MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DBA21D.4CD76F20" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Innovative Applications of Artifici= al Neural Networks in Tax Forecasting

Aplicações inovadora= s de redes neurais artificiais na previsão fiscal

Bruno Couto de Abreu Rodolfo=

https://orcid.org/0009-0009-9= 071-3410

Master in Information Systems from = Universidade Eduardo Mondlane (UEM), FC-Maputo, Mozambique. cecybruna@gmail.com =

&= nbsp;

Bruno Miguel Ferreira Gonçalves

h= ttps://orcid.org/0000-0002-7541-3673

Resear= ch Centre in Basic Education (CIEB), Polytechnic Institute of Bragança, Port= ugal

bruno.goncalv= es@ipb.pt

 <= /p>

ABSTRACT

T= he importance of forecasting tax revenues is vital for economic planning and financial sustainability in Mozambique. This study addresses this topic by exploring the potential of Artificial Neural Networks (ANNs) to improve such forecasts. The central problem is the limitation of conventional methods in capturing the complexity of tax data. The rationale for adopting ANNs lies = in their superior modeling and forecasting capacit= y in large and complex data environments. The results obtained demonstrate that = ANNs can forecast tax revenues with greater accuracy, outperforming traditional models. The conclusion points to ANNs as a valuable tool for tax authoritie= s, increasing collection efficiency and contributing to the country's fiscal stability.

Keywords: neural networks; tax foreca= st; Sustainability=

 

RESUMO

A importância da previsão das receitas fiscais é vital para o planeamento eco= nômico e sustentabilidade financeira em Moçambique. Este estudo aborda este tópico explorando o potencial das Redes Neurais Artificiais (RNAs) para melhorar t= ais previsões. O problema central é a limitação dos métodos convencionais em ca= ptar a complexidade dos dados fiscais. A razão para a adoção de RNAs reside na s= ua superior capacidade de modelação e previsão em ambientes de dados grandes e complexos. Os resultados obtidos demonstram que as RNAs podem prever as receitas fiscais com maior precisão, superando os modelos tradicionais. A conclusão aponta para a RNA como uma ferramenta valiosa para as autoridades fiscais, aumentando a eficiência na cobrança e contribuindo para a estabili= dade fiscal do país.

P= alavras-chave: redes neuronais; previsão fiscal; sustentabilidade.

 =

 

Recebido em 25/07/2024.  Aprovado em 28/02/2025. Avaliado pelo s= istema double blind peer review. Publi= cado conforme normas da APA.

https://doi.org/10.22279/navus.v16.1953

1 INTRODU= CT= ION

 

Responsi= ble tax management forms the foundation for a nation's economic growth and stability (Bartoluzzio & Anjos, 2020). In Mozambique, where sustainable development is a priority, accurate forecasti= ng of tax revenues plays a critical role. Tax authorities face the continuing challenge of estimating revenue effectively, a task complicated by economic volatility and a constantly evolving fiscal environment. In this scenario, technology emerges as a potential ally, and Artificial Neural Networks (ANN= s) represent an innovative frontier in predictive analysis. 

The abil= ity to accurately predict tax revenues is an essential component in the administra= tion of any modern economy (da Silva et al., 2020). For Mozambique, a country seeking to strengthen its fiscal infrastructure and promote economic development, the adoption of advanced technologies such as ANNs can be a divider. The complexity of today’s economic systems requires tools that can learn and adapt to dynamic patterns, an area where ANNs excel. By integrati= ng historical data with contemporary economic variables, ANNs offer an opportu= nity to anticipate fiscal trends with unprecedented accuracy. =

Furtherm= ore, the topic of ANNs in the fiscal forecast is relevant for Mozambique due to = its emerging economy and the need to optimize the collection of revenues (Lima & Bezerra, 2022). Accurate tax forecasting is not only a matter of administrative efficiency but also one of social justice (da Silva et al., = 2020). Reliable revenue forecasts enable the government to allocate resources more effectively, ensuring the provision of essential public services and facilitating investment in critical areas (Bartoluzzio= & Anjos, 2020). Therefore, the use of ANNs to improve fiscal forecasts = represents an initiative with the potential for a profound and lasting impact on the country’s economic and social well-being. 

The ques= tion that arises is: how can ANNs be applied to improve the accuracy of tax collection forecasts in Mozambique? This issue arises in a context where traditional forecasting methods often fail to capture the complexity and dynamics of tax data. The objective of this study is to investigate the applicability of ANNs in analysing historical data and economic factors, to improve the accuracy of future revenue forecasts. =

The justification for exploring this topic is compelling. Accurate forecasts are vital for tax planning and resource allocation, directly impacting the government’s ability to finance public services and invest in infrastructur= e. Furthermore, the reliability of tax estimates is crucial for maintaining the confidence = of both investors and citizens.

The impo= rtance of this study for Mozambique cannot be overstated. By adopting ANNs in fisc= al forecasting, the country can make a significant leap in its economic manage= ment capabilities. This approach not only strengthens tax collection but also promotes more transparent and efficient governance, which is essential for socio-economic progress and the realization of a long-term vision for natio= nal development.

 

2 DISCUS= SION OF TOPICS

&nb= sp;

2.1 Neur= al Networks Modelling and Performance

ANN mode= lling is a key component in forecasting tax revenues, especially in complex econo= mic contexts such as Mozambique. Developing an ANN model involves carefully selecting the network architecture, including the number of hidden layers a= nd neurons, which must be adequate to capture data complexity without leading = to "overfitting" (Almeida et al., 2020). The initial configuration of weights and "biases", along with the selection of appropriate activation functions, are critical decisions that impact the network's learning efficiency (Araújo 2022). <= /span>

ANN trai= ning is an iterative process in which weights are adjusted to minimize prediction error (dos Santos Neto, et al., 2020). This adjustment is achieved through optimization algorithms, such as the descending gradient, which modify the weights in response to the observed error between the network's forecasts a= nd actual values. During training, it is essential for the model not only to l= earn the patterns in the training data but also to generalize well to unseen dat= a, a quality verified through a validation set (Nascentes, 2020).    =

In the literature, we can also cite the work of Simon Haykin<= /span> (1999), especially his book "Neural Networks: A Comprehensive Foundati= on", which thoroughly addresses the modelling and performance of artificial neur= al networks. Haykin explores the mathematical and theoretical underpinnings of neural networks, providing essential insights = into how these networks can be modelled and optimized for improved performance. =

The performance of ANNs is assessed based on their accuracy and reliability in predictions (Announcement, 2023). Factors such as the quantity and quality = of training data, the complexity of the model, and the adequacy of optimization techniques play significant roles in the effectiveness of predictions. In Mozambique, where data can be scarce or noisy, the robustness of the ANN mo= del is important. Therefore, the modelling and performance of ANNs must be approached with a deep understanding of the specifics of tax data and the <= /span>country's economic environment (Almeida et al., 2020). 

The choi= ce of training data is another factor that significantly influences the performan= ce of ANNs. In Mozambique, selecting representative data is challenging due to economic variability and the limited availability of tax data. The quality = of the data, including its completeness and accuracy, determines the ANN's abi= lity to learn relevant patterns and make reliable predictions (Araújo, 2022). Therefore, data collection and pre-processing are fundamental steps that precede network training.

Cross-va= lidation is a common technique used to evaluate the generalization of the ANN model.= It involves splitting the data set into several parts, training the model on s= ome of these parts, and validating it on the others. This method helps identify= whether the model is overfitted to the training data and whether it can accurately predict previously unseen data (dos Santos Neto et al., 2020).

Furtherm= ore, the ability of an ANN to handle unstructured and noisy data is particularly valuable in Mozambique, where data collection systems may be underdeveloped. ANNs can extract useful information from imperfect data, which offers a significant advantage over more traditional methods that require highly structured and clean data (Almeida et al., 2020).
Finally, the interpretability of ANN models is a crucial factor, especially when applied to tax decisions that impact the population and economy of Mozambique. Highly complex ANN models can be difficult to interpret, raising concerns about the transparency and accountability of predictions. Therefor= e, it is important to consider not only the model's performance in terms of accuracy but also its ability to be explained and justified to stakeholders (Araújo, 2022).

 

2.2 Applications of ANNs in Financial Forecasts

ANNs have emerged as a powerful tool for predicting financial indicators, including s= tock market trends (de Oliveira & dos Santos, 2020). In Mozambique, where the economy faces complex challenges and financial data is highly volatile, ANNs offer an innovative approach to improving the accuracy of fiscal forecasts.= Dornelles et al. (2022) highlight several application= s, including:

Stock Pr= ice Forecast: ANNs have been successfully applied to predict stock prices, assess risks, and support investment decisions. A classic example is the study by Kimoto et a= l. (1990), in which Artificial Neural Networks were used to predict stock pric= es on the Tokyo Stock Exchange. These networks analyze historical price time series and incorporate information such as trading volume, past trends, and technical indicators to generate future forecasts.=

Financial Time Series Models: ANNs can be adapted to model financial time seri= es, including exchange rates, interest rates, inflation, and commodity prices. = The work of Zhang et al. (1998) demonstrated the effectiveness of ANNs in modeling financial time series, such as predicting ex= change rates. ANNs learn from past patterns and capture nonlinear relationships between variables. In Mozambique, where economic data may be scarce and noi= sy, ANNs offer an advantage in handling the complexity of these time series.

Overcoming Limitations of Traditional Models: ANNs overcome the limitatio= ns of traditional models, such as linear regression, which often fail to captu= re the nonlinear characteristics of financial data. Hutchinson et al. (1994) compared ANNs with traditional regression models in predicting option prices and demonstrated the superiority of ANNs. In the context of Mozambique’s growing economy and volatile markets, ANNs represent a valuable alternative= for predicting fiscal trends with greater accuracy.

Challenges and Opportunities: The application of ANNs requires expertise in hyperparameter tuning and model adjustment. Furthermore, interpreting these models presents challenges, particularly in the context of tax-related decisions. Hornik et al. (1989) discuss the technical challenges associated with training ANNs, including the need for proper hyperparameter tuning to ensure model generalization. Despite these challenges, ANNs offer a promisi= ng approach to financial forecasting in Mozambique, contributing to more effic= ient and informed management.

A renowned study that can be cited here is Rosenblatt's foundational work (1958). Although the author focused on the development of the Perceptron, a precursor to modern neural networks, his research opened the door to diverse applications, including financial forecasting. The evolution of neural networks for complex tasks such as fin= ancial forecasting stems from Rosenblatt’s original concept that machines could le= arn and make predictions based on data (Rosenblatt, 1958).

De Oliveira and dos Santos (2020) report that the application of ANNs in financial forecasting is a field that is gaining increasing prominence, especially in emerging markets such as Mozambique. T= he ability of ANNs to process and learn from large volumes of data makes them suitable for analysing financial markets, which are characterized by their complexity and uncertainty.

Forecasting economic indicators, such as gross domestic product (GDP) and inflation, is another area where ANNs can be extremely useful. By incorporating a wide range of economic and social variables, ANNs can help identify trends and patterns that may not be immediately apparent to human analysts or through traditional statistical methods (Rodella, 2023).

In addition, ANNs can be applied to forecast tax revenues, a crucial aspect of economic governance. In Mozambique, where tax planning and resource allocation present significant challenges, ANNs can provide more accurate and reliable forecasts, enabling policymakers to make more informed decisions (Dornellas et al., 2022). =

However, it is important to note that while ANNs o= ffer many advantages, they also present challenges. The quality of input data is crucial to the success of forecasts. In countries such as Mozambique, where there may be restrictions on data collection and processing, it is essentia= l to ensure that data is of high quality and representative of the economic real= ity (Rodella, 2023).

&nb= sp;

2.3 ANNs= in Decision Support Systems

ANNs are transforming decision-making processes wi= thin organizations. By providing data-based predictions, ANNs enable managers and administrators to make more informed and strategic choices (Schuch, 2021). = The accuracy of these predictions is crucial, as decisions based on inaccurate information can lead to unwanted results.

In decision support systems, ANNs analyse large volumes of data to identify patterns and trends that may not be obvious to humans. This is useful in complex and dynamic environments, where the amoun= t of data can be overwhelming. ANNs help filter the noise and focus on the most = relevant information (de Souza, et al., 2022).

The integration of ANNs into decision support syst= ems is also beneficial in terms of efficiency (Bastos et al., 2019). By automat= ing data analysis, ANNs reduce the need for manual analysis, which can be time-consuming and error-prone. This enables decision-makers to focus on interpreting results and planning actions rather than on data processing (F= igueiredo, 2022).

A relevant study to cite here is the work of McCul= loch and Pitts (1943), whose formal neuron model marked a milestone in understan= ding how the brain could be mathematically represented and simulated by machines. This concept is fundamental to neural network-based decision support system= s, where networks process complex information to aid in decision-making (McCul= loch & Pitts, 1943).

However, implementing ANNs in decision support sys= tems presents certain challenges. One of the keys is to ensure that ANN models a= re transparent and explainable (Schuch, 2021). Decision-makers need to underst= and how predictions are made to trust them. Therefore, the interpretation of ANN models remains an active and critical area of research. <= /span>

Another challenge is the need for high-quality dat= a, as ANNs are only as effective as the data on which they are trained (de Sou= za, et al., 2022). In scenarios where the data is incomplete, <= /span>inaccurate, or difficult, the predictions generated by ANNs can be questionable. Thus, data collection and pre-processing are vital steps in developing effective decis= ion support systems (Figueiredo, 2022).

Furthermore, ANNs must be adapted to the specific context in which they are applied. This means that the models need to be customized to reflect the "nuances" of the decision-making environment. For example, in Mozambique, ANNs used in tax decision support systems must account for local economic factors and tax collection patterns= (de Souza et al., 2022).

Collaboration between data experts and decision-ma= kers is essential for the successful implementation of ANNs in decision support systems. Data experts can build and adjust ANN models, while decision-makers provide data about the needs and objectives of the organization. This collaboration ensures that ANNs are used effectively and aligned with organizational strategies (Schuch, 2021).

In this way, Fernandes (2020), describes steps that demonstrate the application of ANNs in decision support systems, such as:

·      = Data collection: Gathering data relevant to the decision problem;

·      = Data Processing: Cleaning and preparing of data for analysis;

·      = Definition of the= ANN Model: Choosing the neural network architecture appropriate to the problem;=

·      = ANN Training: Usi= ng the data to train the neural network model;

·      = ANN Validation: T= esting the model with a separate dataset to ensure that it generalizes well for new data;

·      = Results Interpretation: Analysing the ANN outputs to understand the predictions or classifications made;

·      = Integration with = the Decision System: Implementing the ANN as part of the decision support system;

·      = Decision making: using the information provided by the ANN to make informed decisions, and;<= o:p>

·&nb= sp;      Evaluation and Adjustment: Monitoring the performance of the decisions taken and adjusting the ANN model as necessary.

In conclusion, ANNs play a significant role in decision support systems. They hold the potential for more accurate predict= ions and more efficient decision-making processes. However, to integrate them ef= fectively, challenges such as model interpretability, data quality, and context-specif= ic customization must be addressed. Once these challenges are overcome, ANNs c= an become an invaluable tool for decision-makers in Mozambique and beyond.  

 

2.4 Succ= ess cases with ANNs in Tax Forecast

The use of ANNs in fiscal forecasting has proven t= o be a promising approach in numerous case studies worldwide. For example, a stu= dy conducted in the state of Rio de Janeiro, Brazil, employed ANNs to predict = the collection of the Tax on Circulation of Goods and Provision of Services (IC= MS), one of the country’s main taxes. The ANN model chosen was the Long Short-Te= rm Memory (LSTM), which is suitable for time series due to its ability to reme= mber information over extended periods (Figueiredo, 2022).  

Again, the work of Rosenblatt (1958) is relevant h= ere, as his Perceptron was one of the first models to demonstrate the ability of machines to perform predictive tasks. Applications of neural networks in specific areas, such as fiscal forecasting, are offshoots of the supervised learning concept he introduced.

Another case study in Rio Grande do Sul, Brazil, developed a short-term univariate model using LSTM ANNs to predict monthly = ICMS revenue. The model showed a cumulative forecasting error of -2.33% in six one-step forecasts, demonstrating significant gains compared to other predictive methods previously used by the State Treasury Secretariat (Dornelles et al., 2022).

For the evaluation model, Dor= nelles et al. (2022) used the Mean Squared Error (MSE), as explained be

 These case studies illustrate how ANNs can be applied in tax revenue prediction, offering a more accurate and reliable alternative compared to traditional methods. Choosing the appropriate ANN architecture, such as LSTM, is crucial for capturing the dynamics and nonlinearities of fiscal time series (Rodella, 2023).

In the studies by Oliveira and dos Santos (2020) entitled “Strategies to Combat Tax Evasion: A Model for Artificial Neural Networks-Based ICMS”, the authors discuss the development of an ANN model a= imed at improving the prediction and detection of tax evasion related to the ICM= S. This type of model could be useful for tax authorities, enabling them to identify evasion patterns and optimize audit and tax collection strategies.= The application of ANNs in this context suggests an innovative and data-driven approach to addressing a significant tax problem, potentially leading to greater efficiency and fairness within the tax system.

Bastos et. al (2019), in their study entitled “Fin= ancial Validation of Neural Network Training Algorithms for Financial Series Trend Prediction”, explore the application of ANNs for predicting trends in finan= cial data. The authors investigated the effectiveness of different ANN training algorithms in financial time series, focusing on the validation and accurac= y of predictions. Although the exact content of the study is not directly accessible, the research appears to be relevant for enhancing financial for= ecasting techniques and optimizing decision-making in economic contexts. 

The implementation of ANNs in tax projections also requires a careful analysis of available data and a clear understanding of = tax objectives. The quality of input data, the selection of relevant variables,= and the definition of appropriate parameters are critical factors for the model= 's success (Rodella, 2023).   

In addition, case studies highlight the importance= of validating and testing ANN models. Using techniques such as cross-validation and comparison with "benchmarks", it is possible to assess the robustness and reliability of predictions generated by ANNs.  
       In short, case studies with = ANNs in tax prediction provide valuable data on how these models can be adapted and optimized for different tax contexts. They also highlight the potential of = ANNs to improve the accuracy of tax predictions, which is essential for effective financial planning and management.

  2.5 Comparison with Tradition= al Methods

Artificial Neural Networks (ANNs) have been increasingly used in tax prediction, demonstrating their ability to model complex nonlinear relationships that traditional methods may not capture efficiently. Linear regression, for example, is limited by its assumption of linearity between variables (Bartoluzzio & = Anjos, 2020). While time series and econometric models are useful, they may not ad= apt well to volatile or unstable data patterns (Peixoto et al., 2016). 

In contrast, ANNs, with their flexible structure a= nd learning ability, can identify hidden patterns in data, which is particular= ly valuable in tax prediction, where anomalies and unforeseen events are commo= n. Studies such as Souza’s (2011), which compared ANNs to traditional methods = for predicting the BOVESPA index, demonstrate that ANNs can surpass traditional techniques in terms of accuracy.

In addition, ANNs can process an abundance of input variables without the need for pre-selection or transformation, unlike econometric models that often require variables to be carefully chosen and transformed (Araújo, 2020). This allows ANNs to capture complex interactions between variables that can be neglected in traditional methods.<= /span>

Haykin (1998) addressed= the comparison between neural networks and traditional methods of analysis and prediction in his work. He discussed the advantages of ANNs, particularly t= heir flexibility and ability to handle nonlinear data, comparing them to more tr= aditional techniques such as linear statistical models.

However, it is important to note that ANNs also ha= ve disadvantages. They can be opaque, making it difficult to interpret the res= ults and understand how inputs influence forecasts. Additionally, ANNs require l= arge datasets for training and may be prone to overfitting, particularly if not properly regularized (Almeida et al., 2020).

Empirical evidence suggests that ANNs offer significant improvements in terms of accuracy and reliability in tax predictions. For example, a dissertation from the Federal University of Rio Grande do Norte found that ANNs provided more accurate predictions of the BOVESPA index compared to time series methods (Souza, 2011). Another study = by the Federal University of Itajubá highlighted the applicability of ANNs in = forecasting economic indicators, surpassing traditional statistical models (Freiman, 20= 04). 

However, the choice between ANNs and traditional methods should not be made in isolation. The decision must consider the specific context of the forecast, the availability of data, the need for interpretability, and the modeler’s experience. In some cases, a combinatio= n of methods may provide the most robust approach, taking advantage of the stren= gths of each method.  =

In short, while ANNs present clear advantages in t= erms of flexibility and modeling ability, they also require careful application to avoid pitfalls such as overfitting. The literature indicates that, when properly applied, ANNs can indeed offer substantial improvements over traditional methods. However, a thorou= gh assessment of each specific situation is essential. 

 

2.6 The Connection Between Neural Networks a= nd Artificial Intelligence: The Role of Deep Learning

Artificial Neural Networks (ANNs) are a central technique within the field of Artificial Intelligence (AI), inspired by the structure and functioning of the human brain. Used to solve complex problems involving large volumes of data and nonlinear patterns, ANNs have been essential in the advancement of AI (IBM, n.d.).

The emergence of Deep Learning, a specific subfiel= d of AI, has broadened the capabilities of ANNs by introducing deep networks with multiple hidden layers. These networks can extract high-level features from= the data, leading to significant advances in areas such as image recognition, natural language processing, and financial forecasting (Goodfellow et al., = 2016).

ANNs began to gain prominence in the 1980s with the introduction of the backpropagation algorithm, which enabled the efficient training of multilayer networks (Rumelhart et al.,1986). However, it was on= ly with the advent of deep learning, driven by advancements in computational p= ower and the availability of large volumes of data, that ANNs truly flourished (LeCun et al., 2015).

Deep learning differs from traditional machine learning approaches by utilizing deep neural networks, which consist of multiple layers of artificial neurons. These additional layers enable the network to learn more complex representations of the data, which is crucial= for tasks such as speech recognition and computer vision (= Krizhevsky et al., 2012).  <= /span>

One of the most notable examples of the impact of = deep learning is in image recognition. Convolutional neural networks (CNNs), a specific type of ANN, have proven to be highly effective at identifying obj= ects in images with great accuracy. This has applications in a variety of areas, from medical diagnostics to autonomous vehicles (He et al., 2016).

In the field of natural language processing (NLP), Deep Learning has also demonstrated impressive results. Models such as GPT-= 3, developed by OpenAI, are capable of generating human-like text in a coherent and contextually relevant manner (Brown et al., 2020). These advances have significant implications for virtual assistants, machine translation, and s= entiment analysis (Devlin et al., 2018).

In the financial sector, ANNs and Deep Learning ar= e employed to predict market movements and detect fraud. The ability of these networks= to analyze large volumes of historical data and identify subtle patterns makes them valuable tools.

Despite the advances, deep learning faces signific= ant challenges. Training deep networks requires large amounts of data and computational power, which can be an obstacle for many organizations. In addition, the interpretability of deep learning models remains an active ar= ea of research, as understanding how these networks make decisions is crucial = for their application in sensitive areas (Doshi-Velez & Kim, 2017).

The future of ANNs and deep learning appears promi= sing, with continued advances in hardware, algorithms, and training techniques. T= he integration of these technologies with other emerging areas, such as quantum computing and explainable AI, may open new frontiers in the field of AI (Arute et al., 2019). 

Therefore, it can be stated by the group of authors mentioned above that Artificial Neural Networks and Deep Learning have play= ed a fundamental role in the advancement of Artificial Intelligence. With applications ranging from image recognition to financial forecasting, these technologies are transforming various industries. However, challenges such = as the need for large volumes of data and the interpretability of models still need to be overcome for their full potential to be realized.

 

2.7 Example and Visualization

Examining the application of ANNs in tax forecasti= ng is essential to understand how these models can be implemented in practice.= A practical example is the use of ANNs to predict the collection of ICMS in R= io Grande do Sul. In this case, a short-term univariate model utilizing Long Short-Term Memory (LSTM) networks was employed, resulting in a cumulative forecasting error of −2.33% in six forecasts (Do= rnelles et al., 2022).

The exemplification and visualization of neural networks can be related to the work of McCulloch and Pitts (1943) in the formalization of brain processes. They created mathematical representations that facilitated the visualization and understanding of how neural networks work, which is fundamental to the modern visualization of these networks (M= cCulloch & Pitts, 1943).

Another example is the application of ANNs in the forecast of the quotation of beef straw, demonstrating the versatility of A= NNs in different tax contexts (Freiman, 2004). In addition, LSTM ANN models have been employed for tax predictions, showing superior performance compared to traditional methods (Figueiredo, 2022).

To illustrate the process, we can consider the following simplified pseudocode of an ANN for tax prediction:

Python

# Simplified Pseudocode of an ANN for Tax Forecast
Import necessary libraries
Define network parameters (number of layers, neurons, etc.)
Load historical tax data.
Prepare the data (normalization, division into training and test sets)
Create the ANN architecture.
Train ANN with training data.
Evaluate ANN performance with test data.
Use trained ANN to make future predictions.

 =

            This pseudocode represents a basic structure that can be adapted and expanded based on spec= ific tax forecasting needs. The results can be visualized using graphs that show= ANN predictions compared to actual data, allowing a visual analysis of the mode= l's performance.

It is important to emphasize that, in practice, the implementation of ANNs requires careful data analysis, selection of appropr= iate hyperparameters, and rigorous validation to ensure reliable and accurate predictions. Furthermore, the interpretation of ANN models can present challenges, often requiring the application of additional techniques to understand how inputs influence the outputs of the model.

In general, regardless of the framework applied, <= span class=3DSpellE>Dornelles (2022) outlines practical applications of A= NNs in fiscal forecasting, including the following:

Python

# Pseudocode for predicting ICMS collection using ANN

# Import required libraries
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM Ffrom sklearn.preprocessing import MinMaxScaler

# Load historical data of revenue of ICMS
data_icms =3D pd.read_csv<= /span>('recover_icMS.csv')

# Data Preprocessing
scaler =3D MinMaxScaler(fe= ature_range=3D(0, 1))
standardized_data =3D scal= er.fit_transform(data_icms)

# Split the data into training and test sets
training_size =3D int(len<= /span>(standard_data) * 0.67)
training, test =3D data_normalized[0:size_train= ing,:],

 data_normalized[size-training:le= n(data_normalized),:]

# Convert arrays to matrices that RNA can interpret
def create_dataset(dataset, look_back=3D1):
dataX, dataY =3D []= , []
for i in range(len(= dataset)-look_back-1):
a =3D dataset[i:(i+look_ba= ck), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
Return np. array(dataX), n= p.array(dataY)

look_back =3D 1
trainingX, trainingY =3D create_dataset(training, look_ba= ck)
testX, testY =3D create_dataset
(test, look_back)

# Reshape for [samples, time steps, features]
trinoX =3D np.reshape(trinoX, (treinoX.shape[0]= , 1, treinoX.shape[1]))
testX =3D np.reshape(testX, (testX.shape[0], 1= , testX. shape[1]))

# Create and train ANN
model =3D Sequential()
model.add(LSTM(4, input_sh= ape=3D(1, look_back)))
model.add(Dense(1))
model.compile(loss=3D'mean= _squared_error', optimizer=3D'adam')
model.fit(treinoX, = treinoY, epochs=3D100, batch_siz= e=3D1, verbose=3D2)

# Make predictions
forecast_training =3D mode= l.predict(treinoX)
forecast_test =3D model.pr= edict(testeX)

# Invert predictions to the original scale
forecast_training =3D scal= er.inverse_transform(forecast-training)
forecast_test =3D scaler.i= nverse_transform(forecasts_test)
trainingY =3D scaler.inver= se_transform([treinoY])
testY =3D scaler.inverse_t= ransform([testeY])

# Calculate forecast error
error_train =3D np.sqrt(np.mean((previsions_training - trainingY) ** 2))
error_test =3D np.sqrt(np.mean((previsions_test = - testY) ** 2))

print(f'Training error: {training_error:.2f}') =
print(f'Error in test: {error_test:.2f}')

This pseudocode is a simplified representation and should not be directly applied in a real production environment. It is inte= nded to illustrate the process of creating an ANN model for tax prediction, from= the data loading to the model evaluation. In practice, fine adjustment of parameters, cross-validation, and other techniques would be required to ens= ure the robustness and accuracy of the model.

For real examples of the implementation of ANNs in fiscal forecasting, one can reference studies such as “Applied Neural Netwo= rks in ICMS Revenue Forecast in Rio Grande do Sul”, which details the applicati= on of LSTM ANNs to predict the monthly ICMS revenue (Dorn= elles, 2022), or “Models for Tax Forecasting Using LTSM Neural networks” which compares multivariate and univariate approaches of LTSRs in tax forecasts (= Figueiredo, 2022). These studies provide valuable insights into the practical applicati= on of ANNs for tax prediction.

&nb= sp;

3 METHOD= OLOGY

In this section, we will describe the methodology adopted to investigate how ANNs can improve the accuracy of tax collection forecasts in Mozambique.

This study addresses this topic by exploring the potential of Artificial Neural Networks (ANNs) to improve such forecasts. T= he central problem is the limitation of conventional methods in capturing the complexity of tax data.

Data Source and Selection Criteria:

·      = Historical Tax Data: We colle= cted historical tax collection data in Mozambique; including tax revenues, fees,= and contributions;

·      = Economic indicators: We incorporate relevant economic indicators, such as GDP growth, inflation, unemployment and investment;

·      = Source Selection: We used official sources, such as government reports, economic databases, and acade= mic publications, over up to 5 years, and;

·      = Selection criteria: We prioritized reliable, up-to-date, and representative data, within academic bases of relevance, as well as data linked to the Mozambique Revenue Author= ity.

 

Data Analysis Techniques:

·      = Artificial Neural Networks: A= NN models, such as feedforward networks or recurrent networks, will be exempli= fied to predict future tax revenues;

·      = Training and Validation: We divided data into training and validation sets, hyperparameters were adjust= ed, and evaluate the performance of the model;

·      = Result Analysis: We will eval= uate the accuracy of predictions by comparing them with traditional methods, and= ;

·&nb= sp;      Qualitative Analysis: It will explore examples of application in the Tax Revenue Authority, highlighting practical models and emphasizing how these models can assist the country’s tax units.

Legal and Ethical Considerations:

·      = Data Privacy: We will ensure = the anonymization of tax data and compliance with privacy regulations;

·      = Informed Consent: We will obt= ain consent for the data from the authorities of the tax authority of Mozambiqu= e;

·      = Transparency and Integrity: We will report all methodological steps with transparency and potential biases will be avoided,

·      = Social Responsibility: We will consider the social and economic impact of our findings.<= /span>

This methodology aims to provide a solid foundation for our research and contribute to advancing the forecast of tax collection= in Mozambique.

&nb= sp;

4 RESULT= S AND DISCUSSION

For this section, we can highlight the following items:

Main Discoveries

·      = ANNs have demonstrated a supe= rior ability to model nonlinear complexities in fiscal data when compared with traditional methods such as linear regression and time series;

·      = The application of ANNs to tax data has resulted in more accurate and reliable predictions, as evidenced by empirical studies and practical examples.

Theoretical and Practical Implications

·      = Theoretically, the results reinforce the importance of exploring advanced computational models in fiel= ds traditionally dominated by statistical methods;

·      =  In practice, the implementation of ANNs can help tax authorities improve their forecasts, resulting in better planning and resource allocation.

Limitations of the Study <= /o:p>

·      = A significant limitation was = the inability to access data from the Mozambique Revenue Authority, which could have enriched the analysis with local information.=

·      = ANNs require large volumes of quality historical data and can be complex to set up and train properly.

Suggestions for Future Research

·      = Future research could explore= the integration of ANNs with other "machine learning" models to create hybrid tax prediction systems,

·      = It would be valuable to carry= out studies that overcome barriers to access to data in different geographical contexts, including Mozambique.

 

Artificial Neural Networks (ANNs) have emerged as a promising alternative to improving the accuracy of tax predictions.  Their ability to model complex nonlinear relationships within tax data is well-documented. Empirical studies, such as Souza's (2011) comparison of ANNs with traditional methods for predicting t= he BOVESPA index, have consistently demonstrated that ANNs can outperform line= ar and econometric models. However, this advantage is not universal and depend= s on the specific context and quality of the data.  

The comparison between ANNs and traditional methods reveals important distinctions. While ANNs offer significant advantages, su= ch as the ability to handle nonlinear data and flexibility for modeling complex relationships, traditional methods should not be dismissed. Linear regression, for instance, remains valuable in scenarios where interpretabil= ity is crucial. Furthermore, econometric models have a strong foundation in economic theory and can provide relevant insights.=

A central limitation is the need for large volumes= of data to adequately train ANNs. In addition, ANNs can be opaque, making it challenging to interpret their results. The lack of access to data from the Mozambique Tax Unit also posed a significant limitation in this study. The absence of local data may impact the applicability of ANNs in specific cont= exts.

In practice, implementing ANNs requires technical expertise and substantial computational resources. Tax authorities should consider investing in team training and necessary infrastructure to support= the adoption of these advanced models. Collaboration between machine learning experts and economists is essential to maximize the benefits of ANNs.<= /o:p>

Thus, this study reinforces the relevance of ANNs = in fiscal forecasting while highlighting the need for hybrid approaches.  An intelligent combination of ANNs with traditional methods can be a key to obtaining more robust and reliable predictions.  Moreover, searching f= or local data and validation in different geographical contexts are promising areas for future research.

This critical and constructive analysis aims to provide a comprehensive view of the implications and challenges associated = with the application of ANNs in fiscal forecasting.  It is essential to acknowledge both the advantages and limitations of these models, promoting a balanced and informed approach.=

             

3 CONCLU= SION

&nb= sp;

A study on tax revenue forecasting using Artificial Neural Networks (ANNs) and a comparison with traditional methods revealed valuable insights and challenges inherent in tax forecasting. Tax revenue forecasting is a fundamental pillar of a country’s economic planning, and A= NNs emerge as a promising tool, potentially outperforming traditional methods. = The study evaluated the effectiveness of ANNs in improving the accuracy of tax forecasts. The results demonstrated that ANNs perform remarkably well, adap= ting to the complexities and volatility of tax data. Their flexible and comprehensive approach allows them to capture non-linear relationships that traditional methods often fail to model. Compared to linear regression and econometric models, ANNs showed significant improvements in accuracy and reliability. However, traditional methods are still relevant, especially in scenarios that require interpretability and simplicity. <= /span>

A limitation of the study was the inaccessibility = of data from the Mozambique Tax Unit, which could have enriched the analysis. Furthermore, ANNs require large volumes of high-quality data for training a= nd can be complex in terms of setup and interpretation. From a practical perspective, the adoption of ANNs in tax forecasting can optimize resource allocation and support more informed tax policies, but it requires that tax authorities are prepared to implement and manage these advanced models. The study reinforces the potential of ANNs in tax forecasting while highlighting the importance of hybrid approaches that combine their advantages with thos= e of traditional methods. Collaboration between machine learning experts and economists is essential to boost research in this area. <= /span>

For future research, it is recommended to explore hybrid models and overcome barriers to data access. Additional studies could focus on diverse geographic contexts, including those with data constraints, such as Mozambique, to validate and expand the current findings. This paper reflects on the advances and challenges faced in the research, adopting a critical perspective on the methodologies and results, and suggesting directions for future studies in tax forecasting with ANNs.

 

REFERENCES

Almeida, A., Amaris, M., Merlin, B., & Veras, A. (2020). Modelage= m e prediçao temporal de parâmetros de qualidade de água usando redes neurais profundas. Anais do XI Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais (pp. 121-130). SBC. Available in: https://sol.sbc.org.br/index= .php/wcama/article/view/11026 Accessed at: 24 April = 2024.

 

Anunciação, G. A. (2023). Aná= lise comparativa de estruturas de redes neurais artificiais para modelagem basea= da em dados do bombeio centrífugo submerso. [Trabalho de Conclusão de Curs= o, Universidade Federal da Bahia]. Available in: https://repositorio.ufba.br/= handle/ri/38957 Accessed at: 24 April 2024.<= o:p>

 

Araújo, J. L. G. D. (2022). Modelagem de reforma catalítica seca de metano a gás de síntese, utilizando machine learning e redes neurais (Bachelor's thesis, Federal University of Pernambuco). Available in: https://repositorio.ufpe.br/= handle/123456789/47706 Accessed at: 24 de abril de 2024.

 

Bartoluzzio, A. I. S. D. S., & Anjos, L. C. M. D. (2020). Ciclos políticos e gestão fiscal nos municípios brasileiros. Revista de Administração Contemporânea, 24, 167-180. Available = in: <= span lang=3DPT style=3D'font-family:"Myriad Pro",sans-serif;mso-bidi-font-family= :Arial; color:black;mso-themecolor:text1;mso-ansi-language:PT;mso-bidi-font-weight: bold;text-decoration:none;text-underline:none'>https://www.scielo.br/j/rac/= a/h5QvmkQ9JD8hNRm5mrPmpLr/?lang=3Dpt Accessed at: 24 April 2024.<= o:p>

 

Bastos, M. V., Carrano, E. G., Batista, L. S., & Minas Gerais, M.= G. (2019) Validação financeira de algoritmos de treinamento de redes neurais p= ara predição de tendência em séries financeiras. Anais Simpósio Brasileiro de Automação Inteligente. Available i= n: https://scholar.archive.org/= work/p5m5vmxuubgetnfcvp3wmk6gti/access/wayback/https://proceedings.science/= proceedings/100113/_papers/111135/download/fulltext_file2 Accessed at: 24 April 2024.<= o:p>

 

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,= P., … & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information process= ing systems, 33, 1877-1901Available in: https://splab.sdu.edu.cn/GPT3.pdf Accessed at: 26 August= 2024.

 

da Silva, M. C., de Souza, F. J. V., Martins, J. D. M., & de Barr= os Câmara, R. P. (2020). Fatores explicativos da gestão fiscal em municípios brasileiros. Revista Contemporânea = de Contabilidade, 17(42), 26-37. Available in: https://periodicos.ufsc.br/i= ndex.php/contabilidade/article/view/56116 Accessed at: 24 April = 2024.

 

de Oliveira, F. N., & dos Santos, L. P. G. (2020). Estratégias pa= ra combater a sonegação fiscal: Um modelo para o icms baseado em redes neurais artificiais. Revista de Gestão, Fin= anças e Contabilidade, 10(1), 42-64. Available in: https://www.researchgate.net= /profile/Luis-Santos-8/publication/353889808_ESTRATEGIAS_PARA_COMBATER_A_SO= NEGACAO_FISCAL_UM_MODELO_PARA_O_ICMS_BASEADO_EM_REDES_NEURAIS_ARTIFICIAIS/l= inks/6116cd0a1ca20f6f861e55b0/ESTRATEGIAS-PARA-COMBATER-A-SONEGACAO-FISCAL-= UM-MODELO-PARA-O-ICMS-BASEADO-EM-REDES-NEURAIS-ARTIFICIAIS.pdf Accessed at: 24 April 2024.<= o:p>

 

de Souza, C. C., Juniior, J. B. A. C., Cristaldo, M. F., Castelão, R.= A., Frainer, D. M., da Gama Viganó, H. H., ... & de Souza Vieira, J. M. C. (2022). Comparação dos modelos ARIMA, RNA e híbrido ARIMA-RNA para a previs= ão dos custos de internações hospitalares pelo Sistema Único de Saúde (SUS) na região Centro-Oeste do Brasil. Research, Society and Development, 11(16). Available in: https://rsdjournal.org/index= .php/rsd/article/view/37547 Accessed at: 24 April = 2024.

 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of de= ep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Available in: https://arxiv.org/abs/1810.0= 4805?amp=3D1 Accessed at: 26 Au= gust 2024.

 

Dornelles, G. Z., Schwartzer, F. R., & Braatz, J. (2022). = Redes Neurais Aplicadas na Previsão de Receita de ICMS no Rio Grande do Sul. Secretaria da Fazenda do Estado do Rio Grande do Sul, Tesouro do Estado, Divisão de Estudos Econômic= os e Fiscais e Qualidade do Gasto. Available in: https://tesouro.fazenda.rs.g= ov.br/upload/1643376127_Artigo%20Modelo%20Redes%20Neurais_Texto%20de%20Disc= ussao.pdf Accessed at: 23 April = 2024.

 

Dos Santos Neto, L. A., Maniesi, V., Querino, C. A. S., da Silva, M. = J. G., & Brown, V. R. (2020). Modelagem hidroclimatologica utilizando redes neurais multi layer perceptron em bacia hidrográfica no sudoeste da amazôni= a. Revista Brasileira de Climatologia= , 26. Available in: https://ojs.homologa.ufpr.br= /revistaabclima/article/view/73007 Accessed at: 24 April 2024.<= o:p>

 

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. ar= Xiv preprint arXiv:1702.08608. Available in: https://arxiv.org/abs/1702.08608 Accessed at: 26 August 2024.

 

Fernandes, B. D. L. (2020). Business intelligence no suporte à decisão estratégica [Doctoral dissertation, Higher Institute of Engineering of Coimbra]. Available in: https://comum.rcaap.pt/handl= e/10400.26/40355 Accessed at: 24 April = 2024.

 

Figueiredo, K. (2022). Modelos para Previsão Tributária Utilizan= do Redes Neurais LSTM. Anais do XIX En= contro Nacional de Inteligência Artificial e Computacional. Disponível em: https://www.academia.edu/98052542/Modelos_para_Previs%C3%A3o_Tribut%C= 3%A1ria_Utilizando_Redes_Neurais_LSTM Ac Accessed at: 23 de abri= l de 2024.

 

Fischer, T., & Krauss, C. (2018). Deep learning with long short-t= erm memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654-679. Available in: https://www.sciencedirect.co= m/science/article/pii/S0377221717310652 Accessed at: 26 August 2024.

 

Freiman, J. P. (2004). Utilização de Redes Neurais Artificiais na previsão de indicadores financeiros para avaliação econômica de negócios em situação de risco. [Master's thesis, Federal University of Itajubá]. Available in: https://repositorio.unifei.e= du.br/jspui/handle/123456789/3748 Accessed at: 23 April = 2024.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. <= span lang=3DEN-GB style=3D'font-family:"Myriad Pro",sans-serif;mso-bidi-font-fam= ily: Arial;color:black;mso-themecolor:text1;mso-ansi-language:EN-GB;mso-bidi-fon= t-weight: bold'>

Haykin, S. (1998). Neural networks<= /i>: a comprehensive foundation. Prentice Hall PTR.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366. Available in: https://www.sciencedirect.co= m/science/article/pii/0893608089900208 Accessed at: 27 August 2024.

Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A Nonparametric Approach to Pricing and Hedging Derivative Securities= via Learning Networks. The Journal of F= inance, 49(3), 851-889. Available in: https://onlinelibrary.wiley.= com/doi/abs/10.1111/j.1540-6261.1994.tb00081.x Accessed at: 27 August 2024.

IBM. (n.d.). O que é uma rede neural? Available in:  https://www.ibm.com/br-pt/to= pics/neural-networks Accessed at: 26 August 2024.

Kimoto, T., Asakawa, K., Yoda, M., & Takeoka= , M. (1990, June). Stock market prediction system with modular neural network= s. IJCNN international joint conference on neural networks (pp. 1-6). IEEE. Available in: https://ieeexplore.ieee.org/abstract/document/5726498/ Accessed at: 26 Augu= st 2024.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks.&nb= sp;Advances in neural information process= ing systems, 25. Available in: https://proceedings.neurips.= cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html Accessed at: 26 August 2024.

LeCun, Y., Bengio, Y.,= & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. Available in: https://www.nature.com/artic= les/nature14539 Accessed at: 26 August 2024.

 

Lima, R. P., & Bezerra, F. A. (2022). Gestão fiscal e a eficiênci= a do gasto público em educação e saúde nos estados brasileiros. Revista do Serviço Público, 73 (2), 359-378. Available in: https://repositorio.enap.gov= .br/handle/1/7423 Accessed at: 24 April 2024.

 

McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the i= deas immanent in nervous activity. = Bulletin of Mathematical Biology, 52, 99-115. Available in: https://link.springer.com/ar= ticle/10.1007/bf02459570 Accessed at: 27 August 2024.

 

Nascentes, R. F. (2020). Modelagem da dinâmic= a de herbicidas no solo e palha utilizando redes neurais artificiais. [Doctoral Thesis, São Pa= ulo State University, Campus from Botucatu]. Available in: https://repositorio.unesp.br= /bitstream/handle/11449/250420/nascentes_rf_dr_botfca.pdf?sequence=3D3 Accessed at: 24 April = 2024.

 

Peixoto, A. C. P., Neves, C., & Melo, E. = F. L. (2016). Comparação de Modelos Tradicionais para Previsão de Taxas de Mortalidade. Revista Brasileira de = Risco e Seguro, 22(1), 1-25. Available in: https://www.rbrs.com.br/arqu= ivos/rbrs_22_1.pdf  Accessed at: 23 April 2024.<= /span>

 

Rodella, V. G. (2023). Estudo de caso: aplica= ção de machine learning para a previsão de tendências das ações das bolsas de valores brasileira e norte americana. [Trabaho de Conclusão de Curso, Unive= rsidade Estadual Paulista].  Available in: = https://repositorio.unesp.br= /items/00964d9f-7217-4187-81a6-7cc35ff600db Accessed at: 24 April 2024.<= o:p>

 

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. = Psychological review, 65(6), 386. = Available in: h= ttps://psycnet.apa.org/journals/rev/65/6/386/ Accessed at: 27 August= 2024.

 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. Available in: https://www.nature.com/artic= les/323533a0 Accessed at: 26 August= 2024.

 

Schuch, K. E. F. (2021). Análise preditiva com redes neurais artificiais para o planejamento de sistemas de irrigação. [Trabalho de Conslusão de Curso, Pontifícia Universidade Católica De Goiás]= . Available in: https://repositorio.pucgoias= .edu.br/jspui/handle/123456789/1769 Accessed at: 24 Abril = 2024.

 

 

Souza, J. C. (2011). Previsão do Índice BOVES= PA por Meio de Redes Neurais Artificiais: Uma análise comparada aos métodos tradicionais de séries de tempo. [Dissertação de mestrado, Universidade Fed= eral do Rio Grande do Norte]. Available in: https://repositorio.ufrn.br/= bitstream/123456789/12197/1/PrevisaoIndiceBovespa_Souza_2011.pdf= Accessed at: 23 Abril 2= 024.

 

Zhang, G. P., & Hu, M. Y. (1998). Neural network forecasting of the British Pound/US Dollar exchange ra= te. OMEGA, 26(4), 495-506. Available i= n: https://www.sciencedirect.com/science/article/pii/S0305048398000036 Accessed at: 27 August 2024.

 

 

 

 

------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAXUAAAAdCAIAAADaT2scAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAChNJREFUeF7tXLt6GjsQts+zgIvz5QnwE9huUrl1B6Vp0qV0dxoooXObKk3g CeAJ8rkIvAtnRqO7Rlppl4VNom384dVlNJdfo5nR3p5Op5v6VA5UDlQO9MCBf3oYsw5ZOVA5UDmA HKj4UvWgcqByoC8OVHzpi7N13MqBv4YDx+1ydn9/K5/72fYol17x5a/RgbrQyoF+OLCdjR/n609f DxDMPR0Wk/36cTzbirkqvvTD8vxRj0uN+wr/o3+l0G5ujrBdQCvYKGCi41b8gJ9LtW3kT59qKXal s496HtrqKJfhAKrn/WypHZLYrNPN6mGEL0evX6fw5+cv0kWEnIZng+3pmW6aGtf3xRzQ/J0sxA7g PwfdgNh/WEyn0BI2ChDIAn5ssBs2igxQTBFtQyDvyUKMfaGnKtqFGF02zWGzmIIyZCuXEKNEihx8 IZVGeMmeIncBlkYlwMtu5SOcWDyagnomE2lw0llLw/wwANMDkJB7soFDLf1P/UvgwbnkI4Y+12C5 ukDtuJWWjfAHtnZFfZUF0n6TYy42vJwy8YXE3ovGEeHi4cc3DYL3G8RVWLTaY9VOz9ihzxrZNIdh l5BnE8KEGuYBiiPVThTna1KnaSKdpbSHIpc+llg+5gDwRUF/Awb425yDL3EQ6VPnhGNPLghHPFEs XntKxxIV2llUY7HpYPTYoChPkr+u3uClv50ky64qvmSx6SqNmlCAeW/Hd7ff12DJz08iTOM8xx/f 9mCLnx/Sh40Ob5+f0UHaf/vhRyhx6sni+VM4NhE1+XfsvHr4YvyhBnoeVqfTqr8llXFj9PouCV+/ cWFaJNam9vABi/90J2V1/PUzZEUZAdT6uHwDJZh+fQ2VoM1wtc+fxAEK3fL6iVmG8XwPZwnHpDS+ wGvULKOyNmOEMvuWfF7OPQlcCABm+998D5B3F51s/3Fw341ed8NBjRIeaYTZz18aE0ECUAzgo4Bw Z8BUUmPfBFH9byQlHKlth8aBh88AMIwXcIMp6jUcP2QSydCtUwXBUoyfbnxxGUrGttFkhx1vnZjY SNSjU4kPlbGwExbqCMMeQGXMAuZIeouMxz2ok5FNfFMqSbUNorkUiZpMu+V7OBE4YVctdwj4U9jM UQMIaplYO0sMKJCjH5CgcoU3gPORFRFE1bIXBWsy6mnSDsSEQp5Y0yAjnUC9MkYY2J/FsMvhNopi 4tmk2wASH24y0B3ZMm3Qo1jakNeQICgB/6D16PhLXLVkqhKmXMACdC6UQRg5hiQuN4KqiQtVS+NA JMBlzDGBY8GwRFhx5MWIo3FX6RAIz0WYXg7g6TiifmtzwiyVAjdKEKEwTfCdTFT9dpk1AHwRxFF6 fjqdmhURhruI2pEnaov0ChN8OdBvF8rd+oHQ2FQfQgpAD9oPPLWXrXCZkgYpgJgKMyriASVZh+yv 8SWhWooJZkpOCUKASkBWsGeLZXvDip/Ejyh1CNHa3HnYZZffAl96sWhmUG29xQjYlcIGgcnXuE0K pXWcKEIX20780cLoX1yNytG/69r9/lIKrgwY0CQzb8sTX+WJCkvxrX843GUMwnHKOYPhlsShCYNm ltMkcS2zLErhSyh8PSRDQhaWZMILYYeUo80W7K8UNr2x2q5deG47l/9ybg2Oj6cQpoMb1IrYLHxh TZ/tmdRTQWB0Xx4KvgTVVuQFeKEDfrPK4wmDsQG86GJHY9RpLyPiBDIAwxEZ6R2DuqSqyfgun4sR jgG9clIKsrWVaZJxQUo7HI+isByiyeB0vRdlIkT86Gb9HcreZWQ3J48xenhd7cQ5GTrv5+ruQ+wY M6JZhvtI+thU3tWpZsP8IgHg5wbG/wp5+AH4c69gO2u8V6Ev3nWJfVt0q+J39a8OPJHl9ELl6RGK v/iSTmzKbqDst/d4ndBNu5I4AqpIILp0/9yC4MaT+MLqB7WnV05uOmgtMWj9KAQ5fnl5+7h5Bh96 typCF5hHAcxyCcnysjTp6GG1I+iNZNDM+geVmQ7EQjniSTM0C8vSd5IuoS7pOaT8lTXDBhOqM2w9 eNWWLts+Ysay6yMy93nPrlQdfdpGd0yhRHIBzTyx9lQBL5mK/7CSbvserxMCzJhLyzGCyqnvKht5 v1FUvvD1LSIR6r4KW0sMUqmA3W63Wr3SdafSR3J7Pgd4Ka+3GT0997ZnXmifPC5fwC6nm2Zb6FT0 Ii5Ferls0r/2DgcfMNILEZcyx4/fPj6/v7/vzPmoVEWu2J6sgS/i4Mlq4Al2sgEG95ZG50XORG47 hm7RcUeUaahNkNR34l/CE+HGFf4Lzcs6eczBKWyd6F++Fl0g1wQvaO/B5k0mkleqI66G5nvMF9kn RZESoEtO3R9W+pyaYcgXAd2KhnKFfWAn5ED73n+GDDM6Im6uwfE/7KBGYtRq78kgpOcmkYMHO2sG T2Q/CTBQV4lnozKvHS4sI8zQBUFVmZI8mXY6dpeaOvt9BtholvI4yMBV+C9+34NRZvnWa0REPkge iFvHVhqA1q/rWlPqJg91PWtk0fDbGZ4Y8tClaGDTeDt7+X73BaJVXJkzsb6FAyM7huXXZmJGk86x n7ZkQ2Y3D2rJc8800AyeKCpoT91/e4GDcdO2Smrub42jJ4qt0CPdeM86ELyyqY8wiCptuRr/SAed D5P3BDFRbup0uPCyyUSK+h1ZWiTSdCo9SS5bTnGdSiKkUyVstFzXDvjXG9kU/8DvNyaT8DrXYhis 0KF1DjtMUpjUaCR7w6ZsdeBDVVKYyqyD0Q+VdMUPSqjqF1ARKLtAtbQXkU6M5IVZztHK5PDUgmSJ iaup3Xjip31jVavBLMouPdosRupiHdmEpZ6/rp5YU1iF0MBrmZ/WpYdYAupnwXzbV6U6TkGgmyNG aMnJkOtaD1/NQs5LfLRSgwBigG8WbMMPr84uUvtisLa1fZ5Dh+0xmrL5TrEJWyRRRlEEX6TGBXDv MjJau21/KgOE4VYT27VK9M6MSiM66nDp7LzLP1N4ZtVXuep1Dp54VSCMOrKz0FdJHNUPS7eD8l2v uJsdOSWCRBFLTPlyv89Qpry1dSEHmtBF11CbcVERLBN09ML3VWNqy6JrCy0qXO3v0DxdcfU7rODs NBY7L0BB/T5m5km8z2aUMkokpI9LcXS2HwwF2OfgZPQ5J1psDu+vO9Ck9WNB6LtP5tSxB8EBiPhA bDAnremQW/Hl6tIjdBGFgbFCsTFk691HhEazwtht1gdgdVjcYO1W84dX24xf+/xOHICEI+Qb5xgm K9qocI0VX64saUpI5z0m7S5yX3lZ+Lyhg1aY/D5snj/emqqhW44/8G4ytdUiVT/whRWTBwr69kHF sm2+lXT2U1od8AIcUHe2MITXKkQtAz4Zn8+4wGqGNoUby7punHlovCmk5xbaF0Na7XB1DkD1LRbI Abi8B5/0SRMHZYl+WT4WvXWtnL86RyoBQ+TA/6/lDNU6AetnAAAAAElFTkSuQmCC ------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAA0AAAAcCAIAAAA1A6IVAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAINJREFUOE9j/P//PwMRgIkINSAlo+qwB9RAhQvD///b0mBOsppw+//tbRPS rKACVmnbbgPjHwSA6kAAotYqLc0qDagWBG5PAKsGaUVShyaKrBeiEMW/VmHeKohgUdUCmXjs2u1h mF5uXzuG8BvUyxAxGICHKCwOIOGFiCRIYDMOk3wJAONuYJmVP9K9AAAAAElFTkSuQmCC ------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Innovative Applications of Artificial Neural Networks in Tax Forecas= ting

Bruno Couto de Ab= reu Rodolfo; Bruno Miguel Ferreira Gonçalves

IS= SN 2237-4558  •<= /span>  Navus    <= /span>Florianópolis    SC    <= /span>v. 16 • p. 01-19jan./dez. 2025

1

 

                  =                                                                           <= /span>       

 

ISSN 2237-4558    Navus  • &n= bsp;Florianópolis  •  SC    v.9    n.2    <= /span>p. XX-XX    abr./jun. 2019

 

 

------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/image003.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACADaXI2otsB /v///wAAAAAAAAAAXwAxADgAMAA0ADkAMQA3ADYANAA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA40sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb9iXb76z v9mZc/bM7M4/e35z+3zee11Vt+4ru7fqDQ/hLuVUgJYR/kZEEJAQ7u4fIaD8VRrin/whOAgID/78 f3d/f/+X5Pt/y/8pgQMg/zmGf+HXmKMCoAE8AkAHeAyAAYAJgAWA/XsKIOAC4AHgAxAAEAIQARAD kACQAoAAyADIASgAngBQAlABUAPQADwFoAV4BkAHQA/AAMAIwATADMDy53v+W/51ooJgC/ycgLGQ RLAB7g4Ibn/rCv5bIUJ4+J9r/pc/0NqUNQofS2yQtGBVuNjpjv/rsgZs5g68ubOISMBz23/6FEWE dwim/5TNvxZ0hAeIf92ef1SP4M87EmDfCMEKQQZovRnQE/+s4AH2Ef+o57fv+0d0fpX/i199hSCB oAL0vSvQ96Z/jIDjP2Wf6M/2I/8T9n+NE86fz3+97v8t//8J4u/p8L8QpP+3J/gfCHUsCAEiioRw ZEuNkDv2v6np3/I/kVcIJoDPfwV4vl++xxDBEribAimqf8QCUyDl/X+rTwdMn7+eT/+IzYcAMwr/ irf/Lf+s/X+1/F+2rySHhAzEQjQ0hHkFOxnr2fdXmUBoqhD6vYsztrVxMrVxYjcxdDL848LJBlz3 teXfkUkSeLuAcKmKck59cRI8s5kIZfDp5WW08gOmnuXTOoPo5bWr0SObIyNu8a/osUSD0OyXxmkC oq8dEXIcxFZ866jsw6PrcqQDyaioxdoD0QKK6gIuFvZcfVacm6wLg7hseQQruW1b3E42BmY19xXQ ZUkSl2lPjXrEMN5kY0jyQzgHNSLkGFvRHiL0rOiCuKaYokp4pJco1h9/msiLLFFNvGMiT7/55kBc 7v3IA19o0GuvvS6iyhst+dadts+0WkIg8bV5lRpLUo/FK3oEz7feOBJMn+UUVSmoL5dqkQ5P55EO MbqkIDA1FT6fIpy7ts8RfYvLEehH83DXz7ufI7ntCAQbwj3LjJoSWB6kLxQpTTfGm890J1O8xcam FJmrZeSAzeMkd9wP7GSgH8kVw470+kYRc6GF/TfPN0TrjxULAhh7WWZjhD5jl10zLNB4x0fMYKfP FV1ynm0LHC3fdi5/KYNt8m41oRIdf1+Ig8Gt7+brn3gKTGEdmr1cQ4pCWWp2FC6nhDou+d9wPw0l mLa8WhStCdrgq7XVob92kfjksG1jOPi2axHTq1dZq3jojRmdPr3eDKe0e9FjF2puFuW0z2x2E3YX 3xawdaXCtUJdAhrESyYJ+36AXm6gaE7ufoNcun1ZVuUNn6QVme+77chou3mIJk6JYbzXOMQaPGPw 4UwmlkhsaDVAE9fF9N2rdia6bIFiBUJnNwFwhkr7p1pwUUb5TRnYZKf2axuWDcMVF9S4AU15gc3S tUw6hkYylIBRJf/vHtSyMime+ySmwNfPB87aYE/PnVivpvGtzUurynRdCx0fhEYHsbwTf4QeDeFf YLy+V0Eziv4eHcSlJYHw6apfHc/dkGhMneWxoTxiu9sGMhrvuNUDBwtttdR1fWdZzNpwB11Ebeue RdQVDy0sf4jpSmGeZtMGbkEtWJekpCH4ikQu+7vcWzARpZ+kq/wm0tZIgT04czUrvItzww3Dobmp p45xg+2NlCQ/c4/6S5EfJKvs3qez41xG8nY2j3bNl51ZRt7h8demf0+lkZO4luW+eGDFGtGQyx4u 7sPsWiYmOUls+dKiuagWLblL8pj9yHyRpGa/Otw83eMMomKGOVjOA9oFr75gpQq99PpqMpIieMvJ ot85+kBbCgtP3eOI5r10rUyEuc5KXRJTeKXM0/5vpq5irinOsRC+5MqOr3kpMZJO+4VTd0lChmhp oScCeHMI8CfKse8+LzU4G7useb9TrjlFf20URnLfJX2WRCIKs0R5tkKeONZ3ZraoDKUXtpbTgvIk dbDqTTZHbiiBBs79pVnZl73jB7alXU2+6gjue32Yk8l0LmG8N++2KLmozOXbvCl+qyecRdjZvFhZ YzuxqznSdCnE/JEvSuNx3gjhu/ezTLbmku8XJn92OdaG7pOYjjumf3je0awyv14vaTmnrTU7cZJg szk3VZloJ2kiFFHgvDARaQ0d9d2tifDQqqRHW7IRHLgZRaY5Pdb1+7A6dn13wZJrak9feqR40/h0 3KpWdfYMJ3dPH13oow6h4imF2ECfrjOu9rkBuTmFsignHDMP+jS71tctE1c80kiRUxcCjvnxlmzT Hs0jrBybIIiM5t1Q/hmeznD3T1loGBtHRG0YBw07LJp1Ci8/7ElMDx6eUJAZT15mcYa3oXCXBi5k OWDXm+1ohqqZDrQVd03mtJfXFmQy+q62SrvnkHz9SyVYyJRFrlwfo41AuzhZMiQWfCq2Zy59L/YB 5t63I3xWvyUjQkbThN+3tUDbsSvasitQYbw+tRnzgctJp9jf7knHjS37vWXaz4vwZ5nsy9WJbrpr Tj5bPExIUhuD1G/Cu199QyTv5m+/DAAZ6CcPd0dv6MS/z8sXfR+WqIkDu+Csofz8dFpFep1o9hFr h7fwkJ4Lilz34TRvcE5aFl9hRTGZ3LV9iRJoDbSCZgRac4PxllDiuoOg0692waZ6XsJNNB8Zzk48 5hRrOh3xJfvDjmxUhaSi8nxAbc7CeznYxl5CJNytjkIxX2o60AkyXepsSKy+bDKO6+U2NNqFPRU2 tJ6sl5j/TLlMOL9KKjIhM/rQ6wM1rcjxRJwdvAJefkZ/UD54Vz1P2uASj1Uuj+jllT3HODz0Xqg0 a/aSYOLTDsX+VW5aaV6t6EWrUl6Nx2AFUqu9S9GiB+qYKNw1OLJmWDlhRIPuaqvPcWnHFc/LxY1s DRfH3Ysjy20aZE80oGV7UPLiemuSCDu0yNnfITXs+pTyv0a0yBYu8WsgkpE++P0N4r9EtPeGjk6m DkqG5qa/wtrNxf29Dx0KCgrOHarJ/dM2GOooy0uWBx2gl1CkDqKXe4gdIi91sDqonrMnk5KwlXNz CA0bGzCktrdFt47vcITNycOeKb+/DYdciM2QkoilavrhIN8hcTYiIGEttUf3RncDDqtHCZrdHz2o hL5G/6DTPPeFFE6Yo5mR/WCEV6BqmIbUtWIzPhPVh/gBnANyuiJHX6qHtY5YXASc+Q8ostuiH+QT ksj63kpAaKkGEQW4KIuM2FLb6yr437ERBT0Cp2aezaat1Saduczaa7ajhdsJuG7hZNo5oAoirzCQ pAxFY2CU6VCxY28pRa+qvYSIU9Aj/fyMQIj6Ahn5bzYBoaIxyppUwNEQDfHvNwF2QGf93gRkPNKJ /3lxj93OxYKEkbvR5WtmsZHqEW+UG8tsxmZZGuxhVWerLy/PMclD6NhbZvnps6aVldkKaCNV1mY9 VnawnWv146E65KRx8wk4vmi5f/fs+d0du6uXY9amyEX9UMbyVbrjZnrQO4n0kSlSG2xm7OmVzXeo Z4YISyyy9spMoUY4BZ8YcnIDQsRvFLcRS9+gBuux7Vjrv1gyahi2kp8kbVGoLh02XJJArQ+1vRZX PgVfhpU1FZ442jWciDbVWnQk2dZqn1pL5W1Ha5dIFY6tpyt4nsF3xwbwO59tOiU4lpb6MSznVhGZ vlZI0x5UzHS5qohz7muq4DlFug/WlKG0abnR1zO1JkF7ZYhwCsFVwrxuZ1CGsdYMQbnJe8z5uU9I sZpmzmUb1/m0S1NqmgdNneDwofaU0QNbyEnTVhNfuD9DMIQq+wVLazbG1OLDr0P8L4q1OzltXiCV pYwxY16zKjcEcwWjsMqGMoxPxOkRKUeu6WDo9sBYO7P95A4kMPHHuDG+vMq3oMyo5JOIf6SEeB1i SUbTwtzG/E1ERafdzp5QrYyqSxnxSygXWMFF/8rnvvtcPtYjKKSXkvE6u1k5yj3X+Dp0HynTQvRR Ka8IfjnTtsPLsvSY4fhc1xK5R6M1Ky9sBS7S4euFPotzX6d+dp3vPpp9bjnhG8KaOrXbXvb+blB9 r7XhcLEBL+Pj+XStbeoTtEmoAEf644DPck5Yu/DOtV3HjVaswzKlDuMTH+Xw3W8MwpKN0spFzeYK HmPGZZ0Z6ZM/7iQny6U0oqdLE7hn2w2qPCkxiQM3nEwyNfxrW5kXbEdWLj/lwnGUcx21ngfyHvJW 4bEKiqNaoNiGZlmJvNnpu7cOuXfrj1v8iX6pumD7ZBqN80Cak8i9jMDG6b6/QjJUWSIElrMCbV+X 3j/p2yx5ukl30cg03j99cQFzkirTsL3S5l5TbFWPlIrXvgwWyR3wTV/s3IhqTsrcq6wV0jCvyPK+ mQnJQ+ltOYnsFzmgXgleHpa4JWCtibhSjUJasyY9S2LNXXNN7dMDr03zSVcVHrWcJV0kNF2gZVbg vjgxpHQs6daTcd+MincUPh9ZaIJlz70Ig55geeJrte0efnMt2b1bbzz0OcHaYy6z9sVZNjS6ddO3 t3lVpiNawQfTUbxNI5KXiNjMi/L0AQufM72+DfvhNcIJ7wy+O/C8qma8Jb0ijHI/FRx/MSSYfWBc dvxy2rEq3r10enZqUTuvw00qVNhJPyIeFup3fHCSv+K57EjXlkaw7KY4tRcP6UA6UR2JX0I82/1k tD8I5ZU5iL0RcQqCn6SMZ9bRCmBqh8EJFfJ7zyUEMuuUT6Vu9uFkK6uFs/edM6bZVt1u7GCdevK2 59bGl7Nlc/BI028EPOXbTV9rSj68oF7uyVt1GS+7zfrSredBGwdvmmQNJr4xV2+IGXa22paatVYz I00XzDQdVtbtzY+VeRYnS5fwWsSa64WLT3mIiYMWcaIwTa+JWaJeX+7mu40T0xS58waZFFqVG36x 2O/oRqK9NNX0o0cSO1Hnszc+O1zTk+vPC3/0mUwSrVN3aKDeoCQEYfGlk08Ynz6M6+3NHeEBptxf rDClsPRxkTpxTanJzwUGzZ/4h5RZSHs2t0Lkyq6+J16BavQ7WYQD6wX7sGONeG6/xVF6nrBjfjg9 9r+efx5OuoOqAOfxtE2lDMDGPXsGxXbhHluFZ7+m36hdBpmhudh+Wt5R9o6m2gIdoPrrG5338OSl Gdw/Njvd2kbVh/HmUSem1KVejSqIllPwGs/6e9utEnMPCnZ47gZTVoXyGYujVGo2UOrwm3XlrDQM 6prx1r8H35zxTsFQic+geGygCfx32EKDLzTNmli7fJh/hrPyXX0//Wq2h9t9Gml6rXjon2G2IUN2 YvcCU7H40L+GsL51d2gzk777NZrHg1NVEjj5XR0hp/CtZTIu5hs6EnRrMMlOfJCYn8DUXJ1QwIKT w1t95Ze2HjEWtWrxhH2zg1JfEkhzoGimYAbuXIYU3E0fLN6rsEa79BDTpLcONZBPJqtPZ2rx4Trw NngqpPYA9Mx6gUt8VJPuyXh5osGMCyZ9KLx5wrquqzNKM9aSEUZ/gf8ZjiEmcFcZO1fGWehz44Yh rn+PaB/hUo8cSKihT3Gz9PPrIf1O5I7mw9MRWAg4JdeEkVKYElF15UuHeshXvMlc2tKCSJQ0PdwP y/WzERwFzZCOFJgVyVUJbupjyqZlLKLpLeyUeaOIwxs76lBOaL4M+PLU6/t38Ha7ou1AunbituFZ 4ChSMqH+8LAqB5Pm5VJnBIdHFmmrxeBtNd9Jxgj4cqeONEzx+Y9PzGav3cJNFTi+FvOuhviB3wrp X64tQ6ufJ0/Kki2383MvcJHkTDFxs33gEi+wNytetw0oCwpd/UJGbe9LegHh9tnpTxdKuMDWMwog haUdtYGfkt9NhVd2ejbVJ2zTenreCCXg7C+yDtz26LefwcgM88Xai3vBJEyeR8erEYe9wtzgUHuQ TUqFEb2Zg67ZZii4nu7l7Yu37WwfI2h4br/k4DZgjdvp0ZvdUEMxRvSV+DBvFHG7FOogZB1XfYGW DpkLttD856g3dRhRt3fdiYjHbBhCltVCkrOm6f0Q8Vm2MQVUmdl8hzfRt7dtysIlvo+RZHIz6GRT tUgux+Y1p9n6XJRrwr7phibux9azTqkpzAV2N+8yv484Bb0mJtafmsuq/0oztt9AGjVxmrB74+ef PMic4qFw80OulTNMfcKujMprAafJ74YsbawVLnQWdCl+aoDpATXuKjkMVEzjlukPieHlFuEbI2bR GHB9x8Fd8fykE9JSzpt2pTQloY5cVjN8aPL4YGihNUOxlFUIngBhZFtFL5kwPkcRSzkWkBbCo03a pviJ9LhoYijExVTykZpVRhQNU/Ubq5Jxrc/Oyiq7iEff6fAScK291ri8+q50zvmspWf38/cdNOGW Pdrhcq456yXz5C68MK/+wU95DQ7ghCZGN9XjT2v7mnG1dUh74XRJhzEKRvcnC7HGvO5y5vHSgwwx 6SOTbK5ym45inJS9IwMpz+kupX9lWMiLOYBXF9a89+Gz9Tl1UU54ij/N3UO9e0ifxXLL0po7mbFS bnvyMg2+izlgrb9NrXUCh6yFl+LQmleF/NQ+rxX5tQ7uLM3HH3o/ZinWutjqtfJ8LyCYFrkjW5Kg xfxHo641VXcRPd6WwH24pM0dI1mTvMgsYnMiePbi3vsmc2B6fdeGJCran0GSGi0uM1r50vG/kKuk TLOEk84NkvFKcHhMmKm0MhducOXn0NXbp0OkGisThg8JzbpVoAYZfBhZ+cv7r/1v+b3lUCq1GsS8 MUSp/Ka3ghE/RU5Gl/oPKpIPR6asSmw+QhqKQGXfsZqvE/lqb5BERULlaS51lvZQbXdRotE6d+7v BiFD0F/etFP38mId5VKoM3yTmMQAysqtd9eGoG2bXPFTeuPxfkrtLoj/u2x51qGfMfJk1ShHczXi J+xhE4+Vc1KoY27rZQtoQtvM96qZh7ypCwHfiGeOyNz3IrAvEmeTWl2PdICnpaMYZuJ715wSHy3J M8+zOsOEwnDRTPoKldMnvYuH9XkPFd8tFOExVtqIt7Ci64ih4nzB+ceIQKLtZj2WH2NWFWiCX4iZ DWjrCy3WnspyEspkRuEwxbyhKZHQCnFSxtu+hPnLi62w3c45swf7KLSrfbdZ5xGya5czY8QvVB87 zDboLwUJZJzG0rh78TpqMpv1EzcbvOH7dHHyGu+sAVdPRUKQxcD7mvDkOkpPRa1b5/AjnhQ0+byS OABN2XkR9lAqLsD+sDpJx46yJX7anIW7Oo04f4FzNUnXrenc3pbgTJjaKB3mKqPRMkrFvu1eOGTC O9ujUznwmKjqZ/l3XhtbUTbb185TcXLripIjYd8DxJmvayeRvg/l+xOKNKEdFC1U+dp8CLaYfBv/ qW9/UOp5Qi6zpEZoKUEzA6P75YJBXFDdY/27LlU2ug8Kfetf9S3581omn7o0MEx1n+BaClKYFwrn Mu9ZSjonQBIDE9v8yJAKxrT2nbKdtCh+Jqh+pVWSyY59+cxvKBW5i75c1WO0XVUgyFpYuEBV8Hu/ qkC1hIMVPXqsaiPzvH/GdAkUa+S1bkCQk1XI2jhe72d5in3qjLdlutDBVo6kAjfpwhrI8CMHq0lT d+lC3rtEoFzGkIc0fY2DUCW0EFqtKpyvSnbVEkRe5jXnJZmRPhYyJpSv6mHaEuRkxPfecEaBe7F+ jTpDa1cS6JRSBv5qMaWG4VARVw7mGnvl7PB2FzWNGH3Zkd8dcFfMeD24T36VwD+TQSk+Ez09O6vb ZYnPqJAmHaq1TfiBNEnYHrlyU8BsW3/eNJ03ZqWqH00l/Xy8ZC6r2UdQ9Mk622pha5jxws3cX9Ts Z54S1fXX7fXlJVcLcJo3HbCtVoUQFFI8BXLYqzfviDZObUWHRCkKdR/ZpKB/ndAVR6Kezfe/lH5j LHV2dPBQdddiRKGJ/FuzinXBxO9lz9ZnRXGjWh6ytjPo3OzZRBjzhPrJYaXelx32k2RmCOcrwZ31 px3WPJP9UsFBElvAs7DHVoHAYtREvxSEzCj5iT5X9/sRIBOfcdCjiUpYvEklXk9E/Lb92v0KzZ5G WDxdOgona/YNe4nflXGyLbuBjWZhUhSOaLM6OyWFnpHgya1Csw66LRz1pAez2TOAX5f4t0qtPuxC f3c9rznktK58/uMpmj2IXrIugmC1UCo4S6c0KQrjXhhyNUKyESv2pyEhhegn1AuGkXrgYmWfqkhD UUUYrjvJTQEEE7xjOI0lr6eRRskjxBdCKhIhc3IxZoNpX/rEKtRFOGnLcIQvN0vxbNi2ElLNx+F/ zuVzJYNtfG6B9rGW3drV8fFY0sZNPISVb2d5kBMzQ9ScTadz7ugR7AP8LfbqkNXlDgsnNrEruWGr 5WUn/8ZHho1RNncLb7X2MNsT56myzVZ3nmtR8kgNCheCGYdrjauX/BqyqMKvprgc1DR2yfscVBLj vqXHr58WayogORyPpO25+DOJp4TEc06Ym7IRSx25CF40clFamL17AkNhT+db/ZFnw6H2lqEaf57K OIuUb9EujkhBC4VbeYhoKBXPvQjuT/oVZSunyWKyPl1PZMvJU0b49DXXKoOo8FyjZZfSh40VD5vY SdV5gx2KDVl2+dgux5F8HwkQ+/vaSluhqLjSMH/0476zsTDuIiRHIBTWjtCKOjMQt9kjR+7sPyYx P4RYjIPjz5kGqSgl1f7wwNUqu7n5ExoXyGlMIY12RhBmp+vecBmb4po7RBuuJ0sGuma3BhuFFTYO wn5vqfvDnZHTEkfsoCR8DOry7RDbBr9FZlCNBZVaw2fI7pfG73t8yZRORtdSVpcRU4q7lKbanP1O 5pkeSep1BxZ8Kbi19qFk0JTSZWiMzbBrIiTJo773LNGMNUXTNHngfanSO4JKCY+NXhRQl1tjb11Q badzMXvOclGNzbH9trlAxU+xpjTDrsqPJwFnMcMz8t47ynlPTg5PXu9sfjBUrxqtR9QCMrj1r4R6 hPaG0jJDxXAewAhmqLa8Ex+KbvnJoLfkNaALqaH4caHFi2VjfDQfoNr66YeEra1nl4DoKbbyRsEv 6OKh5fdMab8gCXShYq8edXS7EEsovnxy3ANd0yXqGORkIAsptVH2lRGY5eRUy6yXUsd0aRkSV8p1 WO758SuGkKdpIXBNrxpUh0h68kbVWzBwb8lrkLq6vvjYbU15QahciPADoyLrAXbjuUOCHyShkKO7 1Ozu23d1lCdYC237+92EgW3tn5QqhkO9PVMetXBsZ09z4hcTh+4X6VX4huop8KDjFeSqnHqqqTI2 qDgVbMmOhMXmZhGH6onNBQqa1LV55fQ0Em/EPiEk9mBIOlVK7qDUWZO6gHntPzi741g9Tnjtpb8x WdbwUs5W/psX2XLfY4GhsUM9UeIrZU/4UPLnI6iXuY7BHR2mfuPBg6cik4ftPMR17irtUaX1LxMq QS6iezSi4vpw0kovR7PohYcNJSN2jWmP0y16MTBGh7XmHpYKc+RpOBNbIqZjfvBj/GGE5jb5sAHG mef8ovLa26w7je04h88Jbtid4gSHlDf5FO5lHc5o/5j3/WF1u/xkL2EofVCvPq/heCahizlCA1TG c6c5dlmRMWWdBY+pPPW+YbFL1PPwDxwctaaPnVSgLfMapzXfLviAZQii3KK9yByTKcuQ1hOMaTrH nBbYLqAPEJC7vjBwId1naT5fIzHfrpZSsE/Uu+lYBipYnB3TtDodIII6focuZAIJ2MdLRzPdunrj vTc2S+uAxnpBekGSSDniSWMpVCXml8p40OxsFDO6ngcyOWNVLuVXs1ifhHeW9HEYcY5qlOovJX00 eNwV45VlR06U5X8Nza8wwi4bmnn4pnz7mT2xC2lZnE9G+JRhFeRnNyd30HY2DBV0txCRcCNuvOFM aUaRg3V6MSRKSPvYVzoqGPN0tLe8Hq+My6N5gAe8S6XJ4Lrvs22C0NptsrF34cxluNRZlkzBu7u2 +CqrLoQVaaXw3nCm23IzFtis+WCudtT5ewZ0cr5B5RYKSBIVR9U9SD16w55BPtn+BsrGzjkmu23y AzFmFIv14ynD/KBRq6SORusEVJ8mJUFqx0CSGPMi7A4WYFmnlg57WQQZXLm1hXBklWUJsr1aaFVW +Fnus4cd9wFSJ06GOWCLKs3no2rPi07+0xjdguc1UcSnELy8cIhngCYpZp+FEtifCxQaO2KwT/Du C93Bj8fXAr0sIjSmrAeWMNqIjyPgDes30U2paFzWR2uG0ZphSQp+UK05O1KTiZWVRqq8Y96dDNrJ 1g4W3X4ZM1Y8RuuKcCpT1jtXfJMJo4QMqkqikPhq6fzizh16MRDZc+6Ue8YNWlLlaaAseNI+diRw dperm9cpFizl4LPRxkCfUi09KakZJtGnVaVvW5uUYcJLHfONKMREYpgfqNpVHSjAz9ImA+JTnU+p 7nANPosT8z4VA+pH+Rhf7To5C9Sr4mPyenroRN/0QhiTO5f+lKmKlHPNyff1iHUcHtUAspRzwo/C 32dh8RTcoVRS3NlA1cvSQN/Xzk9V0NPZOJII8hWBQ4aBO03B4bPAj6+Xv86DTNAXUyKp4tBnwBV7 QxT95IT9GNoYXIGwKfRoRk/SfrFPhwmaD7gCyzoeRDN6aBinnIE5CzEfpvyQyicQoYkwvy2szz8a dRFkDBzy1r13QtcnGGeu0tKf/qHQvBmCcDUNOD7ZZdW/uHtzhRJBB/TFoorg+NhzMQyaz/sThMGn pF5rtVA9Rij4CVWGNfBqGc6oKT80uPBjVC4Hs8D5BC35GcHxPyZvmSVkl4GGUALpMzDx/E7feamU RXgXeQZEeifN9Vey1qOQbIIW4jFcxkDb0ecSWp51V/iO09/Sr2l/q+rHUhUc/swKk65AS5kFCpVd ygAZYSJB0m9QAXUwGlDkfjU4/tuHY22zcRDd2StGz15VoOCQiL4kQ6AtWh3RDBWaJi6C/wPnw1li xOOhVf4vZQzZNy3SVdpMfejrLZtPG/qolH47eqV4jI9XMOS0207dOmsyCa3n9LE3HiVObPuzIebW Txv0xw770aEez3DjBrmOqLjfN0JyjHzKzkBYRQN7i+H1zz9e4H/2ckWmVLz53Mr9Aj479MrmQrSc VwQvMom5uK6Fmwdh5nLL4BiPSFHqzP4hweSFRKNybrjqSmqUL6O9+h/fI6yV8SZVxHW8gCNOxM60 yuuz1cqC4NLFnvRb31pFwZ6mY03eUWN4UAm0K9hIHDnJbPVlBqSrc7ruqOZQRdTM3atjln1gsGs+ l2JwadVGyl70/ERYq3LDtbqQOh3fwC0nsNKIWw/S8jw4KYfip3poKp7Cs3RZ/gQ7EesfbtXMhUUR LGkRx2Ks699iVMY/PvgWY/QlOD4XGNDqg+t39Sxzl9HyXI4gR11bMpVQUExiYAhBcAvVBF1Sbe1t h+clKjfBL73B6/9g3Duj4Xq/tiNadFGDIBLdDMKoCRKdUaJEG9GZYJSooydEF73XECX6aKP3bvTe Re89+uDx+//fd73r+X16v9zrnLPO2fve17rO3vde69rmr3J+V530yyqqhbobSSmqQaBIppxs+vuk q3aqDTrGuUj18Xnq2TX4/mquaE4yNrCcKee3sqGNlKKCdXNG7TUOubqNPIdVqHpN421NVmTWubg0 td7IoQT1oxglUXaavpKSB4qqaTw0HZ8eCttfqPIIeZ1jiN7FRUX27hs4hHt38im+t++VjAPVKKaF lrnFcp1iWxU2XTpliW1YPZHQp9ertIZ0Jaqk+Pt2Md1DRFAcUJXxxC8LfQqTdo1ei72zciJ+T9A8 OpqoUHPEXusnEbnh2PAYKoDCSyW7GeZ6/WDJMm95XFYwVfxrkiR3rVFxFe1BgXW7oavVpR5C+C4y AGkiiBZXa8/gK7ffKqWdFO9N/Ssw5qVGxWpIOvWqpGKUR+nGuU2LKPCwr22q2jLR6QVBns0UolV3 Y9KJ9cfuyWb/eZnS9U80Xdn9yRytRaqFuo+LenOAXKulDz6vD18dehuA2SEZ85BPp1JwWvtlB+09 dNymJw02EbZfjEDzZKuKT9dJRth1KVA+xqDnaNwwnJsfPBdIHXCQUaNcdWdC5jcjr+NipSfmkuzk kkmk9z6JpE/bvv/mOejlR4e0RnPmy+vP8WFX/z31G6COGVkaYq/1KH5/YkxRAXPENHtr1PU9W74k Oe7lhd188ss58jkK/jbW1p82SqraEkE1HdmnbngHBx1K+lEh5C50TA6GnE0aSW5uyRFmpmx2vfcg wXcVVpbRBiVUni/goDC3lTBsw9tqjLopxMo3ebtn0zMhM4zuUvcGWns+w3QGW3YyvNctUL/imuwU ksQAyHHMoedP10pKsYIrRW6vhCRQNzVrc6tSD0Lefa/SKHX63iRVBsnmTb7/SqQjIuk2VCgbiDTK wFzkXTYlGPSYopu30LO/3V3k9WaP6QKjE9J1HQ1pkwU9/L6Y01Ldt8iV76Bkew8XT2Oyp3Jc6Df6 DdCiI2iadJAKA89V0ZdpVzE+bULl+8AypynXH1/MSpz6uQUz+uP8jWkCGYW0RfX5FByZQcJPDuS2 nk+6Ug7rX+mBZrn7uM1LhEF4sbVZ/ZTmJeyOOexJXG88sFKsgj3KD3dLSFehMibBQsXTFRGFsftr E/3HU0k5YvNGO7xctheufquYxfCydLr+HdvO1mVbI3xzdQkpLO0J5bgOFAcclpECMrSAjYEPijaZ BhJKJsRYrGFH33G0k2zock0u9VSfHFfLp1uZtBovubcVigHhlw1sSgywVu8pscxBDyr09AIBWk7v qNg+1wdweiDKc1mGGXNdWzkCPgenjnFjq376G2tB/cNPmG6BxSYh0Yss8dM579SekcvcBvEAlml1 XXsQQa+ObdkbT29xGg8lJ1ySVuTtvHFnrRlhsH2gqG+pkAMu6Z5WjO7VRyEFxtdD5rPZ8qM1e6d2 8LY2+OjJE5TCOkpo8MjHEg74dmpOUK9yYn76KHFkmqYSixxkXeyo4wr8uWxMfrrFTFvH2d6eWcPV LkXD0Hf0IUBOje/tfD1OinyRIHNtyxRlkfzbbXPKtr3HXW+oAK4t2LJserxO8eRmiypdPiTOvmp5 0ccGdGzTSCGawqaeMAdjb3tMo/1es9RXtneMOtHHlzC60WMWuZnIa+u3wwHjElGDcoCZgZDSzpmj H6+1PM/EHT+ewXrB9BVRhKlrrTPw3GLKG+0vvnw0HDoXufwfxNCZFaCvuZr2GFb3ctq59yqsn0jO 7Jqb3u7in3d49k7nMa1wGX/KlGn45KBbK8rLA3jnnbj827u10ejlXcXnBHb8Ku2XJdL6wTVkX1hW 7g+D4Oi51tzzlXQ0QpvqOgwssxK7nQ/XOZr21dxjgd9XaFb+7W87mdM4BrYqyqm/zpWjctdX7qRf qDiKuMnXUTwKh9J6n6pQxXMlBAxgbUvh+bS6MSlNUVlenmYq9S5tvoY493bUleYsO35LenZhQnsg nPJNOczyclmbRmcmmnNmh/fUALiBX63ZkJb4bcw2908mflLNuTR++k5kMF2TamtcBX+UFlsBPbSr yiOoUnS5wV/3flDq70yML09Cf1shm8Yw/1sC62SNNWce7qEp1VP7n4FEF/68HrLZRn4DuvKFuEPV buwip7DctfXJ/tpNvqOYh+7NzQwn3I0Ju1vvwLTxN0VDzbG4wVJ7qv6rj+XTTBsBXZY6Auvi3BDW DdMPOIuiGQHU5HyIqnrsTVCf9OYLgkWxvuwrl6f6lFH+p7+A8KNRKbR5EnbMEcapeIV0H6Y+UPiy DxPGfrmwjQvfIycQFL18ZI1vsHT96FWC3rDh0S9hgpUNXHnGUU9keK2TyBgVau9t0NUXyg3BIdya l+kKhfRz2JZVwedjO2RVbA9dTqbZqiNJmbQhFwMequ0LsAhOCrvUes11QH2qt0MQuqbypfH8ShDd KQeKIL2B8gMyAlklFibiqnjrhgN0r7DNs5cF2MqKQA3PJya6Rft4NQKS+Ppjjc9hdBbtHqfdolCp w1cyMaQcdcysW00gYQYDhQRC3U6nlMhwRx9w1/v2seOz3d7pBmXRUc6+yUinBlP5qGzvIDFOXea8 BtPWq6ZtHbtybMhhTSDBJl67yYKYkr5Rq+HmQrt6KKDGfloM1jztC5xdaBcBAy4P/3iMkupEe2uX a9y+iY5K7+8UsjWFjgy6bwnaUndX67vSeUkgja7n5y575aj60+F09YOUtw1wOpsYABy3+NnkjytJ BDa/jZbSsUrcnvtbbPAnZNZSLsVeeXRtNi5/eSbloWecr4RW9crsPofwqFEn5EYdsS5F0OTsr3D7 fQZwOXBK1TsmyuXOiFBsX1uyOZQfdZb3M1evYx44VYSy/ugWvw9o0OpdQv8dX1HYKkQEdCOer34j 9AvJggera8R+UGtzOM8YrYgibXzecrhf1z13sD3mErGbQyOBM77z8geO3+UQJVz65vwQt/G4lHvv /l9ihL+AN1H/zI38MyPy7F9iBFlLmLmSpaPTP3IEsAJAATT+sC73KQO4FYD48kqq2I4EXwkR/5Y3 KP0aTBLBfvRoj/G/Kvj/a9HBzu4/lopnDJUgH5/jHo3x5eQHfxOPDFJ6ES3yQJ8N6YRa1pSWFUK6 6PcgsrvYOVj98CyVPWtICg6zhUswTnc7frtubswyI6BdIhZXmozlGAPUJWBhIWWotWnWIUP9NuG8 L9Nz5pDhL2ugh+N1Y3P6kEh1dU7x9Cd1B46UsrR6TsW4SVk7WlNYlB1Vk+u87YrPmE7h1FTRRUrC 9cwoEnoRE8fQZHdcIDJbxu9ddLIBDpVLTAPamdz/ajM1ub9tcHt3r7XoG2xarXq8ddvu+Y4f5vb2 1PPQSWgNJMDOLXbqQGxamtsRIbYoK3PI02O0F94g3by0O3VTdesXAZiab7/ow5gopYd2RtDBHXeu RBcZyE+szSUlLUI3jgq9XUMNJ/grGnJswc9irnmYr73Qz72Agk8cCyeK1lDr+Y4CnAUoNovn/U76 qPGp+oyxa2W8X021u7v3+0NPGcasDP54JNTf/XTZ+9NttWBs5+DFxZ9Gus8p8d75ze7fZIzFkO/J 1hNlpM7u8NBnv09jtyedVU60bPRqDXpp9struM26KiaTIUgT2wHr/mKa/uLks6UNrcLtO8YNrdIx 65/hcWWQyZHJaxXjxeeuq6Jhv8dyimM+bA4piWsbqA4WiMZfxrIO3bPyp98XB99RZVToFpFrHuha qtIOfVw8T9E24PcuWRnIh1q5cSnoDioBxO5bJ0wF+QloHdmxI0RSfbvnucJqacNmOg/HllgGP6Jx NRsN6w2QEEtwTGRUlRKkjMWqM14cMz5FC/YldyxeyD+syFycHiI4jVinMN5WWr+gpkOmNoYi0exm ZsA5vrL1YyXYNhuA7arueV8HFZjbhoOKrzyevHbagZUassgK8Dl1TurrjA/2nOXjefgiDnt6BdAS P/adpWtqPe4x7Fj8HeT6wUcnrJsqhR6yyASYmTepNkU1mcw6SPf06HFTmaIOO6fJ+BDc2ySmqBXi WfUtnWaWPy3xBrhIwmcI6efTfDqKkCxJ2cnyRkJIOnt7PP/3db5qUJwxWEbERoTzwadEgimqygHm loCYvvTqR1JDTgo+g3MeoiXUNkZJUyIb5HRcTpxrNf2BFxPD8ZxMr6xp8lvjS60Q60XfnK9ycCC2 oNF4T/PbeG5siDsFzG2pxdpHszX+G+vsSeODlbfjYcCcgWk+eZ30zaEVq6740OJKlkab23joHGJd /gEtfgR33iyC5eilTfATGl2wyxskBdIURWo8023Is74/PTr1HtJE+QBalgrsi5MJChfH4KYqbXrF Kw35l4Bme8gUA1aG/ZDG2qK7geePkHuHuUD6h3D5pn4ACRamT6K+OffCCSCCuJbgqofdpJKYoDRJ IeKsAOD8iTUpJB1vJN704XUHlu9AIalpPtgfn7UfmNMO189tkp4+OAVKTZdbP4GIv7ZXdSF+wCwR +ZySbzQD2D7tAAwDGmNemM09QYLCRuKFvocVrUe8hikEG6GCvh1yH/wwQl0mVK4XPDjdS+uIn1WA iajqEDuiwDHTDqt0s9ESjd7gKRDyr5Ip6vc3j5MtENJTTApyR/bgNA9atj4MQHpa/UlHzwKQCHYb jn8er6rBtkNNUNDv60K2NBEmqGHz2ZN/WLmX2B5/IgK7SkWEOYR6EEMEuz//E6v3UoQxSpMQ0vQC UG15ePMaVuuQhoTp6zSv+2PDRJBfgabf13HvAH4E06Nl8pC2BxCiW5WGyzlGMmDBz2q6FMk2S65L eCak9fCBKBrcmPtijcJftyXU8uNXuP87zR6VvJ0cfkivhRj/HRY0tYPZOfD8Z+WG28D8I4cIfHkp ug/f37eT+opmr79/MklcjCCOYl922wFrOfrZSN9emAfr4KQxHN6IL10QaLDEsl5S/o6mskX2vixW 0X+00jkajOpnYiXW/lyd2er5FEtjKc20lOAOMbLj/aVnRFk/VjLgtwkVPkhlVAr0Xvu+VGJ8z9aB tYXJ2lytp0b6DvZ3rFob+4m6KqzPDqP7BcGwfnz95pfR6GdYFWh8ngBtI4GhsgtlAbHZCFiS292f yDSm6oDURN6vjaplFjvHXr8LJzU9tBj345JleuyP/lVjyObl6OlwHj0CUf13ItLG3Mn4v4rD/3Px DwQLOmDHFWHSpk3tmoaqj/W4vCSB32KPNR8zSSkbYPdabLAjHu1Px4PjMfdKl+LNwmx6k4pFbIm/ uO5qFE5cM1cdiTNmDbt3A1hADHMLLt1I+4ZcjOBq05sz80na2Unofdsbffos5rbnusNMKqXEpnTY Tv6l76gsus95AJenOohaPSWoCGFlWePq21qH1FvvpcWLuVibtIPPIAdRsbwpa4ysOAbTcOJi4Vvg hTo8ecVpQL6NSRS89VmGXxxps95kT//rSR6e3up5Mt/ztvueJKz+p1HYQb+iIdvusqbpTbnCv2dD je2GJx2svFIDVBaxAtBg8+FDYlH6IQ5IwXTpZU0eQN5riKODcyXKAZA8UT17LgkPylT2KrSZollS 22jmtqNOj+H62MEHuf0x9fw6I/v6bfSrV3Np71LXOS2+LQWnxu+K+Ov7z/+K1fbloLHCiHoUjbfc Y+flL5nEclacs5zYAwhSrTJnwNXtm3mqR1AWArcA9Ux6MlwiVKCdT9yxtK5MgO3bK9cD14Ls7j3x encx2Yq+0ZkhDb3yz95ajODz+2ydi+XBfmOTvWzKBES3pq/p1W3TYtDU0VO3oeJmk6MGLCR/fV/W lK54h0j5LvWrcfaMygTf6Eu6JJqZIyYkHKfQ2CPtQ5bcxIdNcMPAMDKxTaE4K9dJLOMaQ3ZBGVpl Wdu6Ub5O/Gme1oXnBriGk5CmxqtXu1CyyQ6zgZiP8MOVvT7zmBE5RIQjzERYta24HtMvybe4epfO PfVB8PorBHq3OpCfyWYMTs/n+uUxt5XphGgKVxNTOVVkyZ9xCuyIJawxAkTc9jmdjIfLVMOMhG1r zQokE5TPbtNHecmJltBNie9mhrFuDQK9S8esKkZ0fz3+HsY2LLtYtuapMNFaffyG2PJllH9Re24Y K4p+XssDA2Ap+pe1o4y5iIxQikEY9VjAhJu2wShIxj3KlzixxeUnzen6x0xpKc4thgoFebKkIMnX cAJLwCt1X+Ia3JUgl6uJFMNnIcsnZvaHjNhFWXSjCuoqSWsh8pu6hZ8SumTOw3AD8P0cKK69hEni sl8dPBsga9VlecYX9fpFiH0mM30Z6VT6msXtdcyA0Hc5eda3CYSET4wp1Tu/6o+/JxFeGJBnV/jQ k8tCHAGJ64757Zd+YOdcCKtlOyZxbtqIptESDxqAIr6LdH1rqCe03YxkD0ijpK95K8tllZgDS10h CsZL6E4wUlYQcE3s5pA7pgVf6r7+vgAqufAlcSher5ZVOW1k0eWPEBoHNcLiXjSBb5uKMmKL2hks HxnXtYf//vPYtINk62cylhpBDpWRFLuIFJ0JBaWahiRdn56AnpRcLwJ6quRzUJl5amlHw8qmVWBs NRSUCZTqPags+Oi3uExLnBMbc4ZnOOJ8GRbM9r3oY6zZ9JVaWwRUX/f2xWIlGUwqOk6OZeur0JXS o5aUO4PIr73E6NLa31odAvaThH7r6xOlxZ8doWo/B36KyjzHCfDVm2gRMP2Bu7F+Ho9+Rhv42TMp yR2+0i9w+ME5XiyZBzWV2MMJgQ3GwH4SDPw0elnGaes444llTpihwsSUbPsttlC7pO4JvnKg93vP RnJ2lsTPbOrFtrH6oDhGJoEoKcENBcFqqqDIy5jAQ0MxNu3+plRZaNbRa1wMjSevpxabzi77sWwO doHkffeojoHwFPf2nV3QaTofg+Ceea9oazHONdBSfk25GKtdXGpbZWH9gZmhritITeo7BcG4/Ddk uHl8Odk0WWRDfVCA28ceVncyF05K/KupS6hBwD2BZT/WsfQ3Hk4Nrg46ceQyoTPuAdvcCohm7tfy n/KpKuBVRf/0gTOPnNdUVTHleqqsab3AnqvcbXgxfQQflsbgswXSVQWuFOq5CdzAr576uaH1dNbe b2ic5PzeF05RHVrsj7ilO/+SsyOj90HDEFPn5TaNy3ECmUGrLdemV+d/0XlnizfwYYupo/R33Zr3 rdKM7oq1zrhsDRO76Lvjz4w1sRIMNGTpFXUW+gRzmJoBK42OWgUv4FnYiVHwNxEib/9gV9oWNN4v H4dmkrZZJrHspHLfjhckx7q9TruiTtdA3+0aogn+dzXxC6CsoXooo1WP/1VNnMzhTpa2Fnb/VJOc aDVVP17S7qUrCuULQqEjGXnj4GgxoFU/+tEnyFNMoGWh09Ji+VNf2w7pm+G/B9f3CxK1r+imBLc0 PmtwJa0K65kyM2s0xH8MNzyfO6L6pfyUNKEWae2f00OQ3asfzqGNG3V1EYmjj9XDmHVlfa5v220n 3necUvUJZ/jCa3xJWlGbNM8SfxcrmvmvhKRjbHzdh+QJ+ST5HF6lqbSzg2HSMb9rhEgXFP09vpIy 95eStJLlyGW9v0eJsX1Xfg7/Ht4tHE7dL05YcBiXf0xfzM2lUZUfmlag2VHDysvKLWJPKW1U9mZm 5NfwfXmVKNMHNC4EPNBLXtzBk0uKzgYG9RgIQ66j+imh4ArdiHqsVb6rWz9LjNA//wLSoa1b4uoB SAy8/w6A//dMYmZn+sEYZu7kZP4PjlVavbZzvKSN1FsSpG9TTuRfVj1C+mkGMqhjypJgeK5ZaH+L /xod+iJjXHVLQELL6stL7KoYgkw/qs8bAw1uEWs7G/mAYTub5IaSyemLR0uwJm9dsRPJ6mLZbo2S SR02dWxj5p73bE8zX1A+pTCRJIl9vGmZZR6m1glu7Krnjn6VE1Wwnj/+ESIEr4h2VkuxMCVnPLsM MKvomnHxcSUekHw3l5jZSPL14HGAWop28S1eAykadEL9pxPkbzQihk04isUjkUQoLn8eLM1R4eaL cmsBd3sYNbfHzTbRGPReA8eymnkLlL37uQz2cM6bL9bAHHEZiu8/U/BLiowxPw0hx5Z8MijTRmJP s2OQon7PmWvkPVVGjpjb1Hifze00tqPdkm4Avb0tohNnGf2FmUqOSBvZvym7UoksT9U+i5WEYlkE xwn99DL6xCegMMp0rmQwFp88MJOEcGduA9s6tU6YYS3UpGVawH6yeskR0XktiXh7NqSu4VZb+CRa gxy0Tia5Sz+ioLauOakLKMNTOB85QoUbulwDMfpOxePD+nPkj3v33c/7M9xGweuiOXeky830kEk9 9mvPuGG5LAlarhu36lVOuYW/c9T0nV4j74ULRUO+sax6SkmEte/GJHfUaRhbFFaJ0yPdEmfCgLJQ 7kCN7hPPJ7rh3XQeo/8+vpanJSajSB89ynn2+D9UcXRyg5k7/sMVZxtzWyduUzNHx/00m5isLtqA 5k1tHa00u+RoHM8Zu4M9WLRoRVJxmgJSRT2fAj/MjBLQsadS3msnQfQE8y/Bb15R+JBmefhtD2ps /nzsYmJraclJdEH5qKayrlTUZ0xiK+NegXFUAgat7UcrZ+AxTBnba2+fp6f/vatEVx3WvJ/m60EO Q7UD7uHrQDEJWIP7RfP9uXdd/d0wnXRz34s7O8TNtuNdAtqsuj7pJn59sbjYrRJcx6Ic8ctd6lrb lfpK9SS6pJooPtx6XVXWcz7ghpQlB1I+tSVEx1dBFW7d9ONUy7OqrFJctHXF5TxQAHpBwzAwqqPq tXTT3wQ3vqRq7nUY4DJtNE6/b3ecv/nkuk4r/sYCYaTqVrFIHxc9dNb3xHMTPB75V+8uddP5osQS RmXX8ELZCWljOfM+ObAUnWv5LgKOJCoS5jDkb56BL7npBCHPxrW+mILyteD+XmusrutY8T6rwz5t rGJTynPKf6YH5588H/ph2KPf6Dh705Vq+9Lnlu+E4ommS74Q2+gO30BqwbsCFmhLnDVLqyILhHuW bEbRnyu+RLrh5ZUilv77NqIgHW7T/MiLhHL9ftyeWqVhdQWwTFrzZAKoBWiwjaQ2XJuq+JDob5uV MNa18imQbrN0y2oETy3W91oCsnwVWCwFXFrB6hpddh6aFNh2pt+N9Og9TREE1WcAOI2baNMESlvL 9zUh8yCvmuanLJY7b7rUE1+Zg5pSATMBPjawx2q5BnQYXhkUeSFK3GwfwZutpGFV1qLj4pdd7lGM 1qtgxAdjGU4fs/Q8v9h1w5HxxeIftVKOg0Q1mY1MRJdbVxas74wJcuBvQF9OEEnmHk1n6emJbwcR 2xv4xv7qRyiSVMdXe7la4TeYm88DYH9sY/zfxWmcdhcfFhktJ/VnYjuRZgwKLkY3VTnSLQnTud8O /eq6M3vnE/r0ggB611slONLzczu5hPrlRoaZR6IP50InWsOWUSlIBHIX2yP99ICLmmUJyq3p7T3z Qd1yibnazlzJx/8NW06vs52r3eNRAyXf8noGsJB2pnbh3hUHZ/Uuk5j1S0Lg/j7zh9kZyw+2Q3tF HOS6sxMK2ZV5Yz/nw7d12dt6TmybwIvDObepsuauxbISbcP4Yp8sN5MQ84tny0bswcD9PZD67Jyq Wm1aRNevY51nerNLlr8r2zOyym9YV+032z4MNsW8F7h2Fap0ybMrqT+K/wNshfhWY9nl61eylMfh awM+BcNlTuKe1Ph+pyMt0+9SZzrkMa9NJIl0TPqZEx0fUvfFToFl9X3rB7dtlXe3k+oEMeORFeNt ShO2gPXcN7zxRoBWHd8yLFO8LnVWhQRbQGPz3bHtrP+DB7xFsgYWOHg9CxhVrFljsq3YwRVdKt1C yTz/NWidLx7fzYcD1en5NRWFBYyr1Bz/4QE246MhmTPHGT8EVvEqELmBgf0U/1j4f5sOJp/4Wu0k 4EUCzX+VXNCm61uBBcUbJEtlEQZv7gI4Qkp2gBCoenPVeBdAYA1Y9frjkI/c86fCUjeiSkVimIEc Nv7tWIHBdHiBeMQas6/tE1U2eZM+TYMRCUY8rQa+jZr/nz/EArqNxUaYQ+nKsI5muKUt55wlP98f vI+ioOJu1fItxoLgIclgLNOKqb9xYDnV4c14ohcqkVf2douEVDjkhKzPlHgTjXjXwwkebnI9L9KO NBI0P1kmvRpuyeOu4lFQ9tpRv+H7GNEKmuNO0DoSVLEzv2W1pLduX/5tpTfE6XHsplqL7TB/frvQ VjZzLWiL1p18piwlibmL696VWv42vM5Z5k2utvAQbSikfV9WgzWdgNou0dDNDEdfQXZRMeT1iL+8 XK1rwP0fBBsFkY6v4Jt+9S0AfvkaJOXPJDGmoG+QF9Xi2cemito8KdF8s8jyQbwpxo/GERuvjCLa GPzF+gh8xa7xz3+zVzLvdwHSmc/lVV9hytB4E7F1XBv9jDxi2v6x5axUWbrs5P42F8OvDWUH8GsK NmtlEHpRrARw2eJFfru4XXU3rsXZ7IA2mXvW8U2qLd8mmAdIjQTMqFEIfOK2NKKNnOt/OdP6ppvo lS3ggonbjUJNB96fMjXyR59BqMr0UJH0vJEavdLJUiQp23mBswQZw9yk8AqtmScfF87MFbpYpLs+ 2eJcC+u287JztvPq1a53M0VvXDfdpAZccuwffYVSMR5GbZKwaM82vij1BPX/iLNHXdkE1q37/236 3Ix+Pu+QHg9WKawL5lav1BxbL+AeqdKcMbEBjwMnq6WXKUGLX/vWRRM4vXyKURPeXxdRlDwTDZpn A0ukSrFqc+Lwpm90vpDEnFzbJ7bGBVaGlUmFeV+kjrjJJpmLFHRiEKzGyrkKdc+t+Wh0f/mQ++2k LQ8RjZ2+0RI2zMxJGe18PAjmzzvJI7YOmcOxLvgEFpnbkqSMwSDBZ9DUDzss098zF8Y5g3wAKqlL EWsS8J/ph4pKiB74KdzPjUfOVCga2eyKUmZZvVJRv9CZy7d3WeyfVYl9yS6jpx8Sy6PMunfm4tvr L3ChX4GXy+B2xYVyCmsJEWRw6S9NClpyWEZWO2OuKjz33ysiGlOadxNY+rveh+/qbD1X31qtih94 0iNNITqxUHLwOJRrOg560rETaF2kvmlgTOcjGD+35e+ufGiDLqtGOu9JfRxqdnOcKudXuymClmLQ /E875xnV9NnG4RADQgJSZhiykSV7FCFUAyigYYQwFIQEkGVlL6sEQSyrKhIiASwgU1CrhIAilRHZ M2JkgyCyZCQyWpCC0gD1PSGt73lPP7//68P94Tnnd315/s+H+3nOXXaOO8V2COwJ8my8CdIGap+C cbS+D3s4eF5N6BEp2bFcwBUh+eDcoUslvM1tDb7Em1JUMb1LRyRtUhPapZ1N+Y456upFHaR5rp3J Loy0D8sXEgylFi379bgjphLyifWoSw5i6eppiiNEHbTKyxQLKnsSiIHnEFzWWBY2tazGR7Sv9+BD eKryk463CzWOxGRNxRJOXY627fCKiiF2FKkJVdqPSuO2UewStJjEcRmxJdknPl7OHQ/WRUmQ4pR8 5dtxCDVzsSKcVG2kVdh3s1Ze8Mueub3NcvMjl5XxCz9W03v5OHXL1QzGVC3fk7Dl3S3cY6pZgqb6 EJrQW++rJX0A/d62Sk+jVxwNbXSfirFIxWjsfhqIZulsDDOGVeFys3Ozz7fERMRGTCfzVJSHV9jR YiO20fbfXsoOWSdwnlFxL0s8pC3M5SQ7BfYIgFNCjBGHaupKpkhH4QNTVMJPZ1UCu60ZUPDe4IqV VtDTd7WIXu/rSOXZxhm8t/MDe6U4D127vIPou555hPyHMGIcOA7fO/PirnnnkbkFhJvWF6zrrzbF /MU7s6PCDcUpEcftHLs1dyCu/H4H3qBdCuC5oFML4NnHAHYX9DQ2ftzOotw1GTVJReDMXvQnKULJ aDLaJl2HCCVCNfgHIAOHaSJuGm6lI2VskU/YI8flNGD5yoe3V7epVvjBiozOuiA5MN+ZClpw0LMj o80VvhmAFHGewhHSZNOv1ZwJeyL1hwftoPqGRwOgDlBHehSD2SWWwrEJZNBOGZ7/EfMR1Jjs+w78 kX2XFq5kgbfQmTv7Nw3L5dmuOHQJvu3HcYE2TZRjUYVeRa1TZI0D1UP4K1YcDvRNjwZ4HZyRnIvZ hZH8Ccig3XpkPhez9rr/4huFF/0bs7fWKo+h197X1Y3V1NUUnz7rspCa5y8qUFQqdu9Nv3dBcLQ3 4+9XfPqIYpXGreBIv/09G6aal76fZ2Lfz86XMszG7v+Gvi0NKHMVw/B/8/BkcwLFiR3OPdaAO3/f w1or4CRttSfYJB3hqrL6aUodusmWqgGtsV9Fjesnt1fI2IKPbiB8xH8vIAkr3Jex76u3/A6qMjEL zbLse8YrN0F7JmpGMDZJvdEqbTpxd8iRPtxASvDi7ZAkfKcaeUVeNfLMKrAj5zddbeTtcUqWlJI8 1uJy3r7tYxu7fWwH9a4Haww4YGChpaESlw+H3UkKFPhJve36MnWlOBmGeOaf7ls4QeEfJVD6tTQU 9nUYuKe3hBL73oBjYIggnzZIRUewD1cd30VCrqCxckhAkYXBbzL/OXnsntJMKw/KZKV5GZq5nRDn hU33WzYGVgUND/96dUk+2SSiL/68AtKsSz+qilTv+mZoNWCRhq/PM9Lmi7MOr3z4nPwOHDGVaVT2 R150GlA8zn9z8ExAAXROr6ZyqQWNLRWwcKeCUZyo1psgZZCyJYyj8Bv9tclkHhGSqwj/GL2HL22Q nLLL4ue3n9hMQx5fcmvVQfBrevZasplKZpIF3Czi3qvcEpFMkO2VOZsIPJF/sKonpNBWcH38ef/x fvyoPUehOYezvyaJ8igd2GbNOY+WeHFMZzi1oav+R3WIPiSqk9xVf1LLt7wbfdVPOOh7Hk+7bCyi WcBfM2vhitlGzcXllou51rmUQqESgRK8OFcPV09mBDdSEelDH4gxHI4zXHJFS+BOsPVw7RLINyqL VGTs3jkjxu4Nd+wSRM7guPyaJNIfdAnnoTqTbGwpFfb3keAm33smBtVH2/jVTpy+aA8RAis+9Nli x4SvHsoQ+YLiuJvHF4LlEpLGG8xh+esqSJEdBtbFrODumacBcU8yXQFxbAyybYBnr9YvjhcMqpsr h8wWWRT0zDfiIZoamqXFHaKdkM7rUK5p9um0CO4MaMZp+gC52vlF9eLJdIlXWCHG6g5mAjcUNDUo erzT4d4ngSsP7ihrlsoJcE7HoUBFFh2ncB3uaNXKoVuRZegDUGyZuzRGGjPomKKxi7HPNexVBl4z tCc4Deyiu7nuBfZ14A6xb0DPuSavh3Zdw2Y7pcJrH3iDJ+dbQbHYPMbOo5JQkyGt0AQXWlKtwjWV NUYyHANnJOdq7GLssy+KjYGXIj08tzSa51gu9KHOrdqmtTH6Z+5ftKhN2NClJYycS2zTR5eSHIMM o42qRqlbhmJZwbrdh9dnue7CwYmJvn2uF+5O3Qpc2oi/MLOp/AN67vsOibMZQ+4/WQZ6h9+r1Soo lmkXrKaZ1I6iRP2N1vJCoRnZvO+q7zs/X2muXoJY+mcc0JRwMySHxcwCXsvgCzu0JD6u4KvKXKjQ 252Q4SPsqr+gJyyVmq/lCGdqJWS7JFfUzB+2Vzh+OjLKQYrPan6kWy0igFqM98l8hqk9MMsr+m2Z h/VIaUv2xvUcc8mQOR9DXI/F55r1IuH1l1o4P/fHOV6yg4TqpRbz105O9OYllxspM8dMvL/NxqTH voIWBC4bmWFu1IpEvVQL3HylvxwMWVzQbkajjhAURL3mMvah7kUCChvfExB8Zvo3AvbP3Ly0Uhl1 Li1KXLkp3XwsumAOHzxln3P0XM27+/1BWzzFuNAPNx/g89rNQgiBWmtjQXTKScdmK7+ntSmj0XhR O3kn3BsyceviiyDhrZmhqvnPTh952g/8Rc4HKHJ11W7VL5lYIYXYEHca2up6nH+dJ56i8IOL2Vpv s5d0tkl3uybxyhapvS++AlEQMPrk3vMFscGzoTp2yQmPBITE4/NLziHkPr0acPxjaET6U5m76CcD 29kpGOlm2R18oriN/68fGiREJV7PdZNeOV3+eXE8a7Ut/oPp+nCR1+r59F+M+pMOTPeXjFcuhtWt z2ztbX6IboQk6gMAAD3A7gBQv/MBF0K3m2PlZaWtXbZKCDUVSufLcgftHh0kyqILQbFp60RUOoB5 gl8/QaKIlROktrbOjtVORMfp7soJIACJYAOqAb42ZkqeZSTVPw+dAu+MC90enigCmKmsOQaAU9lY K6tn7/APZg+V47+OAmGWiarV7oSzVlbZ3rEZzDJ2zq8N0fg3nr0vYpg9qUpffx/DbJLNIe8ks1ZW 096XMsymSaW/v5v5N4a9l8TMBoT6366MmQXkgMadQNbKKth7EcsssND4yrUss2Z5YjeWtbJq9nbo mTUEva/065k1AtpNO7GslVWzt3/NrBn79p+72cyWMmDbTiprZbXsbX0yW8AG/9wIZbbUK++mslZW y94zhtmy/xTTicMcbfO6cyeKtSIR7DvjVCEMMCAAwOsU4P/f//j9CY4e254AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DBA21D.4CD76F20 Content-Location: file:///C:/26696AD3/1953_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DBA21D.4CD76F20--