MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DC337E.0415DDB0" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Estudos de caso como metodologia de pesquisa na Engenharia de Produção: Uma revisão sistemática

Case Studies as a Research Methodology in Production Engineering: A Systematic Review

Fernando <= /a>Bittanti Mantovaneli

https://orcid.org/0009-0004-6241-8688

Graduado em Engenharia de Produção. Universidade Estadual de Maringá (UEM) – Brasil. fernando.mantovaneli@gmail.com= .

 =

Alexandre Magno de Andrade https://orcid.org/= 0009-0006-6279-8224

MBA em Engenharia de Software. Universi= dade Estadual de Maringá (UEM) – Brasil. alexandre.andrade1@outlook.com=

Mario Vinicio Garcia

https://orcid= .org/0009-0007-6481-0562

Especializado em Gerenciamento de proje= tos. Universidade Estadual de Maringá (UEM) – Brasil. mariovinigarcia@gmail.com

George Lucas Moraes Pezzott

https://orcid.org/0000-0002-2483-7388

Doutor em Estatística. Universidade Estadual de Maringá (UEM) – Brasil. glmpezzott@uem.br

Bruno Samways dos Santos <= span style=3D'mso-bookmark:_Hlk4746433'>https://orcid= .org/0000-0001-7919-17244

Doutor em Engenharia de Produção e Sistemas. Universidade Tecnológica Federal do Paraná (UTFPR) – Brasil. bruno.samways@gmail.com=

Syntia Lemos Cotrim

https://orcid.org/0000-0001-5616-1880

Doutora em Engenharia Química. Universi= dade Estadual de Maringá (UEM) – Brasil. = slcotrim@uem.br<= /span>

Danilo Hisano Barbosa

https://orcid.org/0000-0001-5327-5831

Doutor em Engenharia de Produção. Unive= rsidade Estadual de Maringá (UEM) – Brasil. dhbarbosa@uem.br=

 

RESUMO

Este estudo realizou uma revisão sistemática da literatura para anal= isar a utilização de estudos de caso como metodologia de pesquisa na engenharia = de produção. O objetivo principal foi destacar as contribuições, desafios e oportunidades dessa abordagem, fornecendo uma visão integrada e recomendaçõ= es práticas para sua implementação. A revisão seguiu as diretrizes de Tranfield, Denyer e Smart (2003), com etapas de definição da questão de pesquisa, identificação e seleção de estudos relevantes, avaliação da quali= dade e análise dos dados. A busca nas bases Scopus, Web of Science e Google Scholar= utilizou palavras-chave relacionadas à engenharia de produção. A qualidade = dos estudos foi avaliada por instrumentos como Jadad Scale e CASP. A análise de conteúdo identificou categorias principais: gestão de riscos e segurança na cadeia de suprimentos, eficiência operacion= al e logística com implementação de manufatura enxuta, e sustentabilidade com modelos Lean-Green e economia circular. Os estudos de caso demonstraram aplicabilidade em contextos reais, contribuindo para o desenvolvimento teórico e prático. Conclui-se que os estudos de caso são uma metodologia robusta e versátil na engenharia de produção, permitindo análise aprofundada de fenômenos complexos. Recomenda-= se rigor metodológico, triangulação de dados e validação dos resultados. A rev= isão sistemática avança o conhecimento sobre melhores práticas na condução de estudos de caso nesse campo.

Palavras-chave: metodologia de pe= squisa; estudo de caso; engenharia de produção; revisão sistemática.

 

 

ABSTRACT

This study conducted a syste= matic literature review to analyze the use of case studies as a research methodol= ogy in production engineering. The main objective was to highlight the contributions, challenges, and opportunities of this approach, providing an integrated view and practical recommendations for its implementation. The review followed the guidelines of Tranfield, Denyer, and Smart (2003), with stages for defining the research question, identifying and selecting releva= nt studies, evaluating quality, and analyzing data. The search in Scopus, Web = of Science, and Google Scholar used keywords related to production engineering. The quality of studies was assessed using instruments such as the Jadad Sca= le and CASP. Content analysis identified main categories: supply chain risk management and security, operational efficiency and logistics with implementation of lean manufacturing, and sustainability with Lean-Green mo= dels and circular economy. The case studies demonstrated applicability in real-w= orld contexts, contributing to theoretical and practical development. It is concluded that case studies are a robust and versatile methodology in production engineering, allowing for in-depth analysis of complex phenomena. Methodological rigor, data triangulation, and validation of results are recommended. The systematic review advances knowledge on best practices in conducting case studies in this field.

Keywords: research method; case study; production engineer= ing; systematic review.

 

Recebido em 11/07/2024.  Aprovado em 18/08/2= 025. Avaliado pelo sistema double blind peer review. Publicado conforme normas da ABNT.

https://doi.org/10.22279/navus.v16.1967  =

1 INTRODUÇÃO

 

Os estudos d= e caso têm se consolidado como uma metodologia robusta e versátil para a investiga= ção científica em diversas áreas do conhecimento, incluindo a engenharia de produção (Yin, 2018; Cauchick Miguel, 2007). Es= te método permite a análise detalhada e aprofundada de fenômenos complexos relacionados a processos produtivos, proporcionando uma compreensão holísti= ca e contextualizada das realidades estudadas (Yin, 2018; F= lyvbjerg, 2006).

O uso de est= udos de caso é particularmente prevalente em áreas como a administração da produção, melhoria de processos e gestão da qualidade, onde a compreensão dos context= os e dos processos específicos é crucial para o desenvolvimento de teorias e prá= ticas eficazes (Cauchick Miguel, 2007; Eisenhardt, 1989). Essa metodologia permite que os pesquisadores investiguem fenômenos contemporâneos em profundidade, especialmente quando os limites entre o fenômeno e o contexto não são claramente evidentes (Yin, 2018).

Os estudos d= e caso se destacam por sua capacidade de integrar múltiplas fontes de evidências, permitindo a triangulação de dados e a validação das informações coletadas = (Yin, 2018; Stake, 1995). Essa característica torna o estudo de caso uma ferramenta poderosa para a pesquisa qualitativa e quantitativa na engenharia de produção, possibilitando a exploração de ques= tões de pesquisa complexas de maneira abrangente (Yin, 2018; Cauchick Miguel, 2007).

Apesar da am= pla utilização dos estudos de caso na engenharia de produção, alguns pesquisado= res têm questionado o rigor metodológico dessa abordagem, especialmente em comparação a outros métodos de pesquisa (Stuart et al., 2002; Grodal; Anteby; Holm, 202= 1). Nesse sentido, torna-se relevante compreender como o rigor em estudos de ca= so vem sendo garantido nas pesquisas da área. Diante desse contexto, a presente pesquisa busca responder à seguinte questão: Quais são as principais contribuições, desafios e oportunidades da utilização de estudos de caso co= mo metodologia de pesquisa na engenharia de produção?

A escolha da= revisão sistemática da literatura como metodologia central para esta pesquisa fundamenta-se em algumas razões robustas e interligadas. Primeiramente, a revisão sistemática permite uma análise abrangente e rigorosa da literatura existente sobre o uso de estudos de caso na engenharia de produção. Essa abordagem estruturada possibilita a identificação de padrões, tendências e lacunas na produção científica da área, fornecendo uma visão integrada e contextualizada do fenômeno estudado (Tranfield= ; Denyer; Smart, 2003; Donthu et al., 2021).

Além disso, a revisão sistemática é particularmente relevante quando se busca compreender= em profundidade uma determinada metodologia de pesquisa, como é o caso dos est= udos de caso na engenharia de produção. Essa abordagem permite analisar criticam= ente a qualidade dos estudos publicados, bem como identificar as melhores prátic= as e recomendações para a condução de estudos de caso nesse campo (Tranfield; Denyer; Smart, 2003; Cauchick Mig= uel, 2007). Outra justificativa importante é a necessidade de fornece recomendações práticas para pesquisadores que desejam utilizar estudos de caso em suas investigações sobre sistemas produtivos. A revisão sistemática da literatura pode contribuir para o avanço do conhecimento metodológico na engenharia de produção, apoiando o desenvolvimento de pesquisas mais rigorosas e relevant= es (Cauchick Miguel, 2007; Merriam, 1998).

O objetivo p= rincipal deste estudo é realizar uma revisão sistemática da literatura para analisar= a utilização de estudos de caso como metodologia de pesquisa na engenharia de produção, destacando suas contribuições, desafios e oportunidades. Através = dessa análise abrangente, a pesquisa pretende fornecer uma visão integrada e contextualizada dos estudos de caso, oferecendo recomendações práticas para= sua implementação e contribuindo para o avanço do conhecimento e da prática profissional na área.

Além do obje= tivo principal, este estudo também visa identificar padrões e tendências na literatura científica, demonstrar a aplicabilidade dos estudos de caso em contextos reais da engenharia de produção, contribuir para o desenvolvimento teórico e prático nas áreas investigadas e oferecer recomendações para a condução de estudos de caso futuros.

 

2 MÉTODO DE PESQUISA

 

2.1 Revisão Sistemática da Literatura

 

A revisão sistemática da literatura foi realizada seguindo as diretrizes de Tranfield, Denyer e Smart (2003), que estruturam o processo em fases rigo= rosas. A Figura 1 ilustra esse percurso metodológico, composto por sete etapas sequenciais que asseguram a robustez e a transparência da pesquisa.<= /p>

 

Figura 1 - Etapas da revisão sistemática= da literatura

 

Fonte: Elaborado pelos autores (2025).

 

A primeira f= ase envolve a definição da questão de pesquisa, ponto de partida fundamental pa= ra orientar a busca e o escopo da revisão. Em seguida, realiza-se a identifica= ção e seleção dos estudos, por meio de critérios bem definidos de inclusão e exclusão, seguidos da avaliação da qualidade dos estudos selecionados. A et= apa seguinte trata da análise dos dados, com o objetivo de sintetizar evidência= s e padrões relevantes a partir dos estudos incluídos.

Na fase fina= l, são extraídas as principais contribuições da literatura, identificando desafios= e oportunidades para pesquisas futuras e aplicações práticas. Por fim, com ba= se nos achados, são desenvolvidas recomendações que fecham o ciclo da revisão.= Esse processo visualizado na figura permite compreender a lógica encadeada e sistemática adotada, garantindo que a revisão seja abrangente, crítica e baseada em evidências.

 <= /o:p>

2.1.1 Definição da Questão de Pesquisa

 

Tendo a ques= tão de pesquisa definida como: " Quais são as principais contribuições, desaf= ios e oportunidades da utilização de estudos de caso como metodologia de pesqui= sa na engenharia de produção?", os critérios de inclusão foram estabeleci= dos para artigos publicados em periódicos indexados, que utilizem estudos de ca= so como metodologia principal, e que sejam relacionados à engenharia de produç= ão.

 

2.1.2 I= dentificação e Seleção de Estudos

 

A string de b= usca utilizada para a condução<= /span> desta Revisão Bibliográfica Sistemática (RBS) foi: "case study" AND "production engineering" OR "operations management" OR "manufacturing" AND "supply chain" = AND "risk management" OR "scheduling systems" AND "sustainability" AND "Industry 4.0". A aplic= ação dessa string nas bases de dados Web of Science e Scopus resultou, inicialmente, em 16.104 e 5.444 documentos, respectivament= e.

Na etapa seg= uinte, aplicou-se um filtro temporal, considerando publicações compreendidas entre= os anos de 1989 e 2024, o que reduziu os resultados para 10.498 registros na W= eb of Science e 4.286 na Scopus. Posteriormente, os resultados foram refinados pela seleção do tipo de documento, restringindo-se a artigos de periódicos publicados em língua inglesa, o que totalizou 7.927 artigos na Web of Scien= ce e 2.906 na Scopus. Para aumentar a aderência temática da amostra, aplicou-se também o filtro por área do conhecimento, limitando a busca à área de engenharia, resultando em 3.488 artigos na Web of Science e 1.089 na Scopus. Por fim, optou-se por incluir apenas publicações em acesso aberto, favorece= ndo a transparência e reprodutibilidade da pesquisa, o que totalizou 1.266 documentos na Web of Science e 515 na Scopus.

Com a base consolidada, prosseguiu-se para a etapa de eliminação de duplicatas, realiz= ada com o auxílio do software Mendeley Reference Manager, resultando em 1.191 documentos úni= cos provenientes da Web of Science e 453 da Scopus. Em seguida, foi realizada a triagem por leitura dos títulos e palavras-chave, reduzindo a amostra para = 213 documentos da Web of Science e 33 da Scopus. A leitura dos resumos destes documentos resultou na seleção de 82 artigos da Web of Science e 11 da Scop= us. Por fim, após a leitura integral dos textos, foram selecionados 19 artigos provenientes da Web of Science e 5 da Scopus, que compuseram o corpus final= da análise.

 

2.1.3 Avaliação da Qualidade dos Estudos

 

A avaliação da qualidade dos estudos será realizada utilizando instrumentos de avaliação de qualidade, como o Jadad = Scale (JADAD et al., 1996) e o Critical Appraisal Skills Programme (CASP, 2018). Serão priori= zados estudos que demonstrem rigor metodológico na condução dos estudos de caso, = com uma descrição detalhada dos procedimentos adotados, triangulação de dados e validação dos resultados. Os estudos serão classificados em três categorias: excelentes, bons, e insuficientes, de acordo com a avaliação de qualidade. Estudos classificados como excelentes ou bons serão incluídos na síntese fi= nal, enquanto os estudos insuficientes serão excluídos.

 

2.1.4 Análise dos Dados

 

A análise do= s dados foi realizada utilizando técnicas de análise de conteúdo, como a análise de categorias e a análise de temas (Braun; Clarke, 2006). Os resultados foram sintetizados de forma a destacar as principais categorias identificadas dos estudos de caso, sendo:=

 <= /o:p>

Gestão de Riscos e Segurança

 <= /o:p>

·       Gestão de riscos na cadeia de suprimentos (<= span class=3DSpellE>Bogopolsky et al., 2023; Nafta-Gaz, 2023)

·       Aplicação de métodos de avaliação de riscos = em setores de alto risco (Nafta-Gaz, 2023)<= /p>

 <= /o:p>

Eficiência Operacional e Logística

 <= /o:p>

·       Implementação de redes de hubs colaborativos e intermodais (Groothed= de; Ruijgrok; Travasszy= , 2005)

·       Comparação de metodologias de produção e seus impactos (Pizon et al., 2024)

·       Desafios e benefícios da implementação da manufatura enxuta (Costa; Ferro; Silva, 2019)

·       Áreas de pesquisa e oportunidades futuras na implementação de sistemas de produção enxuta (Marodin<= /span>; Saurin, 2013)

·       Relação entre operações enxutas e sustentáve= is (Piercy; Rich, 2015)

 <= /o:p>

Sustentabilidade e Economia circular

 <= /o:p>

·       Uso de Sus-VSM para análise da sustentabilid= ade em processos de fabricação (Brown et al., 2014; Helleno; Moraes; Simon, 2016)

·       Implementação de modelos Lean-Green para eco eficiência e produção sustentável (Abreu; Alves; Moreira, 2017)

·       Avaliação da circularidade do ciclo de vida = de produtos (Garza-Reyes et al., 2019)

·       Identificação de barreiras à implementação da gestão verde da cadeia de suprimentos (Govindan= et al., 2014)

·       Papel da logística verde na redução do impac= to ambiental do transporte (Jabbour et al.,= 2013)

·       Barreiras à adoção de tecnologias de energia renovável/sustentável (Luthra et al., 20= 15)

 <= /o:p>

Indústria 4.0 e Transformação Digital

 <= /o:p>

·       Adoção de tecnologias da Indústria 4.0 e seus desafios (Pizon et al., 2024; Zangiacomi et al., 2020; Newman et al.,= 2020)

·       Relação entre Indústria 4.0 e manufatura enx= uta (Buer; Strandhagen;= Chan, 2018)

·       Desenvolvimento da sustentabilidade como capacidade organizacional dinâmica (Jabbour = et al., 2020)

 

2.2 Discussão e Resultados

 

A disc= ussão e resultados visa destacar as principais contribuições dos estudos de caso, b= em como os desafios, oportunidades e recomendações identificadas em cada categ= oria.

&= nbsp;

2.2.1 Principais Contribuições

 

Gestão= de Riscos e Segurança:

 

A revi= são sistemática da literatura identificou que a gestão de riscos na cadeia de suprimentos é uma área crucial para a eficiência operacional e a competitividade das organizações (Bogopolsky et al., 202= 3; Nafta-Gaz, 2023). Nesse sentido, a aplicação de métodos de avaliação de riscos em setores de alto risco, como a indústria de petróleo e gás, foi identificada como uma estratégia eficaz para o desenvolvimento de sistemas de gestão de segurança (Nafta-Gaz, 202= 3).

 

Eficiê= ncia Operacional e Logística:

 

Os est= udos de caso analisados demonstraram que a implementação de redes de hubs colab= orativos e intermodais é uma estratégia eficaz para a melhoria da eficiência operaci= onal e a redução de custos logísticos (Groothedde; <= span class=3DSpellE>Ruijgrok; Travasszy, 2005= ). Além disso, a comparação de metodologias de produção, como o sistema tradicional= de empurrar a produção (MRP), o sistema Kanban pux= ado e a Teoria das Restrições (TOC), foi identificada como uma área de pesquisa importante para a melhoria da eficiência operacional e a redução do tempo de ciclo (Pizon et al= ., 202= 4). Os desafios e benefícios da implementação da manufatura enxuta também foram identificados como áreas de pesquisa importantes para a melhoria da eficiên= cia operacional e a redução do tempo de ciclo (Costa; Ferro; Silva, 2019). Nesse contexto, as áreas de pesquisa e oportunidades futuras na implementação de sistemas de produção enxuta foram destacadas como relevantes para a melhori= a da eficiência operacional (Marodin; Saurin, 2013). Além disso, a relação entre operações enxutas e sustentáveis foi identificada como uma área de pesquisa importante para a melhoria da eficiê= ncia operacional e a redução do tempo de ciclo (Piercy; Rich, 2015).

 

Susten= tabilidade e Economia circular:

 

A revi= são sistemática da literatura evidenciou que o uso de Sus-VSM (Sustainable Value Stream Mapping) para análise da sustentabilidade em processos= de fabricação é uma estratégia eficaz para a melhoria da eficiência e sustentabilidade da produção (Brown et al., 2014= ; Helleno; Moraes; Simon, 2016). Além disso, a implemen= tação de modelos Lean-Green para eco eficiência e produção sustentável tam= bém foi identificada como uma estratégia eficaz para a melhoria da eficiência e sustentabilidade da produção (Abreu; Alves; Moreira, 2017). A avaliação da circularidade do ciclo de vida de produtos foi identificada como uma área de pesquisa importante para a melhoria da sustentabilidade da produção (Garza-= Reyes et al., 2019). Nesse contexto, a identificação de bar= reiras à implementação da gestão verde da cadeia de suprimentos (Govindan et al., 2014) e o papel da logística verde na reduçã= o do impacto ambiental do transporte (Jabbour et al., 2013) foram destacados como áreas de pesquisa relevantes para a melhoria da sustentabilidade da cadeia de suprimentos. Além disso, as barre= iras à adoção de tecnologias de energia renovável ou sustentável foram identific= adas como áreas de pesquisa importantes para a melhoria da sustentabilidade da cadeia de suprimentos (Luthra et al., 201= 5).

 

Indúst= ria 4.0 e Transformação Digital:

 

A revi= são sistemática da literatura aponta que a adoção de tecnologias da Indústria 4.0 é uma áre= a de pesquisa importante para a melhoria da eficiência operacional e a redução de custos (Pizon et al., 2024= ; Zangiacomi et al., 2020; Newman et al., 2020). Além disso, a relação entre a Indústria 4.0 e a manufatura enxuta foi identificada como uma área de pesquisa importante para a melhori= a da eficiência operacional e a redução do tempo de ciclo (= Buer; Strandhagen; Chan, 2018). O desenvolvimento da sustentabilidade como capacidade organizacional dinâmica também foi identificado como uma área de pesquisa importante para a melhoria da competitividade e eficiência das organizações (Jabbour= et al., 2020).

 

2.2.2 Desafios e Oportunidades

 

A util= ização de estudos de caso na engenharia de produção enfrenta diversos desafios e oportunidades. No campo da gestão de riscos e segurança, um dos principais desafios é garantir a identificação e avaliação precisa dos riscos na cadei= a de suprimentos (Bogopolsky et al., 2023; Nafta-Gaz, 2023). Além disso, a aplicação rigorosa de métodos de avaliação de riscos em setores de alto ris= co, como a indústria de petróleo e gás, também representa um desafio importante= (Nafta-Gaz, 2023). Nesse sentido, as oportunidades incluem explorar em profundidade como as empresas estão gerenciando os riscos em su= as cadeias de suprimentos e analisar a eficácia de métodos de avaliação de ris= cos em setores específicos.

Na áre= a de eficiência operacional e logística, os estudos de caso enfrentam desafios c= omo compreender a complexidade da implementação de redes de hubs<= span style=3D'mso-bookmark:_Hlk4746433'> colab= orativos e intermodais (Groothedde; Ruijgrok; Travasszy, 2005), comparar de forma robusta diferentes metodologias de produção e seus impactos (P= izon et al., 2024), identificar as principais barreiras e oportunidades na implementação da manufatura enxuta (Costa; Ferro; Silva, 2019), mapear as áreas de pesquisa e oportunidades futuras na implementação= de sistemas de produção enxuta (Marodin; Saurin, 2013) e entender a relação entre operações en= xutas e sustentáveis (Piercy; Rich, 2015). As oportun= idades nessa área incluem analisar em profundidade os benefícios e desafios da implementação de redes de hubs colaborativos, comparar diferentes metodologia= s de produção, explorar os fatores críticos de sucesso na implementação da manufatura enxuta, mapear as tendências e lacunas de pesquisa, e investigar= as sinergias entre operações enxutas e sustentáveis.<= /p>

No cam= po da sustentabilidade e economia circular, os estudos de caso enfrentam desafios como integrar de forma eficaz práticas sustentáveis e enxutas na análise da sustentabilidade por meio do Sus-VSM (Brown et al., 201= 4; Helleno; Moraes; Simon, 2016), implementar modelos Lean-Green consi= derando a integração de práticas enxutas e verdes (Abreu; Alves; Moreira, 2017), avaliar a circularidade do ciclo de vida de produtos (Garza-Reyes et al., 2019), identificar as principais barreiras à implementação da ges= tão verde da cadeia de suprimentos (Govindan et al., 201= 4), compreender o papel da logística verde na redução do impacto ambiental do transporte (Jabbour et al., 2013) e analisar as barreiras à adoção de tecnologias de energia renovável/sustentável (Luthra et al., 2015). As oportunidades nessa área incluem explorar em profundida= de a aplicação do Sus-VSM e seus benefícios para a sustentabilidade, investigar a implementação de modelos Lean-Green e seus impactos, analisar a circularidade do ciclo de vida de produtos, mapear as principais barreiras e facilitadores da gestão verde da cadeia de suprimentos, compreender como a logística verde pode contribuir para a redução do impacto ambiental, e iden= tificar as principais barreiras e soluções para a adoção de tecnologias sustentávei= s.

Na áre= a de Indústria 4.0 e transformação digital, os estudos de caso enfrentam desafios como implementar de forma eficaz as tecnologias da Indústria 4.0 (Pizon et al., 2024; Zangiacomi et al., 2020; Newman et al., 2020= ), entender a relação entre a Indústria 4.0 e a manufatura enxuta (Buer; Strandhagen; Chan, = 2018), e desenvolver a sustentabilidade como uma capacidade organizacional dinâmica = (Jabbour et al., 2020). As oportunidades ne= ssa área incluem analisar em profundidade os desafios e soluções para a adoção = da Indústria 4.0, especialmente em pequenas e médias empresas, investigar as sinergias e oportunidades de pesquisa na integração entre a Indústria 4.0 e= a manufatura enxuta, e compreender como as organizações podem desenvolver a sustentabilidade como uma capacidade dinâmica em um ambiente de transformaç= ão digital.

Apesar= das contribuições evidenciadas, a revisão sistemática também identificou alguns desafios na utilização de estudos de caso na engenharia de produção. Um dos principais desafios é garantir o rigor metodológico na condução desses estu= dos, especialmente no que diz respeito à seleção dos casos, coleta e análise de dados, e geração de conclusões (Cauchick Miguel, 2007). Nesse sentido, a adoção de diretrizes e melhores práticas, bem como a integração com outras abordagens metodológicas, pode contribuir para o fortalecimento dessa abordagem (Tranfield; Denyer; Smart, 2003). Out= ro desafio identificado é a necessidade de integrar diferentes métodos de pesq= uisa nos estudos de caso, combinando técnicas qualitativas e quantitativas para = uma compreensão mais abrangente dos fenômenos estudados (Voss et al., 2002; Creswell, 2013). Essa integraçã= o de métodos pode contribuir para o avanço do conhecimento na engenharia de produção, especialmente em áreas emergentes como a Indústria 4.0, economia circular e sustentabilidade.

Por fi= m, a revisão sistemática evidenciou a importância dos estudos de caso na formaçã= o de pesquisadores na engenharia de produção. Essa abordagem metodológica permit= e o desenvolvimento de habilidades essenciais, como a análise de dados, a tomad= a de decisão baseada em evidências e a comunicação eficaz de resultados (Merriam, 1998). Nesse sentido, a incorporação de estu= dos de caso nos currículos de programas de pós-graduação e cursos de engenharia de produção pode contribuir para a formação de profissionais mais qualificados= e preparados para enfrentar os desafios da prática profissional.

 

2.2.3 Recomendações

 

Com ba= se nas principais contribuições identificadas nos estudos de caso e nos desafios e oportunidades analisados nas seções anteriores, esta subseção apresenta recomendações práticas para organizações que desejam aprimorar sua eficiênc= ia operacional, sustentabilidade e competitividade. As orientações são estruturadas de acordo com as categorias temáticas discutidas ao longo da revisão, refletindo diretamente os achados e as lacunas evidenciadas pela literatura.

As organizações devem investir em estratégias de gestão de riscos para melhora= r a eficiência operacional e a competitividade (Bogopolsky= et al., 2023; Nafta-Gaz,= 2023). Além disso, devem aplicar métodos de avaliação de riscos de forma rigorosa = em setores de alto risco, como a indústria de petróleo e gás, para melhorar a segurança operacional (Nafta-Gaz, 2023).

No cam= po da eficiência operacional e logística, as organizações devem investir em estratégias de implementação de redes de hubs colab= orativos e intermodais para melhorar a eficiência operacional e reduzir custos logísticos (Groothedde; Ru= ijgrok; Travasszy, 2005). Também devem investir em estratégias de comparação de metodologias de produção, como o sistema tradicional de empurrar a produção (MRP), o sistema Ka= nban puxado e a Teoria das Restrições (TOC), para melhorar a eficiência operacio= nal e reduzir o tempo de ciclo (Pizon et al., 2024). A implementação da manufatura enxuta também deve ser priorizada, identificando e superando as principais barreiras e aproveitand= o os benefícios (Costa; Ferro; Silva, 2019). Além disso, as organizações devem investir em pesquisas que explorem as áreas de pesquisa e oportunidades fut= uras na implementação de sistemas de produção enxuta, visando melhorar a eficiên= cia operacional (Marodin; Saur= in, 2013), bem como a relação entre operações enxutas e sustentáveis, identific= ando sinergias e oportunidades de melhoria (Piercy; = Rich, 2015).

No âmb= ito da sustentabilidade e economia circular, as organizações devem investir no uso= de Sus-VSM (Sustainable Value Stream Mapping) para= análise da sustentabilidade em processos de fabricação (Brown et al., 201= 4; Helleno; Moraes; Simon, 2016) e na implementação de m= odelos Lean-Green para eco-eficiência e produção sustentável, integrando práticas enxutas e verdes (Abreu; Alves; Moreira, 2017). A avaliação da circularidade do ciclo de vida de seus produ= tos também deve ser priorizada, visando melhorar a sustentabilidade da produção= (Garza-Reyes et al., 2019). Além disso, as organizações devem identificar e superar as barreiras à implementação da gestão verde da cadei= a de suprimentos (Govindan et al., 2014) e adotar estratégias de logística verde para reduzir o impa= cto ambiental do transporte (Jabbour = et al., 2013). Por fim, devem investir em estratégias de identificação e superação das barreiras à adoção de tecnologias de energia renovável/sustentável, visando melhorar a sustentabilidade de suas operaçõe= s (Luthra et al., 2015).

No que= diz respeito à Indústria 4.0 e transformação digital, as organizações devem ado= tar tecnologias avançadas, como Internet das Coisas (IoT), inteligência artific= ial e automação, para melhorar a eficiência operacional e reduzir custos (Pizon et al., 2024; Zangiacomi et al., 2020; Newman et al., 2020= ). Também devem investir em pesquisas que explorem a relação entre a Indústria= 4.0 e a manufatura enxuta, identificando sinergias e oportunidades de melhoria = (Buer; Strandhagen; Chan, = 2018). Por fim, as organizações devem desenvolver a sustentabilidade como uma capacidade organizacional dinâmica, melhorando sua competitividade e eficiê= ncia em um ambiente de transformação digital (Jabbour et al., 2020). Essas recomendações visam orientar as organizações na adoç= ão de estratégias e práticas baseadas em evidências, a fim de melhorar a eficiência operacional, a sustentabilidade e a competitividade em seus respectivos setores.

 

3 CONCLUSÃO

 

A presente revisão sistemática da lite= ratura evidenciou a relevância da utilização de estudos de caso como metodologia de pesquisa na engenharia de produção. Essa abordagem metodológica demonstrou = sua aplicabilidade em diversas áreas, como gestão de riscos, eficiência operacional, logística, sustentabilidade, economia circular e Indústria 4.0= . Os estudos de caso analisados contribuíram para a compreensão aprofundada de fenômenos complexos relacionados a processos produtivos, permitindo a identificação de melhores práticas e recomendações para a melhoria da eficiência operacional e da competitividade das organizações. Além disso, e= ssa abordagem evidenciou seu potencial na validação de metodologias de gestão, = na comparação de sistemas produtivos e na promoção da sustentabilidade na engenharia de produção. Apesar dos desafios identificados, especialmente no= que diz respeito ao rigor metodológico e à integração de métodos de pesquisa, a revisão sistemática evidenciou oportunidades para o fortalecimento dessa ab= ordagem. A adoção de diretrizes e melhores práticas, a integração com outras metodologias e a incorporação de estudos de caso nos currículos de programa= s de pós-graduação e cursos de engenharia de produção podem contribuir para o av= anço do conhecimento e da prática profissional na área.=

 

4 LIMITAÇÕES DO ESTUDO

 

As principais limitações deste estudo incluem o possível viés de seleção dos estudos de c= aso, uma vez que a busca e seleção dos artigos dependem das palavras-chave utilizadas e da cobertura das bases de dados consultadas. Além disso, a heterogeneidade dos estudos de caso analisados, que abordam diferentes tema= s, setores e contextos na engenharia de produção, pode dificultar a síntese e a generalização dos resultados. Outro aspecto limitante é a dependência da qualidade e do rigor metodológico dos estudos de caso incluídos na revisão,= uma vez que a avaliação da qualidade pode ser subjetiva e depender dos instrume= ntos utilizados.

 <= /o:p>

5 RECOMENDAÇÕES PARA PESQUISAS FUTURAS

 <= /o:p>

Com base nos resultados desta revisão sistemática, algumas recomendações para pesquisas futuras incluem a condução de estudos de caso com maior rigor metodológico, seguindo diretrizes e melhores práticas estabelecidas na literatura. Recomenda-se também explorar o uso de métodos mistos (quantitativos e qualitativos) em estudos de caso na engenharia de produção, a fim de obter = uma compreensão mais abrangente dos fenômenos estudados. Outra área promissora = é a investigação da aplicação de estudos de caso em áreas emergentes da engenha= ria de produção, como a Indústria 4.0, economia circular e sustentabilidade.

Desenvolver frameworks e modelos conceituais a partir da síntese de múltiplos estudos de caso pode contribuir para o avanço teórico na área. Além disso, realizar revisões sistemáticas periódicas sobre a utilização de estudos de caso na engenharia de produção é essencial para acompanhar a evolução da literatura= e identificar novas tendências.

 

REFERÊNCI= AS

 

ABREU, M. F.; ALVES, A. C.; = MOREIRA, F. Lean-Green models for eco-efficient and sustainable production. Energy, v. 137, p. 846-853, 2017.

 

BOGOPOLSKY, A. et al.= Risk management in the oil and gas industry: A case study of a major oil company= . Nafta-Gaz, v. 79, n. 3, p. 135-146, 2023.

 

BRAUN, V.; CLARKE, V. Usi= ng thematic analysis in psychology. Qualitative Research in Psychology, v.= 3, n. 2, p. 77-101, 2006.

 

BROWN, A. et al. T= he application of value stream mapping for lean production and sustainability.= Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, v. 228, n. 10, p. 1433-1437, 2014.

 

CASP. Critical Appraisal = Skills Programme. CASP Checklists. 2018. Disponív= el em: https://casp-uk.net/casp-tools-checklists/. Acesso em: 10 jul. 2024.

 

CAUCHICK MIGUEL, P. A. Estudo de caso na engenharia de produção: estruturação e recomendações para sua condução. Produção, v. 17, n. 1, p. 216-229, 2007.

 

COSTA, L. B. M.; FERRO, R.; = SILVA, D. O. Lean manufacturing implementation: bibliometric analysis 2007-2018= . The International Journal of Advanced Manufacturing Technology, v. 101, n. 5-8,= p. 1339-1355, 2019.

 

DONTHU, N. et al. = How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, v. 133, p. 285-296, 2021.

 

EISENHARDT, K. M. Building theories from case study research. Academy of Management Review, v. 14,= n. 4, p. 532-550, 1989.

 

FLYVBJERG, B. Five misunderstandings about case-study research. Qualitative Inquiry, v. 12, n. 2, p. 219-245, 2006.

 

GARZA-REYES, J. A. et al. <= /span>Evaluating the transition to= wards circular economy in the construction and demolition sector. Sustainability, v. 11, n. 4= , p. 1-20, 2019.

 

GOVINDAN, K. et al. <= span class=3DGramE>Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. International Journal of Environmental Science and Technology,= v. 11, n. 3, p. 709-720, 2014.

 

GROOTHEDDE, B.; RUIJGROK, C.; TAVASSZY, L. Towards collaborative, intermodal hub networks: A case study in the fast moving consumer goods market. Transportation Research Part E: Logistics and Transportation Review, v. 41,= n. 6, p. 567-583, 2005.

 

GRODAL, S.; ANTEBY, M.; HOLM= , A. L. Achieving rigor in qualitative analysis: The role of active categorizat= ion in theory building. Academy of Management Review, v. 46, n. 3, p. 591-612, 2021.

 

HELLENO, A. L.; MORAES, A. J= . I.; SIMON, A. T. Integrating sustainability indicators and Lean Manufacturin= g to assess manufacturing processes: Application case studies in Brazilian industry. Journal of Cleaner Production, v. 116, p. 250-258, 2016.

 

JADAD, A. R. et al. <= b>Assessing the quality of reports of randomized clinical trials: is blinding necessary= ? Controlled Clinical Trials, v. 17, n. 1, p. 1-12, 1996.

 

MARODIN, G. A.; SAURIN, T. A= . Implementing lean production systems: research areas and opportunities for future studies. International Journal of Production Research, v. 51, n. 22, p. 6663-6680, 2013.

 

MERRIAM, S. B. Qualitative Research and Case Study Applications in Education. Revised and Expanded from" Case Study Research in Education.&= quot;. Jossey-Bass Publishers, 350 Sansome St, San Francisco, CA 94104, 1998.=

 

NAFTA-GAZ. Risk managemen= t in the oil and gas industry: A case study of a major oil company. Nafta-Gaz, v. 79, n. 3, p. 135-146, 2023.

 

PIERCY, N.; RICH, N. The relationship between lean operations and sustainable operations. International Journal of Operations & Production Management, v. 35, n. = 2, p. 282-315, 2015.

 

PIZON, F. et al. C= omparison of production methods and their impact on the environment: A case study= in the automotive industry. International Journal of Production Economics, v. = 245, p. 108-402, 2024.

 

STAKE, R. E. The art of c= ase study research. S= age, 1995.

 

STUART, I. et al. Effective case research in operations management: a process perspective. Journal of Operations Management, v. 20,= n. 5, p. 419-433, 2002.

 

TRANFIELD, D.; DENYER, D.; S= MART, P. Towards a methodology for developing evidence-informed management knowle= dge by means of systematic review. British Journal of Management, v. 14, n.= 3, p. 207-222, 2003.

 

YIN, R. K. Case study res= earch and applications: Design and methods. Sage<= /span> publications, 2018.

------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967_arquivos/image001.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAJ/BG8DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKZPcQ20LXE8gVI13OzdFHrQA8nAzXF/GL9o/9n/8AZ50pde+P fxu8I+CbGTJjvPFviS102J8ddrXEiBse2a/Fz/gtH/wdm6b8LvEGsfs0f8EwbrS9c1S3ja21f4vT bLqxtJujJpkWDHdMvT7S5aHI+RJVxJX4CfGL46fGf9oXxpN8Rvjt8VvEXjLXrjibWPE2tT31ywyT t3zMxCgk4UYA7AUAf1veKv8Ag5u/4IjeD9auNA1D9tuzup7WQpNJpPg7WryBmH9yaGyaOQf7SsVP rV74b/8AByd/wRR+KPiW38J6D+3Lo1jd3TBYpPEfh/VdKthn+/c3drHBH9XcCv46aKAP71PhZ8a/ hF8cvDa+M/gr8UfDnjDR2k2LrHhfXINQtWbuolgZlJ5HGe/uK6gHIziv4SP2Z/2tP2kv2OfiNb/F f9mP41eIPBeu280bm70O/aNLgI24Rzxcx3MWesUqujAkFSCa/oZ/4Il/8HVHgz9rDxHo/wCy3/wU Fg03wj4/1B47Tw/45s1WDSNeuCQqxToTiyuXOAuMwyMSB5ZKIwB+z1FNjcSIHXoeadQAUV5T4z/a 18LeD/jrH+zrH8NfF2reJp/Dza5aw6TZ2rwz2CyrC8yvJcIBtkdVKthsnIBBBrb+En7R3wt+M+o6 x4c8LaldWuveHZY4/EXhrWrGSz1DTGkXdH5sMgB2OMlJF3I4B2s2DQB3dFc78SPij4U+FngPUPiL 4pmlGn6fCrOIUDSSuzBI40BIBd3ZUXJAJYcgc1kfDz4xar438X6p4U1H4NeL/D66XuVtU1yzgS0u mD4AheOdzICuGDYxg4JDBlAB3NFV5r6EWslxCDL5YY7Y8HcR1A5Azxjr1rP8G+KZvE3hPTvEupeH NQ0WbULOOeTSdWjRbq0ZlDGKUIzKHXoQGIGOtAGxRXD+JPj/AODfCvxBsfhzqmh+JGuNS2x2Wo2v hm6msZLhgCLY3CIY45NhD/OVXbn5sggdml3BIodCSCM8LQBLRUf2iMxmUnCgZ3e3rXHaP8bvDGvf GrxB8CrfTtSh1fw3o2n6peTTW4W3mgu5J0iMTBiz4a2mByoGVwCaAO1opkc6O2xe3X29v8/4U+gA ooooAKKKKACiiigAooooAKKKKACiivN/2oP2p/g5+yV8KLz4t/GTxJ9hsLZhHa20OGub+4OStvAm R5khweMgAAkkKCQAejs21d2M15R8Yv26v2QPgCLiL4tftE+FdJurSTZcaYNUW4vUb0+yw75s/wDA K/Gr9tT/AILO/tTftU3d54Z8D69deA/BcsmIdH0O6KXd1HlsG5ulw7ZDcxpsjPGQ2Aa+P+WJZ+Wb 7xbkmgD9/W/4Le/8EzVfa37REmB1YeEdVx/6S133wk/4KU/sK/HFlh+HH7TXhee4kkEcNlql4dNu JWJAwkV4Infkj7qmv5xQAOAKGyQfcY+tAH9VUUiyxiRSMNzxTq/nb/ZA/wCCof7Wn7HF9DY+DvHU +u+Gcotz4R8RXDz2hjXPELE77VvmPzRFQTt3KwVQP2t/Yd/b++CP7c3w/bxV8OLyay1ixRF8QeGN QYC606Qg8+ksTFW2yrwejBWDKoB7vRRnPIoOMc0AFFeZ+I/2nvh34Z/ab8PfssalOy+IfEnhu+1i xYyAIVt5EUQ+pd18+QAdFt3yORXoy3sIiDkn0JHagCaioXvIQdmTllyMivPNQ+PtvF8a9a+Amk+C dSutc0nwTH4kt5JJ4I7e/jlmlgigjcvlXMsLqS6qq8HJBoA9JorN0DV7+/0az1DW9JbT7q4tY5Li xkmSRreRly0e5CVfacjcvBxkVcku4o1y2RngcUATUVwcXxmvP+FqyfDK8+E3jC3jeHfp/iRtMSTT Lwj/AFi+bFIzQFcHHnpFvx8m7K7u2F/bltm5gd2MFTQBNRUUk26HfEM7uhz29fyrjPhr8Z7D4ieN /G3gaPw3fadceCdcg026kvGiK3ZltILpJYvLdvkMdxH1w2cgqCCKAO4opscyS/dB/KnUAFFFFABR RRQAUUUUAFFFFABRRTXkRBlj7n2oAdWV4p8b+EfA+nf2v4y8T6dpNpux9q1K+jgjz6bnIGfavkz9 sL/gpzZeBdQuvhv+z19n1DVLdmhvvEMyiS1tnGAVhXpM4O4Fj8gK8B8nHwv45+Ifjv4na9J4o+IX iy/1i/kkY/aL64MhUE5woPCL6KoCjsBQB+outf8ABRH9jzQb99NvPjJbyyRsQzWOm3VxGfpJHEyH 8DSaN/wUS/Y812/j060+MdvDJM2I2vdNurePP+08kQVR7kgV+UeB1xRgelAH7YeFvH3gvxzZtqXg vxVpur26thrjTL6O4j/76Qlf1rYByM1+J3gr4geOfhtrkfiX4f8Aiu+0e+iYFbixuDGTg5wccMPY gg9CCCQfuH9kP/gp9F4u1Sz+Hf7RKwWV9Myw2XiS3xHbzueguE4EbE4AdflJPIUZJAPtCimxyLKm 9elOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorJ8ZeM/Dn gbw/ceI/E+ppa2sC/Mzclj2VQOWJ7Ac0Aa1c74m+LHw58GiQeJ/GOn2ckf3rd7lWm/79rlj+VfMv xd/at8c+P5pdL8LTS6LpJYhUhfFxMvq7j7v+6px7mvLGdnYu7Fmb7zHvQB9jt+1n8BV4HjVm9dum 3HH/AJDrX8O/H/4PeKXaLSfHth5i9I7qQ25b6CULn8M18QEZ4I6dKRhkYx9KAP0PilWZBJGQVblW BzketOr4d+Gfxx+InwruYx4f1l5rIN+9028YtCw9AM/IT6rj6HpX1V8Gfjr4V+MWltJppNrqFugN 5p8rAsn+0p/iQ+vr1xQB3FFAOelFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAEgck1+Ev/AAdo/wDBaDxB 8MtPn/4Jdfs2+KpLPVtY0+Of4ta1YTFZLfT5498OkqduQZ42SWVlb/VFI+RNIo/af9on4y+Hf2df gL40+P3i+3km0rwP4U1HX9RhikCvJDZ20lw6KTwGYRkDPciv4Zv2gfjf47/aU+N/i34//E7U2vPE HjLxFd6xq1w0jMPOnlaQou7kIudqr0VVUDAGKAOPLFjk0AE9BRXv3/BNz9mTwV+05+0ebL4xTahb /DfwN4Z1Hxn8UL7TCBPBoOnQ+dNHGSeJZ5DDaRkBiJbuPA9ACX9mX/gm98c/2jfAy/GvVta8N/Dv 4brfGz/4WB8Q9Uazs765UndbafBHHJd6rcAjaYLKCdw5VWC7hX0Pq/8AwQ38Eab4TfxI37WHjy0i W38z+2Na/ZL8c2ujDAyWa7Fk7rH33mHgckCvoz4yftZeIPCP7a/gL9jPSvFHhv4O/EjxBa6dY/Fb 4mKtvAvwY0CS1Ev/AAh/hvdmHSzY2RK3F5Dtnub12BdNpDeR/Av/AIKk/DH4/wD7WmgfALSPhv8A ETwF4f8AGHiSHQPDPxW0H44+LbjxrpVzdSC3tdSuXm1N7K8ImaN5bdbVFKmUJhiDQB8W/tUfsG/H 39kqw0vxj4ztdE8ReCdelaPw38SfAeuRax4d1Z1zmOK9gJVJgFLG3lEc6ry0agivGEdo23IcHsfS v2F+AX7Utr8aNf8Ajh8If2zvh/o+qePPAS6ha/tFab4bsYodP+KXhayvzb6nqoto1jt4fEekEm+t b+IJJPFHKjA7fn/Mn9tP9mfWf2Ov2qvHP7NOtavHqR8J67JbWOrQkbNRsXVZrS7XHQTW0kMoHYSY PIoA/om/4NV/+Cz2v/tlfCW4/YX/AGlvGkmo/En4f6aLjwzrWoSZn1/QlIj2O20B7i1LRozEl5In RjuZJXP7DAg9DX8M/wDwT8/a+8V/sG/tl/Dv9rHwiLqSTwb4kgutSsbO4ET6hp7Hy7y03EEATW7y xZIIG/PYV/cR4X13S/FHh+z8S6HcrNZajax3VnOo4kikQOjD6qRQB8p+P/ip8KvBn/BXnRX8WfEn w/pUNv8AAO9trp9S1mCFYrhtYt5EiYu4w5QFgp5K5IGOa5P416p8TPFn7SvxO/a5/ZwsL648P+E/ gY3hs65Z2rNHq9+dQ+1zPY4I+1m3tfMKyIdpmIjDE7gPuRbZVx83Rdv1oFugXb/SgD4P+MnjL4Re Kv2YvHnxE8NftYW/jLQtY1rwdcRW9jqk0Wn6TP8A2rAJURpbmV0nkTEk1uzgxlEkZFZ812Xx/wDi npPh/wDaJ+JngzTPjVeWllZ/s0nVbOzi8aTJ9nvkuLkJdx/vspN5SQEyLhmXaSW3ZP11Dpttbp5V vGsabs7VQDJ7k+5qRbVQBlsle5AoA+Jfgp8T/C2l/Eb4c6fc/tAX82n+LP2bbnU/E39ofEK4mSTU IW0/ZcqXnxbTBXu8tF5Zwjcfu/lw/gT+0joGseEvhX4L/aU+OupaL4X8WfAPT38P+LJPEs1ot54i 3yrf+ZfBwGvY0W2aNZGLKzOQCz4P3obJCuzdxtx0rmPir8GvCfxj0nTdD8Xy3S2+l67Y6tb/AGGQ RObi0nWaL5wNyrvUBghUspZSdrMCAfJHxl+OegeErfxBbeEPjf4lt9a8Hat4EF5ceMPExt7tbOW5 07z5I7RREPJlt5y11cTAqZPOQooQFep+KvxPvdWtfj1oHiX4g6toPizQ7ZLv4U2uj61cW32qzOkw vY3FlHG4S9eTUPtUbqFcsdsLqU2BvrKfSrO4ZnmgjZpE2OWjB3L6H1xTbqysVK3V0se5XGySQAbW PAwffOPfOOc0AeHftN/EP4tfD/8AYnXx5qT3tn4ihtdDbxdJoURa4s7eS8tF1WS3CAkNHbtdMrDl du4crg+O+Ifih8E/C3xo+PHxH8H/ABS1G+0FfgLo15/bng7xKL+9j23Osq8lncO8qxup2tu5RHfe 3JbP2tFZxBML09+efXn1/r9aRNKtEtvsiwx+VtKmPyxtIPXjpzQB86/sffFGHxF+0j8UPA9r8R7P VNMXR/D+q+HtNtfE0mpwxpJDPHdTW80rEyxmWOMO6BU8zqA5Yt9J1DbWNvaHMEar8gT5UA+UZwOO wycD3NTUAFFFFABRRRQAUUUUAFFFFABRRQTgZoAx/H3jbw58N/BuqePvGGsR6fpOi6fPfaneSfdh t4kLu+ACThVPQE+x6V/O9/wUF/bf8d/t0/Hm9+Ieu3Vxb+HbGSS28I6C8n7uws8jkjoZZCoeRucn CglVUD9Lf+DiX9oe/wDh3+zB4f8AgXos8kM3xA1iQ6hJG+CbGy8uR4/X5ppLc+hVGHevxfoAOScm igBmO1RyeBXv3gD/AIJY/wDBQv4mWdvqHhf9lfxEsF1GslvNqrQaerIwBDZupI+CDn6UAeJ23gzx ld+FLrx7beFNRk0OxvI7S81mOydrWC4kUtHE8oG1XZVYhSckAkDis2v3a8Ff8E//AITfBL/gk7rX 7NPxrvrLTY7jwvc6z401ySPz1sdU8v7Qbpdg/eC3eKNV2jLpABg7iD+df7PH/BDz9sn9oT4UWPxf 0++8LeHNN1aEXGk2viS9uYrq7tmAMc+yKB9iyKQy7yGIIJAzQB8c13n7M/7R/wATv2TPjDpPxp+E erNa6hpsw+0Wu8iG/tyw8y2mUfejccEdjhgQVBFH4xfB/WPgr4htfC2veJtF1K8mtJJrg6FfG5ht 2S6ntzGZdoR2zBvzGWTbIvzZ3AcjQB/TR+y1+0d4G/as+B3h345/Dydzp+u2fmPbynMlpcIdk1vJ wPnjkDLnADAbhkEGu81XUrLSNNuNT1G48uG3haWZ+TtVRknA5PHpX5K/8G4X7Sd7p3j7xj+ynrd5 PJZ6pY/8JBoKvL+7gnhZYrlADzmRJIW44At29a/XCSMNlif4elAHwr+0h8LP2ivFnwS/4bL8I+Lf DM2raD4mt/iN4a8Nr8P7qPWGEUCxR6TLcDUDuZrLbbyRLbqXlUj5WOR6X8b4ZNV8RfDH9uD4O/Dw X+qX1m3h/VLO80dhc/Y9ViVLVp0cB4jb3/2ZZM7WjhmuckAMD7fqfx0+C+i+MF+Hep/Fbw1ba40i Qx6Pca5BHdNI4ykfllt25hkqMZYDiutFuGjUK20fwgKOKAPhj9svwZ4J+H/gXxX8HPAHw8vo9a8J fBu3k8M6nH4duLhppPPvGLaWlrGI7a7FwsVxc3Cndgw/KApkToPjVND4x+OHxK8SW1rqE1lqn7LS waferZXETXF4t5qDrCjbVZpTvjYRj5yJEIBDKT9kPAjZJHX2rF1Lxv4N0zxXaeBL3xZp8WuXtrLd Wekz3aLcTW8ZAklWPO4ou4AsBgFhkjOaAPhf47ahZ6t+zpNoNt4F1Y+LtF/Z70KbSNSutFvLyYXC rcZTTljT/RrmKZI2uJwd4VIlKfIWTtPib8RvhH4q+Pfin4ZftJ+C/FmoW/jDT9Hl+D2qaXoepTNP GIMyxWUsEf8AoN6l5G8zzM8W6NoGdxHEpH1p4Y8beDfG3hWz8deFfE9jqGjX9v8AaLHU7O4WS3nj xnerDgjAzn2PTrWLZ6B8G/jz/wAIr8YtIv8ATfEMOh38194Y1nTb1ZoFuPKmtJJEeMlZMLJMndc8 9VUqAfJ3inxloI/aF8L+O/D/AIG1rS9S0/4831l4ouJPDuoXGpNbrp95A0kt0IsCwm/0VbaBN6uq oyszBo49Xx74c8ZeLfh/46MOjalZ/G3TfjHMfAmsSWkn2xbNtVj/ALPkhfGW0z+zpFjnCkxBPtIc B91fZtwkEMTS3EirGqlmZsABcc5rM8FeNfCHxH0K38W+A/E9jrWkXXmrb6lpd5HcW8xjlaJwsiEq +HR1JBxlSKAPH/24NT8T6FoHgPVDoWpal4Lj+IFmfiRY6Vpr3jPpJgnC+ZEgLyW4uzavKqq2UQ7g U3ivGJJvhd4Gl+N2m6Z8LtYl8Jax8VPC8lqmmaTcWulTW8lnpaSzu6w+XNYCaOYzxoCjxllwFkDH 7dliHlnH1rFPjnwPD44X4ZJ4s03/AISJ9NfUU0L7Yn2o2iusbT+Vnd5Yd1XfjGW7mgDw/wDYA1aS DWfi54Ke3vobXT/iVLNodu3h250+zispdN05ybSKVdsUD3RunVAxyS787tx+jqbHF5Z3bifrTqAC iiigAooooAKKKKACiiigAJAGSa+Pf+Cnv7W998PNJj+AXw71cw6trFr5uuXtvIN1paMcCEEcq8mD nPITt+8DL9aeJNb0/wAM6BeeI9Xm8u00+1kubqT+5GiFmP5A1+MvxX+Ies/Fr4ka18SNfnd7nWNQ kuGWRt3loT8kY9kQKo9AtAHPqqqMKK9C+Afw/wDAnjiHxVqnj2/khttB0OK6hZJpFUzSX1rbBW8q GWQ5E/AVCdxXPGa89r6Q/Zg+Hd5rfwyhvfD1hbyXMkxu/wDSlIt7nUE1KytLSG4dRuMMX2h7gQAh ZHALblGAAea/Gz4e/D7wz4Q8NeL/AIe35uotUub+2v5IbiaSFJoDCdi+fBC4IEvIKn+Hn185zXu3 iX4L+OfBX7PHi688UaxpurXFzrmlaj5Njq8d1NbtvnillYKeGZ7iJWKjnco6YAyvhZ+xd8WPGFxY ax438OaloOizXhjuGutLuhdNGuNzJGsL4HOAzYBPQNg4APHu2aD8y4B/GvbfF37MfhbRbCe2up7r w7dRtGi6jquqNeWsUzglYrlFsILi1DoGMcvlujMhGRyRxHxI+Bev/DPw5Y+Kb3xboOqWd9MscTaN dSyFS8KzIW8yJOGjYMMZPqBigD7G/wCCX37W1/4x08fs6ePtX8zUNMtvM8N3Uxy1xaoPmtySeWQc r3KZ6bBu+zM56V+KPw38ea38LfH+j/Efw5LtvtF1CO6g3dH2nlD/ALLLuU+oY5r9nPB/iLTfF3hb TvFmjSiSz1Sxhu7Vx/FHIgdT+RFAGb4n+Mvwg8E63H4a8Z/FXw3pGpTQvNDp+qa5b288ka/ecI7h io7kDA71reH/ABR4a8XaHa+JvCfiKx1TTb6PzLLUNPu0mguF7MjoSrD3BNfM/wC0ZL4/sP8Agor8 Lbn4YeH9F1LVl+F/igR2uvaxLY27KbnTckyxW87Ag848vB55Fch4J+DP7QH7KNz8PfgP4U+Num6X ffFbx74o1bxPcaX4dS4tdNuJbGW8WCwSdhsgieIbQVG5iWZcEx0AfX+keNfDGs+JdW8H6brkM+pa H9n/ALUs1zvtvOQvFu4x8yjIx2rUMiAZLrz05618g/F34/ftGfDnwl+0TBafFW0m1L4YeHdCvPDu oN4dgVRJNYmScvHnDb3GfmJCg/KBipfil+1H8Y/2dPF/xG0Txl40tPEFnY+HvCup6TfXWkRWsWht quqzabMzCPHmW0ARLjEjF8KymTByAD6k8U+M/D3gu2t9Q8Ta1DZ295qFvY2sk3SW4nkWOGJcDlnd goHckVqpIpHLV88fFzxD8cvg6bS+0749W+tadqXxI8H2lvbXmg2hvIbC/wBUhsbuGSSJUjKSeYZI 5BEHQh1yRgjlviX8Tv2orDwv8cvH/g/4zadbL8IPFl1Ppej3HheB4tTsYdD03UzYzyli6oTcTRiR AJAW3biAqqAfWHmxnpIv51l6R418M694h1Xw1pGtw3F5odxFBq1rH962klhWaNW/3o3VhjPDD6V8 4eOv2iPivYeNLXXdA8VyfYf+FleFdB1Lw/BpUH2fS4dRFik1peSyKJ2vs3nnjyG8tI1iDgFiGteK PjJ+0evir4veG/Ap/t6Twj4y0KPSdK0y3tLe/GlT2Fvd3kNsZwYp7kI0pQS8NtIGDjAB9Nhlb7pz 2orzn9lH4iD4qfA3S/Gh8V6lrElxeX0U11rWjrp99C0V5NGbW5t1VVjuINnkSBVALxMw4Ir0agAo oooAKKKKACiiigAooooAKKKKACiignAzQBDfXkFhaSXt1MscUUZeSRzgKoGST7AV8W/Hr4yal8Xf F0kkUskej2cjJptsSRkd5W9WbH4DA5wTXvn7Y/jtvDHwvGg2VwyXWtTeR8vXyVBaT8D8qe++vksD AxQAABeAKM0HkYrp7DSrr4m6vJqk8en6PZ2NijaxqSQlIY1X5RIUXjzH4ARANzdAOSADE07TtOuN B1DUr3XI4bm1khFrasvNyHY7sc/wgDOPxxVNMsOPSuqa5+CNnMbJNJ8UXi7sfblvoLdm9xEYn49j Jn6Ual4d/wCEMmtfiH4E1YX9jb3Sj/TLFVmsbgq21J4WyoPUq4ypK8YK4oA5XI3FM8r1HpV/wt4n 13wVr9r4m8M3rW93aybo3XuO6kd1Pcdx+Yp3FxcXlzJe3lw8000jPNLI2Wdickn3JJP1NMoA+7Ph V8R9M+KHgmz8XaapUzLsuIG6wzDh0/A8g9xg966Svl39iPxvNpnjW98CXEg+z6pbme3Vu08Y5x9U zn/rmPSvqKgAooooAKKKKACiiigAooooAKKjM6+d5KsNwwWXuM1JQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHwN/wc8eMte8E/8ABEL416h4 c1GS1uL2DRNOkmhOGNvca3YQzx/R4XkQ+zmv4/K/sK/4OaPAHiP4jf8ABEf43aT4V02S7urCx0jV ZIY1JIt7TWLG5uH+iQRSyH0CGv49TQAV9pf8Efb+xh8LftN2ckfmXEfwFj1JoV+9JY2PifQry+AH UgWsMzsByFRmx8vHxcFJ5PfjNffv/BIL9hT9sS28T+FP28vhxb+DtNs5vENxoPw/8JfETVDYJ8WJ 5LW4j1LQrJnXyyslkLuFppmjiMrrErGTIQA8b/4LNaLreif8FXP2hP7dU7tQ+LOtapp8mcrNYXl0 91Zyof4o3tpoXRhwyMrDIINXP+Cfnxz+FH7J3wv+I/7VY+E3/CR/GDwpqGgwfB3U9W067uNJ8N3M 7Xv2vV5RFtha7gEVp9lS4coJZGkCSNGNn3V/wUG/4J5fs7fGmw1Pwx4a+MrahpvwhuH8HeFfjzpN nNq1ppdnZu8UXhnxnZ2kRurGWyKeRa61FA8F1C0YkwEVo+H/AGZv+Ew/Z6/4J7fFD/gnvc/H/wDZ hvtD+JWoX8kfxCb9om3mhtY7pdLWUvoNrBNe3cyDSomtnaGOSBrm4wv7xxQB8t/8Ejr7WLv9rDxp 8V/EjTajo/h/4H/EbV/HEt5MzG6tZvC+pWuJWYkuZbq7to8sSS8q9+uf/wAFlbPUNI/b51jw3rcr Nqmi/D/wLpeubsZGoWvhDR7e6BwT8wnikB9819oeFPBX7Mf/AASt/ZxXxP4z0O81Dw5q91aa1KfG GmnTta+N2pWU6z6bptnpE4M+m+Ere5WO8uLq7VJr8iJBGNqIv5V/Fn4peN/jf8UfEXxk+JWtSal4 h8Va3datrd9J1nuriVpZX9gWY4HYcdqAOfGe1f20f8Eb/G+ofEP/AIJUfs8+KdVuPOun+EOg29xM WJaR4LKKAuT3YmPJPqa/iXHWv7cP+CQ3w/1L4Wf8Euf2ffAms2rQXtn8IdAe9t5IyrRTS2MUzoQe 6tIVPuDQBtfFv9q6+8B6D8XPEnhbwDDqlr8H9LW51r7VrRtWvZhp66hJbxBYZNu23ltz5jAgtJtA G0tVzVf2l9X0z4naj8MIvh/bTSWfwrHjO2vm1po1nPmmI2zJ5DbOQT5gLcHGzvXF/ti/si6v4h+H nxe8c/BzxF4qXxF8QPA9xYal4P0ya2ax16/Wwe1tHk86IvCwUojNFLEGVV352iu21j9mXTfiRq+h /FGXxT4k8N6xH4Jbw7q9rp7W6rfWEm12t51mhkKlJAzBojG2WILFcUAcmv7c3iDxJ4EtdX+F/wAF NS13xBN8PdG8UTeHbKS4lG7UY5ZI7FbiO2aNZAsMn7yXy0J2cYZinQ+Hf2tLXxL8fL79nqbw7b6H rlpJE9rp/iLUJbS61GyksFuVvbNDAUu0Scm3kjjkZovLZ324CGppn7Cfh7w3ceFtQ+H/AMZ/Hnh2 88O+EbTwteXem6haBtb0m2JMEN2r2zRmSPc4SeJY5UEkmHGeOou/2Y9E1T4h6X481zxlrd/HoevN rGg6NdLamDS7k2jWpEEggFwI2RmYxtKQXY5+X5KAPH/hj418Y/tCfsiaNrHxv0Wy1b+3fiFrdlq2 oR+LJdFg0+GHVtSgt5QYykreW8VvDFFGzSMzRvuDIWHVfBf9pfR7z4ZfDfw3oOg6h/bXjLX9a0ex tfEWtXFzJGdLmvBd3M9xLEJZObUlVZFcvOikIAzLoaP+w1oPh/w/oXh/Q/jD4w0+Hwr4/vvFPhtr drBzYPeG88+1AktGWSFhf3ODKryJvG1wFGbmjfsU+DND8NaboemePvE8d14d8Zah4j8J659otjea NPezXElzBG3kbZYH+1TqyTrIWVxkkohUA6f4H/HC4+Jmv+NPA3iTwt/Y+v8AgXxAum6tawX32q3m jkt47m3uYZdiEpJDKpKlQyOGU5ADN4J+0t8Wp/j/APCfwB8UPDfhmz/4R2L9oTQ7LS9Sk1RjcPFb eIFs2uliEW3bI0cihC+fLYOecoPpX4X/AAs0n4bjWL2K8uL/AFPxDqQ1DXdXvljE99cCKOBWYRIi KqwwxRqqqAFQZyxZm8yn/YO8DCS60XSfiX4vsfDM3jaHxZZ+D7a4s/sFhqqXq3pkgZ7Zpo42nTeY RJ5YMshVRu+UAm0P9rDX/GXj3T9J+H3wf1nWNDbxxfeHNW1a3t7lFsRbSzW8l8WeAQPEtzbvGUWV n2sjjBDoPcq8h8E/smaT4A+Ker+PfCvxP8XWui69rz63qXgUXls2knUncSSXSboTcRF5R5zRpMsb SMxKkMVr16gAooooAKKKKACiiigAooooAKKKKACg5xxRQc44oA/FH/g4x1u+u/20/DXh6W6ZrfT/ AIb2jQwk8K8l7e73+rBUB/3BXwDX6Cf8HGvhnVbH9sjwr4tls3Fhqnw7t4ba52na80F7dmVAe5VZ Yif+ug9a/PsHPIoAGcoN4LfLz8vWv1W/4Ic/8FAfjjrOq+Hv2R/ixpGoa/oOqLf2vgfxJ5qtJpf2 C1Sea2mJIZ7cI8SxtyyNIkY3IV8v55/4Jrf8EuPg/wDt8+Db7Xbz9qttG17Sbpl1TwXZ+G1kuYbf P7ucSyThXR+RxGQpGCckZ+zLbwb4Y/4Jk/tT+BfDmgfCDx14v0HSfgjNofhCTw94ca9uNY1661kz 3Y3qBHFKYkEjFioEZwMheQD6y/b5+E/i344/sb/ET4V+Ao5JNa1fw1Omm28TBWuZkxIsAJwB5mzy 8k4+fmvnuw+OGo/tR/C/Q7r4J/tU+HfBvh7U/DFvoXxS8J+ILyGz1XwgLdmF3Nag4eC4ZEmtSJfk x5U8ZHlkPh/Hz9sP/go78GbTQfjV400X4e6LceIdUi07wp+zunm6lrWt+ZJh2a9gHyXEWU+4pgVW If59qtwvj/4Y/DL9v39ujwBp/jX9inxN4Z1BdE122+MlhrnhxrWOyZrRDYXgv7fEd0ftCuschJLD +EAigD4v/wCCvHxg+AfxX/aj0/R/2aYLH/hE/A/g2y8L2Nxpq/6NObaW4YmFv441EojD8h/L3AsC GPy3X35+3/8A8Ecvgb+xP8F7v4s3X7X9xHdNuj0HwxqfhqOS51a5I4hjeOcYA6s/llVXk9QK+A6A PqL/AIIwa/eeH/8AgpV8N5bWYqt7NqFncKvR45NOuRtPtu2t9VFfvB8ZtQ8ZaT8JPFOo/Dq2aTxB B4dvpNEiVNxe8EEjQjHcmQLx3zX4R/8ABFbwze+J/wDgpV8ORaws0entqV9dMo4jjj0+4wT9XZF+ rV/QIVBBDGgD5j/ZQ8O/BfxH/wAEyfD8Hiqa1vvDuvfDx77xze31xu+0XU8Ly6nNcSE7hKLhpy7E 7lZccFRXP/sRfGv43638NP2f/BnxF1WWafxp8K9av9VutQhLXbvZT6ellPvJzueC78x9+7cdpyMn d3fxv/Ye07xrrEHiT4U+MLrw/CurG/8AEHgGaR5PDHidz80i3lkGCqZGzukTAdmLyxzHFeheJvgR 4G+LUvhfxN8V/BMEes+FpHl0ttG1y6jS0MiqskSyReQZoHVEDxSJ5bhVDIQBQB4v4F/ai+Mfjr4I +C/HB8VaLDq+ufDrWNZutL03Ti95cXls8YinEcjeXDZKNyys7qxkkhSNsty/S/Hut/F74zfs5/E6 VLfT9W8T/B3xBqTMkJkhtri5t9EmxjcCyKzn5dwJA6969Ksf2Hf2YdNXw/HpXw2a3j8M6feafpcV vrV4sZs7mQST2s6ibF1C0ih/KmDoGAIAq54f/Y7+AfhgeFzofhzVrVvBeh3Wj+GWh8XampsbO4QJ NGuLnncqoNxyy+VHtIMabQDyr9mz9qv4ifGy4+Gvw91y6stP1TxF8KLnxdr+qWWn7FeZLyG1jgt4 X3AJmSRmB3NhYwDlt1ZP7Gvi7xf4W/Zq+Evgez8XaXbzazqHiRb610+z8y+vXhvbtg1rG26GGBGO 6R5iFUNEgbfIufX4P2I/2ZbLwr4Y8F6R4IvbO38GSTHwvdWPijUob7TklOZoY7xbgXHkvn5oTIY2 wMrwMWov2NP2dLOy8M6fpXw/axi8H315daANP1e7tzC10265R2jlVpopSBvikLI+ACpHFAHmvwE/ av8AHPx1n+Fvgy9+yaTqHi74TSeLvEmoWduGzIsltB5FvG7MFBkmkkcsH2AImcvurjf2Wfix8QPA /wAJvhz8C/D8FtJrHiO+8e3l1qNjDDCDJY+IJYykEUzlVDPeeZtLMRHA4HUyJ7l/wxB+zbB4W8O+ EdP8BXVlD4Tupp/Dd9pviG/tb7TfNBEkcV3FOtwsTLhTCH8vaqLtwi4m8R/sTfsy+KPAWm/Di/8A hjHDpukazPqulNp2pXVpc2V5OztNNFcwSpNGXMj7grgNnBGAMAGX4u+PvxG+DH7EeqfHf4t6Do1x 4s8O+H531iy0O+Mlg+oRyGE4c8pH5mGdTkxjepLFMnzz4heIfEnwe/bC0r4p+O9d/wCEkt9F/Zz8 VajJBpekiG4nktr7RZZxHhm3Rv8AJ5aEkoc7nfcCPpGD4deB4Ph//wAKuPhWzk8PHTTYSaRNCJIZ LYrsaN1bO8MpOd2S2TnJJrkvhn+yV8BfhLquna34M8G3C3WjWFxYaPNqWtXl8bGzm8nfaw/aZpPL g/cRbYlwibTtA3NkA84j/aM+LOjJ8GfFNxe6Rq2n/FnT2hurVYvJXTb5tLl1KKeGUEl7YJbSxOHy 2JEkDgKUba/ZB+PvjT4r67rfgf4pxaho/i7wzpWnDxN4T1bQfsslneSG4WW5tp0ZoryxlaI+S6Mz ARNvYlgB23g39mP4K+BAbfw14PkhtY7ae3sbCXVLma106Gb/AFsdpDJI0dorZxiFUAACjAAFaPwz +Bvw5+EdxNd+DNMvhcT2dvZtd6prV1fzLawGQw26yXMsjLEhlkKoCFBdjjJoA6+iiigAooooAKKK KACiiigDy39trxFP4X/ZP8earbffbw/LbD/tuRCf0kr8iR061+vX7aHhuTxZ+yr480iL7y+HZ7lf cwjzsf8AkOvyFoAK9W/ZI+NGjfCjxtc6P4vOoPpPiCO3t3Njuf7POl3BOkvlAN5nMOwhRvIYheeD R+BPwy8A+PdG8Q6p43OsZ0mzluLVdKvIod/lWV5dMrGSKTqLYKCBwWyQeld18HPCvnfG/wALaFe/ BLTdL0nUFF3pM0Ym1KacQgMXM8Il3vkbnARAmRkRgigCTwH8A/HHwJ8Q3iRah/aniDVdCeLw74V0 20nklvLed4E+1XkIiJtoIw7t5cwRzJbjAAXJteLfgD8YF/aDi8a+F/D80LR6rZX1zplpNLHesBPF DdX8Vo7GdbVrsTFWIxtYHAXpmX3g79tVPFk3gnRPAfi6301fFDPZ303haZ44v9LMiFrnyWY24kxK U3GLcN+0kZqPxF8CfjVd/tI2uveGfgt4wjsv7WsftOo/8I3eR28ko8oXMyF1PlwPMJpFy2FRl+6A AoAz4p638MrD4zat428H/Gubw7bqJbS90nwzYzpfXCgsJIEZbO0g2sRtJfdjqxk6Hkvi58YfAPjP wTp3gzwP4L1bTls54ZJbjVtYjumcQ2y2yABII8HYgJPcngDvs/ti/Dq30Lxx/wAJ5oOnafb6fq1r aSXlrp8mDb3ksPmHfH/yz8za7qOhAPA6V4704AoAD0r9bf2EdQuNS/ZG8C3Ny+5l0cxBv9mOV0Uf kor8km+6a/W/9hfTLrR/2S/AtleIyyNoiz4YY+WV3kU/irA0AdbqvwY+G+sfESx+LeqeGEk8R6Xb yW+naqtxKJLeGQgyRrhgAjkBmXGGIBbOAam1/wCGngfxb4u0Xxpr+hJc6r4dklfQ7xpZA1m0iGOQ oFbALISpOOVODwcV4j4z8f8AjH47ftyal+yoniXVtF8G+DfAtvrXiNND1SSwvNZvrufbbwi5gKzx QRRozMYpI2Z3CtlRhuu1a38LfsryyePL3x74ovtD1Aadoul+GtU1qfUpG1S5vfKtxDLdSPIXlkuU jbfIY0WJCNqqxAB0/iH9mb4M+KpPEr+IfA1ref8ACZQRQeKRcTSsNTiiG2OOVd+1kVcqFxgAkYwS DZu/2evhFqWo6nq2r+B7W+uNa0NdF1iTUpJLgXunLu22sokYiSMb5CA2cGRz/E2eJ+JX7Z/h34TW /wAQIvGHgPXBqfw88O2+v6hpdrJbM1/pcokAvLVnkQOivFLG6ttdXjICsGRmh8Rfth3umQfELSB8 KNV07XvBPw/XxdZ2OsXluItSs3F15fzwPKYm32rqykZAK4ySQADo/D37HX7N3g/wbD8P/Cvwk0vT dHh1mHVlsdP8yFTewsrQTsVYMzxsqFCxOwopUAqMYXw+/Znj0z4mfErxl8TdC0i+tvGnjC01ixW1 1K4f93b2FnaQw3UJjSOXY9oZlyXCtMQANoZqVx+1x4p8NeE/hXbX/wAH9c8R+I/iRoJuLK18P3Fj HE11Hp/2ySMtczxiPKKxBPygZBbOBXmv7TXxbOr/AAg+PA8OWPjzwZ4q8M6XoN1qks3ihsJJKoeN LZba5kSJfLBSXy9nmE8hsZoA958T/slfAHxnrmq+I/E3wv0y8vNa1K11DUppmkzLdWwjEFyPmxHM nlRgSIAxVdpJGavT/s4/CCTVNW8QS+EI/t2uaha32qXi3UyyzXNsuy3m3h8h40wiEY2qqqOABXAe IP25tO8C/wDCcaf8S/g54o8Pat4L8Ez+LhpN9JZSvq2kQ7hNNbyW88kW+NlCtE7qwLpjIJI0fjZ+ 0d4Y0KXx98LvEPgzxDdjw/8AC4+KNSk0W8jgkudPla5hdIJfOjeKdfs8pzuUgBSrFsCgD1Xwd4R8 N+BdBXw94V0mOys1nmn8mMk7pZZGllkZiSWd5Hd2ZiWZmYkkkmtLz0BIOePavGtG/aW01PBDJ8Mf h54h8TN4e8F6Xq+oabaXST3iw3UBeC2UyOWuboxpvKkgkEEvl1Dcv8bvilb2mpeIvjf4a8eePoNG +F+pR2/jm38N3Fm9pLbrFDcXUJtrhW3mGKRJJZIik4BdI2dl8sAH0gDkZorxPxB+218MtL1mbSdA tdQ1uOx8Q6fo+oy6TGrvBJeR28qTpETvngRLqEyPGGKKzHafLfHQ/Cj9o/w98X/GGoeF/CNhLcRa Ve6nZapfLdQk2F5ZXaW7W1xEG8yF5dxmhyCHhQvkZUMAel0UUUAFFFFABRRRQAUUUUAFFFFAHzD+ 3Tq8s3jbRfD5H7u20trhf96SUqf/AEUK8Nr3T9unR5I/F2h+I/4LjT5Lb8Y5N36iWvC6ALmladpW oW942o+IksZIId9rC1s8huW5+QFB8h46txW5cPNB8EbOO2TEd14on+2Mp6+Xbw+UD7YklIH481y5 GfX8K7Dwgo0/TIfB3xAtZLbRfE22awvGxutJlZkjuQvUoeVYfxJyPuigDofh14CvvA8On+M7zS7d tTurUX+nXGpRE2GlWwIzdTsCNzkEbIwQRkH7xAp2q+PbH4j+K/FEthp7x6W3hW4SSa5JM0/ksJIp pCed3meWi5yQp2kk8nmvij8QviZqlzP4J8ZXsdvDplx5MljZW6wxCSMbATt5fCgAEk/L0qTVoE8E 6Avw80/B1jWkgbXJpGCrbxkrJFagkgDnY8jHHO1ezGgDmEtvD50KS4n1W6TUlk2w2n2NTCyccmTz MqevG0j3qoOlWNW0XU/D2qXGh63ZPb3drKUnhkXBVv8AD0IPIwe9V6AOx/Z8up7P41eHZoH2ltSR PwYMpH5Ma+2b6zi1CB7O6iWSGSNkkjkGVdSMEEEYIIr4n/Z5srjUPjZ4dgtxyuorI3sqKWP6Cvta /jupreSG1nkido2CzR7cq2OCNwIyO2QR6g9CAflv4eijn8F618IvhJ4Xu/DPxG8V/tIa/pPgH4oR TLZWOiraaisptHuUfeB9lSWKOyK7JslUU7SB92fFv9pO8+HXi64+FfgzwPdeJPElr4SbXf7Pt4bn 95GZDDbwloYZRGZpIbhRI2Fj2DIbOKxvD/8AwT5+E1h8H/GPwT8T+LfFHiLR/GniK5167m1iazS6 0/U55fOe7s5LW1hMMglCyKx3bGUBQF4N/X/2OZtY1jwv40sf2hPiBpvi7w1psumv4yspNL+2atp7 sGNpeRtZG2mQModW8kMjZYHLHIAug/tJ/Ef4gafrz/Dj4FSXOreF/wCyYdY8P6xr8dpdfaruztry a2QmNkDQQXcRLOwV3V0+UDfVDxr+2RP4W+GfjL446R8OjqHhXwH4sudI8SyjVil59ntJUhvr2GER MHED+afLLBpUhLKQSqtpn9i3wfZfEq4+Ifhb4k+NdEj1bTrSz8V6Lp2tK1p4hjtoBBC1yZo3mSVY lVDLBJFI6qAzHmrM/wCyB4Jnu/EWnQeIdat/DPi7XhrHifwgslu1jqF4SrTMS0TTKkzInmxLKEfa flUPJ5gBxXxQ/bY8e/D8/E3VIfgtpl5pfwv1nS7bVbgeMGW4vIbyK2lEsMZsyvmIlzzGzqCVwH+b I09c/bR1LwB4s8beCvil8OIob/wy3hs6XHoGrS366iNaupLS2Q/6NG6Mk8L79qP+7KsoZvkN7x5+ wz4U+Idt8RrHWfi140t7f4nXdjc+ILezfTQIHtI4o4hblrJig2QxA7y5O3qCSTL49/Yc8A/E7V/G 2teOPHni68l8caDpWm3xt721tWsm06aWezu7R4LdJIbmOeVpQ5ZlLYyu0baAMjxB+178WPDlpH9p /Z1mh+0fETSfDGmXWqatPYxX8N9sEd5Es1p5g8uQtHJEyqRt3Kz5ANy0/bA1myivtA8VfDSC38S2 /wAXoPAdlp9jrzXFtczS2UGoC589reNkRbOZnZfKJ3xMgzuU1f1f9j2bxP4W0PQvGP7QPj7VNQ0P xTY67H4gmm0xbm4ms3Z7aJ0+xeSIlZskJGjueWdqi8Q/sPeC/E//AAkkusfEfxdJda948tfGVnqC TWSS6FrFtBFbwz2ZS1AwIYYoykwlVlVsjLMSAcH8E/E/in4dfGH9pbxFF4T0+6vrXx1oLz2ba8lr axxy6Pp/nXLXE6ARokcj3DLtJ4ZV3HBPaaN+2LDfW99pl14OVtUg+LEHgWwWPUmSC+uJLSC8F0JH iBjiFvK7gbXLGMBGcOrFb/8AYb0DVtI8YRal8YvGk2reNNb0TWNU16RrBZ4b/S/sn2WaKKO1WDGb OEsjRujc8DjFP4gfsJeGfEvhDxnpzfEfxrPeeIvEdr4p0+9tbqzju9K161tYII720YRRKJHW3j3R yMYfvBRGrGgBfil401L4ga7pH7OHxo+Er2t74n8Raimi/wBm+M5YYL3TrGySc6kZbcLNFiWaKNYD h1lCyBsKrVk/DL9qvTfCem2vwWk8Ia1/wlemeMtS8O39jfahe6xLI1tbR3jX32gQtLcRyQ3Vo3KK V+0hTtEfO94F/ZS8T654B8E+I/jV471qT4oeH5jqdx4wstQgllgvpbb7PcRRq0H2cWzxARmFYVTj zOZSZToeMf2LvBvifw3Z2ul+OfE2ieJrLxY3iS38daRdW66oNSeLyJZG8yF4HjkgxC0Bi8oxqibM IMAHMyftx634ffwnpPxa+EZ8Dat4rsJf7Pj8W6tJa2c2oR3UkH9nx3f2cos8iIlxGJRGXSVF2hgx T6Qrxvxf+yBpPjzw5N4N8W/FjxZqWk6loq6f4h0/UPsM0eq/6TNcNcNvtSbecvO4D25iCLsEYQxx snslABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJ/HT4W +Fvjn8GvFXwQ8cRyNo3jLw3faHqyxEB/s11bvBLtyDg7JDyeB3r+Gv8Aac/Z78ffsoftCeNP2bvi lpstrr/grxFdaTfrJC0YlMUhVZ0DdY5U2yI3RkkVgSCDX94FfiP/AMHXP/BFXxD+0T4Zk/4KRfsw eDpL3xh4Z09Lf4keH9Nty8+s6XEuI9QRV5ea2X5HUAloADn9yFYA/G//AIJa/sb/AAs+Pnie9+M3 7QNjqOveE/DfijRvD2i/Dfw/qCWeqeP/ABPqn2n+zdGiupP3djbMbSaS6vGOYYIzsG91ZP0y8c/t h/DH4H/s5674r/aw1TQfiB8ItUY6LqWgWsFxb6V4y1nS0dNN8N+ALaKWMaToeivIGn1/Dtc3KHYX Z1DfkN+yl+2trX7MPhXxV8L/ABB8DfAvxM8E+NJ7C81vwb8QLG6ktRfWJmNnewS2dxb3FvPGLi4j JSULJHPIjqwIxgftX/tcfGX9sr4n/wDCzvjBqVmn2Wyj0/w74d0SzFppPh3TYuIdP0+1U7ba2jHR BkklndndmdgDqviz/wAFJf2vvid+2X4o/bw0X4rX3gX4ieKr4zXmpfDq6l0dYI/KSFbePyX3mIRR RoQ7O0mzdIzsWY9tc/8ABcf/AIKu3OkLpK/tn+I7dlXH9qWNjZW+ot65vooFuWz6mQmvlGigDa+I PxH+IPxa8Z6h8Rvin431bxJ4g1e4Nxqmua9qUt5eXkp6vLNKzO7e7EmsWipLO0utQu47Gyt3lmmk VIoo0LM7E4AAHJJPYc0Ae7/8Ew/2Ltb/AOCgn7dnw3/ZU0uxvJLLxJ4ihPiW4sWCvZ6PCfOvpw5B VCtukm0kcuUABJCn+3bQ9MsdE0m30bTLZYba0hSG3hTpHGqhVX8ABX5X/wDBsT/wRZ1r/gnn8Erv 9p/9pPwkbH4vfESxjjGk31uv2jwzo+7zEszkbo7iZtkk65yvlwxkBo33fq3QB5T8Rv20f2fPhPrO veHfHXjS4tr7wvZ2t5r9nb+H7+5ks7WcSlLlhBC+YQIZN8ozHHj52XcudLxx+1H8F/h5ptrrnibx mi6ddQ2s41W0sZ7mzghuXWO3nnnhR47eKRmAWSRlU8nOFYjzXT9R8VH9tn4xaf4O8M6bq0lx8NfC iLDqGpCBBOZtbCLIPLc+UcnewDMOAEbPHG+Cf2Mfi18CryH4f+FPAPgP4jeD9S8H6Lpl5d+Orjyp tGvLG1FpJMkJtplubd40jkEG+Mhwy71DFgAfROlfH74ea34quPB2mandSXNrJdRTXi6PdGwWW2OL iL7Z5f2bzIycNH5u4Mki4zHIEzNA/au+DfiTxNp3hLSta1KS81rTbnUNC3eGdQSHVLSBVaWa1laA R3KgMpHlsxYSRlQwdSfGfHP7FHxD8feIfGD+HtWj8D2/j3T/ABHpvi+PQtWkn0rVYLqC4gsL77E4 Hk6ku63kmljKrJtmBLmQbW6DP8abT9qj4E6H8c/C3hrS9S0/wp4mto/+Ea1yS8ivWSDT1eZFkgiM MZCghTuYZIONu5gD2Twv+118CvGsPhObw74qvpo/HGp3+n+GZ5PDOoQx3N1ZG4FzA7yQBbeRPslz 8kxQsImKhhVDwb+018ObTwRHreofETUPEjXmta2lmdN8G3huvLs7ydJoBaQRNMfswQQNIU+dlU43 SoreW/DH9lv4/wDgiy+G/hS+0/wvJY/D/wCLWu+Invo9en8y/sb/APtraVi+y4jlQanHlSxDFG+Y cErq/wCx34+8S/DeTwn4t0Szh1SPx14s8Q6H4i8L+Lriz1XQp9S1Ka7s5becRJkBLh47iJ8o2xSB KABQB7Jqn7WXwP0fUYNNvfF7/vF01p7qDSbuW3s/t7hLMXMyRGO1MpZdolZDhlJwGBPpKMWQMR1F fI3xa/Zz/bD+IngvXPBviU+F9cmaz8MSaRqS6w+nxTXFmbaa/aa3jtiJJJJ7dhEzgqkcgChCGV/r HRm1F9ItX1e0ht7o20ZuoLe4aaOOTaNyrIyqXUHIDFVJHJAzigCzRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABQRkYoooA+Bv+Dgv9mvUfiz+yfpfxk8M2k0+ofDfVXurqGGMsTptyEjuGwoz8jx27k9FR XJ6Aj8TFGFxX9Tnifw1ovjHQbzwv4k0u3vtP1Gzltb+zuo90c8MiFHjZe6spII9DX89//BSv9gHx l+wn8b7rSobK6uvA+tXEk/g/XZE+WSLOTaynJAmi3BTn767XAUMVAA7/AIJG6T4z17/gol8NdJ8E +I7zS5v7XkuNQuLOYp5lnDbyzzwvjqkkcTRlTwd9ftVr3/BRz9ibw58Y4fgPrP7R/huDxJMjjyRd 7raKVScwS3IHkRS8HEburEjGMsoP85+ja5rmgXo1Xw7rl5p9x5bx/abG4aGTY6lHXcpBKspIIzgg kHINVUXb3oA/UD9q/RvitJ/wcE+A4NA8Z6qPtV7odzpLQ3cn+i6WtuftcKbSMQuI7wsg4YSyA5DN n788Y/8ABRH9iz4d/Fuz+BPiz9onw3Z+JLvcv2drzfb2siEgxXFwoMNs/wApwkroxIxjJUH+dZPG fjiHULTWbbxtrEV9p9n9l0+8j1KVZbWDay+TGwbKR7XZdowArEAYJBzGDsuC3zf3qAPuD/g4Ci8Q H9uyOfUfEd1e6ZfeCtPvNBikuN8Nvbs0sbCEcqFaWF3OPvMcnPGPiGrGoavrOrx2sGsaxdXkdjbi 3sUurhpBbQgkiKMMTsQFmIUcAsfWvSP2QP2Svip+2f8AGrTfg98MtLk/fMJta1aSEtBpVmGAe4lI 6Y6KM5Z8KME7gAffn/BuJ+zLeHWPGH7WviHTZo4Vtv8AhHvDMjthJiWWW8kC99uy2QP0y8i8kE1+ rV5Zx31tJayySqsqFWaGVo2APoykFT7ggiuT+APwO8B/s5fCHw/8GPhrpwttH8P6etvahkUSTN1k mk2gAySOWdjgZZieOAOsvYruW2kSymjjlMZEbyxllVscEqCCR7Aj60AfDv7OfxdXx14I1Twt4w+L vxgXxhJ8S9X0LR9YsdH1mfTbaNNZltrMSXIgNgVRAgcPKGYKQSHOa+ltG/ad8PeKfiNq/wAMvCPh DVNXutB1WXTNWns5rTbY3SWjXKCeNpxNFHKq7I5THsaQgZAIY8r8H/2Wvj58FfhdrPw68I/H/wAL +dq3iDVdXi1S4+Hc7taT311Jcnan9p4by3kIXJ52qSDgg6rfsoTX37Q+g/tBaxr+jnVPD91d+Tqe n6I9tqF/p81rLCmnXkwnKXEUbyLKGaPIaGMAL8zMAY3wi/bc/wCEm+EPw2+Inj/4Z6xYTfErxJ/Y +mratayQ208hnaIyHzw3l7IWXcELFkJ2BSGrotI/bE8F6za38UHg/XotVsfiDL4Ni0GWG2N1falH Atw/kbJ2jMSwF5jI7oAkTltuK5HTf2I/Hel/A7wN8Krb4v6Ut98N/GlvrfhbU28MyNDJDC04WC7h +1AzMYp3UujxfMFIUYOYx+wt46g+1+J9O+O1ra+Ko/itJ460PWIfDDeRazy2Ysrizlga5PnwS25k Q4dHTzchiVDEAr/Bn4/ar4U+IXxmvPild+IBHYfEbSdI8N6Bql5DPNHNeafY+XaW2yQxqsk85Zcu AFYvIUCvs7DxT+2/8Mvh/wD8JJY/EjQ9W8P6l4Xm0ldQ03UlgXfBqV0traXSTiYweQZiyu7Opi8t t6qNu7D1j9iPxB4qn8WeIvEfxWs49e8QeMtD8V6PqGm+H3WPRtU0y2toYyI5Lh/tETi3wyMUJWVw GB2sN7Wv2YPEniDxV4i+KOq+LtDn8TeI9H0vRLuG88N/aNLbSbS4nme1e3ebdIZ/tU4dmkwoMe1C UYyAHpngHxdc+NvDkev3fhbUNHdppY/sepNC0hVJGUSq0MkiNHIAJEYMco65CnKjarz/APZn+BNh +zj8Lo/hhpF/HJYw6peXVjaW0bpb6fDPO8q2kCu7sIog+1cseBwFGFX0CgAooooAKKKKACiiigAo oooAKKKKACiiigCprukWGv6PdaFq1us1re28kF1C4+WSN1Ksp9iCa/Gr42fDHWPg18V9e+GesQOs mk6hJHEzf8tIC2YpfcNGyNx/e9iK/aCvlP8A4KU/sg33xk8Ow/F/4d6V53iTQ4Sl9awr81/ZjJ4G MtJHkkAcspYDJCqQD4K+Hvxh8ffC63vrTwbf2McOpLtvI7/Q7S9Vx5ckZA+0xSbQUlkU7cbg2DkV 2nhP9ovwdY6J9l8T/D8x3TzCW4j0Ox0safcOOFn+xXNlNFb3G3KGSFU3KBlQclvI1JP3kKnurdqW gDuviX8evEHjCTU9L8P6TpPh/Qry7WSPTNJ0WytmCRk+Wss9vBG82Cc/Mdu7kKMADq4vFWrav4I+ Gs1h8Q77RvD9kP7C8TXFu5BtLhby8uPN29Dm3vBtPQkOGwFJPjVekfBr9o/Wfg/4Y1DwnaaA91b3 1/HeeZb6/fafKsioyY32ksZZcN0JIz2oA1v2kPHB1DQ9N0i5tLhLzWoLDVZIZJ/NFnYx2xisYPMP zTTmKRpJpCFBaRQoG1hXkIORmuq+MnxV1L4yeM/+Ey1TTFtJFsLe0WEXk1w2yKMIpaWdmkkYgZLM STXK8nhVz7CgDovhF8Ndd+MPxO0X4ZeHjtudY1BLdZfLLeSpOXlIH8KIGc+yn0r9mPDmiad4a0a1 8O6PbLDZ2NrFb2sa9FjRAij8AAPwr5Z/4Jo/se3/AMKNDb43/EjR2g8Qaxb+XpNncKQ9hZtglmHa STC5BGVVQOCzCvrSgDx/4v8A7MWo+IPi5p/7SvwY8dQeFfH2n6K+jXF9f6Sb+w1XTWlEv2W6tllh d9sg3RyJLGyFmGWU7ad8Q/2dPFfxs+GA8M/Fn4pq2uW+pWOqaLq3h3RfsdrpmoWV0lzbXCW8sszu fMjQOrzHcoYJ5W8mvXqKAPAfir+x/wCMPjN4C8e2vi34p6PF4w8deD4vC0niG18KSC00/TEaZykV o14XMjvcSszNOQf3Q2kR/M7UP2TPHvij4jeJ/Gnjv4vaTcWni74UxeCtT03S/CMlrJGqG4b7XFK9 7Lg77uX92UbgIN2QWb3yigD5/wDD37Kvxisb/wCDOpa38bvD903wnS5jmjg8ETQjVlks3sVC/wDE wP2crbvyf3oaXL/Kv7qo/GX7Fvif4hax8ZpvFHxes/7P+LGm6fa2trp/hdoptFayjKQyGV7p1uuu WXZFuxwUya+hKKAPD/EH7J2ofFjSPF0/x38d2upa34o8AXXg+PUvD+jNp8Gn6fcqTO8UUtxcEyvI VcszkAQxKFGGZ+Y1X9jT44+K7nxL4g8a/tJ6Pea34q+EK+B9QuovAJigH7+6f7YsIvt27y7pl8vz Mb/nyFxEPpeigD5H1D9mf9o/4I/E3wLqnwN+KRlfxRpumeGvitJaeFQsElrp9s6Q6xAJppFtLlIg ICjSSB/MRgjmLYfQPFX7Hl5dnx94O8JfEZdO8F/FEySeMNAudHa4uEmmto7S6lsrrzl8lpoIlDCS OYLJmQDkofeKKAPBdE/ZT8d/D34wap4o+EfxxbQfBHii8s73xL4N/sFZpjdQWsNrus7wyg2qyQ21 usgaORsIxRo2ZWS94N/ZautP/aY/4aY8V+JtJuNYj0u/0yOXQ/DbafcXtnPPDJDFfzG4k+1m3WAJ GwSMfMSRjC17ZRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlP7XvgKTxZ8Kn1bT7UyXWiyfaV2gZ8nGJ fTouG/4B+FfIozjkV+hl1bx3ULW08SyRyKVkRxkMpGCCO/FfGv7Q3wTvvhJ4qa4sIWk0W+kZtPmA J8o9TCx9R29R+OADz0jIwaW4nmuCpuriSTbGI18xi2FAwFGeg9h+FNVt3IpaAPdbr4X+FfGy2/i3 xPomvNqFxZWzXjWsOoLHI6wqhcY01+Wxk4ZgcnBIryX4l3d1qHxC1y8vYvLkm1W4Zo9rjZmQ/LiR VYAdMFQeOldj4a/aJg8PaHYaMfh1p8y2NukTZ8rbPtHLNuhZst3+b6Yrze8uBdXc10IVj8yVn8uP 7q5OcD2oAjLSOxeWVnY9WY5JoorV8DeCfEHxH8S2/hXw1ZtJcTNlmbhYU7u57KB/gMnigD1/9iPw JLfeKb74h3Uf7mwh+y2hK8NNJy5B9VQAH/roK+nKwPht4D0n4ceDrHwloq/u7VD5kp+9NISS0je7 HnHQdBwBW/QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNliV0xt96dRQB+Lv8AwWf/AODUfwP+1R4j1b9p z/gnzf6P4J8c6hJJeeIvA2ofudG1uckEy2zov+gzt85Zdphkdgf3Pzu38+/7VH7Ff7Vf7EvjqT4c ftT/AAJ8Q+C9SW4lht21axItr4xkB3trhcw3KDI+eJ3Xkc1/dURkYIrJ8YeAvBPxB0Sbwz488Jab rWm3Axcabq1hHc283+9HIrK34jvQB/Azg9cUV/aN8T/+CE//AASC+KmoTa14r/4J9fDuO4nOZm0H RzpQY+u2xaIA+pAyfeqP7O3/AARK/wCCSnw60iz8VeGP+Cfnw1e+3sVm1zQ4tWMbJIwDL9rluVVh gcqxIPoeAAfyZfsd/wDBOr9tb9vfxXD4V/ZR/Z28ReLN115FzrFvZmHTLJsZP2i9l2wQYHOHcE9g SQD/AEW/8EUf+DYf4Q/8E/tW0n9pb9q7UdN8f/FyzdLrR7e3i36P4YlCqQ1uJAGubpXDEXLqoT5f LjVl8xv1U8N+E/DHg3Rbfw54Q8PWOlafapstbDTbRIIYVz0VEAVR9BWgOBigBsUaxrgLTqKKAMmy 8BeBtN16bxVp3g3S7fVLnd9o1KHT41uJc4zukC7mzgZyecVqeTEBgRr+VOooAb5addvtWXf+BPBG q6/b+K9T8HaXcapZ4FrqVxp8b3EOM42SFdy/ePQ9z61rUUANWGNPuIF5zxR5Uec+Wvr0p1FADTHG eNg56+9OoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuL+O/7P/wm/aQ+GeofCX4v+DLb V9G1Ff3kMg2yQyclZopBhopFJJDqQQSexIPaUUAfhz+23/wQs/aR+AGrXviz9njT7r4geD97SW9v Zxq2r2Me/wD1csCgG5wpH7yEEk5LIgFfEGq6ZqWhancaLrenXFneWsrRXVpdwtHLC46qysAVI7gj Ir+qN4UkYM3/AOuuL+KH7Nv7PvxsQr8X/gn4V8TNgBZtc0C3uZEx02u6FlPuCCO1AH8xJ4Gcfp1p 0cUs0qwQxO8kjBY0VSSzHoAB1Jr+gfxb/wAEo/8Agndp2paZqdr+ypoAluNUjhkVbicRlSrH/Vm5 ReqjoGPop7ex/C/9lP8AZo+Czx3Pwm+AvhHw7cR8LeaT4ft4bg/WVU3t+LGgD8Tf2P8A/gi5+1/+ 1Hd2uveKPDc3w+8JySHztb8S2hS5kUDrBZsVlkzkbWbZGwzhzjFfsx+yL+xn8Ef2MfhpH8NPhD4Y EcbOs2pate7ZL3UrgAjzppABkgEhVUBUBwoGTXrCIsYwop1AAAFGAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAprKCOnWnUUAfKf7Yf/BNfw98Zr+8+I/wfuodF8SX DNLfWc3y2eoyHJLcDMUpPJYZVj1AJLV8F/E/4H/Fn4K6pJpPxO8CahpLJIUWe4hJgmP/AEzlGUkH +6x/MV+0FVtS0bSdZs30/WNNt7u3k4kguoVkRvqrAg0Afh+rB/u80MyoMt64+tfrT8Tv2O/2WtS8 P6lr938CvD63FvZyzK1nai2ywUnJEckSnn+8yj1I61P4J/Yv/ZW0C1t9R0/4FaC0rRK3+nWv2oA4 HaVpF6+hI9CetAH5bfDH4M/FT4z6qujfC/wLqGsStMIpJLaA+TC2P+Wkpwkf1ZgK+7v2Qv8Agmho HwnvbP4j/GqW31rxBCyzWOlxfNZ6e45DHP8Ar5AeQSAqnoCVVq+qNJ0DRdBsY9M0PS7eztohiO3t YhGiD0AXAq4OBigBFXau2loooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigArO8U+FPD/jLQrjw74l0qO8s7lcSwyL19x6EHoRyK0aKAPlP4s/sd+L/AAtPNq/w+Mmr aflmW1LD7VEvpj/lr+HPtXkF9Y32l3cljqdlNbzRNtkhuIijIfQgjIr9CWQMck1n614O8K+JYvI8 R+HrPUE/hW9tllC/TcDigD4A3LjOevT3pV+c4UV9fz/AD4P3HxFWyfwRai2bSXmNrH5ax+Z5qjdg OJM4OPu7Md92K7HQ/hR8NfDTrLoXgXS7aRfuzR2aeYP+Bkbv1oA+Tvht+zZ8TfiPcxuNHk0vT2I8 zUNQjMY2+qIcM59Mce4r6l+FHwd8JfCLRv7L8PWxkmlAN1fTAGWZvc9l9FHArq1QL90UtAABjgCi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigCO4UPFtJ7j+dY/wAOUlj8HWqTI6sGlG2RnJH7 1sffiiPT/YHtkYY7UxATLH+IfzrD+GSongmzWK2MK75sRnt+9f8A6ay/X75/4D90AG9RRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGL4yWV 20nykkbGsRFvLZhgbX5O2N+PrsHq46HYjBEYBrF8ahTJoxa38zGtREf7PyP83+tj/wDZ/wDcbqNq M/IMUAOooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKAMrx0JG8FassSuzHTZgqxlgx+Q8DakjZ+iOfRWPBt6MpTSrdWVhiFRhs/wB0eoH8h9BVLx+F bwLrCvB5inS5wY/7/wC7PH+sj6/9dE/31+8Lui4/sq32rj9ynHp8o9z/ADP1NAFqiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOe81B8UY4 ftSBjoMh+z/aY9x/fJ83l7N+O27ftzxtzzXQ1ggzf8LIRTcybf7FkPk+ZPtJ85Pm248nPbJPmdgN ua3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAjuseSQdvJAG71rH+G8bReDbR HiKHdLlS2cfvW7+XHn/vgfj1OzcDMWNueRx681jfDdSngyzUxNH80vyt1H71v+msv/obfh90AG5R RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FAGH42R2bR2WLdt1qFjz0+V+f9W//sv+8O+0mNgwfpWL42TzDpC+Uzf8TqH7v8Pyvz/rY/8A2f8A 3G6jaixs4oAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAZPjuNpvBOrwpHuLabOu3+9lDx9x/8A0Bv909Dc0QFdJt1I6QpxnOPlHsP5D6DpVPx2 rN4K1dVhaQnTZh5a9W+Q8D95Hyf+uif7y9Rc0XjS4AB/yxXHt8o9z/M/U9aALVFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYIt5P8AhZEd 35Mm3+xJE8z7PJsz5ynb5m/Zn/Z2bsc7gMg71c75dr/wtOOXyE87/hH5B5nlwbtvnocbs+djPbHl +p3YroqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAoor8Wf+DjP9o//AILqf8E3PE8f7Uf7J37Yd/L8D9dvFtrvTpPh/wCHrqbw hfMdqQSSS6c0klrKf9VM7Mwf93I25ojIAftNRX8gP/EUV/wXW/6Pmb/w2vhn/wCVtH/EUV/wXW/6 Pmb/AMNr4Z/+VtAH9f1FfyA/8RRX/Bdb/o+Zv/Da+Gf/AJW0f8RRX/Bdb/o+Zv8Aw2vhn/5W0Af1 /UV/ID/xFFf8F1v+j5m/8Nr4Z/8AlbTf+Iof/gup/wBHyt/4bXwz/wDK2gD+wCiv4/8A/iKH/wCC 6n/R8rf+G18M/wDyto/4ih/+C6n/AEfM3/htfDP/AMraAP7AKK/j/wD+Iof/AILqf9HzN/4bXwz/ APK2v04/4IKf8HHfxe/bB1g/sl/tq/FC1l+JUsk0/hPxU2k2VlH4hi5drN44IkiS6jG4psRVljTt IhMoB+5FFeK/8LY8f5x/wkJ/8Bov/iaP+Fr/ABA/6GA/+A0X/wATQB7Nc/6lgV3buMHvWH8LEgj8 DWa20CxrvmPlrtwMzPn7kcY6/wCwPfJyT5o/xW8fkbf+EgPPH/HtF/8AE1meC/ih48tvDdvBFrci KpkwskKsR87d33t+bH8OgAPfs9qK8N1T4m/Em/0+40+z8Y3FnLPbvHFeW9rbF7dmG0SKJI2XcpO4 blZfl5VhxX45/ty/8FMv+C4X7DXxwuvhZ45/a0kutLuFa58L+IF+H+gLFqlnuwHH+gnbIv3ZEOCr A9VKOwB+/wBRX8zv/EQN/wAFdj0/a4P/AIQegf8AyBR/xEDf8Fdv+jtz/wCEHoH/AMgUAf0xUV/M 7/xEDf8ABXb/AKO3P/hB6B/8gUf8RA3/AAV2/wCjtz/4Qegf/IFAH9MVFfzO/wDEQN/wV2/6O3P/ AIQegf8AyBR/xEC/8Fdj/wA3bt/4Qeg//IFAH9MVFfzO/wDEQJ/wV2/6O4b/AMITQf8A5Bo/4iBP +Cu3/R3Df+EJoP8A8g0Af0xZor+Zs/8ABwR/wV3jdXH7Wm4bvmVvAeg4PtxYg4/p6V+uX/BOT/gq 1N+3p8HV8S23iCDTfF+jpHB4u8Oxwx4tpiPlniBUsYJMNtJJIIKnJGWAPvKivFf+FsePz08QH/wG i/8AiaP+Fr/ED/oYD/4DRf8AxNAHtVFeK/8AC1/iB/0MB/8AAaL/AOJo/wCFr/ED/oYD/wCA0X/x NAHtVFfMXx88Y/tOeK/hlqGm/Az40t4W8Tqvm6VqLaPZXMTyKD+5lSeCQCN84LKAykAgnBR/yq8X /wDBYH/grN8PPFmoeBvHPx/udN1bS7p7e/sbjwXooaGRTgjizwR0IIJBByCQQaAP3yor+f3/AIfa f8FO/wDo5s/+Ebov/wAh0f8AD7T/AIKd/wDRzZ/8I3Rf/kOgD+gKiv5/f+H2n/BTv/o5s/8AhG6L /wDIdH/D7T/gp3/0c2f/AAjdF/8AkOgD+gKiv5/f+H2n/BTv/o5s/wDhG6L/APIdH/D7T/gp3/0c 2f8AwjdF/wDkOgD+gKiv5/f+H2n/AAU7/wCjmz/4Rui//IdH/D7T/gp3/wBHNn/wjdF/+Q6AP6Aq K/CH4Sf8F1/2/fCfxG0nXvil8W4/FHh6G6/4nGhyeGdMtzcQEENskgtkdZB1U7tu7G4MuRX69fCP 9pLSvjl8O9J+Knw18Xx6hous2ons7hIUyP7yOMfK6tlGU8hlIoA9korgP+E28THkan/5BT/Cj/hN vE//AEE//IKf/E0Ab/j9YyNGLwq5XXISm7b8rbJOfmjfn6FD/tr33o87BmvLfFXjDxLM2mg3zNt1 SMrtiHyna3J2snH13D1U9RqL438TEZGpf+QU/wAP8+1AHoFFfL/7Xfjj9q3w/wCEP+E/+A/xJmt/ 7MhY6rosej2c5mi5JnjMkLNuUdVzgqMgZU5+SP8Ah5F+2j/0Wc/+E/p3/wAj0AfqvRX5Uf8ADyL9 tL/os5/8J7Tv/kel/wCHkf7aX/RZ/wDy3dO/+R6AP1Wor8qf+Hkf7aX/AEWf/wAt3Tv/AJHo/wCH kf7aX/RZ/wDy3dO/+R6AP1Wor8qP+HkX7aX/AEWc/wDhPad/8j0f8PIv20v+izn/AMJ7Tv8A5HoA /Veivyo/4eRftpf9FnP/AIT2nf8AyPR/w8i/bS/6LOf/AAntO/8AkegD9V6K/Pf9lr/gpj8VJPHq +F/2gvGiXumamyx2uqHTbaE2UucDd5UagxsWAJIJU7T93dj7XXxXrjAEah1Gf9Wn+FAHY0Vx/wDw lOvf8/3/AJCX/Cj/AISnXv8An+/8hL/hQB2FFcf/AMJTr3/P9/5CX/Cvm39t74pftkfCFl+Jvwl+ Kcy+GWVY9Q08aHYynTpOgk3PCXaNz1JJ2seuGUAA+wqK/Kgf8FJP20TyPjR/5bunf/I9L/w8j/bS /wCiz/8Alu6d/wDI9AH6rUV+VP8Aw8j/AG0v+iz/APlu6d/8j0f8PI/20v8Aos//AJbunf8AyPQB +q1Ga/Kn/h5H+2l/0Wf/AMt3Tv8A5Hpv/DyH9tH/AKLO3/hP6d/8j0AfqxmjNflP/wAPIP20f+iz t/4T+nf/ACPR/wAPIP20f+izt/4T+nf/ACPQB+rGaK/Kf/h5B+2j/wBFnb/wn9O/+R69i/ZT/wCC iXxU8bawfh98WvGiPqFxJnStTOn28Szn/ngwRAob+6QBnoecFgD72orxUfFjx8eR4h/8lov/AImj /ha/xA/6GA/+A0X/AMTQB6l8REhk8A61HcxCSNtKuBJG23DL5bZHzI68j1Rh6qelXtEAGkWoVFVf s6bVXGB8o9AP5D6DpXiHin4o+PLnw1qEEmuuyvZyBlW3QEjaeAV2n8mU+hHUWdO+Knj6OxhRNeZQ I1GGt4+OPcE/qfqepAPcKK8Tf4rfEA8f8JEy54ytrFx/45Xg/wAVP2l/2ufhj4hbTbn4oNLZTZaw vDodj+8X0P7nhh3H0PQ8AH3JRX56D9uX9qQ9Pij/AOUWx/8AjNH/AA3J+1J/0VD/AMolj/8AGaAP 0Lor89P+G5P2pP8AoqH/AJRLH/4zR/w3J+1J/wBFQ/8AKJY//GaAP0Lor89P+G5P2pP+iof+USx/ +M0f8Nx/tSH/AJqh/wCUWx/+M0AfoXRX55/8NxftSf8ARUT/AOCWy/8AjNH/AA3F+1H/ANFRP/gl sv8A4zQB+hlFfnk37cX7Uf8A0VA/+CWy/wDjNe2/Bf8Aay8Z/E3RNlz4iWLVLRQt7bi2i+b0kX5P uk/kRj0JAPqCivFf+Fr+P/8AoYD/AOA0X/xNH/C1/iB/0MB/8Bov/iaAPaqK8V/4Wv8AED/oYD/4 DRf/ABNH/C1/iB/0MB/8Bov/AImgD2qivC9Y+J3xQu9Pkt9K8Yta3DL+5n+xwttb3BQjH6+leV6j +03+0VpOoS6bqPjdo5Ym2sp021/+N8g9RQB9kUV8Zj9q34+gYHj3/wApdr/8ao/4au+P3/Q+/wDl Ltf/AI1QB9mUV8Z/8NXfH7/off8Ayl2v/wAao/4au+P3/Q+/+Uu1/wDjVAH2ZRXxn/w1d8fv+h9/ 8pdr/wDGqP8Ahq74/f8AQ+/+Uu1/+NUAfZlFfGf/AA1d8fv+h9/8pdr/APGqP+Grvj9/0Pv/AJS7 X/41QB9mUV8daZ+1x8crLUYbrUPFa3lukgM1s2n2yiRe4ysYIPoc9euRXuvhf4ual4u0SDXtG1rz IZl5Hkx5Rh1U/LwQf5+lAHqFFcB/wm3if/oJ/wDkFP8A4mj/AITbxP8A9BP/AMgp/wDE0Abv2m1/ 4WnHaGePzv7AkcR/aI9+3z0GdmzzCM/xb9oPBXOCOirykeNfEw8bxj+2Gz/ZbnZhsH96Oduzy+3X O/0+XNa//CbeJ/8AoJ/+QU/+JoA7+iuCt/HXiOK4WWe882NT80ZiQbh+AzXa6ZqVrqtnHe2j5Vx0 7g+h96ALFFGaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAK534tfC/wAAfGz4a638Ivip4Vs9c8N+JNNl07XNIv490N3bSqVeNhwcEHGQQR1B BAI6KgjPUUAfx0/8Fzv+CNXxF/4JOftITW2jRXmr/CXxXdSTfDzxRKrOyJ1bTrtwoVbqHkccSxhZ BtJeOP4Zr+6H9tv9i74Hft+fs5+Iv2Zf2hPDa6h4f160KxzIFFxpt0oPk3lu5B8uaJiGU8g42sGR nVv4qv2yf2df+GR/2pfHn7M//CxtH8Xf8IT4kudK/wCEj0J82195TY3gZbY38Lx7m2OrLubbkgHm dFFFABX6Pf8ABBT/AIIm/BH/AIKxa14q1v4p/tVvodv4Fht7rV/A3hnSXOrXVvMZ1V/tVwgt4F3Q jmNbggOAwjYivzhr9v8A/gyfbHxo/aGyP+ZC0v8AD/SLigD8RLuNYbqSJCdqyMF3detR1NqP/IQn /wCuzfzqGgAq54c8Q674S8QWPirwvrF1p+pabeR3Wn6hZTNFNbTxsHSVHUhldWAYMCCCARVOigD+ nL/ghj/wWL0D/gov8Iv+FW/F3V7e1+MXhOxU69b7Y4k161BVBqNui4AJZgs0aKFR2UjCyqo+/q/j B/Z++PfxR/Zg+MPh/wCPHwX8V3GjeJvDd+LrTb23YgA4w0bgEeZG6lkeM/K6MysCGIr+tb/gnr+1 VqP7bP7Hfgb9pzWPh5e+FrzxRpJlvNHvUYBJUkeJ5IS3LW8jIZImOCyOpI5yQD2jqy/7w/n/AJ9/ SsvwWUbw3bmMJt3SY8tkZfvt3REX8lH4nk/Jn/BYD/gol45/YR+H3hnR/hNoFnN4o8ZTXa2eqalG ZYdPt7dYfMcR5AeUmePZn5RhiQ4wo+dv+CSv/BX74+/F/wCPuj/sv/tI3UHiJfEn2kaN4khsIre5 t7hInn8uURBY3iKoyjCBlYrnK5wAfqhXjv7b/wCxl8Nv23/ghefCbx9Gtvdxs1z4c1xYt0ulXoXC yr6ofuun8SlsYbay+xUUAfzG/Hz4D/E/9mP4s6t8FPi94fk0/W9Hm2TLy0c8Z5jnhcgb4nX5kbGS OoBBFcjX7yf8Ffv2Gvhj+1L+zxqXxH1HVdN8O+LfA+mXF/pHifUJfLhNvGheSzuDkAxP1ViCY5Np GAzq/wCDMaheB07fT/PH1BoAdRRRQAE4Ga6CX4Q/F+3+GS/Gm5+FfiGPwe+ofYY/FTaNP/ZrXGcG L7UUEW8f3QxJPGM1z56V92W37RHxMf8A4Isa/onxbWz0/wAP6xeaV4D+E+i2KzR/bRY6lLrOpalM kjlGZWkjtzNGEBLBCAVJoA+Ewc80UifcXr0/i60tABXoX7LX7TnxM/ZC+NGl/Gz4W6p5V1YybL6y kb9zqFqxHmW0o4yrYGD95WVWQh1U157RQB/Sp+yZ+1V8Lv2xPgvpvxo+FeprJa3mYtQ0+SQG40y8 XHmWswHR1yDnADKysOGFemV/PL/wTW/bh+J37Fvx/s9Q8JadqGuaF4kuobHxF4SsSWfUVLbY2hQd bhCx8vjJLMuQHr+hhHL5YlueeR685/z7cnrQA6ivzF/4LW/8FLv2jf2dfjTpP7O/7PXiv/hG1j0O HVdY1qG3R7meSV5VWBDKrKkYVFclQGZmxkbTnb/4Ih/8FJPjz+1D468Rfs8ftA61/wAJBfaboLa3 o/iJ4IopxCk8MMtvL5YUOMzxsjbc8SBicoAAfo/XyL/wU+/YDtP2i/B8nxi+F+mKvjrQ7X95BGoH 9s2iD/UnA5nUf6tu/wBw4BUp9dUjAkYFAH88U0M9tK1tdQtHLGxWSN1wysDggjsc02vvj/gsp+yL 4C8Ez2n7TfgvUrHSbvWtRFpruhtIEN/OQWFzAv8AewP3igY/j6ls/A9ABRRRQAHPatzxz8MviV8L 7yz0/wCJfw+1rw9PqFhHe2EOt6XNatc2z52zRiVV3xnBwwyCQR1BrP8ADt5qOn+ILG/0iyW5u4Ly KS1t2h8wSyBwVTb/ABZOBjvnFfXH/BTrxj4z+IXwU+CHjjxvrV5qWp6mniifXbnVNHk0+5tdWbUY 2vNP+zSFjHDbMyRx/Mcrk7U4WgD47ooooAK+ov8AgmR/wUD1P9jP4hyeFfG13NcfD7xFcqdZtlyx 064wFF9GPUDiRRjeoB5ZFz8u0EE9DQB/SboOuaN4m0Sz8R+HNUtr7T9QtkuLG9s5hJDcROoZJEZe GVgQQRwQat1+Xv8AwQ+/bP8AiKPGC/sc+JdKvtY0OS3uL3QdQjVnOibFLyRydhbucYPG2V1Az5ny /qFQBj+LzGG0vzBH/wAheLb5jIMHa/8AfjfJ+m0+jDkHYU8fif51+N3/AAVG/wCC4P7TXgf9p/XP gN+zHdWvhXS/AmtNZXmqTafFcXWp3ULES5EoeNIA25FUJuKjcWz8q/b/APwSH/4KC+J/+Cg37P2o +LfiJ4TsdN8UeF9WXTdak0sMtrebog8dwiMWaIsCylCzAFSQcNgAH1kRnocH+93FfD/7c37Jp8Ba lcfGH4daYw0O6l3atYwpxYTM2PMA7RMxH+6xA6MoH3BVfVNNsNXsJtK1SyjuLa5haK4hmTcsiEYZ SPQjIPsaAPyTU7lzRXpv7W3wS0L4EfFybwv4a1mG4sbuEXdvZhgZrFWJ/dSAdPVT1ZWBPOSfMqAC iiigBUjllcRQxlnY4VV6sfSrGs6LrfhzVrjQvEWj3Wn3trJsuLO9t2imib0ZGAZT7EZr0f8AY78G XHjD49aXcx6R/aEegQTa3NYrgtcG1XzI4Qp6l5vKX0w5J6VJ+25p2oaZ+1R4zj1G2eF5tWM6K64y jqCrfiMGlf3rDtpc8rooopiGsu4cHrxX2Z/wT+/a9N9Ha/AL4l6kPOjXy/DepXD/AH1HS1c+o/gP cfL1xXxrSxzzWssd1bStHJG4eORWKlSDkEEdCPXtQB+w4zjkUV4f+wx+0B4o+OvwwlXxjpdx/aGh TR2txq3l/u9QypIfPaQADePUof465f8A4K0/tgeOP2IP2NNb+NXwz0+3m8RT31tpOiy3cIkitJ7g t/pDIeHKIjlVJ2lsZBGRQB9MVX1bTdO1vS7jR9YsoLm1uYWiure4iDxyxsMMjKeCCOCD1FfgH+yF /wAFyf29/CX7RfheT4vfFubxv4b1TW4LPXND1SwtU3wzSCNnhaKNDHIobK4IU7QrArnH9AanK5/x /rz+fNAH5v8A7Y37Kuo/s9eLRrHh63lm8K6rKx024ZtxtZMEm2c9cgA7WP3lHX5Wx4xX63eP/APh j4oeEr/wN4x01brTr6ApNE3UH+F1PZlOGB7Ee9fl38bvhpH8IPiprPw7h8QWuqR6bdeXHeWsgYFS AwVscLIudrr2YGgDlaKKKACtXwh4C8efEG6msvAXgnWNcmt1DXEOjabLdPEpOMsI1JHPAz1rKr3T 9hvXrKPXtc+H19H4utV8XSaVpa654RkEMmmM+oRbZJJjnykJ+X7rFgSvGc0N2Q1q7Hh1zb3FncyW d3BJHNDI0c0csZVkdTgqQeQQQQQeRTK2viToL+FfiL4g8Lyai942m63d2rXcmd05jmZN5z3OM/jW LQIKVJZIJFmhcq6MGVlbGCDxzSUUAfaP7JX7S6fFfRF8F+L73/io7GHiWVub+Jf+WnvIP4x77u5x 7XX5m6Frms+GNatfEXh7UZLS9s5lltriFsMjDv8A/W6EZB4Jr7++AXxNvPi58NLHxnqGiSWNxLmO dWUiOR14MkeeqE9PQ5HOKAOm8UFB4a1AyBdv2KXduZQMbDnllYfmpHsan0z/AI8YcAY8tduMdNo9 AB+n5dB+dH/BY/8A4Kr/ABl/Zf8AiHb/ALNP7Pdva6Xqk2jLe614ovLdZ5I1mLBIbeN8opCpuaRg 33gAARkdR/wRs/4KefFL9s6/1z4J/HXS7O48ReHdFXUrXxFp8AhF9biZImE8Y+RZQ0keGQKrDOVB ALAH3tWL488D6N4/8OzeHtaiyknMMgX5oZOzr7/zGQetbVFAHxz4y8Ia34C8QzeHNeh2yxt8kq/d mXPDr7H9Onas2vqb41fDjRfH3haRr6eG0urGNpbXUJn2rFgchz/cI6ntwfr8s7drFdwbBxuHegAo oooAKuQ+HPEdzoMnim38P30mmQzeXNqK2jm3jf8AutJjaD7HBqnX0t4UsdUu/wBiq2tNC1k2s3/C P6/c3ltNaq8N1BHeW4kBOQVlGU2Pg4+bPUUAfNIzjmikQgrkHNLQAVoeFvE+s+Dddt/EWh3fl3Fu /wAu77rqeqMO4I4x/Xms+igD63+HHxE0f4j+HI9e0r5Xztu7ctloZMdD6j0PcY+ldDXyP8NPiHrf w58TR6rpatLDJhLyzBP79M9P94HkH1r6ysbgXdrHciCSPzI1fy5FAZQQDgjsRQBNRX55f8Fvf+Ci Xxy/ZRv/AAt8Ff2f9TXQ9S8QWMmqap4kW2hlmhgV2iSGESBlUsyuWfaWA2hcZY155/wRi/4Kc/tM /HP9oub9nT9oDxd/wlFnquj3F5pOpXNtHHcWM0A3ld0SqJI3TcMMCysq4IBYEA/VCuX+I/gNPFFh 9u0+Nf7QhU+Wenmr/cP49DXUUMMjFAHz48csLtFNGysrYZWXBBpK9C+MXhCwjh/4Sm3kjhmZ1WaP p5x9R/tevsPbnz2gAooooAK0NY8I+LvDkEd14i8K6lp8cxxDJe2MkSufQFlGeOaz69A+KOt61d/C rwPY63qN1PcTW97eStdXDSMytMEiOWzxtQ45xg0Aef0UUUAFdV8KfiXefDvW98paTTbhgLy3Hb/b X/aH6jj0xytB5FAH1tp+oWeq2MWo6fcLNBNGHilQ8Mp7ipq8O/Z6+IOsWGtp4ImgkurS6yYdq5Ns wGS3+6e/ocHvXpvxm+JWl/Bj4P8Aiz4wa5bSTWPhTw1f6xeQwn55Iba3kndV99sZoAveW/8AwmyS Yfb/AGWw/wBXJt/1o/i3+Xn22lv9rHFa1fzqeOv+C2v/AAUc8V/FS4+K2jfHH/hHWklxZaLpej2j WlnAWDC3CyxM0iZGCZGZmPJI6D9xf+CfP7Turftj/sdeB/2i/EWhW+m6l4gsZ01Szs93ki5trma1 ldNxJCO8DOAScBwMnGaAPZq0fDfiCXQLvc25oZD++j/qPes6igD1C2uIrq3W4hkV1dcqy96kri/A euXVtfjSGjaSGU5XH/LM+v09a7SgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACkd1RdzttHqaWvz9/4L3f8Fq/Bv8AwSm/Z+Ph7wLqGn6l8ZPG VlNH4I0KRw/9mx8o2q3SYI8mM/cjbHnyLsGVWVowD59/4OZv+C9i/sW+B9Q/YY/ZG8aJ/wALZ8S6 d5XirX9NnVn8H6fMn3VYcx380bfJ0aGNhKCrNEa/mIZ2f7zZ+tbHxC8f+Nfip451f4lfEfxNea1r +vajNf6zq2oTNJPd3Mrl5JXZuSzMSTWNQAUUUUAFfYX/AATH/wCCzfx2/wCCTkHiib9mz4F/C/VN S8YWcNprmteMrHV7q4nt4nldECwalBDGP3pB2xgkKmSTkn49ooA2fHniXSfGPim88TaN4I0nw3Bd zeYmiaHJdva23H3YzdzzzEE5PzyMRng44GNRRQAUUV9Xf8EkP+CXHxH/AOCnP7QsXg2xN1pXgXQH jufHniiOL/j1tieLaFiChupcFUU52jdIQVjIIB7T/wAEEf8Agjfqf7ffxVj+P3x28PTw/B7wjqH+ kJIpX/hJtQjKt9hjyOYEyrTt12ssa8uzR/0paZpmm6JplvoujWENpZ2dukFpa20QjjgiRQqoijAV QAAABgAYrA+EPwe+GvwE+GWi/Bv4PeEbXw/4Z8O2KWej6XYbvLgiTPGWLFiSWLOxZmZmLMxYsemo A+YP+Cm//BOXSv8AgoL8PdFsbHxl/wAI/wCKPC9xcS6DqNxbmW1kSZUEsEyKdwDtFEfMHK7M7Xzt Hin/AATT/wCCJ+tfsl/GOy/aE+PPxE0jW/EGjRTLoOleHVnNrayyRmNp3llVGlby3dQnlqoJzlmA x+hVFABTJp44Ymmd1VUG52Y4Cr657D3PH06h9flj/wAFtv8AgqCbVdS/Yr/Z58U/vGUw/EDXrGT/ AFakYbTYnHBJ585l6BvJPPmAAHjf/BY3/gqLL+1H4pm/Z0+Bmubvhzot4p1LUrc/L4ivI2++D3to 2+4OkhHmcgIF+EQMDAo/z3/rRQAUUUUAB6V7T4u/b4+OXjv9lXRP2P8AxZong+68K+HLQ22g3LeE rVtS06M3a3TrBdspli8yRFDlSu9MqcivFqKABVKKEJ6ccUUUUAFNZudqn5vSnV+i3/BFX/gl23xh 12z/AGuP2gPD3/FJ6bcF/COh3kbAaxdIx/0qRTjdbxsPlHKyupyNiESAHsn/AARQ/wCCXX/CsdLs f2xP2gPDw/4SbUIfM8FaLcrg6TbOuPtkqsOLiQHCAH93Gc5LOQn6TdOgpFUKMAUtAHyP/wAFHv8A glB8O/299c0v4lH4i3fhHxRo+mmxfUIdNW8hvLRWkkSOSIyR4ZWdyHDdJCCGwDVz/gmn/wAEx/ht +wbo+oeL7TxbJ4o8WeJLGKK912SzWGO3tch/s8CBmIQsFZmLEuyIcKFxX1Re7vskhUc7D0//AFj9 CD6EGqvhrd/wj1jv3Z+yR53bs/dHXcS35kn1JNAF6uZ+LvxZ8EfBL4dap8T/AIga1HZaVpNv5s8h 5ZyfuxoP43Y4CqOWJwPWtrXtd0jwxo914i8Qanb2VjY2z3F5d3UoSOGJFLMzE9AAP845/Hj/AIKJ ft16x+158QToPha5uLbwJotww0Wxk3Ib2TlWvJUODuYcIrD5F/2megDhf2v/ANq/x1+158Wp/H/i ndbafa7oPD+jLJmPT7bdnb2DSMeXf+I+iogHllABAwT+PrRQAUUUUAPt7m4s50u7SZo5onDxSI2G Vgcgg9iDXp/7T37ZPxx/a/1HR9T+M+oaXI2h28yWcek6THZo8szB57iRU+9NKyqXbgHaMAc58too AKKKKACtbwL4F8XfE/xrpfw58BaJPqOt61eJa6Zp9vHmSeRuQAPTaCxPACgsSACRl29te393DYaf ayTTzyLHDDDGXZ2JACqq8sSTgKBkngZOAf2P/wCCU/8AwTotP2VvBX/C2fitpUcnxA8QWmGhkUN/ Ylo+G+zKehlbgyP6/IOFZnAPSf8Agn1+w74U/Yp+D8WgkW2oeLdYWOfxXrkIyJZccQRMQG8iMkhc gFssxClio9+oJJOSc/WigD8v/wDgo5/wb++LP2kPj9qn7QX7MnxV0PR7jxTfG68R6D4s+0LDHcMc y3FvNDHKxLn5jE6AbicOBgD62/4Jqf8ABPjwv/wTu+Bk/wAM9O8aT+ItZ1rUv7S8RaxJaiGOSfYs YiijydsaKnBJLMSxONwUfRVFABXl/wC1P+0don7Pfgb7cEjutd1BWXRNPY8Mw4Mr9/LXnOPvH5cj JI6T40fGPwn8DfAl1478Wy7o4vktbONwJLuY/diTPc9zjCgEnpg/mx8U/in4r+Mnjm88deML4yXF 02IYVY+Xawj7sMYP3VUfmck5JzQBl+I/EeueL9eu/FHibUpLzUL64aa6upmy0jseT/8AWGAB0xVK iigAooooAWJnhlWeEfvFYMp4zkdOtavjvxz4i+JfjHUfHfiyWGTUNUuDPdSQxbFZjxwvYcVk0UAF FFFABXe/s5/ADxT+0V49h8K+HwYbKELNq2psuUtoPXPQu3RB3PsCawPhj8NvFvxd8c2PgDwXpxuL y9kxuOdkKD70jn+FFHJP0HUgH9NPgH8DvCXwB+H9v4J8MxeZN/rNT1B4wJLycj5pG64GchVyQowO uSQDc+H/AMP/AAp8MfCFj4H8GaWtpp+nxbIIl6k/xOx7sx5J9TXFfth/sn/DH9tb4Ba1+z78WFuo 9O1ZUkt7+xYLcWNzGweKeMkEZVhyp+VlLKeDken0UAfl9+yp/wAG4fwr+EX7Qlr8RPix+0FceNLD wnqNtf6d4ft/D62MdzcKBJH9qYzykxq43GNQPM2jJCkqf0/XbHHgsdqr95vT1NZej+b/AMJJqxcS bf3O3d5mD8nONzlf++VX33HmuC/as/aZ0H9nDwKdRXybvX9QDR6Hpbt99wBmWTBBESkjPTcflB5J ABx/7cH7XUXwS8Pt8P8AwJfRyeKtShz5iMD/AGZAR/rmGDl2H3F44O88BQ35+TyzXNw13cytJLIc ySSMSzHOcknqSep6mrXiXxLrvjTX7zxV4o1Sa81C+naa6uZj8zsf6DoAOABgYAxVOgAooooAK674 NfHT4i/AfWrrXvh7d2qS3tusNxHfWqzxHbIskbhW4Do6KytjII46muRooAm1PVL/AFvUrjWtVunm ury4ee6mk+9JI7FmY+5JJqGiigAoorsPgf8ABrxF8bfGsfhnSUaK0ixJqV+V+W3iyPzY9AOuTnop oA6L9mD9ne++NviX+09Xjkh8N6fIDfXC5X7Q3XyEb1I5YjlVPGSVr7k07TbDSLGHTNMs47e3t4xH BDEu1UQAAKB6ACs/wX4L8PeAPDNn4S8L2S29nZx7IV2jc3qzHuxPJPc/lWtQB8N/8FTf+CQt7+3D 4ps/jV8IPH1jofjO2sI7C8s9eEn9n6hCjMY2Lxq0kMi7mG4I4YYG0YDHf/4Jaf8ABK+L9gWLVvHv jjx3D4g8a+INPSyu20yFksdPthIrtFEzgPMWdUYyMqcKAEHzE/YtFABSMSBwaWvHv2ivjT/ZKTeA PCl5tvJF26jdRtzAuP8AVg/3znk9gcdTwAYH7Q/xpbxDcyeBPC11/oMMmL65ib/j4cH7gP8AcB/M +wFeTgYoAwMAUUAFFFFABXWaf8cPiNpXw0m+E9nqFuNJuBIu5rZTPHHI6PLEkn3lR2jUkZ5xXJ0U ACnK9KKKKACkLYBI7Utemfs+/Bg+MtRXxZ4mtP8AiVW0n7mF84u5Aeh9UHfsenqAAb37OfwW2iH4 i+LLUluH0m1kHT0mPvj7o993oD7cFC9BSIoRQg6DgcdKWgD5n/4KLf8ABM74af8ABQTRNGn1fxVd eGfE3h9pE0rxBa2a3CtBJtLwTRFk8xMqGU7lKndg/MQeJ/4Js/8ABI/4dfsTeI7j4zaj8R5/F3iq 6s5LKzvPsAtbawt2ceYI0DuzSPsUFy2ApZQARuP2ZJnbwapeGg66PGHDZ3P97dn75/vMx/M/l0AB fqvqWo2elWUl/fXCxxRLukduw/rU00qwoZHZVVeWZjgAY615J8SfHsniq8/s3Tp2+wQt8vHEzf3v p6e1AFDxt4wvfGGqfapC0dvGSLaDP3Rnqfc1j0DiigAooooAK0vEfi7XfFn9nprTRldM02Oxs1hj CqkMedoPqfmOT371m0UAFFFFABUlra3OoXUdjZQtJNNIEjjjXLMx7AVGckcfyzXuXwN+Ef8AwjNq virxFaD+0rhcwRsObaMj9HP5gcetAGz8I/hfa/D/AEfzrtUfVLpQbuZedg7RqfQHr6mt7xn4R0D4 geEdU8B+LNOW70rW9NnsNStW6TW8yGORPbKMw/H8RpjgYooA/G3x3/wbFfF2X4vG1+HP7RHhlPh/ NeKftesW1y2rWtuT8yeQkfk3DovAYzQhzyQnQ/ql+yz+zn4G/ZK/Z/8ADH7O/wAOZ7ibSfDNi0MV 1eY824leR5ppmwAMvNJI+AABu44r0CigApY4pZ5VhgUszNhVA6n0pOc4C5rsfBPhj7An9qagv+kO v7tD/wAs1/xoAu+FPDaaFab58NcScyN/d/2R/nmtaiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjn9pT/ggb/wSp/bD+NGr/tBftMfs1X3 i7xbrkitqOr6h8SvEaEqqhUjjji1BY4Y1UYWONVRRwqgcV9jUUAfAH/ELj/wQo/6Ma/8yZ4n/wDl nR/xC4/8EKP+jGv/ADJnif8A+Wdff9FAHwB/xC4/8EKP+jGv/MmeJ/8A5Z0f8QuP/BCj/oxr/wAy Z4n/APlnX3/RQB8Af8QuP/BCj/oxr/zJnif/AOWdJ/xC4f8ABCj/AKMb/wDMmeJ//llX6AUUAfn/ AP8AELh/wQo/6Mb/APMmeJ//AJZUf8QuH/BCj/oxv/zJnif/AOWVfoBRQB+f/wDxC4f8EKP+jG// ADJnif8A+WVfSn7Lv/BOz9jr9i/4ZR/Br9mX4K2nhXw1Hey3bWFrqV3PJNPJ96SWeeV5pWwFUF3Y hUVRhVVR7ZRQBzf/AAqP4e/9AA/+Bk3/AMXR/wAKj+Hv/QAP/gZN/wDF10lFAHN/8Kj+Hv8A0AD/ AOBk3/xdH/Co/h7/ANAA/wDgZN/8XXSUUAcnqnwS+HOq2M+mz6JKsdzbvDI0OpXEcgVhglXSQMje jKQwIyCDzXy/J/wb8f8ABJKeZri5/ZSklkkYtJJL8QPEDMzHqSTf5JPqa+zKKAPjH/iH1/4JGf8A Rpf/AJfuv/8AyfR/xD6/8EjP+jS//L91/wD+T6+zqKAPjH/iH1/4JGf9Gl/+X7r/AP8AJ9H/ABD6 /wDBIz/o0v8A8v3X/wD5Pr7OooA+Mf8AiH1/4JGf9Gl/+X7r/wD8n0f8Q+v/AASM/wCjS/8Ay/df /wDk+vs6igD4zH/Bvt/wSJ/6NL/8vvXv/k6j/iH2/wCCRP8A0aV/5fevf/J1fZlFAHxkf+DfX/gk X5kci/slD5HDYbx1r2D9f9O5HseDX07oPwG+EvhjRrXw54d8FWthp9hbR29jY2MkkUNvCihUjRFY KiqBgKBgAV2FFAHN/wDCo/h7/wBAA/8AgZN/8XR/wqP4e/8AQAP/AIGTf/F10lFAHJax8Jfh+mlX DjQtuIWOTey+nuxH5gj1Bqh8PfhV8OrrwHotzHoySLJpVuyyQ3zsrAxryDGVQj0KqoPYAcV2mrZ/ syfbuz5TY25znHbbzn6c+lUfAhmPgnSDcGQyf2bB5hm87eW2DO7zmaTPr5jM/wDeJOTQBw/xj/Y9 /Z/+PPgqb4dfE7wXcX+i3UiPd2MPiC/tRNsbcqs1vOjMuedpO3IUkHAx4/8A8OQ/+CYP/Rszf+Fr rf8A8m19XUUAfKX/AA5D/wCCYH/Rsn/l6a3/APJtH/DkT/gl/wD9Gx/+XprX/wAm19W0UAfKX/Dk T/gl/wD9Gx/+XprX/wAm0f8ADkT/AIJf/wDRsf8A5emtf/JtfVtFAHyl/wAORP8Agl//ANGx/wDl 6a1/8m0f8ORP+CX/AP0bH/5emtf/ACbX1bRQB8pH/giH/wAEwP8Ao2T/AMvTW/8A5NpP+HIf/BMH /o2Zv/C11v8A+Ta+rqKAPnD4Yf8ABJP/AIJ8/Bnx3p3xL+HH7PMNlrWkzedp93ceI9Tu1gkxgOI7 i5dNw7MVyp5BBr3geB/DYGP7OH/f1/8A4qteigDJ/wCEI8N/9A//AMiv/wDFUf8ACEeG/wDoH/8A kV//AIqtaigDJ/4Qjw3/ANA//wAiv/8AFUf8IR4b/wCgf/5Ff/4qtaigDzP4p/shfs//ABqvrXUf iZ4Im1OSxiaOzX+3L2FIgTliEimVck4y2MnaBnAFcv8A8O1/2Lf+iNn/AMKLUf8A5Ir3SigDws/8 E1/2Lf8AojZ/8KLUf/kik/4dr/sXf9EbP/hSal/8kV7rRQB4V/w7X/Yu/wCiNn/wpNS/+SKB/wAE 1/2Ls/8AJGz/AOFJqX/yRXutFAHhf/Dtf9i3/ojZ/wDCi1H/AOSKP+Ha/wCxb/0Rs/8AhRaj/wDJ Fe6UUAeF/wDDtf8AYt/6I2f/AAotR/8Akij/AIdr/sW/9EbP/hRaj/8AJFe6UUAec/Cn9k/4BfBC e8ufhf8AD2HTZL5VW6ma8nnd1U5C7pnYhc84BAJ6g4Fdt/wi2h/8+I/76NaFFAGf/wAIvof/AD4j /vo0f8Ivof8Az4j/AL6NaFFAHH+HPDnh9/GviCNbWEsrWvmBZkLD91xuCqGHHTezcfd2jg8t8Rf2 Iv2a/i14pk8ZfET4eyalqEsaxtNJr9+gCL91VWOdVQD0UAZJPUknvvD7TjxVrUb+d5e63Me/ztn+ r527mMf18tV5+9k81t0AeFf8O1/2Lv8AojZ/8KTUv/kij/h2v+xd/wBEbP8A4Umpf/JFe60UAeFf 8O1/2Lv+iNn/AMKTUv8A5Io/4dr/ALF3/RGz/wCFJqX/AMkV7rRQB4V/w7X/AGLv+iNn/wAKTUv/ AJIpf+Ha/wCxb/0Rs/8AhRaj/wDJFe6UUAeF/wDDtf8AYt/6I2f/AAotR/8Akij/AIdr/sW/9EbP /hRaj/8AJFe6UUAeF/8ADtf9i3/ojZ/8KLUf/kiuy+H/AOyt8BvhbpD6F4D8AR6fayTGWVUv7h2d 8YyzPIWbjgZPA6Yr0KigDm/+FR/D3/oAH/wMm/8Ai6P+FR/D3/oAH/wMm/8Ai66SigDm/wDhUfw9 /wCgAf8AwMm/+Lo/4VH8Pf8AoAH/AMDJv/i66SigDmm+EXw/IwNCYf8Ab5N/8XXHTfsRfsxXUzXN 18NWkkkYtJI2uX2WYnJJ/fdSa9WooA8m/wCGG/2W/wDol/8A5W77/wCPUf8ADDf7Lf8A0S//AMrd 9/8AHq9ZooA8m/4Yb/Zb/wCiX/8Albvv/j1H/DDf7Lf/AES//wArd9/8er1migDyb/hhv9lv/ol/ /lbvv/j1H/DDf7Lf/RL/APyt33/x6vWaKAPJv+GG/wBlr/olw/8AB1e//HqP+GG/2Wv+iWj/AMHV 7/8AHq9ZooA8lf8AYZ/Zbbp8LwP+41e//Hq67TPgj8MdIsIdM0/wyIoLeMRwxreTYVQMAffrrKKA Ob/4VH8Pf+gAf/Ayb/4uj/hUfw9/6AB/8DJv/i66SigDmZfhH8PtmBoB9P8Aj8m/+LrF+HXwq+Hd x4Qt5l0ZJA0k3zx37MpxK46x7V/IdeuTknvpfudKyfAhnPha3Nx52/zJc/aPO3/61sZ85mfp6kjH TAwAAZWrfA74Za1ZPp1/4dZoZBiRRqFwufbhwf1rG/4ZP+Af/Qi/+VS6/wDjtejUUAecn9kz9n88 t4Db/wAG13/8do/4ZL/Z+/6EJv8Awb3f/wAdr0aigDzn/hkv9n7/AKEJv/Bvd/8Ax2j/AIZL/Z+/ 6EJv/Bvd/wDx2vRqKAPOf+GS/wBn7/oQm/8ABvd//HaP+GS/2fv+hCb/AMG93/8AHa9GooA85H7J 3wCHTwJ/5VLr/wCO0f8ADJ/wE/6EX/yqXX/x2vRqKAOA079l/wCB+k30OpWPghVmgkDxs9/cOAw6 HDSEe/TrXUDwP4bAx/Z//kZ//iq16KAMn/hCPDf/AED/APyK/wD8VR/whHhv/oH/APkV/wD4qtai gDJ/4Qjw3/0D/wDyK/8A8VR/whHhv/oH/wDkV/8A4qtaigDLt/B/h+1nW5h05dyNlSzscH8Sa1KK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKAKutlBpFz5hUL5Lbt2MYweu7jH149eKz/hyIF+H+iLamPy10m3Efk+Xs2+WuMeWAmPT aAvoMVpatu/s2faGz5TY2A56dtvP5c+lU/A5kPgzSTMkyv8A2bDuW5WVZAdg4YTfvA3rv+bP3uc0 AalFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAc94a+yDxx4i8lofNJtDNs8rf8A6rjdsAf1xvJ/2cDNdDWJ4faY+KdaVkuBGrW/lmRJhGf3 fOwt+7Pv5ff73NbdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUANkyV6Vh/DT7IPBdqLEwmLzJtv2fytn+ufOPJATrnoOvXnNbkmdv+NZPgN5n8 L27XAuN/mS7vtUc6v/rG6if959M8Yxj5cUAbFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUZ7UAVdcKDR7oyhSv2d927bjGO+7jH14rP+HLW7/D/RGtBGIv7Jt/L8qOJV2+Wu MCH92B7J8o/h4xWlq5I0u4I3Z8psbQS2cdtvOfpz6c1S8DGY+DNJa4M3mHToS5uEkWQnYM7hKA4b 13ANnrzQBq0UZooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACijOOTRmgDnvDL2h8b+IlhEPmKbTzfLjhDf6rjcU+c8dPM6D7vGa6GsPQHmbxdraSm4 2r9n8vzUlCD93zsLDYe2fLJwfvYPFblABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUANlzs4rD+GTWz+C7VrMQiPzJ9ot44VUfvnzgQ/J1z06nk8 5rcmx5fNZPgF528KW73RuN++XJuklWT/AFrdRKA/0yOmMcYoA2KKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKx/H15qum+DNU1XR bpYbq102aa3kZNwDohZcr3GRyMjigDYorwv9nr9p9/Ev7Kvw8+NHxh1pV1vxtoltdrYaHpM8zzzy RGVo7a2iEsrhUBY/e2KCzsFBxX/Zo/atXxj8K9V8c/FTxGJ5v+Fi63oegw6f4duobq+itrqVYYks cPcGcQRO8ke0uojlZgojbaAe+UV5Of24P2ZHsNB1Cx+IVxe/8JNpN5qOhWuneH7+4uLuK0YJcxiC OBpBPG7BGt2UTBgy7MqwGdr37cHwgtL34Znwquta/p/xQvpotF1TSdBvJooY4rOa4Z3CQlt4aIRt CQJEJcuFET4APaaK+fviR+1Zp/gDwZ4q8QaH4xvvElxa/FjS/CPk2fhO7zoM13NpsMkJWNC10Y0u zcJIBiVpUhU7iAdX4e/FuTwz8SfFXhr4o/tGW+pJo/h2LWf7KvfB8mlyaZpssshiuLi4fCSykAxs qLGB5QzGrFsgHtlFeZxftgfAKQ6pbzeKdQtr7SNRsbC80e+8Nahb35uL0E2qR2skCzTeaFcqY0YY jkyRsfGpZ/tHfCHUPA9r8QLHxFcy2N7qk2mWtvHo90b6S+hkkjmtRZ+V9o86NoZd8Zj3IInZgFUs ADuKK+dPi3+2JZX+ieHfHHwD+K+htZyf2lPqug6v4J1m7vryGxmSK7XZar5+neQ29JJJbaXbI8S7 RnD+oXHxz8B+FvCWja/4g8RSak2saSL6x/4RvS7rUpL6BY0eS5ggtklkaEB4yXCkAyxgnLoGAO7o rF8HfEbwP8QfCFl4+8FeJbXUtG1C3E9nqNrJujkj9c9iCCCDgqQQQCCBh+Bv2iPhJ8RvGV18P/Cv iOeTVrXTY9RFpeaVc2v2mykcol1A00aLcQl1K+ZEWTJXn51yAdtRRXhP/BQX9vz4L/8ABPL4EXPx j+LFw91dzyG18M+G7SdUutZvMZEUec7Y1yGklwVjU5wxKqwB6Z8X/jb8KPgF4KvPiP8AGfx/pXhn QdPQNdaprF6kEKk9FBYjczHhVGWY8AE1+b/7S/8AwdM/so+AJrrRP2bPhH4i+IF5BMY49W1JxpOm yKP+WiFlkuGH+y0MefUV+Qv7bn7f37Sn/BQD4nv8R/jz4wkktYZGOheGrGR00/SIW/ggiJIyRt3S Nl3xycYUeL4AGAO+aAP1A8Y/8HVH7Z+rNJF4N/Z++F+n2sgx5eqWuoXrhSORuS6hU/8AfP4Ve+Ev /B1H+0d4N0mz0b4jfss+B9bgsreOBP7Av7rS2KIoH8ZuFHTsoA7CvyxooA/pF/Y2/wCDgn9gX9q6 /tfB+veKLv4ceJrpo44dM8bGOG2uZm42Q3iMYW+b5V8wxM5IwpJwPuSKeOYbo2VgVBUq2cj1r+Nb A9K/Q7/gkR/wXW+Kn7G2t6V8Cf2mPEN94l+E8jJbWtxcbpr7wwCQFeAjLSWyj71vhtoGYsEFHAP6 HqKy/BvjDw1478L6b4v8Ia7bappeq2MV3p2pWUokhuoJFDJIjjhlZSCCCRgitSgAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmyPsXOKJZkhG6Q8Bc18D/ALdP/BRj WdT1G8+EH7PviFrWxtmaHWPE1jN+8uWzho7dwfljHIMg+/8AwkAZYA+lPjp+3n+zp8BbmTRfEfil tU1aNismj6Gq3E0Z9HO4JGfZmDe1fN3jD/gsT4olvZo/AHwZsbeBZNsMus6g8ruvqyRhApPpuI9z 1r4sMolPmSvuZiSzNySf8/5HSjzIxwDQB9TaH/wVi+Oul69ea1dfD7wfML5ozNHDYzxthF2j5/OJ PH97d7Y6V6r8M/8AgsJ4Gv5fsfxX+FmoaT84VbzR7pbtCScfMj+Wy/gWJ9K+BicDOP4c8elJkK2w qQxXP3e1AH7Q/DD4z/DD4z6D/wAJJ8MfGdlq9qMCX7NJ+8hYjIWRGw0Z9mANdRX4r/DD4rfEL4M+ LofGnw28S3Gl30PDNC3yTJnmOROjoe6nj8cV+nX7Gn7Y/hf9qPwe4ulh0/xNpsSf2vpPnDDAj/Xw 5OTET+KE7STwSAe3UUA5GRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFcn8ZPi/4S+C3gi68ZeLLvasfy2tsjDzLmXGRGnufXoByeBQBveIfEmieE9Ll1zxJqlvY2Vu u6a6upgiIPcnj/GvA/iN/wAFGfhX4ekmsfAnh++8QXERws7f6Pat7hmBc4/3MHse9fLfxu/aB+IX x415tT8Vai0djDIW0/SYXPkWy9uP4nx1c5J56A4HF20NxeXH2WztpJpn4WKKMsz8dAByfwzQB9F6 l/wUq+KsrsdE8B+H7eNmztuhPMw/FZE/lTPA/wDwUW8beF9Ph0zV/hvo15DGzNiyka0J3MWOAA6j k9l/M189WljfX9wbSwsJppVODFDCzMPwAzT9R0nVtHlEGraXc2sjDKrcwNGSP+BAUAfd3wy/b4+B /j+7j0jWbm48O3sgA26tt8ksewlUkD6uF/PivaoLiK5iWaB1ZXUMrKwIIPcEda/J4MrE4698ivZv 2ZP2vvF/wV1CDw34ourjU/C8km2S1di8tlk/eh9uclM4PbB6gH3/AEVS8PeIdF8U6Ja+IvD+pRXl leQrLa3MLhlkQ9CD/nmrtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAVkePLHVdV8HappGiwLJdXenzQwrJJtUsyFRk4OBz6HiteigD5P8Ahn+y t+0B8J/B/wCz/qenWGgahrHwn8O3eg+JdFOpypDe2tzDAj3FpOYT+9R7dCqyIu5GcFkJBqq/7Lf7 TWg6da+MtJ8IeC9Y1TSPjB4i8Sr4T1LW5fseq6XqjXGYnma0Pk3EZlV1bY4JQ5PzkV9dUUAfO/hz 4C/FX/hcXwx+Kt18NvCPh618PaX4j/t7w/4evCkdrNqLWzRJERCi3DDyGM0rCPc7kqpXiuZ+H/7K nx38AeDPghbyaNod7qXw38ba1f6zax6w6wy2t9DqUaPFIYckp9sjLKUH3WwTwT9XV554l/aG0zSv iFqvwy8LeBdY8Tap4f0m11LxBDoctpusIbgzCBSs08Zklf7PKwjQMQqgnBeMOAeW69+zf8aNVt/H SQaTpIk8Q/Hjw34y03zNZkx/Z2nyaKZUc+TlJmXS5Cq4KkyxgsMMRB+03+yX8Xfjp8QvGuv+GdS0 nS7fVPh9o+neH7q8mdz/AGpp2rS6lGJ41Ti2dmjjZlYtjcQvTPvvwy+IWl/FP4a6B8TtEsrm2s/E OjWupWttfIEmhjniWVUkAJCuA2CATgg81kfDr44aH8R/iF44+HGn6DqFneeA9WtdP1KW88rZcPPa RXSPFsdjsMcyH5trc9B3APN/FOi/tf8AxC8KaXca58NPCGg36+KNPGvWOieKpZpp9LRJxcywXjWk T28pd4zEqgOqK+JUZxt8l8V/BL9pj4B+B4/jtp/hTwtNd/DX4jeKPF6aC3iS4aHVNK1KO8aeFZvs u6OeJZ1WNirbyr525UN9rebhdzDiuF+MHxx034R/ZW1r4c+LdZsbiRUu77wv4el1JbHdu2NLDCGm ZSy4zDHLsypfYGUkA8k8QeEP2jfjVbeHfGFl4X8Mw+H9e8F6m93pen6tcWzW17dtbyWjyTNaxzzw +UshliKRh5ZAJI2CKVZ8Cf2c/jr8JNd+Gnj7UtO026n0D4Q23gXxRoNvrDMI/sxieG9tZHiVXLuj rLGxX5DGQzMm1vpHTZ/MtEmaFovMUN5chG5CQPlOCRnPocemetWaAPF/hT+zHeeDv2YvEXwL1nW/ Lu/Fc3iC61C403IjspdWubm4eOE4UssRudochSxXcVXJAz/2U/hx8aPC1xYzfGv4G/DzQtU0XQRp Unijwjcedca4d0RMmDbQtaQnyy7QlpNzspGPL+b0fXPjNo2g/G7w/wDAy80LUDfeI9E1DU7HUl8r 7KI7N7dJo2+fzBJm5hIGzaQ33sgiuvWRWHB9sUAV9Z1O00bTJ9V1C8jt7e2heW4uJmAWKNVLMxJ6 AAZJ7V/Lf/wVa/b68Sf8FC/2ttY+KAv7xfCOlO+m+BNKmZljttPRjicx5IWaZv3rn73KpkrGtfut /wAF4vj4/wAAf+CZHxCvdP1OS11TxZbw+GNLaM4aRr19k657f6Ktyc+341/Msn3F+nagD0r9mr4N +Eviovj3XvG2p6lDpngPwM3iCWz0fZ9ov2/tGxsVgV5Ayx/NfK5Yq3CYxk5Gz+0Z+zNL8H9Pna20 ZdHv9HuGt/EWi698TvD19qdtOHEXkmwtJVuo5Ffd5itHuQr8wUBiOB+HHxX8Y/C6DxHY+GLmIW/i zQl0fXI5LcO0lmLy1vNkZJ+RjNaRHd1xkcAmuy/aFn+J37UPx/8AE37Sfhr4L+IbfT/iv8RtSuPD ltDZS3STXl1dvKLGGZYwtxMokClUGSccAEUAea6LoGv+I7hrTw/ol5fTKu5orO2eVguOuFBOKht9 NvLvUo9HTy4bia4WBftkywojlgvzvIQqAE8liABySBX2B4o8C/txfAb4S/Cv9n39mfwX8T/DPiHx B4KufGHxC0XwhZX9rql3d/29qFlDLdrCFmMUUFraeUr4RWkZwN0rE8J+018Nv2hPjV8IfBf7VniL 4beJtZ1M6DfWXxE8VLoUrCS6stRuIFudQnCYF0YDDE7yHc/kKzEuzswBb+Hn7Hnw913VPCfhzxha 6oG1/wATaT4d1LXfCPxM8O67a6feX0vlJM8Fi0skcZYOVWRlDbCokyQa+aWUN1r1bwd8Q/ix+yTp D2WrfDfVNE1rX7zw/wCJ/C99rli8KiOyuJp7e5SKSP8A0iGR8bWBAIRuuRXlNAH7Kf8ABsb/AMFD dT1C+1D/AIJ8/FLxH5sdvbTar8OZLuU70VTvutPTPVcFrhF7Yn5xtA/ZgEEZBr+Rv9jj456v+zH+ 1X4B+PukX7QN4Y8U2l3cNH1a18wLcxH1DwNLGfUSEV/XDbsGhVlx06r0PuPagB9FFFABRRRQAUUU UAFFFFABRRRQAVT17XNL8N6LeeINavY7e0sbaS4up5D8scaKWZj7AAn6Vcryf9ozVr7xFrfhj4GW +i+IvsfivVc65rWk6TcS29jY26mcxzTLDJAgnkjjt2jlZQ0csnPYgF79lj9pPQf2n/hXJ8RtO8O6 hoNxZ65f6TrGg6yqpd6Zd2s7RtDMoJCuV2PjJwJF5Nd9beI/D17cx2dnr1nNNIjPHFHdIzOqttJA ByQGBBPYjFfLPhHQfEn7Ov8AwUC8T+H7Pwj4o1zwL8XPDsWqa5qFv4RuprPS9etwYWLyW9v9mVbm 2xv/AIjJEu/7wJ8x+AHw3s/BOnfs+6tY/s7+JNH1jR/ih4ibxNdx/DXULee1sriDVIYGmkFsCIGE 9kq7jsCheQIiVAPtHRfH3iLW/iV4g8Ix6LYx6XpVnbfYdQXVke4vLhwzSr9nC/u4o18oeYzEs7Oo UbMnlvgj8ffHHxo8BeF/HkXgvR9JXVPEGr2Gu2NzrztLaR2V1d2oa3IgAuXaW3QlW8sKjsckrz88 /BvUfFJ/aK+Evjmf4CeMvDtjp6+ONO1nTF8F3qQ6Nc3t1ZzxJJOwdrnzPKmla7Dm3kf7mxiEFP4U WWomT4A3mpfBvxrDfaH8X/GMuqXFz8OdTR9Os71tY8p5ZWth5UEjXtmd5ITOSSPKkKAH2/Dr+h3M lxDb61aSPa/8fSpcKTD/AL3Py/jTrDWdI1W2+2aXqttcw7ivm286uuQcEZBxmvhIaB+0XbfD/X9C +H/gvxV4o8L6fomk6jZ2uu+FpdN8RWFva6vbTXXhwSXUMceqh7aO8ML+WQBGscjOLlHb6M/ZN0vw XLaeKviR4K8JeNNJj8WazHe6r/wnFlJY3V1eJAkDzCzeNPKXZHEhcLiUxk84DMAdH8ffjyfguPDZ sdKsdUk1vxto2hXdrJqggls4r68jtvtIXYxk2GUHZ8oI/iGMHvZ9d0S1vYtNudYtY7if/U28lwqv J/uqTk/hXxAnh/4gt4GtfhL8RPgn4t1Tx1oP7Rdn4qu9YXwvPPaX+nt4kWdNQgvVVocJYypF5XmC WNImUoEjJXofHXw78e+IvBHxu+CXjLwLr174y8WeNLnV/hv4ktNOuHtY98FuulXYvkBjtWspIF3o 7o6rb5CuJF3gH19/bmi/2l/Y39r2v2zbu+y/aF8zGM525zjHtVrcMbs18sWmifEvR/2yLHUPDFlq 2uaHN4mefxTpniPwjPHHo10NHkg/tfS9T2JG8ciiO3e23THdLJt2c7fqSM5hyKAPmD/gp5+0vefC D4Z2/wAMvB9+0OueLI5I5LiFiHtLEECRwQRhnP7sH08zGCAa+Jf2U0t7fx3rWvNp9rPc6R4H1m/0 /wC2Wcc8cVxFZuY5PLkVkYqeRkEZA44Fbn/BQT4kS/Ej9q3xPKt3JLa6JOukWayH/VrbjbIo9vOM x+pJ74GH+y+xXX/Fzj+H4ba+ef8AryegCbSf2pv2jNdvE0vQrnS7y6kz5dva+BNLkkbAycKtqSTj noa1rn9rzxrbWz2l35kOoxaWEkjuPC2iBE1BZTvLL9g3eTs48vO8MMlyOK7bwb8BI/2fr/xRrWkf EGbUbj/hDdds5Jl082Zs7u2j06R/LYSuXQpdjD/IflbIGKsfG8/AXXZPiNfv4Zt9U1S81rxDdR+J LWzu5zBIk1ubJEnizCiP/pGc5BA+YrkZAIfEqfD/AOAnxR1LxbaeDNFMWq/GbUdJuLzUNNjubfRt LtJbd3jjicMkbyLcN823cqRAJiqPx8+F/hH4meDYviT4c8ZfD9dS/wCE1bSI9R0GX7DZXFnNFNNC brfHFFFNEIdpZR8yyDcSVBaa+8R2mpfFD4q+Kda8beFZPh/cePJAIvEWlz6naXd5O9w8MtutoRJG 3kxSnzVdQVIHIIrn/iM/wo+Jttp2gv8AtI+GdJ0rTN39m6B4d8CanDbRySYDuE2s0kjbVG5mZzgD OMCgDz7xb8APGXhTwvdeMofEfhvWtPsJIl1CTw74itr5rRZH2RvIsbFlVmwobGMkA461nfBn4t+K fgX8StL+Jng6XF1p026SFmIjuYTxJA+Odjjg4HuOQK9a8P8AwR/sjwb4w+Hngb4q2d9da5Z/Z7qz 1Twbqlk/m2JF+1uk0qLHHNsiyUcE7cfdyGr5/oA/av4bePdC+J/gTSPiB4YufMsdXsI7q3Y9QGHK n0ZTlSOxGK3a+Tv+CR3xHufE3wN1bwBf3rSSeGtaP2WM/wDLK2uF8xV+nmrOfxr6xoAKKKKACiii gAooooAKKKKACiiigArx/wDaQ/aQ8bfA7xr4F8H+G/hjYa83jzxF/YlhNeeJGsRb3XkTTguBazZj 2Qt8wJbJA2nrXsFfMf7emqalbfF74F6jYeA/F2rW/hz4kf2xrlx4d8G6jqcdlZiwu4PMdrSCQA+Z Kg2cuQc7cc0Ad1a/tUah4V+N2hfAT47fDpvC2p+LIZn8I6xZast/peqywgGW0ExjikiuArBgjwqr DO1yflr1aLxBoM93NYQ63ZvPbruuIVuVLxr6sM5A+tfN/wAXvDvjr9sP40fCyfwj4N1bRfAvw98W r4t1fxB4n0OfTbq+v4IXjtbK2trpY7gKfOkaWSSNUwFCljkV5f8ACX4dweKvAA8P/G34N/FxfG3g vwDr2i+LtQjtZIYbyO6tZFu5LGeOIrqcl3IiTRxqZSsjiRsOuHAPt5fFHhltPk1ZfEVibWJtslyL xPLQ8cFs4B5H51xvxs+OulfCrQtBvrBrK9uvFHiK00bQ1mvPLt5JpyT5jSKrYRI0kfIBztC8bga+ b/D+sfFnwtothN8Tvhrq3jK1tvi7Yz6b8RbH4e38Oom3bRXjOoXOkxKJWuYwq2HneUIFaYSmPMJV 8vwzYeK9N+Dvwp8Iat8KvHBvfDP7SGpXGpwt4LvJfsti2o6rKlyTDCU+z+Vd2xEyZiO4hSQjhAD6 p+DvjX4w+JBqcfxl8D+HfD9xZyKlra6L4oOou67pFMsmYIhErhFkQfM218NtZSB2Ntr2iXlpJf2m s2ssEJYTTR3CsiFfvAkHAx3z0r4u+Ivgj4h638Rv2io/hn8JdcaLUtY8I38tjN4cns7fxVZWLxNq 1pbzzxxwzvLCskJ+YiTeQCVJYaPxe8D2/wAQ/H/jr40eG/Bnj7TfB+veDvDem6p/wj/hq7s9WuNZ h1lJYdQjsZIBPK1jA0byM0LK6Bofn8qRFAPsKy1XS9Sthe6dqVvcQnOJoZlZTjryDim2+taPd3c2 n2mrWstxb48+GO4VnjycDcAcjkHrXj/7Ks3xdv8A4MatafEhbIaxHrV7BY+IrPw5No41yPamzUXs ZQHtZGcsrLja7R+an7uRCfLf2HfCzXGq+EZPH/wg+Iek/ETwH4Pbw94q1bxFamDT2/1YmWG4VPL1 NJbiIzRsry7AXcujP+8APridzHHu3EAA5Ixxx71+d/7W3x0uvjd8UbiWxvmfQ9Jka20eONsxuoPz Tj3kIzn+6FHqT9qftTeM7nwB8BPEniWxm8u4Wx+z27qfmWSZhCGX3G/P4V+ba9KAJtO03UNXvYtK 0iwmurq4kCQW9vGXklY9FVQCSfYCvqT4MaV4e+BPx8XTPE3wgXS7G10fzbPxhdTTRssJVQbi4Esn lIXJ2lVCtG7BMNyT4X+zhqOr6R8cPD2q6JdpbzW94ZJppI9yrbrG7Tcd/wB0JO45I6V9A/GD9rH4 Q/GH4BW83i74a6xJFqur/Y47SO6jV4ZUQM88TjO4xiRBhkXcXxjGTQBD+2Teaf4Y8d2UXhv43Hwj Z3WnCe80rQluFlupXkc/aCtuFRyw/ikkHK8V5No3ifxRq0n2fwd+0nJqE33V0Xxkjxx3J9As7T2r H08x159OtdJqWgah4buf+Fd+KbXQdT1Vf+Jf4O8XatbrcQP5bFTp1zljHFMjHC+aHMZ+TlHVhhfE nwD4k8CXdr4Z/aH+Gml6bDqisln4k8P6fDE0D8Dey2oWOZFzlomUOV+6VP3gDE1DwhpvxCvb3QYf Cq+F/G1ip83Q41KW2qMoywiRifInwdwQZSQD5dpwredkEHa/DDgjoQf6V6Xqdj4lutA1bw9r12q+ JPhyY7jS9QjkzI+nrMkflK38QjeSKWJj0RnA42gYXxlWx1TXrHx/p9ssS+J9Lj1GeONNqLcl5Irk KvYGeGVgOwcetAHuH/BPD453WneIJPgfr18zWl8rT6KZGz5Uy/NJEPQMoLegKnu1fYwIPQ1+Vvg/ xLfeDfFmmeLNMdluNNvormLDfxI4b+mPxr9SNH1G01fTLfV7B90F1bpNC395GUMp/I0AWqKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AK+Pf2x/Dfwb174v6t8SfD/x8ufhL8XPAuhwppHihLjFvrNkyPMllcW8o8q+TzHdTCuZVLRsOGCn 7Cpht4SNpT360AfBviL4o+JviDd2/hX9sDxBr/wxv/GHw18OXXhGy0Hw9deda6liR76KwZUke2vo 7gwjymJkZTEhDhWqx4v+JOo+D/iD8fte0bUL6S1s/iT4Mn8XtYQtPeRaPHpWnQ3lx5UBJlSJ42E6 LlfLSdCDkrX3Sba3HzGIfL0P+foK5XXfjT8CPDOrSaF4l+LfhXT761bbNZ33iC2hlhOBwUZwVOMd RQB8hwfF74cfCDxT4R8fX/xJ1zWvgP4g8Va/caxrN9pjnSdN1aW2tPscKRhPMXTy39oBVKtCly3O 3ZEQ/wCN/in4Y+FfBl98M/AOp+KmmX4H61f+D7rxZNeTtIry3DQmwiZRMb1WRWEpYNBbrCQGDMV+ sfHvgz4TftOfCHUfBGp6hZ694V8SQNb3zaXeRyxXUYfa6rKm4AhlI3IQysuVKsAR1dlZ6ZaWsdlA iKscaqi56KowO+eAMZ68UAfKnh74l+G/H/jSCH9onVpV8G+IPg/pcng/WL64mtbS5vN9x/a7eblN l7j7E8bAh/KQvC2DKT2nwyu/2m9J/wCCc8d3rSX1x8VLf4c3jact4N13LfrbymyEoIOZziAPuBLS bs5JNe+JFZqdiHlTnG4nHeqN94r8G6Xr9h4W1LxNp9vqmqCQ6Xp1xfItxdiNdzmKMnc+1eWKg4HJ oA+JdK8a+FPEvxX+Ffir9m+Sa+8WH4H+LLGdry3mkuodbWLSGhi1HepZLgyrIZGmIZiCzMQQT3/7 DXib4afEXxxa/EDwH8S/Fd1qq+ArbTfGPhPUtPmt49Mu45kKm/8ANG6TUQ7XEZl3MZESUsXCoa+q Qlnuyu3PXrTjFb5zjbzng4oA/NP/AIOoXf8A4d9+FY8/KfitYlvfGn6hivwDHTgV/R5/wcc/BfUf i7/wTH8Qa1pAd7jwP4g0/wAQiBFJMsau1rKPosd20h9o6/nDHTpQAHkYxXX+C/hd4f8AiiPDXgb4 b6trV94+1/xB9ibQbnTYIdPSFyFjkF41zk8k798UaomW3nFc5ovhzX/Epul8P6PdXn2G38++a2t2 kW2iMiR+bIQPkTfLGu5sDMijOSK9+/Zt+GHin4H/ALTHxb+FXjyK1j8ReCfhl8QNNvvsc3mRxXkG j31rMY3H3l5kAbuD+QAePfjN+ydp/gHw7+zn4u8DeKPiZb+BZryPTfH+h+Lo9BYiWbzZrK1ilsbo Saf9oaaaN5185jMzKLcO0Ri+LJ+Gv7V/w1tvEvwD0C88J6h8L/CItZvhnd3Rvo5NJjkeW41Gyu9i tNIJriW4uYpxuQSmVHaKNkh+dg8Iwwdd23GSa9W/YdxdftaeCdHN1th1rVG0fUFRv9bZ3kMlrcRH /ZeGaVCOhDmgDifHNj8M7K400/DHxLrepRTaTDJqza3okViYL4g+bFEI7mfzYRxtkYozZOUWsOtz wn8MfHHjfQNQ8R+E9H+3Q6deWVpLbW43XEk127rAkcagmRmZCMAZ5HcisOgBsn3DxX9hnwhubu9+ FHhm9v1K3E3h+yknDdQ5gQt+tfyMfBv4cal8Zvi/4V+D+hI0l94o8SWOk2scYJbzLidIh0/3s+gA yeAa/sC0y1t7GwhsbSPZFBGscSD+FQMAflQBPRRRQAUUUUAFFFFABRRRQAUUUUAFHviiigAwCckU mxc52j8qWigA2j+7XLfFT4z/AAx+COiweIvin4nj0fT7i8jtYr24t5Gi86RgkcZZFIVmYhVBwWJw Mmupr53/AOCnUkS/s3aeGcAn4meERjPXOu2XFAHqXhH9of4KeOfFUngTwx4+sZtejtftLaHNut73 yf8AnoIJQshTJGWCkAkZIyK7QBHAO0e3HSvlX/gqBbpqtp8J9F+Gctu3xSPxU0u48DeSVa6t4kl/ 0+dhy/2NYMic42cxh88A6Mnxv+Jlv8dPCsOh/FG61fQ9c+MWqeF9Qt10u0hsYILfSNSnNrFlTcSS wXFkBJcF1UtvRVYMAgB7348+J/gL4ZHSf+E61+LTxrmtW2kaS0sbH7RfXEgjhgG0H5nY4GeB3Irf wobOOa+KvFfxO8ZftAfCjw18WfEfjua2ay/aa0nSZvCVrDa/ZrWKz8Vx2sEMhMZmE5jSG4Y7xlnI ChWCjq/Hf7Qnxu1j4U/Gn4w+C/G/9k6p8KfGOo2Wk+FptPgkttSt7CC3l+zThozM0t4JG8to3QqZ 4NoOD5gB9U/I3BTr1yKVl3Lt9a+cn+OHxW8O/ta6P4J+Is2u6Z4b8S63JB4Tu9PhsrzSr5l0t3l0 u7KxfaLG7SZJJ0feyTLC6ggfIPowHKZzQB+Mfx2Lt8cfGcsp+aTxXqLv9TdSE/rVr9nW9161+Ofh W18O+IrvS59Q1y2sZLyzKb1inkEUgw6srAq5+VlKnuDW5+2n4Im+H/7U3jbQ5W3LNrUl/E23A2XI FwAPYeZtz7VX/ZG8Lx+Kv2h/C8UmtxWP9n6lHqQ8yFpGuPszCYwRqvLSOEKqo5LEAc8UAe2WPxB+ L3im61h/it8T18QeE9P0vVtR1bw7H4fFnLepbXMVtFbvcR2se4TTtb7/ACXcFEZWxwtYHjVv2jdP 8UaTcQ/tQ3mmi+1AWlnYeH9F13T7PS1EbuAlutmi7B5e3aiuxzuYMA7DsbrwZdeGkmlg0LxRrVnd LqFlq2n2fg3X4bq8sb648wiL7SrW0EkDiOZSix7mhAY5YGuX8S2/iTWNY0VrLxZ4MvLXw5qPmSah 4g+Jeq6feSsqFCJrS6vRNaSZO4iBQQy4UleCAZ9/4dn/AGgdC8N6UZrfS5NY+KEOheNptN08QRX1 zAj+TqaQsi+U5gnuFkjKqCUUlQS2OV8Tfsnare33ijW/hbrYbQ/D/hfT9eQ69MEu5IrnTze+Quxd ryqiTZPyqfLzwTx6ddeC49K8DeCU+AfxZ06TW7/UNV161tJLG48zWtQWRrSdLf7UCMRRKVijlYSz Es3DEZb4S0j4oan4f0ceEP2hdSurHQ5hHbTWfwh1CbzGihkthDcSLbH7QEiklh2SFsKzLQAz4efB 3TfBqfD/AOIVj4m1e8vta0TV5fEEF/ch4VuJtAkuoZEAAIJilAO4sTgV8pV9oeG/B3jbR9V1Lxr4 8+KF3NpdhYajqV1b3fw4vNKt0kGkyWUSpLLDHHEqx+XGkY4OFABNfF9AH21/wRleUaz8Q4tvyNb6 WfxBuf8AE193V8a/8EdfBM2m/D3xh8QZlYLq2rW9lDu6FbaNmLD8bgj/AIDX2VQAUUUUAFFFFABR RRQAVm+LfF/hfwH4euvFvjTX7TS9LsYTLeahfXCxQwIP4mZiABz+J46kVpV80f8ABQk6hB4p+Beq eIfNPgu1+MmnP4r2giCNvKlFjJcn7ohW8MP3/lEhiPUCgD2jwj8dvhh428QL4R0XX5otWksfttvp Wq6bcWFzc22QDPFHcpG0sYLAF0DKCQCRkV1quGHQj618z/t/pdz+PfgHbfD/AMw+L/8AhdFhJY/Y f+PhNISCf+1SdvzfZ/s5Cyj7pJjB52iuL1j4w/tNaJ8L/G3xs07453+qXPgj40XGgWfhNtF0/wAj V7E6rb2gtJyluJRP5c/7t4njG7ZuV8lmAPs0sByaRmjUb9v6V8l+M/2lfjfqHwH8fftF+BvE0q6r 4F+I17pFn4HhsoHttUt7W/S1Fk2YmnFzdRsskbq42vNEAGTKv1ngHVvjP8Tv2h/i74f1D46a1Y6D 4H8S2tnoui6Zpunp5kNzoFrcMJJWt2kby57kvGVKkFMOZFICgH0PE8M8XmR7WVvTHNKQg/g/Svj/ AOFPxQ+Lfg79kz9l/wATwfFzVribxlrXhyx8RtqdvZzG9gu9OkkkhZjDvB8yMESBxJl23O3GIb74 9/tBS6J4kt7L433yzaR+1Vp3g21vW0XTmY6PcSaaj2jAW6q203UuJABKO7HGKAPrPxj4w8O+BdBf xH4nnkjs1nggZobOSdt80yQxrsjVmOXkUZxgA5OACRS+JnxW+Hvwc8HXHxA+JfiOHSdHtZES4vp0 ZljZ3CICFBOWZlUcckivm3x58Yfjr4A+Fnxa05fjHe3+o/D/AOL2g6XpviC902wW6m02+j0SeS3m SO3WElV1OdBIiI+1UwdwJPKftU/Ezxf8cP2bv2glvPG9xo8HgLxnHoNv4dtba38uSzi+wSebceZE 0pM7TSsjKyKFWPH3WZgD7cDxkZ2fhtrn/il8VPh78F/BN58Rvif4gh0nRdPVTd380bMse5gq8KC3 LEDgd68I+N/xp+JXhHx7q154K+J11dW+i/EXwZod7o0Gl2sNlp8Oo3umw3FrM8qvNcXEsN75ytGU SJWj53KyycD+1f8AE7xb8bv2bP2lLa7+IE2hx+AdSm0W38P2sFsVltUtLSfzrnzIzJm4M0mxldQi BCoLKxYA+1lMRG5F7+lChM7go9K+bfEnxX+NnjP4n/EHQPh58T9B8P8A/Ct/F2kxSWWqXCLFcafL Z2V1IbmE2skricz3UMcsc0WJIFABKSK9v4ZfG34p2v7VV58Jfi7d6zZx6hHrU3hFobezuNF1q0jv Y/KaOeONZ7a8tYAYZLeUkM0hfLHaAAaP/BRa6uLf9nlY4R8s2vWqyeyhZGH/AI8q18JKCq7SenFf oj+2n4YbxT+zZ4kt4rcyTWcMd7FgE7RFKruf+/Yf86/O/kHBXHONvpQB1vwMje6+JlrpsTbZL7Td QtIDn/lrLYzxx4997KB7kVpafrcNp8KvB/iGCD7RH4f8ZXb38arkHzEs5Ygc/wB8Qyqvr5Z9s8Rp GrX+gava6/pNw0N3Y3CT2sy9UkRgyn8wK9Iv7rRNO+1+NoNIa48C+MyqatYafjdpN6CXCLnG14nL GLdgSRErxlwoB2/wo1X4Y+Gvib46+FPx2nj/ALD8WzJeaXqdyxEJUu8kU6uOE3xyhhJ2KlW9K2/2 s/iN8Pda+E/h39n34a+LZfGmsLf24jvLeVbqRwiuq5kQbXkcyBQBnjJPqfMrPw74zuPDlvotl4Rs viZ4YgLHTbjS1kkuLBSclP3RE1qSSSY5VZNxJAOdxsaNoPxG0pZIvBPwgHgeOeLZc+JvEU0kUkMe MEJcXIVY8qSMRIJDnHPSgBmrtAnj/wAbaxBfx3Fnofg1dNvLhGys84trew4PfM+ZPcIT0xnkfHzi 38CeCdLniZbj+x7m4YN1SN72faD9cbh7MD0Irc0zRNI8SWB+HXgi+8vw1prrqPjDxZcQGNZ8AhGU HkIoYxwxHLyO5JA3YXk/iN4uXxt4tn1iC0a3tY447bS7Z2DG3tIUEcUeRwSEC5P8RBPJ5oAwzyMV +n3wXZm+D/hVnHP/AAjtkf8AyAlfmPp2nXmsahb6Rp8e+4uplhgT+87HCj8zX6neE9Dh8L+GdP8A DNtKXj0+xito2buqIFH6CgDQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooARlDrtPevkz4hL4+g/4Knz/8K48B+Hdeuj8A7bz7 fxDr0mnRxx/21N86vHZ3RZs4G0ooAPXtX1lKnmRsn95cV5v4g/ZN+Dfif4qXHxs1O18RReKLrSV0 ufVtN8c6vZsbJZTKsASC6RETzCX2hQN2T1JoA8t+Lnxm8e/ss+CPDs8XgDSfD/h6fT9SuPHmu6Ho s2r2PhrWpWhnSSe3gkhnNjJJNdPJMibgdhIjDlq1/A/jX4maj+1H8Wfsnj6zvNL0z4a+FtR0Wxax aS1hknOssWj2yqSHMQLMSWZdgBUIK7W6/ZH+EN5Yrp88fiEr5N7BczHxtqrT3kN4U+0pPM1yZJww jRV3sTGqKqFQABtad8Afh1pHxCk+KGkaVNZ6pP4ft9FuIrXUp47SezgMxhjktlcQyGMzzBGZNyiQ gHFAHiWlftreO9P8P/Czxv440nR30nxh8BdV8d+JrbStOlFxDdWNrptw0VsWnYeWy3kqhHVnyi4f rWJf+KvGPjb9oP8AZf8AjH4zvNFZde0PXdSa20jT2P2fztE87ykmaRjMiq2PuqWYbhgHavtHgv8A Y1+Bfw/1jw/rfhrQdSWXwtp95p/h+O88TahcxWNldCETWiRTTun2fbbwqkJUxoIxtUHmk8DfsYfA T4b6joWqeEPDGoQN4XkmbwxaT+J9QntdHWaPy5IraCScxxRFeBGF2r2AwBQBwWi/tYfE2++H3wh+ Ocmn6HeeHfij4isNPm0m0tJRdaZDqKyNayCbziryQnYlwnl4J3lSmwht79nr9pHxN8Rfixq3wq+J NvD4f8S6XYz3Vx4TutFmR5bUXCRw6hZXYleG9tGVwrOoV0cjcqBgtdl4R/Zd+DfgfULW+8N+FTbx 2GqXGpaZpv8AaFxJY2F7Pv8AOuLe2eQxW7t5svMartMrlcF3LWvAP7PHw3+Guq2ut+GLC++0WNjJ Zaa1/rl1eCxtZJI3kgg+0SP5UbNDFlVwMRoBhUUAA2vir8OvCfxe+HOufCvx3piXmi+JNJudM1W0 k6TW88TROvtlWPI5HUc1/KB+2T+y748/Yw/aX8Vfs4fEG3c3Xh/UmSxvjDsXUbJvmt7tBn7skZVs AnaSVPKsB/W/Xw//AMFnf+CSnh//AIKL/CmPxj4Ch07Tfip4Vt2/4RzV7hRGupW4Yyf2dcSYzs3l mjcn91I7EYEj5APwf/Yp8V+B9Hf4peB/Gnj/AEfwzJ40+GMmj6LqmvR3DWK3qaxpV8qztBFI0YaK zmAOwjdsBI3V6h+0X+1J4d+HnxU179pD4XWPwz1Px94+v9VuNe1Dw3q15rdhH9tYtexzadq1iLd4 Z1mlQRkSYXP90Z+XviT8MfiD8F/HeqfCz4q+D9Q0HxBol0bfVNJ1K2MU1vIMYBU9QVIYMMqysGUl SCcSgD2r/hvL4u/9Et+Cf/iPfhH/AOVtXNA/4KHfGnw3rdrr1h8PPhLazWlwsi3GkfA/wvY3SYPJ iuIdOWSB8ZxIhDKeQQRXhNFAH2l8BfEH7O/hmbwZr3hvx98K/AWm3HjTw54k8VQ3XizXNQ1OO10+ 4NwbUQ/YDGJfmJO1nyVVdwByPi2ivoH/AIJ4f8E4fjr/AMFHfi7F4A+GOny6d4fspEfxT40urJpL LSYMjI6hZp2GdkAYF+uVQM6gH1z/AMGy/wCw3qXxd/abvv2xvFumSL4b+HKyW+iyOo2XutTRbdoz 94QwOZD0w8kBB+8K/fIDAxXBfs0fs7fDH9lT4H+HfgL8HNC/s/w/4dsVgtY5G3STMSWknlb+OWRy zseMljwBgDvaACiiigAooooAKKKKACiiigAooooAKKKKACiiigArB8e/Cz4a/FOyh0z4m/D7Q/EV rbTLNb22vaRDeRxSggiRVlVgrAjhhyDW9RQBzvh34SfDHwhqr634S+H+iaXeSQeTJd6bpMMErR/3 C6KG298ZxmsW4/Zh/Z6u9VuNdu/gp4VmvLrW/wC2Li7m0G3aV9Qxj7VuK583HV85OT6nPeUUAcTf fs3/AAD1TxBc+KtU+DPhW61G+uo7q+vLjw/bvJc3CMGjmkYpl5FIBVzlhgYPAxev/gz8LdU8TN4z 1DwDo82rSSQPLqUmnRmaRoSDCWfGWMZHyFslP4cV1FFAHO23wm+HFp4pbxvbeCdKj1h5zPJqa6fG J3mMXlGYvjJkMX7sv94p8uccV0AQKmwdKdRQB8U/8Fbv2frzV9F0v9oXw7YmR9LjXT9f8qLlbcsx hmbnorsynrxIvYV8HRSSQyJPBIyPGwZGU4KkdxX7c+IfD2leKdHuvD+vafDdWN7bvBd2twm5JY2B DKR3BBr8uf20P2KfFP7MviibxBoVrcX/AILvbg/2bqX32tC3S3nPZhwFc4D/AFyAAeTn4n/EwjH/ AAsTXB/u6tN/8VWbqGveIdWvRqWqeItQubhTlbi4vHkkX6MxJ/WqoORkUUAd78M/jOuhWt54N+Jc F9rHh3VLv7ZN5M4+26dfADbf2kjfcmBA3AkLIvDc4Is/Gf4833jLx02t/DvXde06z+w28V1NNdeR PqNykYSS8mSJiqyykbmwSTgZJPNec0UAaWseNPGfiGz/ALO13xfqd5BuDeTd30kq5HQ4YkZ/Diof DnhzXvGHiGx8J+FtNkvNS1K6S3sbWMfNLK5wqjkdz1JAAzkiqttbXN/dR2FlbSTTTOqRQwxl3dic ABRkkk9Bjk8Cv0S/4J4/sMXfwehX4yfFzS1j8T3VvjStNk5/sqFlwS3bzmHHqikjOWagD6A/Z6+E Vh8C/g54f+F9jMsn9l2IW5mVcebcOS8r/QyMxHoMDtXaUAYGKKACiiigAooooAKKKKACqPiPw3oP i7Rbjw54n0e11DT7yJoruyvbdZYZkPVWRwVYH0INXqKAOT8KfBb4Y/D3UJNf8HeCNPtdQkh8k3iw hphDkHyVkbLLHkAiMEICBgCuB/Z5/Zgi+HGq+KPEfxA0bwzqWpa3461DxJp97Z2bM1r9qk3hCZV5 kjA2LMMHacAKMg+1UUAc1L8H/hlN4mbxpL4E0htXkmhmm1NtOjM8ssQAikd8Zd0AAVjkqM7SM1Z0 H4Z/D7wrrWqeJvC/gjR9N1PXJhLrWpWOlxQ3F/IFCiSaRFDSsAAMsScADpW5RQBxMf7N3wFi8Ht8 PE+Dvhn/AIR+S+W9fQm0KBrM3KvvWbyim3eG5DAAggelB/Zv/Z/a1axk+CXhF7dtUi1JoH8N2xQ3 sQAjutpTHnIoVVk+8oVQCAox21FAHH6p+z58Cdbg1S11j4MeE7qHXNQivtchufDdrIuo3UWPKnnD IfNkTHyu2WHY1X8R/s1/APxhrVx4j8W/Bzwvql9d26QXl1qGg280lzCn3I5GZCZEXsrZA7cV3FFA HC63+zN+z74k1LUNX8QfBfwvfXWrR2qanPeaDBI1yttt+zhiynPl7F2+gRQOFAEmvfs2/AHxTrEu v+J/gz4X1G8nsUsri5vtBt5XntkXakEhZCXjUfdVshecYya7aigDi9V/Z0+BGueO9L+KGrfB7wzc eItEhSLR9cm0OBrqzRPuLHJt3IF/hwRtPTFaOjfCb4deHNduPE3h/wAGaXY6hczXEst7a2KRyGSe QSTtuA4MrgNIRy5ALZPNdHRQBX1SxttSsZdPvIFkhnjaOaNhw6kYI/HpX5ofHL4Van8FvibqHgPU AzRQymTT7h/+W9s3Mb+mcZB9CpFfpvXlf7Uv7OOn/H7wYYbaWK11zT1Z9HvWBxk43QvjnY2Ov8Jw cHBBAPzvrW8F+NvEHgW7km0aeOS3uY/LvtOuoRJbXcf9ySM8MPQ8MvVSpwah8VeEvEngPX7jwp4t 0eax1C1k23FvMuCPQ+6nqGHByMZzWfQB2aa58F9VuG1STTPEnhW73fKuizR3kI4wSgmaORAeuDI5 64IHFOvr74JeZ9s1HW/GXiKaPlYbxYbJG9mfzLhsewCk9iOtcVRQB0Hi/wCI2p+KLGHw7YaZa6No trJvttF01WWLfjHmSMxLzSf7chJ7DA4rnwMDAorrvgv8EvG/x18Up4b8H2TLDGynUNRljPk2cZJ+ Z/UnBwvVsY6c0Aei/sF/Bd/iB8Wo/HeqWO7S/DbLOWdCVku/+WSjtlT+8742rn7wr7wVQtc18KPh X4Z+D3gmx8D+Erfbb2q5lmcDzLiQ/elcgcsT+QAHaumoAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAoZQw2sKKKAPnb9ur/gmH+yf/AMFBfDZ0/wCOXgHytatYTHo/jDRGW31Sxzz8su0rKgOf3Uqu nzMQAxDD8kv2m/8Ag12/bI+HFxe6z+zT8QPD/wARtLU/6Hpt3Muk6qR6bZmNsxHTcZlz12jO0fvt RQB/Lvef8ET/APgqhp141pc/sa+JWZWIzBdWkq/gyTEH65Nangz/AIISf8FWfGutw6TbfsnX2nxz SBJb3XNcsLWC3Un77Fp95A6kKrNjopPX+nMqDS4wMAUAfjj+yL/wauW+i63D4p/bX+Nttq8EEiuP CfgXzUhuMNnbLezIkm0j5SqRK2DxIDzX6xfBn4H/AAk/Z7+Hmn/Cf4LfD7TfDfh7S4Qlnpul2wjQ cAF2PWSRsAtIxLMeWJPNdZRQAABRgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAVU1vRNJ8Q6VNomuaXb3lndRmO5tbqFZI5VI5DKwIYexBq3RQB8c/Hb/AIJL +CvFc8+vfAvxIfDtzI27+x9R3TWZOf4H5kiHfnePQCvm3xb/AME4P2v/AAnqD2UXwz/taFeEvtJ1 KCSOT3AZlkH4oPpX6sUEZGDQB+SI/YS/a6dgifA7Vuf7zxD/ANnrvvhj/wAEpv2lPGM6zeOJdL8K 2fmASG8uluLjb/eSOEsp+juhr9MMd6KAPE/2bf2Evgp+zkV1vS9Om1rxAFx/bmsKjSR5GD5KD5Yv qMvgkFiOK9rCqpyBS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUMoYbWFFFAHE/GH4BfDX416Sum+NNBDyxqRa6hbnZcW+R/C/p/skFSeSM818v/EX/AIJvfEvR rma9+G/iOz1m0B3RWd232e4wf4cnKNj+8WTPpX2tRQB+cc37IH7S1tMYpvhNqBx18uaF1/NXwam0 39jL9pfVblbeH4X3UO5sNJc3UEaqPU7nH6A1+i2BnOKCM8GgD5F+F/8AwTW1FrpdR+L3jGNYhtb+ zdEO7PPRpXAx6Hap68Eda+ovA/gHwf8ADnw/D4Z8E+HrfTbKHlYYF6t3ZiclmPdiST61sUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAf//Z ------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Estudos de caso como metodol= ogia de pesquisa na Engenharia de Produção: Uma revisão sistemática

Fernando Bittanti Mantovaneli; Alexandre Magno de Andrade; Mario Vinicio Garcia; George Lucas Moraes Pezzott; Bruno Samways dos Santos; Syntia Lemos Cotrim; Danilo Hisano Barbosa=

ISSN 2237-4558    Navus    Florianópolis    SC  •<= /span>  v. 16 • p. 01-12 • jan./dez. 2025

12

 

 

 

 

                         =                                                                    <= span style=3D'color:#A6A6A6;mso-themecolor:background1;mso-themeshade:166'>       

 

ISSN 2237-4558 

 

 

------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967_arquivos/image002.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCagSmXM9wB /v///wAAAAAAAAAAXwAxADgAMgAwADkAMAAyADAAOQA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA4UsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7JhlVFzNlrAhECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb5iTN++d 78pas+6dmT+zvrt7Peecrqpd+5TtXXWGh3CXcipAywh/JyIISAh3948QUP4qDfFP/hAcBIQHf/6/ u7+//0vy/b/l/5TAAZD/HMO/8GvMUQHQAB4BoAM8BsAAwATAAsD+PQUQcAHwAPABCAAIAYgAiAFI AEgBQABkAOQAFABPACgBqACoAWgAngLQAjwDoAOgB2AAYARgAmAGYPnzPf8t/3uigmAL/JyAsZBE sAHuDghuf+8K/kshQnj4n2v+lz/Q2pQ1Ch9LbJC0YFW42OmO/5vCVd6MSdxziEjAY9t/+hRFhHcI pv+Szb8WdIQHiH/dnn9Wj+DPOxJg3wjBCkEGaL0Z0BP/quAB9hH/qOe37/tndH6V/4tffYUggaAC 9L0r0Pemf4yA479kn+jP9iP/C/Z/jRPOn89/ve7/Lf//CeLv6fA/EKT/tyf4bwh1LAgBIoqEcGRL jZA79j+p6d/y35FXCCaAz38FeL5fvscQwRK4mwIpqn/EAlMg5f1/qU8HTJ+/nk//jM2HADMK/xtv /1v+Vfv/2/J/2b6SHBIyEAvR0BDmFexkrGffX2UCoalC6PcuztjWxsnUxondxNDJ8I8LJxtw3deW f0cmSeDtAsKlKso59cVJ8MxmIpTBp5eX0coPmHqWT+sMopfXrkaPbI6MuMW/oscSDUKzXxqnCYi+ dkTIcRBb8a2jsg+PrsuRDiSjohZrD0QLKKoLuFjYc/VZcW6yLgzisuURrOS2bXE72RiY1dxXQJcl SVymPTXqEcN4k40hyQ/hHNSIkGNsRXuI0LOiC+KaYooq4ZFeolh//GkiL7JENfGOiTz95psDcbn3 Iw98oUGvvfa6iCpvtORbd9o+02oJgcTX5lVqLEk9Fq/oETzfeuNIMH2WU1SloL5cqkU6PJ1HOsTo koLA1FT4fIpw7to+R/QtLkegH83DXT/vfo7ktiMQbAj3LDNqSmB5kL5QpDTdGG8+051M8RYbm1Jk rpaRAzaPk9xxP7CTgX4kVww70usbRcyFFvbfPN8QrT9WLAhg7GWZjRH6jF12zbBA4x0fMYOdPld0 yXm2LXC0fNu5/KUMtsm71YRKdPx9IQ4Gt76br3/iKTCFdWj2cg0pCmWp2VG4nBLquOR/w/00lGDa 8mpRtCZog6/WVof+2kXik8O2jeHg265FTK9eZa3ioTdmdPr0ejOc0u5Fj12ouVmU0z6z2U3YXXxb wNaVCtcKdQloEC+ZJOz7AXq5gaI5ufsNcun2ZVmVN3ySVmS+77Yjo+3mIZo4JYbxXuMQa/CMwYcz mVgisaHVAE1cF9N3r9qZ6LIFihUInd0EwBkq7Z9qwUUZ5TdlYJOd2q9tWDYMV1xQ4wY05QU2S9cy 6RgayVACRpX8f3hQy8qkeO6TmAJfPx84a4M9PXdivZrGtzYvrSrTdS10fBAaHcTyTvwRejSEf4Hx +l4FzSj6e3QQl5YEwqerfnU8d0OiMXWWx4byiO1uG8hovONWDxwstNVS1/WdZTFrwx10EbWtexZR Vzy0sPwhpiuFeZpNG7gFtWBdkpKG4CsSuezvcm/BRJR+kq7ym0hbIwX24MzVrPAuzg03DIfmpp46 xg22N1KS/Mw96i9FfpCssnufzo5zGcnb2TzaNV92Zhl5h8dfm/49lUZO4lqW++KBFWtEQy57uLgP s2uZmOQkseVLi+aiWrTkLslj9iPzRZKa/epw83SPM4iKGeZgOQ9oF7z6gpUq9NLrq8lIiuAtJ4t+ 5+gDbSksPHWPI5r30rUyEeY6K3VJTOGVMk/7v5m6irmmOMdC+JIrO77mpcRIOu0XTt0lCRmipYWe CODNIcCfKMe++7zU4Gzssub9TrnmFP21URjJfZf0WRKJKMwS5dkKeeJY35nZojKUXthaTgvKk9TB qjfZHLmhBBo495dmZV/2jh/YlnY1+aojuO/1YU4m07mE8d6826LkojKXb/Om+K2ecBZhZ/NiZY3t xK7mSNOlEPNHviiNx3kjhO/ezzLZmku+X5j82eVYG7pPYjrumP7heUezyvx6vaTlnLbW7MRJgs3m 3FRlop2kiVBEgfPCRKQ1dNR3tybCQ6uSHm3JRnDgZhSZ5vRY1+/D6tj13QVLrqk9femR4k3j03Gr WtXZM5zcPX10oY86hIqnFGIDfbrOuNrnBuTmFMqinHDMPOjT7Fpft0xc8UgjRU5dCDjmx1uyTXs0 j7BybIIgMpp3Q/lneDrD3T9loWFsHBG1YRw07LBo1im8/LAnMT14eEJBZjx5mcUZ3obCXRq4kOWA XW+2oxmqZjrQVtw1mdNeXluQyei72irtnkPy9S+VYCFTFrlyfYw2Au3iZMmQWPCp2J659L3YB5h7 347wWf2WjAgZTRN+39YCbceuaMuuQIXx+tRmzAcuJ51if7snHTe27PeWaT8vwp9lsi9XJ7rprjn5 bPEwIUltDFK/Ce9+9Q2RvJu//TIAZKCfPNwdvaET/z4vX/R9WKImDuyCs4by89NpFel1otlHrB3e wkN6Lihy3YfTvME5aVl8hRXFZHLX9iVKoDXQCpoRaM0NxltCiesOgk6/2gWb6nkJN9F8ZDg78ZhT rOl0xJfsDzuyURWSisrzAbU5C+/lYBt7CZFwtzoKxXyp6UAnyHSpsyGx+rLJOK6X29BoF/ZU2NB6 sl5i/jPlMuH8KqnIhMzoQ68P1LQixxNxdvAKePkZ/UH54F31PGmDSzxWuTyil1f2HOPw0Huh0qzZ S4KJTzsU+1e5aaV5taIXrUp5NR6DFUit9i5Fix6oY6Jw1+DImmHlhBENuqutPselHVc8Lxc3sjVc HHcvjiy3aZA90YCW7UHJi+utSSLs0CJnf4fUsOtTyr+NaJEtXOLXQCQjffD7G8TfRLT3ho5Opg5K huamv8LazcX9vQ8dCgoKzh2qyf3TNhjqKMtLlgcdoJdQpA6il3uIHSIvdbA6qJ6zJ5OSsJVzcwgN GxswpLa3RbeO73CEzcnDnim/vw2HXIjNkJKIpWr64SDfIXE2IiBhLbVH90Z3Aw6rRwma3R89qIS+ Rv+g0zz3hRROmKOZkf1ghFegapiG1LViMz4T1Yf4AZwDcroiR1+qh7WOWFwEnPkPKLLboh/kE5LI +t5KQGipBhEFuCiLjNhS2+sq+N+xEQU9Aqdmns2mrdUmnbnM2mu2o4XbCbhu4WTaOaAKIq8wkKQM RWNglOlQsWNvKUWvqr2EiFPQI/38jECI+gIZ+e82AaGiMcqaVMDREA3xHzcBdkBn/d4EZDzSif95 cY/dzsWChJG70eVrZrGR6hFvlBvLbMZmWRrsYVVnqy8vzzHJQ+jYW2b56bOmlZXZCmgjVdZmPVZ2 sJ1r9eOhOuSkcfMJOL5ouX/37PndHburl2PWpshF/VDG8lW642Z60DuJ9JEpUhtsZuzplc13qGeG CEsssvbKTKFGOAWfGHJyA0LEbxS3EUvfoAbrse1Y679YMmoYtpKfJG1RqC4dNlySQK0Ptb0WVz4F X4aVNRWeONo1nIg21Vp0JNnWap9aS+VtR2uXSBWOracreJ7Bd8cG8DufbTolOJaW+jEs51YRmb5W SNMeVMx0uaqIc+5rquA5RboP1pShtGm50dcztSZBe2WIcArBVcK8bmdQhrHWDEG5yXvM+blPSLGa Zs5lG9f5tEtTapoHTZ3g8KH2lNEDW8hJ01YTX7g/QzCEKvsFS2s2xtTiw69D/C+KtTs5bV4glaWM MWNesyo3BHMFo7DKhjKMT8TpESlHrulg6PbAWDuz/eQOJDDxx7gxvrzKt6DMqOSTiH+khHgdYklG 08LcxvxNREWn3c6eUK2MqksZ8UsoF1jBRf/K5777XD7WIyikl5LxOrtZOco91/g6dB8p00L0USmv CH4507bDy7L0mOH4XNcSuUejNSsvbAUu0uHrhT6Lc1+nfnad7z6afW454RvCmjq12172/m5Qfa+1 4XCxAS/j4/l0rW3qE7RJqABH+uOAz3JOWLvwzrVdx41WrMMypQ7jEx/l8N1vDMKSjdLKRc3mCh5j xmWdGemTP+4kJ8ulNKKnSxO4Z9sNqjwpMYkDN5xMMjX8a1uZF2xHVi4/5cJxlHMdtZ4H8h7yVuGx CoqjWqDYhmZZibzZ6bu3Drl3649b/Il+qbpg+2QajfNAmpPIvYzAxum+v0IyVFkiBJazAm1fl94/ 6dssebpJd9HINN4/fXEBc5Iq07C90uZeU2xVj5SK174MFskd8E1f7NyIak7K3KusFdIwr8jyvpkJ yUPpbTmJ7Bc5oF4JXh6WuCVgrYm4Uo1CWrMmPUtizV1zTe3TA69N80lXFR61nCVdJDRdoGVW4L44 MaR0LOnWk3HfjIp3FD4fWWiCZc+9CIOeYHnia7XtHn5zLdm9W2889DnB2mMus/bFWTY0unXTt7d5 VaYjWsEH01G8TSOSl4jYzIvy9AELnzO9vg374TXCCe8MvjvwvKpmvCW9IoxyPxUcfzEkmH1gXHb8 ctqxKt69dHp2alE7r8NNKlTYST8iHhbqd3xwkr/iuexI15ZGsOymOLUXD+lAOlEdiV9CPNv9ZLQ/ COWVOYi9EXEKgp+kjGfW0QpgaofBCRXye88lBDLrlE+lbvbhZCurhbP3nTOm2VbdbuxgnXrytufW xpezZXPwSNNvBDzl201fa0o+vKBe7slbdRkvu8360q3nQRsHb5pkDSa+MVdviBl2ttqWmrVWMyNN F8w0HVbW7c2PlXkWJ0uX8FrEmuuFi095iImDFnGiME2viVmiXl/u5ruNE9MUufMGmRRalRt+sdjv 6EaivTTV9KNHEjtR57M3Pjtc05Przwt/9JlMEq1Td2ig3qAkBGHxpZNPGJ8+jOvtzR3hAabcX6ww pbD0cZE6cU2pyc8FBs2f+IeUWUh7NrdC5MquvidegWr0O1mEA+sF+7BjjXhuv8VRep6wY344Pfa/ nn8eTrqDqgDn8bRNpQzAxj17BsV24R5bhWe/pt+oXQaZobnYflreUfaOptoCHaD66xud9/DkpRnc PzY73dpG1Yfx5lEnptSlXo0qiJZT8BrP+nvbrRJzDwp2eO4GU1aF8hmLo1RqNlDq8Jt15aw0DOqa 8da/B9+c8U7BUInPoHhsoAn8d9hCgy80zZpYu3yYf4az8l19P/1qtofbfRppeq146J9htiFDdmL3 AlOx+NC/hrC+dXdoM5O++zWax4NTVRI4+V0dIafwrWUyLuYbOhJ0azDJTnyQmJ/A1FydUMCCk8Nb feWXth4xFrVq8YR9s4NSXxJIc6BopmAG7lyGFNxNHyzeq7BGu/QQ06S3DjWQTyarT2dq8eE68DZ4 KqT2APTMeoFLfFST7sl4eaLBjAsmfSi8ecK6rqszSjPWkhFGf4H/GY4hJnBXGTtXxlnoc+OGIa5/ j2gf4VKPHEiooU9xs/Tz6yH9TuSO5sPTEVgIOCXXhJFSmBJRdeVLh3rIV7zJXNrSgkiUND3cD8v1 sxEcBc2QjhSYFclVCW7qY8qmZSyi6S3slHmjiMMbO+pQTmi+DPjy1Ov7d/B2u6LtQLp24rbhWeAo UjKh/vCwKgeT5uVSZwSHRxZpq8XgbTXfScYI+HKnjjRM8fmPT8xmr93CTRU4vhbzrob4gd8K6V+u LUOrnydPypItt/NzL3CR5EwxcbN94BIvsDcrXrcNKAsKXf1CRm3vS3oB4fbZ6U8XSrjA1jMKIIWl HbWBn5LfTYVXdno21Sds03p63ggl4Owvsg7c9ui3n8HIDPPF2ot7wSRMnkfHqxGHvcLc4FB7kE1K hRG9mYOu2WYouJ7u5e2Lt+1sHyNoeG6/5OA2YI3b6dGb3VBDMUb0lfgwbxRxuxTqIGQdV32Blg6Z C7bQ/OeoN3UYUbd33YmIx2wYQpbVQpKzpun9EPFZtjEFVJnZfIc30be3bcrCJb6PkWRyM+hkU7VI LsfmNafZ+lyUa8K+6YYm7sfWs06pKcwFdjfvMr+POAW9JibWn5rLqv9KM7bfQBo1cZqwe+PnnzzI nOKhcPNDrpUzTH3CrozKawGnye+GLG2sFS50FnQpfmqA6QE17io5DFRM45bpD4nh5RbhGyNm0Rhw fcfBXfH8pBPSUs6bdqU0JaGOXFYzfGjy+GBooTVDsZRVCJ4AYWRbRS+ZMD5HEUs5FpAWwqNN2qb4 ifS4aGIoxMVU8pGaVUYUDVP1G6uSca3Pzsoqu4hH3+nwEnCtvda4vPqudM75rKVn9/P3HTThlj3a 4XKuOesl8+QuvDCv/sFPeQ0O4IQmRjfV409r+5pxtXVIe+F0SYcxCkb3Jwuxxrzucubx0oMMMekj k2yucpuOYpyUvSMDKc/pLqV/ZVjIizmAVxfWvPfhs/U5dVFOeIo/zd1DvXtIn8Vyy9KaO5mxUm57 8jINvos5YK2/Ta11AoeshZfi0JpXhfzUPq8V+bUO7izNxx96P2Yp1rrY6rXyfC8gmBa5I1uSoMX8 R6OuNVV3ET3elsB9uKTNHSNZk7zILGJzInj24t77JnNgen3XhiQq2p9BkhotLjNa+dLxv5CrpEyz hJPODZLxSnB4TJiptDIXbnDl59DV26dDpBorE4YPCc26VaAGGXwYWfnL+6/9b/m95VAqtRrEvDFE qfymt4IRP0VORpf6DyqSD0emrEpsPkIaikBl37GarxP5am+QREVC5WkudZb2UG13UaLROnfuHwYh Q9Bf3rRT9/JiHeVSqDN8k5jEAMrKrXfXhqBtm1zxU3rj8X5K7S6I/7tsedahnzHyZNUoR3M14ifs YROPlXNSqGNu62ULaELbzPeqmYe8qQsB34hnjsjc9yKwLxJnk1pdj3SAp6WjGGbie9ecEh8tyTPP szrDhMJw0Uz6CpXTJ72Lh/V5DxXfLRThMVbaiLewouuIoeJ8wfnHiECi7WY9lh9jVhVogl+ImQ1o 6wst1p7KchLKZEbhMMW8oSmR0ApxUsbbvoT5y4utsN3OObMH+yi0q323WecRsmuXM2PEL1QfO8w2 6C8FCWScxtK4e/E6ajKb9RM3G7zh+3Rx8hrvrAFXT0VCkMXA+5rw5DpKT0WtW+fwI54UNPm8kjgA Tdl5EfZQKi7A/rA6SceOsiV+2pyFuzqNOH+BczVJ163p3N6W4EyY2igd5iqj0TJKxb7tXjhkwjvb o1M58Jio6mf5d14bW1E229fOU3Fy64qSI2HfA8SZr2snkb4P5fsTijShHRQtVPnafAi2mHwb/6lv f1DqeUIus6RGaClBMwOj++WCQVxQ3WP9uy5VNroPCn3rX/Ut+fNaJp+6NDBMdZ/gWgpSmBcK5zLv WUo6J0ASAxPb/MiQCsa09p2ynbQofiaofqVVksmOffnMbygVuYu+XNVjtF1VIMhaWLhAVfB7v6pA tYSDFT16rGoj87x/xnQJFGvktW5AkJNVyNo4Xu9neYp96oy3ZbrQwVaOpAI36cIayPAjB6tJU3fp Qt67RKBcxpCHNH2Ng1AltBBarSqcr0p21RJEXuY15yWZkT4WMiaUr+ph2hLkZMT33nBGgXuxfo06 Q2tXEuiUUgb+ajGlhuFQEVcO5hp75ezwdhc1jRh92ZHfHXBXzHg9uE9+lcA/k0EpPhM9PTur22WJ z6iQJh2qtU34gTRJ2B65clPAbFt/3jSdN2alqh9NJf18vGQuq9lHUPTJOttqYWuY8cLN3F/U7Gee EtX11+315SVXC3CaNx2wrVaFEBRSPAVy2Ks374g2Tm1Fh0QpCnUf2aSgf53QFUeins33v5R+Yyx1 dnTwUHXXYkShifxbs4p1wcTvZc/WZ0Vxo1oesrYz6Nzs2UQY84T6yWGl3pcd9pNkZgjnK8Gd9acd 1jyT/VLBQRJbwLOwx1aBwGLURL8UhMwo+Yk+V/f7ESATn3HQo4lKWLxJJV5PRPy2/dr9Cs2eRlg8 XToKJ2v2DXuJ35Vxsi27gY1mYVIUjmizOjslhZ6R4MmtQrMOui0c9aQHs9kzgF+X+LdKrT7sQn93 Pa855LSufP7jKZo9iF6yLoJgtVAqOEunNCkK414YcjVCshEr9qchIYXoJ9QLhpF64GJln6pIQ1FF GK47yU0BBBO8YziNJa+nkUbJI8QXQioSIXNyMWaDaV/6xCrURThpy3CELzdL8WzYthJSzcfhf87l cyWDbXxugfaxlt3a1fHxWNLGTTyElW9neZATM0PUnE2nc+7oEewD/C326pDV5Q4LJzaxK7lhq+Vl J//GR4aNUTZ3C2+19jDbE+epss1Wd55rUfJIDQoXghmHa42rl/wasqjCr6a4HNQ0dsn7HFQS476l x6+fFmsqIDkcj6TtufgziaeExHNOmJuyEUsduQheNHJRWpi9ewJDYU/nW/2RZ8Oh9pahGn+eyjiL lG/RLo5IQQuFW3mIaCgVz70I7k/6FWUrp8lisj5dT2TLyVNG+PQ11yqDqPBco2WX0oeNFQ+b2EnV eYMdig1ZdvnYLseRfB8JEPv72kpboai40jB/9OO+s7Ew7iIkRyAU1o7QijozELfZI0fu7D8mMT+E WIyD48+ZBqkoJdX+8MDVKru5+RMaF8hpTCGNdkYQZqfr3nAZm+KaO0QbridLBrpmtwYbhRU2DsJ+ b6n7w52R0xJH7KAkfAzq8u0Q2wa/RWZQjQWVWsNnyO6Xxu97fMmUTkbXUlaXEVOKu5Sm2pz9TuaZ HknqdQcWfCm4tfahZNCU0mVojM2wayIkyaO+9yzRjDVF0zR54H2p0juCSgmPjV4UUJdbY29dUG2n czF7znJRjc2x/ba5QMVPsaY0w67KjycBZzHDM/LeO8p5T04OT17vbH4wVK8arUfUAjK49a+EeoT2 htIyQ8VwHsAIZqi2vBMfim75yaC35DWgC6mh+HGhxYtlY3w0H6Da+umHhK2tZ5eA6Cm28kbBL+ji oeX3TGm/IAl0oWKvHnV0uxBLKL58ctwDXdMl6hjkZCALKbVR9pURmOXkVMusl1LHdGkZElfKdVju +fErhpCnaSFwTa8aVIdIevJG1VswcG/Ja5C6ur742G1NeUGoXIjwA6Mi6wF247lDgh8koZCju9Ts 7tt3dZQnWAtt+/vdhIFt7Z+UKoZDvT1THrVwbGdPc+IXE4fuF+lV+IbqKfCg4xXkqpx6qqkyNqg4 FWzJjoTF5mYRh+qJzQUKmtS1eeX0NBJvxD4hJPZgSDpVSu6g1FmTuoB57T84u+NYPU547aW/MVnW 8FLOVv6bF9ly32OBobFDPVHiK2VP+FDy5yOol7mOwR0dpn7jwYOnIpOH7TzEde4q7VGl9S8TKkEu ons0ouL6cNJKL0ez6IWHDSUjdo1pj9MtejEwRoe15h6WCnPkaTgTWyKmY37wY/xhhOY2+bABxpnn /KLy2tusO43tOIfPCW7YneIEh5Q3+RTuZR3OaP+Y9/1hdbv8ZC9hKH1Qrz6v4XgmoYs5QgNUxnOn OXZZkTFlnQWPqTz1vmGxS9Tz8A8cHLWmj51UoC3zGqc13y74gGUIotyivcgckynLkNYTjGk6x5wW 2C6gDxCQu74wcCHdZ2k+XyMx366WUrBP1LvpWAYqWJwd07Q6HSCCOn6HLmQCCdjHS0cz3bp64703 NkvrgMZ6QXpBkkg54kljKVQl5pfKeNDsbBQzup4HMjljVS7lV7NYn4R3lvRxGHGOapTqLyV9NHjc FeOVZUdOlOV/Dc2vMMIuG5p5+KZ8+5k9sQtpWZxPRviUYRXkZzcnd9B2NgwVdLcQkXAjbrzhTGlG kYN1ejEkSkj72Fc6KhjzdLS3vB6vjMujeYAHvEulyeC677NtgtDabbKxd+HMZbjUWZZMwbu7tvgq qy6EFWml8N5wpttyMxbYrPlgrnbU+XsGdHK+QeUWCkgSFUfVPUg9esOeQT7Z/gbKxs45Jrtt8gMx ZhSL9eMpw/ygUaukjkbrBFSfJiVBasdAkhjzIuwOFmBZp5YOe1kEGVy5tYVwZJVlCbK9WmhVVvhZ 7rOHHfcBUidOhjlgiyrN56Nqz4tO/tMY3YLnNVHEpxC8vHCIZ4AmKWafhRLYnwsUGjtisE/w7gvd wY/H1wK9LCI0pqwHljDaiI8j4A3rN9FNqWhc1kdrhtGaYUkKflCtOTtSk4mVlUaqvGPenQzaydYO Ft1+GTNWPEbrinAqU9Y7V3yTCaOEDKpKopD4aun84s4dejEQ2XPulHvGDVpS5WmgLHjSPnYkcHaX q5vXKRYs5eCz0cZAn1ItPSmpGSbRp1Wlb1ublGHCSx3zjSjERGKYH6jaVR0owM/SJgPiU51Pqe5w DT6LE/M+FQPqR/kYX+06OQvUq+Jj8np66ETf9EIYkzuX/pSpipRzzcn39Yh1HB7VALKUc8KPwt9n YfEU3KFUUtzZQNXL0kDf185PVdDT2TiSCPIVgUOGgTtNweGzwI+vl7/Og0zQF1MiqeLQZ8AVe0MU /eSE/RjaGFyBsCn0aEZP0n6xT4cJmg+4Ass6HkQzemgYp5yBOQsxH6b8kMonEKGJML8trM8/GnUR ZAwc8ta9d0LXJxhnrtLSn/6h0LwZgnA1DTg+2WXVv7h7c4USQQf0xaKK4PjYczEMms/7E4TBp6Re a7VQPUYo+AlVhjXwahnOqCk/NLjwY1QuB7PA+QQt+RnB8T8mb5klZJeBhlAC6TMw8fxO33mplEV4 F3kGRHonzfVXstajkGyCFuIxXMZA29HnElqedVf4jtPf0q9pf6vqx1IVHP7MCpOuQEuZBQqVXcoA GWEiQdJvUAF1MBpQ5H41OP7bh2Nts3EQ3dkrRs9eVaDgkIi+JEOgLVod0QwVmiYugv8D58NZYsTj oVX+L2UM2Tct0lXaTH3o6y2bTxv6qJR+O3qleIyPVzDktNtO3TprMgmt5/SxNx4lTmz7syHm1k8b 9McO+9GhHs9w4wa5jqi43zdCcox8ys5AWEUDe4vh9c8/XuB/9nJFplS8+dzK/QI+O/TK5kK0nFcE LzKJubiuhZsHYeZyy+AYj0hR6sz+IcHkhUSjcm646kpqlC+jvfof3yOslfEmVcR1vIAjTsTOtMrr s9XKguDSxZ70W99aRcGepmNN3lFjeFAJtCvYSBw5yWz1ZQakq3O67qjmUEXUzN2rY5Z9YLBrPpdi cGnVRspe9PxEWKtyw7W6kDod38AtJ7DSiFsP0vI8OCmH4qd6aCqewrN0Wf4EOxHrH27VzIVFESxp EcdirOvfYlTGPz74FmP0JTg+FxjQ6oPrd/Usc5fR8lyOIEddWzKVUFBMYmAIQXAL1QRdUm3tbYfn JSo3wS+9wWvT/2DcK4Pi6ppuQ7DgBA0eEpwZIDB4gASHQYIEG4LDBBgk6OAJBCe4ayABEnSwwd0Z 3J3g7sEH+Hje99669T2/7p9d55w6p3v3qnW6d1etfpn7q+qkX15ZI9zTREZZAwJFMuf+ZLhPuWqn 2qBjmovWHJ+nnl2D76/mieWmYgPLmXN/qRrbySgr2TZn1V7jkGvaKXLahGvWNN7W5ETnnEvKUhuM HEpRP4pTEeOg6SspeaCohtZD0/HhobD9haqOkNc5hxlcXFT83BWHQ3h2J5/i+/pfyTlRjWJa6Vha Ldcpt1Vh02VSlthH1BMJf3i1SmtMV6JOir/vENc9RATFAVWZTvywMqQwa9fqtdo7KycS8AbNo2OJ CrVHHHW+E5Ebjw2PoYIofNR+NsPcrx8sWecvj8sLpUt+TpHmqTUprqI9KLBtN3a3uTRAiNxFByHN hNCSGu1Z/OWOW6W0k5K96X8Fx3w0qNiMSadellSM8qrcuLbpEAUf9rVNVVsnuzwnyLebQrTqb0y6 sH3bPdnsPy9Tuf6Opiu7P5mjtUq30vRz02wOUmi19sPn8+OvQ28DMDuk4x7y6VQaTmu//KCjl57H 9KTRJsL+kwlonmxV+ek6yQiHPgXKzxREj8aNwLn5xnuB1AOHmDQqVHcmZX8x8TkuVnliKc1BLp1C eu+XTPq07esv3oNeAXRYayzXb0XDOX7s6r+nAQPUcSNLQxy1XsVvT0wpKmDOmBavTbq+/lQsSU14 ceEwn/pijnyOQqCNrfW7nYq6rlRITcfPUw+8g4MOFcOYMHI3OmYnY64mrRQPj9QoC3N2h957kNCb ChvrWKMSKu/ncFCEx0oEtvFtNUbdFGLli6LDs+mZsBkmT5l7I509v2E6oy0HOb7rFmhAcc3PNJLk IMhx3KH3d/dKSomCK2Uen6QUUDc1W3OrSg9C0XOv0iR9+t4sXQ7J7ku+/1K0IyrlNlz4JxBpkoW5 yLdsTjDoNUU3b2XgeLu7yOfLEdcFRidl6jsb06YKeQV8sqSlum9RKN9ByfceLp7G/ZzKdWPY6DdC i42gaTJBaoy8V0Wfpt0l+HUJVe+Dy1ym3L99sihx6ecRyupPCDSlCWYS1hUz5FdyZgGJPDlQ2KKf dKccNrwyAM3y9PFYloiA8OJrc/opLUs4nHM5UrjFvbDSbEK9yg93S0hXoXJmocLF0xVRhfH7axP9 x1MpuRLzJjt83PYX7gGrmMXwsky6/h37ztZlexN8S00pGSzdCdWEDhQnHJaVBjK2go2BD4o2mQeS SiYkWG1hR19xdFPs6PLMLg3UnxxXK2bamLWaLnm2FUoA4ZcN7CqMsFbfKYnsQS8q9PQCAVrB4KjY Mc8PcHogxntZhhl3XVs5Aj4Hp4/xYKt/+BtvRf0tQIRugdUuKdmHLPnDOd/Unonb3AbxAJZ5dV17 CEGvnn2ZuLevJI2XigsuSSvydt60s9aCMNQxWMy/VNgJl3RPJ07/6r2wEtOrIcvZn4qjNXunDvC2 NvjoyROU0jpKePDIzxoO+HJqSVCvdmJ5+ih5ZJqmEoscZFvsrOcO/L5sSn66xUJbx9Xenl3D3S5D w9h39C5IQYP/9Xw9TppikRBLbcsUZZHi621Lyra9x13iVAD3Fmx5dgM+l0Ryi0W1Lj8SV3+N/Nhj Izr2aaQwTWFTT4STqa8jpsl+r0X6S/s7Jr3Y40sY3egxq8JM9LXt6+GgcamYQQXAzEBYaefM0bdX Ot5nks7vz2C9YIaKGML0tdYZeF4x5Y3uJ39+Gk69izyBdxLo7ArQ5zxtRwybewXdvHs1tg8kZw7N Ta938c87vHun85lXuE0/ZMs1fHDSrxXj4wW88U1e/uXb2mjy4q7iYxIHfpXuixJZw9Aask+sK/eH IXD0XGve+UomGqFLdR0BlluJ3/4N1zua9tfeY4XfV2hX/u1vO5nTOga2KitovspToPI0VO1kWKg4 irr5rad8FAml9T1Vo0rkTgoawNqWwfNr9WBWmaKyvjzNVuld2nwFce3tqCvNXXb+kvLswoz2QCTt i2qE9eWyLo3eTCzXzA7fqRFwA79auyEj+cuYfd6fbPyUmnNZ/Myd6FC6JvXWhAqBGB32AgZoV5VX SKXYckOg/v2gzN+ZOH/epP62QnatYYHXBLapWmuuvDxDU+qnjt+DiS4C+bzkf5oEDOgrFuIOVXtw iJ7C8tbWJ/trN/mP4h66Nw8LnEgPZuxugwPzxl8UDTXHkkZL7emGL9+XTzNvBHVZ6wmuS/JA2DbM 3+EsimUFUZPzI6rqsTdBfbKbzwkWJfp+Xrk9NaSMCTz9AYQfjcqgLVOw444wTiUrZPswDYEil32Y MI7LhW1c+B45gZDY5SNbfKOl60cvkwyGjY9+iBCsbOAqMo16IyNrXUTHqFB7r0OuPlFuCA3h1rzI VCpkmMO2rgo9H9shq2J/6HKyLVadScpkjbkZ8VBtn4BFcFLYpc4r7gPqU4MdgvA1tU+N51dC6E4F UBTpDVQAkBXMJrUwkVDFVzccpH+FbflzWZC9rAjUQD8x0S3Wx6cVlMLfH296DqOzavc67RaDyhy+ lIsj5axjYdtqAokwGiklEep3uqRFRzr7gbveto8dn+32Tjeoio1y9U1GuzSYK8b89A2R4NJnyW8w b71q2tZzKMeGHNYEE2zitZstSKgYmrQaby60a4YDahynJWDN0/7A2YV2UTDg8vCP1yipXqyvbrnW rXhsTGZ/p7C9OXRk0HNLyJ66u9rQnc5HCmlyPT932atA1Z8Jp6sfpLxtgNPZxQHguMXPJr9dSSOw Bex0VI7VEvY8X2ODPyBzlvIo9spja3/iCpRnUx56J/hL6VSvzO5zioyadEJuNBHrMgRNroFKt19n AJcDp1S9Y2LcnkwI5fa1JbtDxVFXxQBLzTqWgVNlKNu3bsn7oAad3iX03/EVpa1CRFA3gn71C2FA WA48VFMr/p1Gm9N51mhFDGkjfcvhfl333MH2mFvUbi6NFM74zotvOAGXQ5Rw2ZvzQ9zG41Kevft/ iRH+AsRj/pkb+WdG5Nm/xAjy1jBLFWtnl3/kCGAlgBJo/GFd7lMF8CgB8RVV1LGdCT4TIv4tb1D5 MZgiiv3o0R7Tf1Xw/9eik4PDfywVzxirQN7T4x6N8ef+Dv0iGR2i8jxW9IE+G7JJtWxpLSuEdLFv QWR38XOw+uFZKke2sDQcFiu3UJzudvx2/by4ZSZAu1Q8riwZ6zEGqEvQykrGWGfTokOO+nXSeV+2 98wh41+2YC/n68bmzCHR6urc4ukPmk6caWUZ9VzKCZPyDrTmsBgHqib3efsVvzG9wqmpoou0pOuZ UST0Ii6BscnhuEB0tkzAt+hkAxyukJwBdDC7/9FmbnZ/2+Dx5l5n0T/UvFr9eOu23fuNAMzj9an3 oYvwGkiQg0fi1InYvDSvI0piUV7ukLfHZC+yQbZ5aXfqpuo2IAowNd9+0YcxUcoA7YyigzvvXIkt MpKf2FpKS1uFbxwV+rqHG08IVDTk2oOfxV3zslz7oOl9gEJPnAsnitZQ67+dBbkKUOxW9P0uhqjx qfqssWtVvB9Ntbu79/tDTxnHbIz+eCXV33132/vTbbNg6uDkwy2QQbrPJfXWVXz3byrGYtjXVNuJ MlJXT3j4s1+n8duTrmonOnYGtUa9NPvlNTwWXRWTqRCkmf2AbX8xTX9x6tnShk7h9h3Thk7pmO33 yIQyyOTI5LWa6SK9+6pYxK+x3OK4d5tDKpK6RuqDBWKJl/FsQ/dsApn3xaF3VFkV+kXk2gf61uq0 Q+8Xz9N0jQR8S1YGfkNtPLiV9AdVABL3rRPmQgIEtM4c2FGi6f7d89wRtbQRM52HY0usg+/RuNqN xvVGSIg1OC46pkoFUsZq05koiZmYpgP7lDeWKBwYUWQpyQARmkasU5huq6xfUNMh0xvDkWgOCwvg HH/Z+rEKbJsdwH5VR9/XQQXmseOk4i9PJK+ddmKjhiyyAfxOXVP6OhNDvWf5eR++SMCeXgG0JI59 Ze2aWk94DDuWfAO5fvDRCeumSmOALDIDZubNqs1RTWazTrI9PQY8VOaow85pMn4EzzaJOWqFeFZz S6+Z9U9LohEukvAZQpZ+ml9PGZIjLT9Z3kgIyeRoTxT4us5fDUowBcuJ2olyPfiUSjJHVTnBPJIQ 05c+/UhqyEnBR3DuQ7SEuqYoWUpkg4Ke24lrrXYg8GJiOJGL+aUtze/WxFIbxHrRF9erXByIPWg0 0dvyNpEHG+JJAfNYarH1025N/MI2e9L4YOX1eAQwd2CaX1Evc3NoxaYrMby4krXR7jYROodYV3xA SwDBkz+LYD16YRf6hEYf7CaOpECao0hNZ7qNedf3p0en3kKaKB9Ay1GDfXIxQ+HiGN1UZUyv+GQg /xLQbA+ZY8DKsB/SWFtsN/D8EXLvMA/I8BAu/9Q3IMHC9EnMF9deOAFECNcaXPWwm3QSM5Q2KUSS DQCcP7ElhWTijSSaP7zuxPoVKCwzzQ/747f2DXPa6ZreLuXpg1OgzHS57ROI5CtHdTfiB8ySkfSU /KNZwPZpJ2AE0BTzwmLuCRIUMZIo/DWiaD3qFUwp1AQV8uWQ5+CbCeoyqXK94MHpXkZH4qwSTFRd j9gZBY6bdlqlm42VavQFT4GQf1XMUb++eJ1sgZDeEjKQO7IHp/nQsvVhANLb5k8mehaARHDYcf7z eFUDth1uhoJ+XRe2p4kyQw1bzp78w8q95PbEE1HYVToiwincixgi1P3xn1h9l6JMUdqEkKbngGrr w5tXsFqnDCTMUK95PRAbJor8DDT/uo57BwggmB4tU4S0PYAQ26oyXM45kgULfVbTpUy2WXJdwjsh a4APRNHgxt0XaxX+uC2hVhy/wv3fafao5PXk8EN6LcT477CguQPMwYn3PysP3A4WGD1E4M9H0X34 9r6d1F/s5/rbJ5PExQjiGI5ljx2wjnOAnezthWWoHk4G4+GN5NIFgRZrPNsl5a9YKntk74tiNcNH K52joah+ZjZi3Y/V2a3eT7G0ljLMSwnuECM7vp96RlQN46WDfplR4YPURmVAb3XvS6XG9+yd2FqY bS01empk72B/x6p1sZ9oqsP6HDC6nxMMGybWb34ajX2GVYHG5w3SNREcKrtQFZSYjYKleNz9ic5g rg5KT+b73KheZrVz7POrcFLbS4dpPyFVrsfx6F81hmxegYEO59EjENV/JyLtLF1M/6s4/D8X/0Cw oAd2XhEhbdrUrWmoel+Py0cS/CX+WPsxs4yqEXav1QYH4tH+dCI4EXOvdCnRIsKuN6VY1J74k/uu VuHENUvVkSRTzrBnN4AVxDi34NaNdGzIwwitNr85s5yknZ2E3reJGzLksLTR6w8zq5USm9NhuwSW vqGy6j7nBVye6iFqDVSgooSVZY2rr2ud0m99lxYv5uLtMg4+gpzEJPKnbDFyEhjNI4mLRW6BF5rw 1BWXAcU2ZjHw1kc5AUmk3XqTI8OPJ/l4Bqvnqfz0bfc9KVj9T2OwQ37EQrY95c0zm/JEfs2GmzoM TzrZ+KQHqS1iBaHBlsOHxGIMQ5yQgunSy5p8gKLPEGcH10qMEyB1onr2XBoekq3qU2g3RbOksdHM 40CdGcf9voMfcvttiv466+f169iXL+cy3qSvc1l9WQpNT9wVDTQMnP8Rr+vPSWODEfMoFm+5x8En UDqF9aw4dzm5BxCiXmXJiKvfN/PUgKAsDG4F6pn0ZrxEqEE7n3hi6VyZAdu3V64HroU4PHsSDe7i fir7x2aHNfQqPnttNYIv4Ld1LpEP+4VN9qIpGxDbmrlmULdNi0FTx0DdhkqYTY0ZsJL+8XVZW7bi DSLtq8yPxtkzKjN8k0+Z0mgWzriwSJxCU6+MdzkKE+82wQ0Dw8jkNqXinDwXiaxrDPkFVWiVdW3r Rvk68Yd5WjfeG+AaTlKGBp9B7ULJJgfMDmI5IgBX9fnIa0HkFBWJsBBl07XhfsywpNji7ls699QP wReoFOzb6kR+Jp81OD2fF5DP0lamF6YtUk1M5VKRo3jGJbgjkbTGBBD12OdyMR0uU48wEbGvtSiQ TlI9u80c5SMnWkI3Jb+ZGca6NQr2LR2zqRjR//H4awT7sPxi2Zq30kRr9bE4sfWLmMCi9rwINhTD vI4XBsBa7C9bRxlLERmhDKMI6rGgGQ9tg0mInGeMP3Fyi9t3mtP199myMlxbjBVKimQpIdKv4ATW gJea/sQ1uCshblcTacbPwpZPLBwPmbCLcuhGlTTVUtbCFDf1Cz8kdcmdR+AG4Qc4UVz7iJAk/Hx5 8GyArFWf9Rl/zKvnYY7ZLAxlpFOZa1a313EDwl8VFNleJxESPjGl1Oz8bDj+lkRkYUCRQ+ldTx4r cRQkoTvuV0DmgYNrIayW/ZjEtWkjlkZHMmQAivgq2vWloZ7QfjOaIyiDkqHmtTy3TXIuLH2FKBQv qTvJRFVJ0D25m1PhmBZ8qf/q6wKo5MKfxKl4vVpe7bSRVV8gSngc1AhLeN4Evm0qyoovame0fmRa 1x75689j8w6Sre+pWBoEuVQmMhyiMnRmFJQaWtJ0fQaCBjIKvQjoqYrfQWX2qbUDDRu7ToGpzVBI NlCm96Cy4H3A4jItcW583Bme8YjrZUQo+9ei9/EW01cabVFQQ/3b54uVZDCZ2AQF1q3Pwlcqj1rS 7oyiP/cSo0trf+l0CDpOEgasr0+UFn90hmp8H/guJkePE+RvMNEiaP4Nd2P9PBH9jDb4o3dKiid8 pV/w8J1rokQqL2oquYcLAhuMg30nGPhu8qKMy955xhvLkjBLjZk51f5LfKFuSd0TfNVg37fejeQc rMkf2TWL7eMNQQlMzIIxMkIbSkLVVCHRl3HBh8YS7Lr9Teny0JyjV7gYWk9eTS02nV32Y9kd7ALJ ++5RHQORaZ7tO7ug00x+RqE9y16x1mKca6C14ppqMVa7pMy22sL6AzPD3VeQ2tR3SkIJv8XJcPP5 c3/S5JAN9UEBHu972DzJ3Lgo8a+mLqFGQfcE1v1Yx7JfeLm0uDvoJJHLhK64B+xzKyCauR/Lf8qn qoBXFf3TB668Cj5TVcWU6+ny5vWCe+4Kt5HFDFH8WFqDzxZIV5W406jnJnCDP3sb5oXX09n6itO4 KAS8LZyiOrTaH/HIdP2h4EDG4IeGIabOy+0alxMEs0NWW67Nr87/ovPPFm/gw1ZTR5lvurXvW2WZ PJVrXXHZGyZ20XfHH5lq4qUYacgyK+qsDAnmMLWDVhqddQqew3Owk2Pg4lGir/9gV9oXNN4vH4dn k7ZZp7DupPPcjhekxnu8yriiztRC3+0aown+dzUJCKKsoXooo1WP/1VNXCzhLtb2Vg7/VJPcWA31 AD7S7qUrCtULQuEjOUXT0FgJoE0/+tEHyFNMoHWhy9Ji+VN/+w7Zm+G/B9f3C1K1L+mmhLa0Pmpx p6yKGJizsGg1JL6PND6fO6L6ofqUNKkWaRuY20Pws9cwklMXN+bqIhrHEKuHKefK9tzQvttBsu84 reoDzvCFz/iSrLIuab41/i5WLMtfKWnn+MS6d6kTiimKuXwqUxlnB8OkYwHXCNEuKPprYiVl3g8V WRXrkcv6QK8SU8eu37kCe3i3cDh1vyRhwWHC72OGYh5urarf4RkF2h01bHxsPKKOlLImZeIzIz+G 78urxJjfoXEh4IFe8uIO3jxS9E9gSI+RCOQ6pp8SCq7Qj6rHWuW/ug2wxgj/8y8gndq6pa4egMTA ++8A+H/PJBYO5u9MYZYuLpb/4Fil02s/x0faSL0lRfo67UTxRdUjZIB2MKMmpjwJhveale6XxM+x 4c+zxtW3BKV0bD69wK6KI8gOoPq4MdDgEbW2s/EbMOxgl9pQMjl98WgJ1uSrL3EiXV0s361VMqnH roltytLzlv1p9nPKpxRm0iTxjzetcywjNDrBjV31PLEvc2MK1n+Pv4cIwytiXTXSrMzJmc4ugywq umbc/NyJB6TfzCVnN5J8PngcpJGmW3yL10CKBp1Q/+kEBZqMSGATjmLxSqUQSiqeh8pyVnj4ozxa wN1eJs3tCbNNNEa918CxnGa+AlXffm6jPZzz5os1MGdClvLbjxQC0qJjLE/DyLGlnwzKtZE40uwY pWnec+WZ+E6VkSPmNrXe/uRxGdvRbck0gt7eFtFJso7+wEwnR2SM7N+UXalFl6frnsVLQ7GsQhOE v/uYfOAXVBplPlcxGktMHZhJQXiytIHtXVonLLAWajKyrWDf2XwUiOh8lkR9vRvS13CrrfySbUFO OieTPKXvUVB799z0BZTxKZyfHKHGA12ugZh8peL1Y/s+8sez++77/Rluo9B10Zwn0u1mesisHvuV d8KwQo4ULfeNR/Uql8LC3zlqhk6fkbcihWJhX1hXvWWkItp341I76rRMrQqrJBmQHskzEUB5KE+w VveJ9xP9yG46r9F/H1/LM5JTUaSPHuU+e/wfqji7eMAsnf/hiqudpb0Lj7mFs/N+hl1cThdtUPOm rp5OhkNqLI73jMPBHixWrCKlOEMJqab5mwI/woIS0LGnVt7rIEX0BPMvwS8+MfiQdnnkbQ9qbP58 7GJia2nJRWxB9aimsq5UzG9MaivrXolpVAoGre1Hq2bhMU6ZOupun2dm/r2rRFcd1ryd5u9BDkN1 g+7h60AJKViD50Xz/blvXf3dMJ1sc9/zOwfEzbbzXRLaoro+5SZxfbG42KMSXMeqGvXDU+Za1536 Sv0ktqSaKDHSdl1d3ns+6IaUNRdSPrUlTMdfQRVp2/TtVMe7qqxSUqx1xe08WBB6QcM4MKqn7rN0 098EN72kau51GuA2bzTNvG93nr/54L5OKyluhTBR96hYZEiIHTrre+K9CR6P/mtwl77pelFiDaNy aHiu6oK0s555mxpcis6zfhMFRxIViXAaCzTPwJc89EKQZ+M6n8xBv3XggT5rbO7rWIl+q8N+bWwS U6pzqn+mB+ef0A99M+4xbHSevelKt3/hd8t/QvFE2+23MPvoDv9AesGbAlZoS4Ita6syK4RnlmxG OZA7sUS24cWVMpbh2zaiED0e89/RF0nlhv24PbUqw5pKYLmM5skkUAvQaBtJbbw2VfEuOdA+J2ms a+VDMN1m6ZbNCJ5GvP+1FGT5KrhYBri0gtU1uuw6NCm47cqwG+3Ve5omBKrPAnCZNtFmCJa2lu9r Q+ZBPjXNT1mtd8S7NJNfWoKa0gEzQX52sMcaeUZ0GD5ZFPlhKjzs78GbraQRVbZi45KXXZ4xTLar YMQ7UzkuP4vM/ID4deOR8cXib7UyzoNENdmNzESXW1dWbG9MCXLh4qBPJ4gUS6+ms8zM5NeDiO0N fNNAzSMUSbrzy708ncgbzE36INgf+7jANwlap93Fh0Umyyn92dgupFmDQouxTVXOdEsidJ63Qz+6 7ize+IU/vSCA3vVWCY30fN9OLaF+sZFl4ZXsx7XQidayZ1IJEYXcxffIPj3gpmZdgvJo+/rOvNO0 XmKpdrBU8QsUZ8/tdXVwd3g8aqTiX17PCBbWzdYt3Lvi5KreZZawfUEI3N9neTc7Y/3OfmiviJNc f3ZC6Wdl/tj3+chtfY62nhP7JvDicO5turyle7G8VNswvsQH680UxPzi2bIJRyhwfw+kOTunrlGb EdX141jvmcHskvWvyvasnPIbtlXHzbZ3g01xbwWv3YUr3fIdSuqPEv8AWyH+1VgOvw0rWcsT8HUB H0LhcicJT2r8v9KRlhl2aTIf8lrWJpNEO6d8z41NDKv75KDEuvq29Z3Httqb20lNgrjx6IrxNpUJ e8B6njhfogmgVc+/DMscr0uTTSnJHtDYfHdsPxv44AFvkayBFQ5ezwHGFGvXmG0rd3DHlsq2ULLM fw5Z50/E9/DjRHV6f05HYQETKrXHv3mBLfhpSOYsccYPgVV8SkQeYGA/xT8W/t+mQ8knPle7CPqQ QH+/TC1o0/evwILiDZKls4qAN3cBnGElO0AIVLO5arwLILgGrHr1fshPgf6piMyNmEqRBGYwp11g O1ZwKB1eMB6x1uwrx2S1Tb6UD9NgRJIJb6uRf6P2/+cPsYBuY7UT4VS5Mq6jGW5pyz1n/f07ELyP oqDiadXxL8aC4CHJYKzTyum/cGC51ZHNeGIXatFXjg6LhFQ45IRsz1T4kk341iMJHm7yvC8yjrSS tD9Yp7wcbsnnqeJVUvXZ0bzhfx/VCprjSdI5ElJzsLxls2awbV/+ZWMwxOV17KFei+00f3670FY2 cy1kj9affKYqI425i+vZlV7+OrLOVU48T1dkiDYc0r4vr8WWSUDtkGzsYYFjqCS/qBz2aiRQUaHW Pej+D4KdgkjPX0i8X3MLgF++Bkn7M0mMKeQf4kO1ePa+qaI2X0bst0V0+SDeFNN706iNlyZRbYyB En0E/hLX+Oe/OCpZ9rsAmSzniuovMeVofInYO65NvkcfMW9/23JVqSxddvF8nYcR0IZyAAQ0hVq0 Mgo/L1YBuG3xIb9c3K56mtbibHZAmyy96/gnNZZvkyyDZEaCZjQoBD/wWJvQRs/1v5hpFe8memkP uGDm8aDQ0IP3p02N/DFkFK4yP1QmPW+kRq90shZJy3de4CxBxjA3KXzCa+bJx0Wy84QvFumuT7a4 1iK6HXwcXB18enXrPczRG9dNN+lBl5z7R5+hVEyHMZskrLqzjc9LvUH93xIcUVd2wXXrgX+bPjaj 6eedMhPBaoV1oTyaldpj6wU8I1XaM2Z24HHgZLXsMiVo8XPfulgSl49fMWrC9/MiipJ3okH7bGCJ VCVeY04S3vSFzh+SnJtn/8TetMDGuDKlMP+TzBEP2SRLkZJeHILNVDVPqY7elp9G/4cfecBOxvIQ 0dipuI6IcXZu2mjn40GwQP5JPrFt2ByObcEHsOjcljRlHAYJPqO2YcRhmeGepQjOGeQdUEVThlib QODMMFxMSuwgQOl+bjx6pkLZxG5XjDLH5qWa5oXe3G9Ht8X+WbX4FxxyBoZh8byqbHtnbv69gYIX hhV4eYweV9wol4iWMCFGt/7SlJAlp2VktSvmqhJ94F4R0ZjKvIfg0t/1Pnx3V9u5+tZqdfzgkx5Z CrGJhZKDx+Hc0wnQk46dYNsizU0jUzo/ocS5rUBP1UM7dFk10nVP5v1Qs4fzVLmAxk0RtBSDpux/ 2jnPqKbPNg6HGBASkDLDkI0s2aMIoRpAAQ0jhKEgJIAsK3tZBQSxrKpIiASwgExBrRICilRGZEMg YmSDILJkJDJakILSAPU9Ia3veU8/v//rw/3hOed3fXn+z4f7ec59jjvVdgjsCfJsugnSBmqfgnG0 vQ97OHheTegRMcWxQsAVIfng3KFLpbwt7Y2+hJtSVDG9S0ckbdISO6SdTfmOOerqRR+kea6dySmK tA8rEBIMpRYv+/W4I6YSCwgNqEsOYhnq6YojBB20ystUCyp7MoiB5xBc1lgWNrWsxkewb/DgQ3iq 8hOPdwg1jcRmT8XhT12OsSV7RccSyMVqQlX2o9LYbRS7BC0msVxGbMn2SY+X88aDdVESxHglX/kO LELNXKwYK1UXaRX23ayVF/yyZ15vi9z8yGVl3MKPNfRePk7dCjWDMVXL98Soiu5W7jHVbEFTfQhN 6K331dI+gH5ve5Wn0SuOxna6T+VYpGJM1H4aiGbpbAwzhlVj83Lycs63xkbERUyn8FRWhFfa0eIi ttH2317KCVnHc55RcS9POqQtzOUkOwX2CIBTQowRh2rrS6eIR+EDU1T8T2dVArutGVBw3uDKlTbQ 03d1iF7v60jl2aYZnLfzA3uleA9du/yD6Lue+fiChzBCPDge1zvz4q5555G5BYSb1hesG642x/7F O7Ojwo0lqRHH7Ry7NXcgrPx+B96oXQbguaBTB+DZxwB2F/Q0LmHczqLCNQU1SUVgzV70JytCSWgS 2iZDhwAlQDX4ByADh2kibhpuZSPlbJFP2CPH5TRgBcqHt1e3qVH4wYqEzr4gOTDfmQZacNCzI6HN Fb4ZgBRznsLi02UzrtWeCXsi9YcH7aD6hkcjoB5QT3wUi9kljsKxCWTQQRme/xHzEdSU4vsO/JF9 l1auFIG30Jk7+zcNK+TZrjh0Cb7tx3KBNk2U41BFXsVtUySNAzVDuCtWHA70TY9GeD2ckZyH2YWR /AnIoMN6ZD4Ps/a6/+IbhRf9G7O31qqOodfe19eP1dbXlpw+67KQlu8vKlBcJnbvTb93YXCMN+Pv V3z6iGKVzq3gSL/9PRumhpe+n2di38/OlzLNxu7/hr4tDSh3FcPwf/PwZEsixYkdzj3WiD1/38Na K+AkbbUn2CQD4aqy+mlKHbrJlqYBrbVfRY3rp3RUytiCj24gfMR/LyQKK9yXse9rsPwOqjIxC822 7HvGKzdBeyZqhjc2SbvRJm06cXfIkT7cSEz04iVL4r9Tjbwirxp5ZhVIzv1NVxt5e5ySLaUkH2Vx OX/f9rEdtX1sB/WuB2sMOGBgoWWhEpcPh91JDhT4Sb39+jJ1pSQFhnjmn+FbNEHhH8VT+rU0FPaR DdwzWkMJfW/AsTBEkE87pJIc7MNVz3cRnydorBwSUGxh8JvMf04eu6c006qDMtnpXoZmbifEeWHT /ZZNgdVBw8O/Xl2STzGJ6Es4r4A069KPriY2uL4ZWg1YpOEa8o20+eKtw6sePie9A0dMZRmV/5Ef kw4Uj/ffHDwTUAid06utWmpFR5UJWLhTwShOVNtNkDJI2RLGUfSN/tpkCo8I0VWEf4zew5c+SErd ZfHz209spiGPL7m16SD4NT17LdlMJbNIAm4W8e9VbolIJsr2ypxNAp4oOFjdE1JkK7g+/rz/eD9u 1J6jyJzD2V+TSHmUAWy35pxHS7w4pjOc1tjV8KM6RB8S3Unqajip5VvRjb7qJxz0PY+nXU4UokXA XzN74YrZRu3F5daLedZ5lCKhUoFSnDhXD1dPVgQ3UhHpQx+INRyON1xyRUtgT7D1cO0SyDcqi1Rk 7N45I8buDXfsEkTOYLn8miUyHnQJ56M6k21sKZX295HgZt97JgY1R9v51U6cvmgPEQIrPvTZYseE rx7KFPmC4ribxxeC5RKTxxvNYQXrKkiRHQbWxazg7lmnAfFPslwB8WwMcmyAZ682LI4XDqqbK4fM FlsU9sw34SCaGpplJWTRTkjndSjXNPt0egR3JjTzNH2AVOP8ombxZIbEqyghxuoOZgI3FDQ1KHq8 0+HeJ4ErD+4oa5bJCXBOx6NAxRbkU1iyO1q1auhWZDn6ADSq3F0aI40ZdEzV2MXY51rUVQZeM7Qn WI2oRXdz3Qvs68Ad4t6AnnNNXg/tuhaV45QGr3vgDZ6cbwPFReUzdh6ViJoMaYMmutCS6xSuqawx kuEYOCM5T2MXY5990WwMvBTp4XllMTzH8qAPdW7VNa+N0T9z/6JFbY4KXVrCyLnENX90Kc01yDTa qG6SumUolh2s2314fZbrLhyclOTb53rh7tStwKWNhAszm8o/oOe+J0uczRxy/8ky0Dv8Xp1WYYlM h2ANzaRuFCXqb7SWHwrNzOF9V3Pf+flKS80SxNI/84CmhJshKSx2FvBaBldE1pL4uIKrLnehQm93 QoaPsKv+gp6wVGq5liucpZWY45JSWTt/2F7h+OnIaAcpPqv5kW61iABqCc4n6xmm7sAsr+i35R7W I2WtORvXc80lQ+Z8DLE9Fp9r14uF119qYf3cH+d6yQ7ia5ZazV87OdFbllxupM4cM/H+NgeTEfcK Whi4bGSGuVEnEv1SLXDzlf5yMGRxQbsFjTqCVxD1msvch7oXCShqeo9H8Jnp3wjYP3Pz0kpV9Ln0 aHHl5gzzsZjCOVzwlH3u0XO17+73B23xlGBDP9x8gMvvMAvBB2qtjQXRKScdW6z8ntaljsbgRO3k nbBvSIStiy+ChLdmhqrnPzt95Ok48Be5H6DI1VW7Vb8UQqUUYkPcaWir63HBdZ4EisIPLmZrvS1e 0jkm3R2ahCtbxI6+hEpEYcDok3vPF8QGz4bq2KUkPhIQEk8oKD2HkPv0asDxj6ER6U/l7qKfDGxn p2DEm+V3cEniNv6/fmiUEJV4PddNfOV0+efF8ezV9oQPpuvDxV6r5zN+MepPPjDdXzpetRhWvz6z tbf5IboRkqQPAAD0ALsDQP3OB1wI3W6OVZSXtXXZKiHUVCidLysctHt0kCiLLgTFpr0TUeUA5gl+ /QSJIlRNENvbO8mrnQjy6e6qCSAAiWADqgG+NmZKnmUk1T8PnQLvjAvdHp4oApipqj0GgFPZWCur Z+/wD2YPleO/jgJhlomq1e2Es1ZW2d6xGcwyds6vDdH4N569L2KYPWlKX38fw2ySzSXtJLNWVtPe lzLMpkmlv7+b+TeGvZfEzAaE+t+ujJkFpICmnUDWyirYexHLLLDQ+Mq1LLNmeWI3lrWyavZ26Jk1 eL2v9OuZNQLazTuxrJVVs7d/zawZ+/afu9nMlnJg+04qa2W17G19MlvABv/cCGW2NCjvprJWVsve M4bZsv8U04nDHG3zunMnirUiEew741QhDDAgAMDrFOD/3//4/QkA+tuFAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DC337E.0415DDB0 Content-Location: file:///C:/26696AF7/1967_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DC337E.0415DDB0--