFxPD8ZxMr6xp8lvjS60Q60XfnK9ycCC2 oNF4T/PbeG5siDsFzG2pxdpHszX+G+vsSeODlbfjYcCcgWk+eZ30zaEVq6740OJKlkab23joHGJd /gEtfgR33iyC5eilTfATGl2wyxskBdIURWo8023Is74/PTr1HtJE+QBalgrsi5MJChfH4KYqbXrF Kw35l4Bme8gUA1aG/ZDG2qK7geePkHuHuUD6h3D5pn4ACRamT6K+OffCCSCCuJbgqofdpJKYoDRJ IeKsAOD8iTUpJB1vJN704XUHlu9AIalpPtgfn7UfmNMO189tkp4+OAVKTZdbP4GIv7ZXdSF+wCwR +ZySbzQD2D7tAAwDGmNemM09QYLCRuKFvocVrUe8hikEG6GCvh1yH/wwQl0mVK4XPDjdS+uIn1WA iajqEDuiwDHTDqt0s9ESjd7gKRDyr5Ip6vc3j5MtENJTTApyR/bgNA9atj4MQHpa/UlHzwKQCHYb jn8er6rBtkNNUNDv60K2NBEmqGHz2ZN/WLmX2B5/IgK7SkWEOYR6EEMEuz//E6v3UoQxSpMQ0vQC UG15ePMaVuuQhoTp6zSv+2PDRJBfgabf13HvAH4E06Nl8pC2BxCiW5WGyzlGMmDBz2q6FMk2S65L eCak9fCBKBrcmPtijcJftyXU8uNXuP87zR6VvJ0cfkivhRj/HRY0tYPZOfD8Z+WG28D8I4cIfHkp ug/f37eT+opmr79/MklcjCCOYl922wFrOfrZSN9emAfr4KQxHN6IL10QaLDEsl5S/o6mskX2vixW 0X+00jkajOpnYiXW/lyd2er5FEtjKc20lOAOMbLj/aVnRFk/VjLgtwkVPkhlVAr0Xvu+VGJ8z9aB tYXJ2lytp0b6DvZ3rFob+4m6KqzPDqP7BcGwfnz95pfR6GdYFWh8ngBtI4GhsgtlAbHZCFiS292f yDSm6oDURN6vjaplFjvHXr8LJzU9tBj345JleuyP/lVjyObl6OlwHj0CUf13ItLG3Mn4v4rD/3Px DwQLOmDHFWHSpk3tmoaqj/W4vCSB32KPNR8zSSkbYPdabLAjHu1Px4PjMfdKl+LNwmx6k4pFbIm/ uO5qFE5cM1cdiTNmDbt3A1hADHMLLt1I+4ZcjOBq05sz80na2Unofdsbffos5rbnusNMKqXEpnTY Tv6l76gsus95AJenOohaPSWoCGFlWePq21qH1FvvpcWLuVibtIPPIAdRsbwpa4ysOAbTcOJi4Vvg hTo8ecVpQL6NSRS89VmGXxxps95kT//rSR6e3up5Mt/ztvueJKz+p1HYQb+iIdvusqbpTbnCv2dD je2GJx2svFIDVBaxAtBg8+FDYlH6IQ5IwXTpZU0eQN5riKODcyXKAZA8UT17LgkPylT2KrSZollS 22jmtqNOj+H62MEHuf0x9fw6I/v6bfSrV3Np71LXOS2+LQWnxu+K+Ov7z/+K1fbloLHCiHoUjbfc Y+flL5nEclacs5zYAwhSrTJnwNXtm3mqR1AWArcA9Ux6MlwiVKCdT9yxtK5MgO3bK9cD14Ls7j3x encx2Yq+0ZkhDb3yz95ajODz+2ydi+XBfmOTvWzKBES3pq/p1W3TYtDU0VO3oeJmk6MGLCR/fV/W lK54h0j5LvWrcfaMygTf6Eu6JJqZIyYkHKfQ2CPtQ5bcxIdNcMPAMDKxTaE4K9dJLOMaQ3ZBGVpl Wdu6Ub5O/Gme1oXnBriGk5CmxqtXu1CyyQ6zgZiP8MOVvT7zmBE5RIQjzERYta24HtMvybe4epfO PfVB8PorBHq3OpCfyWYMTs/n+uUxt5XphGgKVxNTOVVkyZ9xCuyIJawxAkTc9jmdjIfLVMOMhG1r zQokE5TPbtNHecmJltBNie9mhrFuDQK9S8esKkZ0fz3+HsY2LLtYtuapMNFaffyG2PJllH9Re24Y K4p+XssDA2Ap+pe1o4y5iIxQikEY9VjAhJu2wShIxj3KlzixxeUnzen6x0xpKc4thgoFebKkIMnX cAJLwCt1X+Ia3JUgl6uJFMNnIcsnZvaHjNhFWXSjCuoqSWsh8pu6hZ8SumTOw3AD8P0cKK69hEni sl8dPBsga9VlecYX9fpFiH0mM30Z6VT6msXtdcyA0Hc5eda3CYSET4wp1Tu/6o+/JxFeGJBnV/jQ k8tCHAGJ64757Zd+YOdcCKtlOyZxbtqIptESDxqAIr6LdH1rqCe03YxkD0ijpK95K8tllZgDS10h CsZL6E4wUlYQcE3s5pA7pgVf6r7+vgAqufAlcSher5ZVOW1k0eWPEBoHNcLiXjSBb5uKMmKL2hks HxnXtYf//vPYtINk62cylhpBDpWRFLuIFJ0JBaWahiRdn56AnpRcLwJ6quRzUJl5amlHw8qmVWBs NRSUCZTqPags+Oi3uExLnBMbc4ZnOOJ8GRbM9r3oY6zZ9JVaWwRUX/f2xWIlGUwqOk6OZeur0JXS o5aUO4PIr73E6NLa31odAvaThH7r6xOlxZ8doWo/B36KyjzHCfDVm2gRMP2Bu7F+Ho9+Rhv42TMp yR2+0i9w+ME5XiyZBzWV2MMJgQ3GwH4SDPw0elnGaes444llTpihwsSUbPsttlC7pO4JvnKg93vP RnJ2lsTPbOrFtrH6oDhGJoEoKcENBcFqqqDIy5jAQ0MxNu3+plRZaNbRa1wMjSevpxabzi77sWwO doHkffeojoHwFPf2nV3QaTofg+Ceea9oazHONdBSfk25GKtdXGpbZWH9gZmhritITeo7BcG4/Ddk uHl8Odk0WWRDfVCA28ceVncyF05K/KupS6hBwD2BZT/WsfQ3Hk4Nrg46ceQyoTPuAdvcCohm7tfy n/KpKuBVRf/0gTOPnNdUVTHleqqsab3AnqvcbXgxfQQflsbgswXSVQWuFOq5CdzAr576uaH1dNbe b2ic5PzeF05RHVrsj7ilO/+SsyOj90HDEFPn5TaNy3ECmUGrLdemV+d/0XlnizfwYYupo/R33Zr3 rdKM7oq1zrhsDRO76Lvjz4w1sRIMNGTpFXUW+gRzmJoBK42OWgUv4FnYiVHwNxEib/9gV9oWNN4v H4dmkrZZJrHspHLfjhckx7q9TruiTtdA3+0aogn+dzXxC6CsoXooo1WP/1VNnMzhTpa2Fnb/VJOc aDVVP17S7qUrCuULQqEjGXnj4GgxoFU/+tEnyFNMoGWh09Ji+VNf2w7pm+G/B9f3CxK1r+imBLc0 PmtwJa0K65kyM2s0xH8MNzyfO6L6pfyUNKEWae2f00OQ3asfzqGNG3V1EYmjj9XDmHVlfa5v220n 3necUvUJZ/jCa3xJWlGbNM8SfxcrmvmvhKRjbHzdh+QJ+ST5HF6lqbSzg2HSMb9rhEgXFP09vpIy 95eStJLlyGW9v0eJsX1Xfg7/Ht4tHE7dL05YcBiXf0xfzM2lUZUfmlag2VHDysvKLWJPKW1U9mZm 5NfwfXmVKNMHNC4EPNBLXtzBk0uKzgYG9RgIQ66j+imh4ArdiHqsVb6rWz9LjNA//wLSoa1b4uoB SAy8/w6A//dMYmZn+sEYZu7kZP4PjlVavbZzvKSN1FsSpG9TTuRfVj1C+mkGMqhjypJgeK5ZaH+L /xod+iJjXHVLQELL6stL7KoYgkw/qs8bAw1uEWs7G/mAYTub5IaSyemLR0uwJm9dsRPJ6mLZbo2S SR02dWxj5p73bE8zX1A+pTCRJIl9vGmZZR6m1glu7Krnjn6VE1Wwnj/+ESIEr4h2VkuxMCVnPLsM MKvomnHxcSUekHw3l5jZSPL14HGAWop28S1eAykadEL9pxPkbzQihk04isUjkUQoLn8eLM1R4eaL cmsBd3sYNbfHzTbRGPReA8eymnkLlL37uQz2cM6bL9bAHHEZiu8/U/BLiowxPw0hx5Z8MijTRmJP s2OQon7PmWvkPVVGjpjb1Hifze00tqPdkm4Avb0tohNnGf2FmUqOSBvZvym7UoksT9U+i5WEYlkE xwn99DL6xCegMMp0rmQwFp88MJOEcGduA9s6tU6YYS3UpGVawH6yeskR0XktiXh7NqSu4VZb+CRa gxy0Tia5Sz+ioLauOakLKMNTOB85QoUbulwDMfpOxePD+nPkj3v33c/7M9xGweuiOXeky830kEk9 9mvPuGG5LAlarhu36lVOuYW/c9T0nV4j74ULRUO+sax6SkmEte/GJHfUaRhbFFaJ0yPdEmfCgLJQ 7kCN7hPPJ7rh3XQeo/8+vpanJSajSB89ynn2+D9UcXRyg5k7/sMVZxtzWyduUzNHx/00m5isLtqA 5k1tHa00u+RoHM8Zu4M9WLRoRVJxmgJSRT2fAj/MjBLQsadS3msnQfQE8y/Bb15R+JBmefhtD2ps /nzsYmJraclJdEH5qKayrlTUZ0xiK+NegXFUAgat7UcrZ+AxTBnba2+fp6f/vatEVx3WvJ/m60EO Q7UD7uHrQDEJWIP7RfP9uXdd/d0wnXRz34s7O8TNtuNdAtqsuj7pJn59sbjYrRJcx6Ic8ctd6lrb lfpK9SS6pJooPtx6XVXWcz7ghpQlB1I+tSVEx1dBFW7d9ONUy7OqrFJctHXF5TxQAHpBwzAwqqPq tXTT3wQ3vqRq7nUY4DJtNE6/b3ecv/nkuk4r/sYCYaTqVrFIHxc9dNb3xHMTPB75V+8uddP5osQS RmXX8ELZCWljOfM+ObAUnWv5LgKOJCoS5jDkb56BL7npBCHPxrW+mILyteD+XmusrutY8T6rwz5t rGJTynPKf6YH5588H/ph2KPf6Dh705Vq+9Lnlu+E4ommS74Q2+gO30BqwbsCFmhLnDVLqyILhHuW bEbRnyu+RLrh5ZUilv77NqIgHW7T/MiLhHL9ftyeWqVhdQWwTFrzZAKoBWiwjaQ2XJuq+JDob5uV MNa18imQbrN0y2oETy3W91oCsnwVWCwFXFrB6hpddh6aFNh2pt+N9Og9TREE1WcAOI2baNMESlvL 9zUh8yCvmuanLJY7b7rUE1+Zg5pSATMBPjawx2q5BnQYXhkUeSFK3GwfwZutpGFV1qLj4pdd7lGM 1qtgxAdjGU4fs/Q8v9h1w5HxxeIftVKOg0Q1mY1MRJdbVxas74wJcuBvQF9OEEnmHk1n6emJbwcR 2xv4xv7qRyiSVMdXe7la4TeYm88DYH9sY/zfxWmcdhcfFhktJ/VnYjuRZgwKLkY3VTnSLQnTud8O /eq6M3vnE/r0ggB611slONLzczu5hPrlRoaZR6IP50InWsOWUSlIBHIX2yP99ICLmmUJyq3p7T3z Qd1yibnazlzJx/8NW06vs52r3eNRAyXf8noGsJB2pnbh3hUHZ/Uuk5j1S0Lg/j7zh9kZyw+2Q3tF HOS6sxMK2ZV5Yz/nw7d12dt6TmybwIvDObepsuauxbISbcP4Yp8sN5MQ84tny0bswcD9PZD67Jyq Wm1aRNevY51nerNLlr8r2zOyym9YV+032z4MNsW8F7h2Fap0ybMrqT+K/wNshfhWY9nl61eylMfh awM+BcNlTuKe1Ph+pyMt0+9SZzrkMa9NJIl0TPqZEx0fUvfFToFl9X3rB7dtlXe3k+oEMeORFeNt ShO2gPXcN7zxRoBWHd8yLFO8LnVWhQRbQGPz3bHtrP+DB7xFsgYWOHg9CxhVrFljsq3YwRVdKt1C yTz/NWidLx7fzYcD1en5NRWFBYyr1Bz/4QE246MhmTPHGT8EVvEqELmBgf0U/1j4f5sOJp/4Wu0k 4EUCzX+VXNCm61uBBcUbJEtlEQZv7gI4Qkp2gBCoenPVeBdAYA1Y9frjkI/c86fCUjeiSkVimIEc Nv7tWIHBdHiBeMQas6/tE1U2eZM+TYMRCUY8rQa+jZr/nz/EArqNxUaYQ+nKsI5muKUt55wlP98f vI+ioOJu1fItxoLgIclgLNOKqb9xYDnV4c14ohcqkVf2douEVDjkhKzPlHgTjXjXwwkebnI9L9KO NBI0P1kmvRpuyeOu4lFQ9tpRv+H7GNEKmuNO0DoSVLEzv2W1pLduX/5tpTfE6XHsplqL7TB/frvQ VjZzLWiL1p18piwlibmL696VWv42vM5Z5k2utvAQbSikfV9WgzWdgNou0dDNDEdfQXZRMeT1iL+8 XK1rwP0fBBsFkY6v4Jt+9S0AfvkaJOXPJDGmoG+QF9Xi2cemito8KdF8s8jyQbwpxo/GERuvjCLa GPzF+gh8xa7xz3+zVzLvdwHSmc/lVV9hytB4E7F1XBv9jDxi2v6x5axUWbrs5P42F8OvDWUH8GsK NmtlEHpRrARw2eJFfru4XXU3rsXZ7IA2mXvW8U2qLd8mmAdIjQTMqFEIfOK2NKKNnOt/OdP6ppvo lS3ggonbjUJNB96fMjXyR59BqMr0UJH0vJEavdLJUiQp23mBswQZw9yk8AqtmScfF87MFbpYpLs+ 2eJcC+u287JztvPq1a53M0VvXDfdpAZccuwffYVSMR5GbZKwaM82vij1BPX/iLNHXdkE1q37/236 3Ix+Pu+QHg9WKawL5lav1BxbL+AeqdKcMbEBjwMnq6WXKUGLX/vWRRM4vXyKURPeXxdRlDwTDZpn A0ukSrFqc+Lwpm90vpDEnFzbJ7bGBVaGlUmFeV+kjrjJJpmLFHRiEKzGyrkKdc+t+Wh0f/mQ++2k LQ8RjZ2+0RI2zMxJGe18PAjmzzvJI7YOmcOxLvgEFpnbkqSMwSDBZ9DUDzss098zF8Y5g3wAKqlL EWsS8J/ph4pKiB74KdzPjUfOVCga2eyKUmZZvVJRv9CZy7d3WeyfVYl9yS6jpx8Sy6PMunfm4tvr L3ChX4GXy+B2xYVyCmsJEWRw6S9NClpyWEZWO2OuKjz33ysiGlOadxNY+rveh+/qbD1X31qtih94 0iNNITqxUHLwOJRrOg560rETaF2kvmlgTOcjGD+35e+ufGiDLqtGOu9JfRxqdnOcKudXuymClmLQ /E875xnV9NnG4RADQgJSZhiykSV7FCFUAyigYYQwFIQEkGVlL6sEQSyrKhIiASwgU1CrhIAilRHZ M2JkgyCyZCQyWpCC0gD1PSGt73lPP7//68P94Tnnd315/s+H+3nOXXaOO8V2COwJ8my8CdIGap+C cbS+D3s4eF5N6BEp2bFcwBUh+eDcoUslvM1tDb7Em1JUMb1LRyRtUhPapZ1N+Y456upFHaR5rp3J Loy0D8sXEgylFi379bgjphLyifWoSw5i6eppiiNEHbTKyxQLKnsSiIHnEFzWWBY2tazGR7Sv9+BD eKryk463CzWOxGRNxRJOXY627fCKiiF2FKkJVdqPSuO2UewStJjEcRmxJdknPl7OHQ/WRUmQ4pR8 5dtxCDVzsSKcVG2kVdh3s1Ze8Mueub3NcvMjl5XxCz9W03v5OHXL1QzGVC3fk7Dl3S3cY6pZgqb6 EJrQW++rJX0A/d62Sk+jVxwNbXSfirFIxWjsfhqIZulsDDOGVeFys3Ozz7fERMRGTCfzVJSHV9jR YiO20fbfXsoOWSdwnlFxL0s8pC3M5SQ7BfYIgFNCjBGHaupKpkhH4QNTVMJPZ1UCu60ZUPDe4IqV VtDTd7WIXu/rSOXZxhm8t/MDe6U4D127vIPou555hPyHMGIcOA7fO/PirnnnkbkFhJvWF6zrrzbF /MU7s6PCDcUpEcftHLs1dyCu/H4H3qBdCuC5oFML4NnHAHYX9DQ2ftzOotw1GTVJReDMXvQnKULJ aDLaJl2HCCVCNfgHIAOHaSJuGm6lI2VskU/YI8flNGD5yoe3V7epVvjBiozOuiA5MN+ZClpw0LMj o80VvhmAFHGewhHSZNOv1ZwJeyL1hwftoPqGRwOgDlBHehSD2SWWwrEJZNBOGZ7/EfMR1Jjs+w78 kX2XFq5kgbfQmTv7Nw3L5dmuOHQJvu3HcYE2TZRjUYVeRa1TZI0D1UP4K1YcDvRNjwZ4HZyRnIvZ hZH8Ccig3XpkPhez9rr/4huFF/0bs7fWKo+h197X1Y3V1NUUnz7rspCa5y8qUFQqdu9Nv3dBcLQ3 4+9XfPqIYpXGreBIv/09G6aal76fZ2Lfz86XMszG7v+Gvi0NKHMVw/B/8/BkcwLFiR3OPdaAO3/f w1or4CRttSfYJB3hqrL6aUodusmWqgGtsV9Fjesnt1fI2IKPbiB8xH8vIAkr3Jex76u3/A6qMjEL zbLse8YrN0F7JmpGMDZJvdEqbTpxd8iRPtxASvDi7ZAkfKcaeUVeNfLMKrAj5zddbeTtcUqWlJI8 1uJy3r7tYxu7fWwH9a4Haww4YGChpaESlw+H3UkKFPhJve36MnWlOBmGeOaf7ls4QeEfJVD6tTQU 9nUYuKe3hBL73oBjYIggnzZIRUewD1cd30VCrqCxckhAkYXBbzL/OXnsntJMKw/KZKV5GZq5nRDn hU33WzYGVgUND/96dUk+2SSiL/68AtKsSz+qilTv+mZoNWCRhq/PM9Lmi7MOr3z4nPwOHDGVaVT2 R150GlA8zn9z8ExAAXROr6ZyqQWNLRWwcKeCUZyo1psgZZCyJYyj8Bv9tclkHhGSqwj/GL2HL22Q nLLL4ue3n9hMQx5fcmvVQfBrevZasplKZpIF3Czi3qvcEpFMkO2VOZsIPJF/sKonpNBWcH38ef/x fvyoPUehOYezvyaJ8igd2GbNOY+WeHFMZzi1oav+R3WIPiSqk9xVf1LLt7wbfdVPOOh7Hk+7bCyi WcBfM2vhitlGzcXllou51rmUQqESgRK8OFcPV09mBDdSEelDH4gxHI4zXHJFS+BOsPVw7RLINyqL VGTs3jkjxu4Nd+wSRM7guPyaJNIfdAnnoTqTbGwpFfb3keAm33smBtVH2/jVTpy+aA8RAis+9Nli x4SvHsoQ+YLiuJvHF4LlEpLGG8xh+esqSJEdBtbFrODumacBcU8yXQFxbAyybYBnr9YvjhcMqpsr h8wWWRT0zDfiIZoamqXFHaKdkM7rUK5p9um0CO4MaMZp+gC52vlF9eLJdIlXWCHG6g5mAjcUNDUo erzT4d4ngSsP7ihrlsoJcE7HoUBFFh2ncB3uaNXKoVuRZegDUGyZuzRGGjPomKKxi7HPNexVBl4z tCc4Deyiu7nuBfZ14A6xb0DPuSavh3Zdw2Y7pcJrH3iDJ+dbQbHYPMbOo5JQkyGt0AQXWlKtwjWV NUYyHANnJOdq7GLssy+KjYGXIj08tzSa51gu9KHOrdqmtTH6Z+5ftKhN2NClJYycS2zTR5eSHIMM o42qRqlbhmJZwbrdh9dnue7CwYmJvn2uF+5O3Qpc2oi/MLOp/AN67vsOibMZQ+4/WQZ6h9+r1Soo lmkXrKaZ1I6iRP2N1vJCoRnZvO+q7zs/X2muXoJY+mcc0JRwMySHxcwCXsvgCzu0JD6u4KvKXKjQ 252Q4SPsqr+gJyyVmq/lCGdqJWS7JFfUzB+2Vzh+OjLKQYrPan6kWy0igFqM98l8hqk9MMsr+m2Z h/VIaUv2xvUcc8mQOR9DXI/F55r1IuH1l1o4P/fHOV6yg4TqpRbz105O9OYllxspM8dMvL/NxqTH voIWBC4bmWFu1IpEvVQL3HylvxwMWVzQbkajjhAURL3mMvah7kUCChvfExB8Zvo3AvbP3Ly0Uhl1 Li1KXLkp3XwsumAOHzxln3P0XM27+/1BWzzFuNAPNx/g89rNQgiBWmtjQXTKScdmK7+ntSmj0XhR O3kn3BsyceviiyDhrZmhqvnPTh952g/8Rc4HKHJ11W7VL5lYIYXYEHca2up6nH+dJ56i8IOL2Vpv s5d0tkl3uybxyhapvS++AlEQMPrk3vMFscGzoTp2yQmPBITE4/NLziHkPr0acPxjaET6U5m76CcD 29kpGOlm2R18oriN/68fGiREJV7PdZNeOV3+eXE8a7Ut/oPp+nCR1+r59F+M+pMOTPeXjFcuhtWt z2ztbX6IboQk6gMAAD3A7gBQv/MBF0K3m2PlZaWtXbZKCDUVSufLcgftHh0kyqILQbFp60RUOoB5 gl8/QaKIlROktrbOjtVORMfp7soJIACJYAOqAb42ZkqeZSTVPw+dAu+MC90enigCmKmsOQaAU9lY K6tn7/APZg+V47+OAmGWiarV7oSzVlbZ3rEZzDJ2zq8N0fg3nr0vYpg9qUpffx/DbJLNIe8ks1ZW 096XMsymSaW/v5v5N4a9l8TMBoT6366MmQXkgMadQNbKKth7EcsssND4yrUss2Z5YjeWtbJq9nbo mTUEva/065k1AtpNO7GslVWzt3/NrBn79p+72cyWMmDbTiprZbXsbX0yW8AG/9wIZbbUK++mslZW y94zhtmy/xTTicMcbfO6cyeKtSIR7DvjVCEMMCAAwOsU4P/f//j9CVP73BsAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DBA2E9.E9938340 Content-Location: file:///C:/2669C676/2026_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DBA2E9.E9938340--