MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DB9F20.B9A99470" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Emprego da Ciência de Dado= s na implementação de políticas públicas: estudo de caso sobre o programa "Cidades Saudáveis"

The Use of D= ata Science in the Implementation of Public Policies: A Case Study on the "Healthy Cities" Program

 

Andrew Paes da Silva https://orcid.org/0009-0006= -3997-2300

Tecnólogo em Análise e Desenvolvimento de Sistemas. Universidade do Vale do Rio dos Sinos (UNISINOS) – Brasil.<= span style=3D'mso-bookmark:_Hlk4746433'> andrew.paes@gmail.com

Roberto Zanoni

https://orcid.org/0000-0002-6334-5343

Doutor em Administração. Universidade do Vale do Rio dos Sinos (UNISINOS) – Brasil. robzanoni@gmail.com

Juliane Ruffatto

https://orcid.org/0000= -0002-0406-9780

Doutora em Administração. Atitus Educação (ATITUS) – Brasil. julianerufato@hotmail.com=

 <= /o:p>

RESUMO

Cidades Saudáveis são aquelas que continuamente melhoram os ambientes físicos e soc= iais e expandem recursos comunitários, permitindo que as pessoas se apoiem mutuamente e desenvolvam seu potencial máximo. O objetivo desta pesquisa é = desenvolver o modelo teórico-conceitual de um protótipo empregado na gestão de estabelecimentos de saúde pública. A pesquisa, de natureza mista, utilizou bancos de dados disponibilizados pelo DATASUS, através do Cadastro Nacional= de Estabelecimentos de Saúde e pela Secretaria Estadual de Saúde do Estado do = Rio Grande do Sul. Foram coletadas informações sobre todos os estabelecimentos = de saúde do município, incluindo endereço e coordenadas geográficas, para identificar e mapear a localização de hospitais, clínicas e centros de saúd= e. A análise espacial identificou padrões e tendências na distribuição geográfic= a, permitindo mapear as localizações dos estabelecimentos em um mapa digital. A comparação da disponibilidade e acessibilidade dos serviços de saúde entre diferentes regiões de Porto Alegre revelou desigualdades significativas. Os resultados mostram que a distribuição dos serviços de saúde é desigual, com algumas regiões enfrentando uma significativa falta de leitos e estabelecimentos de saúde, sublinhando a necessidade de intervenções específicas para equilibrar a oferta desses serviços.

Palavras-chave: cidade saudável; ciência de dados; acessibilidade aos serviços de saú= de.

 <= /o:p>

ABSTRACT

Healthy Cities are those that continuously improve physical and social environments and expand community resources, allowing people to support each other and develop their full potential. The objective of this research is to develop the theoretical-con= ceptual model of a prototype used in the management of public health establishments. The study, of a mixed-methods nature, utilized databases provided by DATASU= S, through the National Registry of Health Establishments, and by the State He= alth Department of Rio Grande do Sul. Information was collected on all health facilities in the municipality, including addresses and geographic coordina= tes, to identify and map the locations of hospitals, clinics, and health centers. Spatial analysis identified patterns and trends in the geographic distribut= ion of health services, enabling the mapping of facility locations in a digital map. The comparison of availability and accessibility of health services ac= ross different regions of Porto Alegre revealed significant inequalities. The results show that the distribution of health services is uneven, with some regions facing a significant shortage of hospital beds and healthcare facilities, highlighting the need for specific interventions to balance the provision of these services.

Keywords: healthy city; data Science; accessibility to hea= lth services.=

 

Recebido em 02/09/2024.  Aprovado em 19/02/2= 025. Avaliado pelo sistema double blind peer review. Publicado conforme normas da APA.

https://doi.org/10.22279/navus.v16.2001


 

1 INTRODUÇÃO

 

O conceito de Cidades Saudáveis, introduzido pela Organização Mundial da Saúde (OMS), refere-se a um processo contínuo de criação e melhoria de ambientes físicos= e sociais para promover um estilo de vida saudável (Duhl= & Sanchez, 1999). Baseado na política Saúde para Todos da OMS, o concei= to de Cidades Saudáveis envolve a conscientização, a mobilização da participaç= ão da comunidade e o desenvolvimento dos papéis do governo local na saúde públ= ica (Huang et al., 2019).

A estratégia= de desenvolvimento local das Cidades Saudáveis inclui um pacto social como abordagem intersetorial para lidar com os determinantes de saúde, comprometendo-se com a promoção da saúde e a melhoria da qualidade de vida = da população (Fróes & Lasthein, 2020). A colab= oração intersetorial é fundamental nas Cidades Saudáveis, com parcerias intra e intersetoriais sendo essenciais para abordar = os determinantes de saúde (Ma et al., 2022). A cri= ação de Cidades Saudáveis tornou-se uma medida importante para lidar com doenças públicas globais e emergências de saúde pública, como evidenciado durante a pandemia de COVID-19 (Danielli et al., 2023).

A visão contemporânea das Cidades Saudáveis deriva de um projeto da OMS sobre cidad= es e saúde em 1986, remontando a meados do século XIX (Duhl= & Sanchez, 1999). Segundo a OMS, as Cidades Saudáveis são locais que atendem às pessoas e ao planeta, liderando pelo exemplo para alcançar mudan= ças positivas, combatendo desigualdades e promovendo boa governança e liderança para a saúde e o bem-estar (Duhl & Sanchez, 1999).

A ideia de u= ma cidade saudável é fundamentada na crença de que a cidade desempenha um papel crucial na determinação da saúde dos seus habitantes, enraizado numa perspectiva ecológica (Akerman et al., 2022). O Projeto Cidades Saudáveis da OMS defende políticas e planejamentos abrangen= tes e sistemáticos, focando na necessidade de abordar disparidades de saúde, pobreza urbana e os requisitos de grupos vulneráveis (= Akerman et al., 2022). Uma etapa inicial fundamental no Projeto Cidades Saudáveis da OMS envolve o desenvolvimento de um perfil completo de saúde da cidade para coletar dados sobre o estado de saúde e seus determinantes no ambiente urba= no, facilitando intervenções direcionadas e tomadas de decisões informadas (Fró= es & Lasthein, 2020). Essa abordagem se alinha= com a tendência global mais ampla, em que as cidades são cada vez mais reconhecid= as como determinantes fundamentais da saúde da população, necessitando de ações multifacetadas de várias partes interessadas em todos os níveis para aborda= r os fatores de risco à saúde prevalentes e promover o bem-estar (Ziafati Bafarasat et al.,= 2023; Ziafati Bafarasat & Sharifi, 2024).

Nesse sentid= o, a ciência de dados desempenha um papel importante na medição da disponibilida= de e acessibilidade dos serviços de saúde na cidade, como hospitais, clínicas e centros de saúde, para atender aos indicadores de saúde e bem-estar das populações urbanas (Sui et al., 2023; Singh & Kumar, 2023; Sun et al., 2021). Ao aproveitar a análise de dados, o aprendizado de máquina e os dispositivos de Internet das coisas (IoT), os planejadores urbanos podem ob= ter informações sobre a distribuição espacial de vários serviços de saúde e otimizar suas localizações para garantir acesso equitativo para todos os residentes (Singh & Kumar, 2023). Essa abordagem baseada em dados forne= ce informações precisas sobre a acessibilidade dos serviços médicos urbanos, a= judando os formuladores de políticas a tomar decisões informadas para criar cidades mais sustentáveis e habitáveis (Sui et al., 2023; Sun et al., 2021).

A proposta de desenvolver um protótipo baseado em ciência de dados para monitorar a disponibilidade dos estabelecimentos de saúde em Porto Alegre visa subsidia= r a tomada de decisões e ações de planejamento e gestão da saúde na cidade, contribuindo para a implementação dos objetivos do Programa Cidades Saudáve= is da OMS e para o alcance dos Objetivos de Desenvolvimento Sustentável relacionados à saúde e qualidade de vida (Gallo= & Setti, 2023).

Portanto, a integração de conhecimentos de ciência de dados, georreferenciamento e saúde pública é essencial para uma análise abrangente e eficaz dos serviços de sa= úde em Porto Alegre, visando promover a equidade na saúde, identificar áreas de melhoria e direcionar intervenções para atender às necessidades da populaçã= o (Duhl & Sanchez, 1999). Utilizando tecnologias de georreferenciamento, que permitem a identificação e avaliação sistemática d= os estabelecimentos de saúde em diferentes regiões da cidade, esta pesquisa tem como objetivo desenvolver o modelo teórico-conceitual de um protótipo empre= gado na gestão de estabelecimentos de saúde pública.

 <= /o:p>

2 REFERENCIAL TEÓRICO

 <= /o:p>

2.1 Administração pública e políticas públicas

 

A administração pública desempenha um papel central na formulação e implementação de políticas públicas voltadas ao bem-estar social e ao desenvolvimento urbano (de Medeiros & Ramacciotti<= /span>, 2021). Como campo de estudo e prática, a administração pública abrange o conjunto de atividades desempenhadas pelo Estado para gerenciar recursos, formular estratégias e prestar serviços essenciais à população (Lotta, 2019). No contexto das cidades saudáveis, a administração pública deve atuar na criação de condições estruturais que favoreçam a qualidade de vida urbana, promovendo a equidade e a inclusão so= cial (Organização Pan-Americana da Saúde, 2024).

As políticas públicas são um dos principais instrumentos utilizados p= elos governos para enfrentar desafios socioeconômicos e garantir serviços essenciais, como saúde, educação e segurança (Secchi, 2021). Elas são formuladas por meio de um processo que envolve a identifica= ção de problemas, a elaboração de soluções, a implementação e a avaliação de impactos. No contexto das cidades saudáveis, as políticas públicas devem se= r desenvolvidas de forma intersetorial, envolvendo diversas áreas da gestão pública para garantir um planejamento urbano integrado e responsivo às necessidades da população (Lotta, 2019).

A implementação de políticas públicas eficazes depende de uma governa= nça estruturada, com a participação de diferentes atores, incluindo governos, sociedade civil e setor privado. A governança pública envolve a criação de mecanismos de cooperação entre esses atores para garantir maior transparênc= ia e eficiência na execução das ações planejadas (Teixeira & Gomes, 2019). A abordagem participativa tem sido incentivada na formulação de políticas voltadas à promoção da saúde urbana, pois permite que a população atue como protagonista na identificação de problemas e na busca de soluções adequadas= ao contexto local (Fung, 2006).<= /span>

A dimensão territorial é um fator fundamental no planejamento das políticas públicas, pois as cidades apresentam características socioeconômi= cas e ambientais distintas (Vitte, 2015). Nesse sen= tido, a gestão municipal tem um papel estratégico na formulação de políticas públ= icas que respondam às demandas locais, promovendo soluções adaptadas à realidade= de cada região (Secchi, 2021). O conceito de cidad= es saudáveis, promovido pela Organização Mundial da Saúde (OMS), reforça a necessidade de integração entre os diferentes setores da administração públ= ica para o desenvolvimento de políticas eficazes voltadas à saúde e ao bem-esta= r da população (Bloes & Sperandio, 2022).<= /span>

Especificamente na gestão da saúde, as políticas públicas devem abord= ar a distribuição equitativa dos serviços de saúde, garantindo acessibilidade e qualidade no atendimento (Oliveira et al., 2017). Modelos de governança baseados em dados têm se mostrado eficazes para subsidiar decisões e orient= ar a formulação de estratégias públicas (Kettl, 2020= ). O uso de análise de dados e tecnologias digitais na administração pública tem possibilitado a mensuração de indicadores de desempenho das políticas implementadas, permitindo ajustes dinâmicos para aprimorar os serviços prestados à população (Bahia, 2019).

No contexto de Porto Alegre, a pesquisa desenvolvida busca contribuir para a implementação de políticas públicas de saúde baseadas em evidências, identificando desigualdades regionais na distribuição dos serviços de saúde= e propondo soluções que favoreçam a equidade no acesso. A ciência de dados se apresenta como uma ferramenta essencial para otimizar a gestão dos recursos públicos, garantindo maior eficiência na prestação dos serviços de saúde e fortalecendo a governança municipal para a promoção de cidades saudáveis.

 

2.2 Cidades saudáveis

 

As ci= dades saudáveis, conforme definidas pela Organização Mundial da Saúde (OMS), são aquelas que buscam promover a saúde e o bem-estar de seus habitantes por me= io de um planejamento urbano que integra diversas dimensões sociais, econômica= s e ambientais. O conceito de cidades saudáveis surgiu na década de 1980, em resposta à necessidade de criar ambientes urbanos que favoreçam a saúde púb= lica e a qualidade de vida, alinhando-se aos princípios da promoção da saúde estabelecidos na Carta de Ottawa (Bloes & S= perandio, 2022; Fajersztajn et al., 2016).

A OMS enfatiza que as cidades saudáveis devem ser projetadas para garantir que to= dos os cidadãos tenham acesso a condições de vida adequadas, incluindo habitaçã= o, saneamento, transporte, educação e serviços de saúde. Isso requer uma abord= agem intersetorial, na qual diferentes áreas de políticas públicas se unem para enfrentar os determinantes sociais da saúde (Gallo & Bessa, 2016). A promoção da equidade social é um valor central nas iniciativas de cidades saudáveis, reconhecendo que as desigualdades no aces= so a recursos e serviços impactam diretamente a saúde da população (Silveira et = al., 2014).

Um do= s principais objetivos das cidades saudáveis é a melhoria da qualidade de vida, abrangen= do não apenas a saúde física, mas também o bem-estar mental e social dos indivíduos. Para isso, a participação da comunidade no planejamento e na implementação de políticas que impactam seu cotidiano é fundamental (Lima & Lima, 2020; Westphal &a= mp; Oliveira, 2015). A interação entre a população e as autoridades locais é essencial para identificar as necessidades específicas da comunidade e desenvolver soluções adequadas (Teixeira, 2004; Westph= al, 2000).

Além = disso, a OMS propõe que as cidades saudáveis adotem práticas sustentáveis que consid= erem o meio ambiente, como a criação de espaços verdes, a promoção de mobilidade ativa e a implementação de sistemas de abastecimento de alimentos saudáveis (Silva et al., 2021; Ribeiro, 2023). Essas práticas não apenas melhoram a s= aúde física dos cidadãos, mas também contribuem para a resiliência urbana e a sustentabilidade a longo prazo.

A Org= anização Mundial da Saúde (OMS) tem promovido a iniciativa de Cidades Saudáveis, incentivando municípios ao redor do mundo a adotarem políticas e práticas voltadas à melhoria da saúde e do bem-estar de suas populações. A seguir, apresenta-se no Quadro 1, um comparativo destaca= ndo experiências de cidades que implementaram ações alinhadas a essa iniciativa, com foco em resultados aplicáveis a contextos semelhantes ao de Porto Alegr= e.

=  

Quadr= o 1 –Quadro Comparativo de Experiências de Cidades Saudáveis

Cidade/País

Iniciativa

Descrição

Montevidéu, Uruguai=

Política de Cantinas Saudáveis

Implementação de padrões nutricionais em can= tinas de escolas, órgãos municipais e algumas universidades, focando na redução= do sódio (Uruguai, 2013). A iniciativa incluiu campanhas midiáticas e materi= ais educativos para promover hábitos alimentares saudáveis.=

Vancouver, Canadá

Ferramenta Online = de Rastreamento de Indicadores de Saúde =

Desenvolvimento de uma plataforma digital pa= ra monitorar indicadores de saúde, com ênfase nas populações indígenas urban= as. A ferramenta tornou os dados de saúde mais inclusivos e acessíveis, facilitando a formulação de políticas públicas direcionadas (ACT Promoção= da Saúde, 2023).

Calgary, Canadá

Mensuração Contínu= a de Determinantes de Saúde

Desde 1994, Calgary realiza inquéritos biena= is para coletar dados sobre determinantes de saúde. A iniciativa envolve líd= eres comunitários, profissionais de saúde, universidades e governantes, visand= o à criação de um Município Saudável por meio da disseminação de informações e promoção da saúde (Rumel et al., 2005).<= /o:p>

Lisboa, Portugal

Promoção da Agricultura Urbana

Como membro da Rede Europeia de Cidades Saud= áveis, Lisboa incorporou a promoção da agricultura urbana em suas políticas, reconhecendo a importância de ambientes alimentares saudáveis e sustentáv= eis para a saúde pública (Câmara Municipal de Lisboa, s.d.).

Jaguariúna, Brasil<= /p>

Encontros Intergeracionais e Inclusão Digital=

A prefeitura promoveu encontros entre pessoas idosas e estudantes, além de implementar programas de inclusão digital pa= ra a terceira idade, visando ao respeito, à inclusão social e à participação a= tiva dos idosos na comunidade (Prefeitura Municipal de Jaguariúna, 2018).=

Fonte: Elaborado pelos autores (2025).

=  

Essas experiências demonstram como diferentes cidades implementaram iniciativas alinhadas aos princípios das Cidades Saudáveis da OMS, focando em áreas como alimentação saudável, monitoramento de indicadores de saúde, promoção da agricultura urbana e inclusão social. Tais práticas podem servir de referên= cia para Porto Alegre na formulação e implementação de políticas públicas volta= das à promoção da saúde e do bem-estar de sua população.

=  

2.3 Indicadores de disponibilidade e acessibilidade

=  

Os indicadores de disponibilidade e acessibilidade de saúde são fundamentais p= ara avaliar a eficácia e a equidade dos sistemas de saúde. A disponibilidade refere-se à presença de serviços de saúde adequados e suficientes para aten= der às necessidades da população, enquanto a acessibilidade diz respeito à capacidade da população de utilizar esses serviços de forma efetiva e sem barreiras (Oliveira et al., 2011).

A disponibilidade de serviços de saúde é um indicador que mede a quantidade e= a variedade de serviços oferecidos em uma determinada área geográfica. Isso inclui a presença de unidades de saúde, como hospitais, clínicas e postos de saúde, bem como a disponibilidade de profissionais qualificados e equipamen= tos necessários para a prestação de cuidados (Costa et al., 2021). A literatura sugere que a disponibilidade deve ser constantemente avaliada e aprimorada = por meio de políticas públicas que assegurem que as necessidades de saúde da população sejam atendidas de maneira adequada (Bender et al., 2024; WHO, 20= 08).

A acessibilidade, por sua vez, é um conceito multidimensional que abrange div= ersos fatores que podem facilitar ou dificultar o acesso aos serviços de saúde. I= sso inclui aspectos geográficos, como a distância até as unidades de saúde, a qualidade das vias de transporte e a disponibilidade de transporte público (Oliveira et al., 2011; Mendonça et al., 2021).

Além = disso, a acessibilidade também envolve fatores financeiros, como a capacidade dos indivíduos de arcar com os custos dos serviços de saúde, e a aceitabilidade cultural, que se refere à adequação dos serviços às necessidades e expectat= ivas da população (Farias, 2024). A pesquisa destaca que a localização dos servi= ços de saúde e os meios de transporte disponíveis são cruciais para a avaliação= da acessibilidade, pois a distância percorrida pelos pacientes pode impactar diretamente a frequência e a continuidade do tratamento (Oliveira et al., 2011). A percepção de vulnerabilidade e as barreiras enfrentadas por grupos específicos, como pessoas vivendo com HIV ou com doenças crônicas, também s= ão importantes para entender a acessibilidade (Farias, 2024; Souza et al., 201= 5).

Os indicadores mais comuns utilizados para medir a disponibilidade e acessibilidade de saúde incluem:

1. Nú= mero de Unidades de Saúde: A quantidade de hospitais, clínicas e postos de saúde disponíveis em uma região;

2. Pr= oporção de Profissionais de Saúde: A relação entre a população e o número de médico= s, enfermeiros e outros profissionais de saúde;

3. Di= stância até os Serviços de Saúde: A média de distância que os usuários precisam percorrer para acessar os serviços;

4. Te= mpo de Espera: O tempo médio que os pacientes aguardam para serem atendidos;<= /o:p>

5. Cu= stos de Transporte: Os custos associados ao deslocamento até os serviços de saúde;<= o:p>

6. Sa= tisfação do Usuário: A percepção dos usuários sobre a qualidade e a adequação dos serviços prestados (Porto et al., 2015; Oliveira et al., 2019). =

Esses indicadores são essenciais para a formulação de políticas públicas que visem melhorar a saúde da população, garantindo que todos tenham acesso a serviço= s de saúde de qualidade e que as necessidades de saúde sejam atendidas de maneira equitativa (Barros et al., 2014; Vitoria & Moreira, 2017).

 

2.4 Ciência de dados

 <= /o:p>

A ciência de= dados é um campo interdisciplinar que combina estatística, ciência da computação e conhecimento do domínio específico para extrair insights significativos a partir de grandes volumes de dados. Este campo emergiu como uma resposta à crescente quantidade de dados disponíveis na era digital, onde a capacidade= de coletar, armazenar e analisar dados se tornou fundamental para a tomada de decisões informadas em diversas áreas, incluindo negócios, saúde, educação e ciências sociais (Cao, 2020; Souza & Bomfim, 2022).

Uma das defi= nições mais abrangentes de ciência de dados descreve esse campo como aquele que envolve a organização, integração e análise de dados, visando gerar conhecimento útil para a sociedade (Coeli, 2022). Essa abordagem multidisciplinar permite que cientistas de dados utilizem técnicas de aprendizado de máquina e algoritmos avançados para resolver problemas compl= exos e prever tendências (Ramos & Diniz, 2022). O uso de modelos matemáticos= e estatísticos é essencial para interpretar os dados e extrair informações valiosas que podem ser aplicadas em contextos práticos, como logística e a análise de mercado (Batista & Oliveira, 2022).

Além disso, a ciência de dados é frequentemente associada à transformação digital das organizações, onde a capacidade de analisar dados de maneira eficaz pode proporcionar uma vantagem competitiva significativa (Medeiros et al., 2021)= . A implementação de estratégias de dados adequadas, que alinhem a cultura organizacional à governança de dados, é crucial para maximizar o potencial = da ciência de dados (Medeiros et al., 2021). A literatura também destaca a importância da competência em dados, que se refere à habilidade de gerencia= r e interpretar dados de forma eficaz, como uma necessidade contemporânea tanto para pesquisadores quanto para a sociedade em geral (Balbinotti et al., 202= 2).

A evolução da ciência de dados também está ligada ao conceito de "Big Data", que se refere ao volume, variedade e velocidade dos dados que s= ão gerados atualmente. A ciência de dados busca não apenas lidar com esses gra= ndes volumes de dados, mas também transformar esses dados em informações acionáv= eis que podem influenciar decisões estratégicas (Daniel et al., 2020). A intersecção entre ciência de dados e outras disciplinas, como a epidemiolog= ia e a análise populacional, demonstra a versatilidade e a aplicabilidade deste campo em diferentes contextos sociais e científicos (Coeli, 2022; Rocha, 20= 23).

 

3 MÉTODO=

 <= /o:p>

Este estudo é de natureza mista e aplicada (Hirose & Creswell, 2023), objetivando desenvolver um protótipo baseado = em ciência de dados (Sarker, 2021) para monitorar a disponibilidade dos estabelecimentos de saúde em Porto Alegre. A pesquisa utilizou dados secundários disponibilizados por bancos de dados públicos para explorar a distribuição e acessibilidade dos serviços de saúde na cidade. <= /span>

Os dados foram coletados do DATASUS, através do Cadastro Nacional de Estabelecimentos de S= aúde (CNES), e da Secretaria Estadual de Saúde do Estado do Rio Grande do Sul. As informações incluíram endereço e coordenadas geográficas de todos os estabelecimentos de saúde do município, como hospitais, clínicas e centros = de saúde.

A coleta de dados envolveu a extração, transformação e carga (ETL) dos dados do DATASUS, utilizando o aplicativo TABWIN para transferência de arquivos do servidor F= TP do DATASUS. Os arquivos utilizados incluíram a aplicação TABWIN da fonte FTP (TAB415.zip), definição do TABWIN (TAB_CNES.zip) e banco de dados do TABWIN (STRS2403.dbc).

Os dados coletados passaram por um rigoroso processo de tratamento para garantir a precisão e confiabilidade das informações. Para normalizar e validar os dados de geoprocessamento, foi utilizado o software GeoAPI (Suzuki, 2022), que compa= ra a geolocalização com o endereço desejado informado ao software. A seguir, foi realizada uma análise espacial (Skalinski et al., 2019) para identificar padrões e tendências na distribuição geográfica dos serviços de saúde.

A análise espacial permitiu a criação de um mapa digital georreferenciado, destacando a localização dos estabelecimentos de saúde e comparando a disponibilidade e acessibilidade dos serviços entre diferentes regiões de Porto Alegre. Foram geradas listas de regiões e bairros conforme o plano diretor do município. =

Para a modelagem = dos dados, foi utilizado um esquema estrela (Amin et al., 2021), uma técnica de modelagem de banco de dados que organiza os dados em dimensões e fatos. As tabelas de dimensão descreveram as entidades de negócios, enquanto as tabel= as de fato armazenaram observações ou eventos. Esta abordagem foi escolhida pa= ra melhorar o desempenho das consultas e facilitar a análise dos dados. <= /o:p>

Os dados foram organizados e apresentados por meio de  de dashboards interativos no Power BI. Os painéis incluíram gráficos de velocímetro e visualizações da distribuição d= os serviços de saúde por região, permitindo uma análise detalhada e visual das condições de saúde em Porto Alegre. As comparações foram feitas utilizando razões e taxas municipais para evidenciar desigualdades na distribuição dos recursos de saúde.

Os principais indicadores analisados incluíram a área (hectares quadrados), população (habitantes), renda média (salário mínimo), número de estabelecimentos de s= aúde (privado, público, filantrópico, sindicato), e disponibilidade de leitos (gerais e do SUS). Os dados de março de 2024 foram utilizados para a anális= e, com dados demográficos e de renda extraídos de fontes oficiais com datas de emissão variadas.

Para avaliar= o estágio de desenvolvimento do protótipo baseado em ciência de dados, utiliz= ou-se a Escala de Maturidade Tecnológica (Technology Read= iness Level – TRL), desenvolvida originalmente pe= la NASA (Mankins, 1995) e amplamente adotada para mensuração do nível de prontidão de novas tecnologias (Bukar & Asif, 2024). Considerando as etapas de concepção, modelagem e implementação do protótipo, ele pode ser classificad= o no nível TRL 4 ou TRL 5, pois já foi validado em um ambiente laboratorial e testado em um ambiente relevante, mas ainda necessita de validação em cenár= ios operacionais reais.

 

 

 

 

 

 

 

4 RESULTADOS

 =

Foram analisados = dados de 94 bairros de Porto Alegre, organizados em oito regiões de planejamento, conforme o plano diretor do município. Os dados foram coletados e tratados = para garantir precisão e confiabilidade, resultando em um banco de dados em plan= ilha eletrônica.

Os seguintes dado= s do município foram apurados em sua totalidade: área, medida em hectares quadra= dos (ha2), população (habitantes), renda bruta (salários mínimos), número de estabelecimentos de saúde se filantrópico, privado, público, que pertencem a sindicato, ambulatório, farmácia, hospital, Pronto Atendimento (PA), Unidade Básica de Saúde (UBS), leitos e número de leitos SUS estão dispostos em quantidade total. A renda média, é a razão entre a renda bruta= e a população. A densidade demográfica, razão entre a quantidade de habitantes = e os hectares quadrados, foi medida dividindo-se a população pela área.

Os demais dados da Tabela 1 contemplam as razões das grandezas relacionadas anteriormente, o q= ue permitiu as comparações entre as 8 regiões e a média do município. A coluna denominada como Porto Alegre (Tabela 1), representa a média do município, tomada como referência para as devidas comparações, para que sejam apontada= s as desigualdades de distribuição dos recursos de saúde, entre a região e a méd= ia municipal.

Para facilitar a = interpretação dos dados, foram criados critérios condicionais para destacar os indicadore= s de cada região em cores distintas (verde para indicadores favoráveis e vermelho para desfavoráveis). As condicionais levaram em consideração um desvio-padr= ão de 5% (grandeza ≈ 5%). Dessa forma, as regiões que apresentaram grand= eza menor a 95% da média municipal foram destacadas em vermelho e as que apresentaram grandeza maior a 105% da média municipal foram destacadas em verde.

 =

 =

 =

 =

 =


Tabela 1

Análise de = área, população e serviços de saúde

<= o:p> 

Grandeza

Porto Alegre

Região 1

Região 2

Região 3

Região 4

Região 5

Região 6

Região 7

Região 8

Área= (ha2)

47.5= 62,40

2.57= 9,20

7.82= 0,00

4.24= 2,20

2.610,00

3.37= 3,00

6.12= 5,00

5.33= 3,80

15.4= 79,20

Popu= lação (hab.)

1.40= 9.711

273.= 572

171.= 453

202.= 201

153.377

123.= 661

211.= 411

180.= 624

93.4= 12

Renda Média

5,06=

8,25=

5,37=

2,95=

5,71<= /span>

3,20=

6,41=

2,89=

2,22=

Renda Bruta

7.13= 1.984

2.25= 7.121

920.= 322

596.= 746

876.= 464

396.= 127

1.35= 5.497

522.= 519

207.= 188

Priv= ado

6.56= 5

4.96= 3

711<= /span>

62

248<= /span>

136<= /span>

294<= /span>

119<= /span>

32

Públ= ico

361<= /span>

80

47

28

35

44

34

70

23

Ambu= latório

5.99= 8

4.62= 7

636<= /span>

39

224<= /span>

115<= /span>

233<= /span>

102<= /span>

22

Farm= ácia

313<= /span>

148<= /span>

45

15

19

20

42

15

9

Hosp= ital

34

19

5

0

1

3

3

3

0

Pron= to Atendimento (PA)

24

5

4

1

5

1

2

4

2

Unid= ade Básica de Saúde (UBS)

151<= /span>

4

13

25

24

25

22

25

13

Leit= os

8.37= 4

4.93= 1

1.25= 5

0

155<= /span>

573<= /span>

1.06= 8

380<= /span>

12

Leit= os SUS

4.78= 0

2.05= 6

1.23= 8

0

141<= /span>

1

963<= /span>

369<= /span>

12

Dens= idade

29,6= 4

106,= 07

21,9= 2

47,6= 6

58,77=

36,66=

34,5= 2

33,8= 6

6,03<= /span>

EstabEstabEstab

 

Estab

Fonte: Elaborado pelos autores (2025).

 

 

 

 

 


 


A análise da Tabe= la 1, onde a coluna "Porto Alegre" representa a média do município comparada às oito regiões da cidade, revela algumas discrepâncias e dados q= ue merecem destaque. Porto Alegre possui uma área média de 47.562,40 hectares,= com a Região 8 sendo a maior, com 15.479,20 hectares, e a Região 1 a menor, com 2.579,20 hectares. A população média do município é de 1.409.711 habitantes= . A Região 1 tem a maior população, com 273.572 habitantes, enquanto a Região 8= tem a menor, com 93.412 habitantes.

Em termos de renda média, Porto Alegre apresenta um valor de 5,06 salários mínimos. A Região 1 possui a maior renda média, com 8,25 salários mínimos, contrastando com a Região 8, que tem a menor, com 2,22 salários mínimos. A renda bruta média no município é de 7.131.984 salários mínimos. A Região 1 novamente se destaca,= com 2.257.121 salários mínimos, enquanto a Região 8 registra apenas 207.188 salários mínimos.

No que diz respei= to aos estabelecimentos filantrópicos e sindicais, Porto Alegre possui um único estabelecimento filantrópico registrado e nenhum estabelecimento sindical em todas as regiões. A Região 1 tem a maior quantidade de estabelecimentos privados (4.963), enquanto a Região 8 tem a menor quantidade (32). Em termo= s de estabelecimentos públicos, a Região 7 se destaca com 70, enquanto a Região 8 possui apenas 23.

Porto Alegre abri= ga 34 hospitais, sendo 19 na Região 1 e as Regiões 3 e 8 não possuem nenhum hospi= tal. A Região 1 também lidera com o maior número de ambulatórios (4.627) e farmá= cias (148). Em termos de Unidades Básicas de Saúde (UBS), a média é de 151, com = as Regiões 4, 5 e 7 possuindo 25 UBS cada.

A média de leitos= no município é de 8.374, com a Região 1 possuindo 4.931 e a Região 8 apenas 12. Para leitos SUS, a média é de 4.780, com a Região 1 novamente se destacando= com 2.056 e a Região 8 registrando 12. A densidade média de Porto Alegre é de 2= 9,64, com a Região 1 se sobressaindo com 106,07 e a Região 8 apresentando a menor densidade de 6,03.

A densidade de habitantes por estabelecimentos privados na Região 1 é de 5.512 habitantes = por estabelecimento, enquanto na Região 8 é de 2.919. A densidade de leitos SUS= na Região 4 é extremamente alta, com 1.087,78 habitantes por leito. A densidad= e de habitantes por hospital é notável na Região 4, com 153.377 habitantes por hospital.

A partir dos dados tabulados em planilha eletrônica, eles foram transferidos para o software P= ower BI, onde pode-se observar o município dividido nas suas regiões através de georreferenciamento, os indicadores com gradientes de cores e estatísticas integradas às fontes de dados necessárias.

Os dados foram apresentados em dashboards interativos no Power BI, permitindo uma visualiz= ação clara e intuitiva das condições de saúde por região. Os gráficos de velocím= etro e os painéis de distribuição de serviços facilitaram a identificação de áre= as com alta ou baixa concentração de recursos de saúde. Por isso, são apresent= ados os dashboards com maior concentração de estabelecimentos (Região 1) e o que apresenta escassez de oferta de cuidados de saúde (Região 8).

Analisando a Regi= ão 1 – Centro (Figura 1), a maior concentração de ambulatórios, farmácias e hospit= ais está em áreas públicas. A densidade populacional é alta, com 106,07 habitan= tes por hectare. A relação de habitantes por leito é menor nos hospitais públic= os (41.462) comparado aos privados (55,5). A renda média por habitante é consideravelmente alta, chegando a 8,25 mil. A relação entre a renda bruta = e os serviços privados é menor em comparação com os públicos, indicando uma maior renda gerada por unidades públicas. A região possui melhores indicadores de densidade de estabelecimentos e leitos, mostrando uma maior acessibilidade = aos serviços de saúde.      <= /span>

&n= bsp;

Figura = 1

Dashboa= rd em Power BI para região 1 - Centro

&n= bsp;

Por outro lado, a Região 8 – Restinga e Extremo Sul, é a que possui o maior número de indicad= ores abaixo da média do município (Figura 2). A maior concentração de ambulatóri= os está em áreas públicas. A densidade populacional é baixa, com 6,03 habitant= es por hectare. A relação de habitantes por leito é menor nos hospitais privad= os (7,8 mil) comparado aos públicos (41.462). A renda média por habitante é consideravelmente baixa, chegando a 2,22 mil. A relação entre a renda bruta= e os serviços públicos é maior em comparação com os privados, indicando uma m= aior renda gerada por unidades públicas.

&n= bsp;

Figura = 2

Dashboa= rd em Power BI para região 8 - Restinga e Extremo-Sul

 =

A análise revelou= uma distribuição desigual dos serviços de saúde entre as regiões de Porto Alegr= e. A Região 1 (Centro) apresentou a maior concentração de estabelecimentos, totalizando 5.043 unidades, das quais 4.627 são ambulatórios e 19 são hospitais. Em contraste, as Regiões 3 (Norte e Eixo Baltazar) e 8 (Restinga= e Extremo-Sul) apresentaram 39 e 22 unidades ambulatoriais, respectivamente, = sem hospitais em ambas as regiões.

A distribuição de leitos também mostrou disparidades significativas. A Região 1 (Centro) poss= ui 4.931 leitos, com uma razão de 55 habitantes por leito. Por outro lado, a Região 8 (Restinga e Extremo-Sul) tem apenas 12 leitos, resultando em uma r= azão de 7.786 habitantes por leito. A Região 5 (Glória, Cruzeiro e Cristal) disp= õe de somente um leito público, gerando uma alta demanda com uma razão de 123.= 661 habitantes por leito.

A comparação dos indicadores regionais com a média municipal evidenciou desigualdades na disponibilidade e acessibilidade dos serviços de saúde. A Região 1 (Centro) apresentou 13 dos 15 indicadores acima da média municipal, enquanto as Regi= ões 7 (Lomba do Pinheiro e Partenon) e 8 (Restinga e Extremo-Sul) mostraram ape= nas quatro e dois indicadores acima da média, respectivamente. Essas regiões tiveram 1= 1 e 12 indicadores abaixo da média municipal.

Quanto à distribu= ição de estabelecimento de saúde entre públicos e privados, a análise revela uma disparidade significativa na distribuição e renda de estabelecimentos de sa= úde públicos e privados entre as regiões. O Centro é a região mais bem servida, enquanto Restinga e Extremo-Sul é a menos favorecida, especialmente em term= os de serviços privados (Figura 3). Há uma necessidade clara de políticas que equilibrem essa distribuição para garantir um acesso mais equitativo aos serviços de saúde em todas as regiões.

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

Figura = 3

Dashboa= rd de estabelecimentos públicos e privados

 =

Quanto à distribu= ição de leitos, entre públicos e privados, existem disparidades significativas n= as diferentes regiões. O Centro é a região mais bem servida, enquanto Restinga= e o Extremo-Sul é a menos favorecida, indicando uma necessidade urgente de investimentos para equilibrar a oferta de leitos e garantir um acesso mais equitativo aos serviços de saúde em todas as regiões. A Figura 4 ilustra a distribuição de leitos entre os estabelecimentos de saúde públicos e privad= os, bem como a relação de habitantes por leito em diferentes regiões.

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

&n= bsp;

Figura 4

Dashboard para tipos de leito público e privado<= /o:p>

 =

5 DISCU= SSÃO DOS RESULTADOS

 =

O objetivo da pes= quisa foi desenvolver o modelo teórico-conceitual de um protótipo empregad= o na gestão de estabelecimentos de saúde pública. Especificamente, objetivou-se implementar projeto-piloto sobre= o município de Porto Alegre (RS); incorporar a ciência de dados no gerenciame= nto de serviços de saúde pública no município sob estudo; e, contribuir para a consolidação de boas práticas no contexto do programa "Cidades Saudáveis" promovido pela Organização Mundial da Saúde.

Buscou-se criar u= ma solução que integrasse tecnologias de georreferenciamento e a análise de habilitações médicas para proporcionar uma visão abrangente da distribuição= dos serviços de saúde nas diferentes regiões da cidade.

A pesquisa foi mo= tivada pela necessidade de atender ao programa de Cidades Saudáveis da OMS (Daniel= li et al., 2023), que enfatiza a importância de um perfil de saúde urbano detalhado e atualizado para apoiar a tomada de decisões e a formulação de políticas públicas efetivas (Akerman et al., 2022).

Foram utilizados = dados demográficos e de saúde disponíveis, para criar um sistema que permite a comparação dos indicadores regionais com a média municipal. Desenvolveram-se dashboards interativos no Power BI, que incluem gráficos de velocímetro e painéis de distribuição de serviços, facilitando a visualização e a interpretação das informações. As áreas com alta ou baixa concentração de serviços foram identificadas, proporcionando insights sobre a desigualdade = na distribuição dos recursos de saúde.

Os critérios de comparação e visualização foram cuidadosamente elaborados para oferecer uma análise clara e objetiva das condições de saúde em cada região de Porto Ale= gre. Os resultados obtidos demonstram que a Região 1 - Centro se destaca pela ma= ior concentração de estabelecimentos de saúde, enquanto as Regiões 7 e 8 aprese= ntam uma preocupante escassez de recursos. A análise revelou uma distribuição de= sigual dos serviços de saúde, com algumas regiões enfrentando uma significativa fa= lta de leitos e estabelecimentos de saúde. Esses achados sublinham a necessidad= e de intervenções específicas para equilibrar a oferta de serviços de saúde em P= orto Alegre.

O desenvolvimento= do protótipo baseado em ciência de dados e o uso do Power BI permitiram a cria= ção de dashboards interativos que facilitam a análise detalhada das condições de saúde por região. Isso não apenas ajuda a identificar áreas de alta demanda= e escassez de serviços, mas também fornece uma ferramenta valiosa para gestor= es públicos no planejamento e alocação de recursos, tornando o processo de tom= ada de decisões mais eficiente e baseado em dados concretos. =

O uso de tecnolog= ias contribui para uma maior transparência nos dados de saúde pública. Isso pode aumentar a confiança da população nas instituições de saúde e incentivar a participação social no processo de melhoria dos serviços de saúde, promoven= do um ambiente mais colaborativo entre a comunidade e os gestores que atuam no setor.

A integração de c= iência de dados na gestão de saúde permite um ciclo contínuo de monitoramento, aná= lise e aprimoramento dos serviços de saúde. Isso possibilita uma resposta ágil às mudanças nas necessidades de saúde da população e uma adaptação constante d= as estratégias de gestão para garantir a eficácia e eficiência dos serviços de saúde.

Os resultados des= tacam uma disparidade marcante na distribuição de estabelecimentos e leitos hospitalares entre as diferentes regiões da cidade, apresentando uma escass= ez alarmante desses recursos. Isso indica uma necessidade urgente de políticas= que promovam uma distribuição mais equitativa dos serviços de saúde para garant= ir que todas as regiões tenham acesso adequado aos cuidados de saúde.

Fica evidente a necessidade de investimentos específicos em regiões que estão subatendidas, como a Região 8 - Restinga e Extremo-Sul. A disparidade na quantidade de le= itos e estabelecimentos de saúde em comparação com outras regiões destaca áreas = que requerem atenção urgente e maior investimento para melhorar a equidade no acesso aos serviços de saúde.

 =

5 CONSIDERAÇÕES FINAIS

 

A pesquisa demons= trou a importância da integração da ciência de dados na gestão de saúde pública, destacando a necessidade de investimentos em tecnologia e capacitação para melhorar a eficiência e equidade na distribuição dos serviços de saúde.

Os dados e anális= es gerados pelo protótipo podem servir como base para a formulação de políticas públicas voltadas à saúde. As informações detalhadas sobre a distribuição de recursos e a densidade de serviços em relação à população permitem que os formuladores de políticas identifiquem áreas prioritárias para intervenção, promovendo uma abordagem mais direcionada e eficaz na gestão da saúde públi= ca.

 

5.1 Sug= estões para estudos futuros

&n= bsp;

Identif= icar as razões e taxas de outras cidades saudáveis

&n= bsp;

Futuras pesquisas= devem realizar um estudo comparativo entre Porto Alegre e outras cidades reconhec= idas como "cidades saudáveis" pelo programa Healthy Cities da OMS, coletando dados sobre indicadores de saúde pública, acesso e qualidade dos = serviços, além de fatores socioeconômicos e ambientais. Essa análise permitirá identificar os valores ideais de indicadores de saúde que Porto Alegre deve alcançar para alinhar-se aos padrões dessas cidades, considerando suas especificidades demográficas e geográficas. Com base nessa comparação, gest= ores públicos poderão estabelecer metas claras e mensuráveis para melhorar a saú= de da população e adaptar boas práticas de outras cidades saudáveis ao contexto local, fundamentando políticas públicas eficazes. =

 =

Desenvo= lver indicadores para nível de abrangência e capacidade de fila

&n= bsp;

Na gestão pública= de saúde, é essencial desenvolver métodos eficientes para avaliar a cobertura = e a capacidade dos serviços de saúde em relação à densidade populacional, focan= do em modelos matemáticos e algoritmos que revelam a abrangência dos serviços,= como hospitais e clínicas, e a capacidade de atendimento em relação à demanda populacional. Esses métodos devem oferecer uma visão clara da distribuição = dos recursos de saúde e identificar áreas com possíveis deficiências ou excesso= s de oferta. Além de avaliar a capacidade atual, esses métodos permitiriam preve= r a demanda futura, considerando fatores como crescimento populacional e mudanç= as demográficas, otimizando a logística dos serviços de saúde e reduzindo temp= os de espera, assegurando que a capacidade de atendimento seja adequada, especialmente em regiões de alto crescimento ou deslocamento populacional. =

 =

Identif= icar marcos para índices para Porto Alegre

 =

Pesquisas futuras= devem focar em estratégias específicas que Porto Alegre pode adotar para melhorar seus índices de saúde pública e se alinhar aos padrões de cidades saudáveis, incluindo a análise de políticas eficazes em outras cidades e a adaptação d= essas práticas ao contexto local. É essencial identificar áreas-chave de melhoria, como a ampliação do acesso a serviços de saúde, a melhoria da qualidade do atendimento e a promoção de estilos de vida saudáveis, além de desenvolver planos de ação detalhados com metas claras e cronogramas. A pesquisa deve também explorar a mobilização de recursos e o engajamento comunitário para apoiar essas melhorias, com a implementação de políticas baseadas em evidên= cias e o monitoramento contínuo dos indicadores de saúde, para que Porto Alegre possa avançar como uma cidade saudável conforme os critérios da OMS. <= /o:p>

 =

Evidenc= iar a distribuição dos serviços e habilitações médicas no município

 =

Na área de ciênci= as de dados, é fundamental desenvolver ferramentas que evidenciem a distribuição = dos serviços de saúde e habilitações médicas em Porto Alegre, utilizando sistem= as de informação geográfica (SIG) avançados para visualizar a localização de hospitais, clínicas e unidades de saúde, e seus serviços e habilitações específicas. Estudos futuros devem integrar dados de várias fontes para fornecer uma visão abrangente da oferta de serviços de saúde, identificando lacunas na cobertura e áreas com alta concentração de habilitações médicas.= A aplicação de técnicas de análise espacial e big data ajudará a compreender a distribuição dos serviços de saúde e a necessidade de intervenções para melhorar a acessibilidade e qualidade dos cuidados na cidade.

 =

Criar u= m modelo preditivo de análise de dados conforme histórico, atratividade e planejamen= to urbano das regiões

 =

Na área de ciênci= as de dados, um campo de pesquisa promissor é o desenvolvimento de modelos predit= ivos que utilizem dados históricos, informações sobre a atratividade das regiões= e o planejamento urbano para prever a demanda futura por serviços de saúde em P= orto Alegre. Pesquisas futuras podem se concentrar na construção de modelos que levem em consideração fatores como crescimento populacional, padrões de migração, desenvolvimento urbano e mudanças nas características sociodemográficas das diferentes regiões. Esses modelos podem ser essenciais para prever onde será necessária a expansão dos serviços de saúde e identif= icar quais áreas podem enfrentar maior demanda no futuro.

Além disso, esses modelos preditivos podem ser utilizados para avaliar o impacto de diferentes políticas de planejamento urbano na acessibilidade e qualidade dos serviços= de saúde. Por exemplo, ao simular cenários de desenvolvimento urbano, os model= os podem ajudar a identificar estratégias que minimizem as desigualdades no ac= esso aos serviços e garantam um atendimento equitativo em todas as regiões da cidade. A criação desses modelos exige a integração de diversas fontes de d= ados e a aplicação de técnicas avançadas de análise estatística e aprendizado de máquina, tornando-se uma ferramenta poderosa para a gestão e o planejamento= de saúde pública.

 =

5.2 Lim= itações da pesquisa   

Uma limitação significativa que, embora não afete diretamente os resultados, influencia a qualidade dos dados utilizados neste estudo é a inconsistência nos dados demográficos oficiais fornecidos pelo município de Porto Alegre. Notou-se q= ue, mesmo sendo disponibilizados pelo mesmo órgão público, existem discrepâncias nos dados demográficos. Essas inconsistências podem impactar a precisão das análises e das inferências feitas sobre a disponibilidade e a acessibilidade dos serviços de saúde.

Essa inconsistênc= ia ressalta a necessidade de uma harmonização e atualização mais frequente dos dados oficiais, para assegurar que as avaliações e os planejamentos de políticas públicas sejam baseados em informações confiáveis e consistentes.=

É importante dest= acar que os resultados deste estudo não podem ser generalizados, pois a coleta e quantificação dos dados foram realizadas com referência exclusiva ao mês de março de 2024, com dados extraídos do DATASUS. Esta limitação implica que os resultados podem não refletir variações sazonais ou outros fatores particul= ares de diferentes períodos, que poderiam influenciar significativamente a disponibilidade e a acessibilidade dos serviços de saúde em Porto Alegre.

 =

REFERÊNCIAS

 <= /o:p>

ACT Promoção da Saúde. (2023). Como construir cidades saudáveis? Disponível em: https://blog.actbr.org.br/dcnts/c= omo-construir-cidades-saudaveis/3922

 

Akerman, M., Sancho, G. = M., & Moysés, S. J. (2022). Cities, health, = and intersectorialities. In Oxford Research Encyclope= dia of Global Public Health.

 =

Amin, M. M., Sutrisman, A., & Dwitayanti<= /span>, Y. (2021). Development of Star-Schema Model for Lecturer Performance in Research Activities. International Journal of Advanced Computer Sci= ence and Applications, 12(9). h= ttps://doi.org/10.14569/IJACSA.2021.0120909

 =

Bahia, L. O. (2019). Guia referencial: Construindo e analisando indicadores. Escola Nacional de Administração Pública (Enap).

https://repositorio.enap.gov.br/b= itstream/1/6154/1/GR%20Construindo%20e%20Analisando%20Indicadores%20-%20Fin= al.pdf

 

Balbinotti, S., Pavão, C., Silva, F., & Mour= a, A. (2022). Competência em dados: Uma necessidade contemporânea para pesquisadores e para a sociedade. Atoz Novas Práticas Em Informação E Conhecimento, 11(1), 1. https://doi.org/10.5380/atoz.v11i0.83569

 

Barros, M. E. B. d., Roza, M. M. R. d., Guedes, = C. R., & Oliveira, G. N. d. (2014). O apoio institucional como dispositivo para a implantação do acolhimento nos serviços de saúde. Interface - Comunicação, Saúde, Educação, 18(suppl 1), 1107-1117. https://doi.org/10.1590/1807-57622013.0238

 

Batista, L., & Oliveira, M. (2022). Ciência = de dados aplicada à logística. Revista Interface Tecnológica, 19(1), 65= -77. https://doi.org/10.31510/infa.v19i1.1397

 

Bender, J. D., Facchini, L. A., Lapão, L. M. V., Tomasi, E., & Thumé, E. (2024). Evolução da disponibilidade de Tecnologias de Informação e Comunicação na Atenção Primá= ria à Saúde do Brasil, 2012 a 2018. Revista Brasileira de Epidemiologia= 27, e240021. https://doi.org/10.1590/1980-549720240021.2

 

Bloes, A., & Sperandio, S. (2022). Reflexões e perspectivas do “conhecimento pertinente” de Edgard Morin no âmbito da cida= de saudável. Parc: Pesquisa Em Arquitetura E Construção. https://doi.org/10.20396/parc.v13i00.8664711

 

Bukar, A. M., & Asif= , M. (2024). Technology readiness level assessment of carbon capture and storage technologies. Renewable and Sustainable Energy Reviews, 20= 0, 114578. https://doi.org/10.1016/j.rser.2024.114578

 =

Câmara Municipal de Lisboa. (s.d.). Lisboa ci= dade saudável. Câmara Municipal de Lisboa. Disponível em:<= /p>

https://www.lisboa.pt/fileadmin/informacao/publi= cacoes/revista_lisboa/Revista_Lisboa_20.pdf

 

Cao, L. (2020). Data science: A comprehensive overview. https://doi.org/10.48550/arxiv.2007.03606

 =

Coeli, C. (2022). Ciência de dados populacionais= . Epidemiologia E Serviços De Saúde, 31(3). https://doi.org/10.1590/s2237-9622202200030= 0001

 

Costa, D. R. T. d., Barreto, J. O. M., & Sampaio, R. B. (2021). Modelo teórico-metodológico baseado na teoria de red= es complexas para análise da oferta potencial dos serviços de saúde. Ciência & Saúde Coletiva, 26(suppl 2), 3791-380= 4. https://doi.org/10.1590/1413-81232021269.2.01202020

 

Danielli, S., Ashrafian, H., & Darzi, A. (2023). Healthy city: Global systematic scoping review of city initiatives to improve health with policy recommendations. BMC Public Health, 23, 1277-92.

 

Daniel, B., Maia, M., & Silva, D. (2020). Big data e ciência de dados: Uma revisão crítica de questões para a pesquisa educacional. Revista= Percursos, 21(45), 80-103. https://doi.org/10.5965/1984724621452020080

 =

Duhl, L. J., & Sanch= ez, A. K. (1999). Healthy cities and the city planning process: A backgr= ound document on links between health and urban planning. Copenhagen: WHO Regio= nal Office for Europe.

 

Fajersztajn, L., Veras, M., Oliveira, F., & Saldiva, P. (2016). Como as cidades podem favorecer ou dificultar a promoção da saúde de seus moradores? Estudos Avançados, 30(87), 31-49. https://doi.org/10.1590/s0103-40142016.00100002

 

Farias, E. C. M. d. H., Oliveira, V. J. d., Duar= te, A. A. B., Bezerra, D. R. B., Silveira, G. M. d., Campi= gotto, R. S., … & Lacerda, C. C. C. (2024). Acessibilidade e direito aos servi= ços de saúde para pessoas vivendo com HIV. = Contribuciones a Las Ciencias Sociales, 17(4), e6123. https://doi.org/10.55905/revconv.17n.4-012

 

Fróes, I., & Lasthein, M. K. (2020). Co-creating sustainable urban metabolism towards healthier cities. Urban Transformat= ions, 2(1), 5-24.

 =

Fung, A. (2006), Varieti= es of Participation in Complex Governance. Public Administration Review, 66: 66-75. https://doi.org/10.1111/j.15= 40-6210.2006.00667.x

 =

Gallo, E., & Bessa, = M. (2016). Qua= lidade de vida urbana como política pública: O movimento cidades saudáveis. Rev= ista Nacional De Gerenciamento De Cidades, 4(27), 1-23. https://doi.org/10.17271/2318847242720161351

 

Gallo, E., & Setti, A. F. F. (2023). Desenvolvime= nto sustentável e promoção da saúde: Implantação de agendas territorializadas e produção de autonomia. Saúde Debate, 36, 55-67. https://doi.org/10.1590/0103-11042012E08

 

Hirose, M., & Creswell= , J. W. (2023). Applying core quality criteria of mixed methods research to an empirical study. Journal of Mixed Methods Research, 17(1), 12-28. https://doi.org/10.1177/1558= 689822108634

 =

Huang, N., Kuo, H. W., H= ung, T. J., & Hu, S. C. (2019). Do healthy city performance awards lead to health in all policies? A case of Taiwan. International Journal of Environmental Research and Public Health, 16(1), 1061-74.

 =

Kettl, D. F. (2020). = The Divided States of America: Why Federalism Doesn't Work. Princeton University Press.

 

Lima, S. M., & Lima, C. M. (2020). Construin= do cidades saudáveis: A instrumentalização de políticas públicas intersetoriai= s de saúde a partir do planejamento estratégico situacional. Saúde e Sociedad= e, 29(2), 1-16. https://doi.org/10.1590/s0104-12902020200058=

 

Lotta, G. Teorias e análises sobre implementação de políticas públicas no Brasil, p.3-324. Brasília: Enap, 2019.=

 

Ma, Q., Zhang, Y., Samual, A., Hu, F., & Touns, M. (2022). Does the creation of healthy cities promote municipal solid waste management? Empirical research in 284 cities in China= . Frontiers in Public Health, 10, 1030283-99.

 =

Mankins, J. C. (1995). <= i>Technology readiness levels. White Paper, April, 6(1995). h= ttp://www.artemisinnovation.com/images/TRL_White_Paper_2004-Edited.pdf

 =

Medeiros, M., Maçada, A., & Júnior, J. (2021= ). Estratégia e ciência de dados relacionadas à vantagem competitiva – Um ensa= io teórico. Future Studies Research Journal Trends and Strategies, 13(3), 325-355. https://doi.org/10.24023/futurejournal/2175-5825/2021.v13i3.565<= /span>

 =

Medeiros, M. P., & Rama= cciotti, B. L. (2021). O estado de bem-estar social e seus reflexos na estruturação = da organização política administrativa brasileira. Revista de Estudos Interdisciplinares, 3(4), 89-112.

 

Mendonça, M. M., Aleluia, Í. R. S., Sousa, M. L.= T. d., & Pereira, M. (2021). Acessibilidade ao cuidado na estratégia de sa= úde da família no oeste baiano. Ciência & Saúde Coletiva, 26(5), 1625-1636. https://doi.org/10.1590/1413-81232021265.04722021

 

Oliveira, E. X. G. d., Melo, E. C. P., Pinheiro,= R. S., Noronha, C. P., & Carvalho, M. S. (2011). Acesso à assistência oncológica: Mapeamento dos fluxos origem-destino das internações e dos atendimentos ambulatoriais. O caso do câncer de mama. Cadernos De Saúde Pública, 27(2), 317-326. https://doi.org/10.1590/s0102-311x201100020001= 3

 

Oliveira, R. A. D. d., Duarte, C. M. R., Pavão, = A. L. B., & Viacava, F. (2019). Barreiras de a= cesso aos serviços em cinco regiões de saúde do Brasil: Percepção de gestores e profissionais do sistema único de saúde. Cadernos De Saúde Pública, 35(11). https://doi.org/10.1590/0102-311x00120718

 

Oliveira, A. P. C. D., Gabriel, M., Poz, M. R. D., & Dussault, G. (2017). Desafios para assegurar a disponibilidade e acessibilidade à assistência médica no Sistema Único de Saúde. Ciência & Saúde Coletiva, 22(4), 1165-1180. https://doi.org/10.1590/1413-81232017224.3138201= 6

 

Organização Pan-Americana da Saúde. (2024). Critérios para municípios, cidades e comunidades saudáveis da Região das Américas. OPAS. https://doi.org/10.37774/978= 9275728109

 

Porto, P. N., Oliveira, J. F. d., Campos, A. C. = P., & Pires, C. G. d. S. (2015). Acesso aos serviços de saúde: Fatores associados ao envolvimento de gestantes com drogas. Revista Baiana De Enfermagem, 29(4), 350-358. https://doi.org/10.18471/rbe.v29i4.13832

 

Prefe= itura Municipal de Jaguariúna. (2018). Plano de Ação: Jaguariúna, uma cida= de mais amiga do idoso. Disponível em: https://extranet.who.int/agefriendlyworld/wp-cont= ent/uploads/2018/10/Action-plan_Jaguariuna-1.pdf

 

Ramos, H., & Diniz, V. (2022). Alternativas locacionais de empreendimentos utilizando aprendizado de máquina. E-Acad= êmica, 3(3), e0433267. https://doi.org/10.52076/eacad-v3i3.267

 

Ribeiro, P. H. B. (2023). Mobilidade urbana e políticas públicas para ciclabilidade. Vernácul= o: Revista do Programa de Pós-Graduação em Letras da UCSal= , 1(3), 234-251. https://doi.org/10.18312/verncula.v1i3.2340

 

Rocha, A. (2023). Análise de dados: Perfil e desempenho dos participantes das edições do ENEM 2019 a 2022 sob a perspect= iva da COVID-19. Caribeña De Ciencias Sociales, 12(7), 3100-3120. https://doi.org/10.55905/rcssv12n7-008

 

Rumel, D., Sisson, M., Patrício, Z. M., & Moreno, C. R. C. (2005). Cidade saudável: relato de experiência na coleta e disseminação de informação sobre determinantes de saúde. Saúde E Sociedade, 14(3), 134–143. https://doi.org/10.1590/S0104-12902005000300009

 

Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2(5), 377. https://doi.org/10.1007/s42979-021-00765-8

 

Secchi, L. Análise de políticas públicas: diagnóstico de problemas, recomendação de soluções. São Paulo: Cengage Learning, 2021.

 

Silva, M. A., Costa, J. R., Barbosa, M. J., Souz= a, M. C., & Teixeira, M. S. 2021). A educação ambiental e a contribuição d= os jardins botânicos na construção de cidades mais saudáveis. Revista Brasileira de Educação Ambiental, 16, 111-126. https://doi.org/10.34024/revbea.2021.v16.11132

 

Silveira, C. B., Cohen, S. C., Pellegrini, B., de Souza, M. D., & Oliveira, A. B. M. (2014). Em Busca da Qualidade de Vid= a: metodologia e indicadores para intervenções socioespaciais. Cidades, 189.

 =

Singh, A., & Kumar, = M. (2023). Data urbanity: Smart city evolution through IoT and data science= . In 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) (pp. 63-71). IEEE.

 

Skalinski, L. M., Costa, M. D. C. N., & Teixeir= a, M. D. G. L. (2019). Contribuições da análise espacial para a compreensão da dinâmica de transmissão da dengue: Revisão integrativa. Journal of Health & Biologic= al Sciences, 7(1), 53-63.

 

Souza, D., & Bomfim, D. (2022). Ciência de d= ados e produção de conhecimentos de inteligência. RBI, 16, 53-77. https://doi.org/10.58960/rbi.2021.16.196

 

Souza, M. S. P. L., Aquino, R., Pereira, S. M., Costa, M. d. C. N., Barreto, M. L., Natividade, M. S. d., … & Braga, J.= U. (2015). Fatores associados ao acesso geográfico aos serviços de saúde por pessoas com tuberculose em três capitais do nordeste brasileiro. Caderno= s De Saúde Pública, 31(1), 111-120. https://doi.org/10.1590/0102-311x0000041= 4

 

Sui, J., Zhang, G., Lin, T., Hamm, N. A., Li, C., Wu, X., & Hu, K. (2023). Quantitative evaluation = of spatial accessibility of various urban medical services based on big data of outpatient appointments. International Journal of Environmental Research= and Public Health, 20(1), 5050-68.

 =

Sun, M., Gao, C., Xue, C= ., Zhang, S., & Li, C. (2021). A data-driven method for measuring accessibility to healthcare using the spatial interpolation model. IEEE Access, 9(1), 64972-82.

 =

Suzuki, K. (2022). A north–south problem in civic-tech and volunteered geographic information as countermeasures of COVID-19: A brief overview. SN Computer Science3(5), 3= 96. https://doi.org/10.1007/s42979-022-01262-2

 

Teixeira, C. F. (2004). Formulação e implementaç= ão de políticas públicas saudáveis: Desafios para o planejamento e gestão das ações de promoção da saúde nas cidades. Saúde e Sociedade, 13(1), 27= -36. https://doi.org/10.1590/s0104-12902004000100005

 

Teixe= ira, A. F., & Gomes, R. C. (2019). Governança pública: uma revisão conceitua= l. Revista do Serviço Público, 70(4), 519-550. https://doi.org/= 10.21874/rsp.v70i4.3089

 

Uruguai. (2013). Ley 19.140, de 11 de octubre de 2013. Promoción de hábitos alimentarios saludables en centros educativos. Diario Oficial de la República Oriental del Uruguay. https://www.impo.com.uy/base= s/leyes/19140-2013

 

Vitoria, T. d. O., & Moreira, R. d. C. R. (2017). Acessibilidade de gestantes ao pré-natal de alto risco. Revista = De Saúde Coletiva Da UEFS, 7(3). https://doi.org/10.13102/rscdauefs.v0i0.1= 273

 

Vitte, C. (2015). O planejamento territorial e a dime= nsão espacial do desenvolvimento: algumas das experiências recentes no Brasil, 06/2015. Revista Política e Planejamento Regional, 2(1), 1-18.<= o:p>

 

Westphal, M. F. (2000). O movimento cidades/municípios saudáveis: Um compromisso com a qualidade de vida. Ciência & Saúde Coletiva, 5(1), 47-53. https://doi.org/10.1590/s1413-81232000000100005<= o:p>

 

Westphal, M. F., & Oliveira, B. R. (2015). Cidades saudáveis: Uma forma de abordagem ou uma estratégia de ação em saúde urbana= ? Revista USP, 107(1), 91-102. https://doi.org/10.11606/issn.2316-9036.v0i107p91-102

 =

World Health Organization (Ed.). (2008). World Health Statistics 2008. World Health Organization.

 =

Ziafati Bafarasat, A., Cheshmehzangi, A., & Ankowsk= a, A. (2023). A set of 99 healthy city indicators for application in urban planning and design. Sustainable Development, 31(1), 1978-89.

 =

Ziafati Bafarasat, A., & Sharifi, A. (2024). How to achieve a healthy city: a scoping review with ten city examples. Journal of Urban Heal= th101(1), 120-140.https://doi.org/10.1007/= s11524-023-00798-9

 

 

 

------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAlwAAAFaCAMAAAD8c3MCAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAB AlBMVEX////m47QzyjBEVGnnvcHyt6Ht0a21x9nz8/LL3vKp2tD+/vw/ujD/AQHXmQL5+/z6+PZ9 rBzKysy9ngnr6+nW1tXf4N/H1+fBwMD99ubq+f7Hz9g3Ly+2ws767dSroqCYpar24cF1fZSos7/d 0K82O1DWurjDqqbCspR+e318cGvbvqG4nIfKp4qbgnZfQTOVvN9/k7HZsZBlYl/d7PdmbH3R8/2M qMidlZGGXT244PezimmKjJA1UYXtyZagc1PKyZpih7Sj0PFxptfKnXGYw7zx2aRPkUpGa50gHBzi u3KN1IO247D6Li7WrTdmxlnXJwb5Xl37iomoxmj8t7Y2wDPtxAQKAAAgAElEQVR42uyde0/bPhfH PUUqifyHLcuO0zorlCZctvELjFuBMjRAiD7v/wU9dm5N0lvSuIUyn4leUhpj+5PvOT62MwCMGTNm zJgxY8aMGTOWG/4xmVyj8jF6ZdrFWHuDTyGl0Xvl2LtpGGMabMIB6B8gEPyQD/3x0akA3SjcgyN2 OgT45HTPNJGxteFy4qfO5CB6BG+T69HkphtZHEbh/iG4C/cnt6aNjK3pFlO47v7ag0nvLZSvXoB0 izC6AaDr98D/LNNIxtopV+RLu6nCNUFAHTJmbC3zpdt7DaVyqTczynUDXo1yGVvXOhMrmjyDgX8Z hRlcD/5tDBd48i/lZztmmLrUNh37Kcz2iOoK6gkEugwA9wpAdgVYnPtyPflul0JIwh1pnLvpAYRt 28bQdPMH9Uflufwh3LF+sZkgUrjUX227TAjOFWpcMNeImTE9higRTsUEMQJmrHXQxQR35hl3DV7G 1qWKcAoAm09WbEa8jK0pWJzLYYjtLDOBTUMZa2wuF64ihyYecCFdRruMNZct5fJswgUhcrwoY/oF kZehy1gztAQXNgBQ4cSpTVUSgrkIzw2/iGkvYw0skS1AqhjZkMyhi5kG02QP9/9AJWE8nTALktQz KmaPSqdp/5M5VQiR1tON/pUQwyZzU1sEi3nSxR1B0Fdshsj3z8tH7nrZq7fQf9EajVjzjtzF7fpk aWxeHPmhUzwQpPWAfuWDDbHlLRoezmqXwEB81dA+AjByAFbTeUgqlXyScGHV0VKr42dtyRj4x+8l Yoiz0yq4IiSLguyppxGuEGAfATVHDOOyfr4kdYEh6IZQ/g3yEwTkr8ANKAZkYnFqa5YuAthXDe0j KRr3d2EI7qSEBS8wknAFoX8Oo0trEEYvQH2mq6zgL3gNo5snK0QPlu9kcD1c+le/da5glnBBH72G fq/jRxaQZb18C9ViMRjaAwtGofX6DP2+f9j1I+37P+a7xGmMRWbSEe4XTdhD6Rbf+48KsF7/MYUL ukfvb3/lh+63MP5MT1l9C/rg9Vx2PXvi2H2VnY39y0sfYffh3Pd1Kpcf+s8wYr9eOn8lvBH6+QJd 9qjc4uXlI4x6QMEFfACoO9HboJTwpVl5h7NKToLbgH/RpFeker0C19PBcQzXw4WnE64H3588x3B5 Xi8aPtxmyiVfn+tNNYXg918YeZ6TwyXr8hi7RSjfx3BNJFx/3j2tcJFVaMUSVaHLzYaWgn415Yof Qj92i30/moC7x4fr6F1e49arFYVAfaZn5CmL6r9LuMCd5V9Fp/4UrlNfO1zSLT5I+YrhepJuUdZF wgUmof8IJFwDVdPo+i28nOiomnpwVbbUqWPEFeXxopur2lcM67EaJKIsRwPtuIOcNOjWRzJIl/vZ 6U+6KBBuKM+Ds2g9L6+ajZr+ShsTXJlT30QpLmPpFORmxAt+hiTaXTnmgd27F2CsnjN0mhovDigJ sAtkJjPe2swNOoH7+Rymgaa2cjXBKiOKF2IuzMvkaWz7o440gk0n7aqxWlRx4Ukj6sHjkiA+hauK JyetvCO2c2dvBwquTpD4xs88DQDV7pXUEPyCReH1inLnw8SFEOpHqFURVJ5+ihD35LHMD87VvhYL CaEXBIlW2SxhS9LFGKPsKPik41FkV21jm6Tg9orCs0U1P4nNq8LjMYpkJA0BipvNdb1qjkLilYZq PNc+QUhxjf3aQqpoOlKxYKdskrTgM04EzHZCbHArFCf6tYGi5pfUfHhVEB6pSCxRK7WTbMkQUoh0 TxDJtI+oRWCl5GpTk9p0xNxErY5s1pljn0684IL+3gReWywKLyypqXqx6aItSurmJDwnmd721Bm8 ImXpudBakrXaPtcCH3uZ4e0VpbVV6LW+WmXRlHBrDxxlSJY6QbVckMkQXwVfkBUT900vlqAeXFXP +JFhfllLaPqTPGjuclgpKC+Nahev75Y1nKkUXZcutTuRE0bqZ1IlXMzLIWJKxVTwxVssgLaP6sEV lOpmE+/jMhW41Nsb9VfIXmm6rrILSxqdVy269jVDRbNMKknSW0q5qMPllxGAhSQ+2JRyyXDMJkEQ HKltuZ76kve5IvlyP0DNbNFNB15jxZZ1rdUJu7xpnj7xprFEEUdwB+dw8ZpL6xOBZcyTz7QuWwXK klTFR8X4uNq18T8Isf4uh1WNgklZGGvXroQty/KyPMf8WjVNLzWFK0l1iXRI4DmFTFi9RISUPgLV 7NPQY15ztjL7ILZgUUvgwjSnjrgLFlULzymKaitqaGVGZ2pVVM6GoQhs6hcFisXOTrIZvLRKdXEi AtvUlRYnaOOUhjzJ8KTTwoIPWYwBS+MnuGxop3OciJcraOtxYs6WdQCb/iHLHXsz18jh1C/aUoTY wj1nNqVMTQnZjMzdXfu9FVyzA8htsHXoLXd8aHqVt/VWeIWPhfqSH8vZKkly4ysa11ohka4pFMlO Rh67JcqFTSgv7TlTJ3SnOC1e1jNsCVewfekSMualS9UC6tITuLpDdUV4BzlbZBO1qjGLzdMZI55u kxXJF1WcxSrzP6yeFLZVrs729+bGPSCWagXUpCc1yIFTmWxVUs7W96XjVroux6sDL5L+lshYSqJ3 QspfdmvqoAbl6mx9ydf3pA/GSzsTatETlAfzcNNFHeY+cUO1onxlHF+FK10CgUtwcWrXHiC0Vi78 IcKl0kH1giWsQ7hgvbisBcYNa4W0S1cyDmSlxfO5g/aK94arPzrYuZgr9x9MBxj1zoFrFqUh4rJr xoBrjE2WQ8FyAlkeYvG04oVVEdxm9cedeyc7FnJd17rE436gLeHCdXuydSYVZbUa1/2T1qjVskhJ qOgdJVPdbmE5RZbmLwhXg6xZW7e49ZCrLFy/Rg4Awei2Ox6pflEBywW+16QnJeGShQBwMhr1vqkX 4Lf8+Yk8+NyIwpU5rvhdMJaU/joA++Pb/ni8J72SPLgXNBHTuYUsYUstyRGeHadPWQFDt6p6rt0g Z7Z33A6uba/CcUvd0L8HYwBvwW+M4FC+/9EDg8N0exZq2+OwdIIh+NkDx2qSBnR6QG3Rhj8QTuCC bYtKBynWYXy2Z3AB3nrde3mpdFH/RoImq3WLQUuO0WIssrU5MUSoAFe23Vqs4xXbwhVsW7iGpUGV bPmRen6VL9VtYkbnYP8Qn5eFp+VYMXdBJ0gK5RD8QmeS3rMTNNhH+wlcoG18d1iSYwiVNg6uRvtc giVf7l+A29vfoC3Hq7lQWVRedKBpzjTffE1Ak6lKvmNwjUuB7yCBayAdoepxcHDW5TNwrRsJEULp 9PuwH3M0uDojp5Kh1y4f/8zhwi2HppkcJ9+H++qUCrB9AFVljgfsKoWr1SWzMj8liOCi9Huk5FJp cWnXxuE6+qh4HhWUC0uPGF/s4ACPUQ5X2x6P5eTwwEuK6qoCqBTI21gkz8DoZgpXWxdcHqQE6v/P 3kdQSDc86MWMHYAqXOuIJFoZjAuMvRJcvJjIUOkK7wvDVQq5ADzsyljkPxhrWBzQI5DDBVvCdV2S k5G6a9ZJ71fvP/QgX54BCBRc562d1Qxc8PL04vjPj9P74JTHUR5QSpbBhdt44NXReOwHi5vS7Ol4 MZ75abTE4nin5q1hNRGBQR+tGu1p4VgVfjW9P1x2Pwmos6jDORVelIxY75JxV/LA5sOFeQpegzXT Dvd2Ci5UM8ulQ7lm4Ko7sFy7qHGdFmhXq5Wrb2gl8s/+LyB1zIN1xK+Yot+xaetGOqdsO7eXSIoC n7+oVXOMCq7if9/isuQWN2oHEAPNbm/SUrlcYGzHbMW8M63MFFHhiFhCEFFwoUbrDocGrn/M0FLx cSvpVqV0PBYvWz7aze7LZJTrn7Mli+qFV3GLnGW3HYwHF6wRWy2VyzNdtYPmzt8Oy0m6JcIt5+wL +/gb7vVosffn/+ydeXPiOBOHNWaLS6myy+UTG2wwJJwhCTjHhCRvsqHIzP/5/l9lJdmAfAC2bMNk 3vRWzTDAIoQf/7rVOvoUcLWGHR7owwHfxg8gGjWO1PfN6YPCEE9a69fowS36Gw3t32uXrHEzbgXA 4WAO4HsNtF5blcftMYfos18GM5yyx0d9DwF4rrw3hqy9+jG8Rp807IAuegBbd3jecrB5lTSkox5N hhXSO3jJLzL9ijFnI+GTmmIy+VrAYfIpN0E6oy8F16QxmoOb2+7PceMGXfXZTzhTu5tfBT5juBAD cILhmt0Ksxpznvdm3lVB+611hRC9BuNXfU7B9TgHCkTXHF1nnPZ8g7NKlx2uywb66HFjMh+CF3QD zUB7xm9/WtKQgHqk4JtJn/Et+tVc5oGCGxKp/RjUO40kabLQzLXjNJuVisEG2dHnFsd8d44IK/98 JHC5nWdbpa45hqv1OuYRf1hdOjf92gszx/MfKii/IR0Bj/eNxWubUi69M2mANsKuPSMCOigv0avs cPFIfXGPMFywZV9dvvDUh+GGAL5dhipq+v7f8SWlayyiHNlgodJpMzrkojVOYDhm1V/Y9UXgwsqF 4fKUyx25P8JwjY3LuQfX66TznAWu8hqud2VYC8A1qSDpwv+czJ9r6Gt03XZucIHW1fAuABdWRwIX 9r/63ct1RrhAZMWfEXhVpRYR0guhJY0RLkb3eOxVzuXrYcNpd4b8aDHEkgERAQG4oC3LG7iEeQa4 UCsNS3cva9jRyjqGa7MzB7VREzpAr/xAbyJfg8ClMl7rG9ttvY3sIf9uu0i5rvQGDRdqqFXDcA2t VwyX3sgKV7TsIohXLiPgFtPu3c66JPXoR3YJAFbIlJ4faEXorlDPZUMf4iWC/tLD+E/Sa8CfAYBZ e9XaTlzGTCq05qQRIbef0dgDl+BNMlbJAbx0elWp/eVwfVsuJu+rO4xDMvyMRI8WVQEYzHBZF9hG 31nU/wsLbRDDMZcgSb5USOudZhqd5wLscDFuBvouhvy3SJc3giTH+QnIH/LemzRqNT2vHhmu7vdl +qLSFY66RCrjpRjrPbIilUIVaxnhGv/pS1G/LSfbuTCLpCUUEFQuvA0oo1esqamV67sYz5d1jDvp qm4zFtp2JU61ltXSprsKgkvwJ7oCq+KEQpqCAimEcfOvlwbgC2oGG19sT9LazsyCBjfi5sOlgdQr InLYsFHQOudpzyQ1rG8q9JOFNNUycZ1pPH33cAtA+wP2irqYwuaTZ41J7fRwCVq8dhnKJuhXNVJu A88OQSMzXE0n1SqJbjF5LkgKqGvnRmt+3gCaoGk8EJtTALUmBLKTa/6j/QRATzfAeeOh7vDtD6AB /cIAkqUCKDrzvOGCCvpMkX+wUQu1vFtIq1zqzoO6/JhfFg3NP0xJyqxbzXSJrm5ROdSpLE9vzabx ++r3nf6hN/tP7ZJogse7x3/LH6Kdq3I9yf97an0g3Xp4fX9FymXCafNemIrT+fu12MwbLr0n9uC0 8eKsW6icDC4pem6lohnGpjIZcpuSLBp+jJ95rKiljOeLOs0ZTgeDBjQB+H0llB7f9Nm0h8tCo/9a T8iNXeWqXL3BNfDgutVLGK4W0jL9Cby/lc1eLW+4uqZp8tPGo4pb+NnNt4WUJkYUC9ITWSJ6xjsP VQbsUz9rl6ili+YLPIWeFFAncIEHE3nIVq+Mrjp4qJU/9Llg5qtc5A84vX14a39guHSzoQg9/qXW bpAXc4ULfaICMFxCDz7k3ULae1is7TypGQsbLvtTVXfVXkw5Uuz3R3+Cbnkx1xqu51cUc5d6CDIT 6GaP16e/8lUufHXhi4ngGppILn+aoGyWwOjXK/hhmrkql/nrVw+Mf70it1g2SQvlfFtIPXw1oocL br6tqK73MCJJm9mV7IPFptNMetjgiVJcEBRZ6ZpekQAL+/5/Tp5eC5b7pHMkouYrFmJL5Liz7KPF FOsjvmd+vrZJBKXgFmxquTPesEiUCwX4cMVxq5XdrCwGzePkUb/h+tKGgimS0AptwVao/L2BHSfO 12scsc+zT261yKZco+8FETucCE/s75jxkuOOHdmsppf885NI4IWFa2urQYbVEQk3m51+yyIUqopj Lxa2I0rVgguL8seoo+31qlqVvV4ZBbbiw4Vj+GrMsc5eOt5A8oY3wzo0W58o/FrZrDG9dvJERKL0 stMpBcxdiLAwiOOLAuffnmy7oV7ZRTkIY7MEIihERDQUVUJuUwEy1jHnkwvaJzfbpEYrhcBV7mqa cKohdAisUsLD6XPRrMJKaVfduC51itGv9VShHIaLTP5AiKvbed7ACrOF6FphO0Mh2Baz/I/gPYlv FN3SbrPznZESDlUgzgsvXtt1v+RfD56QvF29RSZ4RH9rzzrZZai+dNxH2aI8ZJFwnWDEKJYOWAcW hpYUV4w4lwtv7+xO/gXhtyGXd3Sg6DlDrxDeZgej6M1fKytur51V8k1z3ViWZROz7GNv0JBKCczJ By8YXzo7Slnm5uTdfXFzr9LusxPceIHXzCOxMtTQrTKYHYDrc5UvXP361o7sF+1SInOlXGVLKtY3 Cp09XdEKGqGK1H5EyctpQQlKwZ6Iq9knd8gGucI1puBqHpMuoZTYnOxBSRKTcnBa+8VYyrtMewQu mUiXFiVXGqy41UG2uDM1aw51bFkb6Kw6bfzR2DJKKSxj5AXjVEvaI2PMzTn7Nbio0akaSJuKYuST 4WKWBK100hWfibDrdYt6TEnX0VKmzVIqc2EebCUIuaRMdHX292IRbjzveD661MbT7fvVWTK0kkuX WqmE4Bohyer3Rwio/k3fC+aXNFxHi+idUloTMrMlJYy5mH0WPMAWKbcctDxTqDHnJ3nxx+CMS2F7 phtVtaISI3mIfijkGm1QWtrWaDSpB008JVuuI3ueShE7ecZdMDZo56G3IAdCyAtx1MF8dMt1FL9X zU4p3/BuK0zqvlWC6dBC0kVkyVkul07FM7xyC+comkvb8RIL6EV7Eck70Cgt62FrHilJH423XCW4 8YwPjyQd1usAY0MquOdNrJ5xEZOPp9uAcd8l6y8O0V0i13auElQWKdHCUVcFsUPgWK4NPXLUir1h Bv/V3zc0jLHmcZYIKBFVigNHdoNsMdLlOiFZEvZMOUrsLisaRcb9mtGZzUx0eeu3QlGStvnm1QS5 hxjpWsbCYYeetq0QXtZ+uI5TNiKcg+jsWs+phPJDLNdhsQ6j14ilmBzK1CvnUDNS9oxEfAENf6ci lAcsaCGz6wnNnoSGiXvsOFmucNi7ZxDBL4K5x/Tsy/5scYJICkZmtdNcdhhOOiR31PkE8pGtijIj Why3SgrXkmjXqG/ZfTqej7XjnP0WdB8ufxgOkfk68KHkJUwUn7FE28GAy97fjJAHXXDnuZMeXMMV K1zcLCldY8vPN1iheD4acZ0gMX/wBHYlMIAX0jtFajVCAuULBfWMifmDI9uga2RzjDuPHvHHiwNm 5eK4RT2lWeVI6uEUiYjr5He4d7ll9gSBFBgRJCJTYHOMAbYS/JB8xrQH3FaUUiOQkW+tsQsXx33a KeFaTpYHxorHmPvhU+lW9DqkGykyLA1j8lhi6oyckC1ju01tqYogG2r0pPDqGZfFVst0cB2kUTtC 0OWmn9Ph6TgIsglXsoqhUbr49L26ThgeZJIuKrUVOcjNE0644rLRVU9t6/TYDit8JX0g4mK63KwZ 82pyj0PHQ4n+D4UB4kAzDNIly14ZdIySGCmyiCwjXNwgLVrWxfk5PubZ2kFY4Rl6OvGefADBBlfA A6cYraTXFDdZZmVPRoIlwUiGi6S5QNHF9eRiVri4s3SB1/LiH98u7NNk6Fn81PpypxxaQZtFJcMs Cyl7lbwAGRSyL3/1qwoDkaqEvp5bXGSFi2OFC+MVdZCFJyOq9MI5xsvNAnK6NRVpNcVmgxjmOMVI weX/QHCWGa6UMb31D2XIQy6PHHMtdgoXLix1ucD3vYAiYn2wcHZdB5YZzE6cHJLOSo14lqXkcEF3 Z27lkve7Ml4MkOT273b634w/rKRGymcsZqvPTGx91jPAhew+9AbleF5RCc0JATC6JeXiRnNSZHHM 75CupDe5sz8QGjvnLoDD5vjuQKY+1SAl+G5c3RHxNebRA/0a6NJ1jCBLeayo39TQkKlzfaBoWRki r7OMcF0cd3aRvgzBX/M/9s79K1UliuPj6UV3OkEGJESohYpovsj3i9NDvP3Qumu1+v//lTszoMlT USzrtM8qS04wMB++e8+ekY1LxCGcYB0wRL3QXS5ueJM3Q50V6mvQ6CGYSQHPjdxwMkiOYQftuojv GkiT20eoBx5mwxyjlfdKeReimvpHJSMWYy7LM2Y+1C9eBQW+DPZbSLLQHd64ubSkDHq0JNqcTPhE AO7nUY9UdKTDB4xLNSUTNCYV2sBWLuz3W164YvOLcOYWL1wanS4WPwaup4ybLURXYbbQ+SmDJyE7 W9WuhZDLUXASccXgYs8DXYRNMYuDrtQAbhZ0wUCVtN3iJV8EQXDBKHA1gxSyL8I2kIsDfOfkO8dW OLlpKBk+0eideUqa64ZeEeDKpPP7/pZPo4Ej2pxKpfL724KLcmU1XdRZ111uz8IUAFEEFuJBsJ8h HcLYr6EzMn7bScwVBNeqMR7lkki3OEKsXaVjK+z3KhdYiO2gvTuKvBu5dIK1bNBnVpMy305Mc6tZ 1BC00D80cMxzND41fkvzi1rqOqQbssVBsYn7WQTyA4YLOU2lFeRBaKvDDtspGhzeg0km5RzxUck7 J8h+Y0Vcj3hSWwLXPKLnkwhmDkB+8UgQNgttx1k5D6QWB4MmRYIt5Y7AxdSDGUZwVVJF9FWH16mm l8MVRosXvM9txm05zYX8oT9aHM9TNMNgurY7aY2urOb0VJ6MYt2OUbTLUhsFXlyRDupuBkdkiKtB BkAULk8GrpCqz+O/XTKTjBVSbk/u7ZrTYUEXVhylhkeysNNzAso4bxnPgZi2HWwV+fK9j3I5b5kK XcHV3AG+ZSpilOtLUvQX/grul2R4i8ktPvmLVj6Z5GfKy+aT207NE7iYcDGZUUSTqx4cBSFPOBpo onxXainX2p18N+q5kku4TvZeUHxnd6tGUeM72KRY36bQrmio1IMaC4GyeCQouOG6DJEWeslhaJwM uwYw3UbBJ5TrjSjFOPiFOUV3RsYvyVDUFj/a/1bR1vOLPkE8IotjXWWetm1NXIqeirSQK9iDAPDY arSyYqlXOj68yIrL4PJ9zhdTwLVUhPQNvSx7jn8t1OS6UXPChYQISxG1wQPFnLdMEZThFShigbsd aO0I+7mcPefNe4S0HzYVDIFuL8p56+zv6+usGXzyUa08//HPAT3Ue45uuNmsG6BWR9pzDe0vV1pc rDjhCsivwBWnZlBMWJPbMvpywQXK+p1jYU/kHDTtGDdk9TZQ9WMwukBnuLJyMRRZ73wZcDodv3Vd piU5aV03CVv7eXONNYMZH7TAp9jGQEPb5nuDAbsWOhc4oH+3dZJ3TuUqZGiQR19y7IWjFs9qnUvE JslK1Asu4I/hjR82b9o8FWXaiXXtJHLY5U7J7ycZ8N1tS+UM8G7pnTtXsqgryQU3zH9xxJtPtOT+ aLZ5YpqZua2Qkk+Cn2Kw38pS7wub/S0gxaX5heIVczHod7BTSLs/FPtPxhNy5amfDvlWlkymUlx0 uHzpelcvs+LdVug8LQm59umf/viyRl9e8tHS3DDtDaXMjmmPEf3VyzT1tH/C3blEy6tcqZ8u+rrG XCzxgR7T3rxoJRLKyS/TUIPmbEKsExpzbTsV/2PbNOo4Glx00fRBC1nHNBKKGh0uh3T5uMXkJ1yU /HwEz9y4fyB1XLGlLeyZy4IIZJxMgEIn6sifukL7IT9xLTIOzx6jb8Q/FOJbw03L6bRzbwX7Fbdb QJv6OB8mXAn2/0rL82ZsdHOz0eCi3anRk0FiwdaRrkwYXCQ3/+HjZWk+pybMatrbNVWVB/SeNY1m R6XP99UWGJH0dIn7E/FIeK8S6b7He3y06W0NQHJI4aorxnZCpT9c2dG0qv06QscaTwHgrcYwVm1P YVp6sJsBNmoFN/ss2WqXfTapMwu7TGWRrYRRiA5XOlS5PkPNJ39yQJCkvbF0L+SkPTBuCTmEwVhq 0l1JlKWcmN2TahJdkvZoUKUJXFlJOobVu7Xg6qNjPBalGnjsEbhgVfoDGn/iOyHECml/G3R11Mxu TgJ93HYwklqCNAWP6HhZSR9mh7IkHYFGz4Kri97udqX1E7GXx8fc6qN9ZjbyM1TLO3YSccLlDbk+ pfJdt4VxAmOEliDR3Z4NF4MoQ1e92zrExagRFAiLGvKRVUlC3UZnp+O9dlS40J/+S0Mw7j0+oCPq 4Ba9kQMMlGSpGaNyoZ0eZ4ewSndb2SFqfBXQYIxkalQfPj5NhRyusY23DJELHYIuum2sZlTFbu9w un5SKxnpI1MnVt0CrFcEL3VjuNKZMOH6DLiQaElTAhfM4RcbLqbarGK4qkgFskhWJCoHnh8a94Ao Vz+nrdEJlnJV9er94z2TE6aAKJcgNSUxzjMqPSCuDnO6LnZF0vgqRMdEcdao3c3J0yza0qriLcNG ThsyU0CUS/gXNaP7cUXWyZT1W9FGqXJyknDZbXTlys9Tqd5ExKeE8w10ZaUZXFKmKj5OKzk5d5FL VVvKVOxfaw8ELrqaQTc8sODqtvvrwsVIKQTXsDMsHVlwZfdSccOFvKwgpZsAsyLnChKDTobAJRzJ UyhlNHpcHyO4+vXy8LBmwSXnUDO615WHD7ruZPV8ZY6SorvhWieix593/QevXPaTvU/Ic+GlShTN 4lcWsiwF0Df8G8VRNGTxbwCiSAJ95ylAfgAMjX5eYy7B2g/eMUPxNDogg48NWD7eYQzaK2o4w+Hm okNSvHVMtAGv2KDIFnwCkII8SzFWM1jSDIr6sIUDGs6UJkLMUMvlNeKuQiFwXfPnVO2EIb/5vg+/ 0BwoDHkbgk+bzTWD2TJsMVsr2RViSfBjf0c6/+2XFnkuHW8AACAASURBVKRZSkfxRPX5GOD6SdH/ Jdb5ZQZ7RPV2JmoqWdVVUFW1EANe7BdYdUMlDOP19dUwEj+LONbN5p/8Cg64jPLBLC9hpFXVUKwQ LF3elC/88cQd7jKYeD1zWeJHbKNfRj1YuAy1cXBQnrvIBW+pqOrm8sXtqmIZZ772yvyscYxmXMJQ gti6PcCm+kdjMdDF7uIFYc+CLO7CvXDycjq3l2fh+wlXKjjeUiy4DH/yCjHE9fzOXY/E2VkoXHHh xWQXwJrb6FsBllRC0ltKmcBV9qXLiGPQuGurBtkQtM5e46sLLfiRZQnY5K9AC0/7HFhW9vGMahzK ld+pfBd8DWPrjIv25DeWowFLpJnHj1pe2CKfhtpka5Edz+Nm4PVOzNYHU2wqnK2EOqPr4FZV4nWL HI+UL0V/Gdmae8VVfaNcV9pypnQEQLYNwGFtBdV6x2tLZ1jBcDWOKmLEh0CsYfQy4cJjxYN3vNwB fXkjush82A4ZnVjC1mvUAoXZGv5nPTRw/kAT+Hy6im1HvMY6ak5fbLTk+rbHvQyXWiHierey4k5U FL5Rjv51CVtniYg15IRrGhZ0EcjXai3b7ltSIZyuaFsRLx5U8MPgGq3Klbb1rAq7kkt8Fy8jESNe 1Ndi6yxiYWioobsHP+dLrgntsa6TFYeT05XtZQsn2cHPRn1s9cUKrGwdruCYS3G4RMsaZcUng7/2 oDHP7j5br5bNvSK7unbJg0ENFGh4DQoD/HxuLNSj0wj2wsR+lvLggqnDzg0QBkdbv6SBXtHwylZA SkLZQLySO82WwcL39SqswfmUQF82+gTkyZYgWri13cDLas9HzDSkVonkQ9zipr5xV3Ko3umeV+hc zAUdlVXZtSpO/PefD0DPI1kQ5Mmz7xAyVu1C7f/Q2SslaLI6wBoByfp18cozu4AW5D2ixQR1zwb1 p59P3XQ9y5jaWY8LEw9gLzHRwCB4z8/Pf5+fvzxP4CfCpQaidbAwie3+I2S3arqcTuNqZPmvJV2M m60QDt10rd5TCQTL70W6ZO/eoQevOM4vcW7bb/s18RFXlfeLoYwwuBrhmTFFUQxsK0f5uxDT0/+z dyZMiStdGG6L64BfO5UuCJHkxoQtESEsAiq4sKhFzXUster+//9yu5stCUnokE7A+TyOo7I0WZ68 5/TpTh9XwFUNJnHhE8VwC7fDeQ5irV0ltnGh18h795rLueHK5V7hHoRrYnWPA612xGKTGuOk6ENw i1VXxmEbJplMJnwNILiAZaFdASe35KRLi7Zzs1zOC65cLu4hzEyBqZPI5Bd3nDNxALkuxOoSfehi DbjsdJUC23/n5hjhe84Prtx7vBd2tuA3UB1EV5WFLdbJXgfgFp1OkSVCd1YIZqILrWHBnlHehgQn xyjnnPbp/DPO6T35wtYBn521q3rxRQJ6mAmpW5vaxRK+2Gn53H5SHXTtygB0s+WGKx66xAKZRgWr m16RQbqYoq6q9VUCeodwiWAXuhgin7DJq3cO40CanaPXmUZSddrs1f6oFsMBLVCrMidPwysXo1c0 9+8VHekt9kAtHFyhI3QYPVGPbBCV1uuZQ2iHjncUb5oFs3HcrXlGSgzKZc9GVCe1KGwdQJrLIVwh RkXsUddWKdLCh1AosnS9+3cMZzHRlW34KdCkZl0MGOBa+0WSt/BJ2X8ZuMIkIXwdYxjhYmwejiJK 19r9IY+RhtWTI57BlmfwhAXIYsHKQSVNiTW9+46sw0F7n0FvH/j5N5wHYB8EgrukrdZveh/tkDRY BfM+I0hLXZtwy6ZmC86BwtpCsbrHYYz6xWotKACbfJHbM+AkIJq/oLNSLrGlSSnG/q7SZRehEB5u thx/3Kl+63swW0CgL3gXM9wyjZLppKRpWSEUay151eqRFdh1rNXYBoASh0vukaLV1i3Qeldur+h6 6SjfIWSQGpgnqAxIvTPfqIu567cSrlIP/9d8qJMlfS2FbtmgDEYPDw9lmzN913YsDgz9faLtFRqf W5nm7eWPuVj3uNsNnCVBla12iL3FptLACiTdgjwtWGeHa2M0lxTapNYSZPzrfUCHEbLG5uvr3MLn 44qWAaXFQ0ml2NGdpgC5s5Ku0U6TLxzC5T8UIMivXMpar9orHHO2ZuD44gHOFrSEan9+Oi2iXGJQ /nQJF341KbXaCoi6BMa+oq3fhuEiHOFWx/TdLTj/wBfFy/GG3U+GziDMcIUrmyhcRyxwJb32gqUs 4QJEuf5lgaupAGid16YB/UXEGHIhD7i08oAs5d1afOA14ADXcpLNOr2Vx7uNsgrKZlcXgsDtFt8F XQWTK1yB2foui18088nOjiy2lAKBy6rUlSwKTKAu4CJRF4Ci1Qc7+sV3zzzECi6rT+89a83/Lj15 fsBueYh192Gk/BDAgzDQ+sKm9PLqHUGIsvzY8g+5wmTpE60YiwRQJD8b9Y54Wf/8+fPzc+gdci3g gvMf6MrPr4iL82PR4Nz5AioT3glUC0AKF3zA0dXdSrks28kX1j0GcogkBWuPCORswP2sUKQ1Dzey pxgu8q6B9vfZJrxU2QTccPSb/XiF9ce+Wa6wq/Tuo7LnJSmlTuL54fATI/bzU/RTriY9ly/9wFQX xIcVuGugw0vpygHXyKlcNKAn93h1byhVsyfykOcHIFIH+wy0pJZSl64DesPl6u165Gc9MK1VBqSL eoIU7WSjffLMWAGXUjkiWQi7IW7aZfGY0rWfmsRlGqAHzocgcI0BeKAnbRqcpCd/907cZ/qKutQ1 XCUnXOC+YqXBj6tCGZhAuy5gaEpn3h9ALr+jM3oz5DXoBXQensmWyhvhvAXkO1L3B0H5bKN9SCNQ vK31aMe0UCjgNhMJuUItJpFNXrkwXMLWyTZ9xiQ9XAZngXBpHk56vrA4yclkAj6AwDXDWNyfwJ3g KlV0QWoVCnJFVzbaF/jABWGmYJpmIiEX85yuvSwy2NLxec+Ensnlr1ywrrvDMlR2wYV2/oCFcpFl Ta5hkFucyldecJHb5AQABefS5w64QDmoYSbLN465ZSSaR18XLoBo+Csvv3bpMkG0+IKuu19XfVM6 ZjRbWdjYEq1MoBETsAYDpfQQJKeNgULuJKvO8L8jxvbJ1ncVcPTQj3hMIZKkhOA6qh0yXO7jEuOb YeJFBqDtdsiEjyMvr1jjCFc2g9BBrpD6baFMTCQRERKu78LXf4ZxykQ0J0ffcH2byyvyCLm63abF ayL9oa7Y9W2hLSNFDrWazWZtMtkmXFW9WNTDLVBiJh6E3ve/ieBokhlzH3GZQj1PY6voYdQr1pUs S6qquvPsKDUX8/kPMBbxL226EWMjCnbjG1CiRUChSv4fddTlM0NF48YzKUPsaGxVQF1VU6tc6TIl L0/bqlomO9fteLyHi+XjTctjxSrWdL2mU7bS6XP9UBaDo2cbklWyoQKF+XK/dMFs/BCtiglACs3h wr+L9zeR4cKtQ5WkqIbKHC7y4eD+CbsPCDgsN9x4BqXHeaukMZhp0z9IpVjQmJJ9RAAKpUcIRLwR r0/tG3B/hpAABUQ2BCmL9yBu13TUsZ+tt/MX03arHEwmtfQoSbB+qSpjo1f6p66m2s9aqv4I29eG kIK9ugG0Z2RIUlu4v1RPurcRXDQc/0+q/pJJ62pKvYGPVMCgWleFtjK8FobXqvKS6k2jwjUVu7+Q ird8iHdGxs2D8YOKtWw0zQ+fSmo9rYLZ1DJOutftDr5o2jdofKb2rrudZkdOyb0eefM/YGS0uZUk jhjPdwfBdOlpp+lheotxxlyllK6D6qDdH9+RC56UhYYXA4PUo8Zu0Rxg6m6QoettQRsMO/V6JOUq 6tYvcDFQMVWvz6MOhUszLtW7tvLyhMiDL6liVMFopC4N8AO3uiqgDkoDWuP6ulJ/JkpN4MI7KOvj qfwI2kbqFqgCdovyIxY3fWDg17TB8EY2uPUWs2ajEVeCq1pxsRVKumDcblFOgaENrpdn2ZApXLNf QFUMMHeLhvDSiXaIqVt8eYYErpfOcB56aSSyI3DRBwH48RjdLQ5vqLencGFQkAHvaQF1vIcULmFE 4FJvZtPuEykJD+ZwgWFbee/AFVwprkcaZURJyps7QubqLF7ok+qkNqlWJ8tIy27Fi8PIc5GDDds9 1QbXD6NnwJaB3aKs9tSj5wVcw147GlzzmKtk9DBcbSOTwnDh2Bt3EgzsFkeqcq8aQktVO9HhwgHV 0EjRnUFtQyX7d0cDeuOE7O+L2p7K6tM41Z4OgR2u0SOYkZ3H7yE9nbsYMl5AyBQ4jP5gT0igOvcg K5RjTGJ8UVi5Xrj8nq/YvFy3ef6iqAd23uS6eQAcv7qeiPBJcF0hnX4L7t1dbxD02krPZ7gBZkal a1JJB1vl4jtB/3+ar5eiZiW2sZUufuXKnt+2t5yqxQDXOaNwHcay4d/GU7myUbNexS1wDf76Vq6D M2F92xqKcVgkG3UwqMgn4jpEuJAo/olyurGYfiYuvlC20TAj5L0sfUvEdXGwN2kEBKJvH6c2+3iD fw5aKONlKKY9hAigCKHXIM1LuszDOIWSAyxqv2O8uukpELDB/aEVvo5RyIt1V7ya59voYp55cwB0 Zd5OPUyK7fC7ywnFixjMBBk8QLy2RfSUL7Z6QPv2jPD3qadlOC+rEKgjKAHZEm3fiYjXrglVUz/f jle6qJt/meZh51HfTk+3wMXz+MOEPRT0d4liTBePw3YcDNIZ4EqfVyrn2/zjXnNd4ocfW79jcB7B HiqOs+wGKeP1QKzBbHxwsY0zZveGV/7U197499vR5gkW480OIHfvkH7BpZ6JB0pXhZmtdHF76GXm 95Hw8ou2qIm8vRb0Ew4xNhFB/nsAk4q7dqCLXbdYx4L2QNdHAFunGyeeF1tiYgEQDBRFmEBClWbs GzEKF+P8m8RDL8GHrQ/6+AfnXruQYbTQn4LIWlTi3wKQ8hAguqRT3hFw+TKLEslIiGGD+u55GLgq izrFZmBuIunIa5OtjzdJWMyQkiS+quLJFkI86CJL98By/qp023gCFpkbWLp1sYW2u80404gh4bpI h7disZIO7Dma4l7Zetvei+fHFlouU7IKrtcMh6SLLNkk38KydlW9k8tkG+t0XGe9wiZicJxxJlML 3HOoviKGMbrQ910WCLrSWx9S4JUtRgt8oVMF0RaMw7W9hKt0VXvqVlp9LFzdvl24EFPIH2fUFb9y rRL3xf/YOxfmRJUsjndV5gbcTrZ7LSRCeIhKDIIvMBo10TKxcjPX3M3MVO33/yrbDXlIxASkcUiu p2oskzg02D/+5/Tppk9F3TD3uLv6B/xb1dqwABkzWUnw4bjzTW4gsXLBnjSv32i3bsEtAMfzK4XE E6UdSFfitakql842PJRd3pFnhGHZQrHznukzmTBGOziRctVAA51dyrBRQViv+bVliHJp8aiBO0hH lLMcLSag62mmkedFQRCzIy2U4HqE8WVnG7pQPGzSB3fBdTzdKcfHP+PUKHrV5sykK/EuOHpauDau +ToricUX8M7KWYRhMOQUl/GER9i6C+JKEmaZTEW88PP4+JfweiRYAbauy37ZGe3qUn4rXdn5xYS7 SbRSK1fcp88yCcMek7CVuP7w5v+NY1OYOqvpt/rt5/HfL78x+sCmALXIsRtI4tZazUkuosExsJgL CjN4sHFVuB4TZrqT3+Cxq+gFHxXY9PQ6pZcQ2M0qwjVM9/Gt99euLju47B17xdh74RSzFa5YEgFT SFeSRCVklzJfa9MYHJJrlca27JKI//SssPmjrE3cdUAf/6ls1sOYUMQlJiFE2KYPErk6Zilz+O// /mWEDmPVHFUkcFm19gnQARzuTLkSB/SNT+QXDYvWAGhaSAp2sXlYdYowKSIfjtmlJq1HJsN2sx8W o2TtpJMuvF7WCh6iQ5XW0nDBqVFrFN7xoGwt+WbPrqPrlRq13If0bdSSgTuoj/HChyupU3zrGD/6 qIPo7J7W9Yue4ShacLlWRka5fErIL5fVyLRFuq6WImqmvSQrQD90T+Fs4Uq1H6+7dUK1crYruPqg JR+OgQ8XjBwpQsei4yfctk6AbVkWOCcv6lYjuRaCTe+E/AtNwqwyiYekd20/GeDKm6SLCVzTBHm4 jNKo6Z7v35qu2m4Krr+BayWBupKldft+TXOHuDNwTvGxAbgrRErXR53gIGmOqwaHe6tjRRiGC2yA C28b26WUl+z24Eu52XMj06ArtXK5lQtUM6pNOYArOg1BfdnYr4XnBnARa26XJqDKdTmULtrdVTcX gsurVKFbJZE1cC/a411P9u0W27S71G8bd8V6tjF9LgIDyL3WgDr+MfrPev60/QKXDc6vrmrgqSp2 ooEcxA0SRsEazVieoRrvbV51cEh8JrwMmo4O7uiaHBqPQSLd+IQc8HPCJdgp4dJrjOeAMlyHwx8d jWgl4lE4nHdW4MLILxVry4lzUK0+8a3QG4DZCQYesC43+lKDutwIuEIrZeqcTcSteQMWQ4zanw8s VBZLadkiYReXHV0spq+xP0dZPH1NRPz548cxWFMu6LtFYncD/300XHS5Kj3WagXWwCYyid3gRU+z TiayB4AnRo4CcAWdk08KQ4jcvtSLTnURvdUqtIR708IXw2mhnVSuwVPhNBS9a+LznoTB/oQIZuCG 2RQFqmSY7GIx/+PQrrnrtsYrWa7/HYU0Rwb2wGfMoSpG4mxa6nxdUoRAUw6750R6Km9LeToBXE6z HsBVIhr5N7Gfv8LKJZTJx0qnSCqQ1+ixG3Wk9do5VS67LSaGy7mkyb0qzbjpMKqOtUb0tX059HdZ hRdwaNzkFK40s0E1PXu3SEaALSJJA/oFLqOnrLVquQrqyLhq9IDRIy9wc5KAdLvtHwu/gQu2ChPi Fi+04SGFi+iCQEz89uvXTxgtHe9l1MgZn9Q5umq5KlG4Eo0fLXqfSF5f8jbABd0B7JGPgbqHphnB xaDkVMolEh/QxWSjko/h8stNl2AQ90PkPzv6ztRMNFzE/VJvSaJwrV9H34i22U/mJvBnz/YU0AM/ oNdk7TRJtwZw9XozR7Yi4QLPcNn/6loWnmcBV+pw3qlkO4PNZFXERJ4AML2ZjldnrR9SzEDXx/VC BFwRgQvd35nF/ZEwf/4El3O7Ca5Aueiy1XFznBlcxPlvn0N1akzWR2xalipgNukerHPkm2zQBMPD iyUcKUC8qil6DVUB5nI7UDu/ojFXDyMKV7MfqVygTWcl7DEPCVzaRUZnAotb4mWrHBNbo+usXP5W ZvesGVwNceCz7VZLdp28/Ojvr98JBJlW4060ENVlu64rIiVRDKja78b7JSzemNFt6brur4TQdafl soQrRNceqn8CXG6lUqlVKo7Tchz6wHQ4Uqq03BqXAV3FfX98KTt7libXTZC/Uhmy9ZpOPYP7/vhK JlC4bD+poNYql87CjbetLlN7eQx73x9fysQ//mjU1PB2k8Qd7pStl3Tq3it+Nbh0Lg9G06l7r/jF rKxyXE7oOivhksqpalkUGOSRgrK8IRvJQjBpOOoDbT6SwdQvO22YKatP09LGin/KC5rrhmarS17C mSUTiEGtw87W10anmc2nCyEv0v1IUe7p0YyV84ezHLHF5cbUyivoZWZw+YtkeAART5efLEivCz5c k0EAF+YB1q6ZwCVQuHjS8u0TXHS6Gftt02UwI97/ITVc9PxlcsTFeDQgF4QhggjTBjBtjydw4Xzk eEUun6byDOASBAVMDpTxnelda989hfTJ6AB7lolGfeiBkSj8NdcOvHvJRGnhIk2hmaXIC8W7BzO5 dSsIJuh45BcH3nz63TOhiZULiZzI9nBBmx4VdprkQsxO169WjRfdjnlgzO/mwDTIpUCF/NU105ZV ZmJI5fJKV0lIud7GONB1WtD87n56UJGJuMyIVhG3Vdc7BC5tDkaX+mwOG5dm3aumhMskTSFDH90s brAJD0DrXtdNbBJdmVxU0PQWdsgPI5k0pqRRLnpUcv6KPJKNa+meMGZWQUembtE0/EuhlwlGKK0U pyBKKPL5c4oRVkzvFqGCyE2NDeUFLu0ajwhc7gnw3eKkK5mpv1HfLWKFnxG4JJNw67tFSOEC2L4m cCk+XO6tZKZSLnJU4xp3fLjcMVEu8usArllnMOlqT3DJvwsuvuTHNALgxVKRy7eJqeECrqIMHEWZ a4pf1N5WJMVT0MQcoQAu2/QYwYWIF7xZmMrtohDABWamiWam0p2ayj35cWIapqfA0X2qmIuevzzq KGNy+itwGSaglwI7pgIOFWX8e+B6doQql39TGQSm/rQ/Iv3/kuZAa39n5RLeHi/YVRdMb9HzmDH1 1cCIZsDq0SGTdrY6t+JnYOrVwoNGXNr+S5PuwW+zw9t/Qk4LitwnMxW/nj25MYoI7C2vhkrqZ6Mr GHuIKrMURbwvCgeVCPZTBonEq6SG+FJPS6IgiqVyXqlTT8VVxVWz36+eXy14/bgU99AkMCHgSC2X i2XxNcwt5TYeC59XKdtvJ6LA53KvX4nSEUUhYrABBbF0WjwtFvMd9hezc42bCuU97hfIJh2hv/Pb UjnP+VVxd6qVYOPnvMXX+LmEFcwfeqKa9yifseF3azAefaLYC64Xs8qbZ4f5HVpmEdYLRx/YMmkP P+8IAv03cFdpFLTLKu3bW5nLrXMsMb+Tjo7Y0tWWgePRN01EdwXR3u70tlu08ocXKuY38mKcT31b Jm+5fHhYLkOO8jHRdpJajxBL4aLlNVt9IlyHN78VrfzhleOwXmUZRojh8Ao/b0aC+OUKW0noags9 Hy7Y5ofQaw8BrmbvFzOodJzlnZDjpITKLj8QKtrChxM0aLlSVT32rS9d6FUfLo28wT1Yjd60ga1r D5dPfvonhAu350m8SnmeGmIW1r8/KPSHkckql0HIa75yuQNeGAKnWTj0mt3f6hLTlrzN4m7I9XrC IhuVX35Ua+rhSNjer8DdrIBZq5e90fLjF/M9r82CrpWCQMuNOsTIrUCEMU93YoJZsbVyphgjv73c 0pVzuEJrcra1xxjlgBCDnkHfS5kN3dDauBBG3BtCvugScr8mJ35Y37QKZBRnjXHT6muWhWaWn4dC L8IVSxnwtvrI89YVz6Qo+7uxfJTvhhDnMSVR4nJvcfOp2q00BxIZuBk32nDRnxb+z97V8KatLNG5 igJGI7Qryza2a5sA7W3MV/hMCNBEhSi39L3o3UT5/7/l7doGDDFgUzvghK2aktTyxuzhzNmzszsC VleISwg3fPubBOosKWtghZnobvgdhyPxJQUJheF2CaHVcsHVz3jgAovXycCQBjz5A7rxeEOaJeRr hiqWTI9OdokpYC4ajbn6c+YCXkZg6c17n2aZg0fW+V+UZfYd9tYcyv29zZmaiK+J4cCKx4UuKhx9 WnT4DAnsNoffSXXQ0vrNXGlc1flh2csULo+4bF4ypaPfXTehjhVepyWjr43N/kM//rZiccaFrrBE iD5Rf/DAePzQijZbJCC6O7PIcoMZ8kpAvLk3wik86gxfOLmBEkNVEfBifQxxb1oJiot/ruvJUm/R 8L/LaWFxF7SiHljyBhdI//k3n8/fzqeKa+DShlDKjdbARffFliDI3knKnjsQjzUQoZItORpN79u0 caQUFsP6j+Og/nP773MguBq8vNhoXdLvOfLCGqxj0l0Y5Tb0aKhLXmrmo9wdFMNBSws9P6+pUYYO gQewhmOoEWyzqFicLznvI7q2AQj3HWlu7VF+b7LaBY2ExEOLLoVv1TBFx0kSRDHNemvXuuKcBK1x VivQwQ1/AZYDq8t5NI0+LGRhQNHtPBLhUbCqluGyC9hXC6vgCv0bScfhpFLJd8rfce0KEmNJuflf oIOKWz/1exAX2UwkUtTAiNTJ5sH+WIfAasc4Hgz0zGDAS9LUeOW7i/ExUtcRS/yYDuf973/cFuZz TAXnT/iP/O41o72M/1HPAdcXWgZ/LcglPvkE9851UPQLXrPdmgSw5ZFt2hCOJzKaca3KbSSqGO79 9Loz6NHoQ33Ja1qtgWu1k7bYgzvZ+fi5TooPXHi0ZdrxSAKjmYpDxV/y+Xxp1zBGpi7a7fadJNd6 l1diD8o0uyANPZMj7QW4mkEd0mN7vw69kC2apkgVAVLRnvK8nW+niEhKDqld1Z2dRVY7M+QeiWzM ZkZ3IErCChtbXOsP5uCq9TbFamftvpEDWrZavBbzQduBU3CkRAu4xT0ZyrvNsdCQxzKHb3lA5/Nv GXOyf7BD+fSPBavFwNWG+3apN3L1vCIXu7OZ74BE1peVayzBVWoFzWAdOGf4fzX60ChrhUODCw8r uswENtC4m1WJ+yI4I3lxiVPyPjS6Xz1wvfJvvrRdOkGLDyEvh13mi0sRqQszLrhGyrR95zBX0JwB B+KYWBffszTHwUX7qtpbo0rJ67BZGjJwNXLlsjU9NLgOS1xJbONHu1kAbA4qaNvXPIVwyyXQ/AnB l7hixpsaUCAOHJ88cHkiG+A7/2mRX1JsQ6OIk+Ib+4ygcx8UPDTzU+bxLXNZXboFXCx6uh8JTd+q 8pAF1xq7XUOv5j43uJjWSuKJrBa2FymETAYPt1zCvrCB+Lph53T1O8PP3Q1ofTSdQORh62kOLsze AWgFXlC9mBFaRWwVV0QQe6kxjd6slLFf52PeYvfSsv4xR8GuXnN9riADV70C8Jz382O05SJATXbB pQAH1/jAln2q1xG3gcsuTbRw4MoEg4uW0Wbg6uuNPl74wfU6B9eD0ulBXWn0OH2NyQJc6JvudXqs m6Z2w4Nmowuj/rrOXo/KVPNa+I+evxbzoiTzEUhZJfW+VmLM5YLrsdIq2+xmPnDhHFyU3hFCaYc4 mTwMYK36dnD9Zbbtw0erd2uHs7mSOlCQSa1cQ2+OXc3VD9Zc3iUcXBs1F7rMNazmPHDRFcnlXVQI IgmfarrsoY22dkPbjhTqfSJwHU5yqYkdtMDCtr2BigAACz9JREFUguzOFjdOBReXBMWlpXFezXJw UYaOstZn+ikAXFtFEHGYC2rsPk2eidHQKTBwlfqfAluH8+c/eJVPxJVt2SRoieqjt4PZ8yqc2klx pUtvndrxNPEUFE/tZEOcWnoYS1FN84BJ9OKpyMDHxdaBc7j2VPN8eU/wNjE4m6Yp+wm6q5MxFoGm 6K7kuUuLXj1rfga8Y93EPxp0fkg0eI/i+mOlX+7yuuD9Z1qmyaq7t4yRl6QeYrfZnqvVX38CGtSo ds9gdFY9I9qPxzZ4ZWHPruJCF46G4NVlNfiX3xP2z/3k91nVKGiGfZWLezi82uzz/ko37AkNwk8m 4NVL2Q8bafJcebEDUwDiui3Sohjoe9XY2Pdg3YwLLl7D1eDJAZmWAy6s902IsUyvAy5s9nNoDMoA V8QF1xRq0983CQyHW+F40d+tzvsb2lAbln5Vs2jA5TU27R5tltNQPlDlgQlXvnewpbzPZv+9j9X1 mGs2m8KjcdaD+96jYRjfQMAr8i02cwNH7KY/QNIMNK7vJ9oPdME1mxk6vTIqsceRhvMQkjZz+mMk ZqiqwRD20Cp9ozMG7dFwNNX0+yz7cB1/E9S18RUURTG9HMrEi2zsn8I1Zy7Kecsy9DNwmIvyKCLL 8TKX1u2ywYa7aWeIC+Zig4v3rUSYa9FfZgpGpaKjA65fcKVzcN0yzrrtaT8gDe2NREQfkwliogDb HwXWN6hxHtEYrgg1/pq64LJ+MeaKb0HF1VydKWXMpY8mbFyvJgzODFwPPx8KEDu40AHXw5TOnP7u dUd64YzctkrsadPGXGFkWST5tbxYFAVBkRRRNM0Esri+dsuA1a7dY6/6uYbOU8m1MpMrdpxq5PKa Z+NUy1WsNsvIy2ZUuwW463YZku1u7GERahOef1Etd53+xgDO6YiZbn1itbsTaLQbTHP1e7Ta/yAl m1ESo2PL9OomOilrIEiiqQbvyPij32zlm2TS4hAXp4HjOzlygf3g/NHwg/mCUnjuMl3fTH771khv A+zJmz81IBESJqi5mZHWZwjmqcL0qQGED4uobnPd13PGTug6NdwWCE1FkeW5ajcpC6K4jQTNE7hO zd82hUXVzIroWhfoufsi7Fj/WnFnhdN7+7mbIAfnTJj8oG3qg4fExby6cwboqDJv8VI9pUR88pgY nOoVpMYl19/akUXjrGd6d/lyen8/+WQxvLvustIu5132ea0fRHWh9jrfHf30XNJOoAnbAqPiBvwQ MUTmMpszqn+aFvH2psUK+/L9gmDRBGtQeM93aAGsRXu2EgJxkZuDf18Qyp+yWOx9RHBtho8Ywh0l amwu/eJdv8t1cmC1rNbDdV0f8C2s79Ve8oHtNYm+OnqdgHZjtRt6Qy9lPwBzhRNcPt218zAkJf79 GQ/XjxMoZenNSO9cw9/t94qHG6CVFLysMQNXuXZTJ7VeqW/rHxBcW/hGcHz60PcUhUTAJTR9+CY0 scMcrfy29hT/ZJjWGZ6kps7BhST13CVEioouKe2MdVLMURHgMftwLVk3X7OdwkhvSvPkCKRxF+MJ ERGTI696oa5LvNpfh73IsGdN+TxIjrQbzHOxdmLGjHt9EUUZxyCLBEUFNO+wPZJolXH6lN/ZnmMe DfZwMljEeYFi6p0cMxK4FNdfDR1rzQQ3XJNki9jTfJgWb2j0Em7IBzligpqRspPFkJnxIi8MYyZ5 LLh0Lmxrf6y+tDcwenk5P395Xqezp5OZtakFrf1sdRoEJVSeMaH8IlFVk1peRCm/AiYpZvLCVQi9 LMGK9Pld0KUxOVlxajzS1NGYs+9UFtO5AZ/r+JenNWCt1XANW2RCU5kupGoBpEqPSVBvPuAnqKfX rUr/JYHne2X9r1RtpykCliKaqgzsH1Vdy4E31RQcHeK83/nzQMaKGhqbUpNAI9ckA8EGp2jKGnqC poToZ6/Yl4Pc3tmjiTNBSBm8vD3+6lw2iqK83PZvmmo6sCUo+U2okqK4Ek2Fm2aazTRCGzoVfd3f 2jCoJd8l8Yat+RH4L4IgzxIyWRK3tlZARJUFvqR0YEsQnt3ASHGxuYHswV1U5Xa/xhCmlKEqO+dM hpkNagkZEgtOZE+nzJLwWBIfHnO9nCbff8KzZY5fci3f6/zrW2W16qqG4ZRRD8hIr+s2tYktcHCd h1HrSJMIjH4DJKBoezqkPQqbnIb4lmwSMk/+397ZsCauRGH4LFw05QgzSLRMitFoqTXRXD+iBpUu 3e1ekG3p7qX//7fcORM1xmtqYhXqMi9IRWrMJM+cr0xy4kNd3WtXeL725lijBnX1G7DrgXptZ4rv Zsb26U1XogBiG8ZyNxO+4Bsa0aDSRM28DMOVMpER83mS3Y1gfZnRIr2dOupKFm5tMgGIicliXHZ1 1ahWKpfBFk+fIx+a6i+/lstfmYoML6c1Xdts/Yspvl4vHT+bWDZsPhQEy1Mr8fo7w1PoY8d4ksG9 7EdrBy8Nwbn89mt1XWzg7/v3jSvJXR9a1biWy7uIUyYzHRUoIJUp1IMNTTCjoHWDg3Oy8lZa+cO4 vHrqhbFVLZVeMzHzgUb2O6c4ZBCaqs0KNf5Bat4ixmCIYiIAP0GZ3tikqDxlRKZ2jOdUiaTwOpyb HDvTk3GU/Y16aopv0maphw06Erb7JtxEcMEJrzD+PuBiUTvG80bzpUg/zcOzN6vpUuyp9kGoeqs4 SU/n1q+gfVO3qNl0mSzX9TW2mtCM4IqXQavKF0e1OdWJaNUVND/Uh/MUbbrOoZ+lNV1ZyiqZzsWX hWsBugx6Rc9ytyOfteGaQ2jcTgAHQLeFOJOwEGzgilGU73sN/+qpMZZfegQcsbqYHmO43jIMSZNw Lq9I2lTi7HAhjcrtQnou+Q7bi9r/Tde7BuQpeLiScE1xVOwpuJLeyZnAUPpD/A4PtTJh6EwcidYG LrFVEkNwmQtf5U6NrMKIhfngypJ3arjO7xVLpc1HXSZaZFScWY/ho12EXmKemwfPxZNFcI39++fi PAFXFEWJgdHE0PKuTG4YtHJf0oYKrmmSCTI49gAiuH4M/K/MzQXX25ZTxJDIFUF0G+MNPYv/TgSQ bMCndfJcMdLz5rMQcAq8LyPuEJTb6uULgLGnLNfYGTsruF526qKqJTqD9WX+XR/7lxmnDfPJCq7+ vJ8Xrt9bSHvgSXzuoWDZEmU5qt6M2YE2XaeVoCmMYSt6E4dckAqX2HqSKd8KunjYim7bxnaykYDd aTIJFxoEl9+XZ/klUsbiAo9zUi7DrdvOgODijOBy0792F0pv/iWQuyT6ThAzHf0qbyOImQTsH+mI G33en4URXNv92tWxaciftNqsoVnJrbk1p1sWu5YPtOjq9TBcPuyHq2f1AhhOvIkY7rS5Tgv3j0vJ MNtX+UA8Aj2R3BkDo8bbuLmeqFRHCLEGQsIOraHH13BBDJePc0neyAI3QBhrVnLLJy9Ht8H6MriK 4/lX2Im5Hinmoj9da19yxen/vABUj/WH2WcwyarLuudb/lh8J7gSfY/LUGCi0V5gnUbR4i3chUvi 67UWZHKnTifwLQ1XfjOQAldciGDCbbICOO4AuNux7JHrXhJc1WZ/H1x2pyFksFV76HTkH/Lns1AM tuFianm2tFxN3/U0XEepe+2jOSzKCa7WIu+vciFf+yFMq6MC3cIcmF6xG3wOuLBZGVBZtmsRXMXN JfBkoZ+lFiO4Wp5NcDl9BZfOH3OfAiwHvI+VKvAyeYXnlbKuN2M8EtXfK1Wc0pZAfIqne9hluVOm fFV4wCsyCHuLdPCQRGOiFKVsUgJNW6lCVeePR4THiJmD5AOcJjvTfKpBRjuodOxh0qxoaWlpaWlp aWlp/SH6D2qWiGymDW2wAAAAAElFTkSuQmCC ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAlwAAAFcCAMAAAAqKpAfAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAB CFBMVEX////m47St6ayp2tDnvcHzt6Hu0a1HdKHz8vHL3vL9/v7/AQH8+/qoUhT39/bZmAJDU2nG ys0PDhPE0+Lq6+vv+v69vb3++u7W1dTg4OA9darc8fsuGBj99uA7YoxPSUZdWlz67M2MZlP0376g emT06NzApYqguslSYnnSvbiqkYtyTDllco4ZIERANTCJhoZwX1unxuKNl5l1b3LD6vzhya4pPGXY tYqDqM3dvpzyxMalopqvrrC6knJogajQonfGqaRpMBqLrauv2/V+krWJu+i4g1XtyZLFwJPa16lh ksaLw4Wuazf1LCnCnAbfrVDXigH4Xl6oOgfeqZab15f8k5O10rWwWwZJ//n/AAAgAElEQVR42uyc fXPauhKH9/wD8o6OB8nGWMVAEpomhGAuaUzIhJ6Um4bc6XTmfv9vcyWbF/NuQARuot+0ITa2F1kP u6uVHAAjIyMjIyMjIyMjIyMjIyMjIyMjIyOjUxWXCoqz+54Q3lqbTnwM1KmjDVueslnn6pTeaONH 19z8Dw+XBOuiOrMLeRZSHoPURiXTKeEtwF9o4PpUcD2EgE3eKgJ+5fwXDAKuPNefasA7ABHnzTz8 h/PrGAva5F2agivIQ50XA3nKny+cl9V1KDy3At77wdW1v3FuTeCKvRblZXhsGbg+A1x9r89f4U+L DLrwEJDLWyCcxHBxNwqKlHdcnoeKRZKAdiEPrCZwnZ2dvUifVZQIXspT5CV8+Du+znPg1nmVNLtw zssRH0fdN87vMIbrzcD1KeCq1YIeYHj79MTxMbhzkrCo4PqiOKjItOoiDyDY4EvsqW6fbngCV7vd vpeuKagmYfGPep/fPrU5PsuMLbhXFxnKN7kD0dPTk0rNvBrvGLg+U1gcym4OatIPIfyshTwFF47h orz2PUzgKsgD0zlXTnm0KVzq7Xm4OvCjVqslhw+7Bq5PlXPxF2heQ6kMly6U5uAq8SKG+ZLcFXsu bFbVgVO4ZNiUSdUErkEeSkWYwvXWwgpXxyMC1lyZsl3LM2QINXB9EriGoWQq4FV4lj+VG+NTuGDI eZhHmbHzL8m4MJA5fAyXEsi86plLxHgCl7pOPgUXhGp7NAptynNbqKy0WtLjVU+g+YiuEK5tODjc HVY/iHQtgGSxpEAx/C3TpckbZH3VYfZtBJumzMRGgNpTs0cVdSwlx5nsIK5LqCHi/TL+kBf1cnw6 3yqXOUzQBCvBmJWIMd8Q9j7qex/ebVN/zNVUHjFdb7SvpPeyloqZVMxoV8k4KHNJZq2WMDfJaLd0 y2Iy8q1jy7J8c6OMtpdnMZq8GrqM9EZER3ktlNmW5wvXtRHlYNFERiMdaEmPhOCqRJ4RV/jMYb6L ZBlejqHLaBs5jiozEGdhdEiWjBsdU/HSo+CTJPOqtmUvcVMe+kt2KhANG3vrE93D5RmWI8TiPlse 7HzI8PgQqCWiaQ0nM2GlVqBz8hdzhfldb69QiVfTY6hzEUOT8256Iuh8bHjA+fVkb1Q83G31Vw0P mb9kxEg+aGr/8Ar1KggXSkUfUcAlDl/g0pdd4xeBjF519XkIcEkEUF/NiBQncBG5XQp1wlWEYQdK AlAI6S39865sUgwXQrMsiCiVQeDASRqoX/aaAgRzF1wXYPz64fw6Przaj/nhdfiS4+1WqQXD++FL qdtuweA2tMMbLl+DsiZbLUlys9uk0hJc3PEi4Nsvv9GCWptjqNGNYFOIwf0lv6iWeDso/ve61oVC uyU5Gnj9AAeF6+gVAjpo09oNf7eQOMmx6Pz7BJyPmdo/BOEt8uJ5NdeDYAQXNNpBHK2idgAc335r MtUrcek44C08C4qX7dCSnqvn+y1phle+f9fpudoXPXiunQXS4PBlUJaeq9FWDxANbBIUB2VQcMHf 5biB2tFy1tdNLcedc2xsjKP4cJ5LjeKKufwIrgsJ1+NvO1BrQ+tVW8H13NNjKjw7C8oSrnqeEGyR vy3puVRYrOdtrjf9kWExkC0jZAJX7h87hgvh4kXB9TuGK5e3NcNFGbM2a66g6sA4zWf4sTyXgqsu k/pcyH/Bv3h4/8YvgzCAH7xF1OsDb+lpcUmm7G+/JVwy3y7gIIw9l4KrJM1oh2v4SkN+q1zxS52H BWUDRwm9hKukFrk+84pqoJYkS0mt2HKsTBJ++kAHYbzJPlTipWoy6j/9q5fUZ6Y9lD+sYZgu7cPD XD69gRkO210ZmVqVeGHqAp7uzMs+gWB7/jK3I8yD0aHgshx7xnOxg80IsVwux47uwg7znTZwzUEl NXJRqYR+ri6mE69IwpVruP8nYRQRP5qpvS1lgsthzPMkWo588RxrmvqzxaKrs9cyVXf6vJHIJYrp QnKyLgMpmcqmeEhL9juZ0mTJWUGTpIjFP4SLaLv91Jt9a7KwXibxrtbFOFe5XBS3RHi5sRoNT3iN 3Gm6sHQnjHSgoh8uWjrQN26ZpZ0aNed4mCfUE2SEuML1Yy0ZR3rW+CzZ4XRUvRcz5a8d5SuYIgrY yM1KhcgTrHaQFdL/SekKS/TdLO0QkGjaXQnBHGeaW60eMVojlFTTWDIPhGKvZaoiiqIGG5HkstwS RdFplWrRJiul+QkWd7UlzXihVktsUn0nLHN2z0b8xViMfpkdRG7ZpKU0LeqUnjqiZK00Oi+8K/hr LNkaTdl6GzVmQnjZS11Wfxr+SLxBAMQejsvOxlbuhBbub+gGnR6lVSh015o6eJjfmS4UjDHBtqp1 saROn8BlOTFObHfHBXaUDa6IxuFo1G/MazSONWVONkuTmyUFpbt3cJOYoVE73G/KtqykuiyZWozj qhdjNompO0wEkYyeKxf5fhS/INjxeJKdLFua6HK7MVzdlKc80Ah1CVtaLHnbTwJNXJSr4iSTaVNq 8XOmipaa2mKs74Itoty2ipLx5JFGkKuSHmprpgtJwtY4MNJVKR/VzZY+S7g1XckTG26cjMu46ON0 MMA2mkeKapWhq4C8anvbozXRUWbLcV1IQq1djmO2CgWxwKqtMzLiujEC3c8S2TIwuv6koCWzLs9j WQoRriqbxYWzabXj6tuiV0q/bCDvGH8Lhq6/01Rjl19P2Crc4noPqnGAguvLLjuQK7aaw06Kpknq LjlDy1lWiaAkLsU6vusKtrx85n3LEAPXvCeO6bjsjU5gP1P9CVpdtnTOnOqKwRsvRPdsVBbn5Ymk Ou+6qQSLWcJPjwmSwEgyLT+c9VzR1oA13j3rytCferoc6ZQtspl01NMoutkSPRBd7mjGiNiTbZWy sdnHHR2YJvgb1PmW20/kaEHRztJXqCModu0sflRLUMQsjdrJxOb1ETiaMSI0PY1oe7OzlCx7ceNq X7josRyXnc0T7FGFmDguN1OURg2Nopks6ZjGXjJIVEepX2w6n72naXJJ5gRu7LmiDDEwWvJb42gZ V8bDdu/y2zFb/YyudH/HZR/QEt3ARJw9x88qjp5YTD20KNL+LfvYc3VYjFZgFh11RigrNHTvrGua cWn6SPt/E/ZzXe76WZ+Je2PT5RTeIlzuFnWNBbi2rHq5R3JcdmYK9x4q2to+06YvAmZt1G6WnHVP XBNfIIF+TNQ0P7PnT93GcVmdn5u5itbsfefB4mw/0O93sm+jWhnq6pEwVAsdS9Y53a7HNqTzyZ9x qJTh51NHZbwQ/VtNqgBcQifSwrGdPp+qB3FL32/hsW1V2u1fAOoe30Bv4UidA8akEObFh3gpH8fm 55AY3eZ5j/5e6XzjWFEx3vqKlReodOB7qQdf5faD7P2v96OK1L7+ZFycF6OYIjtYql4svdAXgCZV Fh9mXRfu16j4kw6xXpam6ngFNxQr9wCR5OpszknuFBfJ5hURXpzG2zPlCWV3gpvrHgKu6CQq9GLm 5raBvsJ5GX6UOqqf8UH2f/++TmH/b/loNUSh0B3VvCxo35UBf7lw5Zdltt8p/YTewywdu42ccfYL A+f3sRPuwDdQ/yB6hMcb+EfDN2bjgDFe4yzSFI5cF46X42S4xq6eK/ofe+f6lLgOBfBcnPG2mUzH NtCWQVa0QhVxeQgUhuruxcc6+uF+cfz//5Sb9AGl5dE0acE7ZlYXLXII+fWck5OTnD3DhU7Gt4Py ApgFXOBCpdbLaQ6deggX5INrHi77BJJpQuYTMVF3Rt8gjztO20rApfCZ+ghc9b4PFy2pNzIeJyFc nHeMvjtIrxI/K6rigg8Th6gxrVO6a6kZpXTuC065qa74QXAJFzinPpcDu5MFXIBvHEJ33lzA9UT8 ntms0RwiYn07EC/hQlyilBU0X2iHQAcQuNqgTpEewftKCBefpJ3hCOpTKXAl4FqNzBexxAiXzp5u s79IhLqqThY+FwA9+rMD60g0XMF0GNVA00UueQvg2oX0P+LQ47osQJSkKBGjSpx40L+fzUC32/fd PDpNaQVwAd65w25TtjSCK4FUHDw2s8K1PrQ12gJYwfF5OxjxefDz3RzeATpb9Ksh0mGo15oxuCAX XKlMHc+Qw87JeDw+6QzCv4Zgy15Y3gDLTjbUWNDCjPwhvVbWc9Vce1z8CR2hhKsXGY3FyChcbnYI F8obrkXMQ8pdUiweulFzReHCwDeMdEHRRGl0Xxa4RgcAl8LiOcOwcU3hIIsorkhE/pJSBOp9TRVx rMxyMGMk/hrmMYuHv2zN/dGySoL/J0nBbYN3+lzR/C2V7nv07mysrjnHfjtcFtPaYuwX36fOfMG2 NWVGjWkuP3bvnUBiSqwJ+foaakZpLOJoH5rruwlZ59gS55KWUa2VM5XUcgqbmkjo+krr1t9NUEhn 7VFKZjWYGCmrVjHijTHuJLKnPIGuolPo7xsyAK0GhneNCgDtCkBPdXt52bijqvQcg2aPfEznfQDO QCej7ejd0W9X5HUuIGg+W/J99PIZtHqNZ/IM+vKXFVCfjIaX2ZwERPtCO4R69F3fQVDvTyPXG40e 8Dp0Sfs8rZFe1jmD18nVZxofhWtmlOpKsB4yHlZot6akvb7+zjRfLDiIanQIK+gKXNWf609kUB/A /QOKHEgvvSBv4EHzhnxSVgNYZyAj/448GoLRIz0386YPLiZG5TJy9bgPmjWHSJ7SlYGLCbh8kyoX 2eA6fqyTV3uuT46HFrkdejb514w44Lj+BmiHDGxMyPvqgGkD8SaX61tLLJpJq+gvYktytpZBgxW/ tmg8ULg6oNfsk4fg8hL9eDiPnhl+T+BqPrsECApXW+79BFfZRP2q/TUE0yEZd3BzVn+YWDgKV8+q eBCj8R15cNMz/n6bDjPCNRoaNmg+Gk+jmqdre/W3cF3Jp+u+4t8xxhl58OuldnLCrbnM9bmCIc7r 4TKBKg6uFAuM1/uFq9moJeHqwTsAPbhwYyIELuumuQqXNflTA+dEd1pE4RC7aTUkcXAd95QVuMAJ HXDaIYNIdMqNR264kqFQZYNLZq5orsxwOdvs3+gw4IJn7pMFz/SOcdKmuVt0QTcGV112XeKb+HBd w8xwWd2Lin7euaQn1EPdg2s5opbbtqmnpddP2pjAVXENChfOJKl5dSlfkw7hZueiRlXUHK3AZU2A VSNvwjhpkT47NRfwwwXUdbszwuZrLn9Tf7QGI8oMV4vNmw/UWsFwAQX8pt+IZk+s+/iN5hQAESFJ BKEN/ONI468WniAPXQARALzCyN/PvA4tXyj2iscVAJeXIeDvXtylRwmfq+rFw/SoVSxnZCvV1us1 7fCiqAJD3TtfSpgsWFifNqguJR5lDYKpWI0UPahmhetRV/sYM7v139VEv2iLaSEVgrKKsWmG5Jl+ TAJvOzqc1Ti+pvG79hjo+m45qS5VWh7vRg/YNQPjqUb2Y2NOuFqp9i5+w/X1WzwgqkaUGDCxF2SC 8uKEmyrIbhXDnWYzRrOofo/SV23StrXrYAfV4rAtSpzKCZfcYozSX38P0pdt1e27r71po7rcYgZ5 2doUkdi4rT8fuKxu11sxNAaRX05reYg690WdVgCVZQ3hPK+xbIVTvlHtQOgyN1aNDUKtOAyi6tG9 i9mby5Ybkc9s0XkzL2mZYRRd8nqR8xB13DHvH7ydY5pfojY3L/ImrA3arFiHUdhP1becd+OrNsmP dFHadF60sN5mcrlyGgkyxucn/55p8u2fCfincqo9gAvtTEanmgxutFuRFVyPCVnj+2eoAU3TCFxo TET9IFIewC9Nq4mGa6SN4cvwHw3UNa0CT7WrPbK1JsfBc7H05YRSh7gcwCVxG0X1NdXS4ijnpAjn 9FQb/vsI6rfglnxBqMFborleng3NuAVCC3kca6caJnDRutkvfQqXNQaK9QP8hFpFZC4k9OCiQl6G RHOd1qwfx29gr0VJ4maxigBSqtVFr7GsAF0Ncp9VXrU1Y8u4yS3hxqtx7cN103qs33YDuB6RBq57 mmDNBYAPF/hlU7jIkAPrjSjM8zttKFhzQa3bxT5clfMxmDXGBxTrwomrKrmvVT8hp8ztzFtMSV25 sQUjcFkasZC/NXjqnsrW+PLH+dg9FQ0XPB63iVkc/Bw6f6OxoblXhja7RZp79igSrsFgQL71ai9D wtVL5+bZ6cxu9xvr0jevARE/FIe2UwIKbxzCdvG8Pf3dfU2XFHGdY1Hg1cU0g9JEfUovSa4sXi70 Tn6HoT0oh185dHCxjdJAQX/22vTNhYZdGkj1quGRX39+DPqygGb/Puj4aWF7sPIuqA3Bnmt2S8lg F45silBwULCMHudcKpWwELimB5mF+t0Esy15ifNxZ8qMevtVepmePK8TuD7e5/P5e5ePMX2abjfQ 98rP1244WNWR1ga5TD8CgTBdsS6XFu1jYPPApe7EarSf8gZJA4mQ4jWU+4ZlGK2QQuXl1yelADEg XM2pJuaMweb9MLHZ026fpWh75+BLTbcDe8+KC+VasnWXLPGljv15hVRcr1CQu5yIYHkzDhWbXmzC 32pdirf3rMYx7ekRqrSv/daby1vDgsjKgS9USKHjiDu/KQfQm2iYSKnKQcEjNcFWaYBV1bZt4oQN 2EKpburtGaPrfUyl0dYSxIJHYke5Y2HSUFFFlRMB1HIAl64vk2soXXJVR34sLMlW6eMjfDRjg4tl dbH4jJvdxXoF4oWkYqSlkCMcL7zwsWCUMTk8SlEPXPt1bEUNJFskor1TZf2ZOk6r5TjO1IWHhpbA gUgnTEDJ0HRyBH/UER9L9T17ui1jmcsVTCbU8na4SgO2RaBd6mp2tGzF7udHklTcQChSMdJSyxHq 4imRyBZd4iGevWKqJl49Wqaslj53wFWyhcZQBxG49CK9Lil9K0qdcEtjkiNQeUnRUnhV37OPvzyq lj53slX64J4svkYs5DwC15F6YCZR0G2OpGKkMcoRR1c1eho41IPzt1aaWdJLaZrLDFfM3SJALcyl HYXr6OBMoogSxIpUjDRmOcL8enU1bIoSt4epf5bStffMMdTRlJpJi8B1T3+cOlNnha3qobLFc5uz s5VNWgY5guhCcrKQwQpaacliUF1Yd2NmcUoAsudzoq3uB0R3tY6ODogtRUEIIrQp8gWFskVlUeu8 SZpIOZAuAyk50mVuyxJEZomp+V4Xtu2kb29H2lM3ni8Y1VODwWAeg0vfH1to90iJEwZTrBHkIAfl RReOl06PWswSa3MJRP0BUUDzAQ3aDwZd8jXoy7hvHwXE0FlgItG5fbS1FQNX0pdHMM2zFDFsrRO2 bn6RhxyIBHv1VRVjVZU3pXEhdrRKpe58voYNe95fdc9nzpag1hq2itlgkPbmhQLucpiaUMQlLfV7 TWpJQbPENdtglSxoEbtor8cj8Wt70IpNE7e0QmKoiU8XplcHkBtkyOA0wexyti0jQXF0bapbpmQ0 iOGE8Shl+wzgGjlEi03trc8tZPUHMekHTroUJsMKM4+6wtQpRZDbpWxKlfHeuaRnhas0T0uX88dx flEHrLXqzydbIRFUyEZLTM8pXMIQ4/OVnDoVv8H4g1tyMs+GB653+4ixzZKhhz3ApbBqIoVDdbFr iGyjzqxeEf9MRdrMlj8vy84Wg2EM2/x4vl3dqbBoxQWZcWQaB5TB+mQZdcTeKcQ7YyxHJoc6Xrct Qy3x0DVng8tu73pGuWDFBTPohcxeNsqN/kxvEPEZxsjJEOpqYbL/2DvT5sR1JQwruSRDVDoUNl4D Zl9iE0xwCGGZEEOWYZlvJ5X//1OuZJYANjZeYeakq6ZwDQFb0uO3W22hXu+3K5z7Mu1/ARsXqXAl PKmdR+FKhHeJyFN0nvAXdcUFKrXWqe3dnFMLvhl/cH24jbvGmqIPlKY5NR/VfNFbj0Jv0hXEzA+G dh7oO+oCpMAdJ5pi+0XsDH3Cdf7hUrvGsaX1tdpRlMujg/MvQcjjRaLwGgUDyNOLSx8Y36wZteyh +LlfutzFXWN9RVdMt8JLiNArJrxC6UWBvM8DQjxPELmu1W8h4z9N+XmGO4/UMW7ARfhStIiVy+Fe XeS14w4DCMNVSdefPOiv407S5bdrOdOSG4bzSdeHy6BrCy7iHXfejx9TuPKi/AoKQ/GOtf2kl2mf +e3qWMhBkKP0W3vpSvhslJTHJ+CT4lMrGD3edxWcaXsICOIMRUWX7BrvwBUbRLqgC9re43wNgDtQ hoAUX7STLvfOzUJQkqTMIil5aFWdzM2oI/u/haRAaA/fLnn7j6KAlItCW04TiseDS9/No4a6LsKZ EGNTUanregg9hWklQ0ys4HKDstN50EIaYdL+s4kg4CJR/U5LODEiuMbN2K7p2jptP9bwcTPMH/U7 9WUvZxQpK7P2nz0sgKISTgNXxOdJ6F0HifXbqCVcvRcQhB7v1c+U5X6CRDk/I4BrrOkxa1PIsuex go/kfoyKBi5rQCpkIHoth88exD9KJjvJGy6x/2Q9smN9XL5xgAsd3iiwHy5p6MGluok4Epy5APHy Lvv8/ORChaum6f3YPuvrui4LDNkcTAgnjRqnDhkHw0dZD8PmTW7cnAKAApUmr0gQLGYATHJhneTQ eg4sLSP5J9arvxLEQ/gw4II5CA5QSIoFPAWBQMqNCR7cYspKGj5DTnONB9aqRckUk2AYcghD3UHy pvTq6GwKJKCHSIVOkwEy3CXszW4Zlrzyr8wWHyhHqkcLybVZ7g5vnIcUVH9mHf0VUrG/ruAzqZt/ W+g+tQ+ECxbZQ7S8KKrwTkyCYeXGKIvsRrlIuGW9HYMFXHPH/zhUucZjK9Hqyxy12oKW63PhPvdB r+jGeV5VHBdboDwYDGrON/kdvhnyWA7wK5/fnohdpipvuE1fcN3u0UjCIeQtYd6+VAilFigiAHub jPy6IjMC5KRxGC7Y0waDn87OvsiOcHOy2GO3ScPcChdl7cGt4FKUgfYF1Ieif3iSrrGlZsni1oWE vTWXCS7LcYCIyOeebQW34ZJuqy+A4YfkFTEEpl24xl9waZY+DRsDeG7POqNtlPkcWyB6aAFX4pDo bNEuR7juOXy7CDckIyO9Vt3Qxez5wSI5t5UoDYi6DOYfS7b6/aaXNYNWbMlC1BtxoSE/POAmPzxw LtQqb6gmzcirlCqY4YLaF1zcvhE/9GwJFnV77UJqG65S6uHlQLgOSc4gIsdlVoM5EnY+3ecP9osI MNRmdbLd9KoVNvoi1taaH4QtfDj3QNfYzJZwhD2te/f4lKK2Ng8PMRNfRhLsTQh0/KXVJgBKc7uv c3nMwAZcXibAW3Dxubu0lN9VLqAQSRQFcWEM4w8u3KrKfQs83KdJRTcIHw5dGEYtSnSKwAVc58oq Ooopy8PbueuwywQXd5T6NBBGyTPc3t8eBnD5Fjvmr/5j1bYga70f3mOLFamUuJ9s66mgbJGS2sFr Pp83x2uzWn26Oz88+q7N3xbsE7XUnvTWOidjnWhQrEJxfb4Z9Ouxfr+Pta1PXnTzGsCxaZ4oo+8R +auMSXFcyuaZsNVq5zmJ4i0znsoiyP+YKxbvNbfh0syf/x6OP9jiHOfW+5pDrvmAOMB50zqh3tTm c03pW6PnoFzflTL+ZBPtQnfLcP/TjNb07Gz+MZ9MBjHX1rSNuWLfNX7+5AhLvNqfc7D0mbu6NZ9g tLDNq2dnj33XcOmbuQmtb5WJODFT/7JJBixkw/pqwZ1y7Qbz8/kCrYVNFNdw9cd2bpGjxOh7+/mr s0crkGjjgNcAKC2yhfVFBWpphg9KpN46eLhxW3m1MAOI/vq2wmyUBpfGmprHm+CquEJaVbdqpr8v S9DyuFES/mc8SZQaaPlQM1PC7c8Yh799lo2nXClXYs3USrbONm3qHq6YZhvQH0Ml6AwL5EoNDVgw qtRgpQ1+Yrig3oIPjTR4qEHA6WmZhXoKgmfWgAvKPyG4nHmCq6IhUGfw59+hARfU8Rl63eDgamBW 8OVfgUp6AAH6+d6GA5Lj4ekXUMTvDDDZutiAFCiR97MLuHgtjeHytdc/SWoJhycql2uc59XpwMBr frZtVfdwbYb0g1NwioXs8xsY1Z46Ag3r3afXxzdACpzHU9VZocM+D/UsoIWrUbrYeu/iUavn8rkZ Tz10Slm3aZOCms/TgBJptj58ngEVjHJ5tYu/K3v5AwUIl9bsgH9a9VYvKzQQLdbbkvB0jeFq0KhB w0wqA99fJw3UQT/FBviVKtHksmQxw/4eVv24TCYluPlVPPelV1OiXsoOXI/u2RrbPfw5glMExRrX ASMW378ZdgSl7BKuUk695vEbaZ4GWAtGaXxz/5CyoN5mLmdSTm1UOLezj8I1w9CgrNLpeprPFn6A 0RXzq1vJqR2BC26ajBpUJg0ymcyPHm4Jvvr3Nm5LlnjC97sWDelM5qXYlghceZUmLU8yTAZfVib9 +4r3Vwfbje4tHlmvwqzJdsDlDa6YvPaLY3OO/xiZiMxgoLJLuOrpy2FvxhO4VLZE4PrdKnUWcI3S v2bPbWC4xfILHgXXHsRwi1ISZNL1q8I1DoUMt1hs49ME+HQGu0Ucso/SFXYBFyy2M+nLLFEu3BCs XKyIW1XAcD3M8PsdYLhFqYFb9jtV6kTW74kdVzg423WLsnu6YtWxsSWq9YqIyNm6xMHv4wzD9QOo bL1Ms6DeUcHTdYm+vQb1FzBqQNAhITif6cA6gEUCl0QnPYwCgUsFdRq7WHyenBHXX75J9E2wI4q/ LcfymQb76w273kf6rl2g73ErMdYANGCBvgEok+ygLMo01MsXAy4VFGkMF2l+lHDthlk7Eb2iND2o lzJW9mB5lAfXFtoO0er5LNyWfJ8SY/WAOYRZzNaT8dUp1s+y/fu0IDKu+9laOsjp1ItrJGsp9tjp 5bm+LRyjbHSrOfWRj7ARte9e/4+k888/pnvhmija8s1HmaxKVdc2YsEAACAASURBVJTHidL3T1cc nnhGfFVvIopS6n+xCXYBV/XiaY1Ztbp4JjSdKIrsV7pkTj7ZIbMoZpH4XiTkxThz6mEdcU2qFxfV 6Xb8tTicVGXf6sX8KWSFwhfcLMST+EvhxZq0T7aeLogpezRN901X4vR6A0VS6xqiCAq1n4CJNimI ZwOuqnUwpgcQ159Yd0LnInmJINbCR1Kp/fiWkO3yW48L5ZqEBtdprRqMppQ6irDq9FF7kzuztcm/ FwvtUsxR2TQIuORTyncFWWOzp+VAUbtd7pazsUfDAQVEw1Kvyq2WBjBZboFCN4Lu5Kb2cE2bFysz 4eUz78WIeELAnZATcFM21lm8ICgDFdwBQH6HW6q508Z4OMF9pYv9BP/G37r9lb43n+gkXOWLDRuY MmC+0l0QT5dOKT4IuEBw6RX0VKxcxfsczK2UAgUpjq7dlNS6bBlwSTk1HX4sz03t8KpebFt1spuo 8IPXaWW5gi4/jW7wH5TxEOZAWbpVbl2fJITeibOFGuC7/PDyqtQKv0spzu5h9cWu/bsb2U+rune8 0J/MltPoF+/vARqCUvshr0FoKBd09/3Bdw9/l2fLoJhPo7t8FKsibFyiBVtV87TRRy5VZk6dreWm EJ7ogrsbjkO39IZy84kgsmUR+3NcZrTMbnGJ1//ZO9euxJEgDPecXS72tAFCwjXhnmhALg6gIiI6 6gAePF74//9luwMiBpJ0kibgrPVhZ5YJ6UAeqqqrK/023Tqvy9Qes8XZZ/uObhJ8MiXY37TevxmS mdsaBDZaf/MakevUK7wX3wJHUwzYVF91VEJ7fVrXNofW5VtmdOkrWq+XJrLtvnquiToLmJhq8oab y8svm9Qj2joT8kAXublPNoOgrdC1XCp9Uvx1iJvy+cnAFC3TZUacemGrYlNvyLa52hdK6p0oiXNu b77+xhW6OEp8IcNP9w6XT2tMcNPaz6RfNYcrMP5hZ5PJZHz+heByxAt0d/Pn0AhLuujdKMMfzpPg 6xJmekOAUwOWpv6gsfFYpQuTe5dwQYd+zhnAc7qQgwE81Zk/k/q07TqaXVQcBGxsNqGiC1NKWabf L8cFnb4BORvj9acjvQJPEBj70p58nYumEmYL1Vaui44uyk5V9OXYMvo66MiBcK8/ocMBmOWST362 X8DYZHOLjbVVqOBSv0bO5UaoHDq8RavHi84VhRGTn02Y42bGihq3Jax0TeLUOhJDe7iadJ7ra8Dl KgI5lFJHzsdg4Lo+F9TAojAPIbdtumKJo14iNTHta7bOuhiyldgnx0X/VSNHnsXFGNCz63qOmL0f ctvLu2Cq1zPNnSYUcH2qRow3zx4p54o776HnXHoIJ+9DbsZAHl1XORJ5Ucx8JdzSnBGGNbOS1USt DptNCriqH30TM7P++i+y/ON6Wubgje7G8DZhhC+RBV2czdlZfpva5pLVpF+dBWht4fP0TkKTygRt q8SOO+jd+wcH73SX40BPqdFzRLeRadzj2AdGlOh9ckH6I66TcZMerKXLm6hWy0G0nmvHbRGcaWYD e+0W2dsRtdvHEMit9r1FUkSNodEFzakJk94qKFgUqRx/sMjCyvbIswuKCWOEm6kOwVpA+Z6cqaYV eqouQp89V/G4RjTEH0C3rT8yYU5I8mT+VMX5AZEcLEAwyJpzCV06rqRObCl2cwGUk5RRaNNDXHx+ h4vCM7LrvOgFGJv5atCYptLl83YkAzGIHYRM1MV0BWtzx0X0NQcIwAoEMA8wafKpOTSIMrwZ/+2P 3g56DUANDCAo37kaYJO92LK1cmGsvty0C3yseZx4q6MKu4Ar+UC2VbaOWOUOAEM0F9vU4UoeWWTc 7uCS9Y180QUmndSguh3zeOrQQS/YGlHBxWjCyMVce6iei2o9RWuEvwJTUM2O5p4rDYZZK1V6iOGC C7jgZrgocyILdcdKu5V9hwsnd9cWAdVVVHz5uIj7fhYUrypQjTXXroxVXERpTdP8iYq0G6lqKR9r XUqhANvEc3ULBZRKW6RD9p4L0uVEZcXsKIidZ3sJF4DGrM49XIuo+PzhIyG4ACkgd+Kgu35+Zr9d 8pPTWMRDiu4u6imjj+4LAoE8OqE0s0K78BPba0BRNtz4Rc4FPnKuIwvHQjZ/b8YNp5i/8hJ5eYk8 64gZoyKmqjSHq0TmjbKFbySXd5MFcvMAdH+JFq75N3Ehi6hY/HgdBgm5Kv5bdf385IAqBN0miyeC 1uaMrs26/2ZM24/qqz6ejlEB5XU8BOXf1yfCmPGoZGgxW8yS2SL+2zBrDVdVLBn+vYSIhMV7bh15 MabXC8+FycX44oQ+eGceUfEXBM87oI1ayevkibmb1CWJy8aouPC7xQOSda6fn/xTBaITixPTVn5T KYRY0TWw7hik30zC53oXvq+NT4FNWTukVygc4KAIS4UTUucq/LaqMZB7rxlvTUufDS7hWolSC+sW 2lkQxX/g1CvZKvwClnCBXocoticvwLHp55qLqY/W4SLXhvBHKMY3fALyc8NwPeJr8WZCLMDBcMKP lMvRNjg+S8ca4TLJmtKUFVjd85acwqXHK3HpTaHFRJMMQGaTeUgP18p4xX4/ft/t97P9fn8dLsQK Lr1IzywsWjfUO9oGx1dNDdgSotYlKGflfXx7boWaYYyKQOKqNVyWD6jCNc9VOxCSUeXevAZxpHaW k8XnTxDD+b6unzZ3/QxXVLn2/MUmAhrqec7kqZpSnWyD42/FCxGlb4g+zA2hK0bOyK2NQV5JLg15 GwDgiwwLYcClLXgUyNeIaMdbOTn+dVmemPaSUVrwJSruM1xfdnfm/b/uFJtK6kxl0+o8T+nTgiCA b/vypvnjuKhbBr9VNf4i6zlItXoeHjI7/4brf2cpBl6rqg4Hto305043KPnWEfjqlvbadzM+H56P J7Z+qxoNhY5bjnbv8l0QSH345oHpPCnhuvSweLTMDqt59audCWHL5Cr7ApckSWvyqIsXGvM/plkJ gJre+XJbi3sZCoJn/f0yUViEt/K76C86A01WEz4iBftJQL2yFFCX+GUtDM3bIGAyN5UkXWWxuFLO gjW2Owyi3lYrpz9+TDLRaChaCC2svS9Jly5MfxUHyfiVmCjGwRUESh/faS0ONICI2jhPjil1ID6I iLt6hesmhuG6EUHybA6XcgVAAvExkMRDE+Fzj3DpAupAIwLqV3MBdXBDkCYSw3VExODxZ1X4A3Ih oNeZ3oHyRUo4Ssa7+F2ge0XWyjFcXZbtwOntzhEnudAncwCXts2HgaDUbp8qscp9sR7LSkelM42H VylerP1WRQloqUZHfgT4GKmjxEoX0wMvDgafphFXYoNHmY/xYu9Ohyt4pp2hOpLi+EUJ8LG+R6eB 6v3qGTg8IgLqWh1D28BXXnkknivfuEjysfgtkHMyn1Vi6jW4BdNToXZXu78phrqP6Cx5pJ3JfEoS h9eDa4Zfc8Jbw81sbOW7xtHPbIWO6ReBtttRLwkCV843QkUi9QyCj4CHlTwvSrpTU/PS3TBLjql1 gvnG9dVV1ttQz3GlkM/JRJm9BnS4/jQaPKpjZ4OHvhVr9WPo1XMliIB6Y0VAvVhozDWuy3X8/4DA hXhALoSoeLebp0QQuRhC/PAh2crXi2egJt5mPYqpG64qpcU0L+XToLpRTVZXx86EjNbek3xeItkP LK/AJRMtdSkbhrr8+B2OMXrOJYkjj79lPSzeithvnEFJrJN7jOD5NQwTuMQifhHG4ODBc1jUBdTD 0CCgLtdReA6XGMRw4bxKzo0ewJS09OhwgakEB3eojq/uVjw8KEdZp/UQQYSEhMt66qzZ76/4r0yr VYhGK2orus5WKFejhWu7D/eTrL3Lt6+Luo548AIjcMs3RFmqowao8Pl/MvoxpU6Xb3mEq0HgKvPH OTnK3wcfgIwnE4+wxJ/ihH6QAwP+FFb4qFfPhScLDTHJLwTUh3yhU+YLxHNJUkN3Rwp/EgK1R3Ih JTiHq5QlCX0yA2T+rA5KfF5EUn0r24aT9daw5nru+P7M4niRvGc2kKXTdbMPPYNLXXSDujg0/pfV uqOxj+a9LwGw1J2FcEUv3XheEx11H3VvPaxiV1dqDlb2RXYl+TbmP2gU8EhX1I6t42+2/q9weeoc JHotdnDRRsV/v2/GXwdX2FvZq/8jb81Whnq2uE+9ShBxYdJqyhHxafiNyY4q9mqeSVDco2XrTQLq 34C5nNTEtFTMfcfzedUmLFJXIjS0p2Rtl6+wcjkbDoezSyUM/0q+ABRcdxAObODKlGhl83Yv1gJ9 1kBEw7fDVXsb/qXh0TVeObvpYijXouvs0nb8FdjL1LEcjvtzuMn+bMeBQzk4Go2Cxd38gCF02en1 y56uTOi4su+9qHR6iMx2tlCmh2Y2VRh/NHkU+XjEjewusAvCkOZuKdu21KV3drWqhcpOl669ui2G sTF8aGlThi4SjT7AWgL2LO8gm3VX9VIzITqzXWfc2fbO/iq4/jm0swGrD/Yc2WwvO/BebhrsK7kQ rZ3s1ZZKDkMiq8yLO6QxJs5rFDEzP7Sl1szFBnEhestRrDNq6T1ny+Nt6VKxdfjW9R4RIxEruPzX OXa+BU7eAVyh1v49fk2fbjGha3hIazOPn6tswZbin6rnqjmGK+MErhOqohfaud/i0PtOCogtXZvS rTdiG15XtxQSF46LdW2F3nP1qMv0IWd2jK1UbUetZo4at1O2jMX4TWV7l4MZ/dbbtKssmsmU7vSN oe8yZvJ4zohfeplPHcvh3dBlk3WtodYKubAMqaz+x965MCeKbHH8TNWOmE5flhARRV4iKjO+Y14m MSZXY+61kkomqb37/b/J7QYfQHygoCGzntqtsiYIAj/+ffp003/nnca7z614oWCihKMpePnzrbMV f+9Eo1uvL4lJY4AKL68z4dp5Wp/aYsrlr3zd3XHW1acu2BW40MCGr0ig4uoOYTGaPqMn33rxAfQt v61Rh9WXoLPFnMvHF50aXflM6fL7W6LgGrfB0d6WqdYkOp5mczNhwa+L0aKngnflGPvhyGsm9BwT Lha9lL2Lcj1aS43YkHS5R3zeFn896WbwaaPzcrWIhZUnvsuGMVgddSZvOhOWrub8lvFHijyCmaMf NDLZ1DauwZpdQByqYfS0eEu/7N5wyUBjky6kq7dbit4UqE0RgHLrS7hecYDHKsZF+jYTOoxFvUb3 OiZX0Ze/8JrlBYRD1COQW5BWbPuvYJtW6Tr2YjVxcNYHnR7CFLzCtWyQZ3uGsctirbk3xrkUHi7r k2bkrN/K4c2ly9UTfFsnOztbCRfWNPSo16nZ2hB5qhBisLPfYc6V3mnKtcbbZ6ltCldAUtiNs64Z L2+rc+hkIOkaw9XL5S9NoQRgnhgt96hPIWDCuUPpSq814+Y9AuUKNioUeQ9yo7rVpsWuqxkthfU2 X5x13YKJDP1A1HUhr1exhVCXKFfizz8DeOJ5Hq7d1bnWnJKqRwBX9TMWk0AbiRDaULqeAidczmHW 3J6Gk3Chw9dgbLkelJ11GNeej8pJUlj1koJJV7gnLFG3AAp1DeXrHzRojavLBvXxvCM3uyNA8cR+ jX9dVnDAnuWHEP98PrT5mtocINdiAvaCAtM3/Xdd60p1Nlg64r3UNU1j7kIkUab04dpFDZnU5K4n sGYYCQr6vWJPANEiSXby1lManVSuCul0muAnOqs12VW9DFyhyTmi4VrNqHfg55XyNSGoQI/SZ9lx b9IEFgZ+6frMjCtoVKSttosRwWUbHC4yisXtdtu2oKNem7jZprWkn4NF0rVM8ciBuv8WUPOu5Sku TG5kyXbcAws6lC4j5xiZzTyEiuu3i3ZMvDyfJ/9AvdEUxxOtMQBskiMP/FnXjuAqh7Jh3LTvqO7A IcgH1wKv11IOCmXHQl2nfCRakE8NFuX0K+DiMKdUqanO/FaR7FZs0f8AGSfkCw0oImPalr0Fqlyw 9KLQ35HCqSTNul59LsSJBmmXRS0zoL6KF9A9I6c/8J8KbXkx6Y1nBfqeIdkrpCD6umIqpAWCuiFc xvZrERdtTXw4a8vIgWtB6kT+hghY1P/LQAa5LQQNcSFc7Cq4LMU2MpxNbXa9mkgdEKGNexSJSgnh QQO6aOZ+1gs0fM2dXdrLUuer+IDa5k3hmtS4GoDt1X+pj+dP8aE8Fy56HtoISq2KALiOiH5m7bJs tBFyydTN6/XNAFlXyLwTAUtauskT//zrjznCRdUNVsAV0Nu8iCB5hKGYwW1XG+cqLFCTY6Rn7bJ6 BQ8SgheuWa3raknef0nZ7TZRsy2OKFyTKtfrZIsTQC0oChQu9BO6ggcudgYXUkaOruPzlqJDN2K4 iMpnQ3u3mNurdUVaisBXf/06PHz+deUjJABcq+2nC1WNEEP+72VLUEfNdG9OE4cHjnpRJ2KowM8m eOHC7kmDikXt1g0BOuUiayA/XN+OLy0HroIfrkKjIdxgq9EaqxeFa2o5zLrOYwoXpxn/IRtFChf+ EdyKcXHqZWxcjtB3usqSLT/sFbUh/r6mcq1Ourro8QAQVxY5ApeGWO3vOXAVaCKvlEFp2XCJgg+u WSdgSC2GqU9x8xb0ct4NFxrQwequUBfGcCX8FVTbT8/1eb4IO3CZQpfCVRh0ooYrVY7AuKW3eclL srY+t75AS135ujZ7Zlk6X96nXJjcrjy5401EunPK4CNcXiPPfJ3eBq3vhwv05sW3rEktsm/eDg8P 7YnyT16NrMGZPKD3nKZ6BK4eys+ORb7w9/A9y7Lk1osa1ULjqfC/csENF5SoZ2iJ/O1WHCnVGVwv 642AgW3pLmpERXEVUIc0i91+lM9yOrS/5/dmmHKqtGJd8dDNIlEichPtYbhF6oMSl9CliTYH5FaR rmI3twouQ6CvsHoM0HuoQ5RLL+h5By7a8yOoEJV89v4g/2z9eVau9q2n44fkUIqm+OCKzoQRbWWv U7qOQsrWMOwotvVzuwPXNlyGHy7vNpnGMW2pktc31F+jcWBfmIUj3hQu9AEuRdcRLWWw+WwXTCKC T5Po+fsYgcYCCN+6TpULWApXaQBfMNyLO689DKQx4cewF741++PoKPzU1AXKtahvGWQ6xXzlQn4t WrTicniF+Uqx+SKpkcy9WVTwimg53k6DUy4TbZpzvY7fsnp5eVn/InngSrQ50m4m+rCPbY3/vDMR he+FjQyLk9lsRBPqEaadsqinL5Gd5vbcBIqgMHWHpk7C7L5HNdt5ol1X7gEfFHFqidB+fdPPaxcX LU9pNisVs/f+/b3XNSuc6ppno3KVXkStoq9Yf7S/H79VJJetwUWBmjN7SyJ8ScwW6NqLzO8lXE7K 9W6pqsUZT71o0/XAJYlYLJK6jy2kXM3mpKhA13SwdN0wIxWmwOXUfav4ewWeJ1K7JWtK194O6DeL jKYxcQhJLf2RRcm2pqej8RfQZhbj4xgeIKcocdECsLqnY29xXL8Md6T8CLBmfzJphUJkmjn45rXu zDPgTB9SRhvnLxxA0/70X3vfeqJer9ILpViurS7iVH1jVSYuoZpH1lgy1Qg0zDZH954rLkj2h94D 5C8JeXnb6JwVauHh4u1PFQrXxel9jpqHeshgwT4IUqSN4ao5BqWAHilceHQmJROWs+9Z9OIEV4OJ Ucxa46jgUnj5Esv1GvB1XhgeG7JgaLxA4HrK2XCJPHn673NRwFXXaqhSl1tQARsuclgGjDp/MJTl y7ya4AedOt8PC9dQ43MdIlnwcnA2AuWc7Lx4rjBwj/m6BeT4fXLKDzFhS2JiGdI1G3IhEiRrmnxK WsKaWDsSgEcXD8Njolw4M+z3HhAPpqZpKhQztYQcVrlqmsZDMiPnKjlRxedwT3Z92RmBjOSjFAxP 0TnRyBqgTInZHC7gyQmRn28+dB6AGrOf8bycG54SwkAWa+RMePJA9fpPfZH/TKRSk/EQbDExDUlS ZRReuZ5y5IHH1zyawiUfvxC4iiOwletRzYb3qreVC9ey9zZc5NbbytUZIRmhH/XWMDeG6778yIRV Lv54aMNF9nNG0zcHrmHjIX+encCFPxGupipJbRutFMfEObjwcBV5eVSQia7wNdos5nlBbvP9C3mY c+BK1CpRwcW3+VyFl1sV5MBFWlwV8zppFvn6gMAlD+4tmRHl01BwkZ//8Ej2fJFzwyXySKk1adPM 9/PklD8LrfQ4g6+2VSbmIV2HrhA7E35JxsvTHqgthd6XPnAkU2LQNK8W3B0IcsAkgmGOHU+bEaMY UBmfA/JPxcHjM/Um+Dutap3EHil3/9E7WxCHmN1Q/7SBJdT9p8yg4JgvFaprXh86YbjkV7zm/5Tx UtT+WnAxTnIIcK1btuRmYB/xpSvVsLzVB9WqVhtVjotrTaJBS17Xk18nnezvYZzxQmkHJEllVFU9 maSFaU2NZzomWe7nQWruZ+XEOwdIawx3k/04+7et6yqBTpXi3FLqeH8Lg9xlVkwmRRHvXryWvFBC Vw1L4pPw67ttLxp7dJYHS18rn8bz97j9PoxvYlu0kG628MBhdhxfXRiv3GBN4hcbN74asaXrJGKw Pvjjhd9p4RiKdlf3LmevatRo7CJZFP86XBRXsauKxVW9IqyJzvdXDGt7iTQEGTrJi64eWChDIreD 9xzxr8NlUYyXdtUrcc28OHabaIVf2TFfTtvzFeHi+Ag4uoJRRdj27fp+uCKeY9Xkx7joqkbhobfc 7DoMvxpdrZDAhTnxVrxVqvB/9q6GN1FmC583uWv17FyiCCKggh+0bLWKYrVdv+rWdm+abm56k/7/ v3JnQCtaFbSotOs0bciGHWDmmfM1Z84zSO97rv5892/Rsu0jm5NzdvZxs57bG7U1abU0kYLL4FoN nSR/3JSH2f1uMRrfA7WXKIErE92IhPJBExkDEKeHpEecZIX9+ojfg7YoBaG1CEdUtX1j68DMl7u3 18DYOjQPsY/HGOFmcnvGVqgV24WQox2bsPXn9acRjxs/vy05kD/jUUJXtJN0CtmQsPUWekDC7UV2 IRfns0s6N6xZXtaJL4sr4tvc1P92eJbrTWMS8eTCHaP1uDGoRUJHl/O8vv7OpAsFXku2/OsK/2IK r9cjEBFvaLJyFnF0Wbt8lo9PuBiz//hUuP0IfIj+qKctSi2yHoAvEbMkM1EHFzW8tjdfiL9DGCIC 3p7GC/uw6V6CbfK8fP9zHCLi9eK8F3lwFRpkJyXlBxwuLMU476jeCzWYtsLg2jQUr/HjcKivnQUS +bxobWct5TezJJyF7nlYqr6HYJoXW8HXVAQUo65EXXDZO6x7DCg1SBgLfcE14OMcoY0LUXa9bhEf JRESXdnIH0MzW5vGkzDuTPZHor9GBvKZTHpxvklQhYZhYMvrHCIXDrowoE4MWdV/vLUib275bC4I OkBJqKIuaGCWJ8XmdRO2Iqn/8ELfxAPKhYGub9slbIXsp36kpWZKcRyvRjEK4VOIMMlYWC2oiDWo khtiupx0CzwVgfXIblOx2WzDELSUJya/pUVwbIcRZXZQSGHUIwQFPWrbjH62/DtwSebC6sUtVjr3 QaWIPoIt8FRf9wGLCTB6PXExfkq2FaXHN+mFTE+eHedAK1IJOL4bixpajImsihZqOMwP3bJ7ZHF0 5R8Zd1qWBzsB72/eWSliWFZd/qY4IakmlNvOtsLLUi4NyTiv/YPZlq6BWWS3GfQni9s4MweTX/NL Kzqyq3Dp+975RkK6oX/AaKhwTW3/O2egF4RFXqRmmCDICGWZCDKXBUEGQyBZzMC2Ym69DkJ//AUU XYi3TUaDVXaYrGDZU7Qw1mRkR8YQdPGaraVumuVc0/83wF2F5YEaiUyxuB32FKcz/Ieu8p/CTBbF 0O4R9Q4eoAwTqnHiib4kpuEO0j92mvyVwMEgmjOo6KqBywbKcvJx2eJKA04AOgA20ktW8rXLCCf/ TeXyFFwY2WwixCgoRuVMUVLB5oL0WP4n/ZOnJkqxh+5ssjSB6Wk+JrlQ/TED1yVh4ErAOaQzi3NB wYVlimg0aC/5C9qpb95yoFnE7dBLGJkjBddte9T2RuffXEWJvtYYgFmXhiO5/knAuEI/6B24olfV pXdkZZgsmJqckYMqqSpHza5SvITJuElqbNXPNpH/NU0nl7NZIgqgQjwrUoWYFQWCMlWPmFiSLPR6 yFhdzfwZZIYwSgyCuooB5VswaZhKyYzWCh2zqjr+31JsniTp0EgNq+2Uf6bXXbFh3HvAtY2zfHDF eFS9WHBPhAd/3Tqrrq1hhdTAkp7Yel4tKeZ9TtkS8Z3amnKXkyFJMh7singbUCt6H2T0EkycplYJ OP+vGTXoBzCXV4dLxsuNf8Y5nudzFGKzW5xgCwI7MVlyjht1xdsKeMG1GF5hkT9SR+cO/eiS66jg srZ9Xe0duMiW63Z3cK0ypmw2xxWMqT4gXLNUGDWppKl5jYJrOLfnx7n69I47t+MYhXDXFb1dkfq9 XnDBgkXPRpR0EpIWAXDhMbG1Q4WbKrIgvVhCDXViUkxsDS7unVqkvUhMLT4G8xUXLK4b+C3SScy3 V6hPLiC4Jma1AiUvuOYJgrplTa5FR6rRy6ELLoABdOGNqN1r0ccuxkhVaXLwHwrAvxhcrC7P9g5b Xyjek4wAhrO9yGqkzlpQO4Bw7g+zzzL4KLJeCH2VzOLrFGtMI1URzpvFuOXBDPEDl1cvXlJbPHnZ pJ25x2jvHmJiyQMuei0NB09rweW88SpHDFcHhq2+plJw3dZuIwCu4yWmmmT3w1muHTKzpNBt8MHe ll5npJYpYvQn0JsxoeQRed7biB+4qB7P30jDbrtIPb3qBPSHrjoHV0yvMcmFOKDgslQPuLY57OoF FyFUGxATCANXqX1ccMWPBq4eRLtNwVXqZpq/VS+4Fu6ysUShIZ6LqzTvO3CVbjMPIw+4cEEQhcSA ix4/5rhBe/1o9lbUDxB22zEKLiufLLvgwpXgAhnzKhrcmG7fOAAAC1NJREFUypjFFFwTaXjbZkit SsniAri+diPHO10d9aGRdNvxBgkD1/nNxggDrjb9wfXeKrpKLBPZXg5h4Dqf/B3gsj7XAbKD78Hi ctTs1AK37JEsLkU4jf1Xb3gk2k/zhK2v3/rKyVM8tT0pxaNZ8yfu6y8ssXpmspA0jyW3Cv3TFHxZ S+vINcOVE7b829VnBReLPyhmoVCoZy3t8EAr7Ljtc8X4zMeNBo/lq15OhKpE/yXnhMa1QWgbHeMp qeZ0fktcB4AX2WPFUecydMrWYsdhKaXtmSU95IejWiN3D7G0k34KddFofipwCSad4DerZ0YuS9F2 oKCXvdtrkytACi4RSuqjM+AdF1y32hBJeJXGHXBJlq7CFUtCuJJccIkwbu+jfLMLrnNtAs8t+szH 9ugeymeWWJxAx5owcD1ARU/QX/FTgMt2ztnMt7WmmNJbhynGuzPVjyu5eL4DJMdfYOxB4nM5XpTg uV3PhDb0Y9rnE3DGFYOUWr5xwaXxfAGM3FXoFZyL7BtAoph+vil3oA6jX/36fU4sF4DHMdbF8tNo KImjm+LnUJSoLxJWIApyP2k7V6S/byq9nWXMTHLhIzvI8CxURekKMSdWef6ekBAlF14/FXmep2B+ TJTEmeTC53uW4hm+5KLfADmeV58TVBKfweiefosDrg48iwxc1TYj9z4mifpWbcPBFIR4K7M7wBTF h8BK2T3Re9w06GIWhLpaTUt1oQOuWszBc5hUFo5afG4WeUdyUUDnEtdXQB+ba9cT+dxe1CL9ECq5 JrHkfxMUXOwl0gMqucQc1tXyU9fMt0fDWOer+CqprYg23u4t1BqykM32a+ZaFj5ld4ErNWwVzhut NNCrtNQEQgXwJV7bd2EWhD8XwWgS+1cLWpcXhBp3eUbyQx+bAMO2wy49j+zY0SXc2T3xNmOLlwhO wrRkZy7gV+MCyr+oQX9ui3DZ+DLbm5jdoozXeAqbgu3JJIJ43z5bkc+jhz1G77P8wujRe4Xezwr9 9d8UOr57/OKNX2jvXNiiUInOwhmFLC4NBiLXeCfATqzDp7bVqSBk2FptS6FsL/aTPO1ZnxpAIZid dXZmYXJ91B0xtdhR4ZQadWqbjgUVCnK/37Kn5I0FAllzQ0/cQrUT5cRofWr9NRJLU5S3hJmsG7NI +Zm5skd4JU+S6y9vcctaqRULGQKcMD+NgKkavU/ztaOcxDE3/q+cTPq/XSeuoULIrMaNUqvZG7Wd U6lp5n+mvsgYeWo4c9xJHm8hulaBS1mZQDrd+d6c/4caVagz8RdWNRaU2Y6iTLujF5J8yPnFFbSh ZD8vIDC9IAnOBZFl8fODS9+iHC7WA2QuE2XuYGohveQgUQXoNqtQSevk6p/h4WTWOi7HPcDLOBsk AJPXk+KkouYvviq49LV3M2uq5tNjap5yoYQ0ByVWxqMknrOqNywV6kBjQw5MFdpNABlKtd9quZlv ND4/tlYdCzJTGz3LpF+f9nxzO6RAquUFF955j5oSjnsj2Qx5c+jQTLSkkgC4sxIMXJIau//86FoB rg0BKmb+m76D9OZyhmUdlVi9mIo4gCqWyAUx19tD4QGM+DPRhgtmQy1eMOUAscT1fV6NNT89tgRl RS0tH6Hkt2Sx9rZdFNJbStpF/olov+D/7Z1tb6JaEMdnk1tXxxPiA4otoT6C2Jpan6reWu3Wbpv7 wm580e//Ve4ZsAgFBbqwV2+YTU03ASqcH/+ZMxxmlGobtJqxYgExziEP1uo42jRxowsto/Dbbdf4 z8lbL1TnlHKQ1iq2ak16RNNFRFfpKharogRto508hDh0Ed3rnS9qPtF/7jywHA7iKnCjiofDIfwz bB1f0e6j8op6mIpHOLy4uNT9rye7+D4c3l/ygD6md8vY+zpOSXGxJbC9uYl4tEs926yzhTX9ZXaq WduyxzrUg5PBYCUjt8X/BsN4Vt3Q2K/PYpSUdIge7dHThcK2Z3phHW/SNsYUDpctr1cZL3IRXqZ4 LgpdbzUr+HmsIIcaU9alkzdb7khFD7a8PCyLttO103ad8grrE/S+5+Ve9zI3BMzPe71ujrpa2PqJ HXvpENNnib6OMUBcj/XprAhKWxulig/ytvq7Ex22R1ziykjY214XNqcX3A1Nlqof2lK+Px9Y1ST0 Q/H88bDFLat+8hnurJfvwZrTWZ8rVksGpYFSV3QFXIGyYNGNO9tk98F1JK3KfIfnxqDL6f7EXs1c BX+RPg22uGN0C8snvnwTcqj+oCGbjABa8otZwjRgv1+MYdhZNnsArtOgCwRWu6ymvaeOR75+1Hat Nxvm57B8z4Vy4s3ieDWRtdGL3HJCIwSeUkY0LNnDcJ10Vg3vKcDX50d8DkHioTA3ewehA+U84LzI fzIQppU0i1hTVAdZ6837lcqE/1HOFnv65Xe9cgJO8ZCuhKHrcxF3VpgHliMh0qgrbSfr71D30wlZ On3EXy3QZRa+PhppsVAYBN0zSr+I2f09r08u7vK7m4/cKbKAmhJyNEgaxVqhKgTiJcrWrWt3c0/P E4fE4hYuIbD7DDfskpn57xVutvR2yuUyP17HWOJmPFStQB6KkUvXLuBS48Y4MR9k4vJYlGda/8X3 +kglDwG7AA8lhRYoaiuzISd0XYryu0/KLbYEv3NPXhCJWbjCeNBQUZflmqy9UJUBRABaday1+E8D yhZcEFWkbSXm/c8+ka544RIiJnGHpEdMfWX6S1okqjVleO5BbgeXENGQH4i3XNqVgBBrOG95BlYu Gp8ZLjCUnlNLh7Z2W4V2zyNIGbVUcUQ+u22Mt0HQKAilof5acsDFbAhjPp9HlYIzKgNUpGOGFa51 kFlKIl0x2DfVdXUbSK8x1HAmK1OsoloeeUjXfo/VfKZFxdcZ0KbpEqXnrRUJG2sbs6e1+Uxbw9QC HHChHS5drEndMZe4VhtSCyYuAxeQ+3ikaKgSfV9Gjznpb0p0JmA0u02kK0Z746Y6pAgXhrA8g/Rz VqJGrurIS+j2HnE8UvocLh1z08mI4Hp3t28dUo51JhsL2TTqbmbAhS6EDVjbap+acbdu8W5RnwaH yyFcV7TakrthEj5clgDvAB7t0pWgEL1XfDPtV9rhshbUfdoLLgwM11KrbOHauL0i37sui+fnovk7 BfeirdSsw/k2Slu4xu1VGLiYPeJSVvQX+R1DXwiWT5C6ZplH+xklC/cjyDwYFdmt/pjS2wddweBy iEqz9sSH7HYA6q1ti1S/yYOua5ZTtnCt/Sdt++YNJGpdUKb1Kb0Ed4MH4GL0dg9J4rj4gD2bYJrC Ja0MuOqDHnLlmuHgdguXvcmoVuNxZioDbCi165kElrCmtJWp2dl31eR3s/oB1zcHXM+WW5zsg4uP +w026NXaF1QdnYHvB0iVfEHqp+QmD5bO3rcWXE+ZYP7jB6JBfqQjPvKboq30lSfvfZbyhGNXHUGt qKJuY9qYlva3cF0B41stcSBbcO38otSluO9Vh1SVifVVAktYq/eVZy4FbDEbqfzy/fMBl7TbpCGk VgxrbMwDeqocr4w8ZlfkRgy4rvEBwbPt9NebmuPn3wMc5aE0499Tr9bviy92uIxZhJLPT1H6yaYT xhHDJaaB4EJ7GElnPuSa+3olV6vSUwLXb8P1ywMuVhFhgvQJ6TxnyPEmAwsO15+1B9mAa/IjtYXL meRipRmkK4hWmCeCwEp2MUZQFoy71ddMrp/A9bUIXr9adVjuvl/vtmQbXGyPcLiExAbXy7wmZbR5 9Sjgag5u+RxwyIoEV0624JJ2Z4EHIzzux+/m5BYzHSC4kip7XzABhsg/nIL0tUUbAigyHEv6kZlu +HO9+1Anxuy7JM8b/+vJZzICiSWWWGKJJZZYYolFY/8CE+EyOTXNgKAAAAAASUVORK5CYIJ= ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAooAAAK3CAMAAAA1Tp7NAAABGlBMVEX////6+vrb5Oz09fb9/f3/ /v///vzc5e3+///09/nZ4uu+vb3h6fDa5OzIx8ZMSkjx8O/t8/bz/f/n7vTs6+nm5uT+/fE1Ly/9 +eTg397l+/6npKP99dTZ8/2KgYp0e5OOma5DU2mVkpQ6S2FCQD/Nzs/86b6CiZ1/dHqZf33Y1tT1 6NFyaWl1hqz316l8lr7L5/nt2b2nkYdmcIViXVu9oYyrg2/kxJ+6kXfTsJDL09vT2+K35PzNoHmg q7mPpses1fVVY3e/2e6Uc2b0yJSdxem8xdHmt4euuMWOs9t+p9XI9v6gudbbyLPItaKxy+O0sK4m HyOaz/uIvO0lK0xVMCHgp2x8SyslP3KnaTbFilFemNJJerExWpLKvbE0AAAgAElEQVR42uxZa1Pb yBYcbY0mA05wEEQSwl5iDA6xDTixQx7ABoMJYIeHbMlv/f+/sX2OZJNcYJNbW/fDrdJQRdmSZs6Z Mz3dPbIQaUtb2tKWtrSlLW1pS1va/h+aFlpKraROS/FkiVCeuAmukmmK+eefmqlxwxT6iUJjFM19 zZ8v6VmMWRj92BDoqSjqY2HNpOMTsU3TpHvm/QUxj2T+49R5aC3/aXjO/Ffj/CpNzXHoskrx9ltN Cv2/Y4R/scrz/Mz/MkFl/sfoP+yOGWofDfT4dvl3aZqm/eq5cP+whJkS4xPrpd3tJbRDK0aMNlVl 2wMuH0AHN754T6yRFJXt51hk9e6LlbCrFu72MyJKrAJi5HNL3LY9JcWjg2/nxSPypbVd4X55GvJR SNvlwx+2kYmhuMNz8QtAId3KF4sfXsocWo89TdVZ/J09qrXxZJqoRPnQsj8PCpejqfcY9actLvZe 6KMF+55JGmoY9jjoKkNqEuRYdkzST8NwR8MjwYrGZMaKq+PCGqLvtC0l8UhHsOZpKS7CiTSIJJS+ CE76PrdiV8VajYeXFql//MXuBz25kCgti24cRerciDs2TzWnRDETMWRHYBilARZ4ng2GOuYOhXNr 9hwrOE2ksvRMJpYEgNHuOFoZx3lN87GDwN3KUj6ZuKbqTD0jTkXHQWhGZnybvIBiP6PmaZ5YszRn HQxdGkT50qDYcJyJZcYzThH5oBkodrS+vn7mT5Li2O8u8yxeJtMd/UNNcY+haEiWMMFXUOq4pATF 3gyKzG14pBVONAuWtEeRd+FMEWb9Mh9bd2Vovq+TCATFOJRJxCZ5l5DvwxoHr9fX34dRDQ9rjjnj Ys2xCIpxB8mybx87G9RheJTMaKbDCrujLZL4EvauNJi4o2CX8rr1lBGrs+gHXRZpfDEYiklaP4QV cTg95z2p3fs0ZZxmXDWK797cWrm7I3V9ibG0/KFwafuZFQkx7mCYd9e83OGKeLlquWvLplSvIHzQ Fg+aA644dMfDI1BapfycLgi1Vn420yJmxQUmzg7GKn9Zwbq3wrZdzhMdYcklsBpbKZN7os9FOH0B oFYoArFiNwcDwIqOlV7FIzB7mqBIY+p+cK4VSx04qLIoK/gA3NjlxRyz4qvyIi4Ik6AILKGD05Pu mlU5XMbjlqB/dt/ZXzG0vVb+Q5MpaG11eX9RHRDMXcPshTsOeisaA2OeXJ3l8gs+e9ADXq6MqWkZ JwJfsmivYXATSh4PhKhI016ju1SjwwXEVS+XqcTl5xQVwySppuh7wIrT5YUFjQXfa9QHTlTrF472 Gm1L5s6mC5+zjtM8l6Z7nA0aAxTb/ZB1im3ITOlgy9nauGWiilmRGBWjqI8QosKVBwpqNhzIJPS5 eKITKIIs3p1tOcWN09LAd6aefZx1tpq3RGUIXj8lOyA0jJVT/OrhM0MRvoDXGF2dYKNm2seFnXBr 41TJCi5UQVw5zqZmSjGDogTN6lZjJ+vUa+N6Bwird/YGpMQlir+bN7U9jjpzKMo47/18K/SDieIk v3qoTrOK2ZCumooL1Dy3pLrmRLQa424wsSQLAqV54bSlyWkewSJ/CoNmYwMRpx4qiFKeYFN/HDhb u5Rq2h6yoiXE3iDyWn6w8Xb3BbwimRsSUOO4+eYtlE59DIebVX94ovpOYXMAWwdHWd+sFntqDsXp HdqAoYg+wbn4GAZ1dK4pNY7yZt+nBy5rJLgbm9XCuTt2Cl8t+7i5eYYIMHjBxhlbNjBnKxz+iSgA IkPxvFy+pn2ArnU847ljv/CGPthjv745wIfcWX2TLsh7gc5O86Ifz4h4lRBdOfCb373SGfWZaDMH sgYH7iOvbytyb1B88yeZupFfP5cfqxuY55UF9DY3SetNYlGfZ3QEZU+SHfmFzR1sW2bFOM0ThPI5 TdX3I0SKOlRO91PzzVkYdcReOKTcLZli8SErBtVqFdhRLWcCdeRjyxhfx8EJ2xrwEV3jxWSKAo9a uQGqKl5a82NL6Dtk24cdvkBDfQRbYZCexJJbGscWPABDSOsi1DIFnsQ+ToHAAMWJRcyipQlvSbjD 5pDMir7jgKKuLH1BCY6DI3eezoDXduqZM0qWfGxxHMRqW4I7CHcGRXiGXmzgaHDSZxOodvAXncbP 2ssi9oo0CRp4j9AD9yFZ0J2pRcmC4icCNTlRCafSsWUcp9m2aA9TmrH4Y493yM2yHOOiJlNMd1QK xYesGGSz2fqtlC2nrRaI77qgpQlbsMqHnZ0BQXF4YpBXpKLCEUbL4KNi9c0p1sCcsWLmLkOsqN2b tzsNrBWfoCFYFpZcg6CmmQyxIlFa/fWplogBJHMEgiI2AK0uPCqwGzQajZCQJWMWxakKQg9KxmW/ R5nM0snzCVpdv9+phuxlSaD3lzKZAczlhdMzDDWHoqJspH39Fs9GoNRhx2RWzNx9W4ahDZr1r3na GF2DJ1H1CYoTy6BMmRVRIJoR71Ryv2RrDFAie0VOE6kgzWKjMUCao6hj5EYMxXwy0a6iLrzdUyg+ 4hVfrK7C1xMraoOgSBoTfQ7bVmnkFKpZZsUTdkO89gRFM/epseUPe/Tax9Qzr0h1dqlPAsUFWjhJ +izuvWKFe55bDMUSzFc1y1DsGRx6DsXmRkfK5NgCKq1JMaY1btS7hEIdpxPlJUGxBVP2AxS7RMwY HlCMtZMgAYrCCdpSx2GxWnUiLzeaSpl4Ra0l7GEW9NghKEK3nWK1wVDE3ruH4sSYQdEwEihqepWe HFtQtiMlGIqNapehWIlZMQ+kF6opFH/DK+K8xwIdQxFbPpvFcuPKsjETaDdWxDypmwUitFchwdaD E3QpnK7Q4hEU+UTpkj7PoMjvaOxV3PP4Zc6FTxFiVhREvmYi0FIqg94g8rHFUPTeknRRGgA/QVHM oEgvcyxgY8EezaF4DuFPoKiFeS/QgBGNd7pAAr0X9tQMinAKyhIvXxFESKABoJoVCzSqg6HobSYX CLev9DFNBjEFjUw/n8RQpDQn7CMsTpPjMhQjD3dW+Cg1TiaaQvERVsQJkN7Xkv4wFFEmsusTD5Zv ungN+VQX/nTpU4gbYwgx1BImv365dOBM3Jvv6E1QvEreK5bC6PDdKCCvOHx9g9PGXvZcm8m5Zv3S i3vCybXC6FZi2dauWaD9wl8fwgjHFsCv70SXN9W2lAkUbSsB3fCvzMFufg5FqOL+0plDULxa+zxn RWf37u59GAs0cAIzMc0c+BGxYv0U/b6vHUOg+2QAkmPL+q11nN39djMIjnDY2D2tDIan7w6IFQfB fmYEi8esGBZpRicwgENKtqZ+hiKnWUOawdfMwUbexkgoVuwVAUUqZRe4ji4/IXx6bHnAii2iNn7N BoaKWbErQDFYSUALh40tXKbfErYccFZlxD9N6NwBnVKmfDhUBEWff22BV6QfO9BninUvZv2gbY2H NZO8Irfgb3autTttJIlKjiQawzi2DBqBQfKwAwgwD+PDKzaGmIfB5pHYSWZ3Z/b//429VS2BjZPs Zs/sB89RzcRAq7rqdnd1dUtdqgeWABEaZNIqCWZs/2jv+RnLtjwYsbvE+rgxRSNq/JN2ix06GcId 9D8+sSkODXo88xZi8Akxn6QpygMU3OdA6SM9+iT0b2GoCu6O/6CnNT+jTvK3PzTsCeUhCeyFRBFc hWYhVvGPn35l5k9vP378XT7MGX/+9eePuK1WrVsA+ftQ49uWrSkC5heG+RvDlL32mUT/K0vfP6Gh woJoTIswSOfF6bGwUvTkVeEnuMdkkYlUFMWJfZMOj8sH75KpI3ose7Cf3DfpQS2dV+uodjC9PIIH IJ8qUPeIzqCJxeI6xyhKpog3SYdt+FUmukwrXDOKJfSwvE/Piok7bRymEuV8RJOhPMSTj0MNH+7S A2HdBkxgyx/sRxUjQc+sCaGROMgnU3ENF6aXqX3a0enGISs6pqUZqNAkKMnvJblOOWIayYPpfmpP TR0DMEqYUHxYPsjvoYX0EJ+bR4LRO9wIyOUdTPngJ3p4bVSAT/Bzc34IIISVeA6TW2iV3y1hhhBi Coi/RFcKEv3umLxsaH27UQHGNpJgc7ivcBgDHcIZHK2AkcBQyBIKiAr6UU8c4JZRcMwDn6fJuBTi F744sRUuGZVApDyUYw26/CtYM5/eklThx0oE55BkOnTugat8QEIFUoFfpPsHfLKmCFARaCjwY2aI 09hAI2Y+SYdsmgf8Px0mBZ0iIyfk6Qx2MFIcV5ByN+uLIY/PqbqEqZ/nrjLw5nzUB4T0VDsIFtOF EnrF3fAU3Y+xE3zEK3T5wX/5O8d7kpHIwE/6ImgwcEUTciQlu+CoQ1mHZWjMy6exuhIEBup+TZ2L thoCbukVfemkR2eZXELP71gRFck/ggMqYGgcoqDzZBFaEBvBlfQAPaNmXiHjWMlednGREo6V0KUq 3D75poodDN02yeZKsJtz6K/CNGgZp3tyzdg21K/7xIZD+q9NNfCUgXsLvvgl4kUE3objybed60/G Yftjp/ireMRueVAgvhte8Pyq+PriqD/l0sUmBEIEQcXqYVTZaf039VF96zCR2FbRX/RgSH8mCRHu eb45jeUeIOyfkP4f8+6HDEv4u5nQCYYUUkghhRRSSCGFFFJIIYUUUkghhRRSSCGFFNJfm7aH+0LR g6wL3yKZockPV9G1IHkEZ256mo7GT4709QQxnFZLE99NHyM2r8EH2SBennRstG6zRsmIjKAiR2LI bFQ+r77JWCXk6fmL5ura9zOT+ODFd8Dr/iv9TztpB/wznMr38lMxa5D36kUOre9182u0RH/gaNjE j2cu0MQPHrMKmeHhB/MxGT+s5z/I+9/EUScpspOUP7eTnlgUZ2rZmSLGXz6sjBqoRd9EVcUPMt2X Eat+aFUQEsZegHrISB5rMsIP3iVRLl8ecVSgZqWOtU0l9rRWggJEhf5yDCjZRDmu+Hr8c1opUrpK QQGmaSXQbSXLDOsZP1+1ktBh6Ik4Y9IpevcwafqHxUJQ5i4jEZdV8MWXR2G8EbkYGImIabBcGSxJ JXHFR+Q3exc8OikinnSSD/5ZJx1JfKQhyQHDDF4E/PjY4MS/BLOITYf7Vigh6YrFeA2KaENT+YVf sZWfiIuAUbzmmB+ymuhxPBKJH1HE57LkOKcNXVU1FRaqyv+EoWqaSsGwKLJaC9OgYjKXW89ximtN BdmtNWUlorej6KJOJQuNBGm7C7Gh2T3HcQZpnVkNZsIfweo4SFXVMs0rBkD5aDJNL+cUGxRlGPD7 6KAVaNTbgcl5kiibU+c060PQRK2aVYzencIarNWAMzGh2GH1hNtaXqMwgE0rq9WfB4pl0Q54YXUc xxtkAR6LpaEF4I0teNVuDvk3xUbaLQJ/4/eLEYje4lQ0pYd+dNZUKrNGAUV+34cEyy6MNni1znVa 5gzlBuuaaq/QeL8jGe/rtUURje/v7e3tR2CLlXb93TKWNfyA7M1mRU5R/mZ070zhL+hWv/qu3Co2 eIjIEWyGjWan3R2YwZpG64+6IdFxFuXl2pSpm7Yr1FM9mdGDD8MQhdKgnG/X04aUpmzRWeSjFeVL 3fT3jorSce59fJoYuw3V6tdlDbtFXJT7ZHwxLS9HEy4+jGjPZqai9O946hhi03qxCfwlQzkHmuVU gtlOsmfg7fZEkz8NkelWy/luPas/AU8fNefer6Ip/Wo+33WzT4BkmpNtUG7NW5RXJYnXjptbtSQI 7ZMdGQRuvl5L1OM/RYj24qpeGD3wsnPe9AbpzEnTOT1oOgsTE9uFLxT0NnvOm5t2zys20Ec8yoXS epkrVVOrm/PrtN5ZVJpecS1dx1yDoEX6Raiofuve09siRqfkrkWh2fSuV6XiDamF+4ANkSfxhqJC MOAACjQMYzciNvwoJua1tVqb56XiqB7teVRYaTpe8R74qpx3bFxNK8ptHXrgxkioC+8knSUsrpBr uovzWflDQ+vMUmjjWgOnM7qTivVMy3MW6ReLXse74lddzkvewkQneaexEpaGSgt4uJN6Xu5sIi8b MMXmI+yu2LBWaJxg/qyPs8DtxbazfweWi3sCNFvOzMpJo3Z2EcnQZc7VA6u1evVKK+etl9PEhxst c9LgBlvA6w1oQE4bIsPD9GrvYYRQYYp7ZIqRN8LqnRVnx5iS1ZU3yYyqsfbFrOVd2cvpyhvqMNXS aWw0N2/dabeeZq94Ca8Y6V/MppXRpOANrfbcjuVb7n1hNFh5c7t9CkEmj2bqOqAkvO/F6drUC951 y0WvD1akqpqtxPJdWImmj6H2bGh3q7HSnPITliaaNnazBW/Qk/zexO7W8x/Wdpt0xGCK51P4Obvv HkBOh/Blyf2d5XK5Ud04ny1LcwswWbyoudMUuGtn17HLXrVcmtjtwWFs2nePCfboDopX4O8Vp6sp b+EUNRVQAm7urDhNU1+gUwpn0O7O0IxMbIoFAp1Uw8Q6m2TaA+oz7C66buxDqZ4eO7NWNcv8gAKc 7r3fXlXpX+Qcb6KNAajcqpo176Ewqh9lYvl+VVXIK65TaDIaHvupX01jXbqtZrnBmVF95d1pPXeG ReMWeBfmq3WL2CnG96RXpBXaXp6Uio2aM1T69Qp80W01bbcfsE9HTwhVGTtXMLZo151139/rMMX3 mNxrXokzpYnRnRcwfyt5WC8mcqY9rzlXECQzrc7+5tMvU0WtLE8wp1n6Y829t7t3WLCujAqWqQa9 4F83M6MhhgM2mmZTFAZMcXyBQSZ+q39nt93ppWk355gAxG9jyUXho3JbzHZhcxc3Cq3Epycno7pi lZelU6tVTdfcGzjL2hn2ZgsTguBsqmZrcJ4bAnbv4phkd+8KoyGVw3QpzR5tp9/EAiorWmIJmVks /tRg78rA2lAoPQB862II8DATLNA8wX4XKkzx4mRUbdBEaL0fgh9umnBiI4EqfW5v3yWYPiB8OkO7 NDFZYpRM8czFXtHsONgK9U6z42qk+yi4wRCHvsMAYHo1vjDeVxs1jgkfLNCRN7z7qpRgQTcameJa k6YIB9DyJpjw4+KN1Z1b7eLJyXVWIa+Ywo3zv9m7+q60lSa+MZt1UygkIYR38OEIBhoFJAj0QlHR a0Xbettz+sfT7/897szmBfDaF86FY32eHRVistmdnfwys28zmx9Aw7ncureujqHdMnTBBgkont6e HGFGgYXeex/Qw/sslqsOa5Obju6MBBQHCzqsTobuO4Qi1b52dAFFANL7IhNaEdp9lZt+qVS6xPRT MKJgrkAlAvovla+dN8BTC6GoDI9ej+DJvktqcVsxPzp6QCgeFPElQ634qZC0GGQE1vS4OKzXDyrD 6sFAQFEBy92agEqs5D/WXaFcQUhZ1Ij4YQgh9dzzq+MKnSIWADys1zo/cQ8GtUuiaCEUXQwgioFW Rh1jfDRxkKlSF9MLKCoAxbC+AMWOTuEKMoQtWuASxSlY0kOtCE1EkBDlAMVy6wGUsKhwszoB2cEL qcMzE/y+3AjLYH0EFPfgh7JeqUt6rS9NNFmLcgTF6xuwjaAiFXLinsMFawq29C1FrdjBrkoIxWur 3PLO2fQbPwGpupNy61ZkdCtshsYCwlEI5wMA7KbfBaSAAgqgCF2ZP0YdsP1djFJ4XARlVz5bOO0u x7biPQeDXDzpn+cbVgDFfKoLdtQc3ZbnoI47J+4dcAa/DCzYFGyfiLV5hT3oaQeawHA7XrmqTQQU sYdAAygeFcuji3sOb8yJm0EtAzWff4H0TvstF+zE3TE8oOwDvIUgCPgtY6MEoUgBipg7KGgF8Y8X 5tdqu4JB+U5vCVhrqNmk/NYKoQhWYHychPpeBVBcmM6wfwcMafhuQD4ARahV8SqAIvZwNJDQhCEU 2dj7ZkHTEjgNpTQ6BgvT7f1h3fTvXm7ceXjj9wUW90xC3px5njerOEPPP0Z5csBE+exLc953PYAi vLK+6y+sJiSbWQKKOIiCKNEQiuxrrYLWz/POyyPfu5jRMWb02BMLI2V6Xv/ayo88DwEmDDRqRa8/ 7+Ozb8J17zM7mXv9T2DjmvP/eB7kk5/CVwVRB1CEe/vQVpxZY6/vfSufQbELNoT7oKGK/BWJ0KTA 5DdI63qgFT3Xx3AqCBbACIOCxZNn0ADVoCz3IuNAriIbvzbJj+FYpF/rcrEeMn9fdLBuFYQWvHw9 eKPmwDxAkZbPQEjX7AY4QdyXRwvKANJlUVlM//WYBnyG9QUo+r6HQR1rd4w15xdQMWj7vAJJuheB VpzgXiIIRehsV7Qm9IqCCjtTH3K1emd+/9oJ+H25XWhNmOjXr5MquiyrdjaD8XztrMmZqnBHhS+L GdmMiU6UuOODoVOiZpM6aEWm6iKWDH6JDwcPILFhEZEyyEiLBn8iYpAma1JQj1mwO4pK4Wb4siC1 YYppDJEHDldndBx1Nmzb1lGdQnY0SM/ULLQNsFTHhpJ4XJ4Bl52sraNddSA3ZEpcZKphJ3FYmTgq jnUyyEiDD+i5qRTLsk0apORB/RW7AMIIPLOXBELKimF+YEaHfywsIBCSbSoi+4B5EKWClRXSMRSU iEmD9BGfUX2BMygcJaEJ+akYHEuBI4ycrOF5zBe/BO8M+A0EjPyaOsV7aMjvC/bAxCDniq5QEu0h pGnLaOqamD4gUTiFcOYEYzI87UkcJ9VW0n9v26Ew2MRy9PhR2mCMbumMrK3vFBR+xvElyBI1YuqE hydFHZZKLQhlscwj3BRhNdfIHDNCnpqOZ3HsDPS+D+JlMAx6EeWqaes5hSUE0olCSkRe5HHVI3Zi 4YCYo2kXsvZEeMxXmDFfk8hLnnCJv2NvyfgznPwKpuWiU+H/4VSXFs2TccIfJYnWWTye348uRBNd Gg/jMYRntRUGVi48Sr+Sw1qGWny7Fk6sxRdZlF84pvqI7dVc41NPLx7RIsw/Zn696sEFEmeqrfAc 37IsXFtlJBJzMMMYTDQuZxtX66+tHL/saWi+HKsPn9LjUWnO1w9+aAXCB609ldFKd2l9toKsp45j PvyjOfE4i/XyvnMf18gTxf2M7e+FWPpV5p8sYPX4aeksT/4QV2GFNfKP2r9okrt9SZIkSZIkSbsc r5ZCkPTs3WAehRWU0YIkPS8So2V3VGJR0jMaZly5qRbajXZWkVtqSnpWnUhoo5rO/ZXz620ibbSk Z0SiWjrMedWq6+fSCakXJW0VXoH74cp268G5wMmWBpHGo8RUKeX8B1wHWKinD1OyJy1pa6SFkz40 aAkyHvvBPuFPyxlpHPoNQhRFIeQhnbY3NtASu5K+i0XNKbzCPeRTr3GyO994a2li+RE62Saddib/ ylrOdarV3AMR/qBUIdVciW4GwyBWgyRJK4ppaXKdD+h01juto9NXflCv31uUlwe3Fq7fzye6V7NK BEXKC2nPFhYcA1m0076yCbA0slryvyW6Acnu1e/ZNhT71tB4sYnTa82KzvRgb3RrkWbtclirMJ7/ b79LT7yF3i5edSIockrauSpRwgU2VPEP1Q3fgWw7K2Eh6TuqirLxQdEZ3Vs3syI/OS6WW3cAxdHF vTPwb/OlyRoUG39VaagJuUL83EZQpNxIJVL2lqCY2YCohP9vaZ0LuGK/EC37ZdQZz1ah2EQolge1 UmpQm5Vb54+0oit29BJaUfXTm2lFkk2lUoUtweLVBqRIKP6WUDRwnsSIng1C8aCYH9zrNzOTLqH4 btx/X5qVTxGK0cpOyrO+X4jbiqm0t1FbkfNtQnH/10lC8YUYaNSKbDrjX3GL4lqlWRNQvL7qd8cB FIvRg+REqefqUQ+aurnERk94u1pxf09C8aV3W0LnhKVWHBwUSa/l1SbDmTHy3FvsQY++OElnAAb6 uuktrGgwByx0Ov2A7lKUkPqhZ2z0iLcOxV8D497OoBi6kkhQbUkraswwMSZgO8mH1xaGPdQ4wXP4 wWydZTOxuDmlicN0tUGJmnAP0+3NRqx3oBX3Xv+M9nanFYPwrBKLW4VjsPU2Wl4t3PRaizeQFZ6J Sy0ALcTDtO/76Zy3IRJ3oRWTpqqaP/hRzeROtaJuS9u/TRwug5SGG7nzcJPiyN9QWzYW0Yu9mjs8 PPQSxqbD1duG4t5+Rv85ZXanFbnSSLQVOZe5bURGbro/cbXmCinl0ulcimw8cbJ9KOq/Qsm9HUGR kmwikbDlvPpz9XoULqDYIBvPJm8diskl3lQV/szHhzuFIliMAgafoxKKz0SRVuSUPDMU9yMoqtab 0icr/7E+A4ttDM51+2P1XWVpoXcDRcr1BkAxZcjW4jNDkTw7FGOtqNLxUZeNa+/nt6YyrN05w2qi tbDUHUOR2CImZ0H2oSUUM5FSLLduLWc0K950TAyzqNqZ/LhT3C0U0T4/JBqpREqVrUWpFZdK8c9G 8ab2MF9YV97BvQlWunrOwvZickdQJEo7lTIKqYQtF7NLrRgpxdPr4UE3/3Hev3RGRyX3M1c/1u93 bKABioatcsUwDLnwR2rFUCkO3dmodqmT6SyTP/vMpos3XTI83oGBFr4/YsCLU8rVbNag1MDgoFzs 4Sd23JEBqv5vtaKqKx9O6/OLa+uqdmmp0+OH6vmw9tCabV8rBr4/WugQBCBUGeGqbauaJk201IpI FiG9Pyt0CI1E/Q1uRWQPqrOKom+9rch5HrcM5FxT7KJiZBuvLDDT2bYJatE2nUIxn/zRbq6S/leh uJ/UA8WnmqbFEZEBLDEoNSHRNWV7Q9ycoe/PJe5i2at3ld6gWv9ksb/Zu9qmxJUlPNn0jI3sWsiJ KWABLapAgeVNF8RdEI/KdXVFrbXqfLh1///vuNOTEF4EQzzAsmZyjmNtEyeQPDw93dMvu4XiI4hE u594ypz24kJDMaSsaBLkTLW9orZYJCx3I6YczYjz3xJ3W6gpxvezCgOe6N7FzUHu8uwwI+KFq0qK V78+26Xd00pcaFUdQih+WHM4BFBPj2sJRdE4uohbyS1GXboQDk8AACAASURBVEWhUPz7wm5/eU5/ rp/WNBRDqaAlL+76HcsMEiPU5a7uqOfg37nelhVvFPtxwEK2WKsetp7TxY6GYkhZcevDJ98Qboqd XZrZwlm5edIBo9y6fzjqm+VWLwUA6exT9uq2q6BYSQlddCCMrEi9sQiR0/+PpB+WmVDAqRXbXZz6 Af9MF/vpZg+orks6+9g9qTtQrKFmxTBCcaHkliWyIhdYPamLxvlu9+joMHPz9aTYo7XiUb/8zfzv c/mqU/1yz0Gb0CGE4roz/hDT2yiqvXhi8ON7bC+/E/0WYWgnP+7GYuWP5FcsbTMNRQ3FNSSfUuoP 2hH5y4zFVH82J9vCsixUreI4aiBqKK6FFYXiPBTmnhWjWpRAnciAm5YVAwSOADpi7PdCkfJV6akI qtrF1RNSqaoTD+a9pORTQQIKghiVY0OQtKgTCzYCim4g86hfnUraYl4L03cFRUr1K5WSY5NSibTS ng4V2wgoorQrM8weHN+nuP2Qe6S8/nTz4HI8Gev9sCKl+pUQxqAYi0Z3dBrqBkCRA5av9jvsNHte vI3fHD4dXSAm2rVm9qeA9wdFZpSi0b2xGyBVdj4aTWpa3IS1IojG8QVVaryppdr38e4tsHKxk279 en9QlNxnSg6MTLS6pZQrXSV/IyxoYBKKdrOXuq791e7DP3eAtCXR/sXeHxQZSv08mQcuMbhDRKmh uAFQRBeKNwTF+AiK/B2yIkzpZ+VBIHhqWtwcVjyI39R2232UUFQbtf4KGp2DqZo9TpEePqzcs6ms aEhlbE6iDhnsqKIlGiAbAMXiBTs9/Nbuxbu1UqtvW4nW7SDb8YEid5vEjBw/yIaOIb6RUJRv2JrW z0qaJKmmxQ2AYvlzhyeaXyp1nj7+UktVK6nq1cn9eHz9TFak+o5/yalsa1diz7bihE75D98ckd8G RUc/41QsGOIMrtTHb4Ai44J2YBUqaRTlS5jmtllQRDK9c4/xRDN7kBHl4+x5SmDiIXtQR6+qI7ql cieHQFBEHNbrG5/CYWNEZHPkOPPiLuYm5fJHIrTEYPr84fz4Fjm+Kucv5dz7OJ6cvSYfG36XfNlQ pI0/+jEMQCEHihsAQ3UPfBWKAtLF3uCoc13Jt+/sbm1Q7Atxmn1s91IClsiKS9fP0/dQ3lRy8byR fzWXLpEVnTvqVmlEhUw+ZXvMgiJAOveYLna6t+y6lmj/ss96nFomXB9k0KVVpMcLNBhqAFVZLxgU qXY4EjeO5nE6KdFhqN8cqe+mHJz2C3zsfBhdFxz224PRZOAOSI7vEm3CT8iH86Cf3PDkwIZyfEUu 3/Hs89F9n45crpCknA/l3JEL94+oXyOy0fnoyWEZcvCTG/+m9tVyI3M4iO5+sZLq3oGCYqLZYy4U mQtFIHedSc6TWIzKd5k0kREIiiDPl/PIZxHZY4LmcR9xRDEzMZxB3yPhyQ26rrx/BhnFMRqG11Vr wohBk43klpqf3NwUFeHI6SJWhOQGzUOe8ZHc9ORAcppsKBfWbDnSRVy5IDlOyA2SgydHT85fyCNK zkjOpZyGaTkjOXPlpic3hvLYuDyiXvSVx5Tcu4gn3xAoSgV9fPD5sN69NYZQBAeKdT6EogIOPfAI DSZBRX6MQFCkj430LEbzOES2V8qXtjhLbEv7SuxtSTU7Yr8YuOcb3nVpUPr5pZyhaajdP3ghV/Mg zpKD9+K0HKfl8lQ2fn4EvfPH5RFDyTm9H/ePDHox4pyPk3Iub4akzBdyOVAy+Sy5OSk3PDnMl8uL z5ZvECsKrO7/FK1+904p6Ge7ecfYOCuucq3IwW7v545uRbl4mBGq2aHw/1QlKqk46/5xhdKXsWLz XAFczJGzBcNvuecQm/RJ+Jy/SQdf1Vrxbax4eLxfrx7lin37dD+XvWxcNoq54r2Xxbk6CxrBfngs t56l5X7404EiLRdHFuus6xo7av8ZZ1nKhuphCC/kOMdSxsUs5TlyXEw+OfB3b0G/FYrkkHz4fIn2 4POPFE88fH5MNG9FQ/6D+ZTkWoZfkdxPkpU5K1AIEUVz+LAi1caZ68mW1o+7+6cN4t9uQb/BbHGc Y0qpODRoW7sUpM/XstsiLX1pMIFoEBRtfyjKd+Xo59kKmpmSFmPBq5TrYxOgSI4TAzhXDcSFGlUm AqyDFZGLdPFCWs6LQpFaKEWjxhzek68mlZtb0+IfCEWVgDBMQXD2BRQK0XdBuxxWxOtKSgJyQSi+ qp8pPElFc5taQ/+ZUHzrsZS1IiZad8i5qCooNhdgxbn282h/Osl0rRINxcBmi51M0bo0sScNdmF9 jL++KlA2cjQyF4qgornzEU2LGorBI3NUDAe6kRx+TeWG+vmVj+i6uTUUNRSDQZFLo0l13FRxGwg+ oWmg9PNrUHSiuQ1NixqKK41XlACT+vnVmERkZp6iuUNFi+iFwTiBMKouw1hcPi5ghWooBjrA0c8+ aE2GsAUlTv0e6pzVbjWGmRWVf9vvHFPt/oUJigLT0UsGXGDhPGOf5XK5Rwb24D9xwMaP1OAxHc2w VTRu+MOhiEGO2frZhxbJzZ0MU5ILB3ZGNckRRPcubrd60atnBPvspMPtbiXTuCxkLzUUl8qKyn7e 8YtqQhbbCVdnXsD08b2kRqpKfsmEFS8UOwLsm6+3WLj6n4bibCiis6m46DEduVFaoOWu6+YOjw3N QZwe9bZBECmWPkq75aYmVbN9+uUg83BVy3RvyxqKs6AY2f7wacFje2syH8LRz36qF1Wf6LwZGlqU pNjeP96vCyhkO91bwESrzyUUH3JPufPcgQNF1FCcAcWF/+zDx8k0HLSk5vW1jSUrqupOoaFFYIXc RVpaKqK7/61dS1HYnVw42me9xte7QU5CsZCts1V04QwPFD9NQXEh/axo0XVzh2ep2Ds9/G7FzopH X0/qNoXdoYRiLdG8uD7MdHvpYj++ioac4YHi9gQU5SJT6ueYv2lMaajKzR0SLEpl3Gid9NPZR3m7 bi5Y4riDBMXBeZyx6nnq7N44q6zEmxNSVpQAI8t4Ea6TtBgmNzd37lL62y4YhvJyc+6MFO/nnaUV 9NJY0dHPsMC7l6tFczECfR9QpERrlSJJ2dDAKcUaVUg00iu0DUjpztpsWR4rQn5BeJHBomAbltWi SqES62/OEE5WRMdzvaAtAkqZm7r+iIbiClhRrf8W0s9ON41Q0aKG4lpZcWH97ADX2pkq1x2mA3Et CiGUrBhMP6vs/HyY3NzTLgRYCxbDyYpB9LN3fj6UnVyGFeA0FFfEihDIa+3SohXCgsgSiWZpPcvk MLKiq5+DrP3C5eYed+vQMnk9BfJDyYqAwfQzoTcSIjf3CImMJXfWVZQ8nKwIAdWt/AsWNn8O1b1V ybfRfEyvFVfDiq5+DvZNV38TDZE/B1WopvzM0ZKxHud+CFkRg+tnokXVghJZiHb/lHKO7sGaPvPS yzc5xScpHV49Pzc3fjXdrN7KipSKH9QcVuv30HTmVcX05V2itJ51ffuWDUUnZmP4o0a+iGNqnazI 3rKl7NDiXkgMF1rE5B3lvDY9sGwoCkg81dE+zd2nWIKamgu0B8e91OgRep3XJobABZBVyzYMyIqq Sq/rmPH6C818Py/kTBUtoQwEPud8XIcclynHeXKq0ELKOQmOnAe4yMZAEdh1JYPV/afWs31Wecj+ ElgtnreW3EKI/wtWdGK+grurnbwsKwSUyIfK2WLrVAJLhqIkxVY/zv5x+rY8U98WMdmhAMExztwK 6eAOgaDo1LKlL29QVoRh/HaMvsvDeeRAjTL/z961PyWOBOHJZmZ2oh7FxiSVYECLKlAeIuCKjxXh VjkPV1dLq+6Hq/v//46bngcEBJdHBNSltnC3F0NCPr6e7unuj0bOR9v1JHcKT4EUptR2GrkItTqW djZo1wfrjXmfxE70cYSd9OwI7GqEDZWnou2DY9ujr5/GDh+SKXI4puBHOub4rHcIuqJj4a/2dqqs 2R0vIRQQLSHk8CcXclbBLBJCAUibBJP/HmdFeF/+5pAhFO/rakkgyyVaQkjYzZ6dDdj5DUpKOx75 ekPa2aAdDdjZgN0AO1Z2ISHUs0elgjj24GQNV0oCgZ0qCSG3Lwkk7PJgyi5fbzApFeQkn0sIOYN2 izHT0c45Yjejr0+OshurJiHkN7brh9UIFJmCopYQYj31nYgEz5QSQiBXA8dhOPnHVKwIbymrbIQw mTyOkPgZPp+o3VJ2BiAuPrdHpYJAHg2eRkoIDdmJsltCKmjQTrVOUV9CCGvpH+vXdjYsOSQE14bs FlZCbNagXThnCNCMERJC+peY1bNbA/YVgSJmYabt9SSEHr3nDnpMq9gMa0Uy01pRNPA9nzxCxl5l 9O/mupgi/0JGYKY78UKOAZMxy7kxJzyuE49NbIfvm9hgGdvAwshL17E6rFhv3WWU8ukpKJ8mNweV T+OUEJohgpZtzUXjV9JCo+0oJ2eDjn69HE2on0ZIBZEppIXIUJg7WrInXmkh+HtSb7C8eQkhUivs 3dr+0R53yaXGXss/4pAs71d/1Ti7qLyikiKfKTJkUrIAv9cSWgiQXO2cF7+tFLeEkIimgKlV0OUV q6Sf+l7+bovyzzOCqUeL7xSJYpmYcxBexgZnzKzIRBMtoQasYKmh0i4g4PwaEkLTs6Kcrl2ccbq2 HCT/PmlROGexwWIuB4mvJSFE1NqnJyG0/I0/vVYM5tAckPJX73EILdwimcOB2rClfNU+WGXOfP4Z DvAeJSjFnoMRyA0Wtqzqo49Vr8iEKFBxdvULqTqUXCwSYVYDUyIgCPwMeB4iJ4dghjEFw3xI1NUP ySU554/HinP6Z3HXFi9ByfrXq6cr6SAxtsNL52wADJZF+B+NFaV/xnMwlLloCUpCqH9mwygvr5im jJa+wXhDL/jCqbH0mdt8biCzXxC/9TiQORxdrfQbiq/PimKa8TzqVFjU3RbRAkWiuVu+Pkhx9IGi K/Hu9mC/gIWFW5v6ja7/s3p8kKJkdkrE0Q2WJa6BPxgrzumf5WDGddG4uqibxheKYaEDi0S/eWNj r1QHRVccNv5Lk8rXG6+4ebyfomwOJDraOS+3XWIkFPkiBBugkEewMfb83iArYmZx/+zMpXuPRbtg sDhaBFLc37AYoZW9jk0xPd4RrFgvd7yTctevn88MReGckXTODC07LTAKikzu0mHxZ+y2+BtkRak2 MF+GWumlLk6CUpDiaQczr3mY2UkryXUcZusHx7uNbliYGYowyxNZyjmjmCmRB/liMCjseiiVQBX/ g2ogHqHSNpoVmX93UeUfAq1t3Y8TVX6La8W5/bMocZaznBZEiwRIMdV8ApfcqRUeiYZiJlG/7DQ1 FGe4JumcRQ7Hes1ohTJdMERf3P4dyYr8cnfru1VKKpmtzL09+jTfICui+f3zwtPcBHM3vFfe/oHC xnnYeEQaioX21fYPCcUDm86ERNXB4r7G9gpMkt/autiAMfNbtymOQf+Ox/9e7bu/nq6djTjjUVCk rHTyFNY7yGu2Uv9Ai9Q7YUUorMnNvYPM3zUxP6KnSOUk3aBxU9tJHZfLBynloHkEfe9t4uZNeHle Kd8QTKa9CKSqH0R7aUyqxqiflaQsPNp9+HsTpIh2Cl2b8K/SDSKlQtdPpMUlTARFUqo/+vVb4h21 bJFHeC9rxSAOzXulzLs4kWjKGcWutGzPXbMQoaYJuy00aUEBg0WTNnU2x5ezvkCJpnLO8SAxUm6p oXjLDJGJSl/t83cJLw9/gFSgn0tNDkXGoRjWb5mC4rthRSMXB5thUc2dWNTun26pwqp0PbpsFWdA 0Qz105H20piuI9KiJj+l8ORruZWihCOoIqDY2H4KTw67+ez59cRQRBKK6F1BkbOi8s/zOyK8WFrU HdtMV3fDHnRPtp6wqVPTkMWR1Q+xba8wiorQOVRk/bXifT57j1gfihfZ9cLWdFAk4clTPtuhmBNp s2u/GwcdE4CwSHMvWIJSF/zHdChLtpfGmEyUrMhwD4oi+XnLkIIiCRvtfw9vT6eCIl+I1C7/bPHV IufYsb0Abw+KGPxzHLlpxmDBHyyOFmMGte5gec3CRFgrdvKZe8++2q1eH9jAiu3K7mbzRkAxTZ8F WqM3/jCks8IEpBbHVmq8PSiacc3Txr297CVhaR4u6znn2Of/DETQBNO7y3LLbrasZvnwO+OsWG8j 5h91w/p5/rL7PJszZuNPXCyBhfHYHsS3J8LrxrbAU83UiyyKGLzjbOAxZRbHWEz1g+xtSqxhMcOL 6SFzACtgxInyimo9BAHaC2KrbwyKnz5/yqki5Vho0V3SbO7nb4mnwOVAe+mrFoQRCPqxKPmFH3oK Cv8HB6Ko+yUTQnES0L8xKK6txzcfURY+LqHJBc7fdF0naZqWYRh4iOQZfhGVvfbSYAEFYUT0Y2M2 aaHFR4EiJ8Wz+BIw8NkuQ7IA3s4Q+UDAUy5XLAYBh6XGJRuPSqZSQrqDBa/e/NyPA8U1sVsXF3Zg gE6uuGAJSiAYUb/w7JFIKFhqXA7BUsNRdLDkrGU19f2GYuz+WVRUmY6z0MYC4ZuB1NY57HL8wT/+ xGhY5gCWCpcRWDJHtZeu5EjxDwLFnn+OBYZiPc4sx3XgNg+V45Ex5XgxIBG7OdWDAtGKYSYdxw0C gcuXYKnpMhksbwrJbyhGoAi99HGQmAw8KUyq+2IiWV48STnenO8KYw1FIQ1Mb8C4H68INXsOy6SE pcIl4PBhGJYyh4NXVGbhw0TQ8flnhrziN5vInpA1m/m5NcCgF6Qwo84G/+l/tmO922KdZwjpipyD 5AabfGCJSoZ0cpmbJCw1LgdhWTTQysogfQwo8oPH55+Jf5TJ3toGqxV2M7epfD2b+c6gHK9DWXjS DdfTxxe/Gj0+JQ3DZFjhm1UzFEMjgpIoLDWVGqby4tKNu2iFFRY+ChRj88/cF4cP1ePMD4oq2XvX wfmLjeYNbLFe7qdo5WvXK44ux5sjapZDm8Xwhl+41yG2jNqxYRkrLfXxChJC8BFgA8NCXrQNItk2 yJYKxRj9M49P/J87acoql9s7Z9igpSMoUvYbh49+889uuFW9jg+KkhJFuJJz8XTrvOewXOlRP7FD EalmQYRRpG2QLne+4ifwz7nhayTqGyOm74nONIiBaX8YDR41jIYw6h3vdRlFtfpFYSeN/dNym0Hh yc5OsZDt5gvnsUFRqhaIcGU9MNHsse8su9VvHIqEYe+uyljt4Tsm3t2DqO0pPYxtG1wMFD99+sz9 87ehW8HUNyZaUaIluF46W/5tC39mqwamBrva/Y6oe9qyoRyv8+/2xenYGqhZKRGrcIWtahJmVaGI cZ4v4vOZrUKHHmeyu+eUwbr+tlcT1Jds6T/RWWZx08lncQv/vP5Zlp/2x14TVHu4B5v/8+80wqSU S4HzTWxiwmpVP5EuicY0PUObqJoYWrpIcepDqPaXzaF4fI+u9nnEHDba14d/yMpQMXp8zMxtNpld ru+YCldco79jwgZGYc8yc/s17asCRU6KtHmQItcHX64PfB5NnnQRPd1NX/cVCmJhxd4pGGuTkSL3 z4kNNLxHC721bUT8k9069LofcQTxIBhq6cLLJ59Hwqqrc0iwKzwp73VLW+2wsXfY2qwU9g7vwUFf Pnob/slNvtCulLs2mZPA5OrGkOGKqVr03vUjXigyIMX7TdzsSrEM/7RFhnRbMPyGCYM+nJklhAIh IQRzwSaTEBL++YxD0XQRldI/PJqkrHZmNG9M6q9Xa4U2qWXbGJt2ePlflVx/ffJzYhgNh4NFlCSQ 0lVBfvHMLj2ce07x24bjBMVvPIBmSdcGOZ1Nz930gg3LkCItUWkh0CNynJ6EkKUlhOA/pR0iZCX9 w1jSkXNgE44Lhf9JkEhJcr9vgkqQCV1eSVNL+bgDkkBKV4URbGJCDJOHjVDEg8VUahB7waZBMei5 EKHbwg+rJYdAEsgdlBZKTmbnT/+zdyY8iSxbAK6Gqra44xhEIA3DbthkBxEUAQUdxRExmtyXvLz/ /zveOae6WaRZ3L1eMGEyROmlvj5Lnc3r1b/M3BaBQrEYC7ZvFk+zclvTelzjkT3u54wQcpgjhHAt uPfnWlIR9fNfNEJoPL8IfXvNP8wCfroGtsQfox7teWBpQtn8pXGUf8xVqdYdjDU1lUf9EXwHNRNC TwevSPMiCrpydCXXzKgLow0++n01QojLmRE/bDz6x/ZzpERylfkQcKnRPxr+PrpZdD6a+Qafz4wK cmFJqnmeKFkxKkQmMZ6ZikZzcr3UaZKrxiajgmamAU2NCsKP9NnPNWuEkHVwGmL0hUYIpSJnxUL4 70XTrN5aQa9lKyr/eeupgqbN6swplhCnspey0o9Su7hQpF5qlJqPU20XpvbnaI9bVd6RMcfdXq/Z VoxKkakaT01nMH9/NkVULroPYs5jUe6K+zmTwZ+4kH6wZtFtrHfCTB/+GmEMKHQdhOselnM/doc9 ubirhFjHgvi6CloH8yufzx8+XpU87Rt/+wbMRcYaZCsu3d2QL/Gg5bpDeJV+dmw/XVPcxbm6kVix e+MRjcSfi3QZUTyp5i/bFop8bonVMljDeJ1e74rJdsLE0XJOpmfdWrN+xNhtUb6Lmc6F0RXLcTb/ hKpOVcmpWL5XKNGpl5oIVWNgCl9EOtlLj2TF/AP2JDvL/TbqA/mkL6NUifvjI5inLOTcyzqu3dvX sBXBMHFeFMKho3z0VK/086Xt467RPKz1Jhf9lvOg15KKSj87rHnQ40NydjyAJ0bnRhuQY6CjTRRP 4QoUigXlQbOFw6Kx9m8Hx5wvHy49u2xivP+qPhc2AWdyV5JOaSI4tcpyIpQEY0vmPgtd2bpGIFhM l9vdIDiTDFAseIz/nlso2l2XJZbn2WZP1nB2gNYXmwdNshENYQ+cG7wbwx7845KrOvS+476i8p/N EULT5ylT/XyhXCxU+oeHtVOjnq+NOKLY08HkRRTBE17RjAZE6oE553y1T6zMNpRlKmiiyoeUDkdd PxmW5kyaPQ+nVhcMVOMucevRK9VOGCzT4nVw2drDV4eOBrkwfLGey3Y9V+mTI4xPFjORs1QfzKj0 9rxUpCsSuXqsh+qADhSqJ0Zwav7htYfLynVwOArdh5l4hxSkt55mZeWuT+0Hi3Usi3dFEfe351Ek BS31yogiKxRzmUx+1AWtks5W1i054duda4QyAIlKNdYD2Iko5m+g1TJZ4watMU1mdqLnrAqhpo+E s96zD6lstwmmNzZAFkuj0SAUA0dncAi9ku0GjXr//Ay+vRi5KxyXmgpFPm8rch6qlo7TZcFTkU6z 5GyX7jLwJf7j2qnwNwvhSjkV6f0DUDSfRzGelzhusPF56RAOx0/0n21QVP+37urU+FGxfjMkEE9U nc9WlieDS1ftwhoz/Sr9o38pUpnoH0SxHS0LQ61xukwi0euFO+uey79h/kAYlGox/aeYOJUXhfLS nk0YFL+pZB9omG8q0WNMtZwpplv96ElzsVQUxkEQfl/CEcLFqPsgCO4noHh1OAAt8r9wpfcPQvGL ZeYo/eywQ3HsSkj20mQB7M2Nk1ysrP3FPMIaB4KpdE/6mwP+943UUxFC8fjwVhb7heCwBygyqYFL 7vUFuM2ettT1SuQ0lb1tpssgFE/2+GIiMIHoKJM/LIV3K9VRA6RcKnKGp1aMhq8GoaOHYjpc77p0 G5qF0I9RYBcz182Ch+kNfGT8d/lY+a5fCrcHuQ2KL45Bg+F1smWP4qtfAsQipc0EvC7NSn+xxxGn XeAai2OQio9SKhQNWOMtWONgc5CKlDmIRHDJNbt4M6jj3NGA+4dH+YHnouCrjvhyIiQz6r3jkn6c j4487KqLUw5YKhZmLFc/rfwKNqKj+XnTUnC9GAGVzPVh9vCRs1T2QcATc5e4T3QSMYWi3KD4AhTB f8Zk6/dCkWbBYGpqgMpANb4QR1zjRhpcIrAV+7U/glkoJjrVThXXGDQfikSvfQqOQLK66PgXE2Xj qJDMDjxLBDnm6HFMOC9LK8ODTEsqlafngtua8AINiRFZFKxYCLNQ81LZqd3Kf26GCTrNMhNyg+Lz UTT1szkPenkezAtyX/AvNLebGCKJ5tQ0TbNR1kBiBU02XOP2gI9RrHeHh4PGBEXc07Yvp/e3a6Pk tsxVB55QPZI5LISXGrWYxGFOnqUUUsqHwz6NVBKGvppmU4PKwfGOJk/cvj0e6l96/M1aMrmnA4ol 4+70Ih1ud5XDJDcoPhNFh4P0s2O1VJRmduBzYhu0AyPA+Ffld/TyYVTa53Y+xRHWuF/YOXEH9vhF tIwhnoxCsWTcl8FFaA4qmdttt7bIZpXC345koreicl9GoeS/L6/Uk4Imzz7rCeMi14xkCsPESKY6 YWFU4ZjoQYOjz1ilA46+dlx4l92c74+i0s+OVShKq0xp7QuSKoo7kWC6y0nS0azMC4C+ntLWsMaw rAWQjKJxiaIp98vazGF65Xrv7tZXj20vOQPcktAp7ggODCb7snepMKTD6EZrF0Wu2tBSASOddkUF WSAbBf0CFEk/r0YRBaL2O5ZU+ZTrmon+QAuH7xnbXODoPWaWgQbGrUQCIB65SSOn4ZBGy0XBu6mw IAApde+u2+tZlvJHGQhIoNKrQtdeOfB04QOm0WB55J2r/2Bihcptx/weqT7YoPg8FB2ObaWfV6BI ZtV1fP/8B+Prskh71ZgU7G/DWyOR6Aa5ilg7fQfJnTGOoK1NFa3WWJltAvfXBaXXYHCK3JW5bkyf 9cKWsR/ey+R7o+gY6+flKFKO1+/zeDx+fr22vQiu5q9RI1oWRTD9jKNBpf+gc8s25E6wGJMWjsq5 Vlvi2lR9qMot07Bq2Uc7ON88O/ZfLRW3WqZ+XuZBExEn5/vxc5CLa7MIfsSuLKbL/vbNLjeal7nq GTXppdwx+gKn10c43pt9bHy4T8NUMuM40UELYNn8xBfqQAAAIABJREFUgZuzfzWI318qjvXzEqlI JAYAw2gyDYLxGSyKUHXgKUZP7svsqpYdj9qTbIKj5vaBeKT2DPeorQM+Mh6p085Uqb3zC9cLfNAj 8s1RxFZ2P1qon5dIRUTCV4vHaz7mRRY763VhBNiMZinsp+Fmoer1j+rZdF6scpsVjpZ4tNoiojZW 508eDpbaf9lyPsmVgbtB8TUoOqb082KpiM6zOxrfrwXgbrjXZ1GnGWc4pCmSL+EmYfNx/i6OceRO EI8WjiQevS6rM5jGpG0VFW1crv16F17MGgm5kYqvRXGinxdKRXRonQDgeQvuAX8Gi1wW++eRQuBg 5y4/8LczGUy8tZe6lj8CnjJpa0s8WuV8X7O5F3U3YSyZjn3ILIbvjeKUfl4kFVHyaGlwV5KEH2e7 MZPFlQmIwgCt+9sF8jHgYUZy5+eSfb4pHEk8Wp3mkl7OFg4Hkmx3e29ve62fve3dt8UZY08A4kka 3LnkR8xi+M4ozujnBVKRsgZi400czDZwIouxNVjkQteVA2IGPpbt+wo5lSPBXbjXszNTu2J3ALb3 10/4obflP/Dae1NecEedsRaCuF/z8o1UfCWKU/p5oVTk7BrFoGlrIYuu9Vg0LTmEkKtOtGJlZHaq dY0E8ehc3n1EAorr35a9N5SKKpMikD6Pg77oeDe24mtRnNbPC6SilPpvBE+zzDVkUVtXLr5sy4NP pewsbfrAPwlFesiYj0CMd3z8YwzZ743ilH5emMWdBOzS2iT0TFlfHfzwXb0JSz4uO8DnoEhDI5k3 RiDGsPWDZBu35VUozupnW6kIBlwL7nh0pqKJosRjFt/xtTKZ4VNQpA1/N4C4HzdBlBup+FoUZ/Sz rVSEa4BbXnM+qa0bsyifsiif83r1TfkEFIk7ZwfD8fF0gLMPjIt/axRbOxP9bCcVJXPXgES3HaM6 OjPpz+2h/uEo0tU6rwnE6MeC+J1RNPXzlvXNP+d75jAnkHjus3VnmAAW99MzBU+S8Q+NfnwwioSd ywSxxeQHN0z+xiha+nnLViqSdxIFEluLgjDMZHHC1P/ZO/OmxJUuDqftTuiAA0kICAxERBhW2QUN iKNcUZxxqZmq+eN+/w/y9ulOCCggMLjdelNsCVsgT04vZ/lRyfdlZ8Vlajc/B4rCIo5arIt40LLf aqyyBRRhRzmKW+rUbo7iYhic9tlZZq0i7D8CH19ukcoY+2GcRdVjkW62m58BRd4S45wAcSRJ7xDD uyGK/JQxg1zkayssbh9FLtWS89ZnrCIME5U0jwhbRCJEWAcYi/tY8uYc/5soUgfEfQ5iQIBIPweK vKK6GchYVgDUlbaw25ui6AMH7NxLeLeUy+1MPz0zXwP5A46vecmkxghYnGiR/SdRhIp17Ghim4F4 eNC6IW6a6qdAkXtqA5W9bDa7137UplgUIaNcIJ17d7lui7JCF35DFIm6eMGaqeHpDVPDD0EZ96gs n2CbYXFLKMoirlbcQOmuZT7oV0aRipwGbOc5iAMkkfcKE9rMKhKiZfZChczj10Joz/JclDL1Kgw6 FQSFpZdfSbeFOKxh7NxhbwXS2+ExW8MzKPJ/P3cBczWEvjTZy1l0pLy3hCL1aitOS3S8B4oTEA8O AUT8fiBuhiKc1JlsO8D/zmBlz/Iyh2RZifQMicbiYfYHl3s6r68R332t+opgFYEzA3HYDIomt6pu mjo8wS6Ev8gdfECdmx7kD6iEvnygRhcTFrfVQMuKqVNJifsNmcpR01g0e/faKDpZXnZagKhBme/3 C5zcyCoiKRcKlSTES3JE2qGA5JTHpiTazVjnieSxla8rjaY1SCkUVi6JIr9iA40ifh3u4rldRmHc DrNbLd5j7bPp0+M+La57VpEHgvFMFu3lkETHfh7uR4Rd3AaKUDuneEWjpyBaSZQ7npn/iihSrlIt Ud5PkglxozxE9A1xQEyzASh61wjezVCk1t4j4aUPKJKCexW3pJtCYs2fjUL/+qh3chs9qzWKvyWl a12e1SZKY/MkhMjGEkLCGKqNTi2FsMpOg3Qddy3rPIXV2HE6hdHpeer+oZGvCxRFAAKCTJbDlikG ik4R7Cc33nbBYgtYJHQ9FMkTqSBJ6BGR6P1wLMeOH7qFH3LyeGwQNzTCLc3trK2JIiVzJX5ET0lW +EMh4MVrbvMauHaaBySm46Bf8PkkhIhkVkJxJ3WdEtxux523UxrVjKTVd3Vbop5uC30VhQLeV8So 1KnVEcbH56XO73JnfFf8FdVjJxffybfhUapUr+7Xp6wi2/39g4MW32e6QhsmT1jccDfnLH/GFOrQ ZH6wE7XPujWLsm7WQXFhFDfrKflZpylaCrMXlHMJpz/vgTgAEN895XAjFGmpXTFFqAClCrZCQRc0 dgbGmAn8c4sW6raAnw3DcdVg6G1CKEJkTQmhCJfmgdG6M0Ch3XQdqdg0Yp2r8vBXufNb0cvH7fPE aaUWPvWsImG9Q4rjYmqbUPE5IJ0CIy8NfNF8f0xvO4NEMyX7gmdhRdB6KHJJFxMkhEyu+gMOHsTG zyo6G1OEqoVbI3nSgvralOuwCEkgqBbBX2+uZRV3fFCiRwN9IfE5Ktd5AWsHjQaJnRYeDKlqWWAW eDMWGQCIF2kbapEIKSL4cqzxG/ZODbQXtCXbCXyJOrv9zVEsmJO69qqHoqwQ5TRfp2fjCYpEoFiX Z1A0t4oiNq4BRVWNnh2ltFOruN9HDMVhOvh1WNs9GbsoygxFQiGR6iIAB8NcBUXKjq7DoobXRJEd KPocRRkThiKRyveZH9Xiz2NIz5pGcfL6tVD84uMUatOfw5FDqHySrpPYXQFq1I3jnd9c6wdHBqyT yEB01akwfC97kwpI4wnSmrsdeds1d7umPtlO3xhFNlRpR9wGmuJKe6I/T2gVqpr+uZVA4+939Hgs SdNWcesNtJjC4Sjq2OjuXzIbeT+8NbBebn59HJ6zDuPJ1cQq8mTKgXCy0CfKQLP+59l5QMRH3Mwu bribM1M20HdjKCYDieSwX7V+fLP6s72XibLGug20PKOdMlkjUjVdh278A4l1frPDAqpXEdtmfwSA SMjT752R9ViszbJl4ZaNJnMIKsA7xAQtiWcr2Bm2EJIcXlj5/reiVfildAts6Hz3UGYrU8qnVJo3 TFh/2CJS3j2rSKjRyPQlRTXYsUV6uNwcNypX1wLFFBIouk4WRMjT4cn8YYsQPXVYvOjt+nfWGUE/ HbY4+iaE/nsrJ0/2C7VE8qTANbSeDVukrQ1b2CFi/RcFxYoPBhyTVh9AzI1yg7RN+Cj6EyufIukx VNEkrmBISSGbcSdzFBorBQOBlNII2IYcvQv0Yvc/lXJgZHghy/MFedafJaEzVjFfT37tdQ4s6wqV O8woauFks6aXEn+OUp1xeVgLixG042Rx8geWqf5Mb+cswvzPxWjXv+qeOijO/71lH7sGRlAWOzAK eypXs68XGX+rLV9Ext+cz2Fn3T8OikSKsn6jASCOoHq4k4G96v+w0vY3nuJGuLBXiPAVzcpWNEIn ihOyItoix++iaKosVl9zXlGN9BLf0j04DeqqVkrxGrAlv0FQpKfHfbhk6wJFyYaAWLyu25zP6fgh uHEU3vn7KW7u++MzLNQRpJIXfK0a1lddwupi/2HXbaAVmixelXKj4CgOgw1CP1DNqI1QhN5iZa+d CZZyXytZPpVDvdlUwiV5XB+05Ny9kMjxdyhig6haGBREYQuBwbRpGgRjeAK8LRLvK7Ix84UItVm3 T8NZhNnIgxuf/8sqy84SFCkvnMn/KOd2EYpIXX1Z9H0Ks4p5bhWvDCl6cmSPcqOeA+JHKkqxcTiE mdnLhtrsrVZk3pF1mzZZCBi++JO34ING4IKGB+wK/mfXHy0uKlbZgDt/yIMb1j8CvPcfae2nBz09 rIdfXvTwi5E5rklcWNvdRVG41p2fh11/u/O7setzX+LzjpkGJYqpUtMOuCBSKr1G7dg3j1eE0JxI O5vNhkp4KwLuW47M4f7npwtFacdtslHgAMw/5Vhvf1fFK1mpv4+dc1Bkph3BdxrQN8cqET+aPwUu duehusTnLfPgH1ljfUQ7ZwsQ6ccCcfN4RTip2tlQNrSl5MSN4xV35y07uWDO/3RjGEP+QHzT7GZ+ wmGbs/imKGL1LjNIqap5n8mkL0Ftss6AjAUuDfbMg/lYb9wk8EwQ3GzPQoSkES0O+z6yww6IH65e 1OYJBYhyFOl2kuK2GsXNU/F9z5JNJkWaFiQQyNLypFH2lKrD8YysjeJmOascRWxUrUHxVlXLnfPj wtW34nkznUJqcnibUMvDWy34pXvEUXxuFSefh0zGISw2zN5/0PK2m6dZuSi+e5rVnAwnSPXb3fE9 J3G0kMRVWiuG4gyLUw318zYbb8kqYuO6lvrnSFe1UqJr/SgHE91MP6onO61L47q9EMUJ1HIkkN4X Sz73cUH8KxSdBvoDZvz5g4Fgb+YT2WO3Vt38HSZS4zElRe8y5+FlwwhAzM4Fmvmf7Ohj4+4mhUBS F2YtG4MUNsrQXO7eP7C207OK8pqZ/PQJime1RJWhqBqx45qBDR5ypCablXG5OGTX789Q9AQ0cS7N c0khZ2UQR0T6wAW/Pz+KT00iuz5vn307g8NlFTwVEDgzaNe66bA7ugxFVS0195uFK0U3ks1xgoB4 5JhtrVauUPS09b1sJ5s/Z1BkRC1JTHxm0xejWC7+UvToab7P+opJ67h2XDvxUMRIotMcUmTeiAJM BwcX+YDmTWz8H8W3sYo7fhuqDEP7PLXs3izNZJGJVLW+Q1w1vT5PSC+gaHZu74rnVCfdfF/BJb9x dstAqbaPEuVO63tjZP6PvXN/SlxZ4jhhgJAYLPKigAUS2WIDAQTC8koUEBXjA7G06vxy/v//43ZP EgjIw7t3rdpzPeOuD1DB8Jlvd093z/xmFP9q5W+aECZnBtojKDE8UYIoLoc/by+3VDHgkCHOuPsd Bsqhbq9ykJ+zocq/KOJLtZWNkBU8hVTNqVu3R8fueL6/uw9E8bLrskmajDimilJ9+LCwdEUq9LUn lsOc9xRVsVqaLhql6cBI7ULx47Ve71C8MezLVprFx2WkznWLjYqAYu32XC9ePiCKWpu6qkH6kCi+ Wb66utLG6oF0zrGBx24FR2Z/OrL/QBRTe9YVCQkdP7oZQsgQPJrc3v0S47F451rvN4vx7LCVjx9E kSCKbx2raQqDqn7dKjKFPooiOdeejZ5uTQf670WRE7O9hjYbNIsd64JhFteNRrMNEXR5KTEMqKJ1 0ak94OPRy8Kkc67WNcZ0zOmmtr++oYpf/+0d3hv5KihGUx8d0d3ZFtHjUFAUUSRbwa1Yqcxtkds7 scE+Q2z6AwJTPHLgwIbagSq+ZQFFs6fnb4x2pjfJJ+DmgeFcNyufgCL2jSWZztJrH5Po4gxdsAcz LcXgI5dMELp4FEvbY2yVwHVsk5cx/yR6LY+HenQPRPrxSAZrJhJpWfr8dcg/RhWFj74JLLPKeHu9 LcChL4iilxXz+/8Y751E16VFjts/+yF+xhLW4k1jUsE2vMO+YnrUPKndn7i9kjtsFe+6boWHxxlo xefbTg0NNNwKr/9RFL09LD6AIv5VEnLl/bGiyBG/xdZLBIp4B85FnbqHc9uJyut8IUc2enLpp1yo J3c/isl4oVfSi5lFGRvCvooqikjRx/6LfoEXLX4g1Cyrpg1yKBPVwV4/omI+hCgyXOu0wKkQx1Rk 7gCK2BaxqBmzxHMNqwePRdBcfVi9Vy2QQDCV2R78zD2w0NGLUqT+7aIzLg6MGbMXRW8Dn+0Sr2Bz lZ0ohjq936c4YRbgcauqY1dcPBuuO1aYVcIwEFVMGPrFnVKQMGT8hOF+FBORG93svxWGT4PSRSL2 RVD8LypQuNUx8jGGwwOY5fpzqfQkE65ThjkMpFhTzIyB4cSOP6E3eTZm3GEUIwk/S3awmi1AkYNv y5rLiu0oWJqPJ0HDqwtxrQg2VEoSiToOWyjSfXu8ARG9EC6dEEDqMfanIxrz+kNpMRMHMw//+YN+ QcK3cbGYyDr23HXdsd69MsY2VuT5LrRCW3KJapqOLKVNh/KpyjhNhXROVljxsIFOJgnEc/cZNVav fTkU1zUoayUIV9h4KHrJrLSqUrOsiuelpxG48l7HH0dGzSJ8b3bYnTH16+bsxX0Od/ztSfrFvKOW YcSPLeaAFIE7GmNyYPd5DqEgW09TXKsNTQFzYQJFGdix53MXIwvXnc/ntu04PCv4FT/eQ9GnEpOj wr7B4g8Iznysa90uxsqG4ap0fsYwK0RwShqPhEiFnlbWQb1LpSU8r+zwlpGyvfvCy2wwpsXthwx0 ItvrtiORbK+V/zIGOtjlIcKgDyPReU3QP0IzQ+/hvNJD6oSBg66aYHa9cFka6O0fhhMjaj7Tf2Pq /TcQDlDFnxNp0GjOrcnCOIKinxE5etRFBF2EwE8QieOenNgAJgRGhIihN/oVLXJnvBZxYUUgqpdu aADP2Xfq2V1ddbsacKTrPpk5JU2CvhiOMhfdsuZo3llZ5ueurnm/5QqCZt4/4jceTJmOpT3CrChY k3Q0f15e3jUFzF03i0yn8ZCtFEf642EU4Y7MwrqNZ0ZaO/7phwj9WapIzLkALDLqqYPM1XlqZhz0 +XJyHQuyaSQCrhE9DqqSTovI6qB8gSjCPSiOI81+oS35Vb3yrWrMrx86x1H8YE54S5hcoEhn5R2K BQK4uqJEcQDAsW6ECNw9zjwwPS4By4onmbyAy6QrU85HgWyQQ6NLf9cZYDjnRUFkmNWOZ54b0SlR VbS08VJSBOkGUcz2u6/Zy6uHOqgiRfGQgY502pG7vxOd8uMXWuKm1y6zKJX0NiN1rJKxlLisdYvg DUptwixKFx1XtZYSEdE9VE5PTk5NhaFFVD6KDHxSnXL1/us5qAGg+O3btW4Z8/7t70OR3VhXYnkM WQ2eDXegoOFEDeRlFX24TQ38vlJCEEIdhgF8egb27GwXmCvJ9Nj0wGRtkMMrTw41fWwLogDCKYcO gwkuJ6giGGjDMmYx6UftCUOufhlCkTJdGj+mirHknVYuTQvX3W/jdvIr+YqYTujU7hPMyHCGrWLs rkkJGvy8l8Dxu6jbdetJpDZZVUxTJTSCplVUBqA4i0id8jSSGPw0at1bBsOWRWPSM+xwx9//jOLG 6gvvFVkgi1HqB4J0RSl/VAJ3EghYAVTAlMNSqWN5z3FEz1GnP0XJPPt+AEyjexXIoeuAVGKwE94z x0eRoaoocuk8ZsULuJkL+Ir9p76hjx7q1vSoKsaTmcW3pZR9fvliKBKpbmETfxIXje/0dqE/wWvH DBrGY+dauxiMcz6K4Etx1LX3XErwhkrVSe4FO/7Ky/rJi3U1BRStifKyHDZZ2vEnbu+v+Cvbu2+h CC8/KyCLGi/zDsYhKwA3CfQkEFXNtsHJE6ml9T3AKNpyGk8DlwKA6ag5x67MT9yxJ6jdXYJJN1wC sywDyvg7ouwOFDlEUUrWT9uF2i1e1AhNoL/edWc+ivnM4bAFt8mMJyJ/+tHkn6GK/VfwseOZng4o Fm8aJVyEIYNqefJcLU9HhokopkWsdUIOk6vEX/3Fbf/QndOTl5eZBAGfLYELadq2XTm1RZMni7n4 GaqILLLY4R9I2TaBoIDg8Nm5KBLoAcimQuFHKrW1wJgCMNdPM8FEUTHpSo0nmf6jgFl2bRbJ9Tlk d6HILKqP2cVTuletNts3P7ullsxw9etXxU5f/v2j9nreuM+TQyjGkwmIveIJGsxHkl9MFQu9SQxX BO9axWHL7j+gKhqnjfLYmo5008uoxVd9w37iD6Z+hEkLIl3io6t7dN3HOZ3bYpImxyJbu86KgvzR IZB9qrhm8R2BKIG2qohBJCxshzb+Hs3Bu/WtEO7QwdBNK8X1CiS4g2DKPTLnjoBf8+FszTsUCaNU 8tnne0lZuI5UB+8aJ2TaLMLlyTnwMXtqHy/x/Sec2/IpvuJb1rqPJEagiq388D55CSimB4bTby1q gGLOWiZJsK4YLocg646/9UqkU6nYsp/h2uz9wFb3j4/14bbvN7GIsilkca2BfmQBGih4W314XNFF oKBfj3Bke/i5OHrnOq0ZS8r8aiHHs+TCikt+K2u4jSIuLSRpzknCKSslaRE6tuaGcte/pwfn/zCC JoNGo+k8P9Vrje5SOq82tBlEyyOtbaYQRaOIq9abGbX9LesVMGs8F75lA8UPlyeENovbsZ8KNY+2 GyxTrxdceJ4LsiaHtwx/N9ZXNPQ8gxM/Ai6jh7b6XC3FE5riC+aAP09XTav+DP0XxV3rimmzIhRe lrFcxRE5kjt1aLhsyoRJq6LCcoojcxsZNS61LpRgw5/yOsSb7saNwi+hyB5GkbJID6lfJe9S20cI bYr39pbhqyzN9pbhv77rbDKykSsMD7J9m5/S/xfF7cRfDA/sFjkv2yIxaS9c9rMtjL/LduxYx1+K jep4bieQsbM8+jeqImUxFV0VNEQPbxn+H/autT1tHAvbWDICQnCITbgEwsNAwi0pEDJJ6TRJ6eQ6 IdD5sB/22f//O1bnSLIN2AE8tJOdLZ26g5CtY+v1q9vReTEoOO5rxrWkhPuPdE8wtgRF3zu44Nm0 lBbT/8ehyHw7/tj2oOg6d4lmxLJ87nbG0q7OhQ0FLhJjOKyt7swBJ/19WFGWvEbkAD4su6j2YGw/ qU3518l12YB56Puike0/7k+mncf4tlhxEwE4X4E/Vth1AVE6E1Bkm9E0xtZSW/K3YYjq8+2Lv24X UH6f+0q8xzHHiu5GFtzJcgLRL/0jzJ3vw4prCylkO4Pq4LSnZx+OSs27RL8Ja0KJ/Oejnp6/Oi1P xseV8dag+EOljrbKio0NRd1AVq2WgUAlNSd0Gxl1Y7Wt3loRd+EknPYWvsd8X2O+INeJtO+Zuusc 56C1koyn5/chfEdWXA+KZ7Xb45MxyV09FT8/JyxYljM4FL+8ZPtf//MOoMhbuvTap8V3ViJYVr8P Bi7v0iBEOU3ObfVhzdpkYyLn0F3OicPukPPiLATGckuE8P9ja0IxUKxveW8Lw+WSBPoZwJrE0bna 7is+v5x/WkDiO2BFWCqvjMzE59Pdr09yWS6Rf+1Wy6/dD+Wrp/7fD8X1dyam46vqVNU7VVh4K+wB /33GsTRsckQNGxs0tURLZeoV8I6za4jFgFMprBag/6epEy2ihJAYl8Zdp1MkPuVi4Ice/vE+R6P4 YiX+/ayIUBybic6ge/6bB8VaaXA9qL4XKEbZgxMCLlHv8l8GwfUYxXlWkywChnPLjLewEOSt0Mxk GmvzIoZXnEnopupeKG4/Eik7vMDg+7lJ66bscXJwtNKgZxeDFVnhY6ocrATefpGufj7wfUFnAeVs MIotXw9Y0RfNdQNWpG6AWrphFat2yQ9FPkLTceM0QDGBXhvD51eEonAg8mIlbwhFz04W0c6NoLgU BVn8jwuu3GRQ7THCIHwG7Gk4vi6arDPr8fHZrDffkvI7bWcyKYzdQbRafWitSYt8xFI7qCXUDZTq FU0PCLCY+3g6ad2ZIuSCKyEkWNo9UKpe45gMKOJGFonFR0cCduI/8VciT3x8fgafYp6voG9E6101 veO+abCKMf9jQH51SO4x7/HGYwv54yHXEVUsAyhKKB63Xi5PxvZ+9gyi1/NxC3gT5i8+dAa3DyfI ilOXFZmfFQOvv1g4OImtsDMeZudKVowFQ3E+ILw/uDAEOWg9Xn0omiaEz7jjtX/W/VMzH85vO72z 2m8LUNQStYOSUNPi6GrWZ+uSItObB22mHObt+tBe9iBiVIhlrJQQElSVTqMrIBxicIjH0sn4owu+ Lwp9AL7rx9T9qAA6I7BTUPg5o5cBrkXgLLP/OvLSokXBTc5YxWlfkUH51QEbPsU38eTK/DJdKRQw b14xd/n1/O64Ms1+hG1Zer+GrPh6U9TJZbV88WLxcbRf/00oFIQUEltMBzsFdbN5O0PyK2OTCa84 PRlbvrnY0s3BxZLxNyUJQD0ORVJY7uqF/Os5C1A8LR7++3zcHx8vQpGwQqbrwOIUCkg2Ml2drQnF gk9CiBnNTCMAiixEQgjVS8DFwMADVJhFtJ0diIcYh0MM+C0JGBsdnfPPiSS+xigG/lV7+yIIPah0 6jbPlkyq/BhSMeA6Mp1RHXwc+YHtzecXJ0H+WHzpYvugiCDs1NfJr9J1cRKoN3heG9nO/b6eNcU3 nNImBKN4QgTPLEaDwPxoJ5F2xgKuv1z4vgF6QTqnYkP3p2N+z9jYQnoc7ARlcpBmCcsPB186HkAX BotUB8vgLaXFFBSlXk/+6iULUDQhfMZZsza9eFqEIrTPBxUZvANkJ4Z1Y11WbA+basTN7a9kUuGs KCWEyq6EUAEACOG7bdARciz+8CCIgVmAaoORkGXzgwO2oJYZfDNtkU5Mx6ImKfB609scIb78FoRv g6qH6+hz6ZpIp6iipRs2cLit0k3H9Od30zWHeOmc+m3+rIVRZDl/eDozCrqCFmx2SSA6BUTB3RK3 dlHNTIB8hwtd3dFhrRNVeeBihjRKh0IMm2qL6ag25fCSbP6V2epHguk2UfkD0oWxTDccV7VKpJu+ QoitCvGlcwTovPp4fkzXtYJjcZZagCKoPkooVjB8xvQjQJEuQLHxrcIkE8KM9cG6UNQEK0r2A1Zc HrcwDTT+Lp41c4WEEIhFidC1SyIgFHylGDrLERC6Id6PGnEcbSn/20ojOLNkFAzV4MoDDcnvSweF q4KuvZ1/KQkfgzDTl06IP0eY8olesFXzvr6MCkhyFQxtyYxgi910KMgpqNmXoKw0MB16AohKFtpA n/S03NWdJqB44nw9bUsozsGBN7CcFZmuWFFfnxWJ1ay3NdVA25mhTQJYMffx5LUy7ST7lcfBTZjy KQF1O6FjEKSIChOINCid040u3V68g8mES23n5junAAAgAElEQVSgJBARMqYEz/Olm29KCMkfQR+E BKTP5Q/6kSYML0mk01AM+tWD1O0p8SEWWAhbTBdmbi79A72WjSWEADW6l4RatESxIuu3rgc3e+39 h5NU65b/enZUnkyPW9PPz8etp/lgE5zceF9RQIB3v3bX7iuKETRBCSF+xdJB0Aiav3GHF5WX/MWz ednipEjfcWS/n5/tf3ASr9o7rNzmOQyKvA/SuS6CYlJyMs19vJlvJXnTiiNoIUrFB8WzNV0iQEyt Wy9JhclUJtMmQestyPc5Z5+K6P70Z/X8P32EFo2ZT4JvPQYjo+BHLGbwFldeOJu265mU7JuUNphX FKsttYalW+1SvR682gKz7LouFB7Dl1ugSWFRZFRABDaK5IVuJSKdBzqkEYidWVZEM6PdHijiRru9 KHCD7k5IcSrghoYwQEV0GNzDZhkC4/z50zhGZvVMqW3pdqNWzzTWdvyBdYDU8FumWWkOvw1noSE0 xcjjTQkhVDCOAkVSsKM980I0bMCwJQoU5bBlYyhGNNMqJCLeXjQovvGmYX/SlPW/klmYPsscDDmi Mgfd3fX9IbD/Xyh1M/VMt9aOKoSi7oZEY0U92utPIu1dg/Mi3SWNaCaLbGbU8yJVHiPb8QGHhlZr 1wBRzdJG0jp8GMhNt9uNtqP9JSRq7trfz892umg/tritxaJFdtMcjih7Q0TBuipRc0LsfQ+OKbYS 780o7MP/nFWYw6JA4MbNpIqw8BcpcX48wDAWFtHW6Vw4lpjLRZwFqYeCWxJxIyYy1a93DHd3J1q/ 1h3wTpjjBrvVwrVKl0+0/V1aMEkn1Pe0lZFLfUXHolAQ5H7bPApPjCq3EsNBL4zlKQ24mP9SlPpu A1ZpqBhfLj78t94Y6CsaW+PFLSFqO1BkGi4Pmn5j0Ocx6CE4aw1boJZYfldF2PZDUd6//2GITvYK KAY8RDN0RnYOimISHtcG+FiyP6ZhMrgSikTmVt4uMAhcaoOI5k2NSChGGbY47nygez7HqU7YimGL 8Y+hdjYnfchoblK6L2qeVLLoA0iJaT8XyQ6zyXHW03K7SZRUROdu+CtEqDu7Zagr+vCh6K6Yeyxo sv40ywvsQWYK7CSQgVrW8LtLNnOjKw68zn3WZHiGEL1G4hUcKxSxPUPn+/XgvFcaM14moRjIlX8O d3sUi6SL4wGidV6vexyBcGU0jwouJ+iBKhYyqdafXX9iihXx9qg56WFr4D4JOKczgmAGpjCTXy/X HmWlVLegTG5b6ZE/fLwvKsvjb4x4/mgBhdPB90dc+n3qVm5j2AI+jkezVrXssQU9LP3hvvwBlEXY 8eCOwZK7x6PqZNLZLZ49FrHmA3ZTEPb7+S3N//onrEma+PvhbIycReQqHGE0yBHz8hTWMU21Dmay 45siFRehYYYKij4cnMyaT7mrO0Y4nvFF46+SdB9epDvab1UvjqbMNY/kJi8CsUS0IbA6fNa8LlX/ 8IcnphQK0GTPS5KmSX/nLySSnAl3ZfJnfQMWUNlsU+3w1+psUC2beON4G/mLHoeimpjz6gsHvMCf /9gRJ8dV607vz/j9P5ZZftROlc2z7kuiP0qNzU4qycylLhpA8VbjUMyN9nLtcn7Uvy/2U2Ut1099 yh429j4f3bL+bJrVAqHYPS1zKLL85L6YKzR2x/3mTULrp3qgqE7zqVF2uUBgRYQiYYepcZbmJ6k0 eTifUthF+l/urrY5bVwL29eSVqRpxzjU4xDbMJ4p2NjmNRhIoLABQoAQdpqZ/v+fsudINjgk3bm3 03R2bj7khVjSkfT4OS86kkCFAmd++MjftCUZ4at6Wx08WskSUPXgUL3x5f6y4cDvH19vPSJmv+qY T3sDa1bCm92NYQ9jpwRlyiYMkFhrJmyyIVrpxV0WlJjJUpBj56GNcY77Yuf+XFm1Pt0bSvgBxKSo fj51p2XouXHYeBImM7XT/cZD7BfrQPdr82m5c2c2YCIUFn76cmtgcXwFGA7y/xcS8yFuvMknGGM2 1cgN4nZtXu9WnEG01oeVq/td4Ll7SuhJiBuhOG3sgmWt3raCWTOqBz0otq11r/xls3o26S2t/lWw MbJEz2OIG4ARJxuAojWsB63ipOfd7+at8sL1KmOYZDupB2tO6GmIO2NFWut67iOUBSJZ9R7ZqNKN HUAbCjo7CpoLccOHq2rZ/PwHQBEfrzvQxa8frmYdr1sBOqYvQtwlitcOKqxgTkC88vee56/tpNJu +vWv5yO3G7clvlc9QKVC8yFuIlmRDXzPHeOQRNUgdhZRfb4xR1dQGSHmwL+KNtjzqbgzCd0WgKK+ c8e1bt19NFbulTvrwHiM1jZOxBYoeh6fP2FximeAwkeMk59aTPq3QrGgsQMUlQ4aUNzuVjvzZc29 s4NZLRhbw3XB7k+1fi6/RyTlSSgmPS+IAIp3CMWKAwVCULp6OJx2vPYCFI5eWsXlQ3ZlSTtCsdUJ 9sms5m473f1oqqk1b28OqzcJ5jQtKl/6lUzxcZHFx4+sSAgbuPtJ3AimHzXSjB17/ribg663+vjZ QdD8XCErVsuDeWwNl9Aze/gNZAUemrFSGKwNlve0QUxxAyZYZjX/YeePJxtt1DJHLTLw2gW7u7SS R+Oy0SjiadlRC9qT2+QxeVBAEVSsNXy2+uumu10AvtzxAtAYF8zSwN/i7ZobvQ8DNK7Vz1Bt6yVQ 0PNe1FsS0S9nUr8rqiAlwUSaMZ7GWHeA06F4pQ2aO5l+mj9TTPv9TVBErZHbxvoOjdK8ESKgqJjF WoDn7iLPJTM72MKQKnZ/rYyqxx0ymcEsbEUVpiZlxbgMBWCSm77nT3cCirWgHsTl114SQtFYVaCQ 64QIRa4AFK3E97xHgmzjeYBjkiv3wlY0R5EXTC86XT92oFkgOM+bwRwPe0CWR0H5MQAA/VtVHXUR l4bfQEpz8gwvAbR5B+zlr/M6lgpvXrCiXmz6rufdTTZsAFDcKAPPgTIzNlxbQ9+dYU5umDxnNqHo nmRFkTA6mjY9p+kJKOIFqiFwPb5ggFHWhwHa2u6ZQuRMAyuG3Wcm+uWEfb83s4AZ8EbLMQyw2B9w OwQ2BE/Knlc8bymy+H5PnstxMxTP7Y56vy9G7eFGXdVvh9PiZbnmIhQFKz5za9TSh0AS5Ee2og3Y 9WfNelkO3Kil9VMorloXi7isvsoNElC0kj+hCUDj3WhKCECRTFoXlxciva4dnlHyA1tRLQB7jMM/ rC/n2CzanM/6pYEIjS8uzyl/01akTXevTqAnQGrLMEA+5jXvvr+2krVxsmQHvvCoPraTtR0s9VsV oRhLVtyC2oBP9+L+A/PpjnTAwi7AHwXZqrAV4U9rsrG7j836NoVi3F7Ei4rT9AUUW9Zw03FhxNoZ jMNkbA7qZezXf0jjVhuC9TJjghVhRBfAitUnb9xEW8JM1nqj/PsS/6SLn25j5SKdgv76NnIxZgrG 8vy6tyedeQS2omBFaxifT54VHibXcX7LYholEVBED5qMIt8fCygKVpz7ESro2nwTBr4ff05m6OPm mwO3pWUoACRzEPXWuPeB4KkhdhL1kGuA9XqgNekbwZxBFF3/uTb7Ue8xHEagHu15izVBZiTRMIkq d5zRN4I5gkqvgVVGPTDhoqmBR/8jK0ZutBy0HOV4cCT4I6hFoXKHD+bQxAhZURlEeN8p4835NZhs +CjUGEXrsP/w9PVpashQDbDi9fV1b1vDggPJit544UPH7MT3kRV5B7Tx1IA+4k2vcqbD7piLM6ih XwWottJmk94WbEWAYh8s6l7Uuh1GPsjPFJgh+Dfh7xqQPqhLcV13WUm3sbKw6+05ob+8Nb1E8kFg uQAp9BtNEZNuryW5NwHdlswfSKkgXQ+Fhyg9JBqL2AVWZn0oi4/zmTmUSucRXE0id06mpyGKaLIQ 4rh5+0VmDpPfGM2i1jL0IwMsL5dQL08ycxhJh1jUTmXkEuqgnRsjt+qEGwp4mpeOj7KjlsIW5D+o CPGJPZuZKSw3FMincUHlaB1ItZNGdxT5CxUto7i4oQB7LZ4TQSkm/k8ZE+FLQs3Pel8YLGJMxZIx CFJ6R7flYBNB6+BQOmwSf5gvcafK9Mnd/vLbtfiL3DWaP8tK5JYhTI5XEudXCHVNfkTJ4cJiIkvJ W4zlX5Skv2cxYFU/LuCJ3TB48Hl6KCfFBQ6aHpNFUyEy70o6+lRkzqfrU8cvJtP4aXo7OD/EFbnY 15jVlfZPLty/+CI8v/KDyxgFmomSndx1UpDSY18Pn4nu8XQF7SgdzTUkSirpr5mwmi5lYyQvWtYe DmMH2R6VA+HpPKGA6vse/pRhEW8bBB255N/XRKkJvffuF71h/FWRs/bWP942Z0/9n/SVOhACjjr5 b5NIaIYJ+gOTnOYfpHl/JnPyctLT44hyRWKRvl5zlECjp82llb+sjx8cypxvyd+Wk77sAT2cH5GK ezpoueVgDO/nCwNNajznu6a+7Ht6D1zLEmHh1QKHD6BofN9g8BmhqPybUlw4UzVgTa1AWXo8VXbw X0qqh2Or/vkOSaaVSp8vVL2IDClZ6IePM92gmHhOj00wDhLQdC8gp5m/fZxI1PWlcyPHboeflOlF ktG+KMH5D1ItUooESOilQqoyzMIbphrl2KELQzGLRAyMmu0sg2/Qydzg0LygIKaJp/wWxDDQtEXZ M0G0aRrs61fmvVY8DjYREbEHq4tQVImEIn1fBf2/eDswvmxQdWh4dZdl3tD0Bz+cW5BaV+Y5zw62 epUCDxMwcj23erbbS73KT9MkpJhyx5/VX3LW+Vo+Lk3C99HSIFkhykrFbOEQfb6CCuJYT6734NDX C57M3N0L9LK0PE0h8DpTX67i4TKJ51XbcoFksH55ZbgQExzovuuCgd95MIThV7tqo+EozO3B8lDZ ca9iekgCZ83Ac+v79OUpHvrHDoeC8RdrlD+bwPwTqFRgqs1kqWQKOvn2DrbiT28o+KyYq+u1UfOW wBOGohUI0JNiXmCigl7UDFa6wAuVgQeUBcbCTldbDlVZk9Zl47Z4+VHTOANby4TaTpgpdVvg2aQ3 xrgixYdYQdMLQDQTQIRo14T5s7sblR+q4Oi2sIG/3wVLoul6QVOZppp6CWxBRb/g5uWZqmEtaQmk SVTk6sl+CUrFExyPonns/HUHTAcEvdqcQhHdFnCgp192wTf7xhBVN72Zbsh3hIZnTMN1QlPce8/T ZoXbQrk5qNw0Guc4DEUrmZZNGDyiWBeofkAsqwhsmh+cv9m71p62mSVsK7a7EE4UDESur5ElHBvH V05ulIQc5x5ysVqpX973//+OM7O2QyCU8xZa1FMVQQQm2Vmvn52Z3Zln9mcvW3ZZQgC7WSNkekhj lW6q3eDnL1u+UyvWOk19aJlDVzHnsr+SJSWEX7dirWMqAy2KzakYKXCB7V2vdoN3qBWl/pI74mrr rTXQ/IGMBdDkJ3rxQSu27UAEKKobc6BhKss2ag1GCxHkrkS4WE+skQf/gP9SY83D7REQwDDusbtR BpV5WNskrqLECyGKlS1IVaGVJP8EEdbQBGYjPO4mgAXfgTvnHT0BMKgptBMeQjHTiuBJMV+X1qrU q8cDzXLq8UoGbQrKtLPFsw8TtwUjxnF8ITbTijjHQM1FaRgNorZx7yvKQMYRZdemopRb9a2o7u7s nbViNJd5pLGKGE6IG1si/EoBRxi6+sa7ioduZW1PLP3W90663sa+tUYrPBPwsmfc+vZdyzsdGwn/ jWqnFIoGDLfUWkgxAirfMng+jxCPyJt0PLFnlJ2F1PbKn7r18mhRo3Jn19NyorYxjj0f3eUo4eGB A9Zhwvmj+rSD8cmJdLlpTqR20DLC3tIdBdMTmPBttLbWaNDFsOLhvvrMSEcLhkV2uTKVLX0oOcOn UCyyIaBPqT4ce9W2t3Em1uhuY4SWPegG4Gupo6By0/c2+oRhhRl0tDDyuGFqw6TWAKzmCnonz67n U1BBLbyzeRe+MfaH/eTJP6kk/GOjLTyfbWCpx3mVNf7XgmJwHpvmxC0DLtj+pL9QR3XFmfgNmDi3 bnljDP26pupnPkbqhCL/8RCKXpomuMdtjf6S4QkzsyX3TSh+9vXUO20twHs5j7eMBD9fc7mRrsw1 FUNq+hyeZLERhFAUWIbBWm6WmcAnxFoXPIvRoKVve0ss2yHFKzLGT4yv0/gZ4wOWtOulTsCzYKij Fkw8aKc9nAUieRaK17q55WB0sFbMCgSoZjI2Bi3jaLZUnVtGbQ/xMEW2tt9R1Ir2IJ3KMB8CudZd UfuvjgZwZ7i7Xpd9M2ytuDGmU3Dcu/IhcANtx2amrFbC//gt7tfzoFErYhnry5ZXcVbi2DRCnPKV E1+HUZu2waMAKIZWA6C4S2c84EHjUgTsGbwuiD8KcMsAjBv39E002ZxCsdb/T1BqLZleHQDE4tv7 CwnlhtLVxglgnSf0jWnlRqRroGoVszADsP8JuBIc6G7JwfIIhAFlVZleYAWZIdbnJjTB17+eV6ay QJ7woAGKfa9S/kQ48IAZph+42A5oReaJgT6qsrmBBh0HUPwiIRSHCEVsmaNQ5Nz2Z7xdtrbraKlK oRhQBRS1vbAWT6BHp5yKvfzQCVgatbnv39F+7gxn6T2LytN9A4Ej/E9J2H0LDxqLicoAjGmrATZS lEbwV6+RgnvTbsSNaTfoXYORCi3jzLIX7vwi/bjRhOeWLd1r0xx87C4tZx6DWdJNe/hk0u0tWz7z 6uhvuQOL7onqrAg8TWW0ZFGu1qmn8R1cCH0d/DGOhncwSUyIwFuzh74+BFkNpTnx/91QtlK/kc4B 02BrGQLt2RPAhBrXlRWsx5/woNF4Qpu3mD2rm6a+zdoZXw8fbQxmSWJcrf2FxTww77z9ReregQAV s5zqypZ8/UsdDZkapqglAkvyjlIeNC5bmiZ6u86g5Z3BbSDoatDLwWnP43oNbQw+EPZThbH81yb8 Hzzo/7evt/CgieDeiESqaG6apqEoRAn64WAjBbfc0sNISeeaeyNLlSNYHLjTi/JFWRMOiMIwz2Bt oww+XB27Uxm+oYmteLCCpjxosI7rkEdCASU+1C6PwXfZDNKQULluisKjeSislUFC92fpsoVHCQlR LzWGuOmgrEUprHcYWK9MT6NEgssctkeTWGFFg9Kf8qCxnjA9lFlwca0kMrQdaZOQx8oTb48TMG0d Rwd6W7s6BgHS5QnBPnAgrgK9QF6DKOSNYkc5ljIloF+wpqnIKoxEGsLwMkgzmJ+6N8S9FN1LDT6w kgGK5Q8UiuT3oi2+3ujTKC6NtWLYld9t7cHoxZkV4bMvysr4ZmYRV4RzHsgIL+ac0Bg1Prkdk5Cn MWteELLSMJlP/dBGdoc82esobSbLseKzWDh5KGX9nPSHSHsxgXBBRPhvRMoKc8YzQiaAL6L6fLH7 mu+h8gL/ODsN98hJvsGZpQRgObei7M1BPIj581Vo1PzM2vwYcQFLUcHUnWtMfhWD2ALLZcuWfa4f zbGikRiOHniM4QSSMYm+zXOjhVcyOdxOPpv9nTvzXFYO8lH2BpdTlApR+Fqwxyj7VOCyI5d5Lqc3 HcZ5aOMZHYzjMrEC+3zdLGiUyqFkLbwtgf5CL1AeIaVMMRknrGgC0yzop+gw5IOXvZXsvoX8hIF3 Xra8D5xKr/MVhYuHDJt9xZoHjrM0AeZQaTwmn+4FMoVdFtgzNV4OyadFFksRVc7DaHwe5ClkZ+TT LK5HaNLPXsIPpjMIuSXe9TRLjGAvDpwwLmucEht58mz0+An5VHjgOVPkkEdpJ5may+LoD+TTZ4zA /r4NLUe5pwt+K/LpK6G4z4MWSA0cxhsRPBzugYBakCwfJ5cVUMRzG9I0ydJsGPdSpmU/C5LlA4M1 L/D5Eg/6xY7u86AFvhahS4gSwN8kmUYSMj2MjtlDvuIzUPxno0m7iRviaToV+YKoSuOS/O7uGEoi zTUwz7wMxRefwm/Lg/6eD+4ZCCR1DseBZjW0gqYp5MqJMin5vbzDXTkMMrbrij3JyNSReW+lIU92 nmvuN75xdfW4m4Sr9fSBEyA5m8m5p7ybiRXI+Enq7OvKMGW3RxgLbs65EzMtC2J8JDgX0WQhG5aC GZ7d3ns+vF933fLWBgROdTIoVqYaX1uXjwmRytNTfDDSOnmOeYpQ9M7YmcdI66nGrPX7sT3JqJVu pVzRpHVZY6pXV1ON+WGUHo6znNWRpYTup8rNxQ0s+cufiD9aiCr2dR+Kb5na2atlhNVIv0cGqfTx snLSM4YcpcdSei7PuCBa+ngFq+k3bRX/qSV88IxzKNqN2JMjEzlaTp0WAFdj01mIhyMGnuG4Ma3E C6Fjxsj+uO80F6WNCTorUuLmZ7hq3FujhpJ850GcL80Y4jcSPJ9gZpuDdV3uNRQz8ZtLFOtpPwaK zA6KGmPpScvUF27bqN/0mpOMxOrbcI9y5Jj6BNm9XshzfwD05i3uPVZnDkUjxPIfVbe7jOzJ+REY 1bGx6nmPzo/P947RQOtmc8Kw1cj57OuAxiEpVTtGwlb7gcxWr9rIDUVyJflBpT4FYjUSTMSfBWcl 3zvresdnyD2lYm8fG+i3lfoEKDabzesVV3VbwVU8AfTXQ8tere1b39AiPewFpV4dRFv6TcaDeLWv +HvyoL/PS9lLT9ppxYYmtYdI5VzWNo59J7L8zG6Y9dI+aSTjQaNW9E5KY6/WN0w7g+KtGuvIjR97 mtCDqxPLud9ZvNL5qzYv9p4ViAQo8nlul+/Jbmwbt1Y8VFtGfI1QJHtQPH9dAWTKg0Yo6snHMxGU nwNQHDLMuK4hiRVTRmTXSZDEWr+Mb//L3rX2pq1sUVt43KFpEDjUch3zkKViOwaMSXmlkOSQEMIr oBOpX87//x9375kx2IT0ntA2VXOIlDav8Wzby3v2jGetZdkCisy/ZQ8ovhoP+jXqxD3p1fGCeZMV C/DF4NFoTfOfUz2nAUNiaWgdJ1Tz6HraEpjquGYxBj+HYh3uVIlZQiJjvv1YQYGAaJvpnoNnbEVJ pVbzSqvjCzWNAiTCht/FPupQTxQTWZHsOR+ITg8H6BmyAWuQ/ACKMCkqFxiJle2x8vrjWrp3FeK7 6QthM7bf2ZHX4kH/QbVic1m5mUJWBGR1qq57Fd7A+MRoydXqZMdOKsyK1S9fSn19cO66f1s3Qb5d +9ituueNwZdqddRzXZYVf+oGTUVCbu1cAyhCVjwZVKtOw+jWjgfQ7RDi135mrTiTFDW8cauYFVUF j96Bb0yWFftWG06d7di5kA614vbqyg+skkiRzRRhvCKVvU9Na3wXfYK+neyOP9KyxlbJ2QsvWeF0 TCIxbxyyGTH3XMxJKGUSdFBT1hNdKqcZx46KZW6SCPNHFnM4fxS7kzkTFXe2Y+dr3hX3aiai0/0X cxT6hmrFbH5vQgGN3nVQKsXhFlsjItsEka2dOYR8b0mJPsODfsFHkgdN4gE+v6QleNB7TVsSSqaJ r4j0/Lcf93QoyL+lacu+hILNOj/dVZ5FOwWSLwDjPOh1uUMSpc82CiMI7+nbkkptvS/cSuVPfhhN TdN7+r3I0o4enpxqciPF3r4tr0Uo+AMmPTCQppF/Km+4poQm3CcZzvk04LfU14ei/j8CRZgInDYk Y7Xkb1nXN59vaeL7FPSTaMPBARaHj18xQONWdoBiHdWTUP84lYPyn7Els0iSVGGEQ8KmjOs5VNKz lNOk99sCLxh/Lz8/Nb3fQPu6YTLG3399gP4hHjRCMbwpjVBILETWaQfZksjp1PRF87Khhiv70hy7 E8VvwW/ZJqvXNlb7tK+x2s+Ytvz7dodpy49nxY69cr625ka7/FBqIFsy3756cGcV76pdy7drmfsP t+5SH9Qe3Gu2XL13ukkrr2msdsiKf16t2LGPW7aNorN6d4QMuEpxZnRHdfe+63zt2ZcXGi5835RX 3iP9HYu59E2vIB9gmIDirNL+Cwn5ehsp6gpXVKm786O7nJ9pnV9XagXkhh41DjuaDh/ffazSP+AH jVAs9tXOl4nedZpO49s/GtI7m86s0iyvlkbr8gF1kSecG8pYTnL+4Ae98/T2qxVTh2kL3yQG4PIz JjEyX6n/UB5SpJ9KfutySNXwtLzMLpiCzmKuGQ/2fYGtMR78oJ85vf2geOBBbwpmwmmRXKZXEjRO XFFU8d0rfirS2q/p4Af9fLv9pi1vivdHvrujPa5CvKsxQ7LKWJWMAkq4EyijlvIfEgKf8Bf/QtQ+ khx+8VJ4pPz5wjMXbyVfei/XYdKXzSNI9Cbq5Yh7tjv6ButvLs4TlylmCTNuyspou1skcJQ+Z4xf Kaa0pgjOs9hlyHLFFrkYBbiZ5Ww8AEWJU6CZK+220+j3wtzcnycOqhi6LMd9KCNCsxJvxY689Zzy dk/CVOKI3uFbTLYcdddhknhE2zmU8NOLC4PjNU/cBbyab3ECuD0fUJ7mLjl6Hslma12CB/1/2gn2 sXCFTvKgd2xHVAX6SLR/im+dTZJP1V3dbXaUxQyoE37QO3woVZns4jMnyae7wlz3l9gDt+ZBUxEm fe5qbtWKCUKBSrZUoeJXU43p0L5FHjQTbFmtLrRI/R//DZd6q2hfaQr3w1UVNbzTBDQED5pSPVyt 7hvcaJynDH3R8Ns2WntEvrrhat1OQFGlxgLamdxrl4sywAyo46EeJm9GqL64FFYxERThdlgPq9Uy FqaMYfYwTMLDhP+MzPvILDwfhYndFQTVmqlHGJlCvWijJBM7kkqtIziywsmgAooqb2eydiJMC9qx MJmbAL5uZ9bSJA5FKon+lMgpWFbCuzSEGZjcXZiyC3D5QZiocigSTqBeaoSufXfh4Fa3aM+p0K1Q qM/sO+lb5UGjELR7eVqcaDJzQGF5KVwaq8xqyG8eDCgU3TtEatz4QbdKl01nyG1hGXcZoXiUWTWE H66KelneJCIG8KEGbrznnDZrprruDuL3XdAAACAASURBVCbjJ4ujo/scPxRzBG46DVWJza4Ihnl6 WkTzvXU7CBO6W0ZhQmQdpyEsbtZOR1bXWTXL7GgK168xjgrh/eLeFB7ACq275dNl5CAjTk/hYRaw CdfrJ1bmQwhhnggjXChU0dNQQFGcHkqeQTtnxk9PiYWpCZNdUmnXWucXUnR6Yp02RKXIKxOPzcnk 6mJo4V1Q+dVEBm3Zmygcim/RDxpV20qF1MKeqf7RO7hPi4vPpj+ETHWncdYugEPNDsqF5AZ45nOU Q68jZlVLrczFWS5soAdv5BSr0vAud1vbdvKxisuU5V1TAwUG1TBz8d44Mxn9Gf10ka+qhw2/OUr0 h1DEMIsz5rULf3nx+cS/kCFMk0jW0YWCWg9GF32l4t1BKmmO5Io9hxODnCOFmbOvxmfsrsG6MxFD 9doxVZKTOITiMm21ozB9CDN7VliHiULNTLd4bSsRPeFG+++U332U0LsY/vIzhqnxMJm7MGTFs8Kt k+Se4vaSYj/Vsfsw/pzAXYCraYYNZsjL3YXRMpPZVj4vNPXz0tTvgTlmRadg9BwcI50hrlOf98dT vWd7ARLXinNIijIS16Ste4wwtLy5wli+lmd7tXetkdWCFhKMR3itqUz1wTR5WgpCMRe6fQO9dtGu tjoN7UYd7XB1NOVl4DAe7Ib6BIqzLISJYv7XUD80q9edq1TPbgamDz+aoABU3VlmkzwVhOJErRev OS+77to3gdXsh3azeG20oLsCQrFaLV0ni1DkMi5zFQgTYpoq2G7qN/uJMInVDt5tsbURiqNUiMax dnEkwgxyEGbNjNyFAaExL9loihLafb3nFMZog2wxb8reo9GyvSuUgHSgEFDQlHCX8PJbWeJGKFbd aqnPTGwnleLSd1HfF01fZ+MgBTcfS6OxgOKaBw1ZcQDtgkLFu1y417e1k07puPuoIgHYaE6M5pwN SPAkiwFaLHFDurmpuucjpV66a5UKg4Bb0sr5ijeqlIYVr49+a77nFMQAzZe4STzM9tTy0DRyHKT1 /MKddWq5Dv690Z10LoVnqljihgG6/Zd7Ptdui/NeKfdtmhsHltfXs2HzsYK2k8j8t1ZfxzVT1Irr MNvQH4C3dPdQKvQgzMDnrr1oUux7fYhyXLXdEVHiS9zMSgHa6b3aWRNAP7JQxNjEMPt4jVBjmRnB UzGw8yVuNkCfwwNheVcLd1RHBe/ZYIpXs3bSusoidKl1U6xOREn7S5e45bNXxXvEg6ZUrjsf4BJZ aGIr3J3HU+YZ22DWs3jxpA0UBQ+aDdDZbtmsMJbvbaBVigBFyFlugKPrAJ97Wi/1I1qJIBizrOi3 R9ItdFd+B5cbyZjDHmTHEfMxvWZH91sjSZY2PGiWFRuLYp977VZsJs4e+F3HdhvjQArhHkNp2mdx ks2LP8yKjz4kozEKWGiDR3qLUGTuuyEj3hG2BoCiDjQZprfMt0f0Fi2Bj3sQZtlnrr1RmCiNPGXC 2tKGB82zIozP+gDDhAthNEeoh1y03T6GiVRGhXTYmCFteNAEJilFRoZlNshoaVycDSYVHGs+Chtk Og4+1B0B+F/Kg6byK0ORxgy/re5UbwXmpwJq9kJWnNaZZyz8hnlBb6C45kEzKGo48nlzZPmWCpgV J5BHW0G2OzE8ZKDi0x95/EXtAIpIvjcBWfn3ei/Q0ck8w9JHBZ28Z1AptWA8HUXQ53MGhKJpDKao vfwJqcUWQpGnDwwTqja1Uz2v/jXSNj6UolaUxs4MednvlW9BegBQHHYfreZEZEWZ1stQhJkbAoSY tixRI6DiDg0W5iDwhWuvxejTAopTIq/DJKJWVCFH92qFjwXm2Tu65WGiPkQHx5j/sXc1TGkkTXi3 nJmbVMypqAsvgVORorygCIoxuReUQ3gJKOZW+f74/3/jfbpndwXEJOZSV3Vxpyoal52Znt1nunuY 6X50bIbVWGvfV0xd44nGTi5X/kPPBu5IuVk72oBVKh+zD0wWprYT+Io/Xxw0+4pxBbWYYVrDc1hP +IqGMzbxobhTJZ6+GSjO+ooRcnrOiQQ3RiSxb8p14uA9jhNVbZJ4n4vFw6PHvmIVq+g7CpS+jGTf M2dvtUF0uJGGiZ0mst1FZ4pdWjh918S1+9k6Rz+sFQ8OTq9jELNCYtp2gzhC5cKyRSZObhR3R1aX tGLj8OCgiUt/NunbIQh/usxXFNBwticmfmYNa++NJybciPeG/nfBV7yTCUAdbXpiklaEmCV4NOiG 7HOqsuBisq+YJ7VOlMJ5hwK0SSteHRxgNng0yNRk/Z/Y7/uHd3JmQmmFNDGktI2ntjZz0BR4zjZ/ ofCYWHxu95NzESsKuNpeh2IiXjDeMlZmt08Ew1qIgyaGXmljhq+sZk8uSY/ZNolg2/7OiuGzndsq N9laaVuCxIRCo/AF6gjC+knLHpJqzvFBU25P5hRa3cI6imKwve48QhwThr1sc5fO7lraWU2ceWJq T0zmy7UD3riFwGT5IOZn+o7aZhXviSmth3TKwe6N8t/CK7yF7fXznaT5Pt28GFPBFtb8V2M/y7LF j4PmoHgvPSeRcjcjfnrqIEn1A7ftLB90QM0n4VJjxkvzzYaeYfmb+UY9OPKiOc87Z7pUbVICUhiS xSA8fjbd4sPJHI8Wj8R0zkhvSsNbFYjpk15ymaWt1tJL3JjDyievH7Yqzbik9DE8G1BgZDRiMiG4 EdOaEzNgWH0IKPCGpw0h+oOYevZpBo8zCCjwXgEPj1ja695YdBBs7o3CegEBBcxybK2/miF+fJT+ fC4OeqYeMZNaweazpR/XexQHbXFOCQrDeqDUDfbUHvTnq8WzbN8i5uM4aO/bMmfTT5s8d6hgJhnF ozhoX0y9TEz55PBMyoz1jS+K+fi8oqE9p6fpE73P1JvJSPqzBxTQGQepxHdEi2rxPceW2NCIZ2fb D8R8Zj1mMhfP9/dJTOv5FvF7xaSjGFqIF3P0fXmKLj7O9OVn98SW01dC75/YqlpKDP7NYsrnbhlI 6ysH0f6emPr7xFw+PP2VWaXD+JawhCUsYQlLWMISlrCEJSxhCUtYwhKWsIQlLP/qIr83EjwsYfnB UPTPeYTlBxaOuBY8x1/6JA+C3SXzUc9DTWvmvuaPKfox+2tSMlG2SZFEz8+29RfyPpjAbmnuDSJs /TqUY9sWttfFUn3raeKlu3EiqLi0plTzRzDMQJ+uMDvplMcrbj+RFpIfzLdshkkWY3mv5ijZIvtq WAyRrXpiR5h4tpWMDac/lGxn6YYpv+XnbOqr5+6PqkVUmBwocoFlYolcf+fQwBNi4qneXsZzu0kZ akWhCn+9vcgLJRO3n5LzYYZCZ66Kh8TGpKCEVK07jtjy/KCulcSf5Z2kFXt/FFdPa0WK56Gjy+rj ad6cukMH2auWOYavhPOhVeAeiqd3y0AOnZI7qC9jJdXaaVDF02ZcLVWoFAd1NHMYXEo6B4gKl0lL fOWYgsztXNcOqRSP8svkoniq4/g3TEsAuHHIvdLdcuGzWPko6ZS70b3uNG+JFwrF4CyGYiLtizca b2735Dg+95KUrnXddDrt7lekELHRnyVlW71oi6yuUMPBtQVFiWdMpp3OfXq5FDwGek25Q2rdSVzZ atSpmKQHWliZ7iTCCVuUyPTHtW4HPaT3AUVt0sQk3rfQpkfurmrRsfCz10i/C4biiESLuhM6ZW8k 8BLNGIInOzEc5C1zwcy5BnUVdad5aTrSfioGmb2i6HsvzwTgM5ome9R6Oo0hm9Q8QmBSCE6UQ39m +tNrPmStTXYp9m60SZFDTo/XL8TsPRLTZMVAI2RmEleT18P9JoUsCyGEfnHOeGAOpHDOLjjiM7OT z/x2PacWbZ3rTn7Z2joHePCetzaBMtmItkgvGCiq9RVtwsmEl+tGmHQrxgwKCw1EPCgK73Kmz63B UdSN/btcd7y6hfLK8k/b43MOtuJGCYraS5YjTRfKpCVxRp37rdVt/LSEL4Gvs7itxHCa92SSDEU0 tbW9PXJbEY93yJ9xRkqur8i1TfTHqofWUTYivty6Fr23/LExFL0j6TOG39wrZmkvnZ4nZutBTD9A Xq1sCLUVsRw6u+rXfWnKMYhWMOfQj2GZc0fE4jhn6xSgOAZsHKCOmFOYPgVasZ36HFEMRef2hrIg nNAF4bRPdvMm4UzqgvLbWAzFOHx2giLd9imuCIrvTshMCmc0vYbVN8sZaarB8Hb3LjclGkuhbcLP ecqEOQP0Tjt1keRT+9CKnTtIy16DlT1LVXG18Pa/t7skCi7sviMoxm5Tu1U+3shQ9PR09u3nNhpt oy2VuyAjuXeT1Oif5IctSN8BincesFXhDHJbiZF7eqOpp4ukIij+cXZpWEyluv1UoKELrOz4UViF i3e3u1VhoEgNEdhZTAo+0TH8RudOG+2qdgoi03lZtFG1XhzHqPBjOPCG2v/LntxElkHRZijicQJ1 mNw8w61yF+bGHccZion+NA7suC4MUOwDrnfuhazR350xB+8xlqVFUMRtUXevZBX6HdyAFVAE9jnu QxEGsM/VYkPXHVTVKOqyVatRd52juCDzFsNVd1Bh/4KgCMxBSQtJEnTQUS+a5v/IQt+NkilODNFK FBe0D0VVjrbgd+DTzh1JRc3gLndayqCO24GplKPBtQ9FTLAyDWdQyeDXJJKjQezXrcyQupqWJMyx coZozt2/k/woOsdxaxSl7pMeFJXgGSNrGCGEgdbF7+igBBfiOvaBJJ0kJQRD3daL8xn1TGQbbG25 SXyxS7Xi5M3Wdjk6UT2YJ4bix+6gnukPSgEUc91BBWAWNTjfuf407ww79ZVCqqQMFDuHxeJhl176 6/x6z50QFFuJYadp6dpaHajYL+KGJtbnqNZ+W1W5/iRpi8TrVYDyHlAc1Av9Ab1OW1IXje7U5JAZ dXZSqd+7gxL07KCe7aMLNP8Lbi7FYA9XPuJmSgpDwlpm2ZUurqWjkzjagch/REivMqIxzE0bc3ID HWAt1p8I1XP3IPhpRdKQ1j9eJlUjOn6lnXZ1pQG9mhl2jjdH7hjqWkpn6I43GtEJ5hYgi3FYI4Cr UI0YX9GIWYHH0KnjX0X36PaugaLK/ooJ07kHyKd5yP5jCYH/TQWz/vYm9v4mYmd+q2DhOOc2k1Z0 qUCFBVCEGopAy9UtH4qw2ARoRdfwwR1BMWKOoDMU19LptSgtWyg/FexUAb4gawmsDvLSW7a04MN3 mhQKqdlX5JwJePmsyshx07aiLpobuK9EXgCWLVAj7h4xcncnyZUenEpSZaSGYkOgj3xF/p6GEMcG mlC/BlWma+x3WD4UrQL5inQvVZS59D265GXLXp2gWBEkF/uKJFYWfiL7iuR9wMVkqwEAT5No14L2 H+uRZ94Zii5rVZ7XLCamQMminhiKFCuKgUbwgDXU+v2Lg2LgHQtZ+L14nKwdxxsmBnFBK05TKXg/ FkHRGGhaQUsCJp6jJiiSWgFOnNGgIjU+EGSg0xw+7i1bBC9bMle8kiQoRui1xBM+JnlFr87JuB3l DRTFeZHuZihKRUsldEG2m4x4xaygO/frbSDC0Q0zYRiK0oeiJig65TWy73f+ssWyLdJpPBEEAYZd TklSitgHundQ1b3BtVTGrtKyDn5HdL8VARRb9CUO3cRQTJKkFJMvCYq0HE5CTimocUxLjh41y5b1 wpyYBEX0a6DomIG2SEVrrAnvXzCJuOQlA1mTR0lWbW/ZQukSCHzKg6JleVA0WpGXD9LhpQnpL6w/ ToruxPMV8ZJ5BQ1lefT61mjFCF+vrd1LUlD+s49xtThBkWzu7usysMNakV4xo72z+xfntjQraNZp TbzA7uQTrlcJinpGKw6wKJpe/J+9a+FOW0fCdiOpYm9uAoa41GtCQ7M8lmdqSqALbYiTUEjTkPdt m/v//8Z+I8lAyOPunrO7Z9PrOT2EYlkzkj6NRtZ45ujbAhRpA6/2SrS3IYkFVaMmzODV8OMaFnP3 G6aK0K1Sm+Sd95UbrKCkFaGK85+/aq2Ys/SkIVtRP9fKqacLBopSv8/pak0NA5XMCy0macUIig00 9KhLWpGkBBTlnxaKOho4V++niaUnCXoHTbGCubKUfHpygvUnDVjtAYp9RlDE8ph2N14wLD0pwgDM KUc9saFHbfOHOSiqEYhRbNkoLL5vwZ7EwKVWQNgcnyZoY5ojXaOWUKEX6NtUluBic1vS6mZvrDJj K55DQIIEmXMs+xdsW6IFGtdswhzNHff7HIoryeSCVsTVRPWbhqKXJWACHP3iFWYTzToSKyH9tZZN kgCKP2wFuqKG4r6NajyjFfcSO8psvs3R7FAGzByKQj/7KWoxE7h6YVfNAq1EudbVq4aKP69WtBQC heT3j2bVc0VHhdZCZ14O29hgYgd9OazBKodpvkX48rD/3Kq9Im12NrxRWg0Fri4n9H7t/BE3mZD5 ws3Z79CKKA8z3lc6BbYiti3t4Xl0G6B6dtvC/0qVK1qgz4idOnGkR+JnQ2JF00ZB0XHpMSE+3qLG fmQrXojR1dsyeLUOrrYK4ZWCohSjM7IVX/12yNX4C6zLqk3nAMllPXf9algIz37rX8NchFakwu12 /nh0dRmQuJgdlz/c76+CQlst0MSSlmG1gz67VC3Ook8gbEsSFAWPlDfEHJCYg7O3ZaqJ9nI3ZxqK UUMddOOQFgUWe5w8eG7auPnh6JgdotHeHm62D61Re7O2HbQsWQzXsRLeesp+Ck4duRNur9dzltiF Ubj1ycEgQSveTEgrDob7ZCuuB+1bpxoG4fbWF6dRGzNwaK+D6LRlJ1zHbR4XPWgPCybU2/L6BGxL 4XagHpBLOojc3qbgR6QVr7FjsbGrqHuczLytsSNHW4AiPngWNmJQu1W24jDc2lMHf40bYpXfl2BK Z49cjtrbQWeI1bK3Hhz7Xbpn2PqO9Rm4XVdyDfvZHoy5IdZbMLl1fBKgHRyjEZX1t2BJZzvQiuE2 zEltSqJvrMFwz2hFcb0FU5qTqldSoYUW+G8HaqMfwFa82d4qt8cOL6ruezqrSEwm/r8Oo6FCWNMx mTmyMaGIuNCQjeLPGFccvRFSJ2YRwIU58FF2anSCLVkUbp/rExATUUlYKiy6ChQaubDI5TNM/YgU umx2mGQY8fm50jzsB5sfkavHWuYRO9ORZCI3hSXXCH0kx+cnNIanpbTi7zlLBwSPGPB7Brk1j2Hj ZiRZ2ccqR6t2zZHmXhG//P7YYT55yehoR8L4OjHjNmap/CN0DivmP1ABU4IrTzJm25GTmHG7Mo5n THm68MgNbXZde63N2MzYRqlZNCvtJMb0L9xIoKNgKbcyHnl4RZUvOokZJxvJZ0zI4WzmEKccgyLf Lts4o5Hymws/awQ1Ue+gtejzrtAzUTmJGTGlkYosx+HmzeUPpn5c7E/7fiy1mB7YaEdhMFRkC4vf 3flwla8qijvyYPyRmTGqK3jIB3EeaIP8I01gysW4HY8E/5DLoUu4NQuA9NShLl9M3/RIgJClACCz W1TlCm7c7dY93SL+ZJARE2GEFUNYoU1PLQBy1pv858waFdP/eKL+W8d1OmqXkLEGjOk/vWA87ct+ z+zBUpywbRlnro7p/wG9sUKMKaaYYooppphiiimmmGKKKaaYYooppphiium/Q3RU/Iz8tZS4P7tP D48SiHHz9YnjKr7gByFNaZ2lS2rvBC4f8YS4W8cf5R+Zu0TIKL8Zf6CMTjo29zGQC94PxvdB38ln 7mHcmjdXyx2J/K94Ksg/lF0uyD7jJe93gLXgOPIUazM6fN4vpsqf2NeML7rg6UHjswFbzmsm7954 71uU+os/PFqLZaRxUbMWwjCY2A53uEQZ7SJQ3q2aL+YAvJd75+EgUtVpbjnC10K+3QdHmj8k+9KF h3vIyC4XmseXivC7rkd3Q74xWf0lZz0oLrce7erntU5JnkivplfUPHN3pp9/ZVxnVIxUpNEZeo2g 11q4SWQodv46nX7QgZoYrx55KOqetNydU+WRrfTDfYcvzkX1K26TUa0ymud8liqPKuNavzELpaef 0xZfLE/1Mu6vrVIEipMWi+QEb0fzpsBSp46Fi/rG7Bql/6X3+07Ui1CWdAdN5u4cOYxJfy3n/tJS Kodrvvyh1y80fj/uR7JLVVp9cpOGEjxQpe4hail4HeWMMjPlKXbEyT69Lqjcaf2v6rUylWqQDIbI Cc8oPqHFpZSYbzzU7ZGn+5GDcdCJKHnU9GcfqAxNTr98AVplwNkgKFTyfR3whd9XUegntzt2TH5T TsUL5U8eeVYLeVAnP+ds58Ld/bJYQ5TNNiImG2H+XS2qZkmlGsfvRj5n1AizGmGpEOb3JV/Wl7w6 Bc54tjN2oh+z75uOiG4cNB0JedTQMv/dmEaZ0oDmC4XaobT89y2LMpMLSLS5l53us3uKkd8VXVK6 8tK74Iu820Oz2AcEHUr5bbQVZaIuFcr1VpQHNVp9fCMVSshGOV8Ig9ZimMiTj0Zdq5fBMSblMcSd 7ltW701Od7Xb2+PzSvnjevw5Ge8phcQXL9LSKobnFuVCFpmNhBTJlY2UnVx1LLaysWqrEXE31Li7 GykVtwhjbTU2+25KuknnoP6PTIKgKJIpSyRxr7Q3cPe9xT3bbXoqT6q7kWaWm0yu2m4mJaWdQbWk GERy9SCfU5c5Bn13s29lu0B8ElJxVR6QQmHmJhMQyYdILklouZkqQTFJ9UgFRSUPxE/I6rtxMk3p Gv3KoWMd1L0k2pFye6UcpAYUBeoSmRcJZviSNGzZi1f63Qn5cXORpS5IpjJpG70khYs7la4WmTSg qHqI05vf+WMLk4DETaBTUJ6RmK+pl6j1BMV8n6RkuIjuhvQp0Su1mLvxMkHq2e1eWFRNMkHpUkdv WhAXUIS4qpONuPhcTbBn7ZSGib7660uiFy8TVrUzSVNe8F2KOuiHtVpQwDfP71L4J0GJ7NsB1FlR pxfmBEXW2PzQ/eQc5FuNco3S20MrDpriJGwH+9lurU2vHFH/2CsR2W4vv7/C6CWu9vCQjYa1WqnS DvYoyFRAK5GkwIf5HCUx/kJvtwKKUg6aXoOSKAuUbze97ABF+kUosy5EukDZWtNzB238cXbDNnQo Iyimk9XOOcSAYH4nqA1PpYYiO6i/Ds/d3brXq5VRHaCIn1mv1s63/E4bbaRE1vl9SrNuySg8rc0o XmJrhQmxg/adii5FpsS3PslOpZno1YJa3StSOmulRDePE8XKWPcolW9PHL+DJh9WO5TbmTRy/jRZ rexlIV99rdKHXvc7680UGghtCox1x8zeLX3oXMhe6XhUJnEPVD9Tpfk+xB1+oiFBG63nHDBPWokZ FKHLMNqlU6dYOcx2Jn44ZoN8DppSJJ2d8qFlk/LABWdQX8UFDq0YTKeVZiaC4p4fHiooTvzORLz2 Djb7xTJGn6yfo6Gh4IhXu7X8l7QAuqD8RnWvUcM9dc9Nkb6EUdSZsBEu4F9wLOwIipnOJNP5YY9o oPca5fPsa6+42YdO8UOoFAfsISoYZzvNrI7SOaiVy+XahZV1iiHQ2rQHFNDC75Sm03DsdxQUwYLu VFAslg/d1wkw2C3Tj2CgDDb7b2uG/g6boAPZPQjqXNc9akENs2FiraT8zidpS78yttAU1UOe+Cd7 V/6cNrKER2GkHQcvEIVbIFEqDkkIgzGn1zYEjPHB4Q1V+SG7///fsd0zkjCO9xWuvLjMe5qUi9iM Znp6PnX3XN/4DhqUeFeYguIA9GcP18YDyANK7RtjPP3rwtvQyINimXTKoajOwQ0njqADkOPte+NR s0GjAopnoNIxOujepjoFcdWhUbw2LubwCv2uHrSH3oUiGIB61xqf6BN62azbazpHFX1NL7W2NZMl +bo2gZc0DcGWDY6H8Vjxqlhoj9QTgCLoZ7ARUKzaF2ghSmCLOFvdDhRxDLGcNiPgV6vWxbxJwXJh zHaqaVM0vtneDMorQuG6NfagCBbudKqbNmCH5y8MDPMWoXjdaEH+CEjofoXSst37+hRir2aRSYCJ c2c53XDxN+AmKTg+ReKx4kIteFYRkG1/FVCEHgZ/N7hXsALIdYNnU3agiFanvrLuCvZCgiZfYgse 0AuA7NYVMkfqqLSk0JACVtG6BYUSHg8CFO+xxRAc1Hub7Eprn00QisY6B1Kij6Y+FGstEFoDKMo8 VgRx6+2NjFAEldoeFE+MB4lhdjAdVdsocS6pw3fQH7iDTicxuLqDjiFPoDi7dtdLbhXBzCEUB41K DEe40Ac89muPGFpFowX6QeQCFCHolKDnQW+COJFIyWQyAf+SiSMIDAnE9seD+6dQbKZ6TYdbMxxp gLm8xFqKsogVASD16eg8di7NmyrkV5LO0N0gFA2E4vzsZjkNoNh0Yueq7MeKsxN3sbQRimReKwIU 7RkfxoC1nz+DotEiUvryL1K1x1LS6boQ46GDlo782IJrSEELfcdQxHsBRajz/tQGKDJABTQt0eMa wlhRf0BTf2KNnNgfVLT42sjDGzo/Ww+FVYRale9gzDeMBVAs4hPCKg6QUgrejg2KP68JKOYRitYF ittQq/pMysUGAOxDntGBSPfT7x8Qix+PmQLqjHWNcaHXWFkz8LYM+go8w7Vx3gc/J8lVe7R079W5 cbtaqwjFhgoBVPrSuBmcta7d0coap3vN48u/sgMj+tg6sUdDHm89mamGAXShW4uupiMsZtDIf2vQ +hStYq4HykcPKsorXlu30Vvkvelbo1jXWqcHtZvHifKtoUL+qnmz1MGjjqsWiLSZG+crFyxZE6xt +hLz4aFs8Ic0O4UuW4P4hSlEYhicod+jVM4OGrEpQPHLogtBJ3jA6azQK0WvsN5Bo3iKFSzYLpED I/VBKQZWUQIRe031O4cWgLc6XSynI3j7oNRK7+881xAO82C8gbTKoNHYY0sR+U+sxdBdgMjDM+Gg S9GuNeND/TpvgTpHzwQl3nMHdrszAgAAIABJREFUzdmoUdwehCzuYghv/dkaskOh0cdi31oMasV+ 6RxVfdCxImDj828fP378cAxD2uzKtiBWlE/b1ihf0CbsZATx+zjbtfTSms/gTWvmWs0OLWOBUOwv qAK9BU7dLBWr4AbvVLAD4/4C/wTOcGkba9WbyOBE2JyMOg3FQ/kyFAN5+iNW716kl1dq367pC2So qbehvHwaa8GQ77RncakKUOYE82e7F/B/KKKqTdIrq2aO8SvzAurT0ZdhPsTwcAFWUYhvjrMr024i R3e2u+aH5KuQ+Sq/NNsGtqiRW00oCFYqQr21CTYAKhA8AdtE0ksbpUJZSi1lOFML2kO6f5fuW3rt BqAon4JvHuWhStSQDI67qGRXC7XaRtm9/EOUB0OMUgsNKWhDX6CeCRoD3bxV64PRJ5DCnCEUh0ia LwNKDRC3r5kWFNJtpodjBnoqtbi4CkgeqPqQV/0+fT4+/kS9mVXkA8YvkDzhmb1nsvfjPytoF8Rx ZpnzUMuyOODMCRF4kfIPC6fiMYWxYP6OMzAgi7w/achERR7LhJCMk1gzUT4/kL1ln5C9Y8uCrPiF ZUJktqBMUch2/o36q4vMm5ajHrcVf1JMMf7L4VFF9s9vE1ksYwdTnsqT5RTZ0weV/XlQzjbO2U04 A0JAs+GLQDhrlb8GKVrvFe3PISpiSpcgkc92XpH6lGjsfdq7fVfZmcfnQQIKBirYEcCISTKTqOKx N3h3EXFaBSpz9gY+x0+3bAqYhVJJZBTsEs/Uw3wyBv4AVoE1QVZGPTIGMXnCs2EtAV8EfZJf8aoU HBOehLKfQ1yYRPhdAf6XQSM4b4TsMVx4meFLxX9S3lJWPO9af2JHfE0J1wUK6rXX14XQEOM0GOLK GPo0/448zJNd5sIFLfC1QfjffZoLFnQA85ou1BTo7p263v0ECxwQkX3mgx8IEGSfNYIE2djOt3yL xJOVMtl7hL0oBa/yx2KIt+ove8uFzxgqnpbvFcG2f+RLgvwJ8fjOg/x3+blK+K8BA4S3PiITf4Xx xX0h/raKZ/QZwe6EYFfFriXwVfRkT8OLJBNbGQNt7DZY3llKFSJy/yCz/43j/yF9Rph+YZJSIWFV mN7HNE0IxTCFDjpM/+d42h0k7DlsYd6AVaIh11CY/ks4DAgl2euek/zgkoYePUw/72AJ9Tl/pddg keF8tqNZlmVW/InSMIXpp5BISMW0LF3LveZCdnwuYXbKmUym3NFTIRbD9LODZUZJSo8LRJkRtv8o hNKklYlrTs7ROhk3x2iozDD9VJxIidMpdx6dXMWMl63EvkjEKwj0jJXDaJEm9Yx7FA6lw/TiOIQv 4vNxCBMfMl+f9y+yINuLulNuRk+gSZNyblmX9gWUxKLxTkrckkoSblkLxjBhCpOX5O2HfzrWX+R8 4Wg6ecxYkoeoZKdc2TPkA3+sZ2Jixwv8OBmX0tAqvll8fzjxH57ATuNN7wCs0/ZVEdxwdjkheFNe Nto6vcn7zaEk6cYrROKIouQRzOK+daQ6nZS3IYqxiNtxwmgxTD7bgJe8E9h9/dGeqaxgX7UbebzU q5mXC9P7dKx43SwGUGROxqJUbPSiLNmJR/aEIoSYbsJDH1OO9HiUhFB8m74+HJ4RyvCASbo7Ur+N 8Hr7fFV/UFj2+5cx6Xd2oQhQqvyp43wi/00incxroJj0ocgAirEQim8zEJByTuTd7nOV+DlHFhjF YemP39KDhTof5WWEog1QLFyejQpdd1Foj3eg6HAoil3RlHTK+0KRgWcPHDSNdDrhdM7b9DZLRaMO e5eBOcIJ3hLmeFwWlFTNyXAkCSiyAIrdUrekmSMBRTlw0LmyFWHiukZKIP472rNWieh/RoOts5WM S8Jhy5tAUXKi0VjkEFw0GkXjfND8NLhTv91vHXShu5h/uRkKKOaDGztx2BJFs8iv5NTK5r5TMhKL xTuOF6hCjPkYTua8jQuMRCGl3mc05G9hF+hSWHpoWZ2z1rx23pslPlft9ZAPW9qbqla8HOFR2FrL zw0f0Yyb8EY+Tqfs7DuZA8A1M50K+vOjnJuxvHNTYfrVfZ1CKDoHsaDAD4+tblQIDJvFeVPtW8YY vHZ2NWMkvVpktQlyFm0vMk76iyaRSqes7TvFLTNKI3q5rEdjUbNctpIhEt/IP1cQirHEAXho7ypk jwDztCUuDSeyIoPv9qhTt5fIYYCYs8pxExClZ8p6ZG9AIb2fpLn+4jUJL81+G/+ciEYrDvfQh6Bv PLjID0Xy08X8Km8ADsV7rSnlpy/pDha9DTZxV2OvmLLCJUVcn4nH47ngFvsw/Wr/nHScZMRxUoe0 5C+OGVPBZ/qf3jPAqJaJx8tmgtDXbVhkEQJQLMdft9ExTD9hFWniH/bOvSlxZAvgienOdAhDhRCy MQOBogowwxsHhTsqrogMLoI1Vu0fW/v9P8ft00l4xCgwOpdck6aM5ADN68c5/TgPTeHZ4eMNiGBZ kgcU/yjvSxQduCCGIoq9cn6fGkTMncU5EiRlNQXxSlYTQMZS4bIkLh8kkplnWvGPFNrbyvKuVoxB /F0DfzcxCmJHIoJWhEULQVNE4qZN/kjNQ3H/taoYxd8+7Bc7dxmOE10XFkO+y+i1VEr+rkhcLamK yPiu1hL6sfkxvoMYxbA2EelzyyrmxUGp1DI5zuhb1szoF7onV4KCB/QGMmnkO4tc90JEMYrPUIQ8 RAim7Hw8hnwrikR/WFSscc6e1exrIt4Wvg8K+Yebjj0zNHHwbYyMs3/ztUTOjlEMQJGwYC2ROI5n OObpTbMWCuN58SZnUxopih3rbl40EXdeutAoivWWeTv615xMYxSDtSIiOUgsqz88tmPL/dZpC0K1 s1ZeH1ijQp6Q2ui0PuWI0Ruq2aw+KFXL3V4j//d9jGIgighVuiV7qk6q3epfZFUzb+2wdgWRPVpA P8Qn+i1y8itysinHL8iDHrSUszpAndIC6R2Wevm8Wp6X/sId+1rUsvrlcD5qnTfyE0ARIbLxSG6Z 9/MA8nCgCLVTGu3bhnY2Ns5+/nYHko89ABBJ7vHCsGeIa1bzBOpnsQTeg2peVLLC5bA2emq6KIrx DDpIK5buekP4dC6fsFdwTNPAHRK2qo8RBBfSK0KW/iX3aBnwaVv1w0M/4DWVXcqVZ3JlKc9SOTpG TC765VlHTkBOXLm0lBNXrjG5AHIe5Og1OfHLpTU5Xso5T45ATtbkSELg8Vevt9q8cTaVjN5156x+ MlVrZ1PCK1nlsmVqUBrk73vjDMprSAhzvEIfqUAEJ+2M9iNAikIeFiI35Nprck3y5NqmXPDLCX2H frmivGHr7X1RpL9k+6Q+Nexr/fLJc/PmBKCHfkz0QEUIviOevo104ujzri2RpL35+yGsHxIoFzy5 8EtyfimnB8knR1vl5BW5hNmNnOjIvRsFyXkQRwR4UTwkfNazx2mERE3ljS832vHXIxULmoSRoGnZ jMphPcMraWquVUgpTfuR4MfjPDnszMLv0umf9kjl3EqOQMTkkk/Ob5WLgXLnSaTQoIjIpPi5Wa0x FDF6fYKYTnzauSUyAS8Q72K8sbiffCOBs/NCvRO8eu3PDzvJccArJ/5ndssGu7mhnYz2IqUvzbn5 mjnYh2aZtr0qvcRzjvIOGAdXFsbknQY3OOQGms7kJo18s6BBdaotY8V3QPFwyyxc4Kbbdjne79t2 i4/DgaIoOHOZtTPs1jn2lYCOx4qOge5DscfmqN4ylx/QqrzF6grZRPEouG2iuNYP4Xxnh5dze8u3 P8mSRaRpGu9OsWF8ozG1+Oz++Hk/ZKMasF/+0v1/RU7emDDgndcVMYweIAuogF5XAXgDxaNgXbhi MVRa8QBqOCvL5bVKBeDOrez5xeN1+xyBJe71SjjbPl4PRagTmEkHteSS0aijWAbf7SWKiDuW5eMd wziIW/AF6sCEupjfu7tDkNWIZkcUKW+CFNwyHouRRpEQSZZltF59RknJKWm3USEUR7RK1YQxt2Ym CXE1v4N55qyh+DktvdSSro2ONoqgBNfDMenvnKpJbbe9DUQq3dn56c2kKo/GYY79CAOKVCk6alFQ efinIri+oRajjCIlLsXAW0kQATjRjgn8dYVMimZ/BrHxOEZxC4pu047SvCRkj9J+Cx1tFBVZTqFN rbiHhcYiMrpT3UEx1oo7oah2utZVXn/oVmdmjOLKwnJf6SRlYxsDsYnMbhYaErw2rWs91op7oGj0 Ww/2U4UVJhdjA73UgIjaZ192atdC7zRYxEgcFPN6f8rFWnFXFLXeU607bpYucqUFjlFcUqfJcnmT OsqnsLOFpvMWe6oSOm2xxyjWijuhqJ/XrcJFs3RdiVFcm6KAfc763AwgOeauFhrhymMbI7aYg2MU d9SKxUdrEaPos888tc+SnznEUi3uaKE5lqTh9fwMMYprKKq10U+xN6xYFxVrwcUorjFX9jNHCZWA 0F02/1joGwfJa3jE4RjFnaYtvULJGhvdql1s8zGKG5bY9zFjR57dwz2Q4JCHYIZqXbE2/3Jn8rX5 1Y27wh15FN35Cf/8Uw7Wlv/PLQwoLle0VebqrIJzsORsuCSj7g7BPB8CxoTuGFL4QNHmB0XRCyhI uiwKtHlHRyl694iuVkRltqhIdptZxyj+EopSMuO2ZNplT9g8pjOre0QyrJoiqIF9DlJ9BLH1xmee UXsF9aIQoXxAFOnMRHCaFOwkxm5x78BHE8WATb8Vpcix0LFWfDuK0h4tkiiSV/21gzElXGafoF4p 1ooeimxY6A0OBfdsZaZh6OgIIqkV6TQ5JZdfSDJLYEcw5UcRccnEZzoK3+lylBBiFD0UwTdRUJGj IZ3/jtOixLsOjCq7Gk2t+OrUBAX5SdC7Jj/vHEgZo+ihKKi1eWmR5h++MK8whZ6YkjGfmVQP5h7b FMKHhfbY7vwwBSmaBlqA4eBLb504FvoZivsE9cYoutMWo199LFw3T67se0kyBoVHa2zM60OG4uje lCqjqZb6dN6IKIoIIv2+vpgE3vGp9Q0kYxR/EcVUwrDHg5Z526BK8eHG6N2LRq9o8oDiaVudfJtq cmRRJEztvex+40QaKKFFkeVQw8QJ7XID72D3EXuR2ThMY0VBbRZuKtaVPYXhIenYP6F2K6BYsevT mj2if9eRRZEF9r0MC34WfxUqFJ00L26yl7WcLy/lgD0sioJasWdm88Q6mTLXnLN7Na07WrFi9Rq9 Vj/CKG4Pd6ZjSZhDb3rVhgVFwgKvOSf8moBjEPx2RARuGayaFav3EZppi5TrDk3u8p7qRonnjV7L 5FcoLvr160ijyMGiovaKHxginC8W8IAoEm49VQnlzXiwhnlizK2hSUnslIptgujpgiAoN/nYbv4w N97bYceKer9wc2wOGv+5bAjZzOB0cZyUliheN4tJB8VCPoooIk5LyeVXWSHkmYUOiVbEiGtad92h yuIYVI5av17DFIlx1jBxZXQvfc3ftvLhQVGtdOv107HWrxduKHJ9ejIj+vyKzaBLNyqSLse17kXH vlejh6IT7Hz8qusNqxCd2jDhh0IRnKogw5bk9IexKKTFwVC9nKkTqha90uTGP39ei4NvU11uhwlF OlSEB7MMlbx2Z7LiTW5EPp3D8BRIlaf/VSJGcA+afrVlv/UNMIr++xwQxWMB1LTbH4GsuYUFxLx6 KNoUxdzl6VWtdzqD0uRhQlEShHQ67W74UTLTQlrwbfwJbONPiOBuC7XPslzmt4QMoKzPQh8KRcwK pTjVUtwXoj9YM56hmEZLFHvFXvVLaZjrAop4fT3nsGNFSXB3mZeXtd1n7wQu6agZaHC8gb2ULSSy zE7gREZCM23BnoHWPnG3VfNySiD82jPQud5s8udi4KBohmUGDf6K4LKYXLtsnKwLI+eviIhQllPK Fh8wx0Jn1/PpHBZFrzuMxHPrB5u2/LDHte85+4pOWxDJ9Z9qsnk5pAa6WVigkBhox4s7kVjP/h6Y KT4RQS9uQrxNP7Ll+2dZQNHhtaKviVifW8M8Zos5k3u1aRfbdFptPNyA5V4YctvozTaSVYQizOqF VLNhzcX9v7PP2a3BpYTwmxY6LIs5ToZbkb0uVMsgt+4QRhiqW2NqwNfz5IcRxSMHxqPQoUg4RBsn siNUsuCd4uCwlcCxTxeqhCMR4XeJNXZyhSlbfbTdISVBYdOKsNnyX/bO/SlxZYnjEzMTJuKmIiYU 4QhaVAEanruuykOvHnc5Hh9HT92tuj/c8///H3d6HkAgmITXUnvjD5YMJMTwoXu6Z7q/otetpoFk AoYHsNoCtdh8tcXQgvdq7Q2QQbod0Wjl03AU9zL7w6HoibxbKIrQkAT0Mgyxmip7PtP1WkUkuz9E Nu/lLXUmHnp31qBBQAG+tBS+qiS6N8W628IrafdI5dNQFJk9HGatASdxb7esIptxW4McOray2QeK idHI7kPqzD8ghBp+iX39G8O83y34uTXInIEeEPfPOM4rmYeeFKGmm8QUioZRGByyeWm2hKJiv3AU B1n2Jd+fddI/HUUppInbZ5XKO8LG5y+V+ruB23U2F8f53nOO5m87+b+6nysva9AhJXwrYjVGHxIy 66FTFNWNwfTxroiuy5V6aU75FE0rny500FXGojWciV6UbkuIgirdxjgzip//9el7K9duFdnch+b7 Lefyrljo3RUNQPGiS2vNjuaX2oBiQMeELtA9+Wic0vGiX9TrKRUeWmmR4mVQXCRimnyc7gyKBq6V 73HhauSM1awWfMQLw5Z9sIvWIDNvFeMitDYR3rEqD+Xdj9BjJ/e9WT4tGbRw+Yz6p8V2/YFNihmK zSftP81O4fJeoIgWiPCij0R4CZ1C0axmLYfiWEhoMsARKNJkKP6iIrzsRhj9k3caUD5NmMxhAA6t sZPejoMmC69x6heh7fIDrZ1avWeMC/1n3D81e3dvfzKzmO/9VvfPf+sUeiNAkU4ErGbeY5H0GgqO g0DqVLk9WXxRIrTnyzJYif0ltIqzF0SCvyLHd9RBsxnVt5Oz5+Og8qkLorfeRDwX9HE9tDCvyG4Q sGjtz6pZcbFdbyK2C9ucvZBxEMELG8dq3A2K9oaMg+6sB6K6HoHFcjhjrnY+OoRMxHWriJlVZCj+ Vb55ZDYS569Gt2edvkLRhNfzX3Ae7I3FeWFVxLUn44iNazCO4SbxJ2GcTRFhJ4THD3Im4/r06x1Q 7nW52K4J80pdjdsJKv4y+6Y9OQ8X59UJvAkBUV0ixXzt+XFnMs4vCkR42S/H2SHl0+/1h+uTgPIp +yg1JVYLwq5Y5+vPi63iXsiEkaM4dR52akOcR53fVONUp4vHsZl0XGQNmX8+/vLK3rT9Cm4a5fsd enn31rxo/v4Oc8VR++zmUaEIr+cHwbYpENWF88BFcaVc/iZYie1OjVP+5gxDLNqH2YGDYJzrRKPx 6+EvAuPgoR1E5VAyFOVBFA5HvBMj0sSvuXEcb3wnUGSzpHb9BZRPR8srn3IW94ZZcNKZXVGzAk3X r783W1rjqnlxX7gc1a6aJw+66962ugzFqx/Y1gDFH7VvnSJeNSiV/jnuaSj2pmPoxA46fJaw2vhP t4oG81zNixFuN5utIqFLhC0LJow/J2yZfkTytuMesamFe0QLbzeG7cFiFsqblAVrNmwYzR8aes6w DylRsqXh4clMxDqOachkXJOzP/FkdCRri1aLadgSyOZoDvuIDPvATKJ8GjphlE6aG8afn+ImmMhl fiI06ZG682K1hW+OMgg1Vl53IWJvduzGTIQXwViOuENpXjFxnBUhTQ5OGrI62QFfeNmBhT9ZuivL d4WgpjBmwnSRyfOrfbpy0Y/Gd9BIlLjIGDpFUZIYUMFeHsWAk96lnTlyYRVtTkNUVPq58f9h6aE1 mqI481mRWNPZSBQnWZ3h/9UmMcr9c1VLMO2a9tApikt89w8jbxmDkTvpYebTEcV055ihm+iEHXC3 sekdH5KiuBEUxU4d7qR5BL1jHK45mTExcZAmTES52D3BS9FSFDeDIk93cyd9gHao06/iUNPx2i+L CqySqWAID82nlymKG0KRR9I8q+PIJN8ip4aJ3GH9cdDB4g3M/Rjsu4bDIEfDu6OLaJgSDM3SjQ9b MggObbea9ddeFKs25eBkB4mgm9IUxY2hOJkwetpCFuPHsjLpp3ZjEyrarAWuK45B5Bzyq1q3iI/w z3ayWSgWplRHKYqbRJFPGMFJ++YiFpk5yx/lkO153lHk2+a9A2YJ804OdryzB7BOAg8osm1sYPZ3 4QA75qLU4jSH3Fqv10XPFQjEtYpq13eK4gZRHO+PqNpITMznTB02+ndF47ZcOX+OSgoW3sr199zx ZauLYNthuXKP8v3yDZT/XJ92Ddo+7bZfC5f3izn0BIdW1QciebCwvo9zrmwqZrJzqhYmRXFzKDIY Px258PG7OMwwsgnf8fkoZ/Rfvaunjz8yjD5XHvr1l8blyQNodrMHrRwD8t8cxeYI528vusfDwtX9 LIfcTGnOhEPYFAWtsv21umjR7iG5XhqvEKzqKYqbRhFS3A530iETRjCKsG2QarRW7n44cWRzRPuQ Wb8SYhAyFDVcuO4UUaEnUeyUat8uwCpOocg5xCEcIszb2mSdNWYX50vsYwc70kOnKG4cRYx0Xzjp uQ8ejOKf2YecgWErYeT11M5fc7hWBxQNrX/2AxkNieJ5a/D2pdV97IxRDHBocRCrnuQQyuYhtWyZ 65sujluD0cTWVHponKK4cauIkeaBSXJn9+pTZhQ7h71RDmpq8IdLwwRqSHudIhYoMhPSeDstIoli //Tvq9ZbXaDIVbzV/DCMQ26eMSwXJ3PRoioY9naGGHDR0lhLjiIRNfx6iuIWUISZPHfSnhb0XwZD 8KJy1imh9kkpYluMQQr9uxwLWABFZiDfUe3kRaF4fep9+6dW735nKN6MEzcBDs0xh9KGQed2aJ8U +y4QZKgEVNiXRi76LZOOxDKGTlHcvFWEfAuPpPUAi5Tm/exbs1PM//c59zET0N/q68X5XYm2WdjS fv18Xj5jZDauhFWsl/xM++TmsaP3Wi9iI6rmBjmkeHquSoVec5Iwg2DSGOQQyVdLIcq6SMpfJL+p WPV7SlHcPIrgD6WTdgLBCxga6h2ivH8QsXWLEKNhZf/+g0Uq/hF6fMo1suxvdmAJTt8Y5hAqDIqN IW5YbJhquu1UZzmcjd7BRcdfpyME53tP7BvTrpfI7EFi0c9aLiRXXXZSFLdhFaHgHNqsZi0PTbJ5 0EsJQgsSY91Fdf+D5RYCZQAGIZQQtdkXWjARvheREJNx6DhulXFom5N1ljkzxjM6XtzIhRi4fdKl iPE4fz4ipNLQciRSyj10iuIWUJT4cSfta2hqKwIhPAbBOApFuVDN9UO4t+QQU94cjJ+C8uexbgOH 8OMu5lCxCF8OOx6KBIqmnw5Mwng8nDPhY4nnpe6plGFLUdwKiqLmyYSsjmWj1STeoTcYQYF+rSqR rUC0dV6HiT7cl8iO8eNHvQaD0P/ywHi8fsZ4tgubSCoumRqisk9tiuJWUBQsKidN6Vrb93IEdNfz +Y/naJhGcSjMomaJ3uzRF8ONIm/++/L4D51DEfFKgmXvqPTQKYrbQVE5ab70gte2/Ct5s31Lxct6 tD2cXA9fdIlzKRgff2uefe3cNs+aF/dGkEUMHWSz2tL5cu6hq/goRXFLKAr8TJnVoWvlUO628WwN yydirnR4MV00pYbtNM5GLCTqt8yZUDlEmyrhLWUeOqunKG4NRREIY7n0smzh3Uxliu2NOdTj+OWZ wBfCjViTPFjCMaCnh2GYcw17uWLfCijyWaubqFFJiuKKKPI9sGLpZYk9LLPlUXgVDuU/Y2djzfII FEoT1UshmHtaJak49tBW1s9k9lIUt+WgD8S9HsqGYxENisZXOAMhbHTQHc9X22CZX6YogV8O/jd8 0SXWzSBTPUrmzuGvUrlFKeTbh+EiDymKG0Hx0x78TPUyWfjDUZxpEsAQxJrtqqVlxSGiS3LIrwnD ossq28Wk5v1Kk14MKfLBXiZFcXsoBqpeBnsLfRKgOG0IsaZxQzgFIcPQ8m1lNJfmCOroVcPN5bwr VBJYq5XYct1eaEy5E9LkVPVvkb1cIN6Exc5xC5GdkSZfGcVx1Qv0Mtmbq0KQVlFTDJrMEPpWAEGr 6nuOHjNrE8Wiy/PuS6eXuEXzVstOJfbQm9RtEU5GNBhSTXdFKxXyy1nFTCbopGcgVDdbM3XHDRpC DqHr6DKUWEOXB6kUwPuL0JAoKcaPtsKi37IeeqNW0XAOKRS0mXB3ZLc/Q8+xB5pp2KZm4l/HKgZ6 mUwmjOqp/f3hcFgNQCgMoWtr4/TH2rqNCJb85RuquIkr8cNsczIPvW65SaJuJvuj8FY+faDHl+W7 EiPxulJ5YPem8Dai+H/snXlTIjsXxntJmjQCBS1SyCZFFZvIIDqAgNt1GcVRsWaq7h/3+3+QNydJ s0p30PTo+NJzhzsG6Ab88Zxs5zyp58f0y+G3i4xGyJdB0ZgN0i6EnMFBeUEIy5NozEcuiiveILbo EtuZr6hCbOmjvN4e3FXavFaEDs7jDxLaxmfV/F213B05WqX22G9mLJLuNvO4cv3g7Gc+kTW5IlV0 WWRBWkAYe0UIbS0oCKeTQ+6Mzswei7DsAW/CfvfrYrPcZekIrQ5FXnmcEFOoIibxiHZTzJyBNXmG fGtmcmBNnv7vn1ur/31EVfGrocgt2HiHcbAghIzCwUw0FhAG1DvCfNCwP7fhhsim10YGa1ayWzUj FF8nQqtDEXaRQ0r4rns+S7MaRyP9ZIJipc6syffOdzvHj7n65ZdDUQjjYJnBwXAYDkVCOmNQrRIy 2wLudoomW9VgdoIvusz0+IgcFPQd0DcwfH+1NPoiyrzn/OdV0ZxVRfohpE9a+RRDMYGmKBY7ey/Z i9wRoIgJ/lIoMhYjw9imgpAeAAAgAElEQVSkS0ghDBuRCB9Mz80rKkPRdT5dlEXY0DA3oyOLInQy YmEFhfvWi9CBWpP36bgEdqv/++BogGKBoXh7889Vn6PoBDqCJtwimcvQH0JReL0MXCEUEEKrMbvw p3SmIh0bOji1G4sNbDzjZsgyXWZmdORQpF8leJ4XipDtoCNIf4CkB7J6OocY9BsZ/vMoimJs7gga Etqa2ftMr5CtXbbHuW7xqOUgkuv+zsUyZ61c/fZb7dYJMkC/z4T3jShyn9SIgDAqpnSMxTVohfEZ NzqF0tjJHRVKFwltaoArMl2m+VhSKIJ4Q3yOeqqixf9OLKhXzZRvx+QjdIAjaKvxki3dZ1JPWRqi H5x29vyQDqvTT1dES+0PUrFQ+nk8J4uKUaSamN5PaFb7bSa8622HWF5eiRpLsxiBoIi1xkuoX81X SmNiIjy7xYLML7pIqiIU142Fo56qqOVoZ9JCqd0wwdjjc90eyEfoINegkcUn3ameJxNkZgUGTS3d cXABmsrBTTGPXzfhlbcQWpkHzZ8ptkPIHBxF1dZC9BuHc51z2hPfK12JEZFrEgS1a8q2a6UhqYoh Gp8Hoag+Y80zsRziBqzEqtRLhVuLVI5ueWnSBYsibeJ8OpSP0MFZCNFxi67riKWtEZbQpsMXDUP3 DRLaELJof0MLbNgCoth9dNLd28abjdVkVDEk/Sdi6EHUy8Yo1T++pZ3wc6iON/cR8BCNXHdSCSRE ledhyKOvSFFs3Mf7LSdFxdjb/DwSko/QS8ZqAXxUhKdiEj9vJcUoUlFshu05E176u7Fdm8g48rWb 9EDRZp6Q4FOaWOPQ2ZPguhMbSnPWtlKi3Z5tJzrBGq+2k7d0kitcEayzdjBdNPm+iK2k8MaUUsUo m1QMh6JxsGvkF0fCcdWGLd+IX7fdGTlUFFOguaxcijnzeHFxW4+A91JMLkKHbR084fh59Ml54Aba bf92fdKOPpPdJCtfc9t/TM+b8CbjsL8Yfqk78HJhs7OZ1NZHMR7nzqSa/GKaWHNnnxpY1JqwX5+d J8lez7QdqqAkl9pt1j59vM2dSbH1dI9uqj9zW/lK4UrD3MkUXlkSsRzQrfIOhD76JDlVZPE5ZICl LYICUXqSvShw7o1zR1Ea+VNntV+pfrGcPaT9A2Z/mqTfaPF4qPbIHx+JhqUjdNg2QR7gIhbsDhHn AVNdt53wdtunfXKez4EiBhPe/L8P6VdMeFlPAb7hBH5C+lsqibFnMq9l2zZNdmPyf7N/8Bv3HvEf Q5EVgoffHdLnXw+atE/u9G2HuRQLHFBpT6RTO4BFfbfQPHs8QcDiPnPKRRKqyFcuYd0yakMnkPva gvSKU7Ba29Crajxf7HR/fSud0ghtIXYnnjxePElHkTBE6IFUJzVss2fq7nXnTibfbrl3os9jwpti WZVX3V/pIPuKAJyDAEL6a4f/ObDvyHToDVNCaHNsR7d13bZRIH1FK7lvQIWd3WGCLKdLJXm+FJHq KxqGiM9efUXY2zLS7prt6+PaPyNntRMDq5kDEfqT9BU/ShWxFd/ZOWllbg4Omnkc2AgaVK99nrft dvYxTxFsdEqlcSL9lB0Die37DG3aOmzfJ7euHBOpH0HPTOrwCYkFs11ExL4IqRE0twMZwlI6Wjky xZhUrg/2LvWdnX7hEk1G7a+NoMMh6Qg9GUHjL2fCC0fKof0Ow9YwCU4V7XZt71Rv14v1C8pdr1B8 GTv9vWztkt7Vq13qqX7ttP2jcfTIUVS/2CL22y5vixd7dNwQLYXiUOxg8FxtIWBFDR+CZXqtHoAq ir6n8bHzih+LIuZ5bHhx9lI9ivF24TTVb2Z61Z8UxdKVmUh3R5mTEQ3Pve8tp9E9DhJF3yUwtwKo BIoiPhs+KIrPU6jh6sexAG0MWYQ2/o9RFPEYqzDh9UbRrlAUe7UfJ808RfH64Hjs3FVfClQVzd5B 4fTpunraK+58DIpsjQEqBkDdcH8UxaSi4YOiSANzLai9UYxu8ZC/yfjTLAUmvJ7DFoeqop7s0y48 StCOYb7fyt/VCseXoIqFl2qnenR593EoikpM4Oniy0M0whb9mOew92vFMj0xjqJshN4kn6pRRdNO 0fhMB8lmwrlp7tZvnbMWqGJ1/7oZO5JTxUmPz6uIN14jWYpnXLqLLhj78eBOKhr+KEp+rgxFyQi9 QVGFKtZO6Ti5O0LxHadXvDprJbsXu90HUMVmvjNq109BFemgxjvoCQnz3Uj0hvfHKoD6TnHzdAge TBWiaMhF6A2KClSxUfpp60+ln6hdukx3DvaunHb9oHlIKX0q5m3SBlXM9/eudN1zKMByIrVUwvEi kbClfemDTx+xPNCY7oPDZFJRKYr0gP7BBsU/gqKNQBsJVcZYXncQ0k1YmWUz3MQ2TQfRRtvhls2r o3OK5UQ2OqXHjMceA6Rth6PSf8IJjU+xQXmxfT8U2aTiIGLMo0jW7RKQRRTlIvQGRQUoust7sK7C Vv7oTYLe2HMLfwnP1RZCKvUf/b38WeupfqvpHq91rZqFCTfuJ0WUNPwmFUUoVaeK9JoxmQi9QVGF KsoeXijidEirFA7Pfqc7I6x7quLaKBJeGsx71WNmUnFBFdE671FfVEV6woFMhN6g+E4UE+tuElvd WcTpkwfUq5X2TjWkFkUWosuwXcsjTPK82YHYlj6Lohle4wjN7ebkr3Xoc+kNiipQDK3za/JIKMAY p86a+XS/mi2NlaMoXH3Y/J7hmUngVnOYRdFe44pGZKmvOJk436AYKIoRY41neqkisXrFjJbr/tL6 LU1XjaLr6bK6uwgJ3CyOLqviOihGX0NRKkJvUNQUZ/zJVZ19hcTKQfPlPnJWzRYCUUWNLbrEwobh s+gXUo8iz9zyCdEbFD8LiqTyki2d53Od0g+HqEcRLgGslVfIoiEy/QJQRUG53+LfBsVPgiKYP1oC SuSdW/xmFAG2VSFaRNGIoV4Vl869QfFTo4gJW0Vht1474d+FYqi8taqeElOu2HRsoRRFAzbQ+kVo TxTpqI4VpGA3eINioKo4jdSe9i/vQ1GE6GUkRHyeVidViaJchPZGkX3miFelwGSD4p9A0ed4F4qM t1dndOYnFdWjODc6f0uAxtbTy6GmNV4GjrVRxb8fxRBDIvbKFB8PoTN3RJWiKCK0J4teKGJE7qrZ wimrSoER3qD4l6NoiNoPrNe2WEWFZeaFp0VVVKK4LLpro5h6HsdPfjd+JPpNB20CtEIU37zd5R0o oggcRrlcHkaWj/1Yebg987NiFP1TXDxRxFD8on6JtfbRCG1U8a9XRVYuwIzv7CQT5sJhJ2jrXItS FKcdAOOtfUUtdfLgkFS/dqltVFGtKuqhyBqHClV0HQriyWR8aUPNUqNyFP0itDeKyOo385TIeK+Y 2aCoGMWwEZU8YLuLQhQTyWUWTdqWCBJFNngvv1kVEb6p/tSs3gW5A5+LDYpqUXzTdpf3omguc8c2 +dKmmQblKC5Noa+HItTi+n5w8DvXPdi7JJu+4sehGFUZoBtHxatkcjv+VLqIOG36A4Tn58f4durp PvE8btwf6sGgOM1WeNOwRTdNXdPjtuokNGkUJ+ViRCKlMNOeX5P46iiGlaEImYmtTvU0mfgfe9fa lLiyRRPSiZ3IWHlBBYRAUSUQIo+ghKeCKCoOoDVTdb6c//8/7u5OgABRwMnMmZm6EUEIBGSvrP3o 7r3a5q01Ndx8K9cQRaMD1xm3mr5o1EpjgYsQimuJueVwzns9eT8eg14P9/2CkeowKGIve1qqVf6f FX+UFVnHGhSbE9lo5dNPdac0zlgjYMXO3VSYX9ez83GEUERBKK489Ceh6C8Q/yniX4dAkchTipQV BU4lY49k/SaQNWLFYD/yPxSKB3fxji5tIaw4bOUGnAfFuQ9F/eYqH4ffRHMaLStuli4vNkuXW5v4 O8/MwZh1mqVXRFQqiWglwrVhGvP2edZ5Dg5F/pFQjMUPf2WEsSLnWJf19BYUE61qK9/M5+MRQ3En TZc/twjtP4cisKDtzrrmQGDa5qM7hCz+4XLECP9cfbV76h/Oil5j0EO36KCoIMcaCWrSh2KDQJFL tIbt6+GipLcAio3IobjsyAtpOreZpwe+BI79naHI80ZKLTYHVBjrIZ8lUPxXzdxfff3zWREtjcSJ 202Ul1biuJWpooOimunU03Iq3jaf3altDReQsMiJzot93uhW9ebUMSfR1RX9fwZhxPoVTRnu+w15 acNecquyP5kVqTAGRHSC1xUZeze8gFctiDa1MkJjRQBjq55GyS6cwxSKpfLgKWd+bVfVQKHzz4Wi in0rqZjYDCMaz7GeqVTPSlyEUIRj2ecjlGlOjdZlta/OrdwE2CrRnSI1Ob/VFq9EmJGNlhXlVKof p6hMpWROlOOkqOld65qcUHRvZxCKR47Qf7zx6/SXeFp+uTT8/e5EYVDEyS44DHbFik/1m7z1DFCs /xVQ5PRKBawE7Jfqg2XkikRNlyC9JRKaLikJzSOWCOuKpE24UfnCqvDusgpHJIN+ogAUDKcDnAvL 5isbUDx0YCgmhUARuMPMY450h57JCtgyy3JisTAmNc6R/fZlMVS5zcX8EW/Ah7qGecZIaaQdXzJ1 ggCPgizyCMMHSohJDe2Rm4Rk2Sk0SLW9m1c9Vqzb93X7r4Gi0SoXysOsyC1Mc5bWW2YBOArNCwNW dQpj51lrTaJkRY56fRIFqCyZFwH+UlEUEsLJikh7qXAKR663oXj4YPmJtgNFrj2sdOqCQtpNjnWl aL4S5BUvXxSxfT0xLvRWnTwQYMWjI+kdg25048Yo6VgzlYgh5huE3cwCTYVbU4SM1sx4a9SItgPe k7bc596etYrkmLdwMGDFqjIfF8tfn/4GB82JxuLZsYZpMdOczcsDx+wtcqSJ8uWLmry5G9k92Z2o EceKG1MgZNm/3TXvWjCVYbWD+18AlHdZkRNt9xsLpNgcygnjBtwcPFS8v2oY7t0EWLFb32JFUuo6 ZttjXwEn52VIem9KfXeqMsXyazcHtGa4uSzv3L+olfReaXKex3br3Mz3W9PkvDDMwjGdV5VoHaad x71pC5XsRvgXi/AeGSsqaq00AhcZV4vmQI5j2s97fl9tFN27ce1W70yiS1uQtr31K5WUpqUqlcTO Lu2zPXPEsAy6DWcYkGLpEQjoPpcfEyia1rSWsyaO2eiGsOIRX+vJyU41nKjyYMzi1cxbcKtpT5o8 jWvVdIZIkxudu0myez0FVtwLRf+wTDKh8UvNV8HTeN5c9hUqrEY7H/P4V4vwHplBJ2/yNEswOi9p kbWtKQsO2i09L6zc6KF6EiUU8RcpFqMX+CEd78iS0NMe7ZUtLXd5F4j5glDk/HSe8z285839O8t9 nvsPhaLceQGw2c3vjjl4gsydJEZF8xTA2PlOoZjeZkV0zGSRECgm4GA44R8PMudkaxiEYtGi0uS5 20orN8tYo/1QBADSFZnE3ZO2lTwWyFw1gaV0t4cVIRg466mM4Dz+VBHeH0tb1CLEHWDa5A1pDZpx iVFQu3DrVhcFgGK8M0tHB8XdCT9kMSpdSbD7yjBW9KsuFGKkXyS5oVEdIjJK/t4QKBatEacyzmXV upy18umHaoNAcdy5kjqUFb20BX0MxQ1p7Q+hSDTdCBTl1ZdGSzAQFopPQwWtoXjbvXo7H2aaBIo8 3q98SsXYaR9y/pgxaIQyzQLYuW0W8ln/bYISPJ4AWQQivEdCkXA1FlZQbJfGAuS07XyWQTLYBKwH UOy7VQegWI93/FhxpYN7LBQD4kM7beE9FfLT0GWhUkCEdwnFpJfgG6ePwGrOcx8AxKb6cPIYPc3p yZUsfRYfEPXx/fNNNS3ab73FW/NyMrfM8gxeUywP7LHufnfKg+7VK4E1u1L6Bd8qbWPQXxYbC1si Fi4hFJxjRkowyc6Q+edFZWq5dNGkUJw83I27HhTVPRn0j0wSQ7h4Kz1U9c50nwgvfzQU8SdZkd1x 0AbwIOvMnPs7s9RoX1+ZeSK4YQ5sqVgGVsze5AZbVPNji083TegtRg3tuygFZp94bAcMTnPfTLNk DRUisz1iFdQtjVm1nWs4M7052klnfSg6Y5F1Cl8Zxqhk9fn5s0bKWGeaysjzhn6RtU/HFIpB60kB CJIPR5Jzqd+XDmFFZtnTfB0rksElpgZnwciZGZ2cNVQRzrjfjYrYqWesSe1yqu6NFT8NRcyzIvNU 3xLhlUOUTxP4U8qniIp9HgXFtZLpCopANBDApM5O357BJKdvj1lOTFSyGBkXcbun2KcN+jxhqXyq HwXFk5iMqNwrVSbdYcUTutAvtMlXLLFUMkUchSKnJG+GJKy1z/vzcmMxs5svjILa19O04V417F7G /eZ9VNZTSiUiqUvHLpCSNlFvwJyusB62MQvxJWLBJUAURUvcVEFVpu/LSVsY7F1cnJEtpP0UsOIe 5VOeFxKSyiedt576NFVtoHXgn2TqBJxUSkpWtOR8vFFYjHjqLPxbNXO0JcIrcwRHhJ3Id4WI1K0o f1aEVxb54x00ta6+CsAQxFo68AN8X6zqEQnRquTIlYpJRLaEIisT1WX5KCjG4hy1LkOjpxDfFnu3 ObEOITqSiaiuhygixDBMw5+yAiyYlVXIQgQFLSDbr91fNdpD3fVYERMoiuQU8KHoNX+mypveKi95 PXncaxetcHRwnGq1yhwkAjIHnyh+EpP6PQ+Dp8stFgpFGVDofVh5CUWOC/Z7EQTeE6ATZBXwR4b5 iAqd4E0Ix9uSZ1FLk6OMNVWBFdcivKtdP+igo5oOARfFrzev196JYjAr9Uu9/PqFmvTl8LEPxfdS mAlXPo2dSL1eWC6wnbZwkOtfQRBBOM6xJqJqtKpZDhx0s3R63qw2nuoJnxUDbfT4kFoPJ+vvlK9Z OjbsmYQjGDwLYpBsZxf9Ax30JrQgwyWHJnU9MveVFPm8cWmG7oBH0eYgdOTS5K0pZgz3WzI8VsS/ QzFH3Jqe8mGxzvtVNAUuB/6I6wgoTFgt5qUBsbAMmt/KoDPWMGWRhCPjvigi18014AxC3fzbfbVd olCcBM8aKv+3nJ24nqWokXXY4YsdSayIOD2RqlxsYfDs7KLXg0BRkg6qK74n6khm3kLaSAnxV65t Qfjh+u6yKgZFePm1fm1UIrxHQ3GZ4rHaMVtAhJddT68KzONZ3Q8+JnKsn0EzTLgI73tI3BDhpawI UJwY7kxljQ7k+ezcHJBPAlBMuC+OB8UR6501QRHemB8HhEcE0qpfVKzfS6W2eRAgeOFBEJ71wfRO Zk8G/R8vs8K8DCfYCRISfeXj3lOfd9D/4+7MmxJXtgBO0yiECVOkgxREs8iUAhNZMxj2dUBAFkur 7h/3ve//Od45nRBZgqLvvqo3oobFrUl+fZY+S599sAGyJxXPPl3xFwmQT+4XcBY50uPT9x0crisS ewST+qFnwwzXh39f31mLc/SgHxNKUW8/lOS61d5fVxSjh5k77jZFXssydEmQwB05mL5IyHGJR8id sDluP+Ld735K//ye5v+02+Lenf9PN+EVoyeXBXy+oCD2ORTpbrZLJPyRabOPIuYKpWVmj8HvSIcl mOZRzBqKyxLBQ1zGhKL3UXQ2b4uKHoPf9s3BnxcJSj4Ya/z/RtHrSnN+FnmnOSRH8XSg9jfLoCd/ ht4uswoePDis+NtBkX5EKv6XKOIfY9w4YFhaxIjrWW8OxH34Hop8S8vvN7sAcmXsMOi4LmfH3iT9 A1Hc1r/vZuZQ8fTNV2R6vHrj5C2E9lH0TKboVojBLx/1FcVKF6MbZi2zZnA0hrj6/DRkAl2tzady ZarQfxpFgZ7sYR1FMcw3KtqVg2APgjUYpVvrcKHt/7ZrDB8ASf8YFE9JEvus/XUERfIxFDcxrejE GFxb2WkrGtvF0UcqUlqfo37sFFZa/6pq1LLDc+lqNFfI7WiW+C42Cn4ofsCY2M5XFD+yT9J7KIbd aKPjFr92RcYAgJeW7SaLsMoT+OlCapVZyLi4jmtJidU6JCVXi8TTsDJVyZ8kFU9H0VvGc1Zfhe2q k9fvUp+AP427jT9wMZfG4/wpX9h1M1LpMRQd3DCgMMkOrq+vf8DXtWUAjlHuM/LvH0pFyoo8JEjT ill9vs3A5xpRtMqs82uW+Baz/VD8wG2v1edOKaz7EfMzk6PHSvK3bi3uFodj4eC2CojS11zXjXma qhkqlVgj+200FminBGeUmfcFld2OStL3sl0of1EUeeoJ9eSa92RP1h1KxfhKM8pOKuxCYcuqpo3h pN0aKpy4WrvSFVeLg9wTEt3mcIocIoYujj8AxwngiGEvdFsieyhKyfr8Z9npO5J9TNWyVYNnu4xm Zn70Yub7PiiGPrR89G5tSzDo53wfL8nfDikHw4evb5Xke8kiFW18Dme1vlA6c+U2x1eLUn8PxueN X/P4t7Jd+rIo0oTsSkDZKwQSNhIuLjuyz0cqFrVptcQoiCqtT9hDdnKDKSzFuxdC7btns5mo9fxQ xMUyMdxqAoc/fgB9A8APlLQ+4FjCS7oxARUGPyM66b9nm7GiUCzX4c8LIUCxfVXT8lmO4qpQK9UB x7aD4k5BZ+Rzdq0fihwoPkv207Z2y6xkZ3Xb58vnpf0AABeKzZYipKqIotSxukPsKVC3ehc1q2fm x7bxNVFEmcaFG9Bn9xRaqWoLFS7mqqsSVjRUewESzl8qJuQUT//k+gRRjEocxYKauB/0K9OLQxQj cH05h10doAM5iBxi5D8syh6OcBtwHEUn7Y2bUcQRioXv93OF0QslVX8pau2r/CSAZSP1Qd9BsXSo oL2q5FP87+MogpRGDoMtPkvgyTaNuyiSHW2ye7//8m6+oiMUM+sGXAlE8a+5OcpWsdwCXLRa9jLT M6vjr6qgQdJkJ/U5QmTmn0NmrbQE9SCRjtUnybpergxB7xF/WzHeyMGPsspIn4aZnctZmGZYzOXH lZzWt7OxXRTBQYRHwOGEc3jNOWzKwCFaXxjeAhynhgU4/nBw7LYuqBtYjxCnPkvL/dLL6XS9B27L bR6O63MBVFilJyOKfVsvC34o4mKM6xFHyCYblgpb9a7kDRSDmOMYxOE1YewweZpIY3QrXcan+NQz sndC7G7MyDXLd0vyXQWdbFiTakENJesz9te8oj9e5dtYITN7GCxqvStAsfRV3ZaERBs99DvA/RTi aeWqugAUwSxRiqN/q8u1g6KPVGRJcPGYlGzol7meYrbYA56jor7SQV0+76AY4RzCTXQ4BNCAtKYs wwWNbZJDsXRIlOXWNo7ZadPB0bmKMIRGH6RfJa8vlOQyb/Ho8OWQndPG2LyE12eM+kpFmuYym8TT IhwTYcmzTOIivRBds8QHRRgYeCo4riYMzBkWOFjNqLxF4x6K1Kt3dYq+I2BTuFOBuVPAoz90UA+5 0rQ7a5gWwW3Jj818r4aVP2b9xbxUOzzNUF9zjr+grZha5fpcKI6XQ8KwBJtIpJYvtOBL7cyPSUVq lgO2roZStXmgYahmOOSi2BrpzXuO4sxBccNhYqOXB9aGw2hw1xTDV+Cyw1XXLRdHC3BMOBKcSpLE SOJGYQHscOUcBeGMgFHLzgXMAQz424rgYmURW6zEHIKIKahcqveYkFwZ8mpduSyHDhuVOCOCAYmt CTdtcezOsBwaZZdGv5J8km7JxC36lhlMBX7SeIl3QqRp0QnTHEpFmG/nyzXGvmu5nkqW+ewadFdi NY4wZzHnqjqTyFeUipQll/DeQChiwtO5YGtjzD3pdDPVwqpQ5ijuBdPck23rT9Ve/CZma0/agtnZ bn6mgILWH5djE1DUyp0CLo9RHkiIXNxs5KGVfeUw6OMZOLp6B0f9RpYlIUTAu5fg3i1rpk7KnyAJ rzlm1FdBg8c9bmhtQhrZZr2kVlwUO1Y7ZI4Kys8j/RWDfCQiqmWXQ5gXKLSv3TkycWn0K8m3Na0H NnSqkcsYQ1Ag2TWc5FR9xqdAfDWsXD4SP6mIb5FFzKbIIqgMGM8np0IE2weEttsHfD23pTKM/C7I katR4XI0VyrVfoCj2FuO5kUHxTbxLSSKN7SualafQaMsVMK7nuFF76oskFi1K1O1kuEp85iMOnF1 G17L1jEOX02zGMdRClxMjKyFFAyM6eQGxBBeCSo7pcebtADnuPUh7aGInY7DrAIoJhtGrNFTWRHL uwDFwSxp/yqBVNxHEZQq5RyGcUbwoV9bujGNSqIoBdHBcmnsOjSKoa3lQbfeb7EcPROWqpXktFLU xg86CF5M/RbMUUn6Gba1R0L3Kv425iRIeT7rJME9Ck7BoeS8ZV57+AXdFlsz8rP4srW6zPwCwTjo dodECnVK8rfyb73c+Zd5X1J9pSJabiTxU8F7/uwMpy8L4IlEXUl5yjwoz0Sw6/rF3UlLepvDVyDh h3jdRxpxvAaILUvPGt1JUxQksNPe2Oog7FOSHzKr4JWyYl5D5+q3i6KeaXZ0n/6KWGopiFJ00s16 U6g7CUsiN2ijhzRKAbIpPN+4LRfs6p6jqD9NWDEDtEcRxbsX+nBXSqz6doajuC0VI+9FscifGIM+ 3VZMrXBD5nwfTZRyCoA0miGJLCdKgJhTebmmy65K/TxoNN2wKxbeb5650Rae1iThRBaDreakaaEH 0r0BByTG/ZSTwsIx0Sm+DQRCLe/KcyimzbBDtG9qt19beJ5+TSTQk2BUyK5UTHVKDT3zZIjY1G7o 2Yr4X7Gwa+pxqHOTQuQZhEHuYAWRU2PzfaARf4PwXl2erZjqFLiC1qt6P3Wfu8OmOan7TCF9nymZ 9y9FH6no15BC9n0It7OvhCL1hFu8xXNoCD7hxegsIkgo4cAbCAXIGzFo/3U6oJJEiCSmsVIItDO4 HgKvont7x7vDzBzsOYYl4aw16YLtuI2j6OJ4UIPk1+oT61wFlqr3wBoph4qurTgv3o1tQwYUDbe/ Ini7eCESIA8Hjknw74AAACAASURBVIsFannDoTuFtmjsvtLYBBqxwsVDsaG30YKNK6na7D/sXf9X 2soS3002sIRQEyFiaguIIhy11ip9raTlVlspetur97xz3vvh/f//x5uZ3XwlKFjbe6+61pw6DMkm +ezszux8edMdv+3bCMVvAMaT14335wetw7xUFAXbNJkw1MwnD3G3BQWZ3v6kpYmZZD6kf7O7Lbd4 8dRh3e2B0jkdj8ed8XRSDSOhcYdc3AqOTg3tKQjHRDp2YNkJc7WjAAnSNvKjKMjF/d/jbif8fvV9 0B1c1Fe/kP3RfX+53nt58so5utxBl4qKVrH8akerKTj7hjOqfozGcgqNyEtoFHqafdP9wMQqW392 uH50/q7/+4vBSILacv5u//wrQhEm6LXZ7BBL+G48JChWUBKq9EPRwVPrftNLURQh6wY139HdMJy6 F5L2e3pKMiV0NQ6llD9QoUAp1o6C41ak0CLSQ8dLIdIokop71euNafD225qKR96b1CnY/oyLtWDk 7YZr34FC+UbMqVKUcD880pDtOY7gSsNO0AiL4R5nyq74AoO8r958c08GrfaHnaP24LWDUvHfbs87 wQl65/Nvz80bs0MYOk+TYS+SqOQfDUXPuGvaNqdWOM3iq0Ebdf84Nr5NAFC0eTfXdXbxCgWkWINw dEaTaQLHU6XOECLrhMiwztWyLdGgKcJ1za/TagT/JEHPdX5FoQwk3IQFxSRe/o3KkRXbmD/uNBpH vbFGYz90SbtwMcg7fPfbauP79ZnHg+q0htfcPVyV5t6Zu3u4/mz03CzImUN7O6qBagYzjGPXjQcP xUWqnEUp1BwRNy6M4jRrgMPRWOMQhQq8TBAqlTjbyg/XbVF2HjSClwmOaq5WiDw9brcJkXUKsJac k3N0lF8R1x2cJ7twKh5ZJ2bCWBKvjOvaUZv2eFCSl2/BYZL4xK7VmfAVGjen4Sh0TI5WQcYbdYA6 2gsxDpw0eQzJxwU4V+ZBM+ssYmjBjhD0DLzHfvv4uFO2jYcOxTlWlExTKzB42KlWh5ky7VtFuh3i UBulybvGIKFy/3VbDIQjviwbXtU4sYMr/woUkiCMA+0dDbqTyv41NxTGw8IkvEFh8JMxvHf1XWna 84KxikYNKfq4nbTVh9P0RqFP6xs0D2pzvJl4f6aivXG3hbZFYYRzbpMYhDUx3Ff/+PhYu4dshrXH B0UUAimIYVwQBgZhC0L1tiaTKqgjHWp9am1ox9j0g2unJ7efU80qmhlB6EKvNCLTgARE9hUiadZW S1sH3YLoH605iOp4zqTTptd+ilvemMeCHDCWy8WNEe+ExnA6nvQogNnwBOO3BiNwoS1W2CIxeBq5 KCmJ/zilYs0ZdWJk4c9sw21YcnZNGjoebm0pb8PxKCQcRk59P6malUFwNMjUXVcJZkaTsd6c0YhU 0zZCMkTXwLJWbOwa/dCKwo4Xtui2OyJ5SMHQy6eF11vt3EWHDmztdn9qePWbF+Fkxuf+aDruK00v jUFl0x/Zi2eHeEBS0XDGWxpdW+pX/WTbZnzItNP2FHConUuNwhJC91zjT4epGnrzRSMSjdNpRCIk 04iknJ8gU9GNXDnsojzEEWTJWMNavkIBhVvCa3TC0aRzrMVzexzWyzU7DkPQq2/qMdoDyFyaguAm Gapo1Utx+ZTJqTCp3UOHol2fRkDbjN4iznY4xts4G+O8jNPzGNsUG0zZE5rCMXQjh8Pyr6nxl8sD 5wlMUhNWFSKV1Nb3cqwQCQ3WdQqGm6imqJ7bQv5YsQzcq5EOudiOUIvBZ4hodPJd1BL8NBr2W5ux dUpBsEaDK/Idf4RSEcffSEMrjBpm+AsdXuGqgQZdtmsGBujVaAFGv0oqlWdDP35h5dMobs9jKnsN qKmmq965XkgoROIrP9Z/UjRNWfU8G/H3A5VPKfDAsNEpbjNBIzbUSPrt09N4YaN6hCOk57sqQY5e 2maSfT5CKJbVsFWHaHmPbyqjQc8YuGtU46Twuf0VlU9lKie+sgmEKURuxQdY2KL4iUeQfZ9FeKkr MRo3251kSOgxQRgcT0IX7U6U3ycv45fIxf0QjTlGrBUos6PODkGvVzenVi4Kabs9k9gvrAcd9TUF GMNIIRKnZSOXQMe+x9Lk8SMJYzRuxRBEjQRtoBgHXRLxbdrl2zH4iKBYPCj/ufWgy9m7cfQ0ObHV DJBd194jFFNodEJal9JqVa0GjagvOs+arrn3IxUKHiIUf2Z+xV8oFRMo5vKsR2kpCgTQPUMxFTgN aOxohSmaegpC8p+g+PeEYu1+oZgzSRrGLTlz7gmKqYhBbUbKXDwbkv8ExUchFZdN33R/UIx9HAoG wEOAIrxWQVAU8m5gfLxS8S+A4vwr/n2gKLlUUBTL1agG/MVS8W7VrZ+k4hMUM3BgGoo9xpdDIgCj MdzeXlnx8U3JJ6n4BMUfQyJuWRIUrxvL5PRGJJrV/W1sw2t3BosWVUiwrCep+HihCG+/RA7Eli6X gQZMi5E/mpxd1WGlm+thE+bZ5n5VLIFFIdxuc3vQ3dgYrDRbjVxNFpKZTDDrSSo+YijSiTH7sMUi MWfdIBRZo9VcaXU3uoPt7S5fFIoSUL3RHFYJHM/2my0usl+12Ite7ZYkyE9S8UFDEZG43rNXsZrV Xu8l1i9dN1alteZ7fhkOObknpNlq7j8jRRqE44ZYFItc9lZWdhk6/grmD1eqjGdQZr046nY/xDX+ ksqnf3ndluWdAO9S+dS6uW7LDVBM1S9drqtUUxar9Ii7QFGXilkOijMlW9TDisBlvXjb6l6tluSb o27/UMrSQet3UXrTPft+tbPxgYlsFTSr2twPGLm7sN5wO1hQ/QDludW8VhG78P9nzX2ROXFJfn3l f7xkN0NRenbk/5A/zJIyUJSOfRt/Qk9DUaRzcd92Xco6qy4ZQ9FY5Lq5Irw5/nnnIUjNg+Ic/ohk OFKkSgjV5t7czMn0bosuwltbprOyEIrR5o0lSu9aZyedl6W1j6+Df12sMnYwvBRrH08/7R0edPNQ ZO5gu4qqM5lmutvdBW2LQrr7K4E24khhDodBxiwprI8X7MsrS8yf4fUEjU5JlKDG1ocakWbpugiv umlWvpU/oddUTJu684qd46/NOQ8F97GkQFO9iL825zx1pccpubgAf0IX0aCBCTqc4a9l+NMfOowl z8e5nR9I6hCaLCq2Y8EEPfOleReHv6IvFosvgOJJ5/lB51CuH53L/1yuglTcb7/c+9w+e3e+k4ei kMH2wBRqJAoeDIeVxaSiYLvD/YYU+ubN1sqzjOIi5MdL8eV1LBUbjagIb4BVYgMgmj5e0Tc9M2yY XmUX8wLtwl9OAAcf6UGOjvV3Qc2H81iykN+J+EMvQ3ejIrwBaG6KHih+0wzrxG+aDSSV4eAl9ADr 2vpwSbfBKl6Wvx7oi1TgJoA1RTe9BlbubbjUWZnQ4bqeqfkb+ksx3TSQDjfHBFYqrvgVPD9+iAFT Wf6YTjcBdK/C4Q6l6dJ1K/TwIv463lyOP6F73MVqtLoIr6c+TPh97JSd7ayvDxLvkGMlXirCCw8p 4K4rg0Qqdp5/6Rxa6++/rWJx8tLB4OjiXbt79fYyD0VAz+6fLcb1okaI4ba5qFQEKLpx1b5Ka6Wa h+IF//IqhqKp69HCAYvwuoy73LWIzpAOB6YPHA8pupXQkd/0uTqPNcNvEn8popspOl7crwh8UcIs 5ic6T+iCDjBnufCIzRx9lt/M0WGxaDbgBcU3keenQ2n2utDZkgtjgOOV8vxiznmQlerv4rAzM50q 4UWIn/MsPT4/VgwOfBBH+GFCz16kpC5eStGBH15JwDGTKA4eE3oPJ3NjKP5BUBTrRxEU+71Bd3p0 dXKx0/0kc1Ds/dkS2rRNmyeLQhFUlaGv0QcPfX+4m52g2ddL9vX1/L1Es6H0d5ZaqCSrpBzdYokf qomBmRZL02cOM3R6MioadCH+mE78DT9eUkR0q5A/03+Ev8/1N+Uc/qKCjajIBkIyxhbjT6o8wsFv sEL6bI/T56d5S0Z3yRbtrDJJNFgcZh6ZE2Op2AcovmSl9xfs4wVBsf7+f3sKiodZcIBwaw60HQak YmO4siAUYW4d4K61WpiLoLnPs4tQufN5MPh0g9oiMqSMOnMjXXCxAL8soHNZTJ/HH/u+Cl7ML+UN dIu+KDOvL/elWbr+UArVVyszPnPIsGbpklI/yVsGWNHAQH8CuQT//9m79ue0dSUsD5KvUnpzwAVf BxubYYIx4WkSXj28Bgjv1zQz/aX///9xd2UbcEJ6Uk5ypzPnZjpNSixptfq0++1qa51aDxqEKi/C Fl5sO86jpo8qjmPVOEDRSie+2IVdb2k0y2k5bLwSDw85Lok9LJH9H85bD//wYfDQEl4wDbC8zYaT OeBkirlPCn/31579U74uVBz/rebA5UTuT8XQRwCGfwEWqJpUCFMT8cQXufhJCd8NyamO6WmJyrD1 E6X/5N46F06vnFsn4flM8/YhQl8c47DfTDP/gK/fTN+eq1avKPOuvoEPmOwdwbEX2w04X+k263nl pHNrSm/NK6JBLd0+ZHM3d/rDrUjlhK/iZTLSUvZaJieSuLCYB7niZS0va4gRafLXSzm9TFlSuqxM RLqR+EUNefJSvSaT/DJZrxKvHRd7LMVPsnjkl/qkA5w1Zc8Qg6HwbUm/u8ll4fuxV48GBGTllI2w w8FUzMS6nD9ub53kuVm8rkykJrELVXZ12fIiFK8uhGLs0uWNJS6GIr0IihzTK5fJimHLZbLGfla5 IADDvaDprzV94yCgAFHZVzplZ+kL4ulGL5VK2TvpV10DI5xfqDJ+YUs8AbqQtNH/sax+KHAJOft7 er2w4fvwAtGNlMuWSo5+cyjM4RB01DMQbXN1k12n4HtlrTBu7NPuXJGD18PhH//NP/w3JYWc/66B E/9/RHcWi1jVQDk58c5GE68wknnLnDcXiswn910iz+5Xxa8BFE9Z8i8j8cVe4m8EjTAYx+skyAlh CFkHfuDFJzeQHoZkflD1FrlFgd1xpuxXSjrDRXleqoOFemD8DJ8+Jkg4+7nFYaeKE7oQI7IzSH/x WUh5IQr2TKKfTtnPPr3bBn32AwQ+rrmy60OCh4izTBqg+LBUjDFAcXoKxVAa6ddGjITopdAIY6EJ snMxz5vDFlEZA1uMB71ychduyJ8v6fluMW1882rYwvhZMAX86yb0KvtjwR4EddLrKAPmc+eHLSyE 5efIfK4imMTNO4Qtx27ZX249byXfzyk+QxRE3B4UmdrBkxuEomWtJpa5apUV+e+PiydUIVww+Ldy ku1lJ1KFoI7J/WB58d4AWeLHxGrQHNYZj9Jlqm13nB6geGgI6wtt4SkqQjw/pAtMTJC6PQlbDqGA aEQYOaSRg4OVo8iMHav/IjEasookEqEEe6Bya40373FZEuV8YUxxPITG30UkwvxQ0ZfodKJe5i7i v6qTcwl1EYug5Yb5YZeMn37hfI9dMdGAHe4YjsXgHzK+kZZ77Q4FX3LEPxw4dneiArGSH8bPQCQP ilztDDwozqq9QXMOUKy+BxRfBBSyWzczNX50qEyN0IPtOmuvmNxaUNntp0J8QdhApraGckyRiat3 OT3jvynZ9NNE00c4omc24Xl/LObVHbPzkY+hixrQY1myHFFO6v08Q/KKp1c3dbygZj/i1KiPxPzU 7VCM9mKKaA7qZj8tXpjoExKU8agTaMOo16X4VN2scW2YVxKzU3y1Bf3KrAIPehvFy4nIm36KkqDY WvygNcxsZuSVm3n0Ro1zbVsLqEqQEGTer9mHhwghB614DrrqjsvuB0FRpsY4k2tXFaJGOAPeGuFy K1+TJTQL8NFZB8jk2VKcJEkS2AB8VtxeRSRYL9mtGc1HKt98PSstQLGFhKOwowRvB4O2V0V4nuOJ P9oNhNfZQWVumzWxnuoVrIwci8AHj1SUCqA5lfFGj/OkF/DhjgebwsKo7zgxvoKUkhqR3JqQ+MVm 48zGpwcpsDpo/PFvu9BF5VwRT04AE69Y85zeBd8AnXWCtYGh2gsFoYMTwSaixSRTw4skI3GKqWYY dptJyWgE+cE3Gc1FrmF2CVY3wBNxCQaoqXdpGP8KPgB5JY7iMrS5IMiHYxGUWmyuO/lV8kvLnLYH KSyEjXeGtrOavYuDxvqYExYFSC+Dkcqlig19RIv7vT6SOqVHDX8wtvpOOZoofMG55/QAilVJauVT mx3ZTNWNrs+v9X5a28Jf6mZkj6spV8e29OAuA2+JUBxbQ4QiPDKirb6+dsdVaJudp4D5Q2f9dGDc YEGlg6w+FLlchHZcg0FHFRgIBl0raGdcaMiOr/2QpOM6Q7fAdkjxT4SigQ1sfd//92aEo6blUJUK oRFRSkCKuZSxze4UA1SxUyqlQRxk3cVQTqTsMpmVPwO63DUvzuMIRbwGiwdQJGJCqM/pRp8qExMn C5JjNgR+p9czoKLMSBF+GL01QLFLjPY30U4u7vV1auYs1G0NRIX5FregUHWb7X/mYq56jfsr+XGI xIFgrbTGQu041RqsQGUAO7eop91BKGy5nCuehi0Ub5sET6S1yw1rBQpvW6uZMwRTuf/UK++d4Sn3 j/lhC0DR2u/r5VRvyTuZWNvaj63oeKFFo80fau/JHi/jbrRjDQOyeBK2ABQ7up5J1ndaM9Ow0j1r PnXHS6Xl7J0FRDq2029WlUOcfhK2+FAkWrMKkk6c9XbqFgYKSOKAbST2GBtSei5s8aDo4g22O7mX 348fK6V+9FP7CSQuIIjCYQtVAYrAKtVGXneG9jizdboVZw3znOe25r6wUMBSgaiFfP+rMikrrpkW UMSwJYAiaqjwZJcGjRKI262UMu1yqhjdjr+B422Btqo4j3xNnJRh2MKM5iCq51dCEVqzHO1/ntyD koaTUh803QEdLxPR6yYYJ3Rk0Bt777DljDfB9dNu0mLrMS/Ri3Zdfp9sGBq3EyjSSTnlreS+8K2S TdvZbiVTM7IjYhS65Pvy9P9XSf79xYzMLF1HBS1pJ6PVH0ljTWfVL3fXjXK89wR7W07kNuaaegeg QbmkD8UZAFE3h5VyGhTdeyLCFjTK1+ARZTYz+w0rzg5QjERCVpFSCpI2zKFd709TRnanNvPzJhYp T6xo3VrJ9CgrDUNR2YzLN/VHrbAjs2WlnCJa70m9uwbzdPo+BLyolQsogievZ2CD2fma2gQzvoLn gdAtiEC1vo4TbVN3hpNqAEWGsnpQpFQFHbQydha4VteoP1YyaTv/WctdN58ICLMkrcxdtgvyi2RV JCKsolUo+YrQGpn5J8XTUKWs2NlaYyF3BnEXqFQaqUEfdgc0xZX8SKvIROoaSJH3HagIhlL4LnvO 3j03S2FeaWJMi+NMFC/OXQEUIVgyzJFkFIaktzyXSxFckVTyYBVJp6rV11IbzNOyY/XbAor1b0az vDUfXx4TCQedSVcK90PbSmuFYW9JaRGg2Laie2SXM6cfnZ49skMorkA/wOOi85rqbsfVYnaogqna QxgiT+7n+2nqaOBCYTGsfj4NhC1ZH6rNR9hglTzeqr6ARgDFF1RRbsFI7hQmEd3XbHOkBVD0b2JH +rFOJaDh9x+TMofOOgNy5Io4b7X9RGZVW9B+oz6s5Fe2lQQ3M34CqwhQ7AzcAkIxUK9w0GpvqfaE IorR+n0X9ouAYsrN1npLuTHYOH0PimDT5+mPD1z8/ASl5PW02buGLe38vln90gMoKrAEFbBXzqNt 7rgKrswcno+gv//4L3lX35usksUxnaGorWlRCSKiIamA1Bfootj60sWq9aWlscn9Z+/3/xx7zgxY te3d5Hlyd/e5t2ksRWbmzPCb834AdMW6NgCxAVBciQDF37rDdmH8+zWIvf66EsK6zd17+ZN1CgLa 2ijDf8xRQLdrAGZJDbugGD/nc7AxmsbkNSLfQPG28fYWq2Ejv5C9aiFolPtdbWkBXODypvOcj7+y 2fmgntNggg8bvDmPuP/UcDWo3/Tb563acakHBXW98QbCf2jBHW/WAYo7fbYqAboU/iZ2NIrFgTl5 M+Yde+LfbZb1iOsGCEVQXp5rsDQOfLnpODsdD6Zh9yqcFmZrJqDfZu1S2OACOoXibJfx7BEuRE9/ e341oqa91WePILXQZoXupq/mIgTNnug+7FeZ/uq5V9KJX5EKbmBONP7p5jU931Nft2r+ErSXwIzl Q9mVuUoFtBeD+fAMNoNZXSiFSHy5l70Yuqhusy/w3wT4a3WSG045mzoW0N5Co/pbj3q+CZfGcGte qmC2GI2IiGDq+mZMDgT0h18RDA7TNKey65tbsLKMRg8HAlW+0SMSZQ33yvSJXxFdZNgKGwDNWxlo F8DAghlWY++w1AOLTOAfNgbVX41JTc/DGD1lMNFeIoFia42yul+YLvSkDMwq2CdV4G9XXEC/+CaQ xIfh65nvgRnSiCSvalYjuIYtG8wDTok0EdDot6HqS6TAQmBjmAzeh9ee+wzdoEloT0tBAywoQC9O BqH4p/oV/xtQPDRbwAbkpTVC4mqmTDvF2ELi4qNfRVvYVaBDiMyvgUfAKj/QLeL3klguJl7Ao2gL Za4xHFfY+17SALzA6aBfRlsoTTEqiuwA1RjCnWw8G+HAxX0SbSHcv5c492iig6MPj6rl4/3WIqxY g4rMXQkoZ5PBP9xviUo7TcNUvBfu6txHWyRRxJMi89wkzkAR5ysm2e/o0RfZeeko2pIEWNgoODHC iYWuvDdQeFjsgPClE3iq1K8MRXrszGEROtRJ8RNf4wRKKf7ijFFXpUf3E9+YjEXXFKMLBD1qGEDH 1jyjnPcBDfFVgJirQU+dOdgLQWcdEVkBOKtR2PcEt4wPSvccPMPrRYAgylpkUIXOcL6E1/KGeOuS DvbOHJHljCQvXaXpLHkD9AYCwSKn8jCkL5AzVo6Qrglegwnz7J2BfIoEt1ByTGlCE4ydyfBqb/aW qvQ0G5Gk5DLtX+A0p8ubxp/46x84eew7ET2JaCLAac7UM0kTEf/SP9uZ8z/gkzRNsaSfo7zfoPkg fHygstADLoeYJuSPDa2D7tN48qeMqY9r6FHOT/p4KpqUHFGMQ9LTNATCGEnCh5IQyGFo98tEUprG nCUqHUkFkoTr6UHw/GPdjiqLmYeYHsXLDxJEWJDy+3wSvnuET0F7Lq2ObsHf+IdIYItICmr6+LQy kjJE9uAqgtYW/+BV8X/wxCDQi/J5tD8iEVgxb/TtFhcl/T4LUuqCX4ZDwYHaKjIqBE6AQJKHZx22 dPMLRiph3Bq5PbJX5P4wj+Q8C4fztvST9S0kT2Zj0l/N53N4DDpt6/I0dz6h1C3k85GgL3jvaqvG pAAO696T/YiIU5F8bAKqQ7N8xIhjEjlZSN6U8VZCCKF/pTqRn8niPitnROnJfiRquKNC+swH5sYg 4j73hatlRC1E6QWgDZ1mcQO4HAvUfrByeD+E9SOd0sqzuIkEVj1RwjkhaRou8LommD2oRzDVDsMe jAemKQYlhErTMX2rdzpbbARWl5wcC8xlhsPgnc6UySlHwkEJi4NZYGrwqHOwPSlVElgWN4H1MavG PO3dxRAu4Z178cGInMdyhGMWd8cGmyxmZ9EI3NMpJQdspwhHdSL/KYv7/5+tsYqIH4Ni5YxKT7fo ed0JbuFBVioaKVVktXAJXK710NJEt3ApKOXKzTmgoJslqSL2KbsM3TbR2dkZ8XL6A/A3TfE+e35I WtsCULz9vYZQFL0bTSxVWveyevMCt84t1FCpL1wo43qPKnATk6QDVtsijrtFN5grlcp9sXwhli9K N4WbC6JAc+CKWbdycwnzwEeiiBJsHYaL04IChKd7o2FKxaCtqZViKSfruUx4CkWJ1bZg9OqhNGgD z3VzrZzQ9LcgQajSimTqPmQquDJIM0oAtZBjclooIxTrG3zmQU5SK6WwvVFhihrSSdUH+HTvNcqv 5xKApqlSv7SuKP34M5OZDfBkzVYARTUwnZUKtznYur5hxGpo+fWN65vGoxrWfWvUnKELLN2+0meu aMTliqwM33X/cdDNDg2nUTt9UmRqYrFRp1mA4tIwG9rANiflwPLvRsD1rEgcmvAZ3j2qgWFMZZ7b ggEBSQl3wMCumzNrchNsxWBbCUx7pYwtZyp3GtfjurnwsAeQhDpQPkcLndVsH20IOjBMqwZwHdhb TVBeJ9pTQxt/gqKA9gxQ2pWFTrsDV9RhLfQ+rEUPFsvYyk9TWCQz7kBvIwnkNS6bjL4ABFenHlXO Zc+MhnDV3ajjmI3zIaPTNp266TS0po+dSKd38m+rNeJSe0bU34lXpWFdG3ZBAi2NOMSTnj0Sr9zw X2q4dv2V7q8I+Ta9l0j6zDYMFmAAZAGm5p4Rf5MmK+KoL04czvX+3O3Pl+3za8957BjR0rrvr9V+ 96F0tmxnvdl8aIz2ERdKlfAd5Rpce+UGKzGYXl8NrV7Tfn61N0/tq3BdcoNuiSWdPNUX43Y2cZse +8fV/rQwewdIKi++3dV4HukpFLmyiJTe2rY977SL43U5mOrOu+sA+rbDem3ZVfvzUmm8doO1kBEH sGzpbgWueGswh6JtjZQARrCiYkJn/XJgRy/GaGD1lo2aWi4XyQ+mTf/1oKgt684OuIhT3zSrk2pt CPsWQ2m6MwIe43RBk1SCqepvBe4A+UrXxjBeXC5nAYpUn3WljjnS/YVEvh21XQPGONeNjTJeDZDx AHzN+zEMPc16vg1fQye3lmNF0iEUd+gX8cyNoAerTDDVAL4SqmXG6KmN4ROdB5VFurRNv/1VXSJm HxjAMZH/iCXP376mUDwGg5RSai1aGD8ujt+V4VT3d6ofd2zLtzSE4qOAqzNsSBkFl62bCAIU0FG5 lJWas7UEi8eeMdKxYdxRB/MtMJQ9bMgdqzdwbGD8GAwgv3qJzk/WQUsIRbV/u3tqFwf1jTr851YC RuPWmnXgTpLXIQAAFx5JREFUNqPx+moIUHxXg63uz/f8RfpSV9yg+j9eIVd8bAK4P3FF6UNXfGr3 lBCjhSDy5gBFyTNGoG0u2zX3QmkVgVU+dZH7qRWZu41L5QxFXVHWwzkMJQHmlHDl+rEgNO1H9SEz AK74LqkBBnexgqgeuefkizpoSpT++roCupriRYLqTwGKyzYT0Mfp36mu2MWg9gEUdT9ugtaSkxkU JQXOJ1yx555jIjlzcXcsbAZc0QSuOJUBilLTjoHODgv8ARQHFhaYKKXS9X6vZcq/eLQl8xN10Jjf qEnN211zZtj1DahPI+qGt3dzZXxr340GtmFzKE6V8d1NdeHHzNT8woJu/pu9c29KXFkC+OQwM2dy dLdikFQWw6NSBQSJElBAFIGFRVEBrT1V94/7/T/InZ5JQsLLFby75cPdsighmUeanunp/nUPz93z k4Pr+1Onw4W65bq9NMXrLGguivyKfzH/WBWiA4kJ7Q2spsu3iBcuN6VO3TujHdwk4KD5+241wx8l pa3hmTtpn39373T+sareEloR14YuvzXGZsN17/AqDpqy06HLbSLGvzNwt2LzjDd36/Zjn/M5aKG/ +e9QFGH9mBj85j0pitzUH7olj+s0i08bBH9DJjwuiufn599706zX5greHfHxIgr9TEsfNHxV+ecf ZX6H2/sfVS675G1b0Dty0PxRqZjQhEIThwfwClwdxmFS5Q+CG4F8B5lQqQIBfRBSJv6pEr9bCn9J aJp2wJdPmoAQbn6lvjivIQfNGLSKEgqjWlLnXWDQqKZiaBq6sq+KKG5+ExWHyAvcgL+vg5eIEKpp CUXhjar8Jvsq5nfknSRwCZw/MwUGAWYLXdiFceWqcU0EH9HgM9TQ+JhoQo/n8Ar4OwV6QKi4O4S4 YzEXh4fQInhumGgRDhZh2rCfcAqJ6VAhiB7+6/wuQFrwflJVTA/ET4I+lFeqBp9YyQJ98INuFjIf gf+YmBeOe6fHHCNktVZew7o+z2vIdPu+myVogsRuQRdIFeE5pijO6BJE454V/86bGo58nhFxfrkh fnSBTkMxP2vYIltZz4T4zvKFfgaeLOZ78Ql5F2K0vVbEvmYkks7zRVLQaNhIJef8H4qxgMtJHhgi JJp/RcJwy6rTP3iSPjYSuSmJ4HhwKjjnB4nslU8lx8jFeQa4yF/Z3Isnrl2RHYLN088ELZNl15xo MUxHScL8eijs5rx1EvZNRKTQyMDCF9F+QiRGpMnYLL9psyX1CumbYOqxjJ3wsdG5H5sskM3zyBw4 71NV7COWMp19hEJdeMorOeiIKzqiJhbenUfmBIAgFalapW88IFxly5CJMYy0iXDQq/Qi26QJZWSO 4G9Via6SoKUQrg1lMfpdWJ++aZG1XnJ/vXFvi7JtPjBFi/AiyJiNzFnHevJQACJHM6aR2Krkc9BE hNrZ3QwTS1xrgmmCRdbb+GIW56Bf+rWJxCtyIRPxjULyraeMT64y6bycjiPmkoxX3DLVlJhXyqx6 1s57QbQXgn1jJFkGkZhsdLXWtG3TNyU+7BF3NKYF2BCr/rNo9xWRQFogkwkJV1J19dwCTpCdANcJ RgY3BPViucOAwqTcvAEVK2lPFb9qt7l0XJwULkoZaMUsHAgTp5jtYAwtQ0kJvHpn+ELJIP7ZgDP+ 2shlQA9TzA23lt3BYGqJkQkLRYGERypGn7l7XmfL6YtiHSKLzdnROAmEJBCkAFc+6ngNBW17Cn/4 06Oux7gottyeDhQqEKzdTAU4T6A9vVc9M8CkVu4gs7APeBSERPPWv7TcCW+5O8CLorhl2lkWOzE1 m30YojF9OrqZOXc6n5qB5FiZ4GvNGQyV4g8tQguhsy+Z64CDjonisNrIDay9veGd0TzZO/IoM9q5 RpgL3F8ucbBAt4b5hjMypnsXJ2kuiqfORJ2OGzmvttfMZWp7M6dfdPJPXpAnXdm2rxEOmlu8XBT5 Y6fXue5jMevdno2fHlvOKMF7kXu4jYqiHzq7lVEn+wp+pMnxrORN9+on6vVZtzDj470oNXKdopsH wtfp1iEfdsORR/pxZvtlD0R543vFrc0WLWa2BAt0x6zfGMeFi3utkR9/4TtGq1mdZSdEWTZbQBSd /FF2clApgFMW0kQ80MPjWfknqtl9qh1Py6NiKRNkWtqYvmlzXyNAgdSKECndnuh8YfZapfEl3xo8 0MrxLNtpgSiSuQwfb5d1lmFptsDhvevk+rRSaAgUEJ3aXjGb33P4yADhu63ysV6CQ/CGYLRT1tm3 bbYscNAv3CUri6LY53tFy768zXWb93wVqrt9vjEDaPMqphW10Gxp5dPox8msDDz+7T3iAlFp5hvZ vlV/RGa99AQPzJNlY+Mc9Iv7iueiCC5BZH09aPfSmIsiXyKH9wCGcg2d46KYpnEOekuzJZEItOID gpI93TqIoo5bNm8JwMSi8NNzUTwtXYJD8MbXionEtlpRRewznpuL4sW92byvgfO40M5f/reqzcZf y31YoE++7mVWAtSgFbtP5buWfdM+825znjW8q5UnM+fx+mx8U6n3psN/izkP7X6CG70BJWajxJfL zHUvjYq5QavLdbg1HNXKj22nA7HAmL3GjAR7RaeDFdzKXUL2C4jcKI/MRv7rTfo092AN+6fZbr1X EQ7BhdISnz9bTrwx7dNW9xLgyn8ExWnOIKCOEGY1sl1vjShClJ4gQI+66Uq9D9F/LdvuXrbtcv5L rW4fDaxxBr2yM0F0Ke+h6Y2OrPE+5E7LGLOeaDljNSYLyYh2MlsoZAjmusps2/Y4PX3E/NUkzdvv ZSzAdT2jxVsXTOoV+uhmy6ucK4riC77fTTgC/Ihtn+pcSLKqKfEjb+GCIBJ2DcpyBaVw5h61GAe9 y7mif46Hg85KVSl4UP8MfPdzRcS0RPTAfc7ygi9AnrYTmZPOP/khwWHqBz1XfAVvC5CXAgcFgDIC VwpkEySMSkJz2WzxUdcIeUoUyWliJcAzsZ/R8/XMFiSZVsHIEhT0NmhZpOEkr2C2+N4W4qck9Yco SFsJy0qwFyBVxfdToee8Lc8M8n1x0C87O4jgzBsfC4nhe1EO+oXW/g6HOXRLUyCxrdnyGgdPH+kw ZzeVKlMd0OMMpealTiWIiQXXKflTSMcq7V8cgyt3a/I3f1t3Mls+f37jk6LGRTWNT0tpH4dEPj7K JAkKBxrGdICWYMn3bsd9/rx8IdmBgxbhXUbzfCQys5qFv5GZ+nacRJWCQCyvuB40v17pVrOaZGbh S5AzJ/UHqlnhLU2B1LZmyx+oZnX4gTloEWdnXti5B64VBWpaLJfyg1rdLg0A6rzDxbptTyrNE88C uBJTsn2NP/xnavxtGZmDt6/x9zFFcTcOmvpacXRdnZ6k2yepRq9WHqW06/xf1/cAS+YefpwNUkmr ca8LJlWcdK/goH9VK25vYuFtC6spW5st+Lf3FX9sbwvfKzZ/Wk27lBaJfAt2B5n1iX5bbQmo02oA oA8Je518CFe+rQF+bhbfypMCvBidulwrVlm7WrMBqOzp/+Fasa9dKZUrrX2iAV5cknDlp9ny+bNu IdmxHjQUCfhJjOtcutJ0c/0iJEkult3cwGg7TlVvOY4zUdrf+wBLjoRL7U/Ugz78EPWgPzIHLfaK AF5CrSWqpZIMYpLh1QHwoKkDbBx+S+rE0FRkpPYDFDT1WQ9609dG+7/Ug34DO6FniL916VgiNZal 81msvTRkOBCLJgENsgwH+Tuee45reFT8fF/R5r6uuZCsv3BjmUeyrq/sF+aVrO8r2tzkugvfyb6A rICSWTSj9dp5iHCSIrpg/jJSeXJliqFlyFSyp4sfWdNXtlnaVj1swlY0Gcv3upp8Xd3XxSZXi9fi hWyRgSSrKu4itPKBEBJH/99POeul79Iqw4KseHOxxrL4y4pZoSxMxxW+u3Th2iajhRrj9aCfuRDN acMVff1Vr88yB725SbZ+dsgv2jYBhBtTsIvXsOgwggIOfGP0PiJzSBxK9iFhhR7up/Z1fzmBJTLI cR3loOeor8/6QpyL+Y/2LbhQZOxgaKGwmmhAVSSQ70PpVGFG6jCVRDjAgkPgbx6Z4/c1KNpLgr6m kqlkiDUTFgS7zCNzCOSLFxeiyIWYpvggQ/aajyahBmEyQWSO31cUAZoh5sbkfT0INwbzw8R5PWhR hxeajA0SUhZ8SwYTRuDWYV99s4UwMa84VmcYHsjfh3/JL4hICQ9PLHgg74SDhnq44BlJBzWKEVST fbSaOUfGkooCEZXGxC/VN49XZAhcKl1PFmWR+u90krh2stW0XwwXCrCUHvVgE+nbEJTJUrMifk+m 3iDWU4Yb3SWZFhFCKiphuZg5Bw21bW0okyIdieKXORsUyznnUffVKBRn6fpIcxivyKDqj23f6DTk 84nBL3Sc7MgnSyjE1dq9pKzlG8YrYlZpCJ6ZsCD1CKk8/a+9a+1Nm1nC5tTrOPUpat3WcowxCClg 4xhzkcEk3I65hDuokfLh1fn/v+PM7K7N9X2jVucT8kpR1JTFs7vj2ZmdfeYxurZdrGNPRqFRzuXj agQcB42lx7oW8q7IiayCua/X7ILdE3kxDR0+UXmOayvy+4p4G9nCBTnIKkgdWBDbGsp8dmRKHCPz GvO3goOmxFKzzXihIjxdQELcjPYAlu3hRSUy47YVpFfbVw8gpNjK1exZNvAMQilp6fVE90Wr/ng0 KJs27lVmc9gtRGcnMbC8Tb8aVCIMwhE3DaZBr353Pz98pv/Ca6ZSv7ixexeySmERZJ3ipxBKfA+y Vv/t/gtl5eLDAodLQTwrqCBofe9x60zBEN3j0sITtWre/Ow+05IRdF8tNwfVl3siy8ebqCSXneFj 4NUZLzCX9dvPh+odlxUsrtRfJvt5UlRe1NrD7NYeoX0/GuRd9TMypN8jI4yJLGnHSDSmzVq3MNs4 Q1WiUwEzmZHcul79+ajScdPZqWTHU/XGTjFBFRHr8UqJbHcqMrvO7xo7hOneyZTbltbCmfjy2fKi KlbyiJDSN7m5AR32A6M8o6hiWUKUryQS/cEolyL5XBXLzalgNqeUMld2c4N9T1fyZpCbGZIbgLmE TfBrxmyPZHKhivDKvC8Rax2hdPuZhtRPCL+mZMGYBK5ZK1E8v0Cu9ZeC1vVFdwtfb24HyGVbR9x2 nuO1QajS4OXbud8rYvlRoWxFOCIDBd7XXcVwc2yuBtRcluGlIRfccZgC0PpvMCL4lAuPjHSFPpJ+ TR33/q8qfrt4oYq+yjgEB1/oINfihi5IXULxkcYyWN/3F7eRODjkdalVnCvONNP3cnbPHQ/DFlaC VhRkwivsx1P0wrRXP9mgxcShqtlzpekbHTvnLMpOMWzVJ/63jRK0VmV70AQ7ipXXusU8ibdL1pFa xWyANYiLbf9r6AVPv8pOz1W29i/TKYIJEkTYoUPP4OQp8XVUguZgvnVGGiULfmXcgmuEXy9VThYM RnH4EDFhmcMpc6uY3ZamtFZ4HTsutfaUdoT/QRLDjGy2W0++EW/Q/OosaKhTzAbFfM0ejLHIcvA0 Al1vzIPCCIcMHUCoVi4SuYsrJ7JqYVHZWz2zXURoV2H/tDCdkQuPfHPHAxgcMmJogZ84E/zqLLOK sAHDVIReflLYt/+b6S/1rcLmqtATMsLEKtlRXOHkVnDQqIq2NfYNczxUnLeylXeboIoZ9znwvodT rN2ALv2RKsY4aFo52m6t9H4h6ww3pVW5Aqpo/Hjc2gitxMqaoih1rIizfidhC6hiu+X8Zyq8WvNu wXV6UoiqqFc3zgJLIJeekYLY3FbqMjkNW2DVbetpKVOy4HV3KXWxwrJWfQ59nZEFg6dY+YJMrfJx 2IKq2HKgY8MBh+ERHN/3hRZOtYds4P9oY6FmGcKmB8O0IkagloQtqIoFpxUJ75V54JWtlR6OaqUV yGqNJsipe0dAmmKzwAD9CQ6aqmLBenqTGvY6sGbBmxYskC64+theTnzVxOoAIoHtgYinYQuoYuep 9OQZEwtkzb8v1IkPqqg9PAaVx2YPxotlk62cNY0twq3goFEVh1jeWR9X9vsIccEOqCIyvYIqrrGi zZlVjHHQtFyvDgvZb833UYerIiUX7cF+TlVRQhbHJILm8Q5u0CNa39ce7OewKBqqYoTWaYqqaIFz CXoh/PUWhwKfPiVWcSpMPAM50+cvXU7+20EicyzligSqyF/r+IbIGAo4DhpV8U3oVIzy2N8PfsCw 3pdaOALr2PT1RBV/qvhopooxDhr3bbr8r63Bfla2V+A21EovoQde4KSSLxfuBCQwpprFZeXzSnP0 r77aQFkfQBVDUMWoi1DxiYdVguiLWlklLyrHQdMNWgDLW7Oho/q+VCdepr9AQLX3iFy+ayGjO1P8 ar4Mt4KDRl/Rz+vt5X2/mAUnqD0MrKg/3FizvpdHqlrkjgBV9K75ioWV9lowOtZMqYN3HxRQFa3Z 5qlXdmCDNnDTKyjz7+TCV3TexI41KltzJYJ9bD8GVRyFy42zNJuMlFaHv1o94dJXXH4z27Csfnam dlDpQE26lee/fKOPtLoQGHdKzpNXPz2ko75ixm2/mRSJ3EUic3rHrRp6WtfbWiMJZG0O0Dc4cRZB T2rWTnwt1Gsoq94uggrWrOdwsbGnMMjA/y6I1KnISyfhDg1b3jLu+JcZDrMzrVtRnIVp7YLic3vp QkcP3xYz9NVz9DWqIrxsyO8wVGbqxJqHoIrLCQKqv/RhdiIBrCIMdnGDYctmppIaBekW80Ij17R6 m52O3LIQyVhrA88dKEvUhSq6c0M29ytkjI3AFQcvrLz+RFHFsC/jYQdxg5JT+XymipKsK5GkbyO5 0bTWKoQAsGD7fKNZKu7gTxWIemjPnXgZtmwiFavguU0Ko845vqZQEt21CuJT5gqIiBvnMTsekOzg Z65iRwzQxsv7bZ3yBYtmUMFjK5E9+mBfCI/2lbpk7iOp41R2QjlXssHfMzYwyEjeNIt17NBAdqtT TUSrCAOUOjsBB2lAUGUvkIe3WcrtxFoJZ0cm5jYi4kVFUa0xg5BobmDHewhX2l6GLcjccPFsDCt4 BxbEmjcB0zjFQcfnpljBeDMLsFoNm00xqZBIjrPvmQMJL2d8JMTMgt+VZ58k4qFM7yGpk5wrMqZe mRGLCdJmtrWSYxuJJxokTsYonOKgCfPxWd4b4hxnLfKkJIlJICmLaZytSXDQPAVD+W9JQ1EcpDfj lbr5Fx6jl49x0Ay0TJ+r4eys4hwSodWL+elNXDwxwUHH6kxFlRrK1trJjHMYz49YfUUiC4cEQIKD lhlRFat77CrZ9kI+m53j3MsN4aAZjZKYoQSwst4twRvOIcrsrBBnDFQgySwcZ1swM8A+pSM5OCZN GAxaZBhoKXMAQx+yLYhCpj/4WamDrHacj1dMOH/Z79NsSywrw1rHlLSsIxWfsIsMMeb1JNsi4s9R R5KJ+YIzNHYlR3TDp9mWRFYRdn+YHZFjqOmfZC5rUhw55oMmAqXk5YOkNOLHUHEqIqt9K5xnW7AC bkxJDJYb7J/IF4SLyBeGy3qLOOg4xS6ytNTV6yknOOhDmp/QfD01kzxtQ4SLDf3TBU1ofBkgZhVn uTWWn4h3Z/h9iS3mxpZIvMbEcYej7z/DFh9fnGEDPOIQProbcwUHzWYENJ4N9kTWgyZcwUFTzlxq Yg+yEvkCj3uJg+azE2ekTih7ydEjbxMHzZhsP+BvvuahYJkIWfwTkKlMyXHJx7QE50IQxqb7+6sg 845/cEBM6CAJ+S1JE1n/4C4Xn1fhttvVW26cu1v+5ys9V3qyy2IfKdT1+y0fA5quysosjCx8JOvf PJF88MSrXT8i1ZOvy0qYrOT3Zf3wGuMt3VdMW9rSlra0pS1taUtb2tKWtrSlLW1pS1va0pa2tKXt /9b+BwaF4DEME7y1AAAAAElFTkSuQmCC ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAooAAAK9CAMAAACU1b2rAAAA7VBMVEX////09vj0+/3b5Oz8/v/9 /f36+vrc5e3///7+///Y4utLSEbx8e/s8vfr6uk3SF///vNAPjw1MTDn+//j7POdmpnj4uH++uVt aWnT09OAh5vV9P1BUWa5wMhxeZCMl6iTjo/56tLW2t7DzNX86b6Kfoj/+tSmssCgvNqepa+rkYSI ncBhbYCbfnt+dHrvw5N1iK/72qq00umHqtXH4PJPXnLXsY7Cn4fq2sTB6/2r2fvnza+rhG7DlHK3 s7DVvaOdyfDNxr+5qZqJueqPc2fcqXdqlsokHiRdMSFgWleJUSwkLlY/dLK4e0MtUovPTl25AAAg AElEQVR42uyci1caOxPA4zZZEkVYd5EVKSoIaH3xFEHlJe+H/P9/zp2ZLA9b216/nu9Y7slwbu+S x0za/TGT2WTDmBEjRowYMWLEiBEjRowY+UtEKikEl4Irqcy/xnbfxje3MCiR/6a3YkKIAAUmN7rr S6z9QT37vuT3Y8QuJD/0k2QDRyulAfE/C6hk8s+UICjy526MfRAd7PUublARzlhOPGZg3GYRyu9W +YYPBO/i1M+tf+UVgQHoDTqgxz7jQRkqZIpY9BMhv7vLNwgBvQ7Uiw8wg13qqW4qBTbA4vd1aCDb Pyg+7PW4QXGbUeSl8dyTAUYQ7ICS7HSRJLikpMiomAou8FbrmIiFCAb0Zjb3X2cdZguKxzI7nlsU NAUr7PVK46En+NIVCiAd6j0nnYoxTiXBDE8uQ7BWL3Vz9M1KsPR0BOLeIPakZRW0bfkEIxgcHO2N FlWw8W4YN7JtKEL8o4mc3055/mu0wRAsaEK3n2Z+cJMJFYWxkilCcahRfAQUqQ1HFEEPl9xpfm0U xkMLUUS0kB/O/Pa55QyQXWykNDrkheXSlpIUv6WO8RJQjH5rtZ7deZImmizQBA2grlWWTykv3aqi Mo5/BcPiNk4KN1DEcJvYtYQS4RjPv84ubbi3fiLjMbzHaahCXoAD7sQzHvGjUdyxCEXu1xMhABBQ BD2Y0eZf516AIjTlLJ34okB9ZJ/7zVllhwsWTmQsqZlLZ6x6Zh94VU48EUOQ4zHUo73iwlsCL6kW BAcbDyknsq9ghpDZx18G9WXiD2e5Rj7XKwJjhYkbLSZZGggajEezHmdPfde9eWQs/7znHtxfAlTA Uvr5wL0pIw4bXrHDnqauG732WHa8mLrRiiVYaW/IlihK4dQmVJ+eFq0CqB96TnvqHpxUaQboDL4e gdqq5Kj+66XF8v176NCDnwuimLTByYIV/2HP/VqxGMv23YObyZA/4X/9Axo59b2/NHPGrfaKcPdK 49nxdDTkOFcsTWcnVSsPf966MHMcuDeH/b0KTCQFcDe6wUKmUVy0QKaI4tHJ4XTUA684uj8bgwMD uh5XKApVGEfPoJ7hXDE7dW/OLTBy3B/NPcpMXkf6i98c3R+OZx2Yso5uzu460FUCiuVEojZeNNhg /PUMa6H9ydl4NOeF8ZyX+mi6YkHhDZoO5r5GttIrglPE+Zs/XTQobXldNCQvuENLvrodDI1S7Fg4 4aMObOBCvkoojlxIKEZRmPoFysArJiX0ZBif1ygKDK95iLTZKaQtYEuCkoqO7YTirMfwC1rHXl4e L3AaQGmL64KvLHMorMJvZm7lxwtPIobaAJlOIuUMTQtzZ7fYK6Jfup9MxhoGgk8BMAp47DmDUfTo GOOztAGT6GQyGQ0tjeK820q10Sv67du7IxdRnOvMujQdshWKAJEL3dxZg1BsAngO2uADt8M1io8S reJ4BLRJ5qEdMKa9YvQU3R4Hjz1D4wsLrFAyTigGppMwXeCYwRsUt9YrCtuGqdgrsjI5aaxQZDA5 4wJQZH5tcuDOECobQiSieNTj7E0G7Tfd6NHRiFC0EEU5iD46Cv2bjeo1ikcnycArEoplRLG3RJFp FKHDEkWdK1Pagr4wyTSKR0VEkauSRtEh0xpFy6D4X/CKEDRtYfM0oRhtaEwwFksAdecJivGxYwE7 6Id7mxk0AFwNAjR5xaH/CmnvOkCT2wPm2TJAM4lpCFsH6McgQANxqIdQXAZoMO1jCIcA3dBagEIW eEWM2hz70XOkkkFxa73i4lsLPlWgZnHx0h96gVcsxiADiV68wNQvPb2/6D6MKWCCe5tdd59vquxN Bo0oluvPFKBnRcxjshCfEcX7C1S/C1wvUi/9itIousVdCw0+jCkBYg5kK/QFsqJidwrp+wpFqTNo 9IFJ2XTnqRdwyYDudWsKacsTohjtxJtQi6NG0yZt2UKvaAOKI5IhZLxwOatYlDjUxqOeBXkBlMA0 sImNFo+02KFKuPYx1xl0YbRcbZHQ292jAD2D1kNrcNChmaVW3+MQwUGZzqBhHjkaemRw8UhPqgHF PfwiMXOG7vRQaOkVMRNCK5B/51+hNtpRqGEUdXUGXdOmMX6DCQjS5mHOFrKonHgmgR9PMSfePQ9Z 8D/6Ax8aO5HueQxcjBNJpDL7+LwOuQnjF0UoOvEYxunIrkW94/EYPpqOdzOW9OP4TBzVo/5AfYzU c+VEMqDXSaN62jWB04M6fsEH7eegTmE7fFZNSkL4GDOMVp06DUkxP5FpQywOx2MK9YSwDQtj3+9X qo1sB4uBMB5sswo2QhAfVIGLIYqeZ0ta0MBCbKfnmlLrEIyTJ8K1Q9TAOS7M0UI1LdEwEbRVamkW FHGlaHsXCzJoGoNQS1sbo2S4zEjGUScO7ek0WYc4Lm0oUGQmWFvES+MVt9ErLvcCyiWV+OyQFqNp nqZpRBG0QMc0i0QjgqazFyk2GgmuW+h9hEv11IiUkeJN9WyNolqrp2FoDvW22GAIug8EdIrjMHsN CmnUutKQuP1JjPxhb6rQJfJNjXh3D9myLdOO8V0P/JMuQJu9w5c25C/nerRrhwknHInsWysfvjZt ODTyp8+VPvizMeAZ+X/NWT+0t2s1mzD/dEaMGDFixIgRI0aMGDFixIgRI0aMGDFixIiRTxa52pWg Ny/86kCut6c9bVzrN/V/f7zJhwzowx7EO6t7Ur94/6bt+iix4Agpqc+U2qiRq1Om3rQ38veQqDdL 6/uLi8H/2x1Ccn5z5tPHDeidPu8d2vSRJb/3t29IaU41+btIVGJnZ8fWG/78DB0CsdoZprS71AvE tIUros9moB2FfojrYpRwyFr3eH9NGU9bimcsvf3xZwbCEUtvJsOjoOKZTAz3jm+2pwsnbtHO3cAm fPDUicC7w3VM4bkR1FQ58f3giBUsUToOYCmMnrY66n2V0hwq8ckkMjsWCoVidExX/TaXO61KG9+2 ksLWH45R1dbbWm2nduHhy1joTkTh2tNuDl98al946fN9Rn1YoEJ+7+GyV7nc8a8NtL8lAwNCle5y udyFJ4JWto3FNnxV2UNoJeuHjaCtbfsPlxa1w63ptQpX6cMynill8/xVmdNZO/5DB7hWNEbuv5R5 HX54Yj0W4yI/l0U7tvsFBVj0n4uJbovO61rvhQ5mkZL2UQv5cO3RFlcAR9SKnggCvGCRuFXCw0LQ uSml1qzbSxHMaRbPwYDeA6tWexXl2gBnteOkNqCEKpycJ9p3neC7/uDecHzHwIKLeq6Bu3Zp2ug8 VyypX3NQ/sPQ4tnbS2bjm2T52zJxzvznHu4zJ0+ILz6wZk8fBISVhsJPJlGy2JcQypeQzdL9HtxZ wdIPdxee/3KYO+1e5S4tp5bLXQJ0HLzmWf/ac9q3x1XyikX0ioq+s6dUuDkZ7vsvudMGg6IceLe3 5ygqzQJ6X1Dr+e3Ds+PUS64CCtH3Sao4uztN+i9310k63KToAb5Dlr46CdqXLa063UrmH3JnuQaM FQufYGQVK311V8F3s/zakPH0VQcUHV9a+duz3GmSLVGkv9+157eq2X/YO/f+RHUmjgcrGFakoOWm jxRRrFeq1fWu1db2fPzjvP+388wEoXa322P39Ha2mXVtVUiwfPnNJCSTbWedruGx4FuwJZ8q+LGi eJJBGFEWtZFdvDgDP1ZcbQf1hVtedJo34Uybl1GaJLmy6G0AxcvgYgz6RxiKAOicvb7rlUadRnrk XizuU/2ggY4W2qhEKDcvIqsCvFBBhkA5N+HaWnTKCxsqWItQwRZ9p7Usbra9wqhYXrQLBFEsocJZ y951sLaWsH2v1A8uNs1SP5yO3HLLnVY25XFxWuuewyGD6K66a3TQdx3DaEEVm/LIHda3LnyYRtW/ xYY+fL9Nd2DBY9EbWovzVbjWRr3NDTh4Hi1+IIpCJlZF9NCbmy6c12BN7nrqopG6dEsanD7Lud4O wNn1g7W2bBeW7sX4+0yOUBTT2qhTHndml+clcNCwebrvTvv2wMG5gAQcd+d0by546MlN1x3Og6nV amutQaHvDulykLL8zRZnTVe6a/D6Kl4E7jBCES6MQW3bvt7eaxAb9INZ3247Z3ItGC4HBArSVAcq 7xeBKdgOgMS5p4Bis9kKG0R1rm2/3l2n70BfURWx0cyuqJ7aaqShamCa3t1ry07VL1BO4kerYoKi TMGtDWrBjIx6JqLI2Kp0z42QoejNkIelaxjNYYKiNXabRrM0Oi9dIhDg8sKpNveC4pT13RyoIkvi WRm3EcVxW2kBCEVEsdIqGt0ExXNzUWwaF2d7FDVE8dwwGgzF4hWdGwFeLoAi6PF0Hpy3XEQRYsVa iNsBitbdfSpV665BLG86PsaK6OpRFSlmlugWb4xGnaEIF0MJ6E9ZN17YLnAH/eGxIqNRpJXmEGgY 1Lvg6tpWN0YRtLGyQBTh5FqginfgFv1U5KAx2c4IXjupCEW6vEctrVRTky1rIxCazCWEIA3aRPXF /WQ7gzqsBEVQJotVUFncgpMtLHulCrZtMVYUJ9t1BXzvZGgxFIfQTK9t17Vgurynl+4U5K4fzuBR XwzqEC5OSjKLFaEF3bqCz2shoDhIA5uRKmL6HoggJt/qXaaKte0M6obi8WtQnuHkwwxUS4pAxBZ0 ZWHb9nlJu97aLsASO+jKohPaQAqcYTvctQt12AxCOULvdrA9YLPE13fFUg3ivNrW7kDwt8UPkmZL PKG03sIdphCTwnN90YYKEEULK7jH/PJQAexX69p2g6GIFWA7ybbdK/DpoGFXfVY00Iu/dODZ3Xbg MziyQeoSDvwKmy1wQcioittO97tf34Z2Z4aE/v0ddgG/jscIgKZGu9s0HIsLIg0fNFiqZm4fJ4vg ok/APWOnhmL6GYHIIuZuEBVB1nJpqgjw9okqRGkaTOxIVkwzh4lqNdU0zbNU9Jptewb/YV/85FtO jruTk3n/VFH9DKZ4YLknsAIF9s7JWEHupwog5oMK1BT2TftYDVSipCRWNPwiqqYaPxMLDzGtQfEp 1k+OWZHZkWdUSVRU84ylkFTwgHPw/cyMwL4fVMaORYRvfpbiseJHsyhKgsBu2e2TLMj733DO8V7T CMvJwHoLsWuPyHGPYyx4MhET4KKOO8oKeqK6/a2VuJR9GVEfOOszpMm0ZpZPgu4rTKY8R7cXZTl5 sEOKs1nE+yVHTqKO0YfMF/LDzXIadZvGu3McPprF+PQliRmSqZ2PJE1+9O7BBNDkTuDjXZ668/do h2creFBUmf50QPKThygflCNH0IoPxScH/Oj7yQel8LstHx0uRljtWZEPfjwQlIzFoY/wJY/fPtj4 FwkiiPhkBQ8MHOjwE7sdbhMfxaP6fhzFk8ik/FxxMuGz+z+NMHLXxI0bN26Hssj/BNzepAXyQudM o7HS/O/H7XV0LSaKvnS3aMgoHzrK7dVIjIh6kTSyrSXV9M2oC5uzyO1fO2YqEoEhJZLjRzqx3Uxj l/8rn/UckbPI7RU0kUiOlwWkdk3zBT4aSNzs8rswDHe63pR4vMjt35IIktjUdRuRyu82x4ob8Es2 WdRDwrTR4MvXcvsnLxqlRY+St4vRHF/Mgv4wgUQ0QA9VQkEb9axzbNEiUW0QQyJJEkEoHb4MFLdn SIxu7qZJfJt3P9Tg4E4Vull9BxxJkigSQ98pRxYtESPvCUTC/hyJrHSb8BH13J5VxQqOdadEc/wU ESsOzvGdOIXkxqpIlCC/IhL25IC+hfrqWFGUwrwDXjpqegvZncllkdsPDeKDATOUzj0PJxxbo8Br pOctr12i1543SFgUiZ+1VRboYdi4ydrikSiaNtJH94FjkC1zFLk9UkH60E+IQ5IXt5PtmpJJdzYq lsbtSrdR7zYm4TCeSAz0/eURaU+wKO2y0pEo+jtEOEbRy644ityeiRWtZWPSmhEQx1LfqN406LhR Kw4tNs88QdEAFOPAcacfi+KPqrjhKHI79M4KOltViYctk1Fn65YAxQBRHDe0J1DMH6iicKwqwrY/ xIoq78zh9iBVwISCLREhdtD11sWmtaZirIo/ohjFiuZBrBgep23Qgm7qgbJvQdOmHvIW9BcJAf8x 59vPjRdEEacVLweEoCp6w/FAazXqwVW9O0tyCxLB+50WNAJv64aA6YwIKfN+xa/ULj7mztpPzRZt FIbF4bytLMOwnZrjC3yrl7Sg0UNnMc4TsV/R023h2KtDJE5WDzfgz30vq6/43ZavASKVys7vnGpK LKeaoZVvaWtTzRFtUs2k8a2zg3lrMlnpWcMXibAJ9ax/fNnA4i6Pk413enbFxyx+DYO47Pt39eWj W/cz62SZZS5I5m1Gz4mOEmmV1QGp3S5vO0ePymYjc9RVNq/rumHyUWJfRBVF6p6emr8x0DoaZc1W +mYrfItiGhNfxwt3xz5dMkMkyl69BHe2I7H1bFbn4xW/DInE6Zx2lN872Q8LcDN4fp4rSaP7ydls fkPEF46d3aMoEU7il/HP/zttSm91tnG8F0PReWl/zCGK3L6GKhZPT523y4VBH1B88UXCUfxKJhIT /LNK3i5TFUeR25Eolt1OU3jD081R5Hakf/arVZXIHEVuH8VgvGqZBCgKJMrW9iZTjjmK3I4jUnGq vrRfcu5NzvmnQpG+yDgf74EggCcoqiJRv1z2RaIpLCeqJpBXT6HGVZHb8zGibI1dz61WumHgZuo3 3gWu2cDW9/pzUYTwQ5AkISUJRz3xrvX3QvGmMQ/WNa89djN3PWd7m6Z9t/T6qzJ8KhTFby8wrsfv FCSKgjz3pmq5umwXxo3U8jZtLW9p+tUjpM+FYrQWzFF2wlF8RxfdLvjVTdBIXYaeOyV91y8XXj3f 7n8WRa6K70SiLOLCO5pTHeGA1/MVLsJzWwtKr75CyH8SxROO4juymKbXxZJSdRbtAi7wdXfft89b 4eu3Wz4bitESls8bg5Gj+G7+ub4YyH71OryStXHRCNaVldH9/uejiJSdZZ5/nHBVfEcUKbE2Q9Gp XpdzNG1dG40ULou8Sf3ZnTmoiidnuVxOgH+/fORyqJ0cxXczkRKlWv2WpmwgNuikJKXxtz/dQZ8J kUm/eGY/uIN+194cSTbLZVMWoQkjAYbotV+fxM+G4kkmJzy2XPJ0+CZXxXd10aLp/J+9K1FOHAei ssd2pJRju4oMECOMuS+ThCsQSDaZHFO1//9DK/ngNJBssJyjexkttEcyYz1eS+qWuqKjMOFXUvf5 dFBc4k3m/Kcg/g7zt7KiLaH4C6AozkCjbMlp60kfvBAHxWBTFh8T+GeEav4AlecxWHWBJw5F7U81 I+cemiNNm7cHsqSViwUNoJjGHBo1TbOUeFrNGCgGZ4P6RZBuFPEBKx8hKCu9nyQUZf6n5rbk3MTu XBeunN/1mZa9c2ZWeBGgKE5Y/0slkxaRhoRDkWNxWixgPH1iE3eLUZLCp+8P7RFWxECRg025sW+V Wn1Q7j1OB/r9UNUfeo9WRJkARZGkWPFMr5L4aTSxrEjKjIFQ323zjPf2U32mIOvV7tir4RgJQ1Gu 9ZonZ/6BkANmpt2ZJpc7CygCKwqFYpHZZzUlA03m7gzflDI33cz9UGYv1OjNyneP4qCo3Fz/+T1Q H+r564JU7ji3kjwNoAgGWvhiTtukzeggTsEGWkW1zsyadDNXpfP7lvLKoFju3ebuH7EqCIpyuTfs 2wNFKr88y7JmTIZqBEUw0KLnz4ZjegJOi3sDFOU0oDh9yef/7Z4rV9cFbfLMx4qrUARWFGmfL6hp S6lBcZoyFCVJz3BWZINFWZq/5K/XDTSwokD7zJdy2snb5z1QRA924bWbee3qd8+alrt7rPVmAqG4 IrKkL94BKwoWBem2Oa4mvpSzz0CjxiTvjEitxyYOfbvAqGm4Go2RoONPlg7JOTj+xA0VK2PTMQQc LLzD8cePviNIUXjUuIJJbSAjsr6bIbF4xbMFAcrSKizlpf4MwiGE2WfsL+UIsM/xUOTuPj8hoLpI EYjDjIFJQ5GHK56FsWBhuXwbfj6HIDGBQ0WpZI6LAuzznnCIIAojKHlMEPsfEcGKfhD36a9l+etk O4wbWFGYfeYHiGVF5KD4dFHcv964uQWgKMg+V03TFpINBXb8gewWgpHWNmlbhH2GfdAg+/vE8HxX C7AisGLa9rlCTUcVkq0MWBFkb5c0TVoSYp+BFUH2donucFfLh1kRq3yJmi8MKv4iIQnzthBgRZA3 2ucsNT0JfxSK2E/WsngF2a18VXJQ9JEfQD7cFeOXXK0dypoJrPj5SBEVTWp/2NXCerZ8Hmzur8rI mhbPCbGm1cz6caFHhuJiWwzPGs0/BSUJt8ggAqz4paAo2fT9rpaNzKcccGU/lCY3cd2WPHfd0ki9 cd3uOhaPC0VMVDw9lRn6i+w20+IIEf4bYCyJy/+MZAys+NWGimPqGR8cKnJIvv7loTTT3uzKPp10 G70We9XqI5IcFImqNNyBYjH0d+V+/bc7sx7qbqmASc116wMluPPqr2ateDcr+kdyb7cT6fdefK8e x+hJzEX/+P41fXARoQP6jRbX9cuLYX6ArYv79ej9el5WTepw+/y2myzeSDpPGh4lecGo9tKSsYLn bqH/u/rUUietmj3K9QZrETZHhSI/i+/muoBq9UGtfvv6NzcZNjrPNbeF8E2JBz/upUVgxU9HilqJ jt/tamGdrPOgMiNMTcmw+eq5dgHheZ1DcdKykociJ8Ve60zpXxcavcH9s3XTbXRmjacWsiZN+YqP DcJ/ooH8nw770rwweCuG+j5WZJUQNtS1xqSgsUiPV/W6Fl5c0a9VUv1KOt6tX2ssvImucj2O9Dy9 u3+TpT68iIge6VcrkaAxVV9W4sclSWGlTX1QiRFQoGeFtNJYqI8q+ReRr19tTDugX1wkhke9ynYl HFtpoZeQKjG9FqYxxyR315rePWM1YEUhUMScFOft2769BsUOh2I3swVF/tMJoCi9H4onAUpw2Ji+ MAlxEF3eZBuKxhJy2P9S8VA0tiCKDY3r1Y3GuB5F+lUoLhtbRRWJbqKtQzSCYtgY2Q/FGH0ERbIb ivoufYTTC2o6/teT1ir5kNO2G1tA0dfjha3M3T1a988Izeu3fXc0GeY6rUZ90KjPEhsrYk6Kj307 ForNVShiNSpUv8BB8U4DTXa1w9No+zGXOy7urbRLjyO9unWTWP16Jb54sNkY3nETEqMna5X8T2hR xOjDSmpYILT698Niv573R5vSIGp2Xb/r72P2b/VVOCgiA02uLvPXhXlXn+QvhzLfqsRm0Jf5BGfQ rBv7L97lv0M2UORjxaHljxUbnUc2VuS7ZGCs+MWGig49iqsFWdnKGdZPlNzFqcw+XJwrvooktq7o G8vzK2dg3eTzQ7n2knduLfYb6BpPrcYd3ygT3Tpmnvp/Z9A7G9ujJzv0O2fQGxfRDv2OmTKn781K YZb4WD3epz8wGUZHnEETg1LP59uNr/3GafoKMILHEzwh7u4jhOOGkAR90OxGlqQiyziX2cghe8as g5GVG/8MEPuggLfli7laKHe1HMWD6AtZ/EBx6PtLDIrByWMkuEfwo+fwJ9wZHlEAeFu+DBRV39Vy jK1+ISRCsgzxsXls7bHDIcIdMdFPgIS/BvKGBJHAip/N6zemY11cWs9kInPICu5xhE6CjglFYMVk hVmzKqWOkPjtJKH4fy0CsOJnGiqWKG0K2Ir/5aEIrJj4UJHZ56zAhwysCLKjNyqUegLtM7AiyK7e aFPaBigCK6aORIw8SisinzGwIkh8ZxiUjokKUARWTJ0UmzwUQkUARWDFdEVFDqVVhIEVgRXTZkXu apFEIhFYESSuK1RUHFNH7BMGVgSJtc82pUUErAismDorqh6lBrAisGL69vliTD0MUARWTN8+lyht AxSBFT8BK/quFrECrAgSg8Qss8+iHzCwIkgMFJtjWlIBisCKaUNRC1wtAEVgxdQnLYZHx7ro5wus CLJtn4tjamsARWDFtEULXC0ARWDF1FlRClwtAEVgxbSHitUxdSThjxdYEWSrZ0vUbKoARWDF9Gct jmlWhNtnYEWQLftc8aini3+6wIogmx3bHpttDaAIrJi2fda4fb5AAEVgxdRHilnPHBspPFxgRZCN fi2OzZIEUARWTN8+l6hZRABFYMXU7bPumDQrdC8+sCJI7FJOdWzauvhVRWBFkE373KZmMw37HAdF PxGNGiRxVncmcQZW/I5IVLDG7HNF5Fl2e6Hopxo5lMQZWPF7DhUvPNMxjj5U5HmuAmpTAp7zs9cT dCiFEOYpzM+RoqLyn5GCgRV/0lJOk/quluM+2yAtwOIVJm3xqe6AgbZ4IvMCVmod146SOAMr/gxW tE2zemz7zHq2fMrxmPtTzSBrWjwhPGX9eoq/GCiyr1PmSZwf/STO97sS8wErfkskVjzT+/hSzjLJ XDj5aHRmrPHcxHWbMue5kXXjugfTTbIWyjFJnIEVf4R9Dl0t+GMduUx6yIWZ4qvrDBslTnu3V/bp pNvotdirVh+RN0FxM4kzsOKPYMWSaRaPbJ8ZoBp3j7pMcJCa/KmlvjE1+SoUmxlgxR+FRMMxx5UP 2meeJJ3b+GwUU4HR1fX0dwHheZ1DcdKy3gpFPlZ85FDcm8QZWPH7SeRq+Rgr8lzMPJxCCmMqMGGk WKsX1JAV3w5FPoN+eMlfnzy1yr28M1AwsOIPQaKK2qbZPMJKTpDgdIGnfv7yMj9kY8X6bd89nQxz nVajPmjUZwfGirwdK1vJ8CTOxsWJgj7nYg6w4rGFqEi3zXH14/Pn9WkLozYj+3B5O+/qk7w3lOeM 50b45jJ/cAbN6/J1SFVTwuzmCFjxhwwVk3G18JZVnejnipX9JSPLqJwpjO1Oz8iBdUW0mcQZvC0/ BIoaappm++ihEEHC+iBLuOq7Wdh/xPcuE7Qfiv6wYZFifPcSFLDiN4Mi0komLZGK7xEAACAASURB VCYTCoEXieoXXr/NDOEQrwiymD9zV0slyajZgNrwSuL67wBFYMXjD+iK1Cyl91iBFUGixx8s5WgA RWDFtO2z4ZjeRRq7WoAVQdahGLpaAIrAiunaZxws5aRmn4EVQSJS/I+9K2FOm2fCsrEcKUOMZzhj DDaHgRAg3EchR9P0nen//0OfVuYwaQCH2jHxJ2dGTVeRjOyHZ1fH7gaz1SJYUVz/vpQz4VstghUF K0a+lJNKWREiUbCiuNaWomSlJiX2WgUUBStGrJ9zrleLYEXBilHr51oqZUSJRMGK4nL1s3qXMptR 6mfBiuJy9fN6qyU2rEgoxiqPQqFCQIr1r274HRWfSHUtWDFK/Vw1U2WVKHGB4iYKBXZLGCIrT4bf EawYORQRaqbMKLdagmdFRZ8/XSko/xOiUMyfxpTqy9IVo0b4j0wEK16qqRj1VkvQUMSKPrWzxlif Wfa9PHCy9g/92bGtBaEDO+vsnAd3bjh7xadZcX0q+H0/7hHND+SbykONjsnJgZsclZMDN/dUoqON NnK6raR78vcFOVx5RI5Rjuln8Dr11Zk/OYkWivmnYaP7UneGdWfx+7/8bNSA8DstHn7noEu1YMXo 9XMpZVrR6uegbUU2Xak7PwZGsdEdPv7Sp/eNbfidXaAJhjnw1nb9ttVtgT8Fxask2KIS/bszLscg px/dhMk3TuOqL/m6M3LgJu8b7cmJR76+Cd7Kyd7Nt41Ust8ZhUq614iAnDdCHrn6Tg6NVMILxDvD u0oQrQsmUpNWagJLOarqrSTbRqr0sRzv/73b2VoeKStyXmyP0u+g+D78DntoEMgiCW6OGhyQy8Gr zKmfgWLiKgfDzrEXKHk7I9AZIiBXc2ADeeX8Jq5cAnkS5NpOjrmcNyK7znBOBTnxyrWNXNUwyIlH TnhnGu8MKpNuJeKVqqbuy+m6M401cuVQaLxyI+eNkp5G7K2vO9s0gi/mezkrWCNXvu5M8srXjZg8 mZuYnVtVWVduOsNuZ9tGSd4IbpLck2teOd58gkihSNm0ZdYvoo+guMeKBJphdcMl/CukflJBS2CS ABngXWfYLTZy8k7Ob+JptHfzQ418ycme/MNKRD+UU08jr5x8KMeunGxvgrZy5JW7jdaF6lYekZNa yizzN8ArT3XmlW8r/5JHCkVm/j7wEKHOAmzFkc5txUb7BaFj4XeErRi1qajepSZ3kW61BD9taaz+ FAoveFoojJT6W6G80JdvhXvttdVYFcq7cHoBzqBRADPokzNr5Abr/dxMGZ2S0w/kvie9B+TnNGL6 vWO6Xqd+/t7vNJ1EPG2RksmkTHUtIyOS1CRKcVKTG09jZlDcKGJd8UJXFaugnzGJESu6X4t13HnX 7xoiUlCCeUDvExGqxG5LVPoZN/lSDooRFNdRdtx/dsUu/E6AUBSsGBwUpbIZ9VYLCu1kDqHe8lhE MsGK0etnzTQ7UtT6OW7nFT0RgoiHoc8wov+vtlpM04h4qwXF7rwi3YQGQm7wNHH5WcoxzEkJCVYM 2FYkVJcU2D9g83U1qWmSwib12o16IHauuMBUnJgdDSlIQDFAViSY5mf3aaQ/29aQzLu23ZLzr459 n0FYQPGQfq6Z7laLgGKArMiguGz3i6ju1Kbl9NIZ5q7kRvs+dy0JVjz81C1z0oxeP8fNViREGTAo 5jOk7hQHTus2jRptq5ahAomHTcWOOckJKAY+g8YcigjlH0do/ub0RnJjVn5jIqGgD11V0+xcABJj x4ouFIk+66eJrilLu6hrNw17KKB40FS8M827yNe3YziDXkNxaaUR0a4Rg2K+mo4TFHmCb8Lzeyv8 d+Rm+T7TAmE9Mf18K1gxcFYEKJaLaPCn/9pMz7t33XumoI22MY4NFBn6CBQU5mjb0z343DV8d6sF XwAS48eKtFJKo/pTNtss6ktWEFp5tcYKic1uC0GVqsyM4Z9VmVA9l0BUn9fkc5FIUBO2Wi5AP8c0 OgQs1+L1QUH3MEZcptCMCuvdfppn+W4pkBgU5Z9tu5kmZy1RM1Ith77VQrxxGfZCNSAaY1Zk4+Xn 4tmlwJgxjByeQ0xYEfLSTsFnozx+Nor6M7OJB84L+995xEaINDEnUqhPh6zNCVhpI5uoDW5JSexZ cfOVh+Rd5P2Qv/nlTswe+nLdKdZXIxnVs62ldR4U2QPiWy3h6meCIC4DgC//XEsjff50rdD8z1Lm ZI6/b82K8V99wXQNxblTnBYca5GfQRLR8xQ0RpZpBpF2992sfC/zKdGnRtZYEJqfGfa9vLRtiNpg t31kPo0LK8YeiuPH0bzbqtutpX0mK2IyMU0t3CcJ+cWH2uqFoKWzeDAgH3TXZz5owYqXraA5FAdG emBcPf7Kt1sDZ9FwzjqEDV4tsNUSMCl6vcyRG6gBVbo/EFnaxUG2NmvhWatujPPd/bT3ghW/p62Y fyz0fpHlW8FgCroAWb6Vc0jR3WoJ9kFiNhdKeqAI3k75x5GskKXjQlGPFxR3rLh3aPv09d0RzPRd RkEkf3stIzV3y2z/ZK56c9ZiFYNixzSrISSABod8vLUVkf67z4zZLSvqghVjYi3C+1OQm8aWUnCq pOc+8dzEnOBwHuQWZezzPhhFWMaYdxcDbiu2W40usxXHcbMVmWnyiahPme/PilvvHbTnVHkOKTZN 00LBP5FdGAL+gRtvfwqdl4d7aVbotBRmVfSLZArT/rjNoBkUr303TFzFhEy9+b3PnHYQFZVNs4ZC 9gHaBGpQJQjVoECoBpkiPQlRG2K2rghQvIoUih6KQqf9vS8IzUnYagn/u7mLzrL58lAesJS+Q1Qs WPETGjoMdQTWGthsiG8w0m+y3Y1RaWIa+EuguHME9nxlYwLFC2JF2PdWITgdpGWAX8N7mf7WCHy/ QsM0S+grLZZthCn0t7ORYMV//9yKvmzfj1Hl1R7KZN62xt/Dp4tg3OFbLRdiUAhW/Pc3igbd1mM/ /Wg994aNbnPG5ofE13i94SuOLXkSpKjY/+VzhBjVJmb5ctbEBCv+OymiZ7s4sG7bLX31wgPuLj5N NJvj2PTAk5GuE9d+L78jVOEoxB0WUIwXKzZX/fTMeO398A9F2IRIatqNwgpNQljLKIf0eigjJKq7 1SKgGCtbcb4qtJTK61s/Pej7hiJGy65tv6gzx3ZG+rNtD+mBw9RhjBByqXXMjnQ5y6yCFQOYPzNQ QQjyRnuoACs6fqH4YA1zGX3Wul39arRbz+UiVr6OFVV0Z6YsVUAxTqwI7iYtqpLf/SJqdO/ABZv6 g6LRrMkEUt0sdElfZotE+TJWhKWcyeQWCSjGaF2RYWr+xFCUfxorjB9tY+xXQy57dq+lEPz7P5nq y95IwfSrWBEOFZaazQvSz4IVg1u7dR0L3d0W6mu8+YwCyWwaqxdEceXV+kpWJEi7reUuKdifYMUg UIhViNTAHQuxqirUJytWrjkUB+UiydfkSvcHCdVWpDymBESUgCRuqForaUiwYuxY0btu7Y9nQEE7 2V5L1h9HCqqsLNtKh8qK3AEUucm6mVVAq7WahIiAYoxY8R8WgZbZVhrpP8cMHPPX5piEaysSpM9L GWYX/BzLzL69a1Yv6vixYMXIkMiwSMnmKLbXWzMcViTgeefYVrECgSXkerfXG15U/BbBikEajZ/q mscBgxhgmAdPUMGMC5EVYXdnOax0Xx6cxdQoTo3SapQWUIzhDBpmLDwv6Scu6gHvMZ+A7QgTp1B4 1FYkzCR4zi4G2eH0Pj2zho+bVLQCisGzYuLkiwqHFQmPB8M1LA6BaDYjZCNIHLnWf3FohAB2CP1U WfV6I11AMUpWTIR1dNY9LC/lqtUkhtkpIaFAMcF+Mjc3mUM/J1iRH/GdZ4dLYzy1rhgUfwsohsSK jBYSRzqA6lD2oF0gJqu3NXbd5pIbv+wwWPFGOnbx8R+xFfOvkCf+AQJLjGf98aOwFUNjxUTm8Ku6 uQmJFQF0WKvWaqVa6X/snQtzokgQxwF5B9CL+IAIKMQgEWPWqHnHJPuo2u//ha57BhAVlOwldanK jrtezMacw/zm390zPY1DaWSZSof/SdzCY8jCk2PsAnMgbKmZLHuAxf1hy7LbvTwZPHTj0cnqB7lB 918U96O4zydKrVCBr3hopD5CFZE4EUEEBA3RoMoY+IZYSOPmGZR1qcHtdO4tWc0MtP4fUETOG+22 jtUkJL4dOBYeBFX+orhfFWtU3/TdP2atVBXVQ5qhE2/rPVEkILatp34YWC+vrdaMO20Nh2PkcU1j 6WgLyuC1NeeZs9cZlh+5L61dn022DEWOI89i7hmfzNq+HsqKkp7lF/3A+lRbLZ8XxXKqzFJVzL2J yw0X/c/7o0glj20HwctDPDb46TB8mvPf3PBpFJBm+QZJfMn0DTqYVKgQ6QfqnHuv7rxx3f0On/Nm ciemH9TEn1qn+m+oIunOfXTCslhknGNvWmH6+w6gmJ2lERgN5gpeQPkvivtR3KtvCYu1MhQ5Vu+8 hjqrrfrhyeC137cDJRnA90MxMaAssczBqj9imKk3F7HgnMrJgkYtdrTwfCE5+quQDqroY6Td0zsv 6tnkmdUev7Octrxs5uOPWq5q344qnk7iW854vHx1b79NovPxiVgJRYbW3MYE7jB861GC/Ln6vyjS y60eUkVueXHZFO+H4eRqcD5eXYwYPXOlDqNYoQINJStxEQNLh7AUUPzRjWf8t243fmao/2hF9V4v jtopjWkH8/I9tUHYEMWbH5dBMyff0i6Ka19RuxneiiCjg/PnqX0y9W4bdLIdRJHyyLB2vfe2e7Xk KqIoXwlFMlZ4aTsgat4te9/v90fiJoolqkit8RQUxpA6y3Gz3bzv3wlsdRRJ+e49JCbelsA6cUSs MIsnCQDFQdD8OW6eOc0pZnHjOqMW9khzQ4MUeEs7uJ5p3OlwBJ/48TuIYty/+C7rmXxLpaoIP8EN AMXBA0yzu9OJ1x83c6s5VVC04rprZEOeu387nYeFfiY51SqTsgNfDUViwR7GTmCyU9dx5plrrh72 FRFFGN3hs6h3ron54ir6irgMzJYnlCbqJhrhotcDFDH3VCAoCqKoTMcnDU75hhXc6NC2o3hBaLQd De9yK9C1zUy+B+cjDDoQxcerxvU4ke+DqsieDm9Z9mbSvWzeTOyLDMUtVSypPCkyYa+Op07TSP5g aRXcMsTS88rNeX/GfRCLnxpFtvMQ+iaSZanbBnqPrwhmL0FxxHGn/RHPVlZFsg48xLugKPu2VSIE bOEYIsoJRRF8RfXxqvnN85e/uMSaybwg+B6lcWEHmijQlfZspj1eztvw4vEKXUXr/EpeexKlqkjm 4wBR5AaTZ7yZ4Tf7Tq5uoBW87W69l92rhSb+ipoGM1DEil8F3gke33l0Z8zZZLxybz9oCeiTG+gH XJNlp93uxbNY2VdMDLTZWNknwspGR6pqBA2zf2m/TEb8rh+FTjvu6bGW3QMfcOE6FExE8XXE8J3r 7uVcgXDYTQqVILiYL80GNqGxvvAsXzXNzEBzpxPwLGccew0R9OChOz5JplIFVby4Y7kOYNhYDWfX WRd3VJHcwGarsYwf12OfSYtJyIPWSWc57A8dPA1rz4pO2CgCf9qfMR2fO5vcKV8NRWSnYUkdCDEH AUfiS66CKnIpisvLl/NxE+KWZvbtwygKSuf6Sr7evfcE4Qo+oRa4BEQ7kBk+v4Qt0PoOpJxYdrYF cxKRRs1xkcZ6PfYcv2ZmBhp/A0wxHqcZrwgbS9X7Imhu0LpF8/7cAB677owrNtA8Y24WjoBfC1NB B/ts+xnW2s9fTeP66n5yJS/tuV9YGUCmKEJfYCCYL4giq7XBXXwmApctdVRRxXvgz7i+8Ob8TWsm vGFdsQRFsi2HLqITA4e92PPhhSDn9u+YdfIhPCubbxWBOCN0Y4C43nOjwGf5bDsyIyK3k2IeQpHS y1GECc27uy14bIDR1SRlx8QmqT5uUIYwm6Jsj5RDhWU1XNdsLPuBysnFNzcmKDJTd/5R96j75Ab6 fPzqztmp7ZxfcRV9ReIsyjhGYJ6S4UoC66ooLjdRTEH0QwCxvogjg1mDmIt3yMIbU2TaKY1+5BJp hJBaEhn6wcTSXaEdFGt53c//+MYbSQ9J7iSGvLqURzDybJwPqOrOerv+5+UNhPGdJVr7iwvwCIsW eSiKCjzxH7VZ+LlVkbs5H450tgMCl/pRe1QxJxr4labru2JTVRXzdRqox2dFC+Ii4tlhBPEtAyKT k4DQQcejhtoNHd/kUBQLGvmYhaqI+6Hpg9XZjRck4QOXxiVBoAsyQL8UZAgu4H9LGgZRnlrLlsuH d8tfPFj774ysmUXOSYLiEMKWB9fZvh/aV1ni5hRGIAIniwcj6PzCIvlCzG0DcjnN2B+2rIZPw5Gy dt1JxowWeARE22FBa//k7stEGkVTV0ObUhHbYVADwUIXTs3le6BHV5MKUQSppJYWlc7MN3QBpcQX 1MFZANfGt4DBPIIA4WIRx65re6FvqimKP+PowZ0L98NbuWHsQfHsiZSQHNq3XzFsIc7UtkuVpOao xUli5c2skiQmCwwEk6N0NJLULcOx0azFXiAiiMwf3wZcAFpM3Uca0W2MvTAAhjZIXCMpgoNGF/4E 7GGSl1Qj5KqU2Vw8AjxCH1U/cJxUBrcQtG0vCgOI4cm1yFC8b/V/xLedx8umQKchX74LgznqH7b1 94coyimK75jekU8SK9z54/LpELXi1NkaTXYmL2tS8iBfqlVSZ5NjeDQGxgqb8A0f3XzgJvIFAJGs Lb6lIDEvrz8oLnGrqGxBZCdBDCoUiJqEGRBmYUImRTFRTHU7JKYI1hBBSmBeBimCHiDoBIgg5lnU 6PvUbOdGEW5GjLGaCeCdrPqj4jVVUnEAbJNYteLA23f1cyjKb6ImU8V3qxWZoZgkzpdqW+3Qib/t Ex/VDxTIdCmOpwmxGGtYUUyQCdsMT0BU/lsHqbBJukRpBFxcj2Tc+vjIGgQaLFkFFIg3wEqZRdbz l0YqRrC3QAKjCBQy8CW8bMR+I4Npyqe6tjM6J5CQPLvdyv+QxIi5JSmKovCmayoo7d+A4tGLIL8X i3lVrJUcDaCql6JItjNgrHZrsqbvr218i4zDoT3odEsWLTEbeARE2zEYXshcRJnR39DEDVVMuoeG WnUgpE7A2Wk2GFRoHj6g2Ruvsma7W84gqiBqoN/GYzaMTux/xmD+SppbQTh8TgXv4v6/5NOSnQKm j+LWwuw1uTozjNH6fQxvPD4a+nt0ETolCKSUDI4sv9/fzecrbp7eS72nDeDYVDFkhssUI9NO0ADU lkRdqWtPyRQTsSEQF/eZhBgCozk2krLwAi0PIv67pFZv+jaKiS+Bhtp3PHdN0lvbhiVGGQwRQpWh VwVXkMwdBItZJOtKyYKU8v6cUQiUfVv/AuMPAaejf45/t95Q3wxIHB4ftV6sl6fucdcqf6NMy7TI 9O+BwLPsbIuaXktzAziB+HKsZrTbPrrqYRhFUSogRFhQa1BKwFLhGIH5Q38pnyyQ7YtlZMrJIAqK gZLVq8eRRVdvNhL8ibJV+6Oyuygm00tNaYzzbYGPfOvRlIqkbcKYR1Aic06SZNof7Iyulp5+3HWC PijNAbcAyHq7slfcrN/H3acXy2kd/XNRlUXcAesfX1iY2qG0+8ddrfTsL6lIEEpozwcr58COUQmK tWSFNsjzRu1VQhwOXzJo2VjljFavh/+EP0UMH4IJLpQFJozN6znZpEvBZNoeCSvi0KcL3Bs9JChW PppYjGJmqMELDNbNWT9A1S3fwhZYpPP42Gp4sMsHW08QpAEJKQufORJq+Unc7Yjd/JP7+FZTxcZL eLI38oYL3v2nb8AIyIIPX4mVo27n6Hebbqcz7L/sXQl74jYTlollpCBUs8Tm2g2EcCV8kIvNSSDX pg///w99MzqMDZgQb/u03Xbb6ukKjS6/Gs2MRqNxKUhVvzFMSz1o3qFLX3N0FV27XYaISSSbuWI/ YhoJJpG2V2n4KfR9/76hWBKa9SU0pdBSHcxZTeu3h9/ySohhLHpCwCSfhaJ+Omd9gHaj3vQHe+Ny /IeQnNZXknzM2hQRg3EVbelwTdOhuHqXLa+gaCm158euJgJLRCJqndhHeNl1PainBY80Skvwpesg pEAwAi2ktiPIKWl9mUW+6WFp4aSFM6fk6PS1czog7kX9/qKet+tu5cMuobiXiPGgRUa0Lf/2NQ1w htfVlTiPOzHgSl8C1VwGFcwTLd8jNNflra+mGotNqKSOEP5aPxYq2oOdYE4i91KylGbXe7ySGCiy SINeL28EYY2ofWN/2o891YKKmbYl6qJ71ra4ty4K7sWgGOOKGzq7uvvEofgpjeMDKPLK9Olo+sTo Nqa4WIDqrHDgkZNCi+4qKVYLVllhxKsW0qyS0Jmj03t0oeJnzUbHQhH9pEFwUIlBoZbS6H5e27xA iFIJbjn5ZoKHRXiD/SsM90IppZAoBrbNMcXaaQQeUqAO07Y7IFo/tO65Ak3NM79qh662A0wJ15iK PaLsBMz45zDt8ZK3yd6ys3tr+RaKTJu4o/wNRMl8jzEbDpE46+U3E0FWXq8fjAYFUNxCtJKvoWiu 7RxoY6dJ1H/5RFaUf5B3TIQWbm/T4k0udSmDayj2Rnf+4+tWKNa+dJm9eEFlYeHtCMX2oirNoTlA sVWYbYfiqYLiHULR0iCSRYirAf3aQwF5oMMTp+15rghdj4eYtCXw67aQMjyWshjWHOGEoedwVV5C eRriZ8J6ZMg9qMz13LYAaQ+NcqLtOVSGHlQmXWgEIRFCR70QREIJ1YpaLWy3+whNlDtjyPx+ElJ8 SwWJoBEPG0HvGolVCJXoRqiAxMVG3FBiYvOdWL4mIlAZ85zQwRHGiTwkwnyazFdEpnEP8x3bSJzI VAZZ1ObDCB28iwgTFBGZ8iJqxBB5+KPJh/ICZ1VKClVIB/LhR4GUSOQh0TLf0flFSDQRwEgKvPIj iMDLjmrgBor3lW1QhF+ef28Rz7wASMmi9OdD0Y0M5CbxVEIdSZXD/Wo+JuqyibII2ETlO2rjajtc WaJj5al6HifRCF0maFZCIIfWBoVeiOq0Gp/ykXn1L86trVFbum0j8E2QSepG2KZGbD6LRoLlcaWt ENEUolg+ByiGyipjuhErjz/GiFgsHw9GYCEu8xlJEPEon9t8ok80IYEF4DHtesSWP1JNpJK1fNxY qRRRD/CYgOoJ3IkrUgtFC8zdoWg2aPLhBq1kxd7pE8qKdxfnaToaVCKiDdBYmKOEpz/wyZBpRNtf PNmQxUjsGVhY/oRakdsI18bp1YV9WQtNbENHkQMw5QyY3shaFhLaju5MpAfIoKMJKfWjEerTElip cin8qJHzjxtXzEPq/fZTnVUNOrEZS9gbUFbsTe+3b9ClsWfUD5irXTdoYDmt32eEGzy0S4vUa4yM 04e36lDeDPyb6v8GkVfmmsZisbVZs07NN/fzNpTfSBTJ1bF8GgscwnkiisiyfEzRYquNsLRGEj+a zxvlR+haKR+T/5NKwAbl4AMivjNR4m/LT5FSnqXls1QNGkFQpnw7d3vGHVo5fwSlHdUW2G2eFwV9 jRYWQ7WQbsxB86YQud7zBPhe0f1nPE77358//lRPFL1tajn8NvsyFgpHaOwuhbtW7QFuFzXNzqul Kt1yt5sZa/sHxu2snkcsi+sgsSwzy6RmJaQZB5i5oxlnJhvd9k/4cVg1YIvjL2MUmkBsXJRO6O4A oN1SaTx7nrUKpaokW/Gugy2YC7dp4wC1JdPEeTUnGxTD8NMemopQhl62L5UpWhJ8QFRbsrQn2tlm lLZFtgZRbdkWrId/oICE1VKh++15Vi3gYQvbHYtktiiUSqVCobUDFj7qB14UyraGqaQ8ExRFxgl3 BM34pbIhgzmZO5rFkxQVOidjg95PRYMCnb9VUJBazD4xVUw/EdfqtmYy41b3L5SYsrp+/1vkSdik Z61ugFc2PhXMx7jZ8IyixV8wVs7Y31Fr2v35q18fiyaw0CchpU6WKKXsj+kGjXF3/e4E2+EyD+5f 1GhG2j6yTmRskzweGIaRyP6qDpqQlO5yeQgN1nTp08F2vnCEFvmY1c2OMDLBpChEaE329Fy7HziQ 62jKjCdEHr6hj+stMeYunYcY+i2y9U+re7tF3Pd+boPWljXdLvsrV0RMbdEPiPLEHOpo1VnVFmZ4 tyiaT5VUW9hK5DDlo54Sz3qb2oLNpHkHUxLraGKEjPtFN/0pNKW2rL51xdZXjq2O/6zawozakrhZ sGVKdlJb/knMOcEVGfHDfE7dK0eWRdXFJ2Zf7YwtTQwcotQWNF/CB0WsIYV6zIdqnwCX+7KI1G7l 1D4khpKus+SKwnGJL12mWqIu1Q/qGsasqogzG2qPs5iiUSW4Do+j8aAivXOWwCVAI+EbCZ3ad4gP KgL1r/FJaGhWFgldwTJyRUeNLjxQQ3MNP+WqHR2NghnTNpPhgRt5KqqrKpwKR/eJqvWIUwNjFTnm LgfIqCgS8zdUWzwCvQtVXXos2gvXxXmkZlbxmEr9r63757ni3xGXlOArdP0y+v6q63Iwo0cNwxn4 ipqkd13A2csgR+b96A4vozbWuluZXfphkfGLYcx3N1IiGPVv4IeOeoxZMRtGKiF+K31gQY1XzgYe 2GmW1ZNoNjoo9zHoOn4c9XLUirwQe7hKXa1rNRu9YELcXnCn9r7KHGNxr22oalncnuKzfCrAoS7h h2VkgfZYBXvBMArlpRsTH9S0YDQmtSm46ilBFxh052WihqXfr6bcP7siNDaxGBqtiw2qMSBzpDAl ZbwIbX2TMK43iYW257+kvAtTc3M4eeheAqcCLiccWSaV6RV1hATOIA5yG0YNc35zlSPXwwYseJHz i+LArcgcAW5SJH6t0ekOuH872XTcA1B8XDzxi8MG8YAveULI3Fn3nhBxjk0OhwAAIABJREFUoINV 66++CYoX9QZKZz70i0KxottD72Aorw4jofdpTwW45GH8dDsa9FqXnBwd5wh22LnNq+6uNgZV9R7P w+v6HVYJ2zl0kHTenoCXwfxg42oXgMb74fwysdercHsIRY6TQXFo2KtOcCmgTZnPqePtirx+JxRK 2JYxEsSgPe/eEeTUwFnzDoEp8WsHviORWVakA9OKjFqxUZn7ddhh3K4Iq1TFzAjz/jxoXvo3QdBs dN7OGw+toF9+CPRiXW7QSnRDKA7L3o9hOJtUXiadIAj6L8BYj15aJxPgig9vw9xDEAxyUbi5yFyH UOweNjr1RuW6FQB1MzieVwe5W2wJX7J/CU4iB+SYXdFCkfvzVvMS3xoIJthNXR7orqHp6MkB5dPG IoQoRnyUPwIoQl/7ZUhO9uf3vZc4TdRRcju6Z/DlK/AzcFIkeKgOy9fNYOBh4xiFDlDXHSy5vnYw MVCk0AhMRgWm8mQGVXRGQIlT2Ue3+s5pMHonwHdxS8EzOo8BFCfo2QVDCyY+TFz/4Lr6WplNLoIA GO8RdGHgq/mEDeD2RdfjeL+GrLhUWwwUPY9fdPuP52J6/jx97U2vnOvDb20MrV2fLBUO4rUdC8Vx ELxd3dYnldH9xXgwr17Nx/eV2u1oWDkdwCp3b2vzsYmxwYh2ErNQHDxeARQvxsc353I6rOXn3afK tDkfX8IGfXY4m17ZFmNqi4EifIpR/7Te+HE4eJ70RsPy2eG36Ttx6cP422iYoxGGaytQzM2DS4Ai ezx/fnuCDtfCx1fVXQzXsxQxQQBUUPRBcz/r9qdXR28q7PHbk3g8P94H1npTb2B0RQztAEC2YolS WywU/cchNNJ7u5q/vT+PXjtvw+vDyVHtQb3C+wMm+L3yeP4welJu1KC2AIetB61h+WLcP4UZef8/ d9fCo6iyhJEDTjOZmZCog0BEUPGBg6ISxLc4ziTn//+h81U3KM7snpvsXTc3N9nsZoXuri6+rq5n t9mtQSr2/fnUGSZRhbdgqZlMVlB/ltZhcsS28PR/Z7YUUCTOj5bOy26ufCz03bt+GGNfc1f9RrcE RVbhSjtB0Wpl23HqcihGtX64MnZHY78Px08B7YQs3e8na4V/5iK/sYDiuxeOLHsK2eB2l0dolY1V z2+fwGHGdtYpiK5QvCjnAorVqr7B97JWM8hs2wiOyoc1wvuKnjj7sF0Wp2oJipDhcrqNUnduhDQ/ ECwZy3cit10reQu4M0fjUJSBX0DxEzPUt0ea3vJd0g9tSNR1DyLtWZK8QwAgkwWkiAlyKMpVuR/G 2sfCozZHaDI9d913ux74gQmqu6M+/exv18ZpLImkTEjFsH1qrhmWYWDFEO9dGSzpu+vpuNazKryF utmf/DVTvMDaTyAetTt6Ydj1omJapLwA5g8op4Bif7mgw4KmEBVd4IlD8Qgo1qQZMXFejh4LjwPp 5wMFuiKkIjYWYAR894Jj4pgBpOKx58Z9f7CZXA5MLdsQkIrytOnY00jZWJ0AUNy0VxBwZlbXSGh0 s/gHeZYcioAN2xCZNcM0twA9cOV0sw5s0IT+LZ9VWBoSQG3boBZS0dgeBRQ1Yznk5N4cYibaeduj 5O3txJlnMaZiXKDINr49c1detgcFj7JEGi+7BsQAxcacmBMeFVpvK293gWIWjNOQr7V3PVmgSzyQ qlLezI+lj4U6feuaXdnrJJP1rC2gaBMU3/WPz955eCAo9rdRJ3sg14R2L3AUzi/ypJAfQeHq9h+Q wFBYNqEVOnE/gErDP9WnvnPiJJIhOfwwsr8nMpCnBkj9iOo7x22u8UV655W3fceyPkdGgA0+8mih zw+rr1PA9rVdyPruDSqU5S+oHEjpnRdyYjVGdbw88xuNNfsxFP+2YGdCLEBpOrijcCjvHIjTBj6/ wlIoZD+5ngoKVi+wXAdaQISdz3XimVOT+jm5r5l92wyGUTJxJ5E9oy57PsHX2H7WdwsJG4jl09Ff dFg2rF5/kQ5eR4+nlSAYmNq+ue7YTjDIyjuvwRIDysjZ2kavkGZNkorTSeP8SSNYxTRhtmDr7k3W Hv8CyzakPliCNT4FEU5lOnFDyNhxMFkzGXpBY/RwXyGF+aVdLOt0H5NnWM9aNqm1dzJbSm43sD7d Dx4VCIL9vJrWtTRmXsv2OlBIvAMelP2KQnUj7wY16MjevtWtG6ZsmDU9tY1s3+ro5gNLW8/pvtV6 DVYip5qyuIsNmqUPCl11oeINSDebTuOHkEFT0sZBS+vxUqlYZHFzKOIVUKh5+0GMcUetZwlkgl+D +DKHqxlRdo2jLc1NJrL0bA9DgKxoQe7jZrQqWTs8i1uiB3UiZRAb5rOe1tW0VUshrNEPHtCOpRjQ QFo1r/uS1TNbaN9QSvHjfkCTiRXBEj19NFL6L1q2YAPzvmPJOPDPTMppRcKrMNVTm9HUKjSqDJY8 mXUw2DCrusl1ReI0+aWINlJOK+x3X594XbobGIRQzxpWDCQmltv+t1LW3wbFS1EBrwik5H7hJFPI +yu8sOwrFEXiIun7Gh2KTaXDeVmAJFDEw37kdxG6YslsEb5JNT89TBwhpimXK8a5c7MUMXy6Qor0 F03QdOlG5W62PIwllU3hTvVrtCVPQb/Mh850pE/6VF5rZLbkpQXFSJpyIUgUI4oOFI3vkGJ6RCin QMsZyuN4qkYcQnvOSkEg46NqmsiGx+7Hy8ik3Oco/NnEHUUMjW1Sgh3tr4WztUgxl+4Cxata/rRs 2/pu8bx7l7F9HL1wfTcolrIqilikJv5WFY2HTsgnkf/Eylp9odKKoh8KB/BXqZBeVURMs/jDYxlF Nkc5Bk3OEFVT8xNLFA6yIhrKxC/XAFgRs9d4MVH+plZULCt8HOkyh6tzpTgBRc3DHzyUdI0MXWqe ufe4tJmreUg4Z4iYGG9RFEpzvoinilqYLWq1OBatqvI3eXimqlzGqub8EIPmjBXFWryv4viWy8dg OWMlIdHFbEV7JefMvTboqjRtwygcQq2WJY9bpEy912A3uoZWlEZ810DUL5ctMSaV49Vf25TuZqIT AllxcPF/zNi6Bqa/EJG31Er7R173UgSAGbskJ7Cv4X4eZ8vFpqBMuzmMJ4+esNtoUp7BUH41D0OX zlu6nfpFWHJ1X/oawikovs6ooOcLzWLZ/MjvnjNdMEqTfn+C0WXHox1aQFH+A1D8b8wrFSotNJ6Y R3D5uiUxolxlq6Llpxn9y03c4KNxGJ1GrZcsZqqWy4GfxLPQjRjTZkpJfHtdEUUWiTRF7LccMmfp aWCXhJta3GogruAVQlLh+PpZ1tPlPnNJRWePCh/ZyB5/ePGPlJ5Go1juQ+tV+SAxXw0kBr1WLRfI qtitSwcDkRG0H6Elha1VjvdLAkAuewV77xrvYxX1R1Bkd4XirxcUqJ2Kpk/f1lKvcSwiuLTpcDzy TJWiUA+/9Yog9BddMYeit20LKEpcAyuC0LcDcl0RndOYoqBSOBrIiTeLHiQekFZ53HhU45DJi0+h K2psMxkFzuqGi7mTAijhEr+I6PL6YpbrirdyigeU8cZ0Mmpw9R2GsjvXbq1uEEp1Iok/Ok2OBj85 i5HrUhJLUtVo3RT5GyJxVSxVqoPG46mDdTnnEt84DCVVZBLlOQEi6n4TZGf3dHELKKq7hSx0xTXp iveCYvXpF6H4WgUU/47snnvUMwgJ2Hi6aeubli0xL+uaMB5hYnom/T19m+c2RcmCLkNxDV3KMOtp R/FgbWbfz+LPLWhiTTOqERTRfU1/NbOu7LUOgGLasiFfs9aDnrzNFWMDs1rRcgtaguKtGIe5AWpe yKz/y8taLZi2aK2nsI3NVh0mL9ndgErGL9Nj3wiFxY8xgKvdgsHEIa9BxwuGX6FYeSEyE2A1Gb+Y Na+DQdAkixUIR2JJt5JysnPLGUSQU4iSvTgUo2doi+S76HrbqAYGklMBWwHvaEPYppbqVeJX7mG2 lKEozc5NHqGdNpvfvK+/0Wz59Yo/TT/4wcJz17NG4JB3u+evEiewbG9rbZ3VpkGxkHM7jJ6Tt6Ei sRtN6haKQxPfLFjP2mYwVJdWENnStzQZkZuiTqPtgkIUOyscPy+dxjAN21vHJi8hto82xFXydtSX PkVc1KLizyCnpco2Z2tgnob6cpieGs0j7+Np+d47W6N447sWeaW90D2/K98Jpa9CYwDXiTOs83jL rN35DkVxzk8ytqWPcWqBmsZ5YeycBmQkp2rWrn+A7JmPXyDLjaXFY455KhKg2DU78syPd+SUtacT d/AaWOFCnjbb4QTcrKWh6w/Lbqf73RTN7/zCMnl6qWi9oaw+vcjsfzDGSFAcp+4gOLIXLxwa4Xw6 7m8XFNj17U241p82PgC66jl1wFT6WeUhh6LjW3TFsnFqjgHoeZ9HI36yYXym/ny7Buxn7jwZy3QS yyx63Y3N7Xv/vPirQoGQXrigDCP1oo3ScVo8fClBjunBsKYvx/Zs0jo4+OToS+0v6QLUGvq3uuTT /34dkWJsaQxMQd8Ek7EMKE6/Q7EgM2k2m07cs1Yfn5VpZOzejeWiD6r+Ye9KmBPVljDygEDKWFQR g4ESl4hrQESuuEaNJlXz///Q7e5zEDTJvBvi3GWiVTNjoXiW+ejT29ftz0eBvRob2ssYrguSMN13 J25y6iEUK259YIBorxkYhsHo0NDtTpzb4evNMLCn8LgHyrpmUxOFvyFBLCkSgFq8IAj/RiQSFANx srfCtV/2QbEdeGF7b9XrIUCx1Q9BQDoYtmq5t6M3Uu70gNbhqetvhEWlK40sjPX+BIri0PHmMAaA ajKW8AQBKC6der2rAkYCe2HZo71VtponUCwWFnVbaAMU4444hKdjVKnXawyKcHkHkgygOPHr9cE7 CeMYQMExNHIpTb3NkEExfAeKMh7QUakgIRTH6gihqE8w2FK2IpCKq64orHag4oIKCJIaJiGkUMQD WlNHlZ1wgKIPXzGGA3EUGHjyvMIzZf89hmySqXqoQ6Fqv0ot/QoPGqFoNJaP2/7YXI7F1t6x4d9i U4Qnd1Gv9kFybVAquigV5YJSQFn/hgfNoahIrf68XXYxCN0FwXgCRZ6Zw6BoLv+Yt7z5wo1ihKI1 Gzq3q8HNHehUcHrN6UnYmXcG5WsgoUDQX/Bc24zqiDmcLY6AUbbitcmgaMYDsz8WAQpW1LjCYOsJ DxpD5jgGGvyRBlIfwDyxmpiAc5z+XWzK7IDG9nwIRYmkIsjctrczm4BfguIkuH15xXRab2NSyJx4 0ByKEugO9VkCxZEbNq6ll1cOxWFgwEOj4H7KVJzh12fm8Ioxv1ImZvL0P2u2lGQN1SUBDsKh71e6 IpgGIiq41kyf+L4TTSo+k4rWbXv5OrKm7gO66k950LDA9rJS+RGAgJnUDDgkF/vKWHyjK1K+IuqK A1Fo+XN9Unnsms9jSW6vKn5w2/IqzqyxRL26gTmS+woLmRMPGtFegR8FYYIK46PffYbzcyfBKUq6 Yn0GVv6S7sCWvpUxauYnE0U/i4d9fjUTbnvsig0c135xjvIcefkmhKJBULQnY3lR02OQigOBZgVS Me6iOQoTVvFowTljZBfLN+EB/eNHZUdwE8HcA5mvwlph8lwqejNYsDMb9p562zIlhReUCws5cTmz cnAacwxTn9Li2pqpUhpHk3/aEB69j5x3TFHCn3ZUIA8MeWJYK17imnACAnvLppENuAhJNWWBkV/o jMXPKUMxiXHJLCaoyR8dQixMmXyVRx4l7WOHaVJuSmA10AQ+K43alB+KE8rHwoDXFGb0FtpV0tN4 Ag7dy1d54c5mwiKM26GyAAdxgvBwQnkB2ryUeLdVlevYWa9zUjeMxdhk3sosicB+TLUkt6OspUXI UlZYQg1jvmo1y5Sjj/mPE5+L+d7pXRK0SSKDHwzPP2LV+enHJLbqd0ycpEYbjaGpfG/SwoFs3zjN Rc56CZPIpEQ3ymltQfKCSlpm6ar6f8iA/y04HTH+PqXNprTkkwgauomLoqq+14kky4Pmt2oZXB96 3GvvaBKKfOpy5iLjQLzLXEzDaTx1lj7JVsFLMcPlp5YN4yU86PcdbklShab+fEcz7NpE/09vScN/ 9CRkd/Rd2+E4ephJFJHl341Q8GmzJZvwUhT1gqQXZe78UxOBqB0bXSkPGi4XSqWSyL4gF8SPuvcl +MxZvumIB00zLTGiLMxWTFOR8A950NL//a+Vb8LnsVS6kTPLEjKlVI/fsraGv6J803eQinIx/X+T pfZzuOgYrZrNVTGZVwLVTkRByoOGr0yQZ8kDY5ONUCRyc0Z6HT/7+eyrYx40ZoL267UIz1Wt0bEp F0dHxh2cfWqGQUuMiZzVlJQiT8iOYX2hyGtZIBHRSGKamZKciYxmPOh8A353syVzKCP/cjMM7JZ1 jfUW0CWPMoH+F4TiSQmG5D5ZXQ2ai/0GCecC+d0sGwQlsl5LpSLR0EFOEdf/dLy8M0X8LQd3cWDr 8MPmvYGkUnXkz1QFx50cp4XmHpBuxD3pNdd+JCOfHhYiTr2NoClIPqVVaTrSUvGDi/l7vhdue4js CxdpkY3ncsfWp/C3QRkq5VB8lwWtrsY3+mqjrMvlEJlO8WNorsu9SF4j63UBV6Vp+bl3xqxhTEqu zwSzeQNDdEEqwlR70bDSFRflXihMzjkWy5TQlxtcnr7ulauL/QA5uXB49HBtxJXFD3r2vzDt6p84 oHPXVyxmOZ0cin5n7c8a262H4VPiQZjL2rMTHSQMdnxlGhEokyu3tnRm+vQhdq5QKjozc3u/DIzp dhnY04eJYw8fO1t2aH6hvmIxk/2NUJQVSV851XDkzF6c6jZa+CHNwc5KxS/UV2QJJrgnteqzFdFP r4Jqc7rf6bH15G9Gfid2bpArO9ZXwdZjJCvkQX/nA/o8ZssBipZtLufm9qk/MONaJ5Kw2kGNmJYp FHmSGEpFq/NU3+jT6jPG/tV1zTa3VcyEGNUjFa76s0Ugylo22pJnhelEORQlWY9BR21Zs0W9VxVb rk1zmKE3WUoN3tKXzBbcEx90RXn6BMuLd6pG3Uusp313gTt184KBP3R9rwccinnNluI3N1s4DzqB Yj8kpq7d9uYvwbY/1hr3sROqYsurbatXUqZBAveRgFTEmMPLK8gIkB3xBkM3Q7cLilyrHElMwC4C Q5E4gyPns5/lQYOuOHLnmLsajwmK5v3TfgxQHGFKwmzSOzJblLxCqsDNFkplxIUQFCmw2UdCLfUX u6GAII/CMOppIeeAv4cz52tmS1YqwrGzgSOvvQcorr1XMwaAhYKkx7Wnzq1wlHB/0BUfa2U3HLmd +HG2Cmw4KNdudxlcrR7LvYXbea5gtPUM2XFZs8WMnZ4XGCukdjvRuvfU37X2Yyz14M+GWGtB/frT zdouwZ50JQWOBVhIuBoLUmP5Kq7dXs8esmwlt+ztyFwLBCWzMTle2iXqkqro5vbaXIeNB0Pfgi3Q 64CiDoaAiCbrutwx3jdbwKKB74Dm/lQ1pk821h2D92FxC9dvF3DVbjyIZw1uUdmwcudWnTZFoV29 IdtKX1dFGs1EDpN6xj25QjsZf/p2GgnwrmPj6LAqw6wW9AWOPY1ATxUuZssXs7iP79OQrKomzKGj Nj5HIjFNjiYWJt2AX6CigkLCPUVOpsw/4RpRKef5lZmoljj1EkcnJ69K2qG1UCrbiqWcCkGqfbOK uxq85OOT5BA/kbNs15yOzLOTT/9jZotM9GLGShNSTqWqSPBGkQ9kVc6Q1N6YLdjyT6HOf/AvkTOV 5FcUvEBX5ZRQWMxrthzzoBNaJwaBaao4LpsDNuJTz2C23CVZGsRL4QvBJAYioBJVihHSEkIqc3HL d9/cbMnd8EZJun6/YQgc6Jq8LZqSgWKGB51+PyMZUjLrab6inNdsObovy1U9jK2+VzJTlfNaEcqR d/yImKplRldPGbKKnN9s+T2sDy3vjYyVdn8tCKB6qZzMSaR1SRCSgr2sODF9+td40OdXzvMNmXc4 NW8Tk9w7o12SxZJImsHyRIWkhDblBlIeAIZcpQZY0FTM5LJjl9cv0RWx4ThB8Y8uZs/r06ohmM0p GNGLBwOk5ZYKI1WvpaHflZC2yVKh3vCg/7oK9nVd8VOyLb+umG9Hpe+uK37JguYV3WYgFSeWF9gt 3ypHWG7KaMSWO1YmWIFq6I/FoVu3bJbLmtcwPYcF/Sko5p7oXS7tW9VyQ/E3saDz86BZ9ZhWuRoP nrF2Ztubt5yo0PCwhMDID2Or2Q+ui+LIiszlYLvfCRKlf8l/Z0NRIen+9XnHYP6J5sn0V/NO9NKU K9EVW1hZ1sdS3Ppy07JsoeXaZrwZVWpeLZr2fWvWsiLipHYF6R+a5SUJ67tAUVj/eG14G5SKAEUQ iS0kgM7N/+n3V20P8AkoHRcYF/TyurzObbZQZg6HorkaGMN9ZWBgFQidCqsgQXNciiuVwG4vAwOL rszUL5ktl37QH+7M72K25OdBCyondWL5TWSGkD7HOCKaWoC/5QJdVNA6+pO9K+1NXQeigZdQu6Io EtCUIJZQwpLcQFtQ2QMEWun9/z/0Zrxkg9Lepa+6Vfzh6irF8XgysT2xzzkFVaQt/7se9K+mLb9q aOkX9aBLX6MH/beEKvlAWsPJWkmMRlmJ2IhPV9QXvx2/rep+2Y4PGfoH6ynnEY2f3ODbXC/fL+ri +180dYXE6asjL5AIwMYjj8bAehGMN+1HeT0WoicmEHJWHzcVBWELyXuf7uR9rIPpAJOQZoW8fasE LW3aMyd3ijYeyYUepu4ev5W48L2GwuS5S3IO2kvix1oiqdk4apecajWGRO8S6yzFlxM46DMfIkic 35hKeZiTPejLI1LC0rihFzuYMuPE0Lcr0ojF+1RhO23neZ6MNA76HMiaRMBzSmKe+RZ70GHagp4o Fm/y4fCGpZjX5535laJKGK+eUyV7rAAU4GkHqFdQYsOgBvVuO7fXVBO4S6oXb6jwm8BBwx+gHhOq JSFXFSwyrc5tJy+OayGAJhKSLkl1DpIrMi2BiG9BhwZr17VKdEkJMc0SB/1uBymDYyNKWuGQfJ62 sP4UuchweJKsUFSNWqeDG5pCBpXk8pICQKQt7G4M7hjWQ0ON2i3UE+hwMKlUFGBciYOGv+jQYMrQ HAFDr9UQyaoVc5FnvhWgAPVCOSyZQ3XZgzGC6ePItneCopfRNU1lKGoMfo8CJdt4PQb43T51Pdsc cH1ZFOMNkLZNCKtx9BKe7W/bcDkCBePuYHE28ty6uJeir9p4KJ/E8yt4njOmU6tJ3g9N7fmLsW3b CxqqL+khplngoN/pII2gy+6NCEWOg8a9TbjaYtRmcuK0/Pp45LUWRDA/E9qt1iWXKcdBR0DosB4q DNRXR9uccs9wk+w+O8Qd4qDh+hjq9aUX0DPgUcuzvYMqpJApeAZcp4lR4ZukLUSelzE2r50tspni CKDoNwUYaSrGtTVVVLhEGTXwJkabJQYd1Zi1Oit7kGeAZ1TkLhTmV8YtDG6agqhfDDrzfvaqpnm5 xmajNnsoM71uHOoKmtXJQT2mPpvHJ244g22zziEFIUcINdaT2hYpodEqCJgc6u5YFZQjIjqOokyz ahcaSvk53gsd1GAcQu5jtdvu317nI5+IT6ftye0zxA/SSUBifYNczTelf25hNNVxXEdqm5cT7jMm zsuFNmHgw8kjVzA6N6VS50qV6HD92Z07LscTxGbhl4cawoM0blUxl9PAo9cWbqajs1BKmIldfhZo 9UuXoYQzlyOh3zyAEcAKhojenRoM04woYVVjjyqtWIah2M8jX2s3qD6piCMYVrYIaO5PFSuoDsow RZYq6vjhNBQfKsqjyc7Ylzm4YN4orzjGoDqcwvuvwzNoL5LYZAzFJUL4tTn8SGGGGv60h9AA1iAM lyrC+5MngS52kFhBq5FHDrr28D5FA872Np8U6LmBvSHQanUBoxs01Sij7VfsJ6jVmlwBol7fk2qs d9oKDTWgwUHJX6CJNwwdjtugBdVapzR5MBRfFX38gIDyRh6cHwwrqyfuE4Ohy5E+t76qLr4Vflri oNmg8eAH7WXPa82a9RfTPzIlxP0eReUm7BVEukARigk96CYiqhjgeYHisc365oD13MLM9G1kwiTE 8nZUyD2F896jPfSdSR7l9Q7Q+PZuMDbr88aM3WXziqOMthpNVDkNFcUEDS2BoQtr7TpmZQb1DvDM rcb+eNA3bjBCLmHL6dem0lI5Qb/dQWzd3ikQF07zyMUU4hN012v5Tqv+AobujLUb3C273sJqbEe7 R7u/xvNx5OUHEg8kDGVAaD8w693j0HkoPzcbx9d5e8nqGZ4LzsLViz42+bAf4qAxFJtg6M6YPUBv up47+3G9mRT3+w3y7freAUZRpIye5EXFPz5Ba6UvGBVl2sKeVNO5m8DQ76IMKMoXMUzz3nFX4E5n icIo4agYpi1cD/puUsbAGi3Hr2rXrs8OOta7hVlyhhQRyGKdlwoFIm2BUByZ62adQIA4LjTVmw1W rbq1f24uXiaoOMsE+QIBk4+lLcbabN8dyGrUn5mNYKfPUOnX2DfWE8te6JsDTJvbFsoJc91YnrZc 6uCrhUK4sGRD7pCuOU2mLRiKpvMD37X+etLDJlgo7mGyD4ZlBp7ueUMWWvG0RWPaznc7CuET2NPn CdnCbIwNeodH80pwPBubifQokWmLAoF9hEERot4ePLZxE382yMNL+lDZ7PQVAgTnztBx+QT9CYfE CrdfEoph2mIgOrxVfjy6+wYqaW3wSb00G447R0LhJUmGYqQHHfQpIntHrX2jDtMKhuJgjPVKyHo9 gVCEJZEghiEcJswnaLfe854oNOFPrfWu50Ao1jBOFmPcQoSfGbW8nL9CUjs2QetjV10d+/v7uXMw mOg0RCXECUrcHAhMes1g5LIEReKgL3XwFVtHIVxqdMpdW4Yi/5isLwr8AAAgAElEQVTDJuil4UwK GxMMxSbWy257igPp4LnFQ7FrLwxvqcj8SqYt4C1YQz7+6O8bxedXXBhW72cmSpQzHXec0ru46BXS hDk5Kj5PFLijtX7Y+6j0+4ihuG32YWG9Oehjpnltlh/bSw4SUgrfCgct3s+uB0+25TfKz/aQzV9M lr23bjnocOR6eIqnLUSK8Pa8CQM8l2Euc5ownYyb+zVMSmbVRlj6+N+WP6AKTa8Vp7BAr8Mk5y+M mRmMBuNWzZk8/1h27aEHaQBKCzlppU0MxR2xjhC6rt+AFNQfDWCCnrUa61d9Bg0uUHpn6Ny9liXV Q5i2vNVBeLKBvWQTdCut08FWEjtl3JyOzb5fNzZmcAQDnzbudnToeigATMAHXN8j2m0Sa8V8dwQr gqE/QA0jz0UB9tYetTN4O8gRnteSStlsrahCjgVW+f06mDRDj27NxqZZHzeHHipszD3mGU1+qfzD 0aB9bdqCAmP6/B4W9O0BrMdhAVdgmGb/iScIkLbQXqOS5shW9dq9Slb3ecZMpMx9WCuuIBsYDu9x VY9YaGXlV6v9k1BEVadeo87W44oFk9jAukcepX6FwL+MHk80nAxFSDbQWMx0MHGAEDaEodTCbAA/ lFCjNk2curjYQbjUesrjx6l5MJymBAJRU+gK5eN44gCGHpe9fRlM608Ry1zBnXe4zTQVEhwIDcbS ebV6D+mH77lF1iA0AQ1iXsZsSgkcoBWQA1mNvAEerZC5P2tO51PwpT/AhA5SJ/yYc+qZPxoNX5K2 hKcM8JOVyql5IXgCIRIgBPciwdrwOEQhnHNJCC82fFj45TWmLKvE9wTEDkNSD1qVomIIVw/MhZiK iWyQREK3qVPcgp9ThQcciFRKnFjlHShoVJMVwxM95zuoqLH2qNweSZ7iVoVuHL4HYKhYvhIpTcye HZWbH9FZJ6oS+SEQIspnuj/CM1I1U6VShhM8mgs1YRmbMyN6NrZ9XBUyDV/RXpI79xPUrL58twXx uEIRl1PRESYiW2CXGKQ3kuKUOGgJ9xX1VMZ+wIRkWT0U7la4IK0mQ1HioCkCAxkUGOrpc/a9iOnb 8ksaO/BdkNDkENsijGA/Bfvwy0yega8RU82VdqmSsLRW+GAHsRb/TxzbIu5V4OK4bDhC0wXam61g Ca8nPCqwLcIz4keEffzRBEqcNyhtEp4hAlDADzpphdCjw2vKPVoQ7kl75pvioCUmWHDrxzHNqR3T pJqpGE5QJZwqEbfqiQbtWRw0UWIMwZJvXomTTp/BQQtmZSpZJmhExZ0c99/rIA0bilN4p3HQ0ZEH LWGoQhN76Sc46LANvisfzSAnk2KabDw0lNIY4zizLyEB/F1w0OeXCkxd4KdfNUJDsoOffiHUuPL5 h9sjWly//Hw5ve1vdFAYSn/BUBJjyfjsBv/OUfHM8xc78e/EK3nrMv3pXSW5TnvP0LMHsS4/J6L8 RgfJ2csXpcVCpZafNJT8nmeykpWsZCUrWclKVrKSlaxkJStZyUpWspKVrGQlK39ROYE1Z+XP+ziC ip/uCZx+tn/vQ34E6A63PyXY8xxuXYlQ9PH6oZT8Kbr+DQMiLD5vUYnD89/dcyNvWqgo4QYEpUoW iP9LSPKzR/SD0auef7wSLk9j+58So0nf2cQ6NxS9aQBy59Cz7SaVyOW1j/aLviVZn8vRQlHNNr0+ d1REtDrCL0lawRZPjpb+Y+9q2xJXkmib28FuAQlBjQ7qwOD4MnoXEVBRURmRBAL+/5+zdao7EBzd 2dnr7HxJP48KSae7MId6SVefKsrlqvTe+sb7d0TzJVtbG7Y6rhI57o5jxR8SCZBhiuq3SnENXVuF voBMOp3Mzh30zwXApnua19EiQAVyodBLu3RsfeVndhW7gre20FP88G3RwsVIrWF3r3/WUzJDzG/w fewL3uX+qSNdhS3pcknXuLIVTZNSdFwAwNX1yUvVW181pArIdIX2cd2EpV3X78phWDqtqlmM7XAH ExqgfufTsbatM6Vcm6dCp5vRyHFzHvW1BQak91x+EjmJrdCylX9qRSOTVKvNbEYkEiAn5jUJbBGz KAzL2DbgP5HKDEhM17sc+6F/diFds5temYnNSCZ/xeWB1Syk5p91eNu7OWjP80jBLKaRpthjarN7 Mwh9IBbnULz63CGVhSpxD/vVJc2VhqJyGXN0y08rwewFW8tdszFIcU0ovCCgBLOw+7k2Lt2koFif hGebf+dfOkkCNCy8Ie9NQdGcIyj6BEWuwCKed3sWisYp4PzQ+rfjyiHBgwkXOTsbWVheP9z9VBvH bZmCYjMqfdoclkdcu88wkLlGUiNusjeEoOjv12pD/6VHQJMmG9K15h3broOrY+/yMz6zZD6IDIu/ odFNvPq0t+Yo2UIl0d4ShVUKinQD2FgTQnKEt/hCcel1Lk4Po8p0M/MLPLJpCygS3ggMQZFL6M0H QsUlhmLOakWMBq0YP3mrKxgrwLU+Q5E5ZtjkswAExY4x5iD6YKqFyUsP866ktGIAEaRXKHK9J7dQ tO4AuQUbDjskuQJcCU1QjHtCm2+BzuGs+VROQJLmcpo9CcEp9sbj0JnT+GEITCpTg9zgX1/3L4Rm KN68oxWxX2KY75KNBa3rZeSXHqWo3+VL51UhgstxfvccZtBegK2jr6HoysSwHdxhIGz8SLSiQN/b YT6/3wEezod5MrQ5ss9tp2m1ouJZ9jsEuuHI6Uf+7o32Hrbz3WMHCfEGisiE16+giGxX5gU5HO4P 0V2Tv0DiVkVwdVYb77YdNtAERSlIBQsZXI3xqWDd8/vD82pAH9hj4fAJr+na06rItOLHQXG+b4m+ /BsKxbNb56+huNCK2EM7ibejsE1/X6rNyO9eOIdki8chOW7P/u722CdMSbrhs3CflCypsQUU6dLz BhQv01IdTsJuPhxp12jFaWOnsTOJb7x+fnscvvS859DfpWGrHtnnC5FAkSAalnBeQKTnKD7r6WZE IsWPNC5p0H7Y3ftS1LmUVqRLdo8aG7wHCmANS+guErnJlyhtj7FtFFB8XF+/nsVPgo7y9IJHDwnQ AHU/f7aNycnXoGtHlQyLH9f0/EGet7Xhong2tOLX3ttake4ljBdCFkDRm8Eaku10YFpZ+Xjr3M8V raEfxvsXaSh6txM/LJ132AkDVACUHm/Ba0ahjwYDLdlCEn6mlUNY7GDGgBgxwxvPTedHDEXAQ7BZ xzseCaGRf4b643MoCkJQ6HfB54WNwpMS41hAbpL5ET+8xYPDljw1/7zCA3r9+Ano1K3IQBGqlSZv 0+CjSsDuRAbFD4ygLTmXx3vZ640AO8Qr72hFuu/k2H+N4puDxPKRJXyUbpPB062dUAzOtUdlcP19 6C+FLeRcDr4NoVQAKh5oAmXGUOxu1mqbEyBvsLk5xGgEVcLCo2jlR04CRU0Q2aXAgmAKkThsoV+O ZKBIDlxo3ih+Soctrle//zsKRw52+B+SJO5hNFXP8aOnLv22NyMpmewAUOxuQ1O6iiTCPCP6unUU a0T6UUa4kepDbp4hcxY/3lTr4GHz2GmCnev1Tm8DRWxL1N4sLFM7W0BR0G1hKMJnJE3YNs4gdup4 l9HUpT7kuTEUEZYSYEcOQ5EH6oIyg31FaXzFw5mfz5cNFBVB8Zjs86OQxpnM5VQr8umy0mkailNH UzDfQ+lJhXkVG28CiisTXYYvA3uRDEV1QIIRFHMGivQFyHHUw77iIVS1e4l58qX2EhQDEm5cjgmf GRR/5yoLtJmyQa1++7kitGL8WMCz8DrfGRho3BGYQ1JvwdZDhFuvdLDBfG3RVPIZOIMSkXGOQcVQ jJ94IGHDlkpuBaBo+tO/Vp5TWtEj+6xkSitOK4VioSDTWrEirFbUwTqYm3AcMTfFRtFLxVuvIg4n 5ScsFOnwlF0NzGJO8CMkqHCt6MsiNCQC8Ss/sPIMFCnwmq6ydwBtDdWYPc35Lc8XseGaH2nMd3qn teLL3oBaVRFUvlx/aztWK7aLONcYTOLe4d1+w0JRuv38eWNnMAmfCDulo50HssTBXem0wa/YL2jS ZdffTivWV0yeKxKCVuozhuLZxS0pqIMxAiHENTR/g+fcAhFtawIolo4d0q+jnb5PARBB/jK/v7cz uKOI4nASnxoJbidnRzuDvj81HHk43g/hbL40Hialm2Uo9tgd7SE8O976TvPQyF+uIgtFci/rJACE v6CP2st8xd+09Mf15fUPO7dJlbWikNuIQgD+W2F79xyFT45Hv2GXKeYMKSx5xENv72GCNzHFmGTq 8KpdIXPNx9qOYSzu+zQQBxs50QwTKFJgXS77ITzPuIxhnxFUyKaZnzTs7QSz3Ni4IiQ1doAj0M+g Mx5iDkS+6Ejt3Czy0DF+tA4oUngUItx59iG3EywerMObwHPFcCo9RFIhYzIMy74x0HXyKsgJsf+F OLPPf8KPHNyjnfQ0woqTRlFwvdtgcLQmhTf4fkJv6N33zaM1hw29WMebBmjl1PU9XYGQoY5jHUM1 pzUu29tI+KIprnYVaurW7zePBvcdVd/beThpVASOubpu5r/vCRcd1jD3hSPqg6Oq5ktWua6kEgWa A/LxoPQKfoUHCfY2jAdLxpu6M6PWLcvNlXylyeK5pZdaBfcNR1P4Q6NKpggbIGy/pc9ghRMyYKZa obIsnf+3xmTPX9oFPluFQs0LBBhmaKb+0PaAtCwy9FeadBypXFNayrV091LoVNaNMtMsViKxuOYa GiK+3WZ+wauL8GYXTCNmQdnwz5hkNJ7XNeRHkpcKOY2H12MQ5fAoOEwdmF9n/kkl8yXZUqJYCNIo ck7ugSMWFCggTefHBNlqyx+w3Yhec0wb5DJNBy8DkznPSfw2xB0u8/1os1QMUiP0E8kVluCDMxEY W+adocUy1ylmUTLDJAMIHhrLfEsCcMURDf9W2nHnDEpWPv1q3px9yIRABsIn58FTI20VLH7Jsms7 j3nkGb5wmsZ8JCu8ylzFP/4scjlwTBEfpao0pTJwE76hV1m57ttruGpOnvRO3uAbxE6LjjrF6rEk gU4yzq7X5Jzg8j8k19iMWzfYGew11qRQP3yUTCVm7Z81KX9Jlbm2fmD2j8vah/sa7n+/JUCpuUOQ taxlLWtZy1rWspa1rGUta1nLWtaylrWsZS1rWcta1rL2T1rCgSTmrAo/4W5KLUbPd66rd5aVeUip Eoon8+4NMp5fmtikQSj1xnRaWXaIZJL0hbaWkD2ZOrM89nvkUYZSQtl6RhmFxMcjUSQFmBJWhf81 K4Ur/ryi5JkX5kvq8BnKpR/qkPz6xFq9UwnnVxby3lx/ZnqWV7XtTbmnBagtwUSGxQ9srEG4oB1r A8ucZKnjlK2/ZRUFZyMWVuQ8ddAr2nxB9CoU5eKK1CXMK0FXCQUKqVdkTXMpmM7h9cRJwTCeeKUg E24+kFaAy0Es9ec5PWyp0W5hJan2OJfY0IUVtbAn0cvRyQdJaqNxf06HTOZOdCioKzC8Fl6BuatW skSKD9aJIlfcWF3dsFXkazVT39G16YVukstn6Y68B9Spt9mIt6hKatMKxO1RJfjLsW/sEKgl+q1W O3Yujx0RXN2oa3p3VHlN16UFJj7p2PyEZGKZjMIS3FrBoA5btVqNC/Iu+tuiaPXNKmh/vmP/szno /Zu9a2FOFcnCLQEENQ4EEdQB8YHxEdrnGN/RqJmitvb//509pxsfyd2q8Vacqp273ZVbCnTTzfXj O6df34G6Ez0p3Xgby1DXiF2UW+8jma1/VPBBNL48U3bgbK0ga5ebsiqdtyCoTlr2RCfDqmXgEQvQ K9L9WFEtZB7SDw/pFEbb9r13GzeKXK2dOnmRhK/ofsVw8dxpUqYDK1lopSukVpKGgwJbv6/rSYxc hTSj6u69Z61RAOWwra0G3nunkkg7qedFs8bRf97Yo1PFl5jcJKlYl8m0DCBjZlHR+y/P3jvFXdj6 2U1lwRd1p4QbvZ31noWpxBYbUPdpXTiG7pZr0Z6oLNZ3tOXhcOG0pfA4kxiQOkOObYlbg2SDpCYr U/q8C7ZNOpJJ368sKbQXFVQEgu6GRI0UHtKYHtKApsOWrep33uyG5ew278/1TWckGWy3h8JYcxP1 LGNmP1eQTPr4C+KSVdyAMmukju4Yo10/V4iCgb4LuOGvPEfxMAbFaDukKGD4Q5+AOKs9BknGij3L YBXj1m1t+W43cOsWMFmnW60YPNQ3QHFgEWP9QTCWNzRng6cVHlt8ZynLTifaY7RZyDuDFo95UHNk xemHLte6ewwLPpJaUef92WKnB1Ly3G0LoFhb+RhfHMvgbRoSyqT0UBWoGQIUh37lOBCMeHdSVACK DwyKKTChPttn9UoDum0dXuwDDaKXhTGtdpGC9FbXtw89axhWAZDAKwhFlH2KqlHVOg4qR7cn9Wlw GEtAhnZ1jqy48p/r0gmKLThqSExjjKglr+HBX8MrgRGlnUaBGG9Q8dhZYcXlrrtV3mybbnEv2Cuc GlTgrhHqLunAS7Jx/NCW1I7GxtpNLkKVTXfePEDZfeu9E5Xnrci34f04+nAfRn++B3TadgDZ/oRf hFfDYPQOH6Edtp1oXFu9jIy1H1B4dL8DHgV4CW+06qXPUBzCUQZFgQSE7gfFVPrEitAPAJeNVuFH 3ZLXQX7VluAnN4CwjPzsMAajNgy3BrDD0R9N/1joHIqog/Iymr4s+tXKcADZxxL+VO42X8CdUMBV IR1LCRSB3cKwxxRuSM7/1288+SqQTxACcFZjtMPgAwz9kbYGis3PVh8E5XL2BlyY0nbf3coMimDU P5z1oL72Wf5wMXTb0OdqhvO+b0F+6Fe80cXQXzirce3QK60+JITiSwAvV5vk8kvaaEUAUuBXDkXU MB3UV4NCdyxDc5t0To4fAMhM/lHjvmJYHrUSKIILHIZbwYx3dhWvoAh9yWW0h1efTKvFLkARsbVv vQY2ZVAMFiiLCXxhB5MzFJGywKOfViv98sRZbSWAg/MWhtUKG2/Rcn1/kkARnDFniV4A0Enqudqp svSsAksaALraakuWwQShVZ6Q9TgHFR8YFLtbhUGxagcj8FQBijpCceXbQeeBQXFksCoBQdCq2nrf 7Fa7/gLuA4zcpNDL6UncKUw1o3arW7ZfAIojqX+CoqoC4Mt20MsjFPFlqMj9gVQDyLUtth/MyK8H s2gk63AJTELt1a8oQi753r7iA/5TtZpXIcBMrWivrXu5MxT7L/PaCqEIdMlZcVKrS8xAS6iVM/Xn 0GdBKA7S8MMjlzr11PIA/p8xa0hkSBeQBT7mbDf0Yf+pe8KUFXcV9P2cCyuWJ8CKUNBZn1lxYPXh uP5IuK8I54AVrWLd4VCEK83DnrFipRa1p2hFF8CWcNPWYfw4w43P4CtKOuC678+byIrtMytKjBU/ pFnG6bY5Ky6gRUoxDV7LHN633UQmRzAVQNXrweNyIhtwE00RELrfVMvJQmceid6MKKXlOXhu1B+1 DtxA/3sPzlfgAhTBZXODeGBBNrCyAKHj75C/ajVXeHwsV5qHgTU8UDqWlzQEg4sy4HBIe1ZrRSn4 bEOKR9CD/hweg+Bl6i+MJeRuOytmoMkaWBIqBigCVtzQBYR1oSLmK8aQf1DRZgcagq8ItdLRMApD H31F6HRQdw/eXPQHOKfQ4rE0heaMeFdZgqfEJ+rGDfCGQ7D3ePp31kpsNVQPZtvdq0fWolcaUpRc Af8Z/1NkbKE/wv8haKksNsbclxZThUwmk36EF1yt7TaNgg5dYm8iGfWCDOSnzArKbOeV0gSF5ODL g6TVdqj1Ca7lbuftGpbCjmsZCTkQ+rMNS3NKGy+Dv5QBZaEnRCBLw0qOrnb9J3OOcAfMr2NhySim ZSQ/4DEoVcrgHAxWnJG0/M6rY0+YbRstQB9+tvHSSjGD+Z0Z3sIpWdCsRqkAz9CAm+Ad0jLeFyUk lBpKXhTZxcajUS+hEAaODMCDeLztBVY9cCBUmUHZiw00WAY3A59IYk+QkTVsQF0Sky33pUVwF1OP KTXRamAjdHy4Lnnj+dAa/ml86E7T5cvWZMKnZAkLY4CSDHoSi0fjwtY6nx/Tz1MnyVzg1zFuNqeS VHw+zVhHv6pYYzLuXGuCtTWRocA6Zd5KHNTE6AQ6l3/nLTl3L2Sdb8Anp0mkRKGCT3/q/DFO76jG 2k30ZFCSJGd4wCTl5mgxgu5usx3nn17XTmoPfIoBFy7o/IOfPgs0JNf5GobLbAz/wg5k7SIPcVac uP74YWSR5yenwmxVw2ke5YeKcbL7kj+p+Tw9omnXMzVKkuMsK8FDHiRPmIQA0a6mlVj1pzKXBicT O/pVSUUjwj7fCEXtViyeJo4TMQbtq+KYdiUMkcyDfLmufT3QzpRxUdwhCRH99+bqp4/P6xDON70Q 65ea9TO/a5ca9WQKJmnal4hy18/7tRX65yadFj0kt7+emhaU+HfAVrzeIv1tSS0J8yHS/wbTqQKK Iv3j+tDXQXJFEukODt+nuMs3QUsjP1lAJJH+GlLk1Lv92WJqKpdSlZv73CKJ9Bd9YIVB6mewyPKm Nq5pmrGdF1gU6S5QJEU7Ns2su0n9DBYVUnfNbBzHWTPrCRst0h2ss77JmjGDlFu/ddcbiqaXYpPu FELqYdbcEEXQokjf5cSNmQ2Kip7auWZcv7WcQnLuk50iTA59k83WiVj0JNK3kAjklgX7igr7sh6Y burGcirpmDTHNKkVRbNNSsSqJ5G+Z6BTwVOH8BCfKnFN71YyVcKnUmKVNZLLxnnhLYr0nQR9j6xb ZJBC98/LUuXGckU3LiZMqBE1zO6EhRbpe/Z59xRgrBTOdLk4q94K4djNX6AYZDcCiiJ9hxQBin/a RD3L0sTmrVAsxp9Z0RNQFOmbrPhnAFBMWFG9nRVVCr6imviKqThbFFAU6RtJxw40zZ99xVLWvQ2K 0IO2n4IUghiX6G9M9949aBb7ly2GVhX+FaXE2MJs8bv9mt2WXGhuCFMDU1VC4futBYuuuVHZuKJW iu/fa0m0dnCbEu7SSkLoCS24X9pCm3EJxxXha8eMc7cCRSW7bNYuAQCLm/jJvv9sC8ab9h6JNvMm Mm7b8yZENmoZImQVflUsEtV+ijdFRVNLtgnk9hMg9uKnmIah+2Ta6r1HFVHf4zUIetYwCMoTfUht u01Q6uGfD0UtCfLLYgmrCo+NzrcTogci/58O0KKDmLNN0w1DCsDybuY2Fqb7P+ydCXPaPBPHhR/L XTWOTUsDxBhzQ8LRQMDkvpPO9Pt/oVcrGWPOlLwh5pCnoynrSAL8Y1ey5P2Xjw5+/vz5o/YEn74z B+W/7897zuAN09ppve6hbrDkQzcltci3msRAlB3wSVeZEpkFaWmlYPreekVKEsfcsf38+feoTFfb JYbLMwcHB+Ya9oiJZ6z1nvPfxYn2xlHM1gpXpHTbOoQtzzWD6dPyKUpK93z0kblpfGOgJ59ynMlS RWes9JSDPc2mIzYr8tnwwcGPPAG62t5ZieIPg6xltyJl1c5JsilQrB7l7/7AWbbmXG/3leIkVl+d HB9qFJqt1NBpFjh6PW4QOUb5j8273t9sOjgDQRTxNuFKSEEUxc+/ZFSv84uVkSjyAMZj9F2/1MRc UNuNYuahloPSfe6mOLgc1GvnLHN7ohG4cXJ8wH7T2WMU5T1CgeKqs+A1okgw+WKLX5w7zLCo9U7o Wde862cuthxF4RZrOWoY8FDIEXNYGJDe75MUydx2v2Mu6OY+o0giKJJNQZFfj96rn/UG1VdesNJt tv0Il69ZZ9uzweFYsYbZFW9q18Aub7u5zJ3X6eZ6Wef3I4BCcfNQBJI0LZTBMNOHKDCR/iXKw22/ yR2gSPg4mFFm1JuYjrbeuX77Yw67hCkUNw5FmZGHBqopMmfXVFKcbUaR1Jt9jZWezzHLOP67Hv7R hn8UipuIIt64FBpkNNT6IQDbv/Qnx4pw8zf717s6e822UsDLvla/zXpXoMaKm+gVx6E6SKFIZrJ3 bSmKIv0dqs7oYCREqm5eEmoKTa69XW3ZAhR3+JCpQmUKUrWyrlCMwTEG2WelwiEj48HHTvj9XUER VjkU1QpF5RXVsQUoinE5iE1P8iFp+V+ZXVtfvrTI/9T490PfgZ+AuFGgfsprQVHueZIjHxbcFAyk uQOpcbbswujf//3YAW8s87EpFtfmFa20xljS+qYRyKQPgVEL1Z6B4MLJ0mE5R/HbPx+7gCI+omap Ac6avCKFmybqQj4Uiyd6qVks5Ohls4YSoKXnWmHAxsoBcwqi/7cSirLSosY+z762TihpeMcL/vQz OofJYo4JIjU/y74ZKKKQWOMS17JOHlD8+BL19Po3tUdChg5qR8JYPXy2+ACKwa2Q6cYW2eEjlcb3 W2bt807O2gFmL6DY8Vnx7bY1eU3HlZbRA/9mX9oYe68T9qHOYUO8Io/MWr1zXnVyvLx7SQ5b9eZ1 /fmEJC8a2hkK/C0N0P/tVYA2SMH27bJKT7memzkoaNrN9SZRbCKKrVSIIhDDEgMlfLjG5IWV4C8t CiuhyIdZhGLiKNGYaIcXIOzAGws6MeVJGHXC37nFROcTdtEYjdrNCbuoNGkHy0A7THWCduwEGzNh XImQGbvDUWzQoBPRWHgyAbIxGqlEsRLIxoJOeBG1c6dkRuyE20XBv3YzbMwcnxzZzSk7FrwxiicD e7QShHZjxr4hXpHx4c+Zd8563VkUGxMopvHyIIpWiGJ6RRTTeAHTEjkaNgbCDukRimO77AS/vjQP JKPfQcQuGosgOuI6sDPRGISNRegxo1xH6bEgYg9QNNAu6Cm3Xdf1EqNKbGSnwARakcb4SdMaIWch cnhSIjeqxN9ZxA44JYqgGDY21x5WMoOT+A6i9olKQSeJ6cZAfNYNmbaQ6tGA6FUvV69dvXEU+/Xm 48grvrVSC2IRg/8nQC/czUKXzl5H/c778hh7r215JzRam6SxPd4AACAASURBVEXGKQv6g8kvsOHi 8W1ehF7DCiAs6GEyqtEPvQP2GW/7k6ct9Vu/eHSeuXM6KJNcrF0nh7+LzuDpvNcp/n7Uw2kLnZgc UJkqZTUUhXIlhXmNzbVHTrIF9gXTFmlnC+z/PJ2ZnAPxWYtju75v55fOdeZPQ+ZNGmDpjIKsbodt nrZgUof7+8ZAL903ciR5c1/RSOahMeATF0DJ5qV7UPZr2sJ/J+m23T5t205C3Vpcx7RF/vaZlIGW ys7cnyRxOx5ly6eKezaDNkjetwvptuubag69loU/alBDH4siB6LPUhBZV15x/GnxVg4Pzo5rV4hy i+vxioIqGuy/C7JxUHhfsXevUOTx2fJsv0wavltQi3/rQ/GDM7x9QlHEZ8ckad/11WBRoRgriqe2 3eDfoue6xypCKxRjOygxHdvHLNKnrnuq1MAUijGiWGnbHq74lH23rQaLCsUY43PDtk/F9KXtumnF oUIxpkMnCcd2K4RyFAuu21CDRYVibPG5zOMzaozwSO27nnqqQKEY360c1y6INXJKfdc1FYoKxXhQ JFQsteAmDEoc180rFBWKMcVn3AohZbQpd5Cuo1BUKMbiFBE/3JGDmcUBTFxwUTsiFIpxOEWQSy0y ET/FBZeK2p2jUIwlPlue3T6WKHIEG65bUIKdCsVYUKyIrRAjGWPLdX1KlVdUKH75UBHkUssIPiBt 1z9WEVqhGMOkBbdCVEbfOEcQt0SoCK1QjCE+l32xFSL0imXXbROqvKJC8cvjc962C2P0gFAeodN7 H6EVil9PYqJg+/mxMBf/IAURoRWKCsUvjs9pX2yFGHtFcuy63m6hiFKmlDKhfc0ICmCLJ9MN8eCd oTOpiQ0KxU2KzyLPou/61k4lGJdJDBjoqHMtdNcRSyaywRIm9HjIVMpdhWIc8dltRIUzuQNxXL+x Y26RZY6/c1d4eT/QSeapkkI0S/JF/hBY6Wk6RYNC8cvjsyW3QkS9otwSYWy7GyTjfM5UzzxkTzRy UzxyBpmLQrGvUXLZLBYfM8/FYitVbx51UH5YoRijV2THtu3IB8XHntJ07XZC3+6HGOWj76FTTJY6 jVTyrn9499LzBjdejiSHXfOiddl57DlXPWdw1j1UKMbqPIxTm0+XjSmj5/r5rY7QoxRYo+sCFBMZ Zpon+lu/102VOlckM+yTh9bT0VW9ODhrpXqOQjHeKxZshZgKbmJLhLHNPhHKmAmyHFwXoHqAoiZQ rNYQxRaiWLyqIoo5hWLcs5aya3sGnZgt8xdp121v85YInI7hpDjMdAFTKAqv2ALhFQMUVYCOeXDf sNH/Tbx7TMjs4ZaIHZpDS6/Ix4ra3Uu1luvJsaI2bJWK11U+Vuzm1FgxZhRNL7IVIjLQmh1BbvUM WnjFVor0XrNeLnmRzb5kLl5Kt1nvOjnMZvvcXWbbj5OawwrFLw5jGIkT0+4P47a9WwsulIFhMADT OmQkaf3SUfOav9D5C0sjDE3qvmKcroPkbbyDCLPesu0GD17tzIHT6VBdaJS5fCQ3zGa2f3yysFqo TTMheMzkC1AoYlaI6FaIyO2cgu03tvsu9+QnYmMUogeLlmtEcYL0INlnkPKTvSe7tQcootCF77at 2S+bf5jKXHe5/UjKpyZY8IJNm9bmFfkAQWzESCQ0/t+EgYaEjg6RJgz2ntzkzqMogPPmAYeQ2u00 H2KRfT0+W27y8uhcJ9Umyk1mnouNFJQunBMNVySLrV8kIjf5WRp/ZIEs31w7WW6fPjlhZ8tEMZZX YqHdKOC+ByN6Mvj7MHS/I+r4IeVI+Ez7O4ocm4Ei1evPuAbe8/LH3+lZ96nDp/Ddh9o1kDMnf9vX YK81/lAPi8fnua5v4YRGecUPBmiabEoUv2vJO6lmNU9YDbAaFQUuWhqigNWE1fCiAfoXGjZmBI1J +/xO8CRbYIdZOw3tENjpVCfCzibto0p0VKAdOxG3bAwaOclGlUjatT2T6JOV5jfG3Wx4UqzRjE7O sYcFXh662A50ptI7djrPvjHCanpGoPj6O/uSXCY3OU/jz/i4xt+Ulh8hSzX+LKnxNy03aVgLNP6s 9zX+2Hy5yWmNPyqf7UuM5fpMNmoMTBGh2XyNv1AYMNT4M5Zr/JFFGn9GxE6nNP7IAo2/GS2/LdD4 kyhmylqv+2uJ3CTFt2wgAwksTGzFXFFuEr80wCtjjBszZGPcThd1gjqfELX/j71rYUqc58IBG0gY pZ0BQUq5lftFQaQq6r64rrsz3///Q19OUgqFAoUCFgiz011PTVLSZ89Jci5PZK0coAidxQAznoPw RnTWCOTQSFmUo2sS6RmWyZQWlMiJ8Ato6IgYBHGXIBY3Y2Sus1iE6cH5Ruyt80YRcZPL6bIcLmzG QS4GgUvMuemWezQiKxp5yiNCHhIooikU08qjnv+1gW5yxgS/h7XiKuLIhUGW5YvLV7Kus01yQpD3 0Zbda8bOMnUPYgeb8kCJCMHE9RjINaZ7JLIs93zGFXOw0DXZOHFk3YSGba2oZD/AQNebnX/Rvv7f /Sfbtnzpw9f4e71534o6dJP720FvQ3hPdmk0la/dQVMfdJPsC9qhYG7mSLvRrJKOF60kdV08mSYl 3aRbK2q/h1GsTcqlPMq+1MVhzpDpRW1SB/t8WGI1zt/Gl9CQTWZnnGFl/XnmEU8VIUC2usrR7IRE XOoeet8+aDL16NjuPs46mc3c8J8P7W2hXGdQzP1K2FYYiISm0nWS2efYqpAH9sBVQ9UpudTU/EN4 WxgMYuwvdokp4p8gZz8cnG4So4oZRTSbq6YQfq2mCdVeqze8pGYIlCLlyVQrJ9qpRSuhuBetiKaL QTfdpMLXEfSwWpFgWukMYGVQLj9F3+tslcCWCuV2niihgCJam8DilZYqoRgUiju+qn1A8bk4QpXb 0Xt9PBlWPj5r939q9c9QxF5xV4u1Oq2PQl3khWR9CcUThSJsm2r6CGkR9KjnsfZ++9Z4aT3eDsMA RagKwcuRrP4Vh82FSCieOhTZQuCRQZGgyv0nJZV7Pa893z0M8iQEUKQEbSgBQVZGM0oonioUafaj m6JEe+18Vjqt93JItGJMFMZZvWAm2F2OVkLxpA00QFF77kZRdjLOQq4Z9zvGQoBEurlcGEY5VxFQ CcWThiLbtjz+z3rQx8w06/nsy8Md21P/vFYUvJLttedK4HDRPfIBJRRPEIqEakmmEDOZnBnVMmaa IrgqIfC2TNl2155fs19qX66FPreMP4E69mUo5NPwP6GYZ8I5yDeFOTs0GlRC8eS1IvfIY4gkdaWX hUAp8lDFDQ+CUXy5oo6E4mlqRffhCJommYXDPpubHpq4KNckFM8FimH6EJSxDGvzQwui6AiSUJRQ PNAHCyK/jQ/NHS7nViXicqBItvjQH5tmTm+K6MZJwCXVKFykhZZa8Sj2WZA++1jfxpj6VNsYSSie HhTFhtnv54feMEYFy9B9AIxilOtxh4uE4glCMZa4Svj7XCWUn1E3MaQbzOz6GBxDSISRu0QLfRZQ 9N3s6kegCNRNPcNI+qnjwSw0P85BEooSigdYKYITxSj6mioiHC6XaKElFI8yySVDbRKfUIQSyeYF +v4kFI+iFTeHQsxZ6JKqFi6QkldC8RhIzFlQgJv4nNgCD4lYxiJP84asbrtUEg5LrIeE4qloRbYT MdS2z5kSVSKsjEdlWpHmbf+F56mjJBQlFH1toMHVopp+N8UMYLqqVpe1ItOJJJO7gRIHiSgilVz6 vIy4hOIR7LPZM3r+y73FUNPiIRFkqaP3crmbR+j5KUp4mncoErwlFE9GKwpo+Z4oIkIikku/D2Xa nir3rWitPqL4vVX5+HNWRz4SigfXiuBqYQbX98jCQueWtCJWGvctqNT2dzDiZc87b0RCUUJxG/sc 76lWcouBnW2Oe39MFDKp3/dGje9iHdK8P4rSQEsobjdRBWuraFjCQyI8FpdQjOq7m+oPqs8DBWmv L5/SQEsobmufC1s4lRVmfIsqZB8sFtbFSq08RP1B6nGgTd6yv57OqpCEhOLB7fM1PyZU/A9MhaNw 8dQQ2L5/dVOo8vHw0CL9hwd9LNeKEoq+PxhPnSfbNOLhE0s2nRnozA0lqJIzo8w+5+KK9LashKJd gZguVyDmCaFr38eZakWh4bYK+mL7k4h3UBkvXMnpEinlWxbpbVkFRbsCMVypU7KcCl+VTTF2aVoR Rfi6b6tQ2BXrS/gPDVOJFeGDVqQPeo1WxOi1mUa08tXOI21yC8QZk9JIYaucd/iBXBoUIfyQJwgo WwIYEhBW7rqJF8uHhKKbQojWPoojlP0ovQxS/SIny9C/9DdC+/W2Q5aBFqlHbC6QHaBIdoGi5+Bo v3L7JhFnhNj9u8Sr5ZwcQiJ6hsUXmMtkkisaHU6+ZaNwQJEQXlXuUR836uNNFEIXoRVJbJdUFcIj KKqXlVaw5x20qED8qOcb98M1xGrE4W0UF1BueEsowtvl/WwDxdiqwaed4aWbQk685GSjXPiTMyg2 Y3ZcYoicyWc3wW9tgN96Qe6XCXIV3aRXZzvTTZIQ002ug6KbbhLGu4aYvAxkcZhginJb0k2awJOY w9tA8SpuAi+dCSSQzuAZGBw6i5nYlicz83JsAtljhkzl4MNjN6dy3ojOyQnvLBMDOU9rZpACOcrM 5EAOCVyUTiMmp6wzdjMJNzNJKGySBEJNIHWcawQ3gQnSliMYZE5ORGcRLkcgZ+MmgdNtKp82mt6E bwKXyHIj7NEZe+zpIEuNSCYZGiiSOSiOFg20A8UpbCmaWzmCm+E4BpqvEuhs049cvNqzh6Iu6jHs 3ss6j43RYs0H3o/4clDgE7IDsDPIbJ4XtnCYulZaMVHuafHN0oWty6q7aGFq534MYPPp6Rnoxn3r Xc8/DzKdP9mXp9fyUIs+lxK/npy14l45/raHIt07x98K+YwVaJHAftYj8uTsE0XwuI33XW5gzxx/ 23P/hWjbwqFYGiHS/+590srHXSlPXr97T9lOK/sChYgv7TBn61AIR/+IfJgY8l1uIHFqFa2O4/iD /xyc3I+KYpvZXJzvDg7B8RdmKLrs89ZNucPlfIurHRqKNoka2Avw/mFF/FM4/pQL04p2xtROJeoo LyPfpBKKAbXiETn+wqwVndLaO2lFCIlQJBSDQXE3HXKOWnH3csYERyzDuI5LKEoo7gOJ1wFoWDCv Pha/upJQlFAMbp8DkFMBD6ph6PErqRUlFPegFYNQ9olKtYkT1Ypio4oJseurOsGreBq6SiUUj/Yy FF61c3ciUwz1u5u+LXQYtaKIURVH9nQavApH+4rHHlZC8YD2ORC9M3tvTWah06eqFbXX37+rN6jy e8RdXJVCAjFZNY1AFPU4Y5ZQPKB95qT3uzrDmO5IGoZ1Klpx6vS0HwIrjU7xtptvdMr1TwXhWrlc HmuTcrmUr3XK5aEiDfTRXhc4x0tB7DP00NtiDx06KN62UETp66P+IIq0v/+Sv54anT+18rCv5yF0 VZFQPJ5SnIZCoJ3VYtswSunTgOLi6gS0IlN+DHSPgwjSnIjBr8Kkm+qX8khC8YhQrBqqjgkJAEXT MHrpxClAEWIvMQQxOlox+9X80sf9RSh2CpOShOJxoYhwWzWaKEaCdNEzrKpPC/2zUIQAYgYh7CR8 U1CMzBp7QFFqxaNCUYRCBOPTZY9aMox2+hSguPT1aeW/ca3+1h+kxFrxif3hcdSf/VLqbzcv14pH hGKO2edIEC4gtgWo+rfQodq2EGagnx/uuqnGx13vM9t5q33fFdkO+vtukK983BXZDppIKB7rzaCm arSD2GfoJGIZlnmCWhEwqWXMG0quzasoTqZw0kwrjiiuSG/LEaEYJBRitlgsGlbTn4UOmbeFmWhE ZykS3NdCeQqFnYIhj7iP9LowMi21eB2Mq4+9sqZhFNOJE9SKlDgItK+uH5D0thzpdbFRuKslkH2G KTENvyER4fNBYydpkltsOr2uON+SUDwQFCPMPhcCluJkz5oQFloGiUko7vhRUMYClgEccEroVRtC IhISihKKO+8fq6qqB7TPMCVxOM6J+znOOUMoTpeVzvLS2QWR+Xp+Eorr7XNJtZpBS2WzHXTc7BlW IX6ZUHTqIFCnOiehXqdAEoprvksyWCjETCsmSqpR8mOhzxGKCF+nFVCFWvKG/U21CGQ2RxTtRpFa 0a99zqlGMSgSxZQUfDpczg6KgMD3crkVxTQ7qZdGCNPHbgqh2m3+tRnFEor+vkqszV0te5iStGkZ PT8hEecHRYoqndakPiaoXx/+6qYI7d99Uvy3N66YUiv6/SrXPaOX249WTOiq1fZhoc8QikRLKq+d N6Q9tyGYhyj9u3+pxndvLLWif/ucMdQiCYpEe0qaKjhcri5wrYgxyr50U1h75nFlTCvqD+NnvT7u D1L4/+xdCXeiShNtlsbGA+I5GhcQiaIRF5wkGpeQPc6c8/7/H/q6GtwmCmjwfb4IM9OT06ZQrpe6 1XR3lZhSMdbAl9LH+n6pKYBEKNrxFPrneUXYqzXRDcKvqfhnYrlmSsVDHuXUa7AUIgmvKGSaOky4 ZC/PK1KF9qw51AaZWEsqNhZ/GikV4+uznKOjXu7bTAyoCAqtq1nhAoctrcXgo5OZjWeu5cJImlLQ G7eGKRVjXwgxKXkSKAXJIKEKXdMGzUiF/onDlsbLy1Wn9DEi3lWngLDcsnmEyu+Fhp0OW2I+yqGS aqJkvCKlYpMticgeSUVWBwGLLEsINBI+0yJYu+ag4TPnc+oqy7TILkLE4rZhSsWdh0yQQgcaCiEJ UTGT6dJBkHo0Ff1qd2wqly1oJfg83ecOr4gleojsB5YoNijLIWIcbw7aPwVm9jI1lPyss9KFlJuE HSkw1SKRZO5OOoY2a1o9K0Qo9F6BJmL53SzQ/8vVAsrPzMxGbYhz94qrPMZhiWIjvSLxy8xgf1Yb bkzxIspNUj20qKAmUcDeh4QGiwNtYEYp9D4qYrHcu3ZHPMrTYD/vta/18XmWkT7BIjEsl99fXu5F PHsZy3Le62Sh1NHs5Z4nl+EVOVb9hyTmFf0lEWr2OIHG8o1p3NUN1HAfUXk6gjI60qVQUbwbWleO fNe+aj/mX/Ura07ku+ur9nLHIfn/1W3B/qK3Y+q27KrPIu94EaFqjekz2X4R7TH6Ws/Fb1h8x7yi r9CZGAK9q6QK9dJyY9IvkEl9LJaffSp+rz5LWD85MyreZkSc/z1i9+Bng147nloXUm6Sfhmwjz4J fV5C4iu0HbHxb/8IGsveYiTeLOpUpj13WH+8HIGmXpFe70bGni/lJiWoBcfBensFMlvkoMhODh9W 4y9HVQbn8GFUBCMJiutx8Ak23nx5snW/stXvG231k5wE/WCkkLURIlSfS3ijX/b7g5NBYUAF8nqw FzlC1v2SgrdfRIR5RVgSUetGKHRWoidDRIEr9BvIYUPPSkRZudOpRo+99pw0ev0CljEMqiSO/gZ8 MgwNM+LASGENR7b61y/CmzAjadvI7z8vryg3uvbkVg0rN8moqKyoKB1NxQMFGgomAquIz6q/KAcn U/ZQUVkZrakYUHSjH74ZyLm0ZNUXKrL+jReXRptUDCgqB1QEhe5omh7pFVdUxCuCUCpi+a5rtOpz Gi7etedo1gOniCF+2KDiFqu4r1SEhqz6yU6jM6QiGzLT2zCqCK/fkH+1CC/e9+ZbxXb/7mcZfLdq /O3v9zPR+SV217X82OPuDSMS9ibBxnXo9yGBJRGRCh3Eiqs6u8sIjo6gnysVhy9PKwNHLE/7vP9w hPz8WJGwxba/bgu//+Sno3Lv86b3htCExoqjC4gVWX7OhypKZEJjDUlT16KWROx/rijnc0UeIdqK CHP8uc4PnoKKcBsO3uTWoqLP896i0s9NnZunSn28+oKWA8fNcedxI+hji/BuvO9fg1iEvtcPWYsJ jjCS9/T/bRR4RaHY1TQr/MliQMUdJ5NlFNT83Xjz71RERWH9ZyXQRKZBhkhvQ4WnYsMp4s37mEYV vPzznyvKfi73RMbPcLIAkmzRfNDqzYxwjFfczg/C9P9CvOLyNlxTDMkim/a8hMqnrMKFndC7rCCB JRHagxmq0GErc4JS6jI65+NEw5bls1o5aIOuH09FOpp+qD1wJGkqCkVL07qhCp1mh0hX5mw7RfOB 6jNJGpKs2qlpeqhCp1RMqbhNRagRmTgVhdWSiHhUJIccKRV/IhUJxoOHByV5r0j/gwmXMIVOvWJK xa0hb6nTNckJqOgrdDZkTcQmJGzJqcTH+htRMT6l4n/UK6KSbedOQcXVkoiYkMQ/xHNxpikVv/eZ Ya8F2z3CfhRR1ba5BE+/gsRfEhG2w+VISDIpFX8CFVcrLVfPjhXbruJTQEIVulvTrMx+hf5PVGtP qXgyryiTnMBTEpZLKjQ81ecSOQ0Vi+ZAq4codErFi/aKMmm5VgFj5HUN1JjeGk3bVtBJqChkmnWt ZhZTr5hScScVcaunG1DlcyRSKtbH1ST1eQsSqtBWTetmMikVUyrudovetYHRL31OJLFl3Vftknga KmayxQ4sidjrFlMqXrRXpG7R0w100+u8mzy6051E9XnbKzKFfjCLqVdMqbjHK+oG8Sxj2gcqdmw7 yTmPLUjowEXXtM5BXjEcUCGlYgTuwnFUjDITTkbF8rRyvaiPUYtSsYlPQUUhWBLxUNu9JELYC4mw /zgNJD+Jigy/vXMDAtujvgN3MMuGmbHfSJqKIvHaRr5kvy9uDXQ37CSqz1uQwEXYA00zi18vjv3G LkjoZRf3/hGEU0Dyg6jIksSo+4/AQ/yNe7QZAH8Cr6iUeFjeksvJqGyaierzBiQZdm2c2e02uS/X VmTXtgsSsOJUjvvyjzYMSiGlYqgLKHJhR3GPGkWZncgFwCQLhtk/ERWryerzBiSMPpyUq1abcSER Vmb7DjX1ihG4h1PKB/4r7tkos5MItAy5FwI2oqZt5+LrM5u5FkNzHX6BRLVtW40JSUwkwyEJcjL6 E+2XJ9BrrNUvbQju0WZRakS+Azr9HFQ+lfib3oIJ7MMgAbZzHC9K0OBwSDaR5CVoRPhxyywCkqDA nowIOX1+0LOmIs+tAZSWnVJM3KVtM6bQ4bijb4BOMLIHNf2AVbPUnTZexmKMreEb1/batppc+ePK 4bjZVccIMIqGpNUpco2P7lgK2gDJcEhYOalOgTZXToGIF+wV+cbHPU+hu7rnOO+a4R7HBYAZR80s ivjsaoV7NBVh7zp9n+NAJxKyalrngFARizfTisMfQkVx0rYWffW3/jJ8a7ndXr8QDQm7nbnnkao8 337U542e1dPnUixI6E15N9SN/Gv7xXVEfKFekQKowjdVyDMAvWHXHfF+vxSF+3Qx4stP1lQ3Zm6/ pxtSYBbpFWXitTvuKAL0PTtERKmu1ZpIjL1thMhSuXcQFdV81R4/3Wbex9zzJyTrbxsxhaI1vOcb 7mPj6c1rz++uH7EPVSQVqUNsG/nZGFIeYfFyvaJ603MKXLPYcN9yWeX1thAzMFKfR5zSLMzcOcXd u37MxxVoOT/py6/WUaBjVB1o9dwhaBDxICqy20yaLfpZjm+1HxkV51LAqXBIpOc/1YwytT7g7nQm 9ZiQQKwyaxs0fGZ5CcmFUhEALgMVOVh7BUGSI8V0ASJVIxpKUfkCNeob3CFURK+WEUZFyBG365BQ t6Z1JSq7G0f4sASLB3pFBoluNrnG04hbUZGLFopW+/75U5nW25A4xq0sdT1EKAKv7lMRcj5ddqzo U5Fv0diG5yZtJxDoyMCIBypK3jWl4lN92DekWGoUk4oiKmZ3zaJlM3WYCdnuKyIxOa/IyDOxnKqd e+4XJJ+KsYSCf76tPo1mw3n5+RPzM/cNc3shkdFGaMEmk+al0sQy/oXsoOcbKwZUzPH5p0+lCCtg YnpFoKKS4xtPj790o3X9RtQ4w8UDqLhrTnzXLighnIqHeUV2I/4aOrZpT+v3paLXvp+wmIWPhKQ8 HQ7/Gdiu47lvBDzc7ocKaxaybNRY4nJC82PoVKfDN0UVCblcr6iWXadw4zrvLg2MqlM/VuTDXQDv U5FruVBIGL6u9iGxoqc3/fyDB1NR7T6wvaHb/IzyitP7g7xiflqpVG5Nl7afyqRSv5diPlTA8vRN el1QaeZnvSUgHL8BCXAQ+9t0CJw1V2racHy0nfcefb9/QaHPWqA/nALvLYajQnla0cdxY0V+4tDY clh3ePi6nAIXV6AJou9z+z/2roU7bR0JS8QyUgAFaOJggoGYUErLJm16kybdljS9d7uHs////+yM HraMbWLTpKf3nCsSA8ay5dGn0bysuee7NOhiKBYHcD3BFfFsrKZ9S3AvnoVw8ww+J0ZT/ymrPwgs PlZgxjxuph1r4uYeY/pxMb8t42g5HkYKh4+zWRjHTfprXIN7QpFbKFLC+TNDMXVXKaeCEEhAwhNj NWJhp5eroSoIrIyr/Fb2cmn3hxCkLhShR2F+vtl+Buoprig4Y1UcfwfpvXU6NJ5FzU5ny5N0WMkX ulWLqhAyi0LaDuJoMr45gjJaAgjDMJZtXCgZH/B/8WxswIz3giI2z3JF9qwruKETXw/aRsaNR5P5 t9Ms9EFvO1y3/X4VfP+c2ARedbkihhKq1ZVqcsXKJHFcSUE4C5z7LCVJKnY38t5nwxThsGNEoQzC hUXh0ehmtZogCrW9gP3cssbV3aApFGtwN3Tk++1BD7AYsudKGecsJoiBTfZF7bt9a5ZHRFHnuMy2 YkQUf9rtV8wVD/Wacwe1uGKNieKg2UnocRxFkUOgJNqriCTNXXFzx1Ca8SyeWRQeIQrH48kibHPt kOe/BIaG8oxMEYpr6ddx5DPSXm+gXqvXOgl28EWuwjo8XPGUwY1VC0NBCqalmXmzAZ+FcaL5amnl 54oTTaGYseQUPnbyTFzRxMBiuKuKeR2uQFXPx8Du5nZfmgAAIABJREFUjCY+SF76q0ZhtFgOVw4K h5MobGsNhv3kGmM6WKk6jgGI8qSFkOpv1jWwCEgEAM+X6/V00x8EO1Y7xXPazJti9whLF55GCiav A7O1X3dGzyOp3eOTWoc1o+dF4t8Did4tPj92Y8M1HzzoREUP4z0XV9T31rTGysnoaOLYNu1HTNpg CqeFtk9FCsBzR6FwkkXhMopVWBFHwfCnPSsqnkf3flXmFgz6m+l6vZy3+tOqyjCy0pP+4JHhleJ5 f0DLJ3cuunezDkahnIZxg/BK6SYd8pc+XED1YllIN1pjrSK/RsEsyvm0rqRznJnhoHlxfIjwyK0h 4nBFXmvJw3SYZUmiP81uRqvDzDMq+cd97NGGcZo/g8JlFoWTLAq9mo0s5XKn4WGjKncDnjjoz2GC hXqPg/5JVc3FJ4+tTUxUfxE66J2U6jwq1mW6POPe6ffpPLXnVs7xZ4Li88VzVnDrVC81J2hUzyht t6UMgiCO4zCcAT9ZLJZYJliGqoxvRqP8OpzIFd0cDLUkJ+JkKMjKpc3VaDTTgkciKqjRaY0FbSpj XUAQnGn7oC6L5WSc5YULXG0q5YV1XOgF2QQThGIE3Kfp8Nqrpndjtpv+pVSQYiTc9OLK0/q0vybM ZNyJexu/hKHDr+dfP15MvxHvw/z66r3DJQqyOhLPPg+ZeTpyBn2+zL8ADgvzmpgjijbwWqp/XRZJ ifCFf7myyIBNQw3LCssNlBGWo0wZGVdL2n6VPTfpWmCm1Yuf5g/hBTbM4+FoNFYNMwPBFufreLus VPNvRhaFQ6DgLD4Gzq6Sd2vrNvFrtHK3AsjI7fC+susap+fWI6bQ1pp0b8oqM9NWbJQVaP6gVWYK Anqe6xx/4mpydjFsaigWJJTiKpvV4WEThzdumk3z4XB1BP2efx0djVIcIDLUzuwGf9Dbo1G23Djv N/qVlDzQSgvWxrK6WS2UipC0X200V1SZ3UkNKaKj6jDceOnJDtQGLxJVb2C+JChErornZjqLlnK2 dKo38oDojPUiSW7FtBqsuaLXvV2+gk4nFaEY9uc+s/m3gtbGrwjFeDOQJmgIoDhtrXdD8a2C4j1C 0dZBtbuN6SYlJvoL0J4fMEE7Me1QGcAmUBsJm9XRi5f/qX/7KkAalvEYmM0QuJHms8BXl4qHwrwX RWFMZVO3mHYCtLDgRmIWQHWHEg1KQVv9SOkxbiRaB9UdJvvbej90g8REfxLmTlsJyQKbpkQj9/jo yB1UOHzSkYTjQrfYKcgWoYByMotjKrxOE5+CRLtj0MYEg5jLT4LeI1ULZIeaO5HZFsOmiS0+kPjM l00A2JYq3WSAvRmkUHxXGYooIP53qvIWa1Vk03shKAJX9LJQZBh4rzI7UpVvEWmBOQv1fprsx6kq jsrLchHtUypWQ+kqDJXQBaKilHEIsPBVSkXfykU6GR/yAoqNxQSOHGHEqMrniBvQCfBHon40+/EU vlsJ9wt9vK9vHzCIRmbKhKmEPUVVmsgA4Z9KgCG+VIGWRlGclOBQtRz+D+CtKWVbSb9MZZoUKi0q nBHP70vJdXrKdD/avjF3JdX7dRpVnUtV78chI23aSopJJylt78MVEyjab9WhWHmCBlnx7Tfkit6H 4f0HO0FnJXS1UaZ9m3OJ2U86EVOpPYBjP/H6dgYNBVdJyCVK5FYwF57AexMCptq2NLesbDyYVBR6 iCvriVK2uZqfeEZbRp7fNkuBMkf7tN+ylcx+dRFkV1v7k6+CbIeKe54n4I8xNXxNdyBxPIGmKXRn cg+UNp+xbAZ0fTEmJeGcbF8pPYpn2m7+hc4R63ZkEnWEWR1v351VkhWFmqAZs1yx8gRt1RYj6AU7 1BbQoB8uL983H95goNJHo0EX5KJXBCrWrFl50RaXPUrtaol10XMA5SiOwtW/thLes63MeCKLhWzG vORHwvKZ9IT5tLuJu34ozeWX3k69zKekTIMmF18ux9cVQ8tQbdmExFcnALWlVVFtgWOj1iYg2J8g XlzuMuZw0r2bnb3+fk1OQ7QvilLjRXmTRVlJ4hfqFMIEq1StsI31Tb98r3gRsZsk2oZc6BBhe3nq 2D73tosk0L7zxycsyVvGnCnlGlJxdWMOssXeIFYNac97mx15xLhAs3uXNn6jVDX/lF/jUxa8jv8u GPSnqMfCXF3DxI3a72VvM43Cx5NNb7PL8SeUO1Ok7yUNl3SfZY9YIPcZyywI9qlGgmCPjKZAZLkH YwR1Tf72JBFEtsu5ovZBVwstQ/v0pjc4eQyj+aY/17K8Qo3HM+9WnDBQQpsXXWJcTqvXn0vCnwgC FDb7azkpdERSbVrI9l50b+9TjZN9qulhtg8U9xudv5gkdEdYba2JEI4N5hpSraUlGMfYUQU7mz+b 5MANorgv1/PL+Ungk7/f1Mv3yOAkKiwsUh4R8otEzP3L7oDhXXPFs03ohMUnl5fztUxgB/Lm2+Uf oI6rpRJAyv/wpkHI6/XZ3aJhQu2NvKochn8XJPLfLxvyP/LztgqENpEkcThapb+8+zQ8Y0QtlfCK iavVZ8GvVvfns0bSnQmLeBZybrEAznk14KS2A2vnKJYPiDtgXL0vMZKJirTitYG9zUytbU6o6af0 ZDy1soinqZAelBje80xu60w83cEda6gooJ/YNb/w58Qid6wpcNm7+f3F28+keztBczn3rjY/Gq+/ ABSjhvsA0jOmcDX2XBc8BkEpfYvIwWPp1Nph9UC9yVo5tIzOXGpu94+oq7YYcbjEN+WqLYmBUS9q V9rNoEgatcVpn7mXAlWVJLCO91ZblCk/g8Xc1fJqi3zW9SQzkNILAmgoKiciF1fz8f3VeH5/9f6l 1k1Rvi8HU4xSjyfOFyO82q/uvSvXAlCE+cqRYCukBwuQIjzl0MAlsRSZ0W9FE2aq4vN8T6QXS2qS DL90ZHSs5luXh3V8CIepcIeVgLbjiPY4JKgPG2iV93r9hzqUqSZmR5vW5PKUELZ1toKe1lgizWuS qB3CaRfSwBemtfoehVrAzxiq8d4wII5ZJmvvyjTO8e8IknjGtJfypebsAii++/rxy+IloeiOfXwE 9GE6xAeEzRCF9y6KBjx1yGwPzrv1GTmHjrVcW5jF6bjH76JXXSqyT78nYZNMXIBY3L3FuDpdATrf s2vb2evlmqjl56SDVLeiN1nYZfGy05pzCkFOv08n1zgwGLlCvxgcd4GjpEC74aT7MJ2+adjzYfuo whMxAolQQcn6IHfQnD58IyxZGNEkIITLMPMNUcrIgyKJaR3qBnM40StokrkrGMcUyKoaaQanUJRN bvFFhd0iKP64++v93QtDMW2A1729fHM7vyY+9q4P0CDdr3+ijgQgwf+cNOORf0/vycUUqnjMZ1iF +w3DXM9jXAaLnBf5ehBTf/14BafHCsgWfO/uX5+5B5dR7Jbjk8d5oQvk5x8Nzb4bKn7D9y6mbwjv YjXsMTxZ8Xjr/mc8+wSzDBC2Gx7CZX3aOAUhnOZvDDr6ahw9XH6Du9aN89WIYv9n72p7E9W2MOWC haZtSChSNaio+FqVIhEsikptk/P//9B51tobxXbmy8npzc3kZibTKbjZay+evd73kjmB/cWiDuxq 9vejlnIFxeSdoMiFCjSFbmBEFto3JkQwz4R72sfKxiekPQJI04OovplWbxJF1jJU3YZNM9PhUKqV wD25Y9WfPn8FKv3teN9s+Q9Zt7+bkdsSPqwPg8WPKmh2xeVrHiYrxUp73GDS2ufFyPZPYSud0H+K STWtaXBhyxmKbwPP9kf3+9wZpcWoZaXOJFJS73HXjt29M3o6K+hSrRAU5y+RDihSJ0ad5tifVjY+ TVLZAAkssKStWBnGUKQemMAAPbv1eprRMBKWikFdOEm4yLWd413sE2KTp7dZp6WnxSTG+pyxP7IH WNhV9T0V4ZjYI4qexkyGeyRODObNVpqfOWEq3FtJ1c8tbcTaGIo6Uda3h3nu9I/F2H5t55PYwEAg Xzf9YrRd0byxKVhiusVMJfnDj7ZAXeTu2hGkYga2tBRcmMTDAi+lXDkY/5MKms8AnNqRm6ys9XNI Ou8VQkXxnVY2U3+o3WPFbWEovhM0l8HktLJ27fz0Dp/+afkyAqjCoh1ffAdhoxMUT7M8ab9B1rw2 H2lIO9+urMxL2i1c2zU3fn48yWqMittCUKQ+jLt3/zSZhjbmOB5P7/q6XSwiWvlisl1JqVFxWyQU ofJOk/mnlbS9STyYz9Rle3I6aIaCy1tsW+Ob28L7/M09eg/7TgsjduETiI1eAS+vWLxVWySR2wIo HijNwN0lAYt8MR5uwxZxgvp2LjYG12dki473pJVlMz3KnhEUa5qVUE/Q4SksnsP8dHh9pjXSTAel ZuDeaTWcz8AiyRJIRW/fHVu7ZtHeDBaTfHT/0Y5fg83HS475t3jMwc/xOiAzeeWq/i+7Ld9CuWz7 uI1b5WxZcHPwHw0q1fSL8vOnko/e9vNhd4AegXSw9jNVSadvQ2dcgeJZKp46+ZShOAAUMeTdgG7x G/sA12zsdCttQMKXVfpVqRje7mbbAz49nG+WmGNAtb7hkcJYykfTS0Kt9FWupGL4YOgW9Oe02do3 vZ46dCJr2vG2K4hFXC6CjSyPkjWJFSj6u+cxpOKysxk268mBvgWr5TaO84NROXkjpSKgaFrr9nEa PiRjZT1Tk7G6xBzDYAOmuPt8BM/HL+hbY6hUTTMFSwQUfeegJCu/G1vTCFzMQhVmltsA3BTqMsqX Wu78TUpFiJ7u88weBJ3j6eB3J31bX4Zm2m2tZ5g5dSKMqaWN7UpTdLFyHfbQj0pFLsMz5U/6dk+u HCcz7KeaVVSCglJBu416shjlkbUbqxKKoc1QnI6/BmIIig4raCkVGb3LGWQpEAEoQoOt26PtrLRu zg4CS8XNYP58eA1tf04mCM+xbed5jD3/0Z7k3lkqXqKRpVSEfMo9qM5i8T7sgtY2KAYAly8Ydj7V YVy5ZP72oPjJeEmBss0AUBwTFOsQOafDl8ZxMBCgoGGqrDFNH2pKSWY3sBWX0FLYNy6gWMCssO5V czgfm2X6gQxIAUXwykhWoMzdEkuwxjSIIU4DAUUwFptgyFCEDUkKmiuc502sXk/zLVTKp8JQ1NYz v3tw51HSHBEU5coN7YdP7IvAhq4r/63WAF/dln0wShZR1vWOsbV91z4+LWiyNWAypMap8dfgHkEx 2CivwdsAA18eme/Y0Ok82i+osd263Uo6ve3nY8O+dl0IU3je8q93fz5KQpvm8KHZ1x3PeyIFHYCE 72FGGtYeeV6M+Y6RtR+l09VwCgXd9LxbmPSDOS7/so0yjCxowWlzky3eBtNJEj7sCIrt3nwMwyC9 hAAkcDEN1CmT4U4JivYubH182oq765Dg1WnnFhMvafYaj8fbI3eZJ7dlFx7z/v26mQeHYcBQ3K0A n+nscbfKFitoIdBx+vS3k6LZ4pdMRmdoD+crK+kcPXsw6cNhWLKCJqnYeUo6+SKazhrbT0CRV67o /3MJrH8jrngph6By23kzUoHIJt5zrGWRkTlxCtdR8acU5blESThkdwnmWPuuA7eFh6TjGn6bwAqz B07kT7vO4ZW4blZy/xTMgTfjFpGWdTuxlXqqYu0nrWERdGLsRiZBOduKlWHpNAiCg5GB0FrWDWYt C9afS8MoLITL40uS9P5SDkHBnHXQieA0jNVs2oyNPcQo3JYMpPZ3h8vL5WEKE6AJTuDVZ3311dmk lIgFJ8YaO9VWNsUTh3mviLEOwRIwIghgAEAAwm25AxfNLBo4U6yRZiIQ+UkTvlk6pQUKllhHTzUy eH5TrMcvaOkgk9yWsUKXC2fBfMQkSk0u8eZGMf4wKF7KUMRJQEhm8e06Jn7opQ4X1WYVg+q6Iooj b/gktI1e1spLFHAozr3jEM3XiigRSCv1tpy9zDxcLIerbIshi1sFtaTgBGUy6FwJuF0ViYlHlhW/ cp7yQq1uV4fRkRg+T6eXpdLcetkU7ZTMS4SVH8RLN0qWyLMBehmu1Khi2FTMc7r2fHpA1HlIlshA v3LJHZ4VkAag7qFBiMHlY64OFPwxUNSrgWTZRI3/1ekvNfgiS1VasZfPki1Lrb/KbAsd6TbkEF1E 4jCO7Vw+QCRfw9nY5kwHRmqGaAfBv4jf9LPVfPGtRMG7zgefanyuhUkUQ+UwBk+lCRy7ZGRw13SZ GBJjeBxRSoXLgr5qzlHGt8QT5Rkampk/Kw5TAFzcFU/Oz39MYonJjQQEUUSVrouJJJ28tjMdgi3M EuayHHUmkybEzDWL8w6Sj+USxQGzP60sw/ya0P1FWvfbF/zIjjzlW/8S/q/cYTCUrWB+nVm9JoBB UaXrUgBSnVEeeZIZEENK06qDJ/PGmlnutzJjd5VPZmmpV0+CXM7JyBNnlW1rVgsevhQ/XKjUTeOa XeXBNcUoc9fnBVb4L9dH2/L7azrnqC9lF/+vLiptL6sBtVa/08QRKBISXDCulCfx+Co3xqLz8ebv Yqnp0fP6D2lssCA2fvvte1B66a0GD99WdPFBElWm31N5jMITkk0hmnFVJvBiTR4Zw21N0ES/uH1b XuR2Nb+b+3wDhsbRu9OIUM3Cwr/nkOhYCT6iCKIwQ+9BflWfZvk9rWSMKeN0kisGE3n0OAAu7pbc 42XWSPDzQ/5oRLGN/s9KluHxahR0BId0mWxlPLKCpfIBesGEjSxSqyctr1+eu2s6zuRpHykCxpry 9fiDoXA8F09ew/sZwGXXFflVk/TwCfXwF5E90xiMuaOwLjJsdCbfWgdOAHfjWqLTVJov6jQMOaCc +6pYSSCRb1Dctet0Nyyj5MK/sMS0soXjNKOUwi0A7IBsPI05ArBpOpkJusLGOPPKFCyhJzed7pg2 mWH6niqgqolliiFsnJwrPf5IW/EfVs/jdfmnlzd3PbPpRKFVf9KsXs1Ke3hrfqN+q7hHSIbHeuNO tXZhLHvz/AqK28PN/c1NeuvfaS7cB7/xNWV9gWLy10olKFIO2cKzbyET152NUe8/AAWNvm19tGOK B6rsrhOmtEEQ3Wcd2/9P4+6+rrr1B//Y6D0ofuNJg4Cly6ocYIq5v0LxfENXluGt23hyiVBr/Q2K dYIiJW6Lzl2P2sk+AYr9ng0IpQ0bUrFWxzVKYRDuTeZVCcVB92Dd3/zN3tU2KYokYWSgGyaQIAIV Gq4RbWhpEOTFQxERu32J2A/7///OZRaK+DI3d85s3EVvT+xOxAhFVSUPWZmV+WRJwzY/eJyMYwnv pDDYocBzQMIdnsNRUvUi/UndljumhKb8YKmFMryRsmt6cjqSI09INT9hc7sbbJTUNOESaiSMpzIV FPlLYxuh6Ig9WZmtre4UHpabZl+/2Dar9AJC0TRigKIyM01HmRldZ+D2t6E+ga50ZQbDEAp4jalt jhAmhMjNY+kqVnhIje5o3tWhk7Lra5llmtrU6uv4cxsaeLBUU4e+L0TC1Rf4ieHIPDfxmDm0vIIi S8jnfZor+6uRONO60MNWM0Odm2AHZaKA6sNNGSzzBdoaZAVfAIoEoOg6wmOLS5OBGadj53VZ3Wku QMim3YfBSihQ+UTD/3S2IndvMjhG0ty4SGCdEsTcXkSavkusYFQa0yKBpRsUWapl8N8ulHeeTtWp f9dQNExzTQIYQX/x6iav/sWRKoekWnjVhZNiolJkTEvte5GIAuigNOy5Xh6srcD51sHjfaytk9oL EsrjuAMUKWm3F4Xc1iNzIc0BAjvtZYkRj1342LH8RY5JQQpGHbHvc5Gw9QVGKc3A0ychA0+6giIx UaSJagdGXPZF14OPzLKdub94XSZlEKceiEVspX19h2W+iKyyQ1EOfgBSAIRa5jaRSSDGEYWJ8eJ6 c39jBSgT0O4w9aMcv9yWcyj6i8jXPDo1XSNW3JU5jQLTtONiraSJMuv7RlZVb5mA6A9ew7WhryyT 3rCN8TJrmzAWCd7Ktz4PhGLSKrpGNtkzAz+GFqCD4PlPS6Nrr0FrgEkIMIm2oEQWp/SJsINZVrsN xeUkB0+a9XXFDbo+gWJCcZGtD9w1mI6u0bWvTxZiTxd4VnxaJhOMKFdQ5K+csNJ4fv/OpJ7oOlTh gK0oLReoG22EoruglNmIJhn6RFZZZUMTrQhSYKndeEpFGHoBKyQdd23vqbvAIHvhRKGuLBfMD+T4 t7YVRYSilP6RzP01fLHUZLuXrSAWhwIouCKJ7GyCgSuE4i6R68ycG7biosoikMqgn726ztVBU7jF LZJKcwBSazsGrShH9rSGYm+ZCADmoZAjSvn5di0O5apmjgi2YhADHAnmUCvaVcLiLNR7HQuhyFCW n1mVVvTavQ7PXtiK7OlCPmXgcwAo5qCNPf7CjIDeeAzYgwtUIhRBiVvmFOb3ut0IQwGhuKZYEMkO E3eJrOhKJADFLnw84ObAB0ITKGLWqoFjBCiajuSCVsxeUSvyn9dtuZ8HDVAEe3EPpqA/jkGnObSU BoEn52oQwBptbEErAlRCPVI3aTLxck2+Iv0CFP/8Q1VhVd/AspuGcr5VQ/0iXl3Z6EQrytRknCmF qgLcNxRvLcdwe74NQt3yse9ITapBkAW68qADdew8FAkFzvpYNZ6X/1ANwF5gLCxD3+15eOd4ZBTa ir5K4uznXydXX2DLrapq2WCpBoY+UZ1zk7byoCsopn0CxcSyAYprbhIEYQegiClA1lI1KluRDJME /gCKy3+qaigWcI9jbfcARczfUI21ZRIoLhMaR0kTOZITYj9h4O9OUxEtHAE8OqHNC72eQPMc/E9J sMqAbzt3N5TYE9s05iPjD22hrXQkkeHYK1uRE8ReT6TBfRQYSaDBMW7z52Pij3W2OAHzyqFXqfdI s0ILG0Mv8PxhBxt+gytiG6722kxdhIrHqwyME56jwN0t6O+RhoaPNPQIw8dRf6MJ0wWvXLOu6wsc 9tEmnQo4qcsvhhB62uget9o4PJwT9ISjggHibzQZcochW4lkmFUoj2dBiL3Og9DiBbitU92p9L61 HgS6ehRPRknk2DmkXnzZis3owgHKfBWFJmESCXSAhnnGNZOojqZevrjjY8imH0NIXTx1g0J42rA+ 3M0dQzTcITJ7dBtO52LVMSH++O9D0+O5eo3+D6Dlf/ByTxfqZtdFphrz4i69rlNlsrpaGZnEFfmx WY2B588EUc2jCoFTFPVF5D6XOk816XoHPi+DqrHJ/qsgiWXELs3tSu5X9/6Ag3pBfzsWgbziGnLn tL8GX+76vvpX/jh8iru5y3Aqdsj/YDOAqkOKzcdf9HYYMsWdUZ9vnKLAX/RX1y+7JcdPskD37nNb znjQR91UV6Q8Kr1zpvmJUECSVxj+yGklzM6b7+/otlzwoBvEJv749xnxjvgbB0JBzV48UD5P/Fjq BMPT09gb5ZtOGpQ/6/6GSKqzqKgGaKlm3U6qic1ravjNXi/Xhr+AB/1/AcXWfW7LiWKMZv2zXMZ0 WfOwyEfNnwihJ/VSuS3YxDUJM4o/cDMPzM46Vn3W7N7yTQ0eNLxz6BJ9c/CIV1OeZMXg11AxRuPL fMU7RUK2W01zRHbpCdZIeK+eWm1EUNQxWenO8k0PrS9b8Xq/DyvuzhK6ILxhlvBQ2CrVi+calPXz JtpzuUW6JWAwD+UIE6MPWVkk54uESh5+9TS2JiE/CkZlgDQyRnl6xEQ4ltolNKkpgJwelr9uddd2 69x33t2+zmK1AZxCFMpVJhhH0u0qkbDkMv+Fnt/6h62hSHgl+dtoSknw9yNyzecfjnyNRWzi6YAE GWmgHLysVHXoeXc05QjRcgC/MoPVaqT/tnOGeSndYx1eoVytnt5JP1NlidzYN8ye3vymFH14CtJx o26cd0cd6X318ZKOHQonRMGEYFoVs/f9eXVLMH9rlXbiQf937U403JNWRLaqVK4qLmnXYR6oHGms p5O0js2wif32EcRsOZoZOkBxEqyVcuQi1dgdx/lqZmSR2l/pBxf8LtJvgweNjHyA4gPWqdZGubmO grcPRynCKeF0Kk0o/pJIAFy5vxDS/rBcbT0QyVucGrFSaK6BhG2Y4MR+85MHIivmcKbaXdVPP2Hq 7C+7LWxjgd4lD8pTaWcT7fk7zSGN9aUI62MbahsdoRj0P2wH1sr3ICOEOF0Sh6m5oF5dh1ae8u0i 0mTqR27Lf6ahTjzoBhS72MU6MkfDFqhlcPefZnsCRa7Z7F6RYImP7Vg1Yq43LEK5QIIrCYuvfOhT t8wpCUB1iKwIFNl75vY53ZY7VUDrUis6FRStbd81MqV0g4RmpRkqH7qRTlLFCLDJSKZ24cDvfyAU aQwPo9LIlJkjvy61jwATLEja4c9KrP57l4xrLNC8NPiOwTdAu5R/bPf0bsOkxpsPUFw3KN73BqBa B61oZphPFmBxAMIqDGkQCqzQualHFRTDBhS5e+b2F5dv+p/tDv7ijCqtuAv1JYh3HxnDMsjyUW/m yQ/UxIzfz7Kdq86wiea8+4llxzmAzpjOg0VuZ6mR7cbOcG478+06MvSf1s37GRabZdoi2yn9jeUD FH1nvvqehjDozs7rFXul8OjmMSf3iwRtRTuTaCntT4sDFMEgLZKnF5qEwBewYLjVCrJnLo5c+frz 6x50PgIXOC5jZuIoM9t803M/6E9x26QMjPj6PFgS1sUQLOYWYg5Eosw8AdMGv5Ukx8o2zcx6k3/j W8JiM34wkrHqmbKK526gTRnLX1iubTpsqWUc+1u6IXRccoCT/a/2rkQ3cWWJOlw70x0lyBKLg1GM WcxuAwax7yEj3f//oVvV3d7YQpx5ee/yXNLMaBLK3V2Uez/nmMMHBLhC66SaDY2FX5TXM23sdIrI oNZrykkW/oF9xQh1oXiULPGTO0q54ou/jxzqpSKjEQ24MtFL9k8iAv7Mc25f21cMgLWKB9Pix3AM RQKFUil6Uhd3gPZDogRnc4q/zerD0VhcJErFHzSNAAALXUlEQVS+1bZ7HKC/c0nMo/TBDUFOaSdw lgJAKREBYw3Ot7xlC0dgCuSpLKCXgafi4VHpH1q2sCNfDxDKNM4EwpOV98gpPwO352+EROLPUjga F4HeXAcOi5IF2FbhMF36yWnL1VS8w0tij7EGJkXsytATwmiv4/H+VsKpeLxzEcKskqDzoEedKfnO Zk5kVux3Rn7BpwzPQrkybkhOWhMtOopnleJu5twhDvpb0hAQ1vRfMtXyL2E4qIe2FH9zvl/lW2GL WcWYbftZtYxYgh5SdAqTGN6f12dSLYcnuERwouKpFmHZiIevsjp9khlKOZmhJ/bZ1D6+mhVu1v3d ySD/sVbIyko6Xfklq4Un6AnLlQyDV2a0ZafIfsu1VOMpPsVWs3qOp2b1fK8CX3e8bFE3jol33hFR OVInZq7JgKFkapqtooao1OnSYGBRl82RlHQ6nsZfOp7GX7xUzMdftsRIxVghSXDQoZ1BhadiaaPv cu5YH606D6tOJTsw3I3+a9Xf2NvaYZh/0tqdTM94W/VT/JKi8nNzdE7f9FNunNEqxrz0J0Pyv2w0 7mkLk9qGAbqjTaxSFRGVnexqK0scGLrU21aT6U2ok2bqw8i1+3zFHXP98e9YtsQO5E8ud+532dJB OOiIISpfvMN/a7T6nS5ktXy2Z1SQwtoYlZ+So4XE/qNzxXE/o4y785r9arjq8j0laSvHGSoLx9Fn taXl9DPw23rbsZr8GkrMuWKsayg/PFeUkrnif3MFTZ6zMgI+SbrwlCLpFxgytEIF0aHIipQvFF6Q 140+FwpZeu+pGHcFnaTi9+ZFPjewx1XsPQjvt8icDJn4oM+Q1MCPLlsU8nNuEonjFjMk9P8PB03I NSVYTusagY96/0FaEU81kdwm7XsR/PnZhPXK4y+/ZyFE4Z8MyVW3r7ctnts9ZF2E+J0e/eRU/TQA 8Ib5jz0SebE4P/ed+88+/Yoj57ZHi8SIxmmofBoRmj+TKuTIL3C70NYbQ3JJm5cc/fSobeTMy3na tgshudtl8+myJYxSh4lMKp06K5t9wsPki5GyE4SH5xfpNAOPFQrCpeGNQnBLncqVn8NBhypJwS39 QE8rGVEoOCmNqi9q+kxpZ27mXAlJGJv8kyG532ULqppMTLPFlXQYXYZCy41MzzG4ThlOTmSyaI08 Kis2R0cd2rGZa41kcQUQ32BtXYQFtDknHAmM92dNhnj2T7mY5CIqu1Dhxijy1pnxq1OaCTcCHym5 njQFjzs8ao+VZD0u5ZoU5XWxd7D6I8m7h0jVRZOLCLHXjP0ISjMRPUiFlq0i1RovY8dCWCi/Qagi m+dIXDVkb+ctIZGQctG7GnxzSGDKsjFNsyn0Q/y2bcxcyZWvhUTb51z6HYzFv2KHEJm1d22d6SgK JgWtmpk+TUcMwMtYM2vLblRHickCdnYTRrOF1yHwBo62y5Yr06rMWd455Nl+j0gAoFpVa9dGyjBx gwfKL7zkK1PUAcInEUVddfbGLHzNH76uut16YyqNTFIA66WBGy7Xudw3ZQ1Beb5I42pOA0rLKDKn 3IZPlqvPhfzuFxYkY9O0Sb9QzUoy/UpIMKcH+ujrISGTUnX5O6KlC21rl972hkuvhaS/duaBbJx0 r6mIFHXtLWHIZW3TWLvlt0x5jYKz5T2CmgmR8eJDNO6SgC1J8JmsVF831iNtV9Q2rWpKKm+wA5OV 6S+K2PdoKpojCVkZRWnrN1Yawp/5k5AALFW258epaLkyEjLCZ5jbupreFetQSSht3cBelm91RpmJ ac0qQvtm6rT1liHT9fqtyNsG3zJqBrNU7GSjzGC3hITp8GYidbwlJISkX+r2Nvx2slRsplBY8WJI sOVMBvNe54qK4nUBzcLenNXskt1JfRitw7Cmox6xM68vS22kBlNCqcgPXHkXUNno8zq4/X5Y6agW a89r4LbV2jp0KRJjmrbmgmXOc0Pw56RfrDlQjvJh7F+HkC6L1sTAJy1x4CTwlfYzgjiLH+9ir9go bPRZ+QClPY7BuTM157X13nE1qCT0stiO92mRZQc/TCasV3wr7PuZgVOyh9ia7mzQLy4aE2NWP5RY d6lNXl/7bCT0QJC3hORRGjioN8dJeW4PCSPDLfI5C/Hb1i5VNpZ7OSQ4vuyNogjJveKgMe4H49Dd qmPLnfSzE9SJhbir+d1yywiCOSmqn4qcPpaRSHcP3abUs5pjA3uxFcZdzU/bQySpzFXRrb7knaJ3 ex7H+gO4uVxrF950dTxEuvf8wtoyOd+/MIVq7ZIHyefLFkxFx3ndSqi1axTHQ3WMqQil2agiqNlz Kqm9fn7JO1OfvglKc5zuTB0bBRg7IbfM+aAEbVs4814/VbNneK1yxJRdA/qmG0JCUurEyDmie/tC SHCsjYaEcdu+Wq/IEn4pJAo0wNTZnAUKvEf6Jq8LsGf1yTsZO6Vck0sW1/SnlZ478Lhvo6ko5CbZ aIRi8T2ntG/U7bnC4g7vtMPiblaRrWQihmcPU8QUeEd1Gwrp5nINEXdztAI3HvcniHtaVpdbEXc+ R8cBeqSu3uVet5RrZHkq5tyJ0XL8VCwvOxsY+9htDQF8glSEXy6hkG4r5y54KkLC6rkgFZXnlDYZ yrxX9FZyn4WEpDB9Vx698+0hUVDCg6/ZPJgVG6BRYPVySOS6M1M+hgIcdIc46NDESN0gUtctVGBa XVgOUaF2O12+l+0mA2eyAJ7OFd/h/Z8jFT9kSQeltW2XaRTU20NUSXyUPrrNwq9AZpzPFXVXGveL A70Kbh/9HZRmVdvvA2cLTxr3YQEBY/HGUxkXWyB8rjgwZlCPwkgd69DJTc1qe1g/vOPH9aIEkzTL +bvDZ4viBIhQcMEp5ALdatAaY9brT00YC6Heb2M+QHeg+4lwON0QEhllc+GNiizJPg8JjK0fAcuz 3zaYKw6QieBySJadnb2V7nSuGIr7fgZ/turmYDRT5Yl+GJZbxYVlmXNlcYCFHaqJlVujk1Tcu5K2 b9LFwRmmam3zsK3vZwPb0pvS1DaYwsTEcpx3ObpsqcGT6jlIJ8doImbYwdI2jqm7BCrAtjQG4B7V LoOvCybx2mQOn3Ga0I2ZTie/Hi1sHTJ0YRtbvj2i7aMLb+gVW7BsaSME2XDJwrSN0QA6VctEKV6Y 7OEUsbx0mqhA9aWQoKCuM4zQMN0SEkzhYyUE3KhyZXXcTF0JSc2G0u51kzuEg1YkjzEVolmYihUe 11ikHkuwH7mAA8STToR/ppWFxZXfBeLNY6zxJW9Du2FMQ5dN3MvVqXjZBYJQKNR6irNSsIkmasie DpVs45hKxZEs9eRNiSA4YUQlPuMj33mkWqEyxqUD9cUeiV9ZvmcX3BD5LCSSYIdlZz23h4RIAWlo OCSKT+d8PiRKOCR3i4Nm8F1kRWSQXeRu6GQIRwnLnrJtmC1RHC2IBaBwIxvLQcpEIWzruT1y+Vga wkFTJXCTycKC0pSoGwn0dP1lC6sA9d2mUMkiCVRrH8XGtgdqDpYthLWNNQQ6VegHwYdjk5mbJ/rr uz3fGBIGd0bdLPqlkIh2UCkMDY+27WJIHuXIrv9dpeKjcnrDQejIeqzrZ07kQ12Af/JKheKtJ2B7 rNt7BvTL3Cge5JCwAjAl4UO1M0cLvEZs5zlQ9T4eucL0TX7bMMP80qjP3BDCLR8TZlwLSRgHHjsk D7FCcq/LluMDTkQ0y19kosS3FuXIr95zP3enhenMytdvyZAzN2uYsNP1Sp6y9XAZXnq1NPKjITnr eENI7m+ueKa95+7gnAZZIufc6Gffzdkv+uq1K3+GdKa0a9/W2Tt95LPS/hUhkaREtyWxxBJLLLHE EkssscQSSyyxxBJLLLHEEkssscQSSyyxxBJLLLHEEkvsVvsHbGFdXJ/1sPgAAAAASUVORK5CYIJ= ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Emprego da Ciência de Dados = na implementação de políticas públicas: estudo de caso sobre o programa

<= span style=3D'font-size:9.0pt;font-family:"Myriad Pro Cond",sans-serif;color:gra= y; mso-themecolor:background1;mso-themeshade:128'>"Cidades Saudáveis"= ;

Andrew Paes da Si= lva; Roberto Zanoni; Juliane Ruffatto

2

 

                  =                                                                           <= /span>       

 

ISSN 2237-4558    Navus  • &n= bsp;Florianópolis  •  SC    v.9    n.2    <= /span>p. XX-XX    abr./jun. 2019

 

 

Emprego da Ciência de Dados = na implementação de políticas públicas: estudo de caso sobre o programa

<= span style=3D'font-size:9.0pt;font-family:"Myriad Pro Cond",sans-serif;color:gra= y; mso-themecolor:background1;mso-themeshade:128'>"Cidades Saudáveis"= ;

Andrew Paes da Si= lva; Roberto Zanoni; Juliane Ruffatto

IS= SN 2237-4558  •<= /span>  Navus    <= /span>Florianópolis    SC    <= /span>v. 16 • p. 01-4jan./dez. 2025

1

 

Emprego da Ciência de Dados na implementação de polític= as públicas: estudo de caso sobre o programa

<= span style=3D'font-size:9.0pt;font-family:"Myriad Pro Cond",sans-serif;color:gra= y; mso-themecolor:background1;mso-themeshade:128'>"Cidades Saudáveis"= ;

Andrew Paes da Si= lva; Roberto Zanoni; Juliane Ruffatto

2

 

------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/image005.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCKH985n9sB /v///wAAAAAAAAAAXwAxADgAMAA0ADUAOAA5ADIAMwA5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA4UsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEd7cQ3CFA0ECgseAQgrsnOAR3Gnd3DyRBgzsJDo0T3N0b94Z9+eY7+5ud OWfPzO78s+c3t8/nvddVdeu+snur3sgw9nJuJckK3N+ICBwC3P3DEzikv0qD/5M/BAsO7tGf/+8f Hh7+kvzwb/k/JTAAxD/H8C/8GnNkABSAJwCoAE8B0ADQATAAMH9PAThsABwAXAA8AHwAAgBCACIA YgASAFIAMgByAAoASgAqAGoAGoBnALQAzwHoAOgBGAAYAZgAmAFY/nzPf8u/TlTgbIGfEzAWknA2 wN0Bzu1vXcF/KwRwj/9zzf/yB1pbskYR40mNkhasCpe7PQl/XdYXgWLpZfYcPALw3P6fPkUR7j2c 6T9l868FFe4R/F+35x/Vw/vzjgDYN4KzgpMBWm8G9MQ/KziAffg/6vnt+/4RnV/l/+JXX8NJwKkA fe8K9L3pHyPg+E/ZJ/iz/Yj/hP1f44T15/Nfr/t/y/9/Av97OvwvBOH/7Qn+B0IdRwIHFkWAO7al hssb/9/U9G/5n8hrOBPA578GPN8v32MIZwncTYEU1T9igSmQ8uG/1acDps9fz6d/xOZjgFmFf8Xb /5Z/1v6/Wv4v21eSQ0AEYiEKCtyCgp2M9dyH6ywgNFUK/d7FGdvaOJnaOLGbGDoZ/nHhZAOuB9ry 70kl8bxdSLCpinPPfLESPXOY8GVw6eVltAoCp58X0DqT0Mtr16BGtURF3uFe02OIBqPYL0/QBMbc OMLlOoit+tZT2UfE1OdKB5FSUYt1BKEEFtcHXi7uu/qsOjdbFwVz2fIIVnHbtrqdbg7OaR4ooMoS Ja3Qnhn1iqG9zUGT5AdzDmlEyjG2oTyG613VJeGaZoou5ZFeJt94+mkyP6pUNemeiSzj9psDYYX3 Ew9coSGv/Y76yGpvlJQ7d9p+0xoJgaQ35tVqLMm9Fq/p4TzfeWNJMH2WU1Qlp75arkM4OltAOELr lgJD1VT4fIqx7ts/R/YvrUSiHi/AXD/vfY7itsMTbIzwLDdqTmR5lLFYrDTTlGA+25NC/g4Tk1Jk vo6RA7qAldL5MLibiXosVwI91usfg8+DFA3cvtgUbThRLAxk7GOZixX6jFl+w7BI450QOYuZMV98 xXm+I3C8cte18qUcusW73YxMcPJ9MR4Ks75faKDwFJjGODJ7tY4QjbTc4ihcQQlxXA645X4Whjdj eb0kWhu8yVdnq0N/4yLxyWHHxnDoXfcSulefslbJ8FszOn16vVlOaffipy7U3CzK6Z/Z7CbtLr8t YupKRWiFuQQ2ipdO4ff/IHm1iaQ5tfcNfOX2ZUWVN2KKVmSh/64zs/32MYo4JZrxftMwa8iswcdz mTgCseG1QE1sF9P3rzuY6HIEShTwnd0EQJkqHZ/qQMWZFbflIJPduq/tGDYM11wQ40YU5UU2S9dy 6VgayTA8RpWCv3tQy84if+GTlArbuBg8b4c+u3BivZ7BtTYvqy7XdS1yfBQWE8zyXvwJagyYf5Hx 5kEFxSjme0wwl5YE3KfrAXUcd0OCcXWWp4by8B1um4govBNWjxwstNXSNvSdZdHrIhx04bWte5eQ Vz20MALApqtF+ZrNm9iFdSBdotLGkGsiuZzvcu9ABJR+kq7yWwjbo4X2oKy17Ihuzk03NIeW5t56 xk22t1KS/My96q9EfhCtsXufzU1wGcnb2TzZM19xZhl9j8Nfl/E9jUZO4kaW+/KRFWtkYx57hLgP s2u5mOQUoeUri5biOpSUbskT9mPzJaLag5oI8wyPc7CKGfpQBQ/JHmjtJStV2JXXV5PRVME7Thb9 rrFH2lIYOOoexzQfpOtkIs11VuuTmSKqZJ4NfDN1FXNNdY4D86VUdX7NT42VdDoomr5PFjJESQ87 FcCZh4NRKMe9/7zc6Gzssu79Xrn2DPWNUTjRQ7f0eTKRKNQS6fkqWdJ4/7nZkjKEXthaTgvCk9zJ qjfVErWpRDJ4ESDNyr7inTC4I+1q8lVH8MDr47xMlnMp44N5j0XpZVUe39ZtyTs94Wz8rpalqlrb yT3N0eYrIWZ/vmiNp/mj+O8/zDHZmkt+WJz62e1YF3ZAZDrhmPHxRWeLysJGg6TlvLbW3ORpos3W /HRVkp2kiVBkofPiZJQ1ZMx3rzbSQ6uKHmXZRnDwdgyR5uxE1+/j2vjN/SVLnqk9fdmx4m3Tswmr OtW5c6y8fX1UIX8dfMUzcrHBfl1nbO0LAzJzcmVRThh6PuRZTp2vWxa2eJSRIqcuGBT74x3plj2K R3gFJl4wKc374YJzHJ2Rnp+ykHA2jsi6cA4admgM6zROQThFbC8OjlCwGU9+Vkmmt6FwtwY2eCVw z5vteJaqhY5kO/6G1Gk/vz3YZOx9XbV27xHZxpcqkJApi1yFPlo7nnZJimRoHOhMbN9c+kHsI9S9 f1f4vGFbRoSUphm3f3uRtnNPtHVPoNJ4Y3or9iOXk05JgB1F560t+4Nl+s/LiOdZ7Cs1SW66604+ 2zxMCFKbQ9RvI3pef4Mn6+HvuAokMdBPGemJ2dRJ+JBfIPohPEkTC3rJWUv5+dmMivQGwdwT1k5v 4WE9FyS5nqMZ3pDc9Gy+osoSUrkb+1IlknWSVRQjknU3KG8pJbY7CWTm9R7IVM9LuJnGn+H81GNe sbbLEVdyIPzYRlVIKjrfh6TdWXg/F9PYS4iIu81RKPZLbScqXpZLvQ2R1Zctxgm9vMYmu/BnwobW Uw0SC58pV/AX1ohFJmXGHnt9pKYVOZmMt4NVwirO6Q8rhu5rFogbXRIwKuThvbxy5hlHhj8IlWXP XeFNftolP7jOSy/LrxO9bFPKr/UYqkRos3cpXvJAHheFuYZE1Y4oJ45q0F1v9zsu77rieLm4ka5j Y7l7cWS7zZDYEwxq2R6WvrzZniLADCt2DnBIC785o/yvES2qlUv8BohkxI9+f4P4LxHtg6Gjk6mD kqG56a+wdnv58OBDh4SEhHWPbPLwrB2KPMbyiuVRJ8krCEInwat9+E6RVzoYnVQv2FOIidgquDmE RowNGNI62mPaJnY5wufloc+VP9xFgC/FZomJxNI0/bAQ7xE4m+AQMJY7YvpiegCH1asEyRmIGVJC Xad/1GWe91IKK9zRzMh+KNIrSDVcQ+pGsQWXiepjwiDWIRldsaMv1eM6RwwuPM6CR+Q57TGPCvCJ ZH3vJMC0VEPwAlyUxUZsaR31lfzv2QiCn4DSss7n0tfrks9d5uw1O1Ai7ARct7Gy7ByQBRFXGYhS h2PQ0Mp1qNgxt5Vi1tRegcXJ6RF+fobDR36JiPg3m4Aw0VhlTSrgaIgC//ebADugs35vAjKf6CT8 vHzA7OBiQUDL2+z2NbPYTPNIMMqLYzZjsywL8bCqt9WXl+eY4sF37Cu3/PRZ08rKbJVkM03WZiNO dqiDa83/SB182rRFAUooXhnYO39xf8/u6uWYvSVy2TCcuXKd4biVEfxeImN0mtgGkxlzZnXrPfK5 Idwyi6y9MlOYEVbhJ4bcvMBQ8VvFHfiyt8ghemy71vovl40aR6zkp4hbFWrKRgyXJZAbwmxvxJXP QFfh5c1Fp452jaeizXUWncm2ddpn1lL5OzHapVJF4xsZCp7nsL3xQdyu51tOiY5lZX4MK3nVBKZv FNK1hxSzXK4r4537myt5zhAeQjRlKG1ab/X1TK2JUF4bwp2BsZXQbzoYlKGstcMQbrJec37uU2KM 5tkL2aYNPu2y1NqWIVMnGGy4I3Xs0BZ82rzdzBcRwBACpsp5ydKWgza99PjrMP/LEu0uTpuXCOWp 48zoN6zKjSFcIUissmEME5PxegTKUes6aLq9UNauHD+5Qwl03HFutC+vCywoM6v4JBKeKMHfhFqS 0rQytzN/E1HR6bCzx1crp+pWhv8SxgVScNG/9nnouZCP8wgO7aNkvMlpUY52zzO+CTtAyLIQfVLG K4JbwbTj8Ko8I3YkIc+1VO7JWO3qS1uBywzYRpHP0vzX6Z/dF3tP5l5YTvqGsqZN73WUf7gfUt9v azxaasTJ9L+YqbNNo0CZgghwZDwN/CznhLEH61rfc9xswzgqV+o0PvVRjtj7xiAs2SStXNxiruAx blzelZkx9eNecqpCSiNmpiyRe67DoNqTEp0waNPJJEsjoK6NedF2dPXqUx4MSznPUetFEO8RbzUO q6A4sgWSbVi2lcjb3f4H69AHt4H4pZ+oV6qLthQzKJyH0pwE7uV4Nk4PA5WSYcoSodDcVUjHhvTB af9W6bMtussmpomBmctLqJNUuYbttTb3umKbepRUgvZViEjeoG/GUtdmdEty1n5VnZCGeWW29+1s aD5SX+tp1IDIIfVqyMqIxB0ea23ktWo0wro18Xkya966a1q/Hmh9hk+6uui49Tz5MrH5EiWrEvvl qSGlY2mPnoz7VnSCo/DF6GIzNGf+ZTjkFMMTV6t97+iba+ne/UbTkc8pxj5zubUv1oqh0Z2bvr3N 63Id0Uo+qI7iXTqBvETkVn60pw9I+ILpzV34D69RTlhXyP2h53UN4x3xNX60+5ngxMthwZxD4/KT VzOO1QnuZTNz00va+Z1uUmHCTvqRCdAwv5PD04JVzxVHuvZ0vBU3xen9BHAnwqnqaMIy/PneJ6OD IQivzGHcrYhTMOw0dSKrnlYAXTschq9Q0HchIZBVr3wmdXsAI11dK5p76Jo1zbHqcWMH6TSQtb+w Nr6aK5+HRZl+w+Op2Gn+Wlv68SX1Sm/+mstE+V32lx49D9p4WPMUawjhrbl6Y+yIs9WO1Jy1mhlx hmCW6Yiybl9BnMzzeFm6xDci1lwvXXwqQk0ctAiThGn6TMyS9Prztt5vnpqmyl00yqTSqtzyi8V9 RzUS7aOpoR87ltiNvpi79dnlmpnaeFH0o99kimCDulMD+RYpMRiDL4Ns0vjscXxfX94oDzDl/mKF KZWln4vYiWtaTX4+KHjhNCC03ELas6UNLFd+/T3pmqRWv4tFOKhBsB8zzojn7ls8pecpO/rHs5OA m4UXEcS7yAowHk/bNMpATOzz5xBMF+7xNVjOG/rNuhUSMxQX208ru8reMVTbJIfIAfpGF708+ekG D0/NzrZ3kPWhvPnUSan1addjCqIV5LzGcwHedmuE3EOCnZ57IZTVYXzG4khVmo2UOvxm3bmrjUO6 ZrwNH0C357zTUGTCcwgOG8kk7ntMoaGXmmbNrN0+zD8jWPmuv599NdvH7jmLMr1RPArINNuUIT21 e4muWHIUUIvf0LY3vJVF3/MGxePRmSoRjOy+Hp9T+M4yBRv9LR0RqjWIaDchWMxPYHq+Xihw0cnh nb7yK1uPWIs6tQT8/rkhqS+JxLkQFFMQA3ceQyr2lg8G73V4k11GqGnyO4da8CeTtWezdbgwHVg7 LA1cd0jy3HqRS3xMk45ioiLJYNYFnT4M1jJpXd/dFa0ZZ8kIpb/E/QxDExO4r4qbL+cs8rl1QxPX f4C3j3RpQAzC19Anv13++fWIfjdqV/Px2Sg0FJSaZ8JIKUwJr7r6pVM99CvOVB5tWWEUUroe9seV hrlIjsIWcGcq1IrouhQ77Sll8woGwcw2ZuqCUeTRrR11GCekQAZ0deb1/Ttop0PRdjBDO2nH8Dxo DCEFX39kRJWDSfNquSuSwyObuM1i6K6G7zRzFHS1W08crvjixydmszduEaYKHF9LeNdC/UDvhPSv 1lcgNS9SpmRJVzr4uRe5iHKnmbjZPnKJF9qblWzYBpYHh619IaW29yW+BHP77A5kCCVeYuoZBRJD 04/bQc/I7qcjqro8mxsSd2g9PW+FErEOllgH73r1O86hpIYFYh0lfSAiJs/jk7XIoz5hblCYPYlN aqURvZmDrtlWGKiB7tXdy3cdbP6RNDx3X3KxGzEm7PTozW6pIWij+kp86LeK2N0K9WDSzuv+IEuH rEVbSMEL5Nt6tOi7+54k+BM2NCHLGiHJOdOMAbD4HNu4ArLMXIHD25i7u3Zl4VLfpwgyeZl0smla RFfjC5ozbP0uyrXh33TDkg7iGlin1RTmg3pa9pg/RJ6RvCEk1J+ez274SjN+0EgcPXmWuHfrF5Ay xJzqoXD7Q66NM1x90q6cymsRq9nvljR9vA0mdB58JX5mgO4BMe4uPQpSTOeWGQiN5eUW4RsnZNEY dH3PwV354rQL3FrBm36tNC2hjlheO3Jk8vRweLEtU7GMVQiWCGZkW0MtnTS+QBJLPRGQFsKhTd4h /4nwtHhyONTFVPKJmlVmNA1TzVur0gmtz87KKnvwx9/pcBKxrb3Wubz6r3Uu+Kyl5w4KDhw0YZa9 2hFyrrkbpQtkLrxQr4GhT/mNDqDEZkY31ZNP6wea8XX1CPsRdMlHsQpGD6eLcca87nLmCdJDDLEZ o1NsrnJbjmKclH2jg6kv6K6kf2VYyIs5gNYW170PYHMNufXRTjiKP83dw7x7iZ/HccvSmjuZsVLu ePIyDb2PPWRtuEurcwKFrkeUYdGaV4f+1L6oE/m1Du4tzSceez9lKdG63O6z8vwgIJgetStbmqjF /EejbjRV9+A93pXCfLikzR2jWJO9SC3iciN59uM/+KZwoHt91wYnKdqfg5ObLK4y2/gycL+QqaTO sEQQzw+R8kpweEyaqbQxF21yFeTSNdhngKWaqhJHjvDNelQgBpl8aNkFKwdvAu74veWQqrQaxbzR RKn8ZrZD4D9FTcWUBQwpko1Epa5JbD1BGI5EZt+1WqgX+WpvkExFROVpLnWe/lhtb0miyTpv/u8G IVMwQN60S/fqcgPpSqgrYouQyADCyq133w6nbZtS+VN68+lBat0eCf932YrsIz9jxKnqMY6WGvhP mCMmHqsXxBDHvLarVpJJbTPf6xYesuZuOFwjnnkCc9/LoP4orC1qdT3iQZ7WzhKoie99S2pCjCTP As/aLBMSw2UL8WtkTp+Mbh7WF71UfHcQuKcY6aPewoquo4aKC4UX/pFBBDsteiw/xq0qUQS/EDIb 0DYUWaw/k+XEl8mKxmKKfUtTKqEV6qSMs3MFDZAXW2W7m3dmD/FR6FD7brPBI2TXIWfGiFukPn6U YzBQRiKQeRZH4+7F66jJbDZA2GLwlu/T5ekbnPNGbD0VCUEWA+8b/NObaD0VtR6dI38cKUjKRRVh IIqy8xL0sVR8oP1RTbKOHWVrwow5C3dNOmHBIudasq5b84W9Ld65MLVRBtRVRqN1jIp9x71o2IR3 rlenavApQfXPiu+8NraibLZvnKfj5TYUJUfDvweKM9/UTSF8Hy4IwBdpRjksXqz2tfkYYjH1LuFT /8GQ1IvEPGZJjbAyvBYGRverRYP44Pqn+vfdqmx0HxX6N77qW/Lnt049c2lkmO45xbYUJDcvEs5j 3reUdE4EJwUltfuRIhSOax045Thpkf9MVP1KqySTE/fqud9wGmI3fYWqx1iHqkCwtbBwoarg9wFV gRoJByt61DjVJuaFgMyZUgjG6BvdwGAnq9D1CZy+z/LkB9SZ78p1IUNtHMmFbtJFteCRJw5WU6bu 0kW890lAucxhD2n6WgehKkgRpEZVuECV9Lo1mKzca95LMjNjPHRcqEDVw7Q12MmI74PhrAL3UsM6 dabWniTQKWUM/DViSo0jYSKuHMy19so5ER0uahqx+rKjvzvgvoTxZuiA7DqRfzaTUnw2ZmZuTrfb EpdRIV06TGsH/yNxsrA9YtWWgNmO/oJpBm/savUAikrGxUTpfHaLj6AoxQbbWlFbuPHi7fxf1Oxn nxHUD9Tv9+en1Ahwmjcfsq1Vh+IVkT8Dcthrtu4JNs9sRYdFyYt0n9ikon6d1BVHoJ4rCLiSfmss dX58+Fh1z2JUoZnsW4uKdeHk72XP1m9FfqtaEbq+O+Tc4tmMH0tBTXFUpfdll/00hRnM+Vpwd+NZ pzXP1IBUSLDENvAs7LFdKLAUPTkgBSY1SqHQ5+r5MApk4jIOeTRTCYs3qyToiYjfddy4X6PY0wiL Z0hHY2XPvWUv9bs2TrFlN7DRLEqOxhJtUWenJNczEjy9U2jRQbWFIZ/2ord4BvLrEv5WqdOHXurv beS3hJ7VVyz4n6HYk9BL1kfirRVJhWTrlCVHoz0Ig69HiTbjxP40JKQQQ0G9aBilBypR9qmOMhRV hGK7E90WgtFBu4YzGPJ6GumUPEJ8ocQikTKnl+M26PZlFFZhLsLJ24ajfHnZiucjtlXgGj6OgAsu n2sZTOMLCxT/OnZrV8en48mbtwlgVr7dlSFO9ExRczadrvnjJ9CPsHeYa8NWV7ssnJiErmSGbZZX Xfyb/gybY2zuFt5qHeG2p87T5Vtt7jw3omRRGuQueLMONxrXr/g1ZJGFX09zOahp7JH1O6gkxX/L SNg4K9FUQHA4GU3fdwlgEk8NTeCcNDdlI5Q6dhG8bOKitDB7TwFFYs/gW/uRb8Oh9o6hBneByjib mG/JLp5AQQuJW3mYYDgNx70YFkD8FWk7t9liqiFDT2TbyVNG+OwN1xqDqPB8k2W30sfNVQ+buCnV BYNd8k1Zdvm4bsfRAh8JEvYPdVW2QtHxZeEBqCf95+Ph3MUIjkAorBulFXVmIGy3R4zaPXhKZH4E tpgAJVwwDVFRSqr94YFrVPbyCiY1LhHTmUKb7IzAzE43fREyNiW19/A2XBTLBrpmdwabRZU2DsJ+ 76gHIpwR05NG7SBEfAzq8h1g20a/JWaSWgsqtcbP4L0vTd/3+VIonYxupKyuIqcV9yhNtTkHnMyz PJLV6w8t+FKx6+zDSCGpZSuQWJsR1yRwskdD33mSGWuqpmnK4Icypfd4VRIem31IJN1uTX31wXVd ziXsuSvFtTYn9jvmApU/xZrTDbur/E8Dz2NHZuW9d5XzKU6PTt/sbn00VK8ea4DXAjK49a+FeoX2 h9OzwsSwHkHxZqm2vZMei277yaC25jeiCqkh+XGhJIjloPmbD1Jt//RDwNTWs0uE9xRbfavgF3z5 2PJ7lrRfsASqUIlXrzqqXaglBFc+Jf6RrukydSxiCpCFkNYk+9oIxHJ6pmXWR6ljurwCji/jOqrw 9P+KJuRpWgRcM6qH1MGSnrzRDRYM3NvyGsSuri/9e6wpL/GVi+B+oFVmP8JsunBI9AMnFnH0lJnd f/uujkSBsdh+cNCDH9Te8UmpciTM2zP1SSvHTs4MJ24JYdhBsV6lb5ieAg8qTmGeypmnmipjo4pT 4bbsaHhcXjZhmJ7YfJCgSX27V25vE+FmHAU+oQdD8plSSielzrrUJdTr4NH5PcfaSeIbL/3NqfLG V3K28t+8SFf6nwoMjx/piRJeK3vChlM+H0O8zHUM7unQ9ZsOHz0TmTrq4CGsd1fpiC5reJVYReIi uk8jKq4PI67ycjSLWXzcWDpq15T+NMOiDw1tbERr/nGZMEe+hjOhJXwG+kc/xh9GKG5TjxuhnPnO L6tuvM160tlOcvmcYIY9qU4wcEWzT9F+9tGs9o8F3x9WdysU+4nDGUN6DfmNJ7OJ3cyRGiTlPPea 41eVmdPW2bDYqjPvWxa7JD2PgKChMWv6uCkF2nKvCVrzncKPGIYklNu0l1njMuWZ0nqCsc0X6DMC O4X0gQJyN5cGLsQHLC0X60TmOzVSCvZJeredK0AFS3PjmlZngwQQx++QxSwgAfNk+Xi2R1dvou/W ZnkD0NgozChMFqmAP20qg6jE/lKZCJ6bi2ZG1fNAJGOszqP8ahbnk/jekj4eLd5RjVL9laSPBo+7 YoKy7OipsvyvofkVRthlw7KO3lbsPLcndCEuj/fJjJg2rAb/7OHkDt7JgSKT3C9GJt6KG286U5qR 52KcXQ6L4tM+9ZWODkE/G+uraMAp5/JoGeQB7VFpMrge+OyYwLX1mGzuXzpzGS53laeQ8+6tL73O rg9lRVgtejCc7bHcigM2az7oa531AZ6BXZxvkbmFApNFxZF1D9OO37Jnkk11vIWwsXOOy+6Y/ICP HcNg9T9jWBgyapPU0WibhOjTpCZK7RpIEqJfht9DAy3r1TKgr4rBQ6t3tmCO7PJsQbbXi23KCj8r fPYx4z+C68VJ0QdtkaX5fFTteVHJfhqjWvC8IYj8FIqTHwH2DNQkRu+3UAIFcJGExY0aHOC9/0J3 +OPpjUAfiwiNKeuhJZQ20n8UtGn9NqY5DYXL+njdMEYzPFnBD6I1b0dsMrm62kSVf8K7m0k71dbJ ojsgY8aKw2hdGUFlynrvimsyaZSYSVVFEJpQI11Q0rVLL0ZC+oI79YFxk5ZYeQYoC5qyjxsNmtvj 6uF1igNJOfhstjPQp9ZIT0lqhkv0a1Xr29YlZ5rwUsd+Iwg1kRjhB6p2VQcK8LO0y5DwqS6k1nS6 hpzHi3mfiQH1I/kn1LhOzQH1qviYvJkZPtU3vRRG586jP2OqJuZcd/J9M2odj0M1iCjlnPij6PdZ WDwVeziNGHsuSPWqLMj3jfMzFdQMNo5kvAJF4JBh4E5TePQ8yP/NytcFEhPUpdQoqnjUWVDl/jD5 ABn+AJo2GlcQdBo1htGTeEDs01Gi5iOuoPLORzGMHhrGqecgziL0x6k/pArwRGgize+KGgqOx1wE GYOGvXUfnFD18SaYq7X0Z34otGyFwl3PAI5PdkX1L+7eXKFU0AF1qbgyJCHuQgyN5vPBJH7IGbHX eh1EjxECoqDKtAZeLdMZOfWHBhdurMrVUDaoAK+1IDMk4cfUHbOE7ArQEEogfRYqXtDluyCVugTr JssES++mu/5K1noSmoPXSjiOzRhkO/ZCQsuz/hrXceZbxg3tb1X9OKrCo5/Z4dKVKKlzQKHyKxkg I1wkWPotMqAOQgGKPKyFJHz7eKJtNkFCd/6a0bNPFSg4LKIvyRBki1JPMEuFookNF/DI+WiOEP5k eI3/SzlDzm2rdLU2Uz/qRuvWs8Z+KqXfjl4pAc3/GoqYftelW29NKqH1gj7u1qPUie1gLtTc+lmj /vjRACrE4zl2/BDXMRX3hyZwrpFP+TkJRvHg/lJEwwv/S9zPXq6IlIq3n9u4X8Lmhl/bXIpW8Irg RCUzl9S3cvPAzV5tG5zgEChKnds/xpu6lGhSzotQXU2L9mW0V//je4S1Ms6UiriOF3DEidydUXlz vlZVGFK21Jtx51unKNjbfKLJO2YMCy6FdIcYiSMmm629ygR3d83UH9ceqYiauXt1zrEPDnUv5JEP La/ZSNmLXpwKa1VtutYUUWfgGrjlBlUZceuBW1+EJOeS/1QPS8NReJ4hy59oJ2L9w62Guag4kiU9 8kSMdeNbrMqE/6NvsUZfQhLygAGtObx538AyfxUjz+VI4qhrS6oSRhKbFBSKF9JKNUmXXFd31+l5 hcyN90tv6OY/GPfOaLjer+2IFl3UIIhEN4MwaoJEZ5Qo0UZ0Jhgl6ugJ0UXvNUSJPtrovRu9d9F7 jz54/P7/913ven6f3i/3Ouesc/a+97Wus/e917q2+auc31Un/bKKaqHuRlKKahAokiknm/4+6aqd aoOOcS5SfXyeenYNvr+aK5qTjA0sZ8r5rWxoI6WoYN2cUXuNQ65uI89hFape03hbkxWZdS4uTa03 cihB/ShGSZSdpq+k5IGiahoPTcenh8L2F6o8Ql7nGKJ3cVGRvfsGDuHenXyK7+17JeNANYppoWVu sVyn2FaFTZdOWWIbVk8k9On1Kq0hXYkqKf6+XUz3EBEUB1RlPPHLQp/CpF2j12LvrJyI3xM0j44m KtQcsdf6SURuODY8hgqg8FLJboa5Xj9YssxbHpcVTBX/miTJXWtUXEV7UGDdbuhqdamHEL6LDECa CKLF1doz+Mrtt0ppJ8V7U/8KjHmpUbEakk69KqkY5VG6cW7TIgo87GubqrZMdHpBkGczhWjV3Zh0 Yv2xe7LZf16mdP0TTVd2fzJHa5Fqoe7jot4cINdq6YPP68NXh94GYHZIxjzk06kUnNZ+2UF7Dx23 6UmDTYTtFyPQPNmq4tN1khF2XQqUjzHoORo3DOfmB88FUgccZNQoV92ZkPnNyOu4WOmJuSQ7uWQS 6b1PIunTtu+/eQ56+dEhrdGc+fL6c3zY1X9P/QaoY0aWhthrPYrfnxhTVMAcMc3eGnV9z5YvSY57 eWE3n/xyjnyOgr+NtfWnjZKqtkRQTUf2qRvewUGHkn5UCLkLHZODIWeTRpKbW3KEmSmbXe89SPBd hZVltEEJlecLOCjMbSUM2/C2GqNuCrHyTd7u2fRMyAyju9S9gdaezzCdwZadDO91C9SvuCY7hSQx AHIcc+j507WSUqzgSpHbKyEJ1E3N2tyq1IOQd9+rNEqdvjdJlUGyeZPvvxLpiEi6DRXKBiKNMjAX eZdNCQY9pujmLfTsb3cXeb3ZY7rA6IR0XUdD2mRBD78v5rRU9y1y5Tso2d7DxdOY7KkcF/qNfgO0 6AiaJh2kwsBzVfRl2lWMT5tQ+T6wzGnK9ccXsxKnfm7BjP44f2OaQEYhbVF9PgVHZpDwkwO5reeT rpTD+ld6oFnuPm7zEmEQXmxtVj+leQm7Yw57EtcbD6wUq2CP8sPdEtJVqIxJsFDxdEVEYez+2kT/ 8VRSjti80Q4vl+2Fq98qZjG8LJ2uf8e2s3XZ1gjfXF1CCkt7QjmuA8UBh2WkgAwtYGPgg6JNpoGE kgkxFmvY0Xcc7SQbulyTSz3VJ8fV8ulWJq3GS+5thWJA+GUDmxIDrNV7Sixz0IMKPb1AgJbTOyq2 z/UBnB6I8lyWYcZc11aOgM/BqWPc2Kqf/sZaUP/wE6ZbYLFJSPQiS/x0zju1Z+Qyt0E8gGVaXdce RNCrY1v2xtNbnMZDyQmXpBV5O2/cWWtGGGwfKOpbKuSAS7qnFaN79VFIgfH1kPlstvxozd6pHbyt DT568gSlsI4SGjzysYQDvp2aE9SrnJifPkocmaapxCIHWRc76rgCfy4bk59uMdPWcba3Z9ZwtUvR MPQdfQiQU+N7O1+PkyJfJMhc2zJFWST/dtucsm3vcdcbKoBrC7Ysmx6vUzy52aJKlw+Js69aXvSx AR3bNFKIprCpJ8zB2Nse02i/1yz1le0do0708SWMbvSYRW4m8tr67XDAuETUoBxgZiCktHPm6Mdr Lc8zccePZ7BeMH1FFGHqWusMPLeY8kb7iy8fDYfORS7/BzF0ZgXoa66mPYbVvZx27r0K6yeSM7vm pre7+Ocdnr3TeUwrXMafMmUaPjno1ory8gDeeScu//ZubTR6eVfxOYEdv0r7ZYm0fnAN2ReWlfvD IDh6rjX3fCUdjdCmug4Dy6zEbufDdY6mfTX3WOD3FZqVf/vbTuY0joGtinLqr3PlqNz1lTvpFyqO Im7ydRSPwqG03qcqVPFcCQEDWNtSeD6tbkxKU1SWl6eZSr1Lm68hzr0ddaU5y47fkp5dmNAeCKd8 Uw6zvFzWptGZieac2eE9NQBu4FdrNqQlfhuzzf2TiZ9Ucy6Nn74TGUzXpNoaV8EfpcVWQA/tqvII qhRdbvDXvR+U+jsT48uT0N9WyKYxzP+WwDpZY82Zh3toSvXU/mcg0YU/r4dstpHfgK58Ie5QtRu7 yCksd219sr92k+8o5qF7czPDCXdjwu7WOzBt/E3RUHMsbrDUnqr/6mP5NNNGQJeljsC6ODeEdcP0 A86iaEYANTkfoqoeexPUJ735gmBRrC/7yuWpPmWU/+kvIPxoVAptnoQdc4RxKl4h3YepDxS+7MOE sV8ubOPC98gJBEUvH1njGyxdP3qVoDdsePRLmGBlA1eecdQTGV7rJDJGhdp7G3T1hXJDcAi35mW6 QiH9HLZlVfD52A5ZFdtDl5NptupIUiZtyMWAh2r7AiyCk8IutV5zHVCf6u0QhK6pfGk8vxJEd8qB IkhvoPyAjEBWiYWJuCreuuEA3Sts8+xlAbayIlDD84mJbtE+Xo2AJL7+WONzGJ1Fu8dptyhU6vCV TAwpRx0z61YTSJjBQCGBULfTKSUy3NEH3PW+fez4bLd3ukFZdJSzbzLSqcFUPirbO0iMU5c5r8G0 9appW8euHBtyWBNIsInXbrIgpqRv1Gq4udCuHgqosZ8WgzVP+wJnF9pFwIDLwz8eo6Q60d7a5Rq3 b6Kj0vs7hWxNoSOD7luCttTd1fqudF4SSKPr+bnLXjmq/nQ4Xf0g5W0DnM4mBgDHLX42+eNKEoHN b6OldKwSt+f+Fhv8CZm1lEuxVx5dm43LX55JeegZ5yuhVb0yu88hPGrUCblRR6xLETQ5+yvcfp8B XA6cUvWOiXK5MyIU29eWbA7lR53l/czV65gHThWhrD+6xe8DGrR6l9B/x1cUtgoRAd2I56vfCP1C suDB6hqxH9TaHM4zRiuiSBuftxzu13XPHWyPuUTs5tBI4IzvvPyB43c5RAmXvjk/xG08LuXeu/+X GOEv4E3UP3Mj/8yIPPuXGEHWEmauZOno9I8cAawAUACNP6zLfcoAbgUgvrySKrYjwVdCxL/lDUq/ BpNEsB892mP8rwr+/1p0sLP7j6XiGUMlyMfnuEdjfDn5wd/EI4OUXkSLPNBnQzqhljWlZYWQLvo9 iOwudg5WPzxLZc8akoLDbOESjNPdjt+umxuzzAhol4jFlSZjOcYAdQlYWEgZam2adchQv00478v0 nDlk+Msa6OF43dicPiRSXZ1TPP1J3YEjpSytnlMxblLWjtYUFmVH1eQ6b7viM6ZTODVVdJGScD0z ioRexMQxNNkdF4jMlvF7F51sgEPlEtOAdib3v9pMTe5vG9ze3Wst+gabVqseb922e77jh7m9PfU8 dBJaAwmwc4udOhCbluZ2RIgtysoc8vQY7YU3SDcv7U7dVN36RQCm5tsv+jAmSumhnRF0cMedK9FF BvITa3NJSYvQjaNCb9dQwwn+ioYcW/CzmGse5msv9HMvoOATx8KJojXUer6jAGcBis3ieb+TPmp8 qj5j7FoZ71dT7e7u/f7QU4YxK4M/Hgn1dz9d9v50Wy0Y2zl4cfGnke5zSrx3frP7NxljMeR7svVE GamzOzz02e/T2O1JZ5UTLRu9WoNemv3yGm6zrorJZAjSxHbAur+Ypr84+WxpQ6tw+45xQ6t0zPpn eFwZZHJk8lrFePG566po2O+xnOKYD5tDSuLaBqqDBaLxl7GsQ/es/On3xcF3VBkVukXkmge6lqq0 Qx8Xz1O0Dfi9S1YG8qFWblwKuoNKALH71glTQX4CWkd27AiRVN/uea6wWtqwmc7DsSWWwY9oXM1G w3oDJMQSHBMZVaUEKWOx6owXx4xP0YJ9yR2LF/IPKzIXp4cITiPWKYy3ldYvqOmQqY2hSDS7mRlw jq9s/VgJts0GYLuqe97XQQXmtuGg4iuPJ6+ddmClhiyyAnxOnZP6OuODPWf5eB6+iMOeXgG0xI99 Z+maWo97DDsWfwe5fvDRCeumSqGHLDIBZuZNqk1RTSazDtI9PXrcVKaow85pMj4E9zaJKWqFeFZ9 S6eZ5U9LvAEukvAZQvr5NJ+OIiRLUnayvJEQks7eHs//fZ2vGhRnDJYRsRHhfPApkWCKqnKAuSUg pi+9+pHUkJOCz+Cch2gJtY1R0pTIBjkdlxPnWk1/4MXEcDwn0ytrmvzW+FIrxHrRN+erHByILWg0 3tP8Np4bG+JOAXNbarH20WyN/8Y6e9L4YOXteBgwZ2CaT14nfXNoxaorPrS4kqXR5jYeOodYl39A ix/BnTeLYDl6aRP8hEYX7PIGSYE0RZEaz3Qb8qzvT49OvYc0UT6AlqUC++JkgsLFMbipSpte8UpD /iWg2R4yxYCVYT+ksbbobuD5I+TeYS6Q/iFcvqkfQIKF6ZOob869cAKIIK4luOphN6kkJihNUog4 KwA4f2JNCknHG4k3fXjdgeU7UEhqmg/2x2ftB+a0w/Vzm6SnD06BUtPl1k8g4q/tVV2IHzBLRD6n 5BvNALZPOwDDgMaYF2ZzT5CgsJF4oe9hResRr2EKwUaooG+H3Ac/jFCXCZXrBQ9O99I64mcVYCKq OsSOKHDMtMMq3Wy0RKM3eAqE/Ktkivr9zeNkC4T0FJOC3JE9OM2Dlq0PA5CeVn/S0bMAJILdhuOf x6tqsO1QExT0+7qQLU2ECWrYfPbkH1buJbbHn4jArlIRYQ6hHsQQwe7P/8TqvRRhjNIkhDS9AFRb Ht68htU6pCFh+jrN6/7YMBHkV6Dp93XcO4AfwfRomTyk7QGE6Fal4XKOkQxY8LOaLkWyzZLrEp4J aT18IIoGN+a+WKPw120Jtfz4Fe7/TrNHJW8nhx/SayHGf4cFTe1gdg48/1m54TYw/8ghAl9eiu7D 9/ftpL6i2evvn0wSFyOIo9iX3XbAWo5+NtK3F+bBOjhpDIc34ksXBBossayXlL+jqWyRvS+LVfQf rXSOBqP6mViJtT9XZ7Z6PsXSWEozLSW4Q4zseH/pGVHWj5UM+G1ChQ9SGZUCvde+L5UY37N1YG1h sjZX66mRvoP9HavWxn6irgrrs8PofkEwrB9fv/llNPoZVgUanydA20hgqOxCWUBsNgKW5Hb3JzKN qTogNZH3a6NqmcXOsdfvwklNDy3G/bhkmR77o3/VGLJ5OXo6nEePQFT/nYi0MXcy/q/i8P9c/APB gg7YcUWYtGlTu6ah6mM9Li9J4LfYY83HTFLKBti9FhvsiEf70/HgeMy90qV4szCb3qRiEVviL667 GoUT18xVR+KMWcPu3QAWEMPcgks30r4hFyO42vTmzHySdnYSet/2Rp8+i7ntue4wk0opsSkdtpN/ 6Tsqi+5zHsDlqQ6iVk8JKkJYWda4+rbWIfXWe2nxYi7WJu3gM8hBVCxvyhojK47BNJy4WPgWeKEO T15xGpBvYxIFb32W4RdH2qw32dP/epKHp7d6nsz3vO2+Jwmr/2kUdtCvaMi2u6xpelOu8O/ZUGO7 4UkHK6/UAJVFrAA02Hz4kFiUfogDUjBdelmTB5D3GuLo4FyJcgAkT1TPnkvCgzKVvQptpmiW1Daa ue2o02O4PnbwQW5/TD2/zsi+fhv96tVc2rvUdU6Lb0vBqfG7Iv76/vO/YrV9OWisMKIeReMt99h5 +UsmsZwV5ywn9gCCVKvMGXB1+2ae6hGUhcAtQD2TngyXCBVo5xN3LK0rE2D79sr1wLUgu3tPvN5d TLaib3RmSEOv/LO3FiP4/D5b52J5sN/YZC+bMgHRrelrenXbtBg0dfTUbai42eSoAQvJX9+XNaUr 3iFSvkv9apw9ozLBN/qSLolm5ogJCccpNPZI+5AlN/FhE9wwMIxMbFMozsp1Esu4xpBdUIZWWda2 bpSvE3+ap3XhuQGu4SSkqfHq1S6UbLLDbCDmI/xwZa/PPGZEDhHhCDMRVm0rrsf0S/Itrt6lc099 ELz+CoHerQ7kZ7IZg9PzuX55zG1lOiGawtXEVE4VWfJnnAI7YglrjAARt31OJ+PhMtUwI2HbWrMC yQTls9v0UV5yoiV0U+K7mWGsW4NA79Ixq4oR3V+Pv4exDcsulq15Kky0Vh+/IbZ8GeVf1J4bxoqi n9fywABYiv5l7ShjLiIjlGIQRj0WMOGmbTAKknGP8iVObHH5SXO6/jFTWopzi6FCQZ4sKUjyNZzA EvBK3Ze4BnclyOVqIsXwWcjyiZn9ISN2URbdqIK6StJaiPymbuGnhC6Z8zDcAHw/B4prL2GSuOxX B88GyFp1WZ7xRb1+EWKfyUxfRjqVvmZxex0zIPRdTp71bQIh4RNjSvXOr/rj70mEFwbk2RU+9OSy EEdA4rpjfvulH9g5F8Jq2Y5JnJs2omm0xIMGoIjvIl3fGuoJbTcj2QPSKOlr3spyWSXmwFJXiILx EroTjJQVBFwTuznkjmnBl7qvvy+ASi58SRyK16tlVU4bWXT5I4TGQY2wuBdN4NumoozYonYGy0fG de3hv/88Nu0g2fqZjKVGkENlJMUuIkVnQkGppiFJ16cnoCcl14uAnir5HFRmnlra0bCyaRUYWw0F ZQKleg8qCz76LS7TEufExpzhGY44X4YFs30v+hhrNn2l1hYB1de9fbFYSQaTio6TY9n6KnSl9Kgl 5c4g8msvMbq09rdWh4D9JKHf+vpEafFnR6jaz4GfojLPcQJ89SZaBEx/4G6sn8ejn9EGfvZMSnKH r/QLHH5wjhdL5kFNJfZwQmCDMbCfBAM/jV6Wcdo6znhimRNmqDAxJdt+iy3ULql7gq8c6P3es5Gc nSXxM5t6sW2sPiiOkUkgSkpwQ0Gwmioo8jIm8NBQjE27vylVFpp19BoXQ+PJ66nFprPLfiybg10g ed89qmMgPMW9fWcXdJrOxyC4Z94r2lqMcw20lF9TLsZqF5faVllYf2BmqOsKUpP6TkEwLv8NGW4e X042TRbZUB8U4Paxh9WdzIWTEv9q6hJqEHBPYNmPdSz9jYdTg6uDThy5TOiMe8A2twKimfu1/Kd8 qgp4VdE/feDMI+c1VVVMuZ4qa1ovsOcqdxteTB/Bh6Ux+GyBdFWBK4V6bgI38Kunfm5oPZ219xsa Jzm/94VTVIcW+yNu6c6/5OzI6H3QMMTUeblN43KcQGbQasu16dX5X3Te2eINfNhi6ij9Xbfmfas0 o7tirTMuW8PELvru+DNjTawEAw1ZekWdhT7BHKZmwEqjo1bBC3gWdmIU/E2EyNs/2JW2BY33y8eh maRtlkksO6nct+MFybFur9OuqNM10He7hmiC/11N/AIoa6geymjV439VEydzuJOlrYXdP9UkJ1pN 1Y+XtHvpikL5glDoSEbeODhaDGjVj370CfIUE2hZ6LS0WP7U17ZD+mb478H1/YJE7Su6KcEtjc8a XEmrwnqmzMwaDfEfww3P546ofik/JU2oRVr75/QQZPfqh3No40ZdXUTi6GP1MGZdWZ/r23bbifcd p1R9whm+8BpfklbUJs2zxN/Fimb+KyHpGBtf9yF5Qj5JPodXaSrt7GCYdMzvGiHSBUV/j6+kzP2l JK1kOXJZ7+9RYmzflZ/Dv4d3C4dT94sTFhzG5R/TF3NzaVTlh6YVaHbUsPKycovYU0oblb2ZGfk1 fF9eJcr0AY0LAQ/0khd38OSSorOBQT0GwpDrqH5KKLhCN6Iea5Xv6tbPEiP0z7+AdGjrlrh6ABID 778D4P89k5jZmX4whpk7OZn/g2OVVq/tHC9pI/WWBOnblBP5l1WPkH6agQzqmLIkGJ5rFtrf4r9G h77IGFfdEpDQsvryErsqhiDTj+rzxkCDW8TazkY+YNjOJrmhZHL64tESrMlbV+xEsrpYtlujZFKH TR3bmLnnPdvTzBeUTylMJEliH29aZpmHqXWCG7vquaNf5UQVrOePf4QIwSuindVSLEzJGc8uA8wq umZcfFyJByTfzSVmNpJ8PXgcoJaiXXyL10CKBp1Q/+kE+RuNiGETjmLxSCQRisufB0tzVLj5otxa wN0eRs3tcbNNNAa918CxrGbeAmXvfi6DPZzz5os1MEdchuL7zxT8kiJjzE9DyLElnwzKtJHY0+wY pKjfc+YaeU+VkSPmNjXeZ3M7je1ot6QbQG9vi+jEWUZ/YaaSI9JG9m/KrlQiy1O1z2IloVgWwXFC P72MPvEJKIwynSsZjMUnD8wkIdyZ28C2Tq0TZlgLNWmZFrCfrF5yRHReSyLeng2pa7jVFj6J1iAH rZNJ7tKPKKita07qAsrwFM5HjlDhhi7XQIy+U/H4sP4c+ePefffz/gy3UfC6aM4d6XIzPWRSj/3a M25YLkuCluvGrXqVU27h7xw1fafXyHvhQtGQbyyrnlISYe27MckddRrGFoVV4vRIt8SZMKAslDtQ o/vE84lueDedx+i/j6/laYnJKNJHj3KePf4PVRyd3GDmjv9wxdnG3NaJ29TM0XE/zSYmq4s2oHlT W0crzS45Gsdzxu5gDxYtWpFUnKaAVFHPp8APM6MEdOyplPfaSRA9wfxL8JtXFD6kWR5+24Mamz8f u5jYWlpyEl1QPqqprCsV9RmT2Mq4V2AclYBBa/vRyhl4DFPG9trb5+npf+8q0VWHNe+n+XqQw1Dt gHv4OlBMAtbgftF8f+5dV383TCfd3Pfizg5xs+14l4A2q65PuolfXywudqsE17EoR/xyl7rWdqW+ Uj2JLqkmig+3XleV9ZwPuCFlyYGUT20J0fFVUIVbN/041fKsKqsUF21dcTkPFIBe0DAMjOqoei3d 9DfBjS+pmnsdBrhMG43T79sd528+ua7Tir+xQBipulUs0sdFD531PfHcBI9H/tW7S910viixhFHZ NbxQdkLaWM68Tw4sRedavouAI4mKhDkM+Ztn4EtuOkHIs3GtL6agfC24v9caq+s6VrzP6rBPG6vY lPKc8p/pwfknz4d+GPboNzrO3nSl2r70ueU7oXii6ZIvxDa6wzeQWvCugAXaEmfN0qrIAuGeJZtR 9OeKL5FueHmliKX/vo0oSIfbND/yIqFcvx+3p1ZpWF0BLJPWPJkAagEabCOpDdemKj4k+ttmJYx1 rXwKpNss3bIawVOL9b2WgCxfBRZLAZdWsLpGl52HJgW2nel3Iz16T1MEQfUZAE7jJto0gdLW8n1N yDzIq6b5KYvlzpsu9cRX5qCmVMBMgI8N7LFargEdhlcGRV6IEjfbR/BmK2lYlbXouPhll3sUo/Uq GPHBWIbTxyw9zy923XBkfLH4R62U4yBRTWYjE9Hl1pUF6ztjghz4G9CXE0SSuUfTWXp64ttBxPYG vrG/+hGKJNXx1V6uVvgN5ubzANgf2xj/d3Eap93Fh0VGy0n9mdhOpBmDgovRTVWOdEvCdO63Q7+6 7sze+YQ+vSCA3vVWCY70/NxOLqF+uZFh5pHow7nQidawZVQKEoHcxfZIPz3gomZZgnJrenvPfFC3 XGKutjNX8vF/w5bT62znavd41EDJt7yeASyknalduHfFwVm9yyRm/ZIQuL/P/GF2xvKD7dBeEQe5 7uyEQnZl3tjP+fBtXfa2nhPbJvDicM5tqqy5a7GsRNswvtgny80kxPzi2bIRezBwfw+kPjunqlab FtH161jnmd7skuXvyvaMrPIb1lX7zbYPg00x7wWuXYUqXfLsSuqP4v8AWyG+1Vh2+fqVLOVx+NqA T8FwmZO4JzW+3+lIy/S71JkOecxrE0kiHZN+5kTHh9R9sVNgWX3f+sFtW+Xd7aQ6Qcx4ZMV4m9KE LWA99w1vvBGgVce3DMsUr0udVSHBFtDYfHdsO+v/4AFvkayBBQ5ezwJGFWvWmGwrdnBFl0q3UDLP fw1a54vHd/PhQHV6fk1FYQHjKjXHf3iAzfhoSObMccYPgVW8CkRuYGA/xT8W/t+mg8knvlY7CXiR QPNfJRe06fpWYEHxBslSWYTBm7sAjpCSHSAEqt5cNd4FEFgDVr3+OOQj9/ypsNSNqFKRGGYgh41/ O1ZgMB1eIB6xxuxr+0SVTd6kT9NgRIIRT6uBb6Pm/+cPsYBuY7ER5lC6MqyjGW5pyzlnyc/3B++j KKi4W7V8i7EgeEgyGMu0YupvHFhOdXgznuiFSuSVvd0iIRUOOSHrMyXeRCPe9XCCh5tcz4u0I40E zU+WSa+GW/K4q3gUlL121G/4Pka0gua4E7SOBFXszG9ZLemt25d/W+kNcXocu6nWYjvMn98utJXN XAvaonUnnylLSWLu4rp3pZa/Da9zlnmTqy08RBsKad+X1WBNJ6C2SzR0M8PRV5BdVAx5PeIvL1fr GnD/B8FGQaTjK/imX30LgF++Bkn5M0mMKegb5EW1ePaxqaI2T0o03yyyfBBvivGjccTGK6OINgZ/ sT4CX7Fr/PPf7JXM+12AdOZzedVXmDI03kRsHddGPyOPmLZ/bDkrVZYuO7m/zcXwa0PZAfyags1a GYReFCsBXLZ4kd8ublfdjWtxNjugTeaedXyTasu3CeYBUiMBM2oUAp+4LY1oI+f6X860vukmemUL uGDidqNQ04H3p0yN/NFnEKoyPVQkPW+kRq90shRJynZe4CxBxjA3KbxCa+bJx4Uzc4UuFumuT7Y4 18K67bzsnO28erXr3UzRG9dNN6kBlxz7R1+hVIyHUZskLNqzjS9KPUH9P+LsUVc2gXXr/n+bPjej n887pMeDVQrrgrnVKzXH1gu4R6o0Z0xswOPAyWrpZUrQ4te+ddEETi+fYtSE99dFFCXPRIPm2cAS qVKs2pw4vOkbnS8kMSfX9omtcYGVYWVSYd4XqSNusknmIgWdGASrsXKuQt1zaz4a3V8+5H47actD RGOnb7SEDTNzUkY7Hw+C+fNO8oitQ+ZwrAs+gUXmtiQpYzBI8Bk09cMOy/T3zIVxziAfgErqUsSa BPxn+qGiEqIHfgr3c+ORMxWKRja7opRZVq9U1C905vLtXRb7Z1ViX7LL6OmHxPIos+6dufj2+gtc 6Ffg5TK4XXGhnMJaQgQZXPpLk4KWHJaR1c6YqwrP/feKiMaU5t0Elv6u9+G7OlvP1bdWq+IHnvRI U4hOLJQcPA7lmo6DnnTsBFoXqW8aGNP5CMbPbfm7Kx/aoMuqkc57Uh+Hmt0cp8r51W6KoKUYNP/T znlGNX22cTjEgJCAlBmGbGTJHkUI1QAKaBghDAUhAWRZ2csqQRDLqoqESAALyBTUKiGgSGVE9owY 2SCILBmJjBakoDRAfU9I63ve08/v//pwf3jO+V1fnv/z4X6ec5ed406xHQJ7gjwbb4K0gdqnYByt 78MeDp5XE3pESnYsF3BFSD44d+hSCW9zW4Mv8aYUVUzv0hFJm9SEdmlnU75jjrp6UQdpnmtnsgsj 7cPyhQRDqUXLfj3uiKmEfGI96pKDWLp6muIIUQet8jLFgsqeBGLgOQSXNZaFTS2r8RHt6z34EJ6q /KTj7UKNIzFZU7GEU5ejbTu8omKIHUVqQpX2o9K4bRS7BC0mcVxGbEn2iY+Xc8eDdVESpDglX/l2 HELNXKwIJ1UbaRX23ayVF/yyZ25vs9z8yGVl/MKP1fRePk7dcjWDMVXL9yRseXcL95hqlqCpPoQm 9Nb7akkfQL+3rdLT6BVHQxvdp2IsUjEau58Golk6G8OMYVW43Ozc7PMtMRGxEdPJPBXl4RV2tNiI bbT9t5eyQ9YJnGdU3MsSD2kLcznJToE9AuCUEGPEoZq6kinSUfjAFJXw01mVwG5rBhS8N7hipRX0 9F0totf7OlJ5tnEG7+38wF4pzkPXLu8g+q5nHiH/IYwYB47D9868uGveeWRuAeGm9QXr+qtNMX/x zuyocENxSsRxO8duzR2IK7/fgTdolwJ4LujUAnj2MYDdBT2NjR+3syh3TUZNUhE4sxf9SYpQMpqM tknXIUKJUA3+AcjAYZqIm4Zb6UgZW+QT9shxOQ1YvvLh7dVtqhV+sCKjsy5IDsx3poIWHPTsyGhz hW8GIEWcp3CENNn0azVnwp5I/eFBO6i+4dEAqAPUkR7FYHaJpXBsAhm0U4bnf8R8BDUm+74Df2Tf pYUrWeAtdObO/k3Dcnm2Kw5dgm/7cVygTRPlWFShV1HrFFnjQPUQ/ooVhwN906MBXgdnJOdidmEk fwIyaLcemc/FrL3uv/hG4UX/xuyttcpj6LX3dXVjNXU1xafPuiyk5vmLChSVit170+9dEBztzfj7 FZ8+olilcSs40m9/z4ap5qXv55nY97PzpQyzsfu/oW9LA8pcxTD83zw82ZxAcWKHc4814M7f97DW CjhJW+0JNklHuKqsfppSh26ypWpAa+xXUeP6ye0VMrbgoxsIH/HfC0jCCvdl7PvqLb+DqkzMQrMs +57xyk3QnomaEYxNUm+0SptO3B1ypA83kBK8eDskCd+pRl6RV408swrsyPlNVxt5e5ySJaUkj7W4 nLdv+9jGbh/bQb3rwRoDDhhYaGmoxOXDYXeSAgV+Um+7vkxdKU6GIZ75p/sWTlD4RwmUfi0NhX0d Bu7pLaHEvjfgGBgiyKcNUtER7MNVx3eRkCtorBwSUGRh8JvMf04eu6c008qDMllpXoZmbifEeWHT /ZaNgVVBw8O/Xl2STzaJ6Is/r4A069KPqiLVu74ZWg1YpOHr84y0+eKswysfPie/A0dMZRqV/ZEX nQYUj/PfHDwTUACd06upXGpBY0sFLNypYBQnqvUmSBmkbAnjKPxGf20ymUeE5CrCP0bv4UsbJKfs svj57Sc205DHl9xadRD8mp69lmymkplkATeLuPcqt0QkE2R7Zc4mAk/kH6zqCSm0FVwff95/vB8/ as9RaM7h7K9JojxKB7ZZc86jJV4c0xlObeiq/1Edog+J6iR31Z/U8i3vRl/1Ew76nsfTLhuLaBbw 18xauGK2UXNxueVirnUupVCoRKAEL87Vw9WTGcGNVET60AdiDIfjDJdc0RK4E2w9XLsE8o3KIhUZ u3fOiLF7wx27BJEzOC6/Jon0B13CeajOJBtbSoX9fSS4yfeeiUH10TZ+tROnL9pDhMCKD3222DHh q4cyRL6gOO7m8YVguYSk8QZzWP66ClJkh4F1MSu4e+ZpQNyTTFdAHBuDbBvg2av1i+MFg+rmyiGz RRYFPfONeIimhmZpcYdoJ6TzOpRrmn06LYI7A5pxmj5ArnZ+Ub14Ml3iFVaIsbqDmcANBU0Nih7v dLj3SeDKgzvKmqVyApzTcShQkUXHKVyHO1q1cuhWZBn6ABRb5i6NkcYMOqZo7GLscw17lYHXDO0J TgO76G6ue4F9HbhD7BvQc67J66Fd17DZTqnw2gfe4Mn5VlAsNo+x86gk1GRIKzTBhZZUq3BNZY2R DMfAGcm5GrsY++yLYmPgpUgPzy2N5jmWC32oc6u2aW2M/pn7Fy1qEzZ0aQkj5xLb9NGlJMcgw2ij qlHqlqFYVrBu9+H1Wa67cHBiom+f64W7U7cClzbiL8xsKv+Anvu+Q+JsxpD7T5aB3uH3arUKimXa BatpJrWjKFF/o7W8UGhGNu+76vvOz1eaq5cglv4ZBzQl3AzJYTGzgNcy+MIOLYmPK/iqMhcq9HYn ZPgIu+ov6AlLpeZrOcKZWgnZLskVNfOH7RWOn46McpDis5of6VaLCKAW430yn2FqD8zyin5b5mE9 UtqSvXE9x1wyZM7HENdj8blmvUh4/aUWzs/9cY6X7CCheqnF/LWTE715yeVGyswxE+9vszHpsa+g BYHLRmaYG7UiUS/VAjdf6S8HQxYXtJvRqCMEBVGvuYx9qHuRgMLG9wQEn5n+jYD9MzcvrVRGnUuL ElduSjcfiy6YwwdP2eccPVfz7n5/0BZPMS70w80H+Lx2sxBCoNbaWBCdctKx2crvaW3KaDRe1E7e CfeGTNy6+CJIeGtmqGr+s9NHnvYDf5HzAYpcXbVb9UsmVkghNsSdhra6Hudf54mnKPzgYrbW2+wl nW3S3a5JvLJFau+Lr0AUBIw+ufd8QWzwbKiOXXLCIwEh8fj8knMIuU+vBhz/GBqR/lTmLvrJwHZ2 Cka6WXYHnyhu4//rhwYJUYnXc92kV06Xf14cz1pti/9guj5c5LV6Pv0Xo/6kA9P9JeOVi2F16zNb e5sfohshifoAAEAPsDsA1O98wIXQ7eZYeVlpa5etEkJNhdL5stxBu0cHibLoQlBs2joRlQ5gnuDX T5AoYuUEqa2ts2O1E9FxurtyAghAItiAaoCvjZmSZxlJ9c9Dp8A740K3hyeKAGYqa44B4FQ21srq 2Tv8g9lD5fivo0CYZaJqtTvhrJVVtndsBrOMnfNrQzT+jWfvixhmT6rS19/HMJtkc8g7yayV1bT3 pQyzaVLp7+9m/o1h7yUxswGh/rcrY2YBOaBxJ5C1sgr2XsQyCyw0vnIty6xZntiNZa2smr0demYN Qe8r/XpmjYB2004sa2XV7O1fM2vGvv3nbjazpQzYtpPKWlkte1ufzBawwT83Qpkt9cq7qayV1bL3 jGG27D/FdOIwR9u87tyJYq1IBPvOOFUIAwwIAPA6Bfj/9z9+fwIbktu3AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DB9F20.B9A99470 Content-Location: file:///C:/2669C631/2001_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DB9F20.B9A99470--