MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DC531E.7C8F6990" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Perspectivas em Segur= ança no Trabalho: ensaio a partir de modelos proeminentes de Comportamento Segur= o

Perspectives in Workplace Safet= y: an essay based on prominent models of Safety Behavior

 

 

Carlos Manoel Lopes Rodrigues

https://orcid.org/0000-0002= -5188-7110<= /o:p>

= Doutor em Psicologia Social, do Trabal= ho e das Organizações, Centro Universitário de Brasília (CEUB) – Brasil. prof.carlos.manoel@gmail.com=

Cristiane= Faiad

https://orcid.org/0000-00= 02-8012-8893

Doutora em Psicologia Social, do Trabalho e das Organizações, Universidade de Brasília (UnB) – Brasil. crisfaiad@gmail.com

 <= /o:p>

 <= /o:p>

RESUMO

Os modelos teóricos para o estudo do comportamento seguro no trabalho são importantes do ponto de vista científico, social e econômico, tanto como recursos orientadores no processo da pesquisa científica, quanto para subsi= diar intervenções mais racionais e baseadas em evidências. Assim, o objetivo des= se ensaio é analisar quatro modelos teóricos proeminentes utilizados na compreensão do comportamento seguro no trabalho: a Teoria da Ação Planejada, o Behavior-Based Safety Model, o Physical<= /i> and Psychosocial Workplace Safety e o Integrated Safety Model. Cada modelo é apresentado em se= us pressupostos e características principais, bem como em suas limitações. Conclui-se que os modelos mais recentes que propõem a integração de variáve= is micro, meso e macro-organi= zacionais apresentam maior potencial teórico, apesar de ainda pouco explorados empiricamente nos contextos internacional e nacional, o que representa uma lacuna importante a ser preenchida.

Palavras-chave: comportamento seg= uro; segurança no trabalho; saúde ocupacional; fatores psicossociais no trabalho. <= /p>

 

ABSTRACT

Theoretical models for studying safety behavior at work are important from a scientific, social and economic point of view, both as guiding resources in the scientific research process and to support more rational and evidence-based interventions. Ther= efore, the objective of this essay is to analyze four prominent theoretical models used in understanding the safety behavior at wor= k: the Theory of Planned Behavior, the Behavior-Based Safety Model, the Physical a= nd Psychosocial Workplace Safety, and the Integrated Safety Model. Each model = is presented in its main assumptions and characteristics, as well as limitatio= ns. It is concluded that the most recent models that propose the integration of micro, meso and macro-organizational variables = have greater theoretical potential, despite still being litt= le explored empirically in the international and national context, which represents an important gap to be filled.

Keywords: safety behavi= or; safety workplace; occupational health; psychosocial factors at work.

 

Recebido em 22/02/2024.  Aprovado em 17/10/2= 025. Avaliado pelo sistema double blind peer review. Publicado conforme normas da APA.

https://doi.org/10.22279/navus.v16.1876

1 INTRODUÇÃO

 

No campo da prevenção de acidentes de trabalho, as questões relativas ao comportamento humano na situação de trabalho, especialmente, quando há a presença de risc= os eminentes é ponto de interesse de pesquisadores, organizações, governos e trabalhadores (Bley, 2014; Hovden et al., 2010)= . Este interesse remonta aos estudos de Heinrich em 1931 sobre a cadeia de antecedentes de acidentes e seu destaque ao comportamento humano no trabalh= o, como desencadeador principal de acidentes e, consequentemente, o foco sobre= o qual a prevenção deve ser construída (Hofmann et al., 2017; Manuele, 2011).

Apesar das c= ríticas, a valorização excessiva que Heinrich atribui às causas psicológicas dos acidentes de trabalho (Manuele, 2011) e ao disc= urso do fator humano como exclusivo ponto problemático, seu trabalho inaugura to= da uma agenda de pesquisa.  A identifi= cação do papel do comportamento dos trabalhadores nos acidentes e dos determinant= es ambientais e organizacionais desses comportamentos, tornou-se o foco da pesquisa no campo da prevenção de acidentes (Beus et al., 2016; Hovden et al., 2010).

Dessa forma,= a pesquisa sobre comportamento seguro tem se baseado em uma definição difundi= da de um conjunto de comportamentos dirigidos à identificação e controle dos riscos presentes no ambiente laboral com foco na redução da ocorrência de acidentes ou outros danos (Barros-Delben et al., 2020; Bley, 2014; Marchand= et al., 1998). O comportamento seguro seria composto ainda de duas dimensões, a primeira representada pela concordância e seguimento das normas de seguranç= a (compliance) e a segunda pelos comportamentos ativos de participação nas ações de segura= nça (Marchand et al., 1998; Neal & Griffin, 2006). Apesar da definição do comportamento seguro apresentar-se mais estabelecida, a relação das demais variáveis organizacionais e dos trabalhadores e de como contribuem para o comportamento seguro ainda se mostra um campo de intensos debates. Nesse cenário o desenvolvimento de modelos teóricos para o estudo do comportamento seguro no trabalho é de grande importância científica, social e econômica.<= /span>

Do ponto de = vista científico, modelos teóricos permitem uma melhor compreensão dos processos psicológicos, sociais e organizacionais envolvidos no comportamento seguro = no trabalho (Hovden et al., 2010). Esses modelos a= judam a identificar as variáveis que influenciam o comportamento seguro e a enten= der como essas variáveis se inter-relacionam. Isso permite a realização de estu= dos mais precisos e controlados, que podem levar a uma melhor compreensão dos fatores que contribuem para o comportamento seguro. Além disso, modelos que buscam prever o comportamento seguro no trabalho possuem o potencial de subsidiarem ações para promover ambientes de trabalho mais seguros e saudáv= eis, e por sua capacidade de reduzir os custos associados aos acidentes de traba= lho (Beus et al., 2016; Hovden et al., 2010). Em uma perspectiva macro, a existência de modelos com bom acúmulo de evidências qu= e o suporte pode favorecer o desenvolvimento de políticas públicas baseadas em evidências no campo as Saúde e Segurança no Trabalho (SST).

Como indicado por Hofmann et al. (201= 7) as primeiras abordagens teóricas sobre a segurança no trabalho adotaram como unidade de análise o trabalhador individual, para depois partir para o estu= do do contexto organizacional e consequente complexificação das técnicas de pesquisa e dos modelos produzidos. Os modelos at= uais, dessa forma, tentam abarcar o maior número possível de variáveis e integrá-= las.

Dentre os mo= delos mais conhecidos no campo da segurança, destacam-se o Modelo de Comportamento Seguro a partir da Teoria da Ação Planejada (TAP), o <= i>Behavior-Based Safety Model (BBS), o = Physical and Psychosocial Workplace Safety (PPWS), e o Integrated Safety= Model (ISM). Nessa perspectiva, este artigo tem por objetivo apresentar as princi= pais características, pressupostos e limitações desses quatro modelos teóricos r= elacionados ao comportamento seguro no trabalho. A delimitação desses quatro modelos pa= ra exploração neste estudo se baseou na difusão do uso do modelo no campo da segurança no trabalho, seja na pesquisa ou na intervenção no caso da TAP e = do BBS (Aziz et al., 2021; Spigener et al., 2022) = e na amplitude do modelo ao incluir variáveis de natureza individual, coletivas e contextuais, como o PPWS e o ISM (Weaver et al., 2023; Yaris et al., 2020).

 

2 MODELO DE COMPORTAMENTO SEGURO A PARTIR DA TEORIA DA AÇÃO PLANEJADA

 <= /o:p>

A Teoria da Ação Planejada (TAP) é um modelo teórico amplamente utilizado para entender e prever o comportamento humano = em diversas áreas, incluindo a segurança no trabalho (Ajzen, 1991, 2020). Esse modelo postula que o comportamento humano é determinado pelas intenções comportamentais, que são influenciadas por três fatores principais: atitude= s, normas subjetivas e controle comportamental percebido.

Na TAP, as atitudes referem-se às avaliações positivas ou negativas que as pessoas fazem em relação ao comportamento em questão, no caso, comportamento seguro no trabalho (Fogarty & Shaw, 201= 0; Guerin & Toland, 2020). As atitudes são baseadas nas crenças que as pes= soas têm sobre as consequências do comportamento seguro no trabalho. Se as pesso= as acreditam que o comportamento seguro no trabalho pode prevenir lesões e doe= nças ocupacionais, elas tendem a ter uma atitude positiva em relação a esse comp= ortamento.

      As normas subjetivas compreendem as pressões sociais que as pessoas sentem para realizar ou não um comportamento (Ajzen, 2020). Elas se baseiam nas crenças que as pessoas têm sobre a opinião dos outros — como colegas de trabalho, supervisores e familiares — acerca do comportamento seguro no trabalho. Se as pessoas acreditam que a maioria das pe= ssoas importantes para elas aprova o comportamento seguro no trabalho, elas tende= m a sentir mais pressão social para adotar esse comportamento (Fogarty & Sh= aw, 2010; Guerin & Toland, 2020).

Já o controle comportamental percebido é ent= endido como a percepção das pessoas sobre a facilidade ou dificuldade em realizar = um comportamento. Esse fator está relacionado à percepção das pessoas sobre a presença ou ausência de recursos, habilidades e oportunidades para realizar= o comportamento seguro no trabalho (Liu et al., 2020). Se as pessoas acreditam que têm os recursos necessários, as habilidades e as oportunidades para realizar o comportamento seguro no trabalho, elas tendem a sentir que têm m= aior controle sobre a adoção desse comportamento.

De acordo com o modelo TAP, a intenção de ad= otar um comportamento seguro no trabalho é um preditor importante desse comportamento.  Assim, o comportame= nto seguro no trabalho é influenciado pelas intenções comportamentais, que por = sua vez, são influenciadas pelas atitudes, normas subjetivas e controle comportamental percebido. Compreender esses fatores pode ajudar as empresas= a identificar barreiras à adoção do comportamento seguro no trabalho e desenvolver intervenções para promover uma cultura de segurança no local de trabalho (Fogarty & Shaw, 2010).

Embora a TAP tenha sido aplicada com sucesso= em muitos contextos, existem algumas limitações quando se trata de segurança no trabalho. Algumas das principais limitações incluem a falta de consideração= da experiência passada e a falta de consideração de fatores externos que podem afetar o comportamento seguro no trabalho, levando a necessidade de modificações no modelo (Guerin & Toland, 2020; Peng & Chan, 2019).<= o:p>

A experiência passada pode influenciar significativamente o comportamento seguro no trabalho. Por exemplo, trabalhadores que foram expostos a situações de risco anteriormente podem t= er uma maior conscientização sobre a segurança no trabalho e estar mais propen= sos a adotar comportamentos seguros  (N= eal & Griffin, 2006).

Além disso, ao não considerar fatores extern= os, como a cultura organizacional, as políticas e práticas de segurança e o ambiente de trabalho, a TAP pode ter sua aplicabilidade reduzida, uma vez q= ue esses fatores podem influenciar significativamente a forma como os trabalhadores se comportam em relação à segurança no trabalho (Beus et al., 2016; Fogarty & Shaw, 2010; Peng & Chan, 2019). <= /span>

 

3 Beha= vior-Based Safety Model

 

O Behavior-Based Safety Model (BBS) é= um modelo de segurança do trabalho que se concentra em comportamentos específi= cos dos trabalhadores que podem levar a incidentes e acidentes (Griffin & N= eal, 2000; Spigener et al., 2022). O modelo busca identificar e modificar os comportamentos inseguros dos trabalhadores, com o objetivo de reduzir a frequência e a gravidade dos acidentes de trabalho.

O modelo BBS é baseado em duas premissas fundamentais: a) comportamentos seguros e inseguros e b) mudança de comportamento (Geller, 2001, 2005; Spigener et al., 2022; Weaver et al., 20= 23). Comportamentos seguros e inseguros referem-se ao fato de que os comportamen= tos dos trabalhadores são determinantes para a segurança no ambiente de trabalh= o. Comportamentos seguros podem prevenir acidentes, enquanto comportamentos inseguros podem causá-los. Além disso, a mudança de comportamento se baseia= na premissa de que os comportamentos dos trabalhadores podem ser modificados p= or meio de treinamento e feedback, a fim de aumentar a segurança no local de trabalho.

O modelo BBS tem característica eminentemente interventiva e envolve uma série de etapas (Geller, 2001; Spigener et al., 2022; Thieme, 2020). A primeira etapa consiste na observação do comportamen= to com objetivo de identificar comportamentos inseguros que possam levar a acidentes. A observação é realizada de forma sistemática e com base em critérios previamente definidos. A segunda etapa consiste no feedback quand= o a equipe de segurança fornece retorno aos trabalhadores observados, destacando comportamentos inseguros e propondo sugestões para melhorias. Esta etapa é seguida da intervenção a partir dos comportamentos inseguros identificados, para os quais a equipe de segurança desenvolve um plano de intervenção para modificar esses comportamentos. Isso pode incluir treinamento, revisão de procedimentos ou mudanças no ambiente de trabalho. Após a intervenção, a eq= uipe de segurança monitora o comportamento dos trabalhadores a fim de verificar = se as mudanças estão sendo efetivas (Geller, 2005). O modelo BBS também enfati= za a importância da comunicação entre os trabalhadores e a equipe de segurança, a fim de identificar riscos e problemas de segurança.

Spigener et al. (2022), ao revisarem a liter= atura sobre programas baseados no BBS, encontraram resultados variáveis em relaçã= o à sua eficácia. Alguns estudos relataram resultados positivos, como diminuiçã= o de incidentes e lesões, enquanto outros não encontraram melhorias significativ= as ou mesmo consequências negativas, como aumento de lesões.

Frente a isso, os autores concluíram que os programas BBS podem ser eficazes na melhoria dos resultados de segurança qu= ando implementados corretamente. Os fatores centrais que contribuem para program= as de BBS bem-sucedidos, incluem suporte à liderança, envolvimento e proprieda= de dos funcionários, foco no reforço positivo e melhoria contínua, ao passo qu= e os programas BBS podem ser ineficazes ou mesmo prejudiciais quando não implementados corretamente. Além disso, as intervenções com base no BBS não devem ser usadas como um substituto para a identificação e controle de risc= os ou como uma forma de transferir a responsabilidade pela segurança para os trabalhadores.

O modelo BBS tem sido amplamente utilizado e= m todo o mundo para melhorar a segurança no local de trabalho (Al-Hemoud & Al-Asfoor, 2006; Aziz et al., 2021; Spigener et al., 2022), mas com predomí= nio de sua aplicação no setor industrial (Thieme, 2020). No entanto, alguns pesquisadores apontam que o modelo tem limitações, como o foco exclusivo em comportamentos individuais e a falta de consideração de fatores organizacio= nais e culturais que podem influenciar a segurança no trabalho (Weaver et al., 2= 023). Como salientado por Thieme (2020), há a necessidade de hierarquizar as dive= rsas expressões do comportamento seguro alinhando-as aos níveis de responsabilid= ade dos diversos atores organizacionais. Assim, faz-se possível uma compreensão global da complexidade de comportamento seguro que possibilite a promoção e manutenção do comportamento seguro de forma efetiva e duradoura.

As principais limitações se referem a detecç= ão de riscos, uma vez que o BBS se concentra principalmente em comportamentos individuais, e pode não ser capaz de detectar riscos ambientais ou de proce= sso (Yaris et al., 2020). Em decorrência desse caráter individualizado, o BBS p= ode não ser adequado para todas as indústrias ou locais de trabalho. Alguns trabalhos podem exigir habilidades técnicas ou físicas específicas que não podem ser facilmente avaliadas com base no comportamento (Guerin et al., 20= 18; Guerin & Toland, 2020).

 

4 Physical and Psychosocial Workplace Safety

 

O Physical and Psychosocial Workplace Saf= ety (PPWS) é um modelo teórico desenvolvido por Yaris et al. (2020) para avalia= r a segurança física e psicossocial no local de trabalho. Esse modelo considera tanto os riscos físicos (por exemplo, quedas, lesões por esforço repetitivo, exposição a produtos químicos) quanto os riscos psicossociais (por exemplo, estresse, assédio moral e sexual, conflitos interpessoais). O modelo PPWS é dividido em quatro dimensões – fatores ambientais, fatores organizacionais, fatores individuais e fatores sociais, dessa forma sendo caracterizado como= um modelo da base psicossocial (Weaver et al., 2023).=

Os fatores ambientais englobam os fatores fí= sicos do ambiente de trabalho, como iluminação, temperatura, ruído, equipamentos e layout do espaço de trabalho. Esses fatores podem afetar a segurança física= dos trabalhadores e devem ser adequadamente gerenciados para prevenir acidentes= e lesões. Já os fatores organizacionais referem-se aos fatores relacionados à organização do trabalho, como a cultura de segurança, o treinamento, a supervisão e as políticas e procedimentos de segurança. Esses fatores podem= influenciar a segurança física e psicossocial dos trabalhadores e devem ser adequadamen= te gerenciados para prevenir acidentes e lesões.

A dimensão de fatores individuais compreende= as características individuais dos trabalhadores, como habilidades, experiênci= a, atitudes e comportamentos de segurança. Esses fatores podem influenciar a segurança física e psicossocial dos trabalhadores e devem ser adequadamente gerenciados para prevenir acidentes e lesões. E a última dimensão abarca os fatores sociais do ambiente de trabalho, como o relacionamento entre colega= s, a comunicação e a cultura organizacional. Esses fatores podem influenciar a s= egurança psicossocial dos trabalhadores e devem ser adequadamente gerenciados. =

O modelo PPWS enfatiza que a segurança no lo= cal de trabalho deve ser avaliada considerando tanto os riscos físicos quanto os psicossociais (Yaris, 2021; Yaris et al., 2020). Além disso, o modelo desta= ca que a segurança no local de trabalho é uma responsabilidade compartilhada e= ntre a organização e os trabalhadores, e que medidas preventivas devem ser tomad= as em todas as dimensões do ambiente de trabalho para garantir a segurança e o bem-estar dos trabalhadores. Contudo, como afirmam os autores do modelo, ai= nda há necessidade de verificação da adequação do modelo ao mundo real (Weaver = et al., 2023; Yaris, 2021; Yaris et al., 2020).

O teste empírico inicial do modelo identific= ou algumas dificuldades em encontrar índices de ajuste estáveis, porém abriu caminho para adequações e melhorias em curso, inclusive com melhor desenvolvimento das estratégias de avaliação das variáveis do modelo (Yaris= et al., 2020). Ademais, a recência do modelo implica em menor número de pesqui= sas conduzidas baseadas em seus pressupostos que permitam avaliar seu poder explicativo.

Em uma revisão sobre os efeitos psicossociai= s e suas influências na segurança no trabalho Derdowski e Mathisen (2023) identificaram que fatores psicossociais têm um impacto significativo nos resultados de segurança em indústrias de alto risco. Especificamente, o est= udo constatou que fatores organizacionais, como liderança, cultura de segurança= e demandas de trabalho, foram os fatores psicossociais mais comumente estudad= os e foram consistentemente associados a resultados positivos de melhoria na segurança.

Os autores incluem o PPWS como uma das abord= agens passíveis de cobrir este conjunto de variáveis, entretanto, indicam que nes= sa perspectiva de inclusão de fatores psicossociais mais pesquisas são necessá= rias para entender melhor a complexa relação entre fatores psicossociais e resultados de segurança e desenvolver intervenções eficazes para abordar es= ses fatores. No entanto, o modelo ainda é muito recente e, por conseguinte o impacto, principalmente no meio acadêmico ainda (em fevereiro de 2023 o man= uscrito de apresentação do modelo havia sido citado 26 vezes). 

Outro desafio ao modelo PPWS consiste na var= iação de fatores psicossociais identificados como fatores de risco. Por exemplo, Weaver et al. (2023)conduziram uma revisão de escopo para explorar abordage= ns baseadas fatores psicossociais e identificaram um grande número de variáveis caracterizadas como de natureza psicossocial, bem como uma variabilidade na qualidade dos resultados obtidos pelos estudos em razão de limitações metodológicas dos estudos incluídos. Dessa forma, o desenvolvimento de um modelo com base em fatores psicossociais passa pela melhor identificação das variáveis que compõem o modelo.

 

5 <= i>Integrated Safety Model

 

Beus et al. (2016), a partir de uma extensa revisão sobre segurança no trabalho, desenvolveram = um modelo que sintetiza as evidências apresentadas nos artigos analisados, denominado modelo de Integrated Safety Model (ISM). Os autores propõ= em o comportamento seguro como indicador de segurança no trabalho no referido mo= delo. Essa proposta do comportamento seguro como indicador principal ao invés dos acidentes de trabalho baseia-se no fato de que os acidentes são indicativos= de falta de segurança, mas a sua ausência não é obrigatoriamente indicadora de segurança. Além disso, nem todos os incidentes em uma organização resultam = em acidentes. Ademais, a não ocorrência de acidentes pode ser apenas pelo fato= de serem raros naquele contexto. Por exemplo, em uma organização com atividades exclusivamente administrativas a baixa ocorrência de acidentes não necessariamente indica a presença de segurança no trabalho, mas apenas que = os acidentes nessas atividades têm baixa frequência de ocorrência. =

Os autores apresentam uma abordagem abrangen= te para a segurança ocupacional que incorpora teorias e modelos existentes em = uma estrutura única e integrada. O ISM é projetado para ajudar as organizações a entender e abordar os fatores complexos que contribuem para lesões e aciden= tes no local de trabalho e para desenvolver estratégias eficazes para promover = um ambiente de trabalho seguro e saudável, incluindo variáveis psicossociais, contextuais e individuais.

O ISM consiste em três componentes principai= s: antecedentes, comportamento de segurança e resultados. Os antecedentes referem-se aos fatores situacionais e individuais que contribuem para o comportamento de segurança. Isso inclui fatores como demandas de trabalho, recursos de trabalho, características do trabalhador e fatores organizacion= ais, considerados antecedentes distais. Esses antecedentes podem influenciar a motivação dos funcionários para se engajar em um comportamento seguro, bem = como na aquisição de conhecimento sobre segurança, indicada como um antecedente proximal do comportamento seguro (Beus et al., 2016).

O segundo componente do ISM é o comportament= o de segurança, considerado indicador principal do modelo, que se refere às açõe= s e decisões que os funcionários tomam em relação à segurança no local de traba= lho. Assim enfatiza-se a importância de entender a natureza complexa do comportamento de segurança e a necessidade de abordar vários fatores que contribuem para isso (Beus et al., 2016).

O terceiro e último componente do ISM são os resultados, que se referem ao impacto geral do comportamento de segurança no desempenho organizacional e no bem-estar dos funcionários. Isso inclui resultados como taxas de lesões, absenteísmo e satisfação no trabalho defin= idos como indicadores “com atraso”. O ISM, como um modelo que inclui fatores psicossociais incorre que a promoção da segurança no local de trabalho não é importante apenas para prevenir lesões e acidentes, mas também para melhora= r o desempenho organizacional geral e o bem-estar dos funcionários (Derdowski &= amp; Mathisen, 2023).

Um dos principais pontos fortes do ISM é sua ênfase na interconexão de diferentes fatores que contribuem para a seguranç= a no local de trabalho. O ISM integra variáveis no nível organizacional/grupal e individual, indicando as relações entre os conjuntos de variáveis e os níve= is na predição do comportamento seguro. Na elaboração do ISM, os autores avali= aram os modelos teóricos subjacentes aos estudos analisados, bem como a qualidad= e e quantidade de evidências que corroborassem as ligações entre as variáveis a= presentadas no modelo (Figura 1).

 

 

 

Figu= ra 1

Integrated Safety Model (ISM= )

Nota: Adaptado de Beus et al. (2016, p. 3). A linha tracejada indica a mudança entre nívei= s. As setas tracejadas indicam relações com menos evidências acumuladas e as s= etas cheias indicam relações com maior número de evidências acumuladas.

 

Beus et al. (2016) identificaram três aportes teóricos explicativos presentes nos trabalhos que dão suporte ao modelo: a)= Job Performance Theory, b) o modelo demanda-recursos, e c) o modelo de clima organizacional. O enfoque a partir do modelo demanda recursos deriva dos estudos que avaliam os efeitos da sobrecarga de trabalho ou exposição a estressores ocupacionais, decorrentes de políticas ou práticas de segurança deficitárias, sobre a emissão do comportamento seguro (Derdowski & Mathisen, 2023). Já os estudos baseados exclusivamente em modelos de clima organizacional se limitam às relações entre expectativas de recompensa (fat= or individual) e as práticas organizacionais relativas à segurança expressas p= elo clima de segurança (fator contextual) sobre os padrões de comportamento relacionado à segurança (Zohar et al., 2015; Zohar & Luria, 2003).

Especificamente em relação ao comportamento seguro, o ISM apresenta uma sequência para predição a partir da Job Perform= ance Theory (Liu et al., 2020; Neal & Griffin, 2006), na qual fatores contextuais e individuais interagem com as variáveis conhecimento de segura= nça, habilidades e motivação para segurança que antecedem o comportamento seguro= e o comportamento inseguro. O recorte a partir da Job Performance Theory aprese= nta maior amplitude em comparação às outras duas perspectivas teóricas, como ressaltado pelos autores do ISM.

No entanto, Beus et al. (2016) indicam que n= em todas as relações indicadas no ISM apresentam o mesmo nível de evidências q= ue as corroborem. A identificação das interações entre os fatores organizacionais e individuais ainda necessita ser explicitada, bem como os mecanismos subjacentes a emergência dos efeitos no nível individual a partir das variáveis contextuais. Além disso, os fatores de personalidade até o momento estudados têm se centrado em fatores “positivos” como conscienciosi= dade e extroversão (Beus et al., 2015; DePasquale & Geller, 1999), e, principalmente, como fatores de personalidade se relacionam com a motivação para segurança (Bley, 2014; Neal & Griffin, 2006; Zohar et al., 2015). = Além disso, o efeito da interação entre esses fatores e as dimensões do comportamento seguro não estão claras quando consideradas todas juntas, uma= vez que o ISM é um modelo derivado de um processo de revisão, nem todas as rela= ções previstas apresentam ainda a mesma quantidade de evidências empíricas que o corroborem, ao mesmo tempo, esta limitação do ISM figura como um ponto para exploração em novos estudos.  

 

6 Discussão

 

Em termos de limitações a abordagem do comportamento seguro pela TAP apresenta como principal limitação se concent= rar principalmente nas intenções do indivíduo em relação ao comportamento segur= o e sem considerar adequadamente outros fatores, como as pressões do ambiente de = trabalho e a influência social (Ajzen, 1991). Além disso, essa teoria assume que as pessoas são totalmente racionais e tomam decisões com base em uma avaliação cuidadosa das consequências de suas ações, o que nem sempre ocorre na práti= ca.

De forma similar a TAP, o BBS se concentra na mudança de comportamento individual, sem levar em consideração fatores organizacionais mais amplos que também influenciam a segurança no trabalho (Derdowski & Mathisen, 2023; Thieme, 2020). Além disso, esse modelo pode criar uma cultura de culpabilização, onde os trabalhadores são responsabilizados por acidentes, independentemente de sua culpa ou responsabilidade real.

Como tentati= va de superar o foco excessivo sobre os trabalhadores o PPWS, apesar = de promissor ainda necessita ser melhorado quanto a abordagem dos fatores psicossociais, como estresse e assédio no local de trabalho. Além disso, es= se modelo pode não levar em conta as diferenças individuais e culturais na percepção do risco e na tomada de decisão.

Embora o ISM tenha como objetivo superar as limitações dos modelos anteriores, ele ainda é relativamente novo e requer = mais pesquisa e validação empírica antes de ser amplamente adotado. Além disso, = como é um modelo abrangente, pode ser mais difícil de aplicar na prática, especialmente em organizações menores ou com menos recursos.

Em geral, todas essas abordagens têm limitaç= ões e não devem ser vistas como soluções únicas para melhorar a segurança no trabalho. Em vez disso, é importante adotar uma abordagem integrada que lev= e em consideração uma variedade de fatores, incluindo as condições físicas do ambiente de trabalho, fatores psicossociais, cultura organizacional e influência social, para criar um ambiente de trabalho seguro e saudável para todos os trabalhadores.

 

7 Considerações Finais

 

Ao longo do tempo, a abordagem para o comportamento seguro no trabalho evoluiu de uma perspectiva mais "punitiva" para uma abordagem mais colaborativa e proativa. As primeiras tentativas de promover um comportamento seguro se concentravam pr= incipalmente em punir os funcionários por não seguirem as regras de segurança, mas isso provou ser ineficaz na prevenção de acidentes (Hofmann et al., 2017; Manuel= e, 2011).

De teorias individualistas para os primeiros modelos de estudo comportamento seguro, com o tempo, os modelos de comportamento seguro se tornaram mais sofisticados, envolvendo uma abordage= m de gerenciamento de riscos baseada em evidências (Derdowski & Mathisen, 20= 23; Hofmann et al., 2017). Em vez de apenas focar nos erros e violações, esses modelos buscam entender os fatores que levam as pessoas a se comportarem de determinadas maneiras, a fim de criar um ambiente de trabalho mais seguro (Derdowski & Mathisen, 2023; Hovden et al., 2010; Liu et al., 2020).

Nesse contexto, os modelos de comportamento = seguro no trabalho são fundamentais para compreender e prever o comportamento dos trabalhadores em relação à segurança no ambiente laboral (Aziz et al., 2021; Spigener et al., 2022; Weaver et al., 2023). Estes modelos permitem identif= icar fatores que influenciam o comportamento dos trabalhadores em relação à segurança no trabalho (Hovden et al., 2010). Este processo é fundamental pa= ra desenvolver estratégias de intervenção eficazes que possam melhorar a segur= ança no trabalho e permitirem avaliar a eficácia das estratégias já utilizadas de intervenção para melhorar a segurança no trabalho (Barros-Delben et al., 20= 20; Hovden et al., 2010)

Os modelos mais recentes – PPWS (Yaris, 2021; Yaris et al., 2020) e ISM (Beus et al., 2016) apresentam uma proposta de integração de variáveis micro, meso e macro-organizacionais buscando preencher lacunas deixadas pelos modelos tradicionais. Em especial o ISM apresenta uma proposta teórica a partir dos dados disponí= veis oriundos de pesquisas anteriores e ressalta, principalmente as relações ent= re variáveis que ainda necessitam de aprofundamento, fornecendo uma fonte relevante de perguntas para novos estudos. Além disso o ISM engloba a perspectiva de variáveis de segurança física e psicossocial do PPWS dentro = do recorte referente ao modelo Demanda-Recursos

Entretanto, ressalta-se que mesmo os modelos mais recentes — e particularmente o ISM e o PPWS — ainda foram pouco explorados em nosso contexto nacional. Algumas poucas exceções podem ser encontradas nos trabalhos de Barros-Delben et al. (2020), Bley (2014)  e Thieme (2020). Esta = é uma lacuna importante, pois a realidade das condições de trabalho, organização = dos trabalhadores e até da legislação trabalhista em nosso meio diferirem substancialmente dos contextos em que estes modelos têm se desenvolvido, pr= edominantemente norte-americano, europeu e em alguns setores produtivos na Ásia (Aziz et al= ., 2021; Liu et al., 2020; Weaver et al., 2023).

 

REFERÊNCI= AS

 

Ajzen= , I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Ajzen= , I. (2020). The theory of planned behavior: Frequently asked questions. Human Behavior and Emerging Technologies, 2(4), 314–324. https://doi.org/10.1002/hbe2.195

Al-He= moud, A. M., & Al-Asfoor, M. M. (2006). A behavior based safety approach at a Kuwait research institution. Journal of Safety Research, 37(2), 201–= 206. https://doi.org/10.1016/j.jsr.2005.11.006

Aziz,= F. S. A., Abdullah, K. H., & Samsudin, S. (2021). Bibliometric Analysis of Behavior-based Safety (BBS): Three Decades Publication Trends. Webology= , 18(Special Issue 02), 278–293. https://doi.org/10.14704/WEB/V18SI02/WEB18072

Barros-D= elben, P., Cruz, R. M., Cardoso, G. D. M., Ariño, D. O., Pereira, G. K., & Lop= ez, M. (2020). Gerenciamento do comportamento seguro para manutenção da vida na Estação Antártica Brasileira. Revista Psicologia Organizações e Trabalho= , 20(1), 883–890. https://doi.org/10.17652/rpot/2020.1.16926

Beus, J.= M., Dhanani, L. Y., & McCord, M. A. (2015). A meta-analysis of personality and workplace safety: Addressing unanswered questions. Journ= al of Applied Psychology, 100(2), 481–498. https://doi.org/10.1037/a003791= 6

Beus,= J. M., McCord, M. A., & Zohar, D. (2016). Workplace safety: A review and research synthesis. Organizational Psychology Review, 6(4), 352–381. https://doi.org/10.1177/2041386615626243

Bley, J. (2014). Comportamento seguro: Psicologia da Segurança no Trabalho e a educação para prevenção de doenças e acidentes. Artes= ã.

DePas= quale, J. P., & Geller, E. S. (1999). Critical Success Factors for Behavior-Ba= sed Safety. Journal of Safety Research, 30(4), 237–249. https://doi.org/10.1016/S0022-4375(99)00019-5

Derdo= wski, L. A., & Mathisen, G. E. (2023). Psychosocial factors and safety in high-risk industries: A systematic literature review. Safety Science, 15= 7, 105948. https://doi.org/10.1016/j.ssci.2022.105948

Fogar= ty, G. J., & Shaw, A. (2010). Safety climate and the Theory of Planned Behavior: Towards the prediction of unsafe behavior. Accident Analysis &= amp; Prevention, 42(5), 1455–1459. https://doi.org/10.1016/j.aap.2009.08.008=

Gelle= r, E. S. (2001). Behavior-based safety in industry: Realizing the large-scale potential of psychology to promote human welfare. Applied and Preventive Psychology, 10(2), 87–105.

Gelle= r, E. S. (2005). Behavior-Based Safety and Occupational Risk Management. Be= havior Modification, 29(3), 539–561. https://doi.org/10.1177/0145445504273287<= o:p>

Griff= in, M. A., & Neal, A. (2000). Perceptions of safety at work: A framework for linking safety climate to safety performance, knowledge, and motivation. Journal of Occupational Health Psychology, 5(3), 347–358. https://doi.org/10.1037/1076-8998.5.3.347

Gueri= n, R. J., & Toland, M. D. (2020). An application of a modified theory of planned behavior model to investigate adolescents’ job safety knowledge, no= rms, attitude and intention to enact workplace safety and health skills. Jour= nal of Safety Research, 72, 189–198. https://doi.org/10.1016/j.jsr.2019.12.= 002

Gueri= n, R. J., Toland, M. D., Okun, A. H., Rojas-Guyler, L., & Bernard, A. L. (2018). Using a Modified Theory of Planned Behavior to Examine Adolescents’ Workplace Safety and Health Knowledge, Perceptions, and Behavioral Intentio= n: A Structural Equation Modeling Approach. Journal of Youth and Adolescence,= 47(8), 1595–1610. https://doi.org/10.1007/s10964-018-0847-0

Hofma= nn, D. A., Burke, M. J., & Zohar, D. (2017). 100 years of occupational safe= ty research: From basic protections and work analysis to a multilevel view of workplace safety and risk. Journal of Applied Psychology, 102(3), 375–388. https://doi.org/10.1037/apl0000114

Hovde= n, J., Albrechtsen, E., & Herrera, I. A. (2010). Is there a need for new theories, models and approaches to occupational accident prevention? Saf= ety Science, 48(8), 950–956. https://doi.org/10.1016/j.ssci.2009.06.002

Liu, = Q., Xu, N., Jiang, H., Wang, S., Wang, W., & Wang, J. (2020). Psychological Driving Mechanism of Safety Citizenship Behaviors of Construction Workers: Application of the Theory of Planned Behavior and Norm Activation Model. Journal of Construction Engineering and Management, 146(4), 04020027. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001793

Manue= le, F. A. (2011). Reviewing Heinrich: Dislodging Two Myths = From the Practice of Safety. Professional Safety, 56(2), 52–61.

March= and, A., Simard, M., Carpentier-Roy, M. C., & Ouellet, F. (1998). From a unidimensional to a bidimensional concept and measurement of workers’ safety behavior. Scandinavian Journal of Work, Environment & Health, 24= (4), 293–299. https://doi.org/10.5271/sjweh.323

Neal,= A., & Griffin, M. A. (2006). A study of the lagged relationships among safe= ty climate, safety motivation, safety behavior, and accidents at the individual and group levels. Journal of Applied Psychology, 91(4), 946–953. https://doi.org/10.1037/0021-9010.91.4.946

Peng,= L., & Chan, A. H. S. (2019). Exerting Explanatory Accounts of Safety Behavi= or of Older Construction Workers within the Theory of Planned Behavior. Int= ernational Journal of Environmental Research and Public Health, 16(18), 3342. https://doi.org/10.3390/ijerph16183342

Spige= ner, J., Lyon, G., & McSween, T. (2022). Behavior-based safety 2022: Today’s evidence. Journal of Organizational Behavior Management, 42(4), 336–= 359. https://doi.org/10.1080/01608061.2022.2048943

Thiem= e, A. L. (2020). Modelo teórico-conceitual de comportamento seguro com base no conhecimento produzido sobre Behavior Based Safety – BBS= [Tese de Doutorado, Universidade Federal de Santa Catarina]. https://repositorio.ufsc.br/handle/123456789/220502

Weave= r, B., Kirk-Brown, A., Goodwin, D., & Oxley, J. (2023). Psychosocial safety behavior: A scoping review of behavior-based approaches to workplace psychosocial safety. Journal of Safety Research, 84, 33–40. https://doi.org/10.1016/j.jsr.2022.10.006

Yaris= , C. (2021). Development of a comprehensive approach to physical and psychoso= cial safety: The Physical and Psychosocial Workplace Safety model [Tese de Doutorado, Murdoch University]. https://researchrepository.murdoch.edu.au/id/eprint/64040/

Yaris, C., Ditchburn, G., Curtis, G. J., & Brook, L. (2020). Combining physical and psychosocial safety: A comprehensive workplace safety model. Safety Science, 132, 104949. https://doi.org/10.1016/j.ssci.2020.104949

Zohar, D., Huang, Y., Lee, J., & Robertson, M. M. (2015). Testing extrinsic and intrinsic motivation as explanatory variables for the safety climate–safety performance relationship among long-haul truck drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 30, 84–96. https://doi.org/10.1016/j.trf.2015.01.014<= /p>

Zohar, D., & Luria, G. (2003). The use of supervisory practices as leverage to improve safety behavior: A cross-level intervention model. Journal = of Safety Research, 34(5), 567–577. https://doi.org/10.1016/j.jsr.2003.05.0= 06

 

 

 =

 

------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAA1EAAAIyCAIAAACl8Ne9AAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsMB2mqY3AAA/7VJREFUeF7svQlgVNd5NnxHu9AuJIEQiEUzYhPG2IBtCdt4t4SdkDQli5uQ L7GlZmmkLNCU0iStidPA1y9Smy5S2uYnaWKHNDGxjeTdYJBs9k0I0IxYtYMQSIAWJM3/nHtm3+6d mTszd0bvzVgZ7pzlPc8599z3vKvGaDQKNtf4+PitW7dwIykpKTo62vYn+k4IEAKEACFACBAChAAh oH4EXLJzUQ50g+E7cODA/v37BwcH1T8kopAQIAQIAUKAECAECAFCwAEBcHHg5cDRcUEevzQOcr7u 7u6XX355YGCguLg4IyNDo9EQjoQAIUAIEAKEACFACBAC4YIAWLv+/v59+/YlJCR8+tOfnjdvXmxs rAue79y5cz/84Q8NBsPixYvT0tLA801MTITLIIlOQoAQIAQIAUKAECAEJjMCUVFR4PkgvDt69GhW VtbXv/71hx9+GBydC57v/PnzL774IkSCX/rSl2bMmDGZUaOxEwKEACFACBAChAAhEI4IdHZ2/upX v4qPj//e974HKZ5rOd+FCxd++tOfgkP8/ve/P2fOnHAcJ9FMCBAChAAhQAgQAoTAZEYA7Ny2bduA wMaNG2fPns2hcPThwC0oc3HB48PB1G8yY0djJwQIAUKAECAECAFCICwQAP8GRm5sbMyBl3PB86Eo v8JiYEQkIUAIEAKEACFACBAChIAtAlx+5+CS4YLn43WI7aPVQwgQAoQAIUAIEAKEQNgh4I6Fc8vz hd0IiWBCgBAgBAgBQoAQIAQIAXcIEM9Ha4MQIAQIAUKAECAECIHIR4B4vsifYxohIUAIEAKEACFA CBACxPPRGiAECAFCgBAgBAgBQiDyESCeL/LnmEZICBAChAAhQAgQAoQA8Xy0BggBQoAQIAQIAUKA EIh8BIjni/w5phESAoQAIUAIEAKEACFAPB+tAUKAECAECAFCgBAgBCIfAeL5In+OaYSEACFACBAC hAAhQAgQz0drgBAgBAgBQoAQIAQIgchHgHg+l3PcUKHRVDQEbfpZd7hC1WNDTYnPnftTN2j4UkeE ACFACBAChAAhQDyfqzXQsLNOEOp2ymH6DDU1cop5XmmlG6qLvV+L/nTtVY/+dOT9sCK5RsSfJRSY PH9OEf7UVYB0aoIQIAQIAXUjQDyf8/wYalqFctyWwfQZatZXtSgww9rCIm9b8bNr2x5LKxuNxtpS NxR47shzXW8HFeHlI/8sEeETGEbDY7J7fpXUGDzRbadk8IlpDr6awnE8PpDtbRVvy4fRUiFSJxUC xPM5Tbdhl1BYu1Zk+raYd0vTrlZSUVHBtlK+izZUlOiqmoS6MpNi1FAj/qgpsehozXestxzL8H+X VOy0IcO+jE9dWzp21hg79mgwvRw40Y4V7cdo/ZWP0XPdSfUgyRjspDhLyMBBoog/pwh/6vpPuapa qGysZ3uYUF7fWKn1RJlXIn+XDfnfgqqQI2IIgYhGwGh/nT9//oUXXnj++edbW1vHx8cdfp0M/6yv rq7HOPmGWVytN43ZvIEa9aIatpyVsfnKv5ez4qyk+DP7whoQf7J8sS1jacDakpt2xCZld20hQY9v Ii3my0WPts06V7Qdo3lAIha8WZuf3Xc6GZaN9Bj1bGE5LCv+T6G4vLycrSq+3OrF7+JlWmb8RrFl JvXVpiKWW+Y75hv836xdy1Rhrmzb8alrS8fWVvnATeMq5oTaPEFsTHxAjHorCaaRmoZZzW0byuv5 euKFTRSW8x8xMlND5ofSSgwftW1da1cWGKVnKMJKWLYsqXHZPM9SRd387n8LPnZM1RgCVssg6wvL JTLmR0rcu+vFV5bt20EGmnYtyCgfqiL8PVqPt6/5rRU0SkLYtd0Ywb+BiwMvB44OfJ3lN5LzOXD0 DTurqiC405TBok8QmnbsstWLFC/SORS3/FPf0gTBYJWO12RqYVGRV1SoFbRMdcoO205lxBusUaum 1bkd3oVXXePgXd5cBvGhXrfBXmnrokfbEbmvyEqV1hqN2wt31exsxj+aWx00Rp7rusNt0txvgPi4 VCgVBciWZVVaK+6hTcLa2u3YpJqqtkF8WrphnZlHqi2FKFVXJaxjZ4miujJRutpQoatqxh3sLU2i KNqpDFPH1zVBwrNhEZsqdjmV8aXrhm1VdUUie2Xa+i2zZxpX0WbGqTVVMarMHezYpduwWeRtGeFi fQylSoexlNbyhppbhHXYnrFUtZUMB36ZxEfNwprtrNG6sm2C2JAJPUaMANZR/I3Z3trWFdyTOmlW nHWgLnUFZqG+VclgL7a3EfqbNBeOYn7nFsSFZtZ2cCWJue8aA3QGZrWDa3UHV0XbebLx2iUlXIEi mk47NVhjo6lwM1LHsdiO1EUXNuqOsFBokEzX9UPd3Ir7reYt0M2DHxhrdVldh2YrIp7PHveG1kVm yZ7IrjswfW4nySCuLOspy2wdZ8sZuStj26icMg5EuKqiraxt1Os3C1t0OqumWc4K81yRaXp3Flau dW186HOncggL9zIRfpbg08MOJrpF7LFp0ZsnrHjdGq2WnRZqdewZEc8uYhnx0dCKjF1T3Q5B504B iWMT/wlVtWJNE0tIJxC5D4VL/t75YGDHNDsfLZyYbBdHCye23gXr73yM8e8sUWh7TnB1iHI+Jtkd LfgxzPa4ErnHCflm3O7Wlg+m53KXqZLlGJls6xG0a3CCZqIX15efZvGuGpXbtZLD9aYt4vls0MJJ dIuAZcIvcbGIohePJtB2hblYkJ8c+MuPVzc01DQYTA3alLG8Hw3sQGLTqW07UtPp3Cw7CuO0jDct bHq4DMR8Ofdo17z7iuKwttRBLik0uD45eawrNYhI/32ynyXcz6+20kZ259UyoBOIV3A56gokRP7O agonMb9zC+L504Gt50RaWf9SZ1WGlIrA81nChfOZg1bEeSxOyNl1Ec4KjfCV6bI5cbKAdxAbm92F uGwX8gyT9NjZTwmaB87p4f1YvZavEUdBtZ21uguBtDvBtp1A2lGwDQWFi669fFQDWZx4Piu6Fbqy uqYqnWn5sBMr43Dgo6GD64ao64XUr2HXDnZXVLNxbquujNVgJ8fyYlTHStxWWIk1hjvMkAnVcad1 TSlT8jqU4cdNNLBNdP5l3JlTmQYfuoYlw1rdLqZKKWsur7f1yHXukR10+IjEgTtWtBkjP+E17xQK RWYYfKlE3UAu3HBqexKcJUzTAfGehRFwmiFx/YgSQLEM35FxGmpdK6q113t2L3Vsjk4gQXgE7A04 PDPZcslRVC8ht1O2cTkao3ioG8bHifCV6bqwWnG2BuFRzdzZe9hOaWmt6cWnrWSvY1xO4ls7KxoX tiiO1iMuLEacBdvoyLlrL9Zp4Is6WDaSD0fQTD2po0mCAPfTMCv+bS3huIuF+JtoUM0u7upg8oVg dgYuHDbMXh7FokOQqzK8BZMPh70riMkXxEyHN13XlzMvC+5u4mD8LTZXjIuPxuLWYR04p5OP0kS4 ycvA5MFhBwMaqbaAY/nGfURsXDxABkcOZhXmxsV/eCB1kiw7kw8Mnyc+PWaHMptFJrqGWRx9nLzE RDN4mG9W15vgtcHb6sBlbcHizGHj1WHp2wS8aW2KS1d0bGLUif3YOMCZJ4lXBpU2rTg2aOdM52Kk 5mVnHYuT85ldF2YULCvLsnLNvnnuqA3Z0rL113GBgBUx67w4uN85e3Ng1k3POreaNW1h5hYsrolW J0WbdWZCwsHu1+rHxVyyzFZUdnNtu6+46MJKtf0wJZxXLBNjNyi7heNMvLhj2YJg3oytxLsEIWSr wL5jdz4cAvF8KpkhIoMQCGMEnN7DYTyWiCDd1pfTyj27OFpYDwZ2TLPoqOPModsy2WbOyeFoYVfJ 7H1ta+zsdIzx7yxhS7abkTqOxeF44PK4ElbHCQV4Pnuuic29LaftG89ny97bPlV6vrYcDo6ueXmR LvvYF1a3fru4GJLPreOgpHg+p/L8gG1DPPF8kqBTAUKAEIhEBIjni8RZDf2YgrCugtBFwHGU4Pls QnSpWKZr4sRtxLHOYmM/5HwuxLe2kcic5HwuyjsLpF0JtgM+2/I6IDmfPJyoFCFACHiPgFmH4224 L+97ohqTCoEgMGRB6CLAUxYhMl1n0bIbaxAmNHZp7+EZZ7OdgI3O3saKxqKGtgg8ncu7Ekg72KsE eKq9aN4dz6dBG7ZGgxcuXHjppZdwc+PGjQUFBVFR5OQReJtK6oEQIAQIAULACQE4U4reczhLuE0O 6SdsQejCTwqpOiHgAwITExNtbW1bt26Fm/GmTZvmzJnDGyGWzgcwqQohQAgQAoRAwBFgUVPYFSiG DwMIQhcBh4k6IARkI0A8n2yoqCAhQAgQAoQAIUAIEAJhiwDxfGE7dUQ4IUAIEAKEACFACBACshEg nk82VFSQECAECAFCgBAgBAiBsEWAeL6wnToinBAgBAgBQoAQIAQIAdkIEM8nGyoqSAgQAoQAIUAI EAKEQNgiQDxf2E4dEU4IEAKEACFACBAChIBsBIjnkw0VFSQECAFCgBAgBAgBQiBsESCeL2ynjggn BAgBQoAQIAQIAUJANgLE88mGigoSAoQAIUAIEAKEACEQtgiolOeraBBqDOzTELbIEuGEACFACBAC hAAhQAioBwGV8ny1QsWaXRU7dCVlmgr1gEWUEAKEACFACBAChAAhEKYIqJTnQxJEbWVto36dILAM 23QRAoQAIUAIEAKEACFACPiDgFp4PqhxXVzaSn/GRnUJAUKAECAECAFCgBAgBDgCauH5qnQlMN1z +LhmBGnqCAFCgBAgBAgBQoAQIAS8REAtPJ8gNMF0z+EDRtDL4VBxQoAQIAQIAUKAECAECAEXCKiH 5xOqi+ucPk00aYQAIUAIEAKEACFACBAC/iOgFp6vuliobNQ7f4qL/R8jtUAIEAKEACFACBAChMBk R0BjNBptMbhw4cJLL72Emxs3biwoKIiKChpTCCcOrcNsNBiEMl2J0dg42WdJxvgnJiZGRkbGxsYc JlRGVSpCCBAChAAhQAioCwGwHzExMXFxcUHkQ9SFgD/UgCVoa2vbunWrRqPZtGnTnDlzeGvq4fms owP3t8sg7NhlaKrahlgtxMTImfihoaHz589fu3ZteGiIzatGI6cWlSEECAFCgBAgBFSFAH/pJyUl ZWZmzp4zJyEhQVXkhQUx4cHzwW93S42haccuoWkHvDqg14VBH/F8kisMEF3r6/vggw+6u7sTExPj 4+NxMCLcJHGjAoQAIUAIEAKqQgACC/Aro6Oj0Fzl5uY+vHp1RkaGqigMC2LUzvMh2VrdTvafJQiz vrpYu2Zdha6q1l77HBZwB5nI8fFxg17/zzX/3NfXt/rRR/CcREdFYcrt1PZBpom6IwQIAUKAECAE vEEA+ikILPDy6unp2bN7T3Z2zre/U5U/e7Y3bVBZhoDqeT6NBgk3ygVhbblQurZcU2ZR6UL2V0pz 6BkBmPGdOXOm5v/9bGJi/C+//nU8ITgqkZyPlg0hQAgQAoRAeCEAtg8vr8uX239RWxsbF/fdDd+D LRpZK3k7iWrn+Vg85oadNa2CUFhbWCqUmVkWF54d3g59EpS/MzZ29uzZf635Z1i8foeekEkw4zRE QoAQIAQiGIFLFy9W/6wa3N+3vl01W5RiRPBgAzE0dzxf0NxyJQdVihy7lZUbKnU1Qk0NBH5IwgGG T1dSI1mTCuBp4A8Epplcd2k9EAKEACFACIQvApDzTbD/8AevNvB7xPApNpnq4fn4kLSCtrK0srLW WF+pr9kGhq+pSrGxToqGjDgYTYqB0iAJAUKAECAECAFCwBsE1MLzQaRnf0HsV1m7vRACP7oIAUKA ECAECAFCgBAgBPxEQC08n2sdrrYUAj8/R0jVCQFCgBAgBAgBQoAQIATUwvNBh1tT02D5aCoa+Kei guaIECAECAFCgBAgBAgBQsBfBNTC80GHW1mp4x+EYxbqyvCpF8pqa/0dIdUnBAgBQoAQIAQIAUKA EFALzyfqcLUNglZToW+qKkMGDsRkhmaXgvPRGiUECAFCgBAgBAgBQsB/BNTC84G3Q3CWMk0FxHuQ +TXqq7WVjf4Pj1ogBAgBQoAQIAQIAUKAEAACauH5SmoMVboS6HTrywUm89NW8ulBFg66CAFCgBAg BAgBQoAQIAT8REAtPF9TlU4Qmuqri3W1RoNQitAt/MMkf3QRAoQAIUAIEAKEACFACPiHgFp4PowC Ej5BWKevqbH9QPLn3wCpNiFACBAChAAhQAgQAoSAanS71cVIvWZEBg6HD+7TRQgQAoQAIUAIEAKE ACHgJwJqkfNVNuoxErhxwLAPYfnwF99x8ft0EQKEACFACBAChAAhQAj4g4BaeD4EauFuHMywr64M f/Edd1gGXroIAUKAECAECAFCgBAgBPxDQC08X0WDAXxeudAEZS4M+/AX33EH9/0bINUmBAgBQoAQ IAQIAUKAEFCNPV/dlvVw2kWUFihzYdiHv/heX16M+zRLhAAhQAgQAoQAIUAIEAJ+IqAWOR+EeqWV 28WsG1yZi7+lpbXbcd/PEVJ1QoAQIAQIAUKAECAECAHV8HwsGp+j6Z7zHZowQoAQIAQIAUKAECAE CAEfEFALz1dcLMB2D1k3LNGY8R13yilWiw+zSlUIAUKAECAECAFCgBCwR0AtPN/2zeVw10XWDV1J Df/w3LsbNlfTlMlCwIhSRvzhH7oIAUKAECAECAFCgBCwRUAtPJ+2tFZfDWFfndBUxT/gAXFHW2pK vEvT5hkBTZRGEDQafHARWIQAIUAIEAKEACFACKhTzscC8VU2NuqrwefhY6wvh98u7lCkFjkrFmxe dHR0lHjhC3F9ckCjMoQAIUAIEAKEwKRCQC1yPihzYcDXoK3UI0xLZWNDaW2DUMpM+kpqJtV8eDtY I1PnipfRCFEfPrgzMTFhve9ti1SeECAECAFCgBAgBCIRAbXwfFDmwoDP+cP0vHS5R2BsbOzq1avn z507derUtWvX+vquNZ9sPn/+fF9fH34i5AgBQoAQIAQIAUKAEOAIqIbnE5B4o875Q/PkGYGRkZHW 1rNvvdnwi9ra40ePHTt6tO4//uPdd95ta2vDT4QeIUAIEAKEACFACBAC6uL5kGwNBnzOH9ynywMC sTExOdk5SckpnR2dHe3tne3tXV1dKakp06ZPj4mJIegIAUKAECAECAFCgBBQF88nbNZXNJTiI6bi YB+DodQglMK6j6bKAwIxsbFZ2dkzZ83KzZuhiY6CK0feTHZNzcwkno9WDiFACBAChAAhQAhYEIj+ 0Y9+ZAvH9evX9+7dizslJSWZmZlB8wDN0vy67v4HXn2uS9A9y+nJzDT8TcWvFz5blqnEdMGn4Y7p GoWhW8Rc42NjoueG5vbt24Zz51NSUz/96U+tWLkyNTUVnhwRM0w2kDt3xsfHMSj4JgdtWSqx9KgN QoAQIAQIAe8QuHHjxv6PPkYAsvsfeCA9Pd27ylSaeXUa+/v7Gxsb8bp88MEHLRgyN09bfC5cuPDS Sy/h5saNGwsKCvB+DQ56FTWGDYW7HKPxGRpKtrU21ioQom90dLSnu/vWrVtj42NiBLsIiWHHorRE RWNchw4d+p/f/A/ma/2X1y+9a1liYuLExHjEhGfmqzQ6Jjo5OTknZ1pcXFxwliX1QggQAoQAIRBk BLDhgxWp+dnP8Kau/M63Z8+eTed8b6cA8hGY9W/duhXQbdq0ac6cObwFtfB8Gk2J0djoPCqQ63/Y EXgztLe3Hz16FC6uEBiJYYsjhecTwPNFQYJ58dLFD3fvgcTvkUcfhXo3OjoGUx5ZPJ8Rg8rJzr7n nntm5OUR2+ftFkDlCQFCgBAICwTw0r948WLNz6rxnq789rdnz5kdFmSrikj183yaer2xVGsHGgIy 65Tg+bq7ul577bVXXnmlp6cnIzOTswv+s5IqmWDOFt8ZHR26dRviy8SkpNjYWEV4ZfUMEJRAUotQ NLm5uX/xF19cs6YsZ9o0lZBHZBACgUCAm6PAngFfIuaMGgigVNUmj4of2sD4WDDcDAZ/VQWOTGL4 ar986dK//fxf8eXr3/zGrPz88H1l84wJMK8P8lOsdp6vokRTJ1TXN1bqkJBDEMDtwXejrKSmWKhq bPQ3f6zBYPhFbd0ffv+/KSkpz33pL3JnzGBPRWSFrwNGMHPDgzFhBOPnL2IyH87gFMPjgo46Ojp+ /f9tH7p9+7kv/sX/+epX586dG5zeqRdCICQIQDuBKJs3blyHakK0sYkQ1URIwAx4p9hzwZobhSlT psD+JCMjA951Ae/UTQdYMDCGu8muQbwJGKsRRi8EmKdjtRuN2PBf+c1vMcTPP/eFGTPzMA6mubI3 RQsVwrL6NS+J+ISEpKSkrKwsyGJkVVSokNp5PkNDja6sigXpK14kFBUKza1CU4uAlLv15UjF6ycI rWfP/vu//dsbr70+e/acH/79j+YWzGPJKsLzDOQOCjwLbMvBA86EAmH0iEvPLQ5JKKQ3GH64eXPH 5fY//+xnX6goL9Day4Slm6EShEDYIIAN6uqVKwcPHmxvvwwJN4RHLJk2XSpGgPF8gpCSnDxjxoxl 99yTnpERNGt4W1RAxsDAwJEjR8AzDdy4YeL5VIybM2mc54Mh1t49H+LXB1c/DIYJX0RrpXC6mC7R aATPB/XU8uXLMQr+LgvOpXaej6HQUFFRVldnxgOB+bZXFyPlrv8A6fX6X/xH7Ruvvw5G4afbtmp1 ECZGjm7Xf3xU3gIXibeebf3ut6vOn7+w7rPrvvLV5+cVzFMJ2RZNSpBF9yoZfqSSwbNXh2RO+Yo6 euTItq1bz507FxUTA+kRfxFGKtrhPi7IpiBdgxYC4QWKFi/+VlXVkrvuio+PD/64sHLOtrb+9Cc/ OX78OAhInDIFfAbScQafEt96tDCpwHNwcBCNQDvH445xrjpsLoheJiaGh4cRC2X+ggXf+c53wPbh QQ4a/eHA84l8n6FmCwdFu2adoK1Eyl0E6/PzMoDnq617/fXXwO39089+phN5PrrCCwEIa7/1zb9C lrl1n/0sdLvq4fmwN8ElXhTGRJEwJrwWlUtq+asFnu94ZeIKvrQG2bJhnvvhhx/+6Ic/TE5KXrBg wV1L74K0IOzkHBGwGOQMAQcDxMZnsUX273/33Xfz8vIQAa1k1SooeeVUV7YMbECPHTv2ve9+9+LF S6WlpfB4S05Jxh4VhvbrpvAakJWFnTMilgT2DbwU8Nra8fvfp6Wl/eAHP3j0kUdS09KUnW4PrYUL z2c3hAaDUKarMBr91e2C56sDz/fan8DtMZ6vsDBouFNHSiEg8nzfPNd27rOf/dz/eV4tPB922O7u 7pMnT+IwF0n+4ErNWji2g7cjfOGxTcNPCDsGbHGCLO3DZj16587u3btf/Id/mK/TFReXPPjQgyCD eD51LifG88XGQhe5a9eu//yv/8LK+fsf/eihhx+GgCr4BGNHOnL0KKRK/X19X//aNx57/FEEZgtD ng/HLlN4DZFbDTO2j/F80dEjI8OHDx/+yU/+EUP4u82bH3vssbQgBhoMJ54PDhy7DMKOXYamqm0w 6fP/gOIlzwf3jtHbN67DhnpoHNZxcThhp6cnx8VEh5NgObibDawj7wzfHJswTkQnJsTHxUQpD5U6 eT5s9O+8/favf/0/CAaUmpYaZCvd4E7ypOgNmzVekKMjI4kJiXffvfQvv/Y1rVbLvYiCdmHHg4Rg z549P96yZdmyZQ8/9NCqhx4CJxEoArjK2GIvyLRrvnTl0IwvTYRtHSybK1euwHyouqYG3DmY9VUP PhgyOd/Ro9/+znegGP3+xu8//sTj6Rnp/r9Dw3ZmQkY4lgRYCPB83//+9/HlB3/3dwijFsCn2Gmg 4cHzQZO7pcbQtGOX0LRDEJpg0tekhOGdlzxfyFYJdewBAXXyfJcvX37l5Zd3/G4HdtXHH38sKyeH edCEj/UMLTlbBDB3cLe83t9/6MCBY8ePQyHw9//wDytWrEhISAgmUBaeb8uWLXffddfq1asfeewx uIIGiAa+XKGL4u2DdfPNXWQy83zADYHAXn311X8Gz5ec/OKLL64KoW5X5PngyfHXG/+6tPTpzKlT A7RyqFnPCAwNDX388cd/8zd/gyPcD37wd488QjyfDWAVDULdTvYfBHv8th4OHGvWVeiqav22XCae LwIeTnXyfAgW/9vf/qb+jV2ZGZlf+epX8mbNEiMjkK19WK44xvPFxPT29Lzxxht/fPVVhP7+yU9+ 8sADD8C2L5jjsfB8YB3uKioCz/fYE08gEyZnyQToIe6M3rx5e+SOEB0bl5yaFC+pghC9QmAmOGGM io5hrimm4UyMDd+6dulSx+DQaBQLKJGWNCUpPT010UtJ/Z3hWwP9fSPxmTFx8cmaMU1MHBRbsVFG YYJ1CvNIZNCxdhpMKC19YexjY+MTSOsAtj4grjmw8fjDH/7w83/5l+SUFDXwfLAv3PDdDWXPlHGn V7qCjwASojY1Nv7t3/7tnbEx4vkc8a/QID4fIrUIa8uF0rXlmjKLSlcBLw7i+YK/3BXvUbU8H+R8 7779zqxZszb89cbZ5vw2ig+fGgwOAmAHOjs7f//738MwKzsr6x9/+tP77rsvZHI+8HxLljwMnu/x x808X3BgoF68RsDE8/3851DpqoTn2/i9jWVryqZmkZzP69lUpAJ4vo+amjaB57tzRz08X5DS6Uoi WGusN9aXL6oub11rbLAJyGdQwG1XsnNZBWpKuI2+9SqpgeVhsC+DhQ6IRhHdBiyxiq4G8O4qIymw 6DBbXdHUGMIT2H3CFR/SErrCFwHEtojjITZEHadPhm2BXXLUOiFACBACPiOgFp6PhWQpra2s3FCp qxFqaiDwA0PFcq+V1Pg8NmUrVjaCKRWKq/VMWYFLX13kroOAsWJgqXRVRfWcgLU7IQ31eoxe0eZV YUZKKRTxtf4H1/F6VKGsAD0ucp+w4JvhFO0+lIipvG/Yt/GMZyqnk8gjBAgBQsBbBNTD83HKtYjJ V1pZCbFfpb5mGxi+pipvhxSk8trK2kqXqSAQYdB7VkwO0axh8Jxmngr8FZhQ7y6vaPOqsHd0RFhp FleAfdj/6Ap7BEi8F/ZTSAMgBAgB1wiojeezUFlqKK3csL3QW6YmSPPcUGPR6zJ1Jr+YUhOqV11V k1BXZtFxWn43q4KZdrakpoZVM9UQa1s0xVbtrb3y2LBrRxPS0tnymaW1ZgbQTS8G832XtJl7Evsx /aOigVUpqWmwGUiFOERODW/QRJn92Hkbpp/cjSJIE0TdEAKEACFACBAChIA9Amrh+ZxN4/QVNbr1 rXXl6uL6mqp0jOcpQygZ8YIsrFlU98LNmDkeI1ccE76VQ//K2DFwPmWCqIutL0dV0QSP8YRNVS1r cbO21FCzfsc6Vr++qGo9Z6q2mbW3+s12saP1LU1IRuwqhYj7XnQ7WTegqA4xcJxos+ua/4oOdIuq 6xshbLUOpLYWozMNuNT63XHsfGj8cjsKegAJAUKAECAECAFCICQIqIXnq9KVQOply/nBuk+/uUWw JuANCT6OnZrs+erXmX4Ap9RYqRXt7Mzsjk0VJpozsWmlG8A2NbcaOM9UXL1BtHpjBTgbCdO8phY9 bsFrmUkJIS7TlpbaCvV0i8x8lwNRHnrhimCXNV11Xatft0O3XlgjzyLPcew27KD7UahiFokIQoAQ IAQIAUJg8iGgFp6PRV+uK+Ocn8UVVWvjwKuuqYHJoYkdE9WbTJrmyraOieYkLyYT5BdX1DI/CCb2 Aydo5wKrLSxCqGpkKLFehpoKsMmyenFJhmPXApjOYoc+PNDvaezuRiEJBxUgBAgBQoAQIAQIgUAg oB6eT2CaRZHzK9NUQMqlriAkbrBnbg5gnNy5qkJmBzXuNnEo4MyK161x8PpA1OlipnZlBUxOstxU kLFM9eWQC9p0XFprVhDzmw0V64UN4D0le3FJvHPXUBHvLGxshKyPa5ltLpHfFMWQ4kDE//c4dvej CMQqpjYJAUKAECAECAFCQAoBFfF8YHMa9dWiuKwO+k7O+UnRH7zf4Z7A9K8Qv9lI30TGCZpYrpyt K2MUMxbM7MMhqjt5Adj1QQsMTmm9aM/HbPtwaSu3VwvcRnDnWs46tvB/shqbHTyDRVddU3+sAmsQ l+dezD0yRs6WNoeueTGLuhnk2Q3ENCiQtaUZrDno1zuOvaKCD03kGD2MInhzRj0RAoQAIUAIEAKE gBkBFfF8DeAUEKhFFHCJLgOM81PPTCE+n50KllMGmzbzbfb/IhMmqjXNmlprAc7RWf5tlg063jDV trZgD4Hrnz31Yv7NA22MFrEYvpiKs1u2A7H229goDrm21HHstbUcC9aRxCjUM60hpMQpyHcgo1lz P2qve5h0QbZDuB6oa0KAECAEAo2Aini+Ml0Fs04T5VaVjXpwfupy2Q30VFD7kwyBRubsLbp4i5e+ WrBT5fuPhk1I7YZdwnZ0sWiLl1zfZAyy7T/w1AIhQAgQAupEQC08n76+3Fgv1K7ZZYaJiYqgyay3 BAlRJ35EFSGgEAJug3z72L5tSG2Dbg2TQEMyO9mypPgIHlUjBAgBQiASEVALz6fbsghpdhu0lbBy s/mUlu0wR0WJRPRpTIQAR4B7YDtFxkb+QTHMNSJkW8J+myvwO1abV7uw3A6xwbX6bdxG1KzeNUXP tg3ZLbbrENvbJsi2Y/xtmjlCgBBwi0C4Ju6zxtI3bxh2m4z/M26zpfjXmCuzE8Ua9480dddWC88H 0384bTh/1Jt7Td3zStQFCAEoYZVtmbvk6KqaxWYdImPrTRG8t4iaWeYOxHWzTqG87cNyb8PhyTY2 uOvo2TCXtQ3Z7RhBfBsysliiTjq2oCwGk701i0nwZAciUsYv8ktBGgwWz6h48a2JJYH0q+8inlLe mlzeQ2Z5r4doG7ff68r2FZzNTnxq3Ouc8n6SHfrqquH5kLtCqHP+hB4hokBtCARxP3UYOrbCO3fu XLt2ra+vb3h4eGJiAgWiNFH+bO/cns9mX4UXtiUytjmC93aumd2MBwTJXpxDeSPAtmAK8+3KAs91 9Gxz7mZzyG6nRmyCbHuOPa62FaIQPZjWqOho/96gskjBAhgZGcGiutLbe/369bHxcU1UFF7d7ENX uCGABYM9QeS+gnFh5Zw/f/706dOXL1++devWuHEiKiY6CuvHp8uFhYmSRie2cft9os9TJR8an4w5 5X1cGYpPV3mxAOs954+6zfkcBeGegstYxc4ufSED7SApm1SxoCtL/0BTKLGmcIY1Thixj8bEBOM1 7JIavJv7+/vff//9t99669LFizhbY3ONi4/DG9pP8Z/dvuopMrYl+55jPG1z+ESXhHuMHG5Tw30j cltQfGcIYYPRMTEJiYnR0dGBpgFcAo4R77377quvvrpv795bN2/GxsTgw7gGLCz7tWVS85tVb7IC WrnVeXGNPXvcfZB3uFD3W7YZWWQFANfQa/eMjOeLigrCUYHDd+PGjbffevu//vO/fvlf/93S0nL7 1u3Y6Bgzz8d2TaVQdsosz5cOz89uzcVuNSCx69i8MmwTVtklfLcr7WJpuTc7sZjE2GXDcmjchTWL gwGMtRnL4o3IrPFq4fnqIOYTWHgQhw8ceJVasgFoh0UrscrA7SMm23dnqyZrXWSJ4mzdaAPtICmX 1IZtLZvNcWbYEIJHocT8MJ2FKFAbGxsbGR2FmO12cK+hoSF0CGHMiWPH9u3b19TUdPbMmc7OTtwE VaJgxr8lhg0GL18XkbHNnFjDzjoe1tspnrbtDYttoIUaicjh5nIeGpHZgn/jV1NtUcYGnv7qlSuY 4s6OjvbLl/36oPLlyx3t7T3d3RDmoVnbC5Ljru6ukydP7mts/HDv3sOHDrUZDL29vVjqWFfsY4ON 7D3HUse9zqthJ8sGXi/AvqBMWCsv5aK5WUPNzkWmTOOIR2o6JbJtRl9dXc+jVgX98km7pxyVoliW LRtMbhdbNR1s1gN5tbdjYV1qPXP22NGj2JQ+3LMH+1LL6dM4Noi0KDc215nlLfnZWeRZ+9TzDjyc zpRG3pqvyjnXvHVpOTblaLtiN9HsH0WmrPbWJuyyyZvT3HuRgJ69/LaZ2jXqNxcqB2WIW4oJcf+W 7pvqamrWWv5V1WL6Ck6wtjYUu4cPuLCUunVVOxtqS503TyZ2btbtYK1qLXnbRMHy5lofuvK3intS 4S1t03joKHQaIY6PcbFxOLRe7buK3RS72ZBZu+ovGjLq87P7+Pj4uba2Y8eOgdvb//HHK1asSEtL 6+7uwf24uDjG9IE+2ftsiUbHgmCXaerMBJTX62vWlzUV1XPtbZOuolC/CD/C5k8sA9kef5WyeNo7 dDpNlXiPzRjs91o04g1eDGUQRhs5bViemA3rimEua+6mroTZUaBr1r5xQ6sYi7tpfc2aRodG1tSU mH/a7tDCIn1oXuoypsrvIiY5jSCAv9/74YdYbBD1QafvpyknqsdERydOSUrAUrERDOMkExMXA8by VHPzsePHIdU7dfzEvSuW91/vx5sbgmR83Cp5Pe05FiBsNh8HcExPOwKKer0LGXYJa0183br6+qKy soq1bvMR+T0lchtwP1K5LfhejlkCMJWuMDAwcOLkSRh+xMfHW8zsfG/XfU2+UNFdT3dXPwwD+vpw NMnJyUlNTe3q6MjKzmKyRqXMA5h1h+jjheQDTECDC2i3lujWr9PjB9EU2bGAhXR2Wq3Wi69FZkki 2i6btji+ZQnlkO1Y3vNOTYlmJ9stqUlZBcv7VJDTuGlhrLMmoOf20zaXC3qQlYDtoCC9sdK7A1Eg plupNtUi58MiqqzU8Q/jjOrK8MH5044DUWrQAWqHLRrBrHtzkETbri3RE9NgL1i2VUk4VXUWdHuS ObsXmFuJsJDK+61hGh6c1J2k90wQb8opoiCFPuGP/Q1aVPBUeDueOHHiwIEDTYgOvW9f0D5g8g7s 33/8+ImrV65ev37jzJmzf3rttT/88Y/Hjx2DSU08XuReGvbZRfM2hfF2ERkbKZC5VbWt+NU5trdN GGxTPBZrSG130bNtYnCbBDPWWNrW8NzsJ1exx32axvCoxF+Ww0PDkNFA5CZ+2vz/tLbqT544cfgI BHkHD+HPoYOHDx86cvjwkUNHWppP9fb0QODX3tFx9Ngx/NZ6tnVkeAQvdXsxn/OLyrTnuHKsdlKo 2T/vTn7aYuNOG4ir3QYsX6H1NcjSQvIsRA6X015mS0BFhcUlnW+Iti6i3m16FqLlqQ4DtQpFPSpO CImJiUkpKclgvgJ5paDxtDT8iYmJGZ8YHxmF/uMODp2JU6ZExcRMCBrF1LpsWK6sO+ysUNybfxha my2pO+2gd0r4bvrVRVNuzU68btzD5DvSE5FZ49XC88GSD3x+g6DVVOjhwos0HPBSBOKiqlftF0vI JvpeNpWL+dXYBoRUa9z7yZJmjY/CIpS29awUbB0kbauyVL0uZOYeZM7uBeZi9/akmt1CW9YyhkLn IJwPEIU+zyaTs+AwHRsTGx8Xn5AAU6vEpKBdU6ZMSUzEJyEhPiY6BhxeekZ67owZ06dPn5KUhMmf gLGhcqYzPmNEFRVBgC01ozE+IT43Nzdv5sw8/Idrll+fWfmoPxMLJjsnJysnO9v8wffMqVPT0zOS k1NSU1KnT5s2f+GCAq122vTpsOnDuppwZSvquOe40qw56bzMGi7+vJe63KacNxBXu409ywfMeTJw +0Tdzu3bElAv1LFclswlHeHIq3TrTV/E9OTebXririqh3VNkXXhqRDSdY1wWNodpOTl5M2bk5eXN CvyFJZqG1ZORWVCgXXn//cWrVi0uKkpOSVF2N3Jh3WFvheLJ/INZjQjmvPJmDF3kmjf95NyUJ9sV Lxt3O4Uu6InQrPGWMAH8CzyAXnjhheeff761tRUaK4dfA/pPCDO40Bj/YRdQsC99a+uG735vgU73 bFlZ69mzCrZs59NuaZelVzDLZizfnb8wU0BzGgbzr/h/i1THjk6TGYTpIML/5aIka8d6WY8tYltW 00OXpPKbdh0FgEJf0T979mzZU08Vziv43re/c+TIEebkGMwLNlhXr3Z1dUHZ99Uvf+Xx1Y9WlJfv fPXVNxsa/nbTpscfefSFr3wF0iAodHwdn8t6FuMXh5lUtBNqzB6Bixcv/njLlnnz5t13331vv/M2 7LIggYMdniKfbnZ1iR/8gRUf+4KWDx448KO/+8Fzn/9CVWXlW2++aTAYfr9jR/EDD3zja1/b8bvf YbXb0ujiQXb98LrfhVDe7TbluIE47zb11WbRM2sG5nviJW4+sE8w3fC8DZrKiwvbko/GLjGNw15k 2plcbY82eNhts253wkAseWwOP//5zxcsWACTjzfffBNOObD0hSNtoC8s13+u+ee/3rDxX2r+GdqP S5cu7d27t7i4uKio6Ff/33ZYjno/WJu3iAVu+zeLUFwOt0v29jLdZ9Nu++pxfDlZfgVlbFos8y7O kcP25rIpqyGgtVdTL9KNW0o41rV73dmWsnkXuqBQHqaY+nffeWflypXLli179dU/wiVfXj1lSoF/ AxcHXg4cHfg6S6NqkfNBtl+lK4FOF3PAZH5aGCSJYrGAH8/kduBFTFp9C7PT8vVyEmK7EHR7lDm7 E5hLEiTXN9NvCiUpcVXAaGSHEEGAeC89LS0zMzMrmFd29tSpU9HhvIKCT3/m01//5tdxPfLoo4Xz 52dkZED6yGmTb8wnDwKLqpXSZ8gDTKlSopwPWtWkKUkQwkEylzNtmiKfaeyCLA8f/JnOPtOmoX2t TvfJT33q29/9zte+8Y0HSkrmzJmD1QadnewBOT28bnVe5ibdblOSGq6GVoG5EjlezMoUISTXi2bL 0NT4sw16s+kpqd2TjbfHglg5cfHx2KmgHgjohS6ys7M/8YlPfPX55//sM3921113zZiRm5Q0xey3 yzzfvB+SjSWHxWzXpX2IbX52z+Yfll8t6dpBllPyeROpLptyZ3Zi247bxm17kpmAHu1GZtZ4tfB8 UFVA8YhMa7pao0EohV0I/yBKs/dLNiA17Jac5x5g+gmlhaijYBsf97WUdzkLsV3JzN3LnN0LzCX7 l+mb6S+FknR4KKBk5AFf6MBOmpKSsnjx4hUrVyxYuBCWNLDdwfmJqXUVtZ3xhTiqozQCmNmxsTts dgN/4eU9d95cvLMLdbrkpCR0yWTGsvt18fC61HnZNuhym5Kj4XJk+VoseaJFrg+Oo2I3fmyD3m96 XqgOZYPqY0Fx2Yzhr4/1vawG77H82fm6Qh1MTeA1glUTzN69JJaKqwABBzFiqHS7QAISPqgMHD64 77+gM2C6XRsZtFvptDnmrp3gG8Ni982C5WqTWJwL0u2E2CaNiXWlsDLWEo5ScbOGhZW3I8klqfay bFcS9YBQ6NOMwlX2qccf182dt/lvNrW1tfnUhgKVWKQY8eJq3AsXLvzjT37y2OpHvrJ+PfRxzKqP rjBHgOl2X3xx3ty5999//57duxGjJwgDwnLC0uKLCn+HR0beeuutB1etctbtWlVotg+4S3WYo87L pFezbg3WWjZtSWi4rLpcm73KVuNaX25pzLF9Fyo2i1LQVk9o1hiatz35m54c1WFgptOi212+fHlD Q8Pg4GBg+nFs1cGeBJ7CcDUrKSkRdbu/gsNZcMigXpwRUKdu15GjChXPh43M5aKB8t//xRQwns9/ 0qgFuQhYeb7vb4IHpdxqAS4X5jyf2V7TanplY8EpEzpbsy2ZVdRdLCQ8ny0kjOcbHnbH86kbvMlL Xah4PgfEiedTzxJUJ8+nFt2uy9jLDQahqclRPqYC2SiRQAiEMwKOcbYtvuTM0dISLFDeCEMcBVce kVSKECAECAFCgCGgFp7PJiAjM+NDoCd4dZTpYMznjzsEzTEhQAg4IOCcYtKSp9IUnccbyHzIcelN 81SWECAECAFCQDkE1MPzsTHB6wGsnq6kBj688OpATB/lRkotEQLqQ8BF6G5XIblLahrMEWvtQtfy CLf8N5ssyY4+5jaBcMUwkq7ibNth4xiWV1a8X5sIvy4TNqsPfaKIECAECIHJhYBaeD4kgcB7Al66 zIG3qQriPZgJNeqreZIXugiBCETAMYkkhugqjC3Ura5D15oj3LKwtszq3ZT11DGerV0kXu4ixIzs a20igduDi3Abphabduxi/vMuMmm6iILrMeFmBE4fDYkQIAQIgXBDQC08H4KyQPiANKB4I3G3VOiZ 8J+Yn4MuQiACERCTSG6wJJFkIfhYTjxT9j6WSVVobjVw5Wn5ZlNuU8sXAMJ/Kq7ezn7TVm7G47MT onKWrbJSC9GcKQ+VuRjvynq5VcuassloC4t4xiTHBtGEmOOSN8gSaIqXi2IROGs0JEKAECAEwhcB tfB84O3A6i2qLm9da2wotSb8Rqw+9YNrzUcp5qzFH9eXbcpaJUbFw/ThckGAtS+ml3NLkldkKE2/ V51bCkdSijPH6NZ+hbEFQpxflBtbWzb+MuP9Kt6vbAKpICFACBAChIAMBNTC87G8uqW1lZUbKnU1 Qk0NBH1gZ8DQwLZPxihCWUSUp/Bcj0bj2p0at46P9h6OHlhDmaMx1OwUo+G7IsC2LxZMWok0Dmrx 0NQg57wPseVlohrEYi6SSPoSxtbMNzLRG4v+LTO2tvyByoz3q3i/8imkkkFCwP9dyzOhgW4/SDBR N4SAehFQD8/HMdJCQ1RayVS6lfqabWD4mG2fii/2okPAUDNPBf7KJl6yPd22qjRn30mvx4gs52uh 03NNQCC8KQPRppejNrJEQlGChsetxcXr459IfYaQtpaotg738dvE+LglVwYqorylupdEKFecuckW VelE/wtdC5tNrq6tK2N3yoR6lvgIOe+Z08XOBssXUQMMSwiz8JYXN5cXRFbSdKsOxUoqKlgLMJTl FRhfyX6vqBFbbqpaby1QUcGOLKiDE1eD6XuF3rFB/MgTLoi0s1RbrHFXxZTDiloKPQIK7FoeBxHo 9kOPIFFACIQcAbXxfCZAGpjYr7J2e6HKfTjEt29RoW1qtdLa2lLu5shenGZfRv6dX1CRWnwnK1yX tHG0FNXF4kvd1jMT732h0GQA5oIAm3VlUciiFXfunxIel2bVsck+zDwIkSLbgQV4NWuioqMFjQY5 MIaHELMWqQpGWJZbMdPRzZs3b9y4MTgwgDCYPEkGiMGv+OcArsFBZFMAl4eb+InnPrcUCzDZHpt3 zuhnzTXJDxKmf9eWWr5Yb4lNW1IgmA8eLjNjMim0qYCpT0jVG0XhdGNtLf9irK2FTFi8BWbTTJql Z3OsU56C0zmBpueEm6FEOeL6Doy7t802YH6s3Xl8O+8YHrcXi/WJqV3TpmQeBjuM2O6K3DjGxSBt 91DTlmjZgBx9zW1J5DtVjZzN1nO/EbeSaECTDgG18Hx4yvmHX3DgZf/UMrmZmueE2V+ZbO5tybQV iTmLx0xR0ETfyVrRDJ9flpJ2jpa1Ohdek2aWT8xj7oIACzEWhawotXHt/unaMdOuCa67toowIXPa sU7ME1dUtd6GnQ3gXGmiNLFxcejgSm9vy6mW5hMnL126BM4PPByYutMtLYcPHjx29ChyriAg/p07 d8DhgdU7e7b18KHDR48cvXD+wvDQEKqD1bt86dLJEycOHThw/ty5/mvXwDIGkG5qmhBQFoEAuXu7 9Blnx7ymqpa1Ir9v8fgudXLl9ri9MFm17XZh3t90O1m7aLVuS43Bdldkh1mEBxdMu45FRG3dk7aZ zWn0mwvFu847EkhqFnNZioncmF9SpfRmW+q5X2UnklojBEKAgFp4PgFaJU1FawmCMPML2id2p8Gg ah8Oi8+iolNn72jpyh2yYZewxt5p0g0BFj7Sg/unZ49LVx6aTLzJFXuMkWSunYG/0Fl8XBx28AsX L3zw/vtvv/1288mTt27ehDDv6tWr+/bte+ONN9588839+/cj7y2kemN37ly9cuXjpqb6N954q+HN 48eODw7eBJn4qeX06Xfeefc3v/nt7g8+aNW3jgwPB578QPRgeXcq46ITCBKpTcURCJS7t1ufcbOD tu1IXPuGu/Qu597ottuFeX/jJjEu91AXxNh2D/sEZp4AGZ+2tJRJnV3sSDL3ZvvNVqJfxSeTGiQE go2Aani+DRvqy5srGzdYAIBZEz5btqnFh8OVglUQw1mIMcwsl6GmQmHBl7M7ZEOr6L2BSyEC3Htc GlqbXXN11qTsSjiISK97WPCBXQPnt2D+/DXPrln7qbUrV65MTUuLiYnJzc1d88wzX/rylz//hS88 /vjjS4qKpkyZEhMbOz0396mnn/7i+i99/rnPFz9Ykp6ehm6Sk5NR8ZlnnyldU5afn58YnwCnEOnu 1VjCohgOzgyoEYLJSVNA3L298xn31kfby+1Cihhx6XNjWMuBx6ELmJyu2yEayzIfO5mPiFS/k3O9 0agjCQG1vO3K1m8rrd1uycAGYTwy8OLTVFelEridLa8YYaW19eW2qoeGivXCBtg7WWKboYznfUSq pAt3SCvL554Ab1Dz5HHJPAJE3YvdKZ9Z9ZvuBcvVDnv8nTuj8OHIzslZuGhx0ZIls/LzExISoqKi UlNTFy5cuHz58ruXLdMVFoLVi4uLi8b9lJTC+YX33Hsv7s+ZMychMRGDwE+zZs1asmTJ8hUr5syb l5GZCa7RG7SoLCEQSgQC5O4t+vY0VW0T7WuwZYk+4O4u73y0bSmWuV1IEMOjVLEtGZKCVnx10QXb ihGrnBuqmrRFUputVyCEchFQ34SAzwiYDbNN/3/+/PkXXnjh+eefb21t5QbywbnYPmPXE/sX/sN9 /wmAjdeG735vgU73bFlZ69mz/jfo0IKNq671rGm9WVwsWuyZ/o8nQTD9Khb3XFK0RrG5isvLq02R YSxkOBFgqWPuFLXEVsrrTT+hZ6dv5l4sXgG8A8fGRKItN60jVhxXuwbPnjnz1OOP6+bO+7tNf3uu rc3PzmDwByvAa9eu4S/s+Xxu7cKFC//4k588tvqRr6xfD53yhHHC56aookoQuHjx4o9ffHHe3Ln3 33//nt27IV0OMmEwUYWh6ltvvfXgqlXf+NrXdvzud319fXY0WB948+Nn3SX4HcvDLfm82zzAbhrh W5Z1p7LuHZYdw+P24rhd2O4d5u/inmO7K9rse85bjKsd13FHctg3TWOQ2GxtSTWPWubsw4z45z// +YIFC3D4bGhoGBwclFlR2WKjo6MH9u8vKSkpKir61f/3q6tXrirbPrUmHwF4Cr77zjtQKy1btuzV V/94/fp1+XX9Lwn+DVwceDlwdODrLA06clSh4vnAkBRX19vyMviOO7jv/+ADzfP5TyG1IImAhefb /Deb/Of5YAiIVQEjP4PegPerZO/uCnCe79HVj/yf9ev1Bj3e1j43RRVVgsDFixfUzvP5iRRP32J/ yPazSfVV19fX24wQQw7w6VSFPN/2X26/cuWK+qZmslAEnu+dt99euWKFqng+teh2t1dDRVoGpw2Y Z/CPmHu3bLvbcHc+SzapYpgjwHYMf4cAPq+9vb2tra2jowMnYz+bQ4xo/I/9oSv8EcA8wmAAdmDh P5TJOwL48W5ptQ4fvhlFa1XtDqj4VEVpomJiY/BX8ZapQZkIYBtBrAm12YurZUEgs259OXSgLIis 6cNy7xYjWotMfKnYpEFAgZcxTmAGvf7k8eNtBsPI8IjP0PETq4D/IS60GBQaWmMwkZF6YXSRPUAe 1psx8NysxOeVod6Kk8Ld2+rBIcbxg2mfTC8O9c6bt5Rp2PqFZcJNqJkRojR8PiyiKqeWX/zf4UO/ CerBQQSCheuh6fSomq2EpTSwXUvQVb300ku4uXHjxoKCAjCq3q40v8obanAggwEx/OyZuW1pLSyK /T+d4e1eV1v3+mt/0ul0//Szn8HM3y8iqXIoEIAh5re++c1zbec++9nP/Z/nvzqvYJ4/VFy8cOH1 115rv9w+e86cP/vzz+Tk5PjWGp6X3/7mN2/WN0yfPv1b366aM3cuBEShz/Dh22A81OK7hIYJwPAN G5niPaihQYwuPj6+s6Pj5Zdf/u1vfwtnoJ/85Cew6ksUvX+CdmH7xZlhz549W1588a4lSx5evfqx xx/PzMwMGgHUkQ8IdHd3/+EPf4BJHyIDvPjii6tWrcIXH9rxswqOZEeOHPnOd77T093z3HNfuP++ +1JSUrhpvp8tB606JxSsUlRUNL4gaxInXoGzftDGoBGwmWAuEDj232vrEGVs8+bNjz32WFp6etBI wGsIiqytW7cCyU2bNsGLkXetIp6Pe4ba+oqxfLuaCnhd+QkT8Xx+AqiG6sryfHivf/DBB73dvTPy Zjzx5JOZU318oSK88yuvvPK/O34fFx//Z5/5DFrDA8Z4vvDZYWVNLrLeaTTR8IWOisbuOzY+BmcV 8H6y6oZPIQwPzt0I6wjLa7Bcc+fN+/FLL8EEG+7hwRwE8XzBRFupvtTD8504ceKvN27U6/UrVqwo LCxE4CqoIMKR54sWeb7xsOX5oPS5dPny7t27p02bDp4PhzeEmFBqvUm2o3aeD/I8JPnEMBDWkwvh TXeaqvxfrMTzSa4P9RdQlueDxgDumUjBhkMwhHM+C3IQDhpWur/61a86Ozun5eRge8VhFH4c6sfT KwpF9YQGOY2hB8f3xClTuG+VV42ovzAGicA9I6Oj1/r6IGlbctfSqu98G2GAYmNjg0k88XzBRFup vlTC8+FNf+7cuX/9l385duzY6J07CFPKZPNh9ahih+GPAHd0TU9Li09I4DeVmqzgtAOCua0P9pCv f+MbS+++O5inR7XzfCUlNQjVDi9dpBLTGxsRJQo55JGNQwzU5+9MK8bzIRApy0EPl7ftwrZda2rF xKN0BQUBZXk+KDtGka53YiI6OhrqPJ9tGPBEwwvk0MGDvT09Y+PjjDPC3hQUQILWCczAEdQQ2Urg mHzk0KEpiVMefeKJtLQ0nL8jT4sN1Tx2amiVoEudkZe3dOlSjDTI/hzE8wVtbSvYkUp4PowIxspg +yCuhg0cjDDE1Rs2exI8qHDuwv584fz5P+3cifPzM88+qy0owLnrDqSV4TMQrkQF9ODzsJnAoiwt NdXnF40PC1XtPB/WJbzpEVkT9ny6lnVCHeP/tuNOpTVQsw/D5lWU4flYEnBkjUSGeTEduFDNvvpM E1X0EgFleT48DzhHwi4tKjo6LjbWH9cq8I5d3d0QHDL/33A7icqZBOxT4Pn6+/v37N6z6403kM7k +fJyCEcjU4stIoK3DixvklNSsE0HP2Q38XxylqXayqiH52P+ZOPjEC8hOgHj+MLKAx3U4omD9wMO 0v/2r/+KgZQj+GNJCYwjGc8XVhsspxbcKr+CyfCh3zDg+SzTiVln4r3t1YK2Eol1/Pe3Uo7na9ls CumODGsk5wvqrqssz4ejMORzw0PDSUlJM2fNhKjP58HwNzQeMFzhZGUse8D8FWJoa9v+y1/+6bXX cGatrKpCjruMjIyI5HEBDDNejIlh1ovR0cF/Zcri+SJK58AGI9Rb0mXIXppqKqgeng+oMMML8VIT QnJpAdkIpPX73//+l7/8Jfzov/D5zz/33HNwtgvHCEoYCyc7+NuIO54vuG65Hicd2XT4h13b9TVC Jb4jk7bclRLocmJ6nzKW1xs9IbaMWcgHqZ84o/wHdllT8/L7NRXW3/lvYllW0fQjWFvHfL78V4P5 tiWrpKWcuT+XiYADDUa4tw93+hPHjzc27jtx4jjOlP4MB9MJlhEWgWAfp0TiB+4pN2/fhofywQMH e3p6wSvv+/DDG9evw3gxIseLQcFgEaJNyBuCv1PLWorYHMqaxaDK24X1uqpmWZVUXIhlUfP/bK/i AQabNKxbfmIJuwuUQzwJxe47b70NDzkwf++/9x78UbBjA8SwGw72ELWxqiri+ap0JfyDqa3Srbd8 D/bj4rY/LfL/Vhcjuy6WpYUFQ+xPKHyx+SLh93qR62uoMG3HYvag8vrGyspaax6gUvN3c5SslrWo XKur2cL3cJSs28k4QF1VE9Jf6naynxGYmqe3ZXs9zsPiLZ4bE5kv7SqqBi11EwLr5r6rV7s6u/r6 ruEoqW5iQ0wdpJhwc754/gIQw4kVcIH/6+7pgTob8r8QEzd5uy8qZJYl4qZUNHlRoJFHGALYXuC6 0dt75fr1fpyiU5KTbw4MwloaeTJpo1ZkrlXE84GLMX8Ey3dFBqlcI9hhTSwY0oSwbOQwP4TvCeMC 4dzR1KLHLcQWlNMhZ/6KqzeIXspoGNaBENkxVg+X+Ve9ePo1N4neBFMF88nYsaKcrqmMAN4FghzI 55gxX1jZuwR/8u6M3ulo77jef33mzFlzZ8+eOSMPbg39fX093d3wSgs+PdSjEGSdg3iS5fopizrD o3rBobSNcsPUkFUpwmbTpNOwfHFUbphVKTbKFNKuROhjAMYO7B0Ok8vvXf7MmjXPrnlmxcoV8OS4 1t+PuAEROuigDkstPB/YH3Axzh/cV8sFEz6T9hZkmsRxIm3WPI4ig2aNAK+rKqqXq7EQtzkm1JNI Nsf5SptLbkW1wKgOOqC/K9Bqly69S6vVBtN/Xh2j946KhMSEoiVFT68p/YsvffHuZcuWr1jx1eef X3bPPbDng9Gbd21RaWUQCKbOwVv1gr0yQoezsUW5YTnN2u9gpoOuG+WG0LANG6lonabfzMPpk3ZF mWWkwlZwFM/LyysuLv7GX/3Vd7773e9877t/VVW1+tFHESwzLj6oYTJVCI4iJKmF54OGAuMBT4UD ICRo+Mv5K35fJVezSXsLcpArpHiRDgweM/IT1a7sKCyK/hoqkOjHZEFr5vhYUhEzt4aqTuOBhrYO rKMUg2jbG/Y98KAyK6oEQPWQAT5v5sy8eQUFiMcR5Ohr6gFBJiXAJ3dGbuH8woWLFkLCl5GRvmjx 4ryZM+HWGmRPNJkET45iQdM5MGWGF+oFpvoQ90ZoKzbgzN7carZzdjMvFo7QtXIDzawthyE1kzBq S0uZQpu0K5G7xGGxh00mb2be/AXzscngs2DBgtn5+VMzM2OiWYhmuvxEQC08H7gnPNKw4YOiFI4b +IvvogJAReFQiqo3C+u5hgNWdTxSC6R61TA/ZPd2rjUpYk3/NilDREYQ2xbzR2HXluZiZqhXUrKe W+yx3026GrFllnK4pKLC+isOtWJJmAtin4fdoNibRteytlLrVNHiSOLnwojw6tDqIrPWrPz8nGk5 xPN5nmzswmCR4bABPxXgFhPDgg7gOI6LeL7QPCdB1zl4oV5wdab1EyVmyMIMprHxWQypSbviJ6gq rY43G3fUQGgFhGvBB1+wz6jNE0Kl8MkgSy08X0WDAexPudCEgyG0m8z5QWCGcrgvYxRBKcJcdUtF ez52WUVy/Lxtc6twM3PGMF366ma4ZDADPfOdxkaxvOn/TC1ZGuGlGmtrrY2af+NMJhoCQAgLzUlw rEghA2UtBjE+HyJYjcJ8BHjLqjOJCyEsc0x0TEZG5sr771+xciViZfEDzSSGJMRDD6bOwTv1Ajve cv8yrg5ZtwbblpSiwyOaDTXsJMt20PpyUWpI2pUQr77Ads83FnhyvP3WO++89c6N6zfwT9ptFAPd yp2I386fP//CCy88//zzra2tPDFzcC6huLi+uhgPNWw2xB7xt76+HE4OuOnvpW9t3fDd7y3Q6Z4t K0OYN3+b81gfhn6MH7OyfMXWA6lCHev11Zzpm1TX2TNnnnr8cd3ceZu/v6nN0Obn2OFz2tLScvjQ ITQ7NDTkZ2uToTqY476+vqNHjp44fuL2rduTYcihGiMOJAhX8dZbbz24atU3vva1Hb/7HZC3IwY7 QDX2S9NbwLrDWOIDmG5Z4wXwovy21WQYZlPstun/TL87VOI7jbWO2IbLMra7nhNpTp1aqDa3VYzY uxYyLTfRu42Js1MlszW1IiN1R4Cs4Xd1df385z+HInL58uUNDQ3YYUK1fiKgXzwCrWdbv/iF5/DB 6xv/jIBBBXkI4N/AxYGXA0cHvs7SuzV4I78VMp6PhZF05mKYMZ//SAWT53PYDpVnzfjmpjgj6T/K SrSAJ3t8AtkxXLSlLM+HIHO//c1vqv/fz3a84vRCVWIgkdcGtl0wxz0I0Nfbi4xzkTdA9YxImueT S6u+vt5O5+DXAdSkXpDbd3DLKTpSl6RLDZ94PgVnnGUNbmv7xl9+DR/kkSOezwds3fF8atHtgo0x OJnuOd9RTLwZwIbstK3Kp2fjzUt5ewRwfIFsGgzfKD5GI9JEBvRCkBHoDq5cudJ/vX98jILMSYON bffm4CCOT9iLWU4nulSPAAyBt7RaqYTnQ9FaMTKUT5dBt6i8accu1dja2A5C2ZG6hEfNw/dpPlVd CZrclNTUVRB0P/RgamoqKXYVnC218HzQMcB2j8UYNn/wHXfM0n4Fh0xNqReB4XHjwB3jzTvCRIBN 7GAjDKeElJQUpM6IilbLU6DeiREEnBqv37gBhfiZM2eI51PzTFlos0aNEo0vEU7A96MiuCpdVV35 ZnXaCys5Utccn6qHHxar0Vsi4TG2cNGihQsXUiwtb6HzXF4tb7vtm5lfKwId60pq+AffcWfD5mpl B0ytqRmB22PC9WHj4OgEBH4BpRMR3ufPn7/snmUIQUJ7ihyowfNd6+s7dOjQ0aNH/cxWJ6c7KqME AsrpHNSuXlBupC5xV/vwlVgsKmsDIQJmzpqFjz/J0FU2JlWQoxaeTyvGZioWkMyiin/AA+KOtrRS FTi5JsIaH94SQkAsyOIk29+xiTWv4vGEnLS0OE1uUlR2YlRsVGB9QhFbDkHmEF54AZ0jZc862L6h 2zDqG4KeV3YlKkgIEAKEgNcIIKhCV0dXd0cX8gB5XZkquEdALTwfKGRZxPTV4PPwgasWQpLgjrrn jkfDZw4V9koT55ThPMQ8XRIIxEdrUmI1STGaALN8LFc3RH2wFIGGl4LMyVmXUA7GJyRMmzYtJzsn NiZWThUqQwgQAoSADwhAy4PT5enTLS2nW3DI9KEFquIOARXxfIxEbSXYKMbqldYiIFMETZtt9qEI GlbYDgWHSPifdnZ2Xr16lVJ3y5lGcMnZ2dkPP/zQqlUlySnJcqpQGUKAECAEfEHAaBy4cWPP7j34 3Bi4Aa9FXxqhOq4QUBnPFxmTZEkZzoZj1v/ayvkcEoTz8jUs4y40wo7Jy02tOeYd9zLruYgsb6oB f9ll0T677tFMj2UElrzoLlKeh9vEwWn3wIED77zzzkExznu4kR8CemNiYnJycopLSlbedx9EpCGg gLokBAiBSYMALEkGBm8MDg7gy6QZdDAGSjyf4ijbqXHZP3h+cGtgUYcE4ebM4i1rWQwWXc2WZjEI KpTGdcjg4SbvuH0ecxb0Hpl37So6j8vc1BaWDpg1XyZyfY4V7ekpdZHO3CnlueIYBrzBkZGRnu7u Sxcv9XT3INpcwPuLiA6gBI+Ni8OHtOERMZ80CEJAvQggJeZ0XLnTkeMRWTjUS2i4UaZGns8SAUo9 ede8mVZbNW7Dzrri6g2iklq3yBRk3jFBuDmzOC/GrBortZC8meSCrvOOe5f13ES9uantLN6CtpJ5 SrO0cO565PS4SGfulPLcG3RUVhYqA9IayJoTnLb7+/tPHD9+qrmZ/HZlQUaFCAFCwFcEUtPSHn3s MXxYfD5fG6F6zgiokedDoBbO9pUKDSWO7q8hm0RHBagcQgytzYJTdnJW0SFBuG1bYj87IfOzyTjk qi8vsp67JbV4kQ6/SfboSK2rlOdy4FBRGRwi09PTs6dmp6elI5OsiihTKymweuzq7Hr7rbfff+/9 wYFBtZJJdBEChEDYI4B3YGpKyn3333/fffelJJP1sJITqkaeD4Fa1sPqzCBU6HVNdWVKDtePtkRG R7w8BDZtqLDjUVkucKFui4mFNXXuIkG4lSwoWuuc3ICdqfYu67ldfTOvyESQLP25RI+u0pk7pjz3 A9VQVUVMvry8vHnz5s2YMSM2jrxQpecBC39o6HZ7e3tHZ+fonVHpClSCECAECAFfEYABCXZpxArQ RKmSS/F1XCGvpxY0wRbBp4AzTIh+0rhd2LK+oq5Mp+48HLCqYyrYujLRJwJXmbCWGcDhHvhWjAnx 4auLm6p0LAr+DgE3kVpEvCmI9yDPq7WUZz8JIovFmyurQ8MlFRW8NfarTctQyNYX8TY0upa1lVqn iiZXDWc5qbl5oV5MDOexR8yGA7VsglpMHWO4Ko3LL/lcIQPHXUuXFj9YUnTXEgR8lyxPBaBeiY6K TkCAVNjzkXkNLQhCgBAIJAII0XL27NnWs2cp64+yMKuF56taX1FeV7Z2pwbyvTWN+pJda5qa6jDU DWCP1HvZBX83ywDNN3mqXUuRxkaWJ5cLCS032b/s/mH9F5cpNtbWitXEivYtQ/BoSvtt36apYmUp EvPqqxc5olcseojYiCsdBmHXo1jZnkCo3C0Sz/BN+8tzryUnJ1N8PpmPF07bKWmpCxYtKlwwPyGB uGSZsFExQoAQ8BoBvJ9gPfxmQ8Obb76JGAte16cK7hFQC88nNNWBhQE3sWPnLl3JLsi14PEA39Jt +jU0fe4QkEj7DTu99cKaSIpyqNxSGBke7uzoOH/+fFdXF/ntysEVXDKMqRcsWDC/EDxfgpwqVIYQ IAQIAd8QQGiFSxcuXLxwAXs1xefzDUOXtdTC80GHiyy7UO821bHEa0y9q6+GgKluy3oFRxtRTUlm PQcHzWWNpssS9kU1fjGhm49r/f379u3b9cYbTY2NN2/eDB0hYdMzeL6pU6ciQ/ESaMOnkJwvbCaO CCUEwhEB0W4pipmRkCWJovOnFp6vdnv9uh06qHfB7VWXFyOnGVSKFfDjaKKMZW4m3Ou03xadrAcn FEUXl4obg2wPuoPent7+a/2Uh0POROGojXAtoyMjd0ZH6dgtBzEqQwgQAj4jgLB8+XNm58+ew+Lz 0aUcAmrh+QQtzM/0UO8ybk8oqmjQImALfDhMMe2UGzC1RAgAATiFYStJSEyIi6cIw7JWxMTExODA QGtrq8FggLZFVh0qRAgQAoSATwjAtQ6WJAsWLsAXSPx8aoMquUBANTwfow16SNGnYcNaoUwDkz7c 2l5dTvNGCCiOACzSZs6cqdVq8TculmK1SAMMaSjSE7/V8OZ777x7Y2BAugKVIAQIAULAJwRYfL7U 1BLk9l61Cl98aoMquUZAVTyfmUQtc0mFAwf8UrWVtQpNHaVbUAjIEDUj+hqLfePI5/epLy0tbfny 5Y8++ug99947hbLHyphToI+gCd3dPT29vWN3xmTUoCKEACFACPiIANi+mFjEy48mIZ+PCLqppkqe j9FaCnM1RAVRarQwBIU1KFs9JCVWCtNgt2OKgahIt1DsZmVnT8/NhV9CTAzl4ZAGFegjNl/m1MyM jExsxNIVqAQhQAgQAj4hYBSMQ8NDMCNpMxgoPp9PELqtpHEwx75w4cJLL72Emxs3biwoKIiMZOr6 Vn1d7X+88fobc+fNfXHLlnkFBcqCSK0FAQE8/3+z8a8vXby47rOf/crzX/VzEqGpRMxPOCXEiIH6 oqKJiZGYQ3i9IK7N4UOHYuPiVq1ahcx1QZj0ydkFtt/R0dE9e/Zs2bJl2dKlD69e/cijj2ZkZExO NMJl1D09Pa+++uo///M/JyUlbXnxRTwjSZQ0zNfJwyNwub39l//5X2jgq89/NW/mTJL2eYslLLDb 2tq2bt0K6DZt2jRnzhzewiTh+Vr/49/+/Q+v/jEzM/P5519Aui2Bsbqk7fV2FYWmPGSz6Lijo73u F78YuHHj85///PMvvOAnz3ft2rWTJ0/euH5jambm0rvvTk6hlI4Sk8sZkcHBQewg0IyTcDRwDwOD +s6dPbt34/h938oVq1evLi4pSUsjJjtwkCvQ8tWrV994441/+qd/gq3wi//wD6sefBAh3xVod1I2 gUegre3cP/74x2BRNm3eNHfePOL5vF0IYcbzIYLcIubCIRRqmVuHn9f5c+f+67/+63/+53+AAky4 MtIzwPCZjMP8bJqqBx4Bro1HaJUPPvggNjb2y+vXf2n9+tnmU4tv/cMdYffuD3q7e/Nm5D325OM4 DPjWzqSqhccHklEMGQwfbcGBm/oJoxEBcXbv2fPi3/+9Vltw7733Ll26NCmJGAjfINdERzO7HhZs aALQGv02BnZBBtpHugiE/PzVr3+dkZH+93//Dw899BDxfL5NGGphmqByrPnZz8DzVX3n27Nnz6YN x1sww4znExoqDK3C+qrmJqEIace8Ha1D+StXrrz11lu/3r4d4uLklBSo89iq8rNRqh4sBPgePTY+ fvvmYH7+7PVf/vLjTzwBOzx/+r986dKbDW8iFUd+fv6zn/wEbPv8aW0y1GWxWgYHod5FcOZZs2ZR Ko7ATTrn+ZCs8Yd/94O+q1eh1Z2Wk4PTDp1TvcKc7/AwT+JHFKNxAnsIuD5886odOYXRy8jIaFd3 16X2y4Xz5//t3/5tcXExlLxy6lIZZwSw1K9eufLO22/D/v7Jp57KysoilLxFINx4Pj4+Q41GV+X/ TgdTpO6uLujy+vr68NBzXwBvEaTyIUSAZwiGFxdYvaIld02bNg2vQH/ogZxvD+R8Pb1Q9D/2xBMk 55MEE6mQYFL52p/+BE+OLzz33PTp0yWrUAGfEcB+fbqlpa629tixYyPDIwgnRBuWt2CCs4OdbpQm amBw4M6dUbhtQfAWFRU9ducO5EjetiZRXpQjotG4uPjFRUXPlz+P0HIUTNgfkGFJ0t9/DS1kZk71 c7f3h4zwrat2nq/GINimCbMAzWXy/uOO5xzKQXgAQTnFeT4FGvWfLGpBBgJ423GeLzomJjEhIT0j w39jMm7PNzBwA9ze0qV3kxZGch7g8nLi+PFf1P0CIVK/t3EDtC2SVaiAPwh0dXa+9957p0+fvn3r Ftohns9bMLHDR0dFQ/zW3HwSmz+e9Pnz56ekpo6NKc/zoS8WWyQmZkpS8py5c5544gkciiAR95Zm Km+LALgW/DMyHEmDP7Nq5/k0mpJ6Y6MDLq0GoUqnDM/HM0cBBWbPQUK+4C9Av3vkE4fnHzup/zMI v93bt28zv11s01Om0O4sOT8iz3fiP38h8nwbvpdPPJ8kZP4VgHYCHktDw8P8zUeXDwgAOnj6/9d/ /qdBb5g3b95zX/wLKF4V2UBcEsM3KAjC4eREoikf5su2ChQLvb29uJOTkwNI/WxtElZXP8+Hc6xz yo1mQWhSRM43CaechuwZATwSnHf0n4OcDFBjC249e/aPf/hjfEI8TCpzc3Mnw6hpjGGNACxQG/ft ++nWraeam+cXFn5vw8b7H7gfAj9iyFQ+rXjpwxzr9zt+jw36M59dB6Ep7dLeTpk7nk9FMZmri+uc Pk3ejpPKEwJyEOCHyPb2dvj3QKAip8okLwMBRmpa2sJFC6EgIweOSb4YwmX44PnOnjkDVy3YcsD9 6MyZ04hYhmc/XOifzHRCwq1vbdXrW4eHhiYzDoqPXS08X3WxUNmod/4UFys+ZGqQEBAQWOHA/v3v vv3OoQMHub0UXZ4RgBIcp+1HH3vsoYcfTklJIbgIAZUjADkHYubBbBd2wLkzZsTFxx89cuTAxx+D EVQ55UQeQ8Ao3IHpJaV5VHo1qIXnA7cnCFqHT4NB29RETJ/Sc07tCQLO+tAdXLhwHqd/xL8lSCQR MJuoJyUibUmUWvYNSbKpwOREAAwfLFARl6+oqOgLn//8X/7lX37hC1+4a+nSqWLUDzKRVP+qQIJH xCHHJzqacmMqOV3q2bvB8JkugyDAjbekxlCmq4A9n5LDpbYIATMC5Ljt1VqAvwtcCs6cPoNMhpQB 0yvoqHCoEICX7l13L0UatNUPP/zggw8iujUSipJDQKimw6t+4Su2YOECfBITE8iYzyvoPBdWD8/H 6GwQGKunK6mp0pU0VemKhToFh0pNEQIWBLDvQ1M5e/Yc/CWDbjkLA1aPiIz/u5df/uMf/heRL+RU oTKEQKgQgCgaTAM8je5Zdo9Wq0UU8cLCwhUrV0LUl5qaSoLqUM2LzH7B5CEU+bOfePaZTzybQUmS ZKImr5haeD4kW9NUNJRpKsDqCU1VEO/pq4sb9dXOrrzyxkWlCAFPCKSnp+MF8Njjj9+7fDmFy5ez VuBJB/EeVOHd3d3k9SIHMSoTWgTA2CEqMoz5kHvz+PHjly5fRpQWROL0P7pnaMc1SXrHURzpN3DR fCk742rh+YQyjVBXVi7U1ZcLRvwHy77KRvxXa6xXdsDUGiEABPAyQDKPvJl52TnZtKfIWRIImoCk hUnJ4JCTSEwiBzEqowYE4AVwpbe3s70dWeyQ2kENJBENchDACRNmJGRJIgcrr8qohecDbwdWb1F1 eetaY0OpNcGuQSj1ajxUmBCQgwCs027dugUPPkRmJoNuOYghFnZ6RvrSpXcVFS2ekpgopwqVIQRC jwBicCKKuxjInXKZhH465FEArQKiaL3829+8/NvfXr1ylWL0yoNNVim18HwCeLvS2srKDZW6GqGm BoI+uHHAmQO2fbLGQYUIAW8QGBgYOH7sWFNjY/PJk/Dv86bqJC0LaWjezFlrnnn2qadLEahvkqJA ww43BLBuoR+cnpsLszCy3A2j2RsdGb186RI+o6MUT1HJeVMPz8dHpYU+t7SSqXQr9TXbwPAx2z66 CAGFERgZHu7s7IShD7KaknWaHHChz0WSupkzZ85AqLO4ODlVqAwhEHIEwOcheRfWLTi/WFq3IZ8P 2QRoojQxsXExsbEkn5WNmayCauP5LERD7FdZu72QfDhkTSMV8hIB5NsduDHQ19d34/qN8bExL2tP xuLchwMKF8S5BXqTEQIacxgigPNJfn4+nHbz8vIof0wYTSByPBbOR3pkZP0hSxIl501FPB933cVf 66UtJR8OJWeb2jIjMGE0jt4ZHRkZRUBmMhaRsy4gDe1ob69/442333r7xo0bcqpQGUJADQjAXRcX OR6pYS5k0gDZ3tTMqZ/61KfXfvpTmVMzSdQnEzc5xdTC81XUGOpE1138rWiAIZ+NwE/OOKgMIeAN AojPN23adETtypmWA/WBN1UnaVl4uiAmc0vL6bNnz1JM5km6CMJw2JBJQzKNGENIuUtWHGE0gdii 58ydg4tiaCs7a2rh+eqq1iPlLmLy4W/dlvXKDpJaIwQcEEDAz+KS4tKy0vsfeAAhuwgfSQQgDb0z dgd5im9cvz4+Ni5ZngoQAmpAAOeT0y0thw8d0uv1cNJXA0lEgxwEEFoBbDousiSRA5f8Mmrh+RCE uXJ7PWLyscS7TdZ8a0jLIX8wVJIQkIkAj883E3K+nByKzycHNKhX4uPiIRZlEQ1jKQOmHMyoTOgR AMeAtDG9vb2QUhP3EPr5kEcBTpiYtXffeRcfsiSRh5ncUurh+YQKfSmM+SoaWOJd8Qv7sLQcdBEC SiMALQ/2FCh9ILjCgVLp5iOwPdhDIUTLokWL5i9YQLbwETjBEToknFWQigPeuzDpI7OwMJpkhNCC gPb06dNDt4fI5FrBiVMRzwdLPv7B8Gy/KzhaaooQ4Ajg0H/k8OE9H3xw7OhR0vjIWRV4bc7Iy3vq 6acfe+wxZCyVU4XKEAIhRwDcXi7LrD07Z9o0ijEU8umQTwCEsj3d3T1dlOlRPmaySqqI54Mxn/NH 1iCoECHgJQJDw8OXLl3St7a2X7pMGZnkgMd0u/HxU6dOzczMJG24HMSojBoQSExMXLhoEdJq63Q6 BJhUA0lEgxwE4GednJyCKzomWqAUKnIgk1dGLTxfeTFLsOv8gUsHXYSA4gjACxWs3tDQ8MjIiHFi QvH2I69BIHb71q3Lly8jYgtxyZE3v5E6Iqh009LScFYB90BnlTCaZTDrCxYuwCchMZGS5ik4cWrh +eqEcjhr2H74IJlLB12EgNIIxMbEpKWmZk6dChs1vBWUbj4C20Ou+vbLl1/f+aeG+gayqo7ACY7Q IcFa9+bNmzDbRX5tstwNl0mGVgGhFdY8s6ZsTVlGenq4kB0WdKqF5xOa6vQ1NbafmpoGBO1j2djo IgSURgCs3rJ77139yOpl9yybkpSkdPMR2N74xET/9etHjx07ceLEEMW8iMAZjswhwRXg5MmT+/fv P3PmDNi+yBxkJI4KxpcwwcSHsiQrO71q4fnqy5FrjWXatXwqK3UbCreV2OXlUHbs1NrkRQCmacgb O2fu3NwZM2hPkbkO4D0HSQkuo8wKVIwQCDUCkE8jYWBnR8e1q1fvjI6GmhzqXy4CMCDp7urGRZG0 5UImr5xaeD5drfN7RIvUa011ZfIGQqUIAS8QgO7AFLiB+Bd5sMGkOjU1ZeHChWIGzAR5lagUIRBi BPB8g2lgSRbHxpBxMcTUUPfyEMDxEup4pHl856238UVeJSolCwHV8Hxi8GXbD/Lu2idhkzUeKkQI yEFgcHDwVPOpg/sPnm45De2PnCqTvAykobNm5X/qU5965pln0snCZpKvhvAZPsz/sXTj4+JgwhtF 7p/hM3G3bt48uP/Agf0HYI5pFIhZV2zm1MLzseDLJTW2H+TdrSvTVcOhly5CQGkERoaHOzvbz51r 6+jsIN2BHHTF0AnJc+fOmT1nNsU5k4MYlVEDAogrmZOdnZeXl5WVFRsXpwaSiAY5CCBQwBDCMQ/d xhdi+eQgJrOMang+QagWquw+xXUw8qus3S5zJFSMEJCPAPi8a9eQkamnv5/yOcqCDTsvAtv0w2V3 YID8H2VBRoVUgABCfhQtWXLf/fcXLliQRN5aKpgRmSTExcfP086bpy2A7bXMKlRMDgJq4fkQhw9h WRw+pbXGBvLblTONVMZLBKAqgMnIBAx8JkhrIAs7SEbPtbW99eabu3fvhmZcVh0qRAiEGgHIp8H2 IRozjFDxPdTkUP+yEICxNWK/r3n22WeefRZBWyhpnizU5BVSyzMAbs8gaPERg7OYPjDvg4ZX3kCo FCHgBQJxsbEI05qbmzs1aypFapUDHEzg4f/YfPLk2dOnh8kCUg5kVEYFCCCF19UrV7q7uq5du0ZW HCqYELkkgEcv0GrnFRQgJrPcOlROBgJq4fkgz+PGfJbYLPDhwD+RelfGKKgIIeAdAimpqUvvvvvB hx7EX8rIJAc76HOh171w/jxScVAeDjmIURk1IIBYkojP9/HHH585fZri86lhRmTSAD0M4uzgQ3mS ZCIms5haeL4tYO+aqoqbqurKSiDeA+fHJHxNVZR7TeZEUjGvEIC6Z9asWThHwribPBLkQMeD8w0P D0PJSzEv5CBGZdSAwNj4+PUbN65evQqDBMj81EAS0SCJAHYbzNfBAwfwIU5dEi6vCqiF52tqqtJX Fzfqq/XVgq6ipq5MUyzU4Q7lXvNqOqmwTAR4vl1wMPjL/MLokkIAGnBowxcsWKDVahPIqloKLvpd JQggVgs+sOQzB+RUCV1EhgQCCKF15jSSp5yhWFrKrhW18HwYlbayEf+xv3VMvAf+D98rGij3mrIz Tq0xBBDz6XRLy+FDh86ePQvOj0CRRAAa8CV33fXlr3xl3ec+hzzFkuWpACGgBgSiY2LgDZCTk4Og kojbogaSiAY5CGBbPgOm7/QZBGyB2E9OFSojBwEV8XwIysw/7NqurxEq8R0CPznDoDKEgFcIQF/Q 2tp69MjRVuL55AEHOR8c6KANnz1nDmnD5WFGpUKPAM4qsNktLilZsHAhxWoJ/XzIpgCWJLdu3kJk ZooMJRszWQU1Dhz0hQsXXnrpJdzcuHFjQUFB0JzbRWdsS/jlJtvvivD43BqJtHiyFoU6CxmNGlFB Ex0d7b/r/qWLF3ft2tVxuSN/dv6nPv3p7JxsdQ5aPVSxLfjWrev9/cA/OyeH2D71TA1R4hkByxvE /32DoA4OApiy9suX//MXv4Bm/vnyF2bOnElz5y3y4Hba2tq2bt0K6DZt2jRnzhzegop4PkRgdr7K 6lgcNW9H61AeprtwOezo6Lh9+zZao9XjJ56hqI55M8ZExySnpOD5x3ndz9NIR3v7u+++19PVnTdz 5tNlT8NSLRSDCqc+wfBBG960b19ScvIn1q7NziYuOZymb9LSirMKtn38haAanls4sUxaKMJr4Nhw DAjgBqMvnZYEtD7Mndp5vpoSTWWjlbdDoJZScZQO930YOaogMtOePXt+//vfX7x4kXg+3zAMeS2I +BITEhYtXPil9esXFRUhepM/JCFvN2I3DAwOZqSnL1q8mPYUSTD7+/v37d37u1degYb3exs3zp49 W7IKFSAEQo4A3D+PHTt24/p1mPTNX7AgLS0t5CQRAXIQ4G52KAmVgp8nfDndRV4ZtfN8DQI4euau wVk9jaai3lgr/tN0358pgVDnlZdfrq2r6+rqyp2RGxdHuVz8gTPYdSGXZYm/hodvDQwsWrRo4/e/ X7JqVUpKij90wBest7cXewqO/ngZkKZSEkwcnHZ/8MGvt2+HRfzmH/5w7ty5klWoACEQcgRwVvng /fcRlnlWfv6KFSuySD4d8imRRwBLj9l/TSNocMiMJecbeaDZllI9z1dRATWumIGNsXqi+pXpeuv1 taV+e+62GQy/qK3bseN3UEs99xd/MW36dAUUxt7PAdXwDQEc8hCZE9GAd72xKzk5+Vvfrnz88Sew EfjWGq8FdT+CtXKND6y8o0jjI4UmrCP2f/zxazt3QlLytW9+Exp2qRr0OyEQegTA873/3ntIIZOf n79y5Uri+UI/JTIoMArGvqt9777zLviAx598gmxvZGDmWET1PJ/BIGxbX1q7nUv7wPPxaMw7iqob ayt9GLBtFX1ra91/1L7x+utz5s75+xdfnDtvnuVXMkvyE1v/q2M79twIFgOYs7Nnzvzkxz+5ffvW 1775jSewC2T6ZYEHE5+e7u6RkREwfNNzIfqN838gkd0CsAJi586dQ8pzBG0B8x3Z46XRRQYC4Pk+ 3LMHMZlxSrl3+fKsrKzIGFdkjwImWHAnrf5/PwPP9+3vfgexAiJ7vIEYnTueTy2xWsrWb7MwfBi/ KPDT49NUV6UAHOAaoqKiY6JhBJaRmQk+z3Ip0Dg14R8CttPh8ju26aysqekZ6eDMMJGQ9uPjX58C kknAp+f8ufNdnV2USUwOmFCvTM3KWrx4ceH8+X4aU8rpjsoQAoogECvGEp8+fTqpCBXBM2iNjI+N Xe+/BpYdOhn//TiDRrb6O1ILzyc01RlECR+/xPQbWts7/kDJQ7FPTCBYy7gg+OsF7A8lVNc3BJB3 8ebAzTt3YNILt2vf2rCrdev2bb1ef+zoMUTpA/+nQIsR3wTznDZi/8VeTFtwxM92xAwwITERTlrL V67UzZ8/JSkpYsYV8QOB1Q1iQiGKVjQZ8yk62Wrh+aDIXV/TAHdd86XFd9yxhOzzc9Rg9FjIF/6h K9wQYOEVJ8YVZDXAuCDgJ2zUkJADYRvDDY8Q0Ds8MnKura1+16733n13YGAgBBRQl4SA9wiAdUAG jqypU9NSUyHz874BqhEaBNIzMkrL2JWZnk7h1RScA7XwfNury5uqyso0FZqKBv7Bd9zZ7jJqn4IA UFOTEgFkZIJDT2p6Kv5SIAA5SwBuNLC8bG5uPkOZS+TgRWXUgQBOdwM3bsDrHEFbIKVWB1FEhQQC YPIQUQHZvRFeB5JawktBBNTC82kra+vLi4uFOmRbM32EOtzRljI33uBcBgQD5FdFg9BQgT/BvRoq xJ6lLpnFpJqx/Z2NvMSU9c6beuFbFgH55s+ff8+ye+YXFpJ1mpx5hDQUMtHurq4rPT3g/+RUoTKE QMgRQFQmHFQO7N8PJzCE+Q05PUSAHAR4GF3o4nEmpzDachCTX0YtPB8oLq1tbNRX66uLIdrDX2N9 Oe7IH4mfJcFJ6aqK6kWjJePanRpEjlHqksk+GloXISYhj0/ofFkbKa01ui/mC80NFboqZLubVBfC +y0uWrzy/vsWLl6EA+WkGruPgxWfDPiCsf/zsQmqRggEG4E7Y2O9V67AYauvrw8h34LdPfXnEwII 1ICw+WfPnjUYDIjM6lMbVMk1Airi+RiB2kptZSOYGvwFDxi8STPUbKkrrkYsQN4lKFBMp8yaljUQ bWWlO4ZPkN2IrJ4cCpXWgsX2pWIY18EhEl7A8fhfLHyBlfAKCWMwZJEObXh6WhriHCHOWTyFtpGF GRUKPQI80zq0uvy4EnqCiAIZCMDfErp45M1qb2+nuAoyAPOiiMp4Pi8oV7KoYdeOJqGo0Db4c2kt ZwCZJtWi8MW/uRq0ht0VNcD2v9pWYMpSlGYytLoys9bWrD82aVJtW6uxKlitWmbnRmz1sJbuzYpZ Z3rsm3IAzfyjnZzPqVElkVZLW9D4nD9//vTp0xcuXqA9Rc6sQAOuLSxc++lPP1VWlpaeLqcKlSEE Qo4ANIMpyclw44CekLSEIZ8OmQSATb85MNDZ3g5jEpLOygRNZjHi+RhQ+pYmoXiRzhkzyNeaq/U4 HkISVreT8XiMPWqqalmLe7U6h19FjrBMEBXE9fBJ2dYAeSUTGJbjFmMhDTXrd6xjzdUXVa2vMdi2 Vi9UWRSsDdvMWmb95kIm/LQ2Ilj1sI59sebtqWUcqH1TdiNk3XNttlWoad+oToZ5ocyFprJi8DxF oJa9H354/NgxxGdWGXVqJAfx+aZNm7ZkyRIYVpMFpBpniGhyhQDWKix3ly1bNq+gAAHYCaSwQADy WBgQj4Ldu3OHpLPKTplKeT7wGpCS4SPt0qAEHrpFbnSbYLcaK7WirZ9o8cbVoMXVG0QZoOOvAuSF guk3V1Z3TJzYVKWDaBDWgk0tetvWbBWspWvLmWQQwjttqUPmOWsxF3050QOC3TfVsBPqbD4Qy/gZ hSbmt3QDRtrcinTHkXixZI7X+np6euDQR958cmaY6cjGxu6MjsKBg3ZhOYhRGTUggPgsiPQ+Y8aM qZmZlLZVDTMih4YojQbMOqYsMyMD0XbkVKEyMhFQKc9XK1Ss2VWxQ1eCiC0yR+JPMW1hkdC0Y5ct f2OoqWCOrKKicyekei7t+1z8ClbOIyVM5Mcvt+4aoj2hKAsEe+hJ0ubUlwt63DZlaG1mfKc9sUzg OSkuxGdBDrHEKYkJ8QlRGpU+BaqaCWjA2zs6Pvroo8OHD5P/o6qmhojxhADL2mP+EFJhggCsh5H1 Z9m99y5ZupR87JSdNLW+7UprEb2lUb9OQPSWIFyliBQDCZyFwWqoWC9sqNQy1wkwaW64M+dftWvW FddtMQU9MXGNNtTb/uzJmbehhjXBuLX6creSNue+XFHrvilWX7AQa6ISYkForreJ0lXwf8Xr1tja OAZhIoLVRUJ8fF5ennZeAf7GxsUGq9sw7gf5dhGTGUmr3337bYrJHMYTOclIx7q9eOHCmdOnL1+6 RB6g4TL5kO1BxgczEq1WS5YkCs+aWepk+n8Ytr/wwgvPP/88clLBjtLh18D9UzSac3FhtP53qm9t 3fDd7y3Q6Z4tK2s9e9ZdgzaiPLM0zsGhtbi83KQEFgs4/ioOwtqKqRHTDf4vSxX2T9t/WKrhBxeE mBupNnnYwsnYuS8X9Lhoyjp8S/liREbE5TAoq0jS/ynwswWY3CFR+tNPPPnwqgd/98orCLvgZ4PI wHHs2LGmffuaj5+4feu2n61NhurA/A//+79rn332K+vXnzt3bjIMmcYYAQjgSX//vfewdPft3dt/ 7VoEjGgyDAFO1mDWEa4F08fz7dLlLQLg38DFgZcDRwe+zlJdg2+2XOSFCxdeeukl3Ny4cWNBQUHQ UhTAeq3e6BiND8ZkUG86UOgDz2vQ6+tq615/7U86ne6ffvYzXSEcI+gKJwTgZnvo4MGXtvwYX77+ zW88/sQTOAX6MwDsI2D1kDs2NiZ2StIUcuiTBBP770dNTa/+8Y/IifRX3/rWrFmzJKtQAUIg5Aj0 9/d/8P77SCEzKz9/5YoVWdnZISeJCJBEAPbWvb29bW1tiKhVVFSUnJwsWYUKOCAAvhkAbt26FeZp mzZtmjNnDi+gHt1uE0z3HD5VuhKaSEIgEAjgeYCiZ+jWEP4aJyhqlzTG2HzzZ89+9PHHS1atQkRr 6QpUghBQAQJMYsQe9aHRkREE6FMBRUSCNAI4k8O77tSpU2fOnCGNvDRe3pRQD88nIBqK02eSeBR4 M2NUVgkE8A5ob7/c1mbo6GgfvTOqRJMR3gZ8HqdOnbpw0aLC+fPjExIifLQ0vEhBICY6GuEk4RCQ mpZGHqDhMqtQ7oFHR6JkRGaGjjJcyA4LOtXC88FMrbJR7/yZdAkiwmLVhD+RA4ODx48f37dv7wnY 81F8PhkTCvV3WlrarJkzc6dPj4slrxcZkFERFSCQOGXK4qKilffdhyh9CMusAoqIBGkEkBkJDDo8 dhMTEoJmYCZNVkSUUAvPJ2zXIxodQt5ZPgbE52vQ4n5E4EyDUBcCODuC1bs5eGvo9hC0P+oiTpXU ACUg1tvTc/XKFYToUyWNRBQh4IgA5NO5ubmzZ8/OycmBfQIBFBYIREVHQy6LMNqz58xBUK2woDlc iFQLz1elWy9ss7Peg5P2GqGG3aeLEFAaAUitcOhPTU1NSk6KjopWuvkIbA9W1TCEb25uPnP2LKwg I3CENKRIRIB7gOK4gr90uguXGWYZ81JSwKnPnDmTImkrO2tq4fkEoamydjvGhtB0yD8hBqgTtKWV uK/sgF22Zk1Ka06fi/8357B1379t6lsPVFqLsZjJEZvOLAjzpFwXyMI0d+7cRYsXzZmLcySd/qWR 5fH56nftev/ddyk+nzReVEIdCMCBA7G6Thw/jgBDZMWhjjmRpoLzfGD4IKMl6aw0Xt6UUA/PhzRr WsQCLqzUIzgy/uK7KbixN+PxtWwRDxCIcHY88h1i5xVJtMWz5UpelmIslW1QAkxLkkQFBGwody1d +kBJcdGSJbD4IUQkEZiANvzWLeh2+65epWx1knBRAZUggPwxl9vbEbSiq6sL5xaVUEVkeEYAElmE 5YLrLkJE0W6j7GpREc9nDtSyEyMs0+zEP4MWqwU5PyodEk64uOWAvG2GXA+TYimGbLguE7gpO6HU miwEYCAMti89PR2Rn8hGWA5ksLCBcDQnOxveu+T/KAcxKqMGBBCfBdwDsgVC4Ee6XTXMiBwaYG99 8+bNSxcvdrS3w6pEThUqIxMBFfF85UKd+SOYv8iQo8kcqG/FuFq2hiXdhU5WTGcrXrYKWj3KsMui C3ZdzEqAWZNsVR5bakjrk30bB9VyQAAn/p6eHmwozCNhbIzwkUQAltSI6vnYE0+sevBBis8nCRcV UAkC2Jnh+4njChYwne5UMimSZIDnu9bX19LScvbsWcTVkixPBeQjoCKer9ZY7/wxpTqTPyAlS3K1 bFNVy1ooe2t1NVuaRb0vUpbV7RRT0uJqqtoibBdvImcIYwWR9dZFMStZdWXrWQU00rRjF7NaZDpf QUzMZp/zV8mRUFsOCMAi7ciRI7t37z565CgSchA+kggwnm/u3CeefPKhhx8mnk8SLiqgEgQQS3Ju QcGixYtn5+eD+VMJVUSGZwTwNoR4zxSfj+IqKLpcVMTzNRhKBcHx0wheKmQXV8sWV28AVfAoqWxs rNRCJGdnxldcvV1UC2srN5cLzcgW57qYdQzl9WgF5QuLhKYWBKIx7NrRVLxIxwqUbkB3rA26Ao0A k/N197RfakeGnztjpDuQhTfUu7CnxgXZiawKVIgQCDUCsTEx03Jy4A2AsMyxFKsl1NMhs38enw/S WUToi6LdRiZq8oqpiOcTtlU0QH/qQLcWrrsquUQN7E7I/Dyb5cksZh6UviXUCmyVwCubDIW2AKNx Ytw4zkx8KCGTDOxhC9/R0fHRRx8dPnwY1lEyalARQiD0CECfC9YBkmn8pbTaoZ8PeRREx8RkZGTM X7AAIdso6488zOSWUgvPBwFXaW1tqa5B1yBeBkFt0i7obOvK6421oszP+RJ/3lyplSjmXLF0bTkU xNtEXhf8X/G6NQ7eJHKnMvLLgTfTREXFxMT6b5eDQyQcOLKzs9Mz0qNjKD6f9OKBCXybXv/Ga6+9 +/bbFKtFGi8qoQ4EoCLs7u6+dOkSokvi3KIOoogKCQQgnUUM7RUrVixbtgzMOuGlIAJq4fmQdY2N SluqLcWl0wkN6ytqWKC+4LF+zLUCwVQQKcbsjmGoWS/a84l2eto164rrykRvDZSqKwNx7BYrzi5d y2aRH3QqVlFhbqSigsVqEWvCHYR/R8uiBpm3DLs+UfFLlzMC3HkGdh5jY3ewd+OC7wX+iZIw+IWu Fhe+8DuSV0JCQl5e3rx582bk5VEmMUm4GMgTE8h92d7e3tnZiQmQU4XKEAIhRwC7xBV4a12+DG8t Wrchnw65BGg0MbGxCJsPhs//E77cTidHObXwfGLiNXaBHyqpEXTrW5vqdoCf2qGzS84RyEmBIR5z pGCXifGy3BGFeza/m8vY3jILAB2L1daamq2trbW2Xmr67tCyOyliIMcdDm3DvEMDGZ9Gg8TbnR2d 5y9cYAf33l5wfuDzIHa6cP48PLwuXLiAsKty2D7oehCZ777771+0aFFCYmI4YBBiGsFwwxwqGdtw UhLtwiGeDOpeNgIWOV8vyflkgxbygmxXv3Gj7dw5bOkknVV2OtTC8yEUH0ReiIGCL2D1IFyDxhPy r0b9OmUHTK2FJQLgOMDxRUXdvHXr5IkTH7z/PlxuT506devmTWZn1tm598MP/3fHjt/8z/9gm8Ad BOXyPExwLRD14RCJv8TByFkSyIA0bdq0Zffeu4SiWMvBi8qoAwFRMwDdwJ0Js1pAHXQRFZ4QwHxB I//xRx8dIuthpVeKWng+BD2BehPKTrB6cJGAmwTitkBkBuma0kOm9sIWAaOR+3PBdRQsCIT/4ALB DUZHRcHOF/eHh4bZ5g6GT4rng7ywp7u7/fJlJJagmJ9yFgTgzcrOBsM3f+FCinkhBzEqowYEWBav 1NS0jIyk5GTy4VDDjMihAXs4wvLBBJOy/siBy6sy6uH5EIfZxOpB7wkjNzFuC12EAEMAh3U42MKk DDrZ5SuWP7NmzZqysnuWLcM/wf8hVnBpWdnnn3vu2U98Yvr06YwNlPLtvX7jxsGDh9577z14oVJ8 PjmLDDgD27uXLVu8eDECKMipQmUIgZAjgLiSc+fNW7ho0cz8fLLiCPl0yCcA53l4cuBsL7mZy2+T SgIBtfB8iL0MwZ4zqxc8Fw5aDupGgFnpGY3YAjIyM7NzciBzwvEdwidoZsGCZGVlzZ07966ld8EV V04AOVhzX716Fe4IV68geyzF55Oee/DcOHn39fVd7+8fGx+XrkAlCAEVIIDdID8/f/78+QjRB0MO FVBEJEgjANUN7IZzZ8yAPQn2fOkKVEI2AiHm+eDCyrm6puJieLDCPdbho4NDB12EgB0CpoDADuc/ MIWw/AVrIseHA+Z+ouhQXmnCXxCgAYcV/IkTJ1pOn6ZsSLQiwggBc8ZMCiQeNpOG8O8pycn5s2fn zZwJrj1s6A4HQkPM8xVV6bZxrq6pqUxT4fyBM0c4wEg0BgkBUcnrOiDL9evXwZEgiy6CtkgmU4c9 4NSpU6dPm56ZmQlhYZCoD+duWHw+g6Fh1673332X4vOF80xOLtrh0QUf/9bWViTXHh4enlyDD9vR Yk/OzMoqKipasGABSWeVncYQ83wswW5jIR9SuVDn/FF2tNRaJCDgxj8DoVv2ffgh9nfs7JI8HxTE JatWrXnmmeLi4uTk5EiAJcBjgPgUji8IoHDz5k1IUwPcGzVPCCiDAE6AbW1tp5qbL4o7gzKNUiuB R4DbcMtR2gSelojqIcQ8nznBrlBezOz5nD/Iz0EXISAHAWzoPb29SAsGDa9keVh25+bmzp4ze3ru dLIXkYQLBbjdJISjyIkUE02ZS+RgRmVCjwB2g5uDgzdu3Lgtb2cIPcVEgRhmH7N26eJFhFag+HzK roiQ83ym4dQxt1046jp+TPk5lB00tRaJCIB1S01JSYiPlxNvDxG7ILK6du3a4MCAHB4xEgHzbkyA FybVDxQXL1++HObV3lWm0oRAiBCAMR8MwnDGg7qQPEBDNAledwvr4a6ursZ9+w7s348grF7Xpwru EVALz4fwfDU1DZYPgjPzT0WFmJONLkJACoGpWVn3P/AAcqlhf5dk+2D8t//j/e++9c7BAwchGpRq m34XYFVToNWWrlnzyGOPwWOaECEEwgIBnFWQuRWJFiGiJol+WEwZiIRKF2wfzEiY3oYsSRSdNrXw fJDyVVbq+GcHRlhXhk+9UFaLOH10EQIyEECsPq1OB58MOSGdoAhG9o5z58+J2WMpVos0vqaYONnZ mVOnkteLNF5UQh0IYK0itBN4vqypUymztjrmRJoKuFgjgDbiKeIjeYCXbo5K2CCgFp6PBecTtA2C VlOhb6oqgxUfEq+x4MwUmZnWqzwEIIhCMCc4ZMhR4sA8eHQUrqjDI6MjE0bySJCGGNrw/v7+y5cv d3d1UeYSabyohDoQgGJXtNydkzN9OlS86iCKqJBAgMVqSU1FsP1Zs2ZRrBZll4taeD7wdjUGAbFa xPRrQqO+miVeo4sQkI0ATH3BlAwNDcE+T9LbC5Y9cESIiY2OiYkmKx85GIM/vnjxIsxrjp84cfv2 bTlVqAwhEHIE4PuJPQEqQjnu/CGnlgjgCEBXg6w/zHp4xQqyHlZ2VaiF50Nw5ipdCXS6SLbLZH7m NLsI0UwXISAHARh/ICgD2D5IoSR5Ptj8Tc/NnTNnbm7uDLLykQMv96Tr7e291tcHmZ+cKlSGEAg5 AiyWeG9vR0cHUsiQB2jIp0MmAdySBIY66enplCVZJmgyi6mF52uq0iEuc311sa7WaBBKkZyDf5jk jy5CQAYCLD7f3r1QPsqJyYyt5L7773/yqadW3ncfxeeTgS4rAoEo9mLpZMYym6NihEDgEcBucP7c uZZTpxD4g+LzBR5vZXqAdBaiWbjuIvzWHTphKgOqqRW18HwgBxI+QVinr6mx/UDyp+h4qbGIRcBW tys5yNi4OMSZQ3LetLQ0OkdKwoUC4PZgMZmeloaAOLC2kVOFyhACIUcA3AMi8yEkEzS8EzIid4ac YCIACPBYLU2NjYcOHKBYLcouCbXwfIi9DI+N0spKhw/FZFZ2viO4NRhoIxwDNAJy/Lxw+odcEAE/ 8Zc8EuSsCnjGgEuGSTV04uT/KAcxKqMGBCCWxgHPFJ8vSi3vOzUgo2YawJ1zOV93T8/YHYqroORc qeUZqGyEi66Ly919JTFw3ZahpsSSm1v8UmGxLWyosP1X4EkRGC2weAx8T0HrKABDyc7Kgs3vzJkz IY6SZPtg9tfY2NhQ3/DRRx/TOVLObADVmbNm3X3PPYsWL0YABTlVqAwhEHIEuDdA/uzZcOonD9CQ T4dMAsANsMTq4+P4zzVnILMhKuaEgFp4PvVNDfyGES5GKK+HP4DRCMVzXZmZ64NE0liLjCFBuhoq dFVNwegrMB0hrnZQPHGQQvfee++dMWOGHJ4PiuArvVfaL7df6SF7EblrC0pwvEHxlzyd5UJG5UKN AAT/CxctQvIYBO+cMmVKqMmh/mUhwOIqxMZOSUpKnDJF8gAvq0UqZEaAeD55a6F0A/i/5tYgiNqc 6SmtZcxnEK5AdGSo2RIki0woH7G/ywnIbIIScT/ZB//RJY0AztxIWtrZ0UHacGmwqIRqEADHkJyU hGBvUxITyXJXNdMiQQhmCjH28/Pzobch6ayys0Y8nyw8DTXrq5qK163RstI2ClCrAtiiemWKX/Gy KmNd3HJR0QUh5lK2cj7zPVPzaLsESeuYHhp3+I/OtJgU0ybKzfRY5W8uOrIQbVFqy6LZjjz8g5Fe V2bWhbtAQhb+cgoNDg4iVgtS6MqK1RIXNy0nJz9/1rRpORSrRQ68w0NDFy5c2L9//7Hjx4coPp8c yKiMChCANVhvT09He/tVxGohyzAVzIgcElh279zckpKSFRSfTw5e3pQhnk8CLcavaDS6ls1GY2Ml Y/lsFaAN26qKuO5Xv7nQxA6WCeKd+vKmqm1Mpwm+x+aWjvNZThVdUcF64s2LLs3iBeZzxzo9u1VU tb7G0FBRVic0VW0Rthv11UKVbr3pi6nnLc3VrCzEhHU7G0yUIyrOzrUmbfUWbiPooiOI5+zqyqTZ gTzoxxnpTD8OXbg9EiKJSl5dnZ1vNjSA7UPEYDjreW46PSMDyXmfevrp+x64n2J+ypkGyPlg+Nh3 9er1/v4x8n+UAxmVUQECcNc91dJy8ODB1tZWOPCqgCIiQRoB7nmTlAwRbRLpdqXx8qYE8XwSaDF+ BXyLVa1rqwAtXVvOeELI1bSlpWAIDbt2CNUbREs/s80fbjUVL0LwQdyy6ocdK7pk+XbWFZsa0y0y 6XZZa2Da8EQwXq9Fz4kp3yxyo2CuzF/Ef4HjApsK0ZpJTMgLF1frRVtES5tCg4uOHOsy8h0G64Jm R/LsirgAx5uVKln21u3bCME1cOOGnDwc8OObNn36rPx85F8nOZ8ktlSAEAhTBHA+uX79+pUrV7Az UCzxcJlEFp/v5k0c47u7uymugrKzRjwfw9NZj2mHcmktl6o5Q884OyZyAxdmUpSCEbMrpm9x6X7h XNGxcUNrM+PqnPs0eZWgYyk/EnFYTKhnlRO6YtRcduSirjTNIt/JBZ8uyXM5HqUWNIIFg3uTeSgE X4hD/8DAgByhoFIUhnU7yFIHCxukq5+amQnTybAeCxE/eRDggcRhHyZzZ5g8yKh5pPCxQ6CWxn37 DiA+H0lnFZ0q4vkYnCI344ZPEeEWuT6TXtYG/4Yaxgiy2vXlTBKoXbOuuM6kMIUqswK/QjoG5StX ZIL/M9kEOlZ0MaesLcHSmKmAbQdS/rDMewIMmBRjKBLt2JGrujJpNpPsRJ4LcBRdykinMXfuXCTY AEci6VgK479Tp04dOnDwTMtpWKopSkhkNgb/GJ1Ot/qRR1beT9rwyJziiBwVWD04cCC0JBSFSLEd kWOMvEEhUAvO5GD7YItJcj6F59fM7Jj+//z58y+88MLzzz8P6weuI4uAS9/auuG731ug0z1bVtZ6 9qy8EVl9ZaENtTeqE6eA3bWRn1nEW9Z75lvWllwU4nIxXsQqIuMkWioWF4u6XZuipn+ZSpTXW76Y K6Gsg7dvcXm5SUNs8xsfm3NHjnVdDFaCZvNgTHjwfzqDI28yII37cM+ep5948uFVD/7ulVeQOtO5 HhQBb7/5ZpvBgHOh5NLt7ur64x/+8Iva2td3/gmx+uRRQaWwFbOLgCAEwgUB7AZHjx7du3fvyZMn cdILF7InOZ2YtSOHDm396U9//i//0tPTM8nR8G34eAmCiwMvB44OfJ2lEQ2+2XKRcM176aWXcHPj xo0FBQWRIQ836PV1tXWvv/YnCCr+6Wc/0xWK/hZquwzIOoc8JGojyyM9waIZhtiHDh58acuP8eXr 3/zG4088gfTbDpRBHXDz5k1EZEDQfcl1i7S8bza8CTZx1qz8Zz/xbFZ2VljhHgJisYMgXSlkojyM AlS9ISCCuiQEvESA5V67fRurF+J/RO6kcC1e4hea4thnzp0799FHHyH8+9NPP40ES6GhI5x7xcqH R+PWrVuh9dq0adOcOXP4aEi3q45ZhfncemFNeDF8KqMZcfaYzY68iMHMLywWUT/xHyIMq2MNqJsK 7MLYQZC85PCRI3CXUTexRB0hYEUA3B570mWYfBBqKkEA53Y42D3++OMPP/QQTpgqoSoyyCCeTx3z CJtAHgomjC6V0QzFDQS61/r6ZMXni49H3lgcfXKn58bGxoUR6qEi9c7YGKK0tLe395AnXajmgPr1 HgH46kI5iHWLMENkGeY9fqGpwawwU1LA9s3Iy6OYzMrOwWTh+XjOBbrCFAGI5aKjJFJ+dXR2vrFr 19nWVmh4ocrxPNK0tLTl994Lj4Rl994zJYkyMslYF0YjUMVbEy9RB4MQGZWpCCEQGgSg2IUl38cf fXT69GnKrB2aOfC+V+wwoyMjgwMDNwcHJTdz75uf1DUmBc/HEjYLRuayHxVFubbCcb3DCgeJFz3n VRsZGbl69SoM/uBiIDlGNJU5deq06dNgF0iRRyThYgXAdov5dklHJgsuKqQOBJg9361bUAJgZxiX CtWuDpKJCgFnSxarpbERwbQpVouyC2JS+HDAb7fuP/7j9ddfz589+wc//OHcefMAIlwQwRqAC8Q7 LCpKFAJKswrKgj9ZWsOhDTsvC4jKZa1e4gxmHYFVz5w+/U9b/+/IyDB8OJ548klnH47jx4797ne/ g3vH0rvvTktN9czJgRhsJfgLJgah3smyW3ItQkbSdu7chfPnEfMCCZFSU1Mlq1ABQiDkCMArf/cH H+A0mD9r1r0rVmRlkbdWyOdEmgAw6IjAAJ4PIaLK1qyhWZOGzKmEOx+OScHzwfb8P+vqwBDExcWv /dQnc3KmgQvh4TzEV35ybKwYt8lLXsSHaZiEVQDq+Ng4nGqHhm5D2srkrF7hDGeLmBgwZxcvXtz9 /geIs1X57arHHn8cXxzARIGPmpqKliyZPXv2lClTPLNxeBO0tJwauDGQmZG5eEkRYvtNwqnxasjk t+sVXFRYJQhAwnfs2LEbN27kZGfPX7AARh0qIYzI8IAANPJnz5x5/733EpOSPvOZzyBbEsHlLQKT mueD1fmrr+78t5//K9iCzKxMbrM/YWQpWU1yPnLd9HZBeVMeylasv3HYgXlTy1IWc8TMO0ZHxkbv 3HXXXd//m79ZsXIluDqHxhBI5Mb165BC8YgMnsMyt7dffvvtt7s6u2bNnFX2DJ0j5U4Mt+STDHkt tzkqRwgEGAEcF8H24S9cASDRJ0OOAOOtTPMmnu/992HSQzyfb5hOap4PKbYOHjjw+9/tQMifMabS 9Y338A15qqUMAiwsXFLS4sWL/+KLXyzQap2T5PKYk2BH5HAk4P7feP31jvYOCAU/9WefpnOk5CQx bfjNm4jSgrcmhKyUpFgSMSqgEgT4zoCTCtIzqoQkIsMzAiPDwxcvXTp86FB8QsIjjzzirNUhACUR mNQ8H9RSMN66du0azPzJ5VByraizgOi6GwXzjqlZWfHx8c6MHUxAEEwEHv4I4ykp54OB8Icfftjb 0zsjN/fRxx7LyHTUFKsThBBSBWEJtC0I7J6akrLqoYeQ4y6ExFDXhIBMBLD5Y+nC25zJ+aZMITmf TNxCW4xH0oYFDnby7OxsOmH6MB2TmufzAS+qEnYIIL3Mvr1771q6FFl3Jd0ycAbo6OhAnGGUnDlr FpjIsBtvkAkGP40cVieOH0/PyFjzzDNkVR1k/Kk73xBA5CZ4d8GeD6xD4fz5ZM/nG4zBr8Vt7tGv 5AE++LSFRY+UhyMspomI9B0BRHKCqxekuTJjMufm5sKPe9r06XSI9B10qkkIqBsB7AZw2oVcn+8M 6iaWqDMhwOR8Q0NXrl7FrLGAD3Qph8CkiM+nHFzUknoRQDwXllhT3gbBjP7EeI1RGnoEZM0pTtvw j4FiHXK+mGjRz50uQiAcEADTAG6PCY1kRO4MhwFFPo2Yr86Ojr27dyMUA0XSVna+6YWnLJ7UWsgQ gKlf7owZ4EtY5G2pC8Z/ly5e1LfqL1++jDgyUsXpdwFWkkhVd9999929dCmc6QgRQiAsEBAza8fC eAM5d3HMCwuaiUgw6NDbIGNeV2fnKElnFV0Q9AwoCic1FjoEECUY9jpTp07FFi/J9iGwC+z5zrW1 4TRJPJ+cSYOcD7ZQSH+ZnZND2nA5iFEZNSAApw1Y8sFVC3l3aN2qYUZk0gB7Pqhu8CHprEzEZBYj nk8mUFRM7QhgZy8pKcnPz0foPkmeD3I+pJRoOd1y4cKF0RGS88maXJ5vlwczl1WBChECoUYA4v+i oqKV998/f/78KUlJoSaH+peFAKSzEM0iRAviA0THxMiqQ4XkIUA8nzycqJTqEcAhHhsEAjJLMnwY CssqMTR0a/DW0O0h2AurfnChJxCS0cuXLh05cuRUSws45tATRBQQAjIQgHw6OSUFOwNy7ZAdqgzA VFEEmzlipiLH493LljmH31cFiWFLBPF8YTt1RLg9AnDggP3H4MAATLYlBVEI1jV1atb03OnQ+FDI LjlLCagiXEv75cvdXV3k/ygHMSqjBgTYur1+/cqVK0jSQx6gapgROTTg3A5OfebMmYiuQBp5OYjJ L0M8n3ysqKSqEYC1b0NDg95gAPMnKbqDadq9K5Y/8tij9y6/d0oSeSRIzywgZdntbtwAVz0hxs2i ixBQPwKQSZ88efLjjz8+c+YMeYCqf744hTysQnRsLBS7cvIqhcu41EAn8XxqmAWiQQEEbgwMnDl9 uu/qVTnx+WDlg6xrMPHJn50PmZ8C3U+CJmDEB85PzGNFFyEQHghgN+jp6elob+/r6yMP0PCYM0GA RBZRFZubm5H7Z2h4OFzIDgs6iecLi2kiIuUiAHZEDk8C3gUvA3js4j/yC5MDLreLgpENacPlwEVl VIcAHVVUNyVuCWKxWm7evHTpUntHB9ui6VIOAeL5lMOSWgopAmmpqQsWLECsFtjnSaoDkHsNup4j h4+cPdtK50g58wbnGEhGV65cuXTJErKqloMYlVEDAswbALFaZszgUZzUQBLRIImAcWJi6Pbt3u7u q729ZD0sCZdXBYjn8wouKqxeBBCQubSsTKfTwUFP0nUXaddPNTcf2L//dEvL8BDpDqSnFZw0QifM mjVrOllVS6NFJdSCAIvVsmTJ/Q88MH/BAiTXVgtZRIdHBKCugagP6VPwIT2MsouFeD5l8aTWQoYA hE/w80JkZjlyPtiLDAzcQDLHgYHB8QnySJCeNWjDR0ZGbkJAKsNFRro5KkEIBAUB7AaZmZmwSUC4 FpLzBQVyBTqJ0mjArCPTIyxJKD6fAoDaNEE8n7J4UmshQwDGef3XrsG3VNJpFyTiTZCSksqidqVI CwVDNiQ1dQyGD+Y1hw8dajl1iuLzqWlmiBZPCGA3wHKFcRj+spS7dIUDAkiUlzNt2nJYklB8PqXn i3g+pRGl9kKEALzzPnj//fPnz8uJ1QL97+LFi++7/77FixfhQBkiksOpW1hSX71ypa2tDZzf6MhI OJFOtE5iBHAIZJa7R45g6dJZJVwWAjzGcCDXFhTMnTMHCTnCheywoJN4vrCYJiJSGgHk5Ma2jsir cpKDwSMBiuCCggIkkKVYLdLgIkqL0Qi2D4bVcHnBdzlVqAwhEHIE4AHQy2K1dPRd7aPM2iGfDvkE YBtncRXu3JETh0F+s1Qy+kc/+pEtCghZvnfvXtxB6lKYQUj6P0oiCNE6v1hYL/cXb8fSnbmOZC2N q1qeuzK9rix9obQPFIq1WEWvxiWrL3MqMFsKOYme+vKtltGoEewwlEWhj7VMKc68Q97VuJznC212 dHQcOnhw7ty506ZPh+EO78UOQ3GiLTsIjpI4QULIh8IswovNTy5ruQPfwgB5WcsVGmYK3fblcpYD VMtoRyFke4iYhSCIKcnJ8+bNA3QuicQz4fAs82KeV69FHW+74Ug+lb7VAikOFOKfkn051zKNysun 0ue+fKNQupb5efDuqRTn1Pb5kjUu81HBq1m2xIP0upbYHWR7rWfPIoVM0pQpcPOC1a+cTdu3vqiW ZU/wYW3Yrii4biB1ymnEW+3r44aYnpmHyEMeI/KT+wJi/f39jY2NaOfBBx8EjKZ9z4GJRsr5l156 CTc3btwIKYik/6Nnng9PF1h1WAKhQdcDwItZfDIhd4GJFbpDMR47DbXw/mC1nGUK5pvx8XGohZc3 r8X6Gh019eUsijD3FRcfFxsTy2uhMEK0jQyNoLominEJjpe5Fl5ylr5Q687oneFhSy0nEsWW0X6C WIuPi/UFCkWDM0QZ99BXXGwsasGmwYwGw5DV0ritBdJj4xga3IOBS2XMtdyNi7F7sQDDXIuNa+wO /Fjh1hDlti9WC7KxmFgT8qzWnTtDQ8MT4xNR0W76EmcRsIvDYuMyocGRd1dLnESUt9Syrg2Ghomr A7yg58Tx4y//5rerH3t06dKlaenpuIMpRk3eF5w2oOXB2ZGFd4+JATR9fVcxiQkJsBSeynF26Mu2 FtvC+JTZriuRABRj5InjQuO2tdjPrmsZgQeHPS42DguPYzhsmmXTQ2G3Qvg6ZLUYilghvJZlXG4p 5LXESQYmDmi4HxfbY2OAlFgL48K78/LlSxcvXsLjs2D+gsQpU9jW4YgGu4cnEiR6gYa4B2ExsToi hqAKM4UeMTq3GIpdmzAUx4V/mtAQaxldIi/SHBXNBoYn2ou+jEYRDBMa6Jv1BRMx9IWu3fUljksE wzQuLDPYHkiPy74W0OC1sI/I74vXwl+3e6+4fLGwMS7sVBY0bt+6xWq526N4LY2G1TKnt2YJrIeH x8bHrVu905PCkBf7skWeP5XYr0xEuqrlTCHrS0yx6OGpBFboCwjs/uADMBCQ6yN/K3zP2TuCP1qu nmU+rkTzuDBflr5wgnRZyxkNSy2JcTljODKCFeWhFobMx2WLPN4ppoSTbvYoDxSyh8/NuJz78hMN T31NTOCxZ+OaMoXvNvrW1j179uCl9vTTTyPODpC3nPHYLJj3XjZf0dFAA7s9LwNFhGlteBwXHmes eUstyVnmaKC8bV+8lqf5El8rbEUlJkr3Jb6qMFkoycv7w/YBCii+tm7dikY2bdo0Z84cvurFPmwu ZXk+8BxdXV0XL1zAFDIOxu4lxvvXII8TxlZQoMWrF4cwzDdWMKt18aLHWhPRUdGzZs/CauCumkC/ s7MTxkZgPsAkuO5rgtVC6gXUSklJQS0wYb29PYAG7ojsPcpXie0lcgNYVQhOBh8i1AK1rFZPb5uh 7dbtW3FxrmoJYq2YmDlz56AvxAgQa410d3efbzsPz0fXtcS+oqOi8mbMQF/YngAax/DC+XO3h4YY f+BEIR5ZCCFAYV5eHmqlZ6SjX3Ot82ItFxSaasXEzJzJaiEXGWoxPUhvLx42eGfG4R3gsi8jGxdi dkAMzJEHGj3dPQYkPQOGCXFua0VFwSwXfWVlZeEVCAqBxjnDOWzKHmtF50yfhr4stbo6u86dO4e1 AeaDsdJilh7wJefazr33zjt33b107rx5ONNMy80FgFMzM9EXHku46J5ra4OXLgpjHxkZGYbGB5zf lKSkadOmcXYBaCMQCaqgIq+FUyZqIbAL74VtNPbvCS4zYB1NnQr88TIDhqzWuXPQNXuohXYyWaWp uXm5vBZeSzBGhLE5FoDrdcheqEJWVjaelNzp0zF8vCwhmG8zGAYGBtjWLcLhSCHs1o1CdjarBQko gEKt/mv9IhoDePhd13IaF+aro7Oz+eRJzBdbmTExzu8/tiljXJmY5KmQqWBcNsgPeEYD60IcVy7G hXZAG9YhRode3CGPvti4pprGhVpIDdfa2gr9PkPC1XwxcZ3RmJqWBhKxhkGhqdbZs6jrkUIBT5Zl ljny6Gvgxg2Q545CbK8ZIhyID8clo5jflpYWiJ081RIEdIRa4iyzWsh3d4rVug7Yxb4c+RV2cLLU ys3FLKMWMERfQAOvN+enEouZ8fVGI0Jtg8bZ+fl4mXE0EMDoxvUbOFi4q4UVBecnkDgrfxZqYY6w Y2AXhRMVtHHiQ+m4DvmLJjUlFX0x5BPYuFALT4rHWuyVmZqaBhBnzZppwZD11d8PaRBm2WVfbEsU PXbxRCOXQ3//tSlTklKSU/BGxQJmy94VhaxWbCxqIeQTD0KJfQZPJXYPWDXwvcbh+WIIThhxckYt rVZrqYXt6Nq1PryVXFOIbWNiAiCgVoFWy02K8V7gaOAN6GFc2L5s+2IYisiPjAINV8iLfcWJfYFC 3hfGdUEcF9BwPS4ThQmZUzMh/bHUAoXX+q4NDQ+ZHjH7/ZDL88ExY/VCG2BfS0TDLYYT2HKx887T avG6ZBnzTpz4/Y4d2HZWP/IIZl/UxJgk9JxzsEUefaEW2sZw8CYChRDlcFGLq/kC8gnYxHgtjgZ2 UaAxMjzCkIf0x2FcbJYnsNTxOKMWn2VTX9euQbzifr4YA4etAxiCeQBJrJZeb1rz9hSyREfjTJaR mppSWFiYnpERCJ5P3LgDdjG5+pmzb7/1FjiJhMQEvMwcusJ7ChwDoPzk2k8uLirCVoULbAqEuu+8 /Q7egoluauEdCSHfY489hlpTEhP5ee50y6l333n36pWriVMSXfaFPQKT/fgTT8B+H8uR80Z4OF/f +SfwVVOSkmOiXVCI9xYW8ZNPP8VrYQqxdvX61tdfew355pOSU1zUMjIeAolcny4rXbR4MbYq1AIz qj+rf/3118FtwIcg2kVfwvjYODaCklWrFi1alJScjA0IGJ49e7b+jV1XelELHKcThUzYMw65y0MP PbSQ1UriaGC7b6ivh909lHH8hGF7iSKicXA8q1evXrhwIRYx55uxHF/946vdXZ3gAqNjoh2ErLwW unjk0Udta7XqW//0x5093d1p6amuagENjCvu3uXLUQtLH483+jp75uxrf/oTuOf0dN6X3fGD9TU+ jrUB7y3UAn+JWkO3h5Bg7Y3XX8faMFMo8i04KoyMYtTHjh5Dxh48ySvvu28B+kpORi2slvb29rfe fOvSxUsAMC4+ATwf8vMOjwyhZN6MPPQM05EpyVMeeOABYIjZQS2szEuXL7/55pvtly5jFwBX7fAE 4iZaxlNaOH8+1ga2VEw0auG48mZDQ/vldjzRrmuN3sHWCPKwejMyM1AL6xDHrYZdu6ChxkQ4s30Y IVrG22XJkiWsVnoaeCOsMWD+3rvv4rXETgsYmz2bbqplNN699O7FS4q4+BO1urq73nnnHWz6ABnI O9bSsHEBE4xrUZFpXIxfGRw8efz4xQsXgTir49CXWAsLBgCiFjZHzssi7dXbb74JASHQcD65ohEe c3UxxrV4cQYoFHk+5NB77513DW1t2OtdjMtcCzJdoMHHBT7sSm/vu2+/DYaAyZOc50ujYQIAQcBb FkTiFMG5Upw9sDbOnzsHKNzWMmp0hbpFixfxWUZfYq03gSGT/rnpCytz/oL52AF4LWCI98q7b72l 1+vxaLusdYcJDqPQEWrh6MJ4PqDR1/f2m2/hZca0Dawvh2MpGxeQRCA61MLLjKExMYFn5K2GN3E0 xZbiXAtvTSbME4S8mTOBRnZWFuf5sFc31DdgV5wyBTuk475hrqWZNXv2woWLsrJZLc5ffvzRR+Cu Bm4MMHYW25T9W1PsSzNn7lz0Beae83yo1dTYCN0rvrBZduKoRCFl1LyCAuwAWagFHt04cf16/769 +3AkuH37lol1djqJse13yhQEaf/0Zz6z7J57+Anz/XfeO3/+3M1bN51rAT0WEG5sPDk5CQ9mbm6u 6b1+69bhQwdPt5zGNiUKKaNtpSSWWimpqQsXLZw+fTqvdfPm4MEDB5hq8upVDAtDc1FrfCwjPRNo 4CSG1wrjgAcHD+7ff+b0mWt9fe5rTWD/BBq8L34eQDZhII9DCBB009c4nhFei/NhEOUyH/yWFri+ oRaWsCsKx7FuMcvTp00zcaWodeAgamFpoSNnNAAgLpzEgAbO0qZaN28d+JhFQhXHhWou0ZgAo4Nk mBAJYFwAlj0sfX0Q4uD4wfg5qDVseD6OPATEaelpiLyIHjn3hpTKHzd9dPp0C1YU00O5Qh61sOti bSBYN+8LJ7H9LFbraZwNPNQCIwsMc7JzMC7UYn199BHGhTUvqhvtxoWDGZ4mnNPjExPAauNZBoVY QugLax5rA18c+mLaOXZkipozZzbmC4vKT1GfS84usHI+6D7wruVSNCZ7c5aiiUocjHzBokUIoYQJ EHmjocuXLmHTwSsc5yeXtfgbDsZb2Tk5XOqAcxjWBzZusZYLeRjGzyV2c+cVoC+sFYs8rPXMmcGb N0V9mQvlKV7qmFGcP9AXkj3wWp0dHWchD7t506K1sWepxL7iYrRaHfri0kFwOXijt54VpWg4Q7vs SxwXzsHoi0u2UAvcg1n2xrRsztwbGAhQBfklF3sw3ohp4i6DgWNSNFE356KW0QiN3+w5c1CLS7bA VXR2dZ0+dWrw5iDTHTipd7lgACUhKM4Sa5nQ6OzkizghAdJB577YGQ27GM7cqIX9FCQBQ6wNbFUI +Sb25Shh5X1hg8jNnQEKsYOgFkcDTDAwxCmC12JMn5EpqbF+0CwurBlIVtAXwEctJkXrvXLmLF5I NzCViYlTsGc1frgXf3PzZoDrjYtjvBoUoDOBvHhxThEbIvpiLyQuy3G48FQzrZQRmKMnSIIxECb1 7OmBBAh7senV4lQLmw7eiJw8zDWvhVMHZhkyRdPLz7EW2+NQa9o0VMrJm8lkVEyK1tcHt0Rs9wCB nU8dUBR3RiA0fdp01ILDCq8FHuLsaXMtdtZ0HJlJYodxZWdjhYBCCCHwbsYehynASDkH41ANaKAv jAsD4+MSke9lGEKK5hJD8WiLdhgWOTkzRVkOeock7NSpFpyGYXDKzutOuxevNW36NFTkElbUAkeF UNuQAPG+XNQSXxtYt6ARazghMRH4sFqnTqGW61nmWYbFWqCQ1UpIQC28zlGLvWg5s+JModgX1gZe LeCQLLzRsaNHgb9JYue6liY7i60oUR7GOCrI6o4dOwY6wZQydspNX6iCcZnkl0YjaDt+7DhqwZDF ZS32gAkCTjiYMiajSkzkGB4/fhySYHd7FH/1Jqemoa+CApMsB88+Xn5X+/qYzIPL+ewvLqTBOQ19 cQkQ41cGB1mObDETLpfZu6yF9yWbr7lzeS1IInktrrZ2riUKZSawuaEvHCRweOb8ZcupFl5LFK+4 2HBQC28B1ALrbOIhbt3CU4mTs1UeZk8i7wusOWN0Fi7ktYAGHhZIH0R5mCg3ckBDFIhhSaAWmA9L LTwpsJrFe9NlLVNfcXGMQhzvk5I4hqjFMLRIB50oFOV8CXihWCjk0iZsgCAVUDgvYPDW+B+EHdlZ 2fMXLoB0AK2iFqPQjIaLWqJ+APswKAQDZ5GHYZ9ntYaGXPbF1iHmKy4ODwsYOBzv2Sn98uV9e/di 1vDWwHOKilyYbblMteLjMS70hZcs48Nu3WLr8MoV7Kgm2ZsDGmb5JY4r6AuLH7/ztExAA5ubKOZz eoWJcGC++LgstfDWQy3oi0wyRee1ISpqwTpjlrGMUYxReOoUajH2zl6lgxHxJZ2eloYzMNBwyfw4 P/4u74RGt8sNSrhNicttEbRinBgYppkbeXD+ndURbUpYLVecIn/fYNGjFue6UFiMF3sbrLWHWmgf xrx4RLltE3DBA4Z1z2xl3PfFaiUlsVpmGzse84nXcjkxbFxRmuSkZG4IyPuSVQtWgAkJII9bbGBc vBZHw0VfIha4j/Loi8PIMQQgnmuhGjZ6VOF8IUNjZASPGcblWsMowo6+IFa0IM9qDQ9j6/GMBipy 8rBx874k0DCNC7XYuDgaplq8L7NwReT52NMCY0QUxH0UY2iYMcQ/wQgOiLXA9KM1sGUf7t4NkQbY IEiLMRwuKbFF3jQuPsuuXi189aJ3oIc22YmFYzg8bFobWLruV6+lli0aEDV4XvMYFUMjkVlBoHMW J/nmTS4qc7cO8RNfGjBetNYaFGsxAl3YQbBhGY1M6s7HFR3NXi1nzoDLAUQrVq7k7xuHvYbfcRgX o1BEnnUkDw20gy0bPUqOC1PMVpRoE8JrYfWKZ2UXL3U2X+KccZMybnFhqoW+RkcZ8+uSQtQT7S/t avEVJfblaVyxsRYM0TlwADsLOj3PMvYZvqKwmFELIwIDx2t5mGWuJ+HzZap14war5QYNNn3YpvBE xMXxcyluoDyYKg99iXalRoiG0JelFnAA8kwU7WYdskdFtG4EGqKWw0Qhr+Vu9VpqMeTl1xIfTIya oSEqCvnyY1J50Q7Y7atUfBmhLzYu0XoBFbEORRH7hMtZNr3CoqJ4LQzQWks0ZPdQC7Np6su21ugo J9Lli5y/LoFhqmibxGfZRKE7o3k+y6IBDLdowg3sltg3MC7Tg+mqM46hLRqohb5gEImXrAcKMbm2 a4PXAmME2bOHWugLr3JYGuAvEMAihOiHSw0xXmYGZs/zWZgH3hdqeYG8uDYgSLOgwcZlMad2jwYo sWAImSavhbXhYVxoDLShFmc5sMNDHMAdD5zXBt94oQQAR8TLy+TwnIuFhufj5xJ2ovGwHEViuQyT j1B+LS5H8acWugN5WFiSFNr2FehaGBHvjk+kCin0DQ3fxiWek6XRgEZ1/8cf33PvvZBCcSGKOwxx H/sdNhScEfAozp5jlVr5QKEoYDNNGH9AZc6XD33xV6PtuPjR0Jn9ctgCfKjFdnzx4eJ/wXPASwY8 H0Q1sI6A0MvdZuQ8LqbhcP/y4+34QKFzLTnIm+bLPC42X2YMPeyv2IlFMaoJDbZNmfcNdy91vpXZ YsjvMI2U+5cEw0J8Q6MzC18op5aPfXEQYZxus5HKpNAODTnrUBxXkGqZFxUYPqxbcJZgHWDpy6VB nt+jDA3LeVLOuMx9hVct/l6Ws3XYjYvHN3A679lCyl/ldq9mcQdwPCM6TYMFeZQFLwWZBe5YzjAe NpzwQl5yx7ZdgZ7XqodfQ8Pz+UwuVSQEvEUAyq/fvfzyk089dfeyZZajmLtG8NThjIu/2Cy4ZNTb 7iZbeahZYQB09NgxGOp98pOfxBt0siFA4w1HBKCyR6h2qNLy8/Mhn4YeMBxHMdloxs4MOR9MMJnN kuhdNNkQ8H+87ng+etX5jy21oAoEIDOHOhunQ2grJAniBykeBUby3C/Z2mQoALigXIOJCWxNuAKL LkJA/QhAYgTtJy7mvmPr+Kl+0icxhVwdDAN92HxTJG1lFwLxfMriSa2FDAEYdeXm5UlK+Dh9ohdO 54XzFxD5hRuN0eUZAZhRw30SHuX33nsvN+imixBQPwI4q8AaAUb0FhM99dNMFOIADwEtPHXg4Y7I NQSIgggQz6cgmNRUKBGAo27ZmjVaMbAWtxD3cEFxcOTo4T27dx89ehSuLqGkO0z6hkwUQj54rSK0 B4yLw4RqInOyIwCPMUTzWblyJQKecfdYutSPAJPOjo7C9wuRMWD9qn6Cw4hC4vnCaLKIVE8IwBmw YN48HOjluDtBX3C190pHRzu8+qH1IWQlEeA6Mji5c+82yfJUgBBQAwIw3oANHyKEI7gad+2kS/0I wAEEzDpi9WE/N4V/Vz/RYUIh8XxhMlFEphQCPDwND8cg6SIG70H4wyPsCV4DZM8nBS37neXh6Og4 cfIkAnQhGI2cKlSGEFADAsxjVMaeoAZSiQaOALZlhKq+//77YUmC2GoEi4IIEM+nIJjUVCgRQE4U 5GBAGiIWo1FKEAXrtPz82YULFuQjvHBcfCjpDpO+EV4LmUuQe01PPF+YTBmRCQQg0UdUJpiF4cRC Z5VwWRIwzkHmMeQBQsochBUNF7LDgk7i+cJimohIaQTg58UyLSL7IcsbJhEKCs7/M/JmzJ03N3dG LhJ4SLc+6UuYIlQPDCBoliRLPenRIgDUggDPIQ73T+RNIW8ttcyKHDp48ECpnVxOS1TGFgHi+Wg9 RAgC2NBNmQBkbBMwFkHo5kJdIRJVkUeCnBXAcgYkJCBKfqKYNVJOFSpDCIQcAYRouXL1KhIbIsAk 8Xwhnw6ZBDC/3WvXmN9uaytJZ2WCJrMY7d0ygaJiakeAR373kBTBxQB8T2yjdjQUpw8WNtlZWcjK Ojs/H6m6FG+fGiQEAoIAbPlg6stTH8g4DQaEBmrUSwTgV9fb03PwwAEEgYetjpe1qbgnBIjno/UR IQggaNys/HykKbTk4fEwMJwdOzs7L164gFDvdPqXswLg8gILm5mzZiHlObKhy6lCZQiBkCOAtLnI HJOTk4MofeQBGvLpkEkAfG4QIKDv2jVI++TE2JfZLBUDAsTz0TKIEASmT5+OPLBz586F3lZS+Yj4 fIcOHnzvnXcPHzgIA7UIgSCQw8D7Em9NBEGcNm0avTsDiTS1rSQCsNxdsGDBsnvugYgakTuVbJra ChgCUNpAsYDwW8j9g0zQAetnMjZMaE7GWY/IMWODmDdvXkZGhpz4fJDt4QzZ09N77dp12I5EJCDK DgrKMTDH1/r6rvf347uyjVNrhECAEADrACHfzJkzEVGcLHcDBLLizUI6i8h8ixYvnj9/PmIsKN7+ ZG6QeL7JPPsRNXYEZbh+/TqPGCxpuANBIF4ACYkJcfFxsAOMKCACM5ixO3fA7bVfvkza8MAATK0G BAEeSxzbAo/cGZA+qFGlEYB9Dqx04GYHZp04dWXRpbedsnhSayFD4MqVK3s//PDixYty4vOJfrv5 hfML82fPAtsXMqLDp2O8Mq9evao3GC5cvIg3aPgQTpROagSwVs+fP3/69OnLly+TB2i4LAWcyaGI z8vLy4X1MGVPUXTaiOdTFE5qLHQIwNr3+NGjPd3dEPhJyvlgmnbv8uWrH3nk7mXLyMpHzqQxyWhs bEx0NFKYUOYSOYhRGTUgwHi+c+dOt7QgMjPxfGqYETk0QCI7eufO0PDwyOgoSWflICa/jMbh7Xjh woWXXnoJNzdu3FhQUCBpCy+/JypJCAQUgSOHD/96+/any8rAzKWnp0v6GfCtRGRg/ArZIiZ2msCr BarPoaEh6JX9bDCgKPnWOEYE6emF8+eRzwAs8sr77oPmxbemwqUWpjUmOiYpOQlribRL4TJrznQi SPvbb799pbd3zpw5yOWVnZMTvmOZPJQPj4xgyq719yfEx0PDC0ecyTN2pUaKt1JbW9vWrVuxe2/a tAnrn7dMPJ9SCFM7IUagubl556uvPrR6dVFRUWpKimeejxv/QV+J1zncPiQZRA9jQyiB/uvXL128 +FFTU29PL560yDspwXVu9M5o39U+7MLx8fEIZA2Fi6QwNcQLwufucQQwGsfGxqH0n1dQ8OBDD8Fb GTLOyGPlfUYojCriMd+3d29fXx8UhfDehSdHGBE/aUnt7+8/eeIEzEiwOT/44IM4d01aKHweOPF8 PkNHFcMDgZ6enpZTpxCrJWfaNJwLPTNeKAwW7cqVq4g88tDDD/mzpyDnG0SM+/fvf2PXLphKmDTF pgCwfkkQ1YM7JKEIZ2tyjtEI0VHR6qFNaUqMmigNMvfdvnl7aHgoc+rU5194YcXKlbnTp5O0T2mo g9EeRO/nzp27fesWzDnyZs5MSkoKRq/Uh38IXL1yBTsqcmlmZWc//fTTxKn7ACfxfD6ARlXCCQFs 63AySE1Lw7YOuZ1nqQzEcrt27epo78ifnf+pT306Oyfb56HiSPrhnj27d+9+8623Fi9YmDczD00Z meswOIcI4fmMAlNYx8RA3hclOkKOCRIJjX2GM+QVGc+HYDRwCWrv6BgYHPz617+xevXquXPnwO8n 5MQRAd4iAFk+nlD8hXwabB85BHgLYEjKIybUkSNH4JCHiC2wuoa0LyRkhHWnxPOF9fQR8dIIQF17 8+ZNvJghjwFrIsHzXbr0ZkNDR0dHfn7+Jz75yexs33k+KI8+/BA8354DB/Z/66++BZshGAlGpN7T YvkIhlZ6PsK5BIRDSPT58ccfv//+B88999zqh1cXaAsSpxDPF36TijcfXDfwF+E/wPZFnt1F+E2J DIphPQw/a2jkcYDX6XTkZicDM8cixPP5ABpVCScEsEHAZBWmV1AESG7uyLkOK58rV3qRSeyRRx71 5xzJDYYg5zt85MgPf/hDyITCCTWi1RUCiD6N6B5g5Hfu/NPnPvs5zOk87TyS84XjYuExhkZHRjB9 SB5ICvqwmETuFYe540FbiFP3Ydbc8XwUq8UHMKmKGhGAXZ1Br4ebHnYKSTEbDP5g0428HXkzZiir 7olwCZgaZz4wNJksMiG0jRgVfWCAUner2A2u9PR0tLczzm90VN3EEnUmBHjuNbDp2KjJd0rZZUE8 n7J4UmshQ+DG9evNJ0/CDEsOz5eSkrLkrrvuf6B4cdESpRQHIpMAyzfi+kK2BpTqGPMIkz5cmE6l 2qR2QoIAxEXnzp9voZjMIUHf1055MISOzs7eK1fw3ddmqJ4LBIjno2URIQgghueNGzd47jXJIcHJ A/l5YdMNexFSHEjCNQkLgNcjdi8C5h27wa3bt6EEYLEzZewMETDkCBgC7PnaDIbDhw6dPnUKExcB I1LPEIjnU89cECV+IQAbvqlZWcz4I1o6kgi0PJAIdnZ0ICgAMsn61TFVJgQIAbUiANcNdrpLT8fp Dt/VSibRZYcAZHvQ2/T29MBWh+R8yi4O4vmUxZNaCxkCOTk5CJ8LP1zYgEiK7uB4ceDAgXfffffQ 4cMQA4SMaOqYECAEAokAjoKFhYVLly6dM3cueeEEEmmF2/Y/Q5LCBEVKc8TzRcpMTvpxIJLTihUr 4LcrGZAZUCF8Q/vlywa9of3SZbLsnvRrhwCIWATA8yF51/z582fOnEkpvMJlmmF7gzj503JysKv7 kyQpXMYbTDqJ5wsm2tRXABHw1r0L5VkUvyh6BAI4KdQ0IRBaBOB1DZVuDP4jxW5oZ8Kb3uG0ixQ4 YNOnT5umbFwFb6iIzLL0wovMeZ2Eo0Lo9sOHDyPwHvJzSxprQ8sjnv4XzJ6dHx8XFxS4pD1LgkIG dUIITCIE4NoFs93z5851d3WRRD9cJh4S2Zl5eQsWLZo7bx4kteFCdljQSTxfWEwTESmNALz6ERv5 0uXLPOy+5wrw2F2+YsWjjz16z733TglGCk7Q42g1WMItVqxXRYP0KH0tYahh3XndQ0OFD5V8pZHq EQKKIwCvz5aWlkOHDiF4J9IzKt4+NRgIBJgSBtJZZHuMiQlE+5O5TeL5JvPsR9TYR4aHr/T2YltH WDXJgSEcP9J1TJs+PVj2IiDJkedrNOqri4Xyeh7XD/8QWg2ShHtToKHCwuM17BK2o4tFW7zk+kpr jcbaUm86pbKEgJoQwG6AEE59164hdTJ5gKppZjzRwrMkd3V2IroCzZqys0Y8n7J4UmshQyAmNjY5 JYUl22WZEyQu7Clw3UVofrwP5PCIUu1J/g4534DnQtrK2kqtZDvyCxhqttSZSxt0a1jb2spGYuDk I0glIwABuPAnJCYihBPLx0gmfWEyozi6t7a27t+//+TJkxSfT9lJI55PWTyptZAhAD+vu+66C65e YPsk/TnA6iHg5+4PPjh65AiSqwaF6FgPvRhqKmqYkI+rYKGDZUrVEtxiN0pqGvhtG92sqaBYhl+s hniZqumqmoS6Ml5Hq99mViFzQR9v1mCuY5UH2jZiKWbXvPcK4qCgS50QAq4QiIuNRX7FuXPnQqhP yXbDZY2MjY8jjDbO5Nf7+0nOp+ysEc+nLJ7UWsgQSE1JQSAueHvJ4fmgCO7s7Lxw/jx8PiDzCzzR ED26ftYYW6bR6KqaRRogiasvF4oX6XSLqusbK/UVjHNrqtoiamari+vKzCzb+h3r9FAI1xdVrWdc H3i4MkHUEteXN1Vta+DtiIpjSPYg8muuZsVZEzsbwB7yZnU714o1hLotrhrhxcTLsYXAA0Y9EAJK IADxP86B8ADNysoink8JRIPRhhhUAWLZ6GgWW0FabxMMmiKlD+L5ImUmJ/04kpKTEXYV0j5Y/kpu E3DygKvHrVu3h4eGjVIOH0pAizxerjlLbs+nry4y91Jaq1+3Q7deWAMzOnyHyV9x9Xaumd0M7gws m2DYtaMJHBtGWVYnNLXo2Q2heoNod+fKAg8cYGOlFkI9Ew9nblYvanp1i4o5X+fYCC9m5kXtWlAC kshtw2icgHAC1/gEZV8O8TQj0kfO9OmzZs3Kzs4mni/EkyG7e8wa7K3hupuDWC3kxiEbNzkFieeT gxKVCQMEwMMhVw8SNUo67WIwOEIiXAuSMuFvUEL0GQXjqAcQ7Yz59IJQ3LRjl0uHDogAeTMW3w+T jwVj/dxeog6XCfWY8M/D5b4RuS2EwUIJNInGifE7w4MDsBe9cWv4Dti+QHdI7XtAAAcqCPJHRhGz 5Y6cnYHAVAMCsL+E0ub+4uK7li6FMaYaSIoYGojni5ipnOwDGRwYONvaChMQROHCRu8ZjoSE+Bl5 M+bNm4e/Xp/+0bhU+656l8r1Cf0sNLf4u7OwsRGyPlFpyy4zJ9aws6543Rom8VuzrpirY5kZHyrZ 3kAL3DbQcjFvDrCIUu4bHhqR2cJkX4Km8UPMNzFOgj51rAbMA8us3dmJzK1BseJQx7DDnAroahBO C+k0gxVXIczx8oZ84vm8QYvKqhiBq319+z/+uKO9XV58vvTly1c8/MjqZffcgzOl/GGBm4TEYPDm zd7e3oGBgZGREdxhFnkSdifRgibFoZcSUdXK7fm4TV/RWl3NetGEzqS9NflWmMrAYg8KVtaKtnJ7 tSAqdyG9Y7wcs98r4jc0upa1rFTpWmiCRR8OkZnj3UAXXFdWUlHBeoF2WOQx+XdwmI6NCJafBMcW 7JlK+fCFY0mGm1d0a6KjYhBUNjExIT4Wy8KrulRYYQSwG+hbW48fO4awzOQBqjC4AWsOsRTgWodw LdhjgxJXIWAjUV/DxPOpb06IIp8QwIEe28SdsTFJIR+axzkyNS0NJiOpqaleJWVCL3AlO9V86o9/ +OPHH3106dKlsTt3oCDG5TFGDCKLZjoMq9EUmM/6f7WlYLtErwvx/82h8YpF/wvLP8VmTAVsoucx Qz67YqYb1tbMvzfW1pr6tvmNc5N2jZj7wE+W7ngbJtbTp3kKq0qY0/j4OPwvSiN7q9REaWLjEqck JyUlJcQR0xfi+QbHAL4BivabN29C+Bpiaqh7eQhgJ0ck7Q/37Dly+DBF0paHmdxSsjcyuQ1SOUIg NAgghVpWZmZiQgIcviQpgP4XAZzPnzt/6eIlBAXgR8mJ8fGbg4Ng6XDxlwQPE4Bf8R238EFhCPm6 u7sOHjiwZ8+epsbG06fPQKE8JGFHCGlPcDK8SQ6dCniBACzAIBy6iWVxcxDxfbAq5Fw3bgxgkeAa HJBdR067kVUGoOK85JOZhBczCK6dx+dj7vwydgYvmqaiAUPgzuho39WrHR0dMNHGMT5g/UzGhjUO QpELFy689NJLuLlx48aCggI5r8/JCBuNWX0IYINAsL3C+fPz8vKY1M3j/g6uDsl5m0+ejIuNW3nf yvkLF8KfA3xb69mzYOyw/iH8g0EJwnqlpKTcunmz7dw5VBE0mimJiYj4daq5+d//9d/aOzunZk1d UrQEEp2urs4rvVe2/PjHD69+WLlXCzwnoI3FJcMcT30zEr4UgV3D2ti9e/cf/vjHhx988N7ly/Pz 8zn3jzUQvuNSCeWwd0QANjykcKdlATUDmVAVTl1nz57FhGakp8OvH4+5SkAgMjwggFP0oYMHz7W1 IcLO408+Cas+gstbBHBebWtr27p1K2xTNm3aNGfOHN4C8XzeIknlVYoATOsgOcCJngXcl4rqBHXP saNH33vvveGhIbzRH1q9etq0aZDwfbh7d3t7OyJsxMbF5ebm3nfffQjxgBNn00cftXd0gBecmpGB +wjs9x///h8nmpsRPyo/byYCCgwNDyOU1E9++o8PPfSQcjyfSqGOeLLAIpwSeb6XX3ll8eLFCxcu nJ6bi9mHctBb476Ix8rbAQJAMHyQsuMxAbB4XvDoeduI/PJg08H24S/MOcBlemXIIb8XKqksAjhg nzh+/OLFi+D2Vj34ICJwKdv+ZGjNHc8X/aMf/ch2/NAe7N27F3dKSkoAN21wk2FxRMYYmR9FdDSE cNjWJdctPPj6+vrA3qFk/mx2QfuDmzhf4oUUn5AA0V1GRsaMGTNwH4EesAdBzwvDfER+hqgAj8nx 4yfGjRN4XRXMK8jIzMQDhvfKY489hqYke48MwCN4FFz1D6VHy+nTc2bPmTUrP3NqJmYfC4MufxFI TET0NRhp4ZAGPgy+8xCoB24t4WFEL1DsolPJo2DgyKCWvUIAeylbHtHR2IRx3PI6tIJXnUVoYZxR 8dpqbGzEI/CgDd9Mcr4InfDJNyzwYZcuXgQTlp6Rwfd3DxjANuv4seOHDh0Eb/fU008jTD9eDNxZ DJwfnhZUxx0wfPgLbg+iAh7oAbwdhEAnT5z439//Hl4gCxYsWLp0aVdn94ED+48cPfJ3P/jB6tWr iecL99XHdLvNzZDzvf7665/983WrVq3Km5mHFw+F2lNkZvE6x6Pa0dkJ41g8LzgmKdKsy0a40xV8 7SH+h8MWdobA9UUtK4UAtlksEmy5OMBLGuoo1WmEtRN+ul2EkeDhZwu1gphggC5CwBMCZ8+cebOh 4f4HHpi/YAGM8DwrcaCubdzXuG/fPtiLfHH9l6CulQkuXiE3BgYQF6YbxnyZmVOzsvAWgenJ7j17 kBH8B97xfMxcDxnTpALnianVdEi2xlNheKji6ldrXXlD9La8vFbDq5SF59v1xhvPfeE58CVz5s6B K0B4jUK11MItBqZa8Hnvu3YNul1uKxmgC2zl0aNHcSBEsDec0EhLGCCcqVm1IeCO55P2cAzVSGqF ijW7KnboSso0FaGigfoNIwRuDw3BjQOGemDLJMO1IKYypHpQ4UEAIFnYFgTI/yAwyMnOhngPzCWY RSYIRFtwLvM6ULOrPGkuELfJe+sytZq1inODtnXlTKa35eW0GcZlINgbh9Z+gpJpKDqJLGo1uxRt 1HVj2A1wwOvp7ubmGUHokbrwHwF2tL5xAzFQEUmbZs1/PO1eYco2p2RrpbVISIV8BIIgei7SRQh4 RIDb88k02YmNjcmcOhVuuTNFnZ18aNE+XHdh1YcL3J6pIo9aJ78V70ra5L31riJKe1vX2/JeExR2 FchNN3BTFsCHxoZo9ML4Sx/T5wRu9NSyWwRgS9Pa2vpRUxM8ORBOgZBSEAEVyflch/bXVio4Wmoq ghFImjIlf9YsHmNZ0qJuSlLS4sWL1jyz5pFHHgH35hUsYPvQhZxeJJqFFlVTwpa96YuY0xaXKfsG arMfeIoOlpzDdINVsSvK/8HztvEGzUVt6vJC/Ffb75ambPv1Cg8qTAioFwEedAnR1+F6FW05pKmX XqKMIWCJz9dD8fmUXhEq4vmqdCUNeB3ZfyZTjiel53aStZeckqLV6SC9Y8FXpYKoQUQHZ9vZc+bk zZzplZxPQVArTJwcV6ciE9rOtZBI1CNjmiWVLtKx1TMJIm6yy6p45eK48nrRFLC0tr66Wg9jCAtr yIva1bUV4Nl8RybdZjHNB9qr24mnjy5CIJIQwJOenZODxzwrOztUT3ok4RmcsUBnwj7BkQMHZ0iq 6UVFPB9yycN0z+EDRlA1WBEhqkYAR/nlK1Ygugrs7SR5Pmwm8AsbHBiAtX5w7IqcsRPZNpFlY1+Q YE1k4HSLxJuMw9tZV1y9QfRfMt205du0lZvLTcyhoaa1EJnTbH91rutm7pBUjXuG2PCLqp5mIo4Q 8AYBRJbRarVLiooQkxYeoN5UpbIhQwCOcZliJFSER7Wa0ISMnIjqWFU8nwBRg9PHpNSKKNRpMIFB QH7aGNiI6PX69z/44KOPPgLbFxhy/GvV0NosNLXo3TdSuqFaqNrWIDTsEtY4eLZL1rW2Kup5mYTR JEv0j2iqTQioCwGsbhwC4XMtR/yvLtInMTUw1CksLLzv/vuXLFlCnLqyC0FFPB9kHZWNeudPsVnu oezIqbUIQwCh9c6JGdJ4gD3Po4O7LoLu6ltbL164AIGfGqHQrllXbFHzuiRQFPWVaXYyIZ/95bKu trDIwkTqW/hZCqrdOsrrpsbpJ5qUQYD57fb1kd+uMmgGq5WY2FiEWZ0+fTq0NyTnUxZ1FfF84PYE AS8vu0+DQdvUREyfspMema11d3W99+67yIqG6F+S6loEV7k5eBMZcq/1XWNhVkJx1awXzfjWV1Tw LzrRC8N0E4as2srt1cW4DUnF+h2wfICdQ4n1V5FiiPqKy9eahHye66Lx0rWwFSwTnUK2NBeLPerB WJpuIbFvXVmJLTGhAIX6JAQURQC7ASKoQ5x/5vRplUr0FR1vZDTGYzLDexd/JQ/wkTHkoI1CRTyf yO2ZLjgX4qUHJ8MyHYLzkXo3aOshjDtCxluwfZD2STJ8GKRxwghx4PDQMPYUZNcNybArG8UIL421 tfwLi80M8zp+UxTdmf9lRAId8S7/P9OvjGiUsER09lyXFWPh+/hlaqm21NKF6b4tMSFBhTolBJRE AHK+a/39iPSGeG8U6U1JZAPZFtKgQwMDZh0RW4aHhwPZ1aRrW1U8H0MfnoNg9XQlNZBqQBAB7dak mxMasE8III4aC87nMeWapWHE50MWDZh1I+taXKwX8fl8Io0qEQKEQGgQwLbAPlKO/KEhjnp1gwBs b3g+9F7EahGTXtKlFAIq4vmgfEKMMfjtgtWD3gniPbgzNuqreZgKuggBzwgkJSeDh0uTF58Phe+6 ++5Pf+bPnnzqqdS0VMKWECAEIhIBWIMhvyI8QDMzMynZbrhMMWxvkDQPbB+S5uF7uJAdFnSqiOcT yjQwKILFERwIuRMh9E74r9ZYHxZQEpGhRSAvL+/ZT3yicP58BF+VdOCNjYnFOwBJVPO8zMMR2jFS 74QAIeAVAolTpiy5664HiosXLlyYnJTkVV0qHEIEsIfL19uEkM6w61pFPB94O7B6i6rLW9caG0pr LVAaBIdAFGEHMhEcDASmTJkCRS2yosnJkDE2PjZ4cxBB3nGUJCufYEwP9UEIhAIBFn09IwOivtS0 NHiDhoIE6tNrBCCR5X672VlZsZQ9xWv8PFVQEc8HE3MYmVdWbqjU1Qg1NRD0wY0Dzhyw7VN0yNRY ZCIAs9+urq7BmzehC5B09UJ8vrNnzrz91lv79u4lb77IXBA0KkJAEHCig34QR7uBgQE63YXLisAB HpG0V953X1FRESS14UJ2WNCpKp6PI6aFPre0kql0K/U128DwMds+uggBCQQ6Ojt37dpl0Ovh4S/p ujs6OtrV1d1yqkWvN5BfGK0tVwjw/E90hTcCiNXSfPLk/o8+whnvljqjr4c3wAGhHtJZZEnOyclB hkzobQLSx2RtVEU8nyk1vHUmIParrN1eSD4ck3VxejduiOtYTObr1+XEZEZ8FqTxBncI6aAkgyiT DnIPlAkUFSMEgoYAZHtX+/q6urv7r127E6JInEEbbMR0BF0NNmeIZmXG3oqYgQdhICri+aDDBdtn +xGlfogpRj4cQVgJYd+FcWIC0ZXxV85IcHZMSk5CkHdYjcREx8ipIl1GjAdBUSGkgVJ9CUwiVggz DFU9qUSgBAJG48T4OM51LAxniCJx0hx5iwCks4iuf/TIEUTSJj2Mt+h5Lq8ing86XH1Nje2npqah gvGB5MOh7KRHZmtQB8AvD8a/crgu2IvMX7DgiaeeXPXgquSUZH8R4WpA0gT6i6Na6otJWhNwyQz3 qBa6w4QO0+MSFA4MM5ggziXbGeQF7wwTFCOZTITKh3F2m8HQfvky7HAieahBH5vGwdr9woULL730 Em5u3LixoKBAMuaFggQj2TtkevYNGgwN29bvXGvNNaBgf9RUZCGAc2Hjvn1Lli6dO3cuWDrPViBc dwDFAYrBrc+flI6wEP9wz57de/bs37//r775TeQFh3CIreOgvNIiaw5VMRowfEjPcvHihY8//vit t97+wuc/v/rh1QVabeKURFXQF/5EQIpz/ty5y5cvI0PGqlWrZs2aFbgxwYavubl5cGBgalYWJjE1 lYJxBg5sxVq+cuXK/o8/btPrs7Kzny4rg0JGsaYnTUMQbbe1tW3duhUb2qZNmxC8lg9dRTwfBHqO qeI5iRpHIifNrNFAvUAAR0OY9CUmJsbHx7PATh4j74Pnw4sHbB94PhgL+8Pz3bh+HZnM9uz58K23 3lq6dEl+fn50VLSoSiK5nxfTp5qiEAZFwUygp6f30uVLYEpeeP75Bx98EDtmQiLxfP7OEh4KmNvi mNTR3tHV1QlLu3vvuQc8H7CVKaH3lgI8iXjO8bxHx8RA2kcOAd4CGJLy165dO3bkyIWLFxFF9eHV q3EsDwkZYd1pGPB8mpIafWOlLcp6QdjZYKgr09HrM6wXnwqJh4TvXFvbubZzSUlJiAjgTyoOMI5w CWxqbPrvX/43jqfRIr+pwiETSfIQYIcFbDjDI6MI53b33Uu/893v3nPPPZKSY3mNT+pSnOHDM3L4 8GFkU+2/1o8YmfPEa3FR0bRp0yhPxqReHzaDhw0f1gl8OMCmI+oqjvGEjLcIhAPPh722uNpuYE0t glBXXV5cWdvo7YCp/GRDAEI+JGeEbz/ycEBu51nOd72//8jhI4cOHcIJcu2nP5Wdne0zXDA36enu bmlp2fnqzvPnz9+5M0oOvD6DqZKK4E7gCpSSkrJy+YrPPfcFMCVyjERVQrxqyeA8H8yHXv/Tn042 N0Pah3/ijb548eKyNWtmz54dCJ4Pfrv9/f3oCFZ9KampgehCtYCHL2Fwu4HeBrMWFR2N41YwbczC FzQHysOD56sudgS8sAhxmiHvc6n1jZjZoYEogMDplpZdb7xRXFKycNEivK09q2uvXrm698O9H364 Jys76/985SszZszwmQL+JoOmGK8W7FP4J0n5fAZTPRWhmIceEF5BmVOnkphBqXnB0wHD/F/+8pev vfY6dLvgw5ASrWRVyVeff37mzFmBYKxv3LgByzDo6PGML1myhLSESk1lQNsBv8J5PjyDMNchns8H tMOA56sp0VQ2gr1zuIjb82G6J2OVI4cP/8+vf11aVnbPvfdKmuhdvXLlwz0f7tm9GxK+r7zwvD88 32TEmsZMCPiKAMR777/33v/d+n+PHz+WMTXzuS98YfXqh4tLVqWlp/vapKd6OIl98MEHfVevwtD2 3uXLkYQtEL1Qm8oigCM0/HaxVKYkJpIprW/YhgHPJ8bm0yI2y45dpvDM69ZoKxVl+YDC6MiIKQYv GV35tpRCV4uJ0DSauLg4lxl1jx49+vJvfvPkU08tu+ceSZ7PRrebvvZTn87O8V23Gzo8qGdCIPwQ gPAGiTH+8aWfHNi/PyMzo6qqCq67ebNmIZ5KIAYDvmHv3r3IvTZr5sxly5ZBahuIXqhNZRGAJd/Z s2e7OjqQJfnee++FUl7Z9idDa2HB8wklFQ1NdVsEock8JcXF5ZsVCdTCvLdE7dulixdvDw0hkIZo qj0Zpj5Cxoi5Gh8bhznOtOnTcGSH0Z6DJqi1tRX5c1euXFk4fz50u54d9KA46O290tPTDbUdEjtC fRAhMNEwIggBeJvCSnVkeBg2oxHjx4aBdHd3/+6V34HzS0yI//JXvwqVa4CcdrEWbt66deLEiYEb AzjX6XQ6FqslkA712KagiMSugo5wOg2EtjqCFrjboUAue/DgQbjZIcLOE08+Ce/dyTBqZccYBjxf heiiC4u+dWarvpYmoU4Qyuv1taX+ivvgp3mqufnIkSOvv/EGHIIALj2Nyq6wILSGt0VcbCwMgMor KoqWLImPi7O18xgcHOyBD0dGBhg+yVcImhq7w/4nRt9lsV2CQD91QQh4hQBs0T76qMmgN7Rfujwm rtWwP6UaGUuE5w7eTtf6rkVFR+FxTk9Ph6dFIJhajaAZGx9HNCUIF+PAh6XAhyNmgvnnBOrCizYu Ln7uvHmPPf4YYtBgI6K9xQesYXvD4vMZDIjP91RpKcXn8wHDMOD5NCUl1UJT5fZqQbvGPEJ9Q0VZ WXOxsdFfv11I+GBE8uGHH+7atYvl3UpKgkMQC5vLznxkc+/DigpqFfa2mzCCcYewdvq0aX/7d5tL SkocFLhY4tjfMbksNJ+U4h6FEQ4AyXaxDCSFgkEdKnVGCJgRgEnTb3/zm6NHjnZ3deGEg9gxSuWG DhnGRiN4IFyIeg0+DFsvvDLhbsV4vgnlGVrwfBjphHGc7/MInImdIUA8H48jCwUCepw1O/8Lzz3H XUbIU9iHxQbbm5MnTyIJB3Jjwi0PW70PjUzyKuHA87FnxtlF16DRKBCfDxKgHa/8rqmpsb29HXEB kHcLpzGjkeVh5PsCXapFAGp4BL3DG0Kv10NNo29t/cuKiocffpjZANnEbYL+i8dkhkpFMiYzguoh ZgSSAYD7J3sR1U79ZCYMW5PBYPjxli0nj5/IycmZv2B+akoK440iABQxnTE/mEF/LTNHts/j1mjE CO3oRjzjS50HfeoHpsYslPcEhAudHR1Xr1373Oc+BztFxBDADuNTi5O6ElhnhGXGfo7NPDc3F38n NRw+DT48eL5qvYsNrUqnQB6Onu6el3/7MsTFSLj1raqq5SuWc5F7IBQKPk0QVfKEALZsBNM/ebIZ 5tjvvvfuV7785dWrVzvwfDgUwgRkwcKFiPglGUEXeqX9H+//+KOPMqdmfu7zn4eNIE0AIaAqBLBl t549+4Mf/ACKXXijQ1cIH3NwLaoi0mdiRFk84/k4JxYYRkykTuTG+BfTbh8Ipk90L8O5tLe3Z//+ Azv/9Kc1ZWXYo+5etgxqBJ9RmrQVme3N2BiTyGg0koY6kxYlzwMPD55PEJwC9LFhNfnPmUHO97uX X8FrHvq8DX/91/fdf5+k+o9WkqoQwJkPQr7du3e/2dCAiHqrH354Rl6erZwP8flef/116HxxtoYB tVR8vitIkYvWYC/yAmK15OWparBEDCHAeb4f/uAHvb29X/jCc89+8hPTp08nWNSMAKRTnZ0du3fv +e///u8nn3iCeD6fJ4vnQ+fx+eCuRxnzfEDSHc+nLtP1+vIm548Po3VZxcj8tZg2FysJl/98pFKE UTtyEEBmhNHREXy4qMNZ3IENF95eQ8PDcmY2KioaKT5hJpKSkixadtJFCKgPAVEYxv2Nwt6ST33o Kk4R9ijsQiMj2IImIFyUNitWnIJIaRAMH5x2Dx86hJM8bLgjZViqGIeKeL7yYqTcMDp/cF/Ji7F+ ZiG/ku1SW4FFgDHsYPfcG3pjh4VsT6aXXHxCfP7sfKj4YWeNsJ+BJZ1aJwT8QAC71fjEeEAjjPhB HVW1IoA9ahxChfGI0cCHbHJZQsuennPnzsH+/s7oaMjoiMSOVcTz1QnlDYLg/MH9SESexqQwAknJ yYjYzp15JRX3sBGBdRTidaEKgjgoTAo1RwgojUCE2PEpDYsK26OZ8n9SYOXJE1pCakoctP942rag Ip5PaKor01Q4f3Bf2TFTaxGJAKydHn/yyXnz5snJyQ2+EDZ/03Nzs3NyFAmmwIQx4+PYp3BC5cYD dIU1ApjHAAWNi8injwZlQYDCQPi/GGBvgwgM2KJZVDUKnuo/oDYtOLrEIoDFSy+9hBfYxo0bCwoK ggk3ZDMuBXrg+ORYaHmGBYLiV16G3+7+27duf+d734UPBwVJV3QhBbwxZOOBeQe8Lt57//2vfvWr LFaLvQ8HDJ7AdfEYEJJyPrzRkY4J0bmxDFg+R7/zPoE/QPhAmKGADBYikAIABXxFBLADUZ2K4Lpx CA8WGxMTwJ7cN818OFpbf/SDHyBK35//+bpP/dmnseBDQgl1KhMByKWgjoRr2G9++9vS0lL4md19 993J5LcrEz6bYthIEYcBW/SUpCRoY3CM976NyV4jDPx2K0o0tY31zhNVU1JW2eivvFwOz1eh0ThI FIur9Y2mjL8NFZoyod5YWwoC2XdWstz075AuLlvCPBJiqCnR7VjHBuS5iqtfrXVljlU2VTLbEwRJ ng8hlhFwHxpeMHAuE/LadgX+DEHeceEcef8DD/gT85OHd7569erp06f7+6/hnyw6IPF8smdWhQXB 82EeE6dMwXkAR1+E25A8RSg+CuL5FIc00A0Sz6cUwlARIAkNdmmcu7KyshRRxShFW7i0EwY8n6ak on67yyxrBkHwN/eaHJ6Pc3NbFpn5PM7aOTJ2YH/WC9sbKwULCxUWa4APxoaJ9YJqf+p60Y3nopI8 38WLFz9qaioqKpo9Z45kfD6cID9qRIjuRmT1ee6LX5ye63sUDGz0iO184MCBX//61wgoEysm2fRf Mq0YcNSQlwjw6cNbJzYmdsGCBV99/qtYVJIrystOpIsTzyeNkcpKEM+n1IRAY4M003gGoeQN/qOn 1ChC20448HwaTX15ubC2VijF/xS+fOH5TBK9ZquwD3e8lngpPBDfm/OHcn/q+k6xXU1Jnu/E8eM7 dux47PHH71q6NE0qPt+V3isffPD++++9D0+Ov/za1/Jm+q41u3H9BnhHKJ3rG+qXLCnKz58NOR80 g2J2AbLtUWj6g9cMSw4Gnq+ntxc+g2Diy8vLV616MD9/lv8GAF4Ngng+r+BST+F/+9d/Jd2un9MB zUlvT8+NgQE8dEhbHORHz0/iVVI9DHi+mhIN0+EaGgx6ASnYBF2pTuu3fM8Mv488n6jGZUzfml1M MVq/bkdZVRNvk8v/GDPE7pgEaJw3qi6qqqpjv+tc/arf3KKzVw2bdcUWMZzlhkXKaO7H0pN5YBZu zCR3dGrcQiKrIZJpllAWbrNRUVuEmhtazSpgE4drHjDq8sb5WO2Ef44E2/CItpQb0bmvlyTPB2u/ 7du3lz3zzPLly9NF710PXUHOB0Zt3959U7OyvvilLyK9j690Cci29MH7H8CIp/GjpnV//pm77roL uZ7wvIlhZYjn8xnXUFVkPN/Y+BjExsePHz9y9OgX/+KLCK6rKwy2URHxfKFaAX72SzyfnwCiOs5a UJ7grY2AzEVLluCv/21OthbCgOeDDM1GhwtTK/36ba3CojXr1mhNNnV+TJqvPJ8NE2fPMIkkmfW8 jAGCTtiB33LzK+fjzMykyIG1bGb8o9kGDpyiqD3Wss4tP+1cKxoTGhoahNJSs6rbwniZu3ZoXGtp lDcP9tWWb7N2gME01NToKjkfaOJgrUZ5dtRyo0AbkSeGYEfw2p3WRlDTSrm21HcBriTPx+V8j4ty Psk8HLdu3jS0tRn0sOdLfqD4fn/s+a5fv/7hh2D59hw6dOivN25Ekk2WSMqUI4t4Pj8e2tBUZXnA oKTDBrRv79433ngDiVNXP7y6QKtNnBLUOI7E84Vm/v3uNeQ8H7dGxQXHMr9HE4IGcOjCpnqqufni hQvp6enFJSWpaWkhoEOhLjEc2JdLmpgr1Ju1mTDg+WoMAuft8GXHLkPTjl1C0w4kXisWihuNjX4i 4ivPZy/nsxGSmZkesxSMC/6YYM+WJfL8KysJASLnlxwHaBKdmcwJ3ZrUOcr57LkxEzPqxKJZiLQY MBpqavSVlYyptHX1MBs3SvQi0m5LsI2cTyljQEmeD1N8+tSpuQUF06ZNg+WvZ5dz2IvgvX779hAe xbQ0iURtntceticwB9DtHj58+Ic/+hEcioNv7+/n00HVHRCA8TgSAGBO//Sn1z7/uc89vHr1vIJ5 CB4RTKCI5wsm2gr2FXKeD5vbzcFBrGG4QcDIJLzOnZooDXZvbKrHjx2H625GRsYDxcXwfTblZVZw ngLfFFP0aDRwE4RnYUZ6umfVk+LkhAHPp9GUlNc31u1sEOq2gNUDBAjdsqG6WLtmnaD1XSfIofSN 5xP1koKtPtTOdcNOTCZ2Y2v3Jv2rieczyfKscy6ySYzZEyxCMhuuyt6pxDM3xoSIVUXcvdhlSfEu ZIlrWyHkM8suOUcoWdfeEdiOYEf7P5Pm2Igh+XpJ8nzg4K7198OSD+6WzHPWYyZ1bqSPiC0oCWMR f2ISEc/n65Sqtx5US6dOnQLPhwzOX/jc54nnU+9UqY+y0PJ82NmwVZ48fryzsxM8H/5pdikLD96P 83y3brK4CgiGAJf5hYsXYouGsYyHJEzqWwVMXcDAFwQk+Zw2ffqyZcvgLxjMxMFhwfOZFiVYvbXl Qqn4n6CQO4cPPB83RLMz1HOQ89myeA0VFUKtnZzP869ueLWKXWs2COvNXKBFMSrqXUWWrKGipHWD jVhQQgJn5VpFTbGFmTMLI83yOSsjaWXXXNW1jfNiKwPlKmgm6xM1uTbsoC3lpbW+y2sleT5EbB8c HISTV3x8vCTPBxvh7u5ubIvYTeCb6U/8JwvPdwhyvh/+ELZfJOdT3xbsHUXg+ZqbT4Lne+ONXcTz eYfdpC8dWp4PQr6zZ89u++nWkydOQMDEvdmYS5m/4c6CNa8aAQd2cEv/f3tvHt/Ude+Lbnk2NmAb M9lgA7bMEAcIkJDYaUgTMti0jZO2tE2b0iRgv9t7UhsC9L4ckubcx+OP5L7Gvre9rd1zmkNP05xL aEObYqdN0jDEZp6CMdgSYGbwgAfwPL3v2mtL2pK2rWFr2JJ+66MQeWuN37W09d2/EffzocEh3MmR J0m8oyL5ZmDQVo4UVgHWdberq7m5KVOvLylZf//994+L812gwcDgfGB75ZWepHrmc+oM57OPz2di QmZPjZycmhruwyF9ZPZQkLts2Hte2H7KHCUsrh82HhAWrwdxJMY6Te4WloH5yswTg8NzRYUoG60c se7c3FsOn7z0P1nYFtR4O6tajDxo45Ni21aSPYoeKJgY77Cw0rBgq7gaqeSYJjPWzF2+gzjkfLdu 3qw9cwZ5OKDbdSi6u3379hGEVzl0KCkp6durV0+ZOtXlCZkaEOdzGzrNNhQ5X63I+f5KnE+z26TN ifmX80F9cerkyY0bNyK9wtNPPb3sgfshKoNCI7CiR4HkQVMj6JgHPbgLI3wBVTD3iPCI/r6+c+fO 7di5Ez6Fb7z+xlcfe2zCxAk+W0cAcL5cna56BDGZbc38PRCdz2ndrs/2w3Ygq8CAfpuFlgd2yPmM BsNnn3667P778VAFP6+xpejNTU1wtt3zj8+Re63wvxSpyXDgDOeDT7qMFGskmrd/d9vzUbs9uB7i fB4EM9S68jvnO3HixIYNG6AYLSoqWrnyiYTEBBDBQOJ8okqUyfaQdY1pdAOM8OHAM84XFg5tEoy8 33rrLTDY17dseezxxycm+M4ZZTTOp6F8uzU5OXBJrYKC0Pqlzy0L+ruGUb+gEE4roLehUcSnt6H+ /r5BljBtoOdOW0tz081bTS2327v6BgcgxXcdhzt3754/f76tvd2ZNKk6UWUQGzcuJjYmTOf1b0Fx taE0h8lgWYEkuyK/CKc8pEteOaw73XfjDlHsRoYC0hMzRHfLT8vmGtDoqOipU6DAwGtqakrKjFQE IQ2Q14wZqTNmpKSmpkyfnhJYMzchnJqSimTumD3+iUZiTyay1EpuJq//2rlw7Gtq8nVF9i+hpsSF TgKxqrFsjR4B/baoD0kTKKtnovuw8Kio6Ajmxx4ZOz4xefKUaVOnJCclxEVHRLr17RgaHESWRvhl iLoAByUqMmrylMkIupY+Kz0qOspRdY9+ngfHJKG2IWQIvkfBC/HO+rs7QhwBWr6TCODBGQKyiPDw qMhImDhT8TEC8ESBJaVFeKEZW0QtcT7mqFth/3LyiAdwtUzEoiahh9oNhMFyWno6Ijk54xIfGRU5 ZcqUrKys2bNn416gdmxX2oPhwzUIUSelRjCaBAWG1zpiFPECtScv7BL/g38oe89a5ZaVsQ8hMjT1 MWovvGOlauYPcsuqpJlYZJB2c7PvwcmhzWti05WmIq141Fm5gmpo1B0Z6O8JjZXSKtUiwHQpQ0OB pNJVu2LNtQf4kESICZk0VDTE+SD8KB+ptH/hOhVCwCEC0AV87etfB40D+XPoEo+HsJTpKYjePG8+ CwTgsHOPVKjIZ/SNOWUjIYlE+cAA4UPNNL7ZJWsYsQMDyhdEJXBlYU3J21V55UwtzIv5fVURc5qp KakrEB8Wqt5mAXlYMWzJMpE4WS96zrPsq/FuTb1tFbajh9Ick+bZbm4KPTg3tLFsK8KBs/mhd0Rj 4iNKo9tN3iNgB2UnwwNDfUG5MFqUdxBgdnHe6Zl6dQoBZpU4ZtQwp3rxaCUNcT7YPOFXrcyYl1sG Ez72wntcEa9TIQQcIAD3tMzMTPjhRkZGOoyWAvrR3z/Q3dXd29Pjs0dhZs8HYz65Wte4e0dNTYke 84UzdE2dQcAFoXSTaOc2hsUbJ385UkUW14jxScjNkOlETBCDbnMW6MVeLJpku2oSoqbetjMimlm8 BbJ28DKxE6u5oTPbgZwcGpJsnq5PonpWRNauTzrqoyEwMixoS2ZAW0UIEAKBhYCGOB9+bnKLqkr0 ufid4S+8xxVZQjbfY2vRO1m0bT6eBdfimVR7trb/lk/HnJaT1Xy8NI8OB0u+jvb2vt5eluvWkasX CF9T0y0Esrpw4QICQXl0ImN2llduEuiZq0muHWb1PqN+LhZGD5mkEORRPCCGOkvoHFlXttVGHUXi i6KDsVS4v4V9D84NLap2EbqRcV7b4vSsXAQlCKvrwsPGyiIdhCumJREChIBHEdAQ5yuqMtZU5OcI NZBg8FehUIMruO7RJbvUGTO1w88UIs2ZtG2SnsylXlRUlmvB7AU/8k/HGMTJaiqmqYGmTU1N+/bt u3TpEpKqOeR8SNrRUF//6SefVFfXIJKzL6cvsj7TKUKSmZyKrdySD2G9qwT5Beh5i/BRZla2KAJk RZnMIWQ3emDHo7JQlCKygOZMMSw1kawH7apZLds0RNWuCl7fbm5iTmbrgeyvKA0N1a6YpkXRTXfs WflyZ7Q/FuzxfZr/TfuI0AwJAULAJQQ0xPkqtq4Bz0NQCyhz+Qu2fSyuxdY1Li3Ji5VFPZmo9/JZ kWvB7Acd+1NzfSer+WxRXhkIYZYRDOnGzZuQ2zl03UWFnt4e5Ca609k5POR1fZmY0gURWrjAFqxP 1MWKytji7aWCqNyFGIyRIjxlcIGdaPpXwNStjEZxW0Dd1lo8FDH5N/xA2BtJ7FsnNdDlC9z7W9xx 3gZ2fSbrQbtqVhshDWGpbzc3QbDvwZmhRfbIFwAVdkV+blERn79owTj2rLxyVgK205i4hICdO02c ECAE/I+AhjgfhHrMdI+l1mVCBvGVh98uXPc/TnwGzMJJkPReNi6NbvhRSvpWk0ejSWtr6+FoXryV ftY0vCwBhlJDhWpm702Lo6hW8FU1D8Qd7ezo4Lpdhx2Fh4fB1QMJEBMSE8Mjwh3WV1lBdMxmRWJf ojpT+ot7bcsdt6VPLZcsF6qrxcrS/0zO3pbPLbI0c7eWS0rVLAuTZNlWDuS2c7PvwbmhLZPh6y4v 52tmcIw9K5XAB1vzsAjfxhUKNvxoPYRAqCOgJc4nCBB74MHf+mUKaeHXneKm7MwCvZALTWxcGt3w ozQ10TMrJzFOr6jis/VwNC/bSj/L/uCemmb7KKWGCtVsZ+5XWD06OEKuTE5ORuZch067GBZxMmfN mvXgQ8sX37dITbJdj66AOiMEHCLg2h3bYo+MR0rReIAKIUAIhDICrt1BvI0UlFb2L28P6kz/ZhmI JDSxdWl0w4/S1MQgWjnpF0jxOGw9HM2zk+tnmcmV5LM5VkOlagrOmM4AEAB1pk6b9tXHH581e3Zs bCwyc489Y8RnQc2cnNylS5bGjfNd3mtN4mh+/CBKoMn9cXdSop+0FMRnpGAX06v7snibYnq7f19i RWMRAr5CQFucDxHJ7F++gsISClcKG+tgYFuXRnl155wZFQcYy8NRamBsqDUb9Vv6sGuoXA0Nxpq5 z9D2+EAsVote72SsFpBC0L7xEybExccjE4jHJxNQHZq1q5QLLaD2bezJMscZPKua9hSbrOAz7b31 suG917uoEPFq/96cO/VNCPgPAQ1xvsIcZtpj//JZTGY7M6rRt0XBpVFe2Uk/SoX+x/RwNNVno0uq YHMXCg2Vqik5Y/rv9Hl0ZKTfiI+LQ7Bl8DmH8fmQk7ft9u1LjY3Xrl7t7+/36ESoM0LA/wiItsfZ WXLTmLxyEwG0yvTC5ooLpjwsMPPlGmFZmhSlHC3W6WJYJzKbZtEORnQ8EmXHtqbGYwwn9WNJPiN1 a5TbPWMkq/5tctf4H32aASGgVQQ0xPkqEJtFqfg1JjO7jbFoubDns1J82bg0ivm0XPOjlDcxvV9T Jozm4Wh21WSujmz0HG5juGaHII5rsG2oXA3BQGwdRbV6NF2dF5LtXrlypb29Hc4cDt04UPncuXN/ /9vfv9j/xd07d10di+oTAhpHgEX1MYdZtJqrdaYX5vpdVSTe41geFgPzIl8jvUGwn9FztMjTxfBO ZLlhuKExUyiAZtpnYRl1OJHxWWWmUbR7Zs7tlv5tctf4OJqWxs8BTY8QsEZAQ5xPqKkoQ8pP0wsc i7+KilwOUeu5XZY5HNoovqxcGm38G51xZpQ3Mb2He8hoHo5mV03u+WmuJnlwlufZNhylmrxtcKny EGbPaDS2tbWB8zk8AIMDA60ttxsvNl6FnG8gaOR8TBZiZ5SneNEhQlQhsBEwG/raLkMhRwu3FS7k YX5A1Uxv8H6MHC02iV5sbJplwypnYVEczj77yyh2z/JVKWedCezto9kTAl5CQEOcD89txcV6/oLw CooBvCqF/PJyL62dug0qBHh8vps3bjgTn28ES5fCp+BN0OAgi9ptsXAfI4db0Cw84BeCwzg0hITs g/jXYURxZ1YrRvLesVsez56H+B4lR4szfYp1RKrnWidO2ChbDe+iwbFrk3F6oeoqsky3Psm1ijPT 2dGJZ93unm7oN5hSHMYt6ibvXmvnHi6VaoVAmij3IPVGKw1xPtgYQ34F5aOuyFBTgoQcAh4+8XuF Z01vrJz6DDIEILqDqK+vv9+Zn0yY/U2ZOiVrrn727FnR0WpjnuGMaow3koW75043+xX1XG+j9ASq 19XVhQMMqwNumcCTPbLqjhIJKnfJIn9bonYzi7c1wiYWD1ExR8vYC7TL0eJKJ07ZKJvHd2AqrTRP Vybj9Y0UB8DGIet3BBJ/e388JA0/fOjQ3s/3Gg1GpCBCpCoELgiP8H2OvqoGBIx3nLHA7WxS1lCS 17a7R0tDnA/cDk+h+boiiPcg80NCDugE3F0XtQs5BGJiY6dNmxYfH+9MfL6oyEiR882dPWd2VHS0 82Dh9xi/ykjgwQ0HeUP+aO0OM7Azple2RrfYwJts2xUDeksXrS3cTc/QVrG/+R+SGlhhEpa4bkEW udv5nTbtLEJ2o7i1uy4MhnPV3tHx5ZdfHjt6FPkDe3t70ZidKTPzEzsbGR5yvlPRVVfKf8LSvJgD gtvmaOH2xPi5Nr/h4edZ4ks+nF2OFvtELzY2zabkMUVVo2RhGW24MUylLXbPRnNyGjZD5awzzgPl +ZojIxC/4Sl0AP/AR6yvz0svdN7V3YW84YcPHzpw4MCZ2trLly4htxAeITy/qDF7NJY1ZFVvQZhZ 19NUuZEmip5p3d9eDXE+/LggOB9uL7DOZTI/lpCDFQoj6v72hlLLqVOnfvWxxxBp2Zn4fOB5qamp i++7b/6CBahvgxPT+tqJ7rgqGDdwuPp+eeoUcvvW159Dkl/8PIucDwFfXHyqtzamF7Pj2tvXs29A UX4tT/gsml0hKrhBspe3Cuhtjtott3AXxJqsSEZblaIVJ4RApTyOh/KIb5viuhm2ZIXSIZKvlR0B lqOvp6ejsxMbDbOBG9ev37iOfz37un7z5k10eebMmX/9zW/efuut9977/dGjRxsbG1tv38YE2NEy nazBAcYFnS/KSU5sc7RIf5uNgnEuzJfEscbM0SLFLB0lZ4ulL8mWwpyFZdThRjWVltk98/TS5lQ1 CllnnAfJwzVxbkD1WlparokF+3jxwoWL3il4PLhy+fLZM2f2fP6PivLyX/7yl7/b/rv9+/a3t7Wx I+PiDUkFEMbdQlYeJ+JS+nBTZzZPlI6ySdmmiVJ4uLXz2rbJicU9yHkJ7UdWxQ3V2SjCcEC3bduG i5s3b87IyHAY21bFKbFtyp+kK0tz9NbiPXjMwvtL5UC3bt36z/ffP3TwECThGza+uvzB5dDuefvZ XeWcqbkcgc7OTohA9uzZ89k//vHyyy+vWLECpA25N8x18FwNSz5sK4K2ONxZ/JjjIRz1UTMGqTvE GM54b/pdGsEf/J7JvwK4zjVuYAC1taePHDny6SefpqZMv3fhwvuWLMXpwkP2oUOHXn/jjUcffRTi GWf2DjcmOEiacuGKLdjdbMdqg5TqxfTeUpF9XreF+0Iq1BTMF3GjRd5c8ddYXhOXty5g3RvLygzF xTafymqy9hXsp95qes6sKijq3L1798zpWhy299//Q5Y+KyMzA3EfR4aZyZ3Hf0hxWCKiInF6r1y+ Ur1/f1Nz8/iJE2bOnJE2c+b0lNRjR44B0WcKnnmmoCAlNaX3TmvM+Ek+xVh+fnw6cKAO9stf/OI3 v/lNelra/PnzZ8+Zg1sHbjUO70hurBa3JhSYBOzft6+hvh6PJFGIOTp+fEx0zLWr19JnpW3atOnp /HxkmHSjc9eaKN5PpBsav2HxOxLs8y33FctNir3DY614Y5JuivxWtaVOzyOJw8SzPM9STXZ/Yzc4 fh81393wBtmtxJtfVRUSuPorlxc0Qgdqal7753/GAXjjjde/+tXHJk6c6BqwKmrjB+v8+fNvvfUW zt5rr70GaQjvTENyPsxGDBq62oDfI9kLkj8VC1fZ1PLAYBtoSvEBQtkW1WS1avlUhR0rmbuq3FKx +fDICGyn6s+dg0AFVBLfjebmZkjsoLG9fPny8ePHDx08ePLEiatXruIifo/x6amTJ2E3g3/rz9Ub Ggxnz549cODg3j17Dx44YDQYWltauAG14uxs45OZKpnspEx/K1ujQ9u1eoeU/C+by+ncLHmbEIqD ReDYLazi3Yxi/24bVNzN8QK+2fDQMM5JexvORUcbhCfsncdf6JwVGAz09vZ1d3VBkGxsaLhw4QLc ksAyRbMBHZfZQJ7sW0wpR4s7eDPBPwwC8PQpFtj2eatERWEcbgMQHhaOOPPIJIknYe7F4TMj46q3 S0oQixFFjNdjdh2ChYAgJYziZnyOskmNluDKJluVfE8UMktB3MiMEfATnek/wufOufFJGw3J+Ypy dci8br/q0a67hI8aOZ/58YGPaJG12M5gbOGImk/NI4Wu/MWhnA8/kKBuKSkpeK7lkZnHOCFQ0YKo ffinP+GXddy4uPsW3zdv/jx9lv5WUxOIYE11dUd7B/p58KGHvvLIV2JiYkH1du/eDWI3YcIEuMhB ZXPu7Lmunu748fFpM9MSJk7s7OjoHxz4f7dte+SRR3SS25wjaZ+1rK5o96pyKG0hXxOfadmDMZfJ 4V1uwyYbgZt7cj4gIp4gPoJYZH/LRiwrg/s8ezxWGtulb15AVoacr/b0acj5dv7xj7m5uYsXLYKp KH5cnXEPcnXBomFAGETOdWfP7vw/OxBjcsqUKfcuWqjX6/GmandlT3dPwXPPFjwLOV/q8DAoYIin jXEVYF/Xh4L197//PRQRDz/88L333gse5jBcqHtT5EbEt27e3P7uu3hAhcv3Qzk5WVlzcUoxB1gS btq0OR9yvmRvy/kQYU26XUi/j3JdBRfzmYv5xsWUEsyCxEoXwS5aN1BWfdjoMWzGkN3ZuIDQPXxV tyI5nwMIEZMZFk32r9FiNaveEfc7UI51KllMjdbt2JaqTtqxOlnN/aUFbksYRX3+2WcwToD61eFN lldAit5Fixc/+dSTS+9fmpaeFhcXh1/ZBffc81Re3jcKnln51JP3ZC/AxajoqJnpaY+vfPyZZwue zHt66bKlaWkzQeyQ9mN2+qzc3BzYBc5ISwsLj0CnI5Koj/XvoDC7u2wxsjaej+sKGMdStEbXL0Cc XJM5P/5fJNnac69Ms2F7UREPDM6idpst6MukaOHsolgg6sspLLDcBZXt3+tMA+YLsmBtjhYUVJ+L gTbwgz1v7txlS5fh9cADDyz3QkG3y+6/HyMsW7p04aKFsA145Sc/KS4ueeGFHy5bdn9MbAyeJXBc +dMwET7tnzE86uHxAFq8SUlJeG7ELQUPDN4oU9H15MkzUmfgXD73zW+9unHjiy+++PWvf23xfYvx LCqGo/IFWsayXcIqi/o0s3gL/MVF62SrrE+4UbFQQebiqTRRCo7ednmwfAFDwIzhY03BmLjUQB5b ZP9CrGbNwqmsszNIFqRWyYusA2XlWoxLTepjk609FqvUrUI1W3PX0LZd7e3pgUULJDTO+KxBXQul bUR4BG6aC++9F6arkydPjo6JwZ165syZS5YsWf7gg/eByc1Mw0VoZ/Ap2OH9y5cvXLRo7ry5GfrM zCw96jzy6ArIAiGSSZ48OSw8zGU5kH2+PyVr9KwtogcHL4bS2l2G4mr+h8xCvrocYnJWRImgycK9 WKppERNiAOsHX4URlU3/Nfs19N7EIIGDiw9spCYkTExITPTWKyEB9oIzZs4E+cOJysnNzb73XniU JyQmQEUIU1LvLZB69hICUnw+U8wd2SObh9/iqUCflbXsgfvB/OZkZExKTvalqTp+6vQlFeLDJy/M Jww/2Cbdqs1jrSB7BFXIJmWXJko5W5W117ZCZil6ZB3jVGuJ88FQU6iwf3npO+lStzzPGS8Wbmab U4h3yXMYsd9mSGeKqszelOYBra6wPyDgRjFnQFfqVqGabZIixhVD2d0SVjP4bXbyftfX23f96jUY Pl+9ei0iKmocE+bBCCYMzfEbD+aH3+CEhASIebihNExk8GdiQsL4+PjUGTMglMEj9cZNG9etW3ff kiUTExMioyLF0yGZXXnQUha3va0NltMK85VsmZjOpWNMlV1FgPvtOiM5drVnm/qQDE2fPr3g2Wef ++Y3Z8+eHR0VhaERoxmuQyp7pua+RwC3czx5OvPwqX5uTBQ9b152djZking6xbFhQel9FatF9vDJ lyLLB8WfM60ea608rxWySck7YE+mo2SrGs1rW3qYpUfWsY6VhjgfwlAgRIv9C9f9XsyxCqR4Gebj zb2FZCI6Ftdgu5T3DNGKahv0Yl4jeXFkx2qbqoiRuV0VOZItrDmnEtmuWh+LpMRE0K/p06aJJswO DjZ+T/FDDrt5WOijG9Q3c3r8+nKDa9xAzf3gDTfHxh125sy0JUuXPfHkk3DahYkVIgKiB3TIVCkW ZYojYz6nz7TFg0OcIlzU/Gaf4vScg6ki3HXh8ePtFeHUwYoA8Yagr4PkhpuEen1Ub68qhPtnkX5w bLx/cnBrgt8GDg9uWbg/MPGByRIghOGnpY+KgIY4X3E18uqC2tu+xOu+KKM5V44+ttgCXuEWGZ2L 8zQ21Aq2vpuSalferXI1jGWbpCiU3S3jx4/PyMxMTErCvc/hNuAndlx8fNKkpIkJE52J4WzukN9h IfNLFnUo/LoYyMV7xMAqlXJoBk9xuKFBUIFJiakQAoQAIeBNBDTE+SDIHWWlPgqvY29bpTgfRLfg NM1BTiHxYwcG8Ep2rArdOmvuGtK2q3jSnZWeDjYGzudQzoekHQid9VBu7pKlS9FQ5VeMWfv7MP6p ytlS80BGwAXZn0JkWrvotTLbYSZFzi0rEzO0cFNk/hQsvuchosQPRdMthdwtgYwqzZ0QCBUENMX5 NAg6u9XBJJXZ85ludZKFam6ZsGp1jiknUQWMVlk4IFwy2f6Zg+dK3pQmt0p9bq7Fv1LBjtVg3y3M GraXSh2v2cFMBpnNLNmuWh0YGD/BNx7RL0WRm4OfRqhoZ81Kf+ihBxcvXgy5nQZPHk2JEFBAwAV/ DnvrXpiGIooGsx3OFr27lVK8FMtsUcxWKKYofXXQacBvSDF3C20XIUAIBAAC2uV8IDW4K+Hl19xr MrWalLPK5D4JHZuVzo37S8ovcbMrs9Wqya1ypLpa5l+pYMeq0K3MmFVqLXY+SrojyaEzAI6fJ6d4 5+5do9GIKH2gfQ45HwaGLJAlUg0P2WhnJlFNURGkN2a/O+stUQoe7slNo75cRMAFzmcXmVbBAths HTz2NDj5M5kUs36kcFUs8g+MluVBCVxcEFUnBAgBXyKgXc5XLhSt2l20Q5+L6C2+RITGClAEEJ/v s08/RVrLbifi88G17eqVKyeOH687UwdnjgBdsoppQ1SDiM9iBt+KCqQ9GsUvhEfPVzGOYtOqolEo pqcHCr7+RuAq5GxRsu61sQB2K8XLKLlbnJ0W1SMECAH/IaBdzgcf78zi8mrDar/mXvPfztDILiLQ 19vb0tyM1FXOxCno6e5uqG/47JNPkXIDIf1cHCrwqzNRjbgKUVTsW78QZrAa+Aj6awXO+3nYWfcq Ra8tgh+4pLowcfvMrGyzY5kivWMBv01Rd1EhZ7UsIq+/YKFxCQFCwCkENMT55DG6LXPPLHZqHVQp 5BGA68b4CROcCdQCqBA6C1FakGmtpbUV8Zl9Ch43h6+SAndLEi8bG3kbW3vFJvaxu500tGfpjMSM HQg6KSbyMEcIt7X6lyd3VrDad86Q32ot0tjMDpav3Lk+fLpBmh7MhXB9dpFp7S2A7VO8YPGmJC7w 19ham8POickEWQq9q5y7RdOw0eQIAUJAREBDnA93FvvEa8pEkDaPELBDAFFaWHy+lBQeSHlshFAB rruIvTx+fLxvTfpM5vBi4G6mWc0H97GzkbeytVdsIvqNQynLI0ZW7FLoJDdfkKJ9c6cfU4Fsj5tn oTFMKCzRJW2s/mXBw62t9sXESk4a8tv4DbB8c4U8yBDkSgrd0skeEwEWBtLJohSZ1tYCWLBL8cK2 1tJSsh42mSCb9fxK2WKcnBZVIwQIAT8ioCHOB3dU+8RrIIJ+RIeGDiAEEMz2kRUr0tLSwPkchjpD aL1p06bOmz8/IyMTokEfLtNkDi8G7ma5KQXwNXsbee79zVzG6wyKTUS1rFVIcPcM7eURwm2s/i0f QRUsSDHBTRZ+ThryK/gNWMBW6NaHO0FDUYoXOgOEQKghoCnOJ0BeYffiZkeaKI6cGB19rrgIufpM E6sM1EmAxiUmJnIhn0POFxkVNXnylKws/axZs3zA+cYM9y25QFrjbhtt2/pT3mTMkOBuGdqPEdPb NnS4C/2PtRb7iOSBev4CcN6U4iUAN42mTAioQkBDnA/aJuic7F9ayL0mYlzVAOMWpkSzLhYnRJmT o7OeifbZeFVtZyg3hivGhQsX2tvbYZ/nMFYLk/NNn3bPPdn6LD1ooqdxY4mX5H3ahfs2UR2WVM/O BF7B1h6d2TZxEBLcHUP7UWN6y2cEhWwRTC6c7F95LRI2Ct16eieovzERoBQvdEAIgdBCQEOcT9hu QFBjMRuH9DIiPl9VJq5rYU+MZQ1Z1VwTJ5+OohOi856Jcs2aFlYZwHO4dvXqR3/5S319fRdcdx1l pgcpBDXs6e1h+cgdVbYBhbs5yi/aX3GYK9UUzFuoZE6zULJxpwpudacQbRtXrZsIImGCKwRXASMk uDnoN+9kDEN7k4EgCzRufs9aWVv9m2aF8L3MDC9bVDfrdPq6AqaXVuife2tYx2GxX4vJRUAMK27X bQCfQF9MPcxxXkFfTIPGIAQIgcBEQEOcr0S/RnjbynovMzNzlVDGrvu/GHcLWXnco22r2bHE2glR 0tLKL7JotwqJjNhyTN6MFgt6yzWe+UhWydSH/3HQ7gyQhAMh90D4lBiY7TNTdqsAADCJSURBVLQH +vsR2OXihYtXrlzp7+93dVUYBW1vXL/R2dEJyhgBn2ExwbnT/Yj+E5bY2Xam9XYXBO5yIQ+3bRu7 2xz02xx0g8VhsWoizU8udjS/Rysbq39zOHFG8WQfjto/a2AoXWCDgt1apGF4N05mPHQa2SCvqAvZ EOJBvrG0PELANwhoiPNBe1Vcvh3LLiszgvTgX7zPzEOsFg2Y9HHKh18oxJ2v2bFbomRyJ0Sz/6P8 YrlSIiO2s0y6ki05VZp2WiEz0ttSpRHDlizfHIjAHQXut7GxsVGRTBAC6V1vby/Pw4aCNwi8DFKI f8HwcAVvjAbDvj17Dh042NbWhvo8ewcKwrigLa9slgLiOhriOuuhr+/SxcY//OG9nTt37tu378rl KwP9A4zbW7DDW+f5X+BCbjdzWBiuEVZ5PIZzECGkdilhxPnUQkjtCYFQRkBTnA9p1jKhYMoqNkDL hX/xXiOxWhDEooSr0cTAZmbSJzs6LmlpmRmX5Adpzn6k4OFolz0plI+qo7Uj9kpCYiJC7p07d+78 +fPXrl1rFfOwgaiB1cHUr6GhAddv3LjBaN/ICEjd+QsXztWfu3Tp0tWrV5ubmzlHhAzv8uXLSOOG gutojpHRBHk+kOTj4oUL169fa7x08Yv9+39TUV76zs9//x+/O3TgwOXGS5AdCha172icz0qX6mhN /HM3mjjXscdrQWjn2/jOHl+B5jsMyWcJze+KVidoa1is1XkG7byYFZCj5O8+Xry2OJ8pVssuoJCv 24U/fRmrZXTnyqoGlqZKKghtpkj6XNg5Y0Ot2STfqpmth+MYfpQuDBcaVcfFxiZPngyN7dm6OrxA z5qamrhwrrW1FYSvtrb27Nmz4IK4Eh4WFhEZAXu+5qbm80YjGCEoHSrDyA+xmi+cP18nlsbGRp6Z DR+hIToBoWxoMFy+dKWlucVoPH/i5MkDBw6ePn366pWrQ4NDTqh35bpUJzfGjSZO9kzVCAFCIDgR wL2IhSl1weAkOHHw46qwBdA+OfGj4NM5aovzwVjO9BJMb3yn2B3NsshYtkuQZRdiMdVMmYcc75Vi IiNmfi+3CxS7UcqMJCq42bwqCymRuQOwIeRbsGDB0PDw5StXjOfPw1DvdmsruBr0s5Kcr74e9I5z u6io6OTkZIToi4qOBLHjBBFyPih24f97+dIlQ0MDlL8wEATnA9nHR2iIegaD4Vx9PQSBgwMDsVFR EbqwOx0dt27damtvw92VhYlxfCaoBiFACBAC3kVAJ4icD95kor0KFR8jAJURkLcEDrPy+vPu1o/d u7Y4X/lIpf0rx5/4ME8LfUmFLI0BSx2AdKHMY5K5WpidEMsk10s4OVouQjttn8hI9FfcDmmh6Ae5 ZgcMFsX+Fbw17bIn+RMLjY8dFxeXnZ39tVWrVq9e/dxzzz366KOggOPHj0fQvrlz5379a19b/Z3v FDz77PLly5F+IzomGgGZ164rLFm/4durV69cuXLx4sXoAbH6UlJSVj7xxDe/9a3nvvnNFY8+OmnS JOxSfHz8Aw88kL9q1TMFBXl5ecvuXzYxYeKU6dOW3r/sBz9a863Vqx9Y/mBkdMwQvuX0YK3xg0LT IwSCGgHOLoaGBrt7uvF8iwLrZJisBFa529WFaaPgTcAVTJsbf0OCwHJ7MgWvVkifzmYqkHls27YN Fzdv3pyRkeEwh5UHvzv4Za00jOQxF0HrYiwDHVI5ECQx//n++4cOHuru6t6w8dXlDy5HhDatCV1V rjG4m3d2dh47enTPnj2f/eMfL7/88ooVK1JTU90Op4wTzp/DAJob4vcvT33561/9Cl9qsMmHH1nR 3tZ28MDB6gPVW15/HVwTIaGDey+CfnW4U8MSAIftr3/96/Pf/R6o/5yMOfAQ8uXCcT5hS/DmG2/A AvXb31797Defw4H35QRoLFcRwG88rET27tnz3h/+gCfDR1eswJNk/Pjxrvajpj40EidOnNiwYQNi V337W996+CtfmTBxImgf7ndquvVlW06OuGJUJK/sUZpd8eUkVI6l00VERMCR8PSXp9/993fHxcW9 8frrX33sMYgbVHbsfHPcQGC//tZbbwHJ1157DdkHeFuNcb7CQqGgXEDQCOdX5lxN4nzO4aTdWp7l fLgzdnZ0tHd2IMbKtKnT8ADg0spbWlrqz9UnJCYkJSXhG3Xi2PG9+/YdOnzojTfeAOejZwkJTOnm 7RK0mqgscr7TIufbTZxPE1sSCJPQAueDVAmGyP/yL/9y6uSpSYmJUFPgFjc4NKQ1T4Kx9tNE7mCo g2qwvba6nwTCSQA/xbSHhobxs3Wj6ZZer9+4ceODDz4IVZLPph8AnA9aVIT3EoxVRoPAojDr8/SZ LDqzR0pQcr7hocHBvj4hOjosPAIPRIH0GOT6pnqW83V0dOAJ7NSpU3jwysvPw53RpRnhxgozQUgZ 8TCHzB9ffPEFHu6PHjv2xs9+hod74nwuganByuB8Z84wOd9HH5GcT4P7o9EpaYHzQSSGJ9J/fPYP +KtdvXoF4r3wsPDhEfw6aEW36HDzoF2ELvTu3S4YVeNHTZ+VFRcfjzeuBs93OJD3KgDvMB1TJUFc mZQ8Sa/Pevrpp2E1xCWXvikBwPkQkljMwMELAmUY1rzdICxYhdRUYkxYVSUoOZ8qRAKtsWc5X2tL S/UX1fv375+UnLzmR2umT5/uNh7gfPv3IdLfnmPHj7/55ptQOhPncxtMjTSE/dC5c2f37Nm7a9eu 767+DmS3czIzSLerkd3R7DS0wPkADizJEH/q+vXrlxobIRYI04FCgTIFGOdraW39/JNPsZzHnljJ jKoFXQBxPqaaFkaGR4Z14WFTpkxJTUmdO2/euHHjfHl0A4DzwfeBczu8QQA8xENBIDz4N+QIOdUj 1SrBIs6nEkC/N/cs50OkFRA1lOTJyS++9BKewNxeYHt72969+/bu3XPo0OFX/ukV+IgEucTVbaQC pyEMceD3ffDgwY8//vi73/veoyseRU6g2HFkzxc4W+iPmWqE8+HHnrtusAxDkutAIHE+Hl8G9oi/ KYe3pLCuqDB1xgy2n5pxg3DicFkAR5Ym2A4hq7svvSMwwwDgfPCDLaysZulsK7by3BuFgoC0F4hh Qj4cThyyIK/iWc6HiH0Hq2tQkpKTv/+D70+bNs1t+Jhud/9+Zvu1e3fGrFnTpk0Xn/EC5qna7YUH a0OIaeHz2NHecePmjTtdXT/+8X9lPhxzZpOcL1h33FPr0gjn89Ry/NsPRJX/8513IDArXl+Slp7u 38kE4ugBwfkkgzRQPaS1ZTFO8goQ68QjcJOczyMw+rETz3K+O52dZ+vOnqk7M2HChMcefxzxXNxe GmI4n0Rk5pqaDz7Y2dfdHQ1/cGaPQiVQEQDngyUOAi30DwxMTZn+X//pn2B8DSofHe2ao4/K9ZPf rkoAfd+cOJ+nMIdVIjhf2c/B+YSSVzekE+dzHdnA4Hxge+WVnqR6ZqDknO/VTRsRqwXeTGR35fpB 8luLO3c6jx07BnHap59+pj5WC/z/eQZeGNXCjQOuGG4vDC7AiPmMWM0fV1YhhjMMaJihLoVrcRtQ TTQcGRwYRBDHufPnf+OZZxDmwPehnWSc7yZCTj773HMpqe5bIGgC1GCfBG4pyM24Z+/e9957z1+x WoIDYxnn05VsWJ8+i+R8Lm9sAHC+XJ2ueqTSXrAn9+xwed2mBpzzHT54CPatm376U3A+Inxug+mX hnfvMnEazOr/9re/vfTSS3CPTVEdn49FyxQElT/nPMw9bvfI5IHIp4j6R0fLLyfEs4NiWyMiwsdP mAATbNjieLZzZ3pjnK++HvH5cO/67vee/0bBM2o8jZwZkeqoRAA/LjAD3bt37/bt25966im4/rD4 fPHxKrsNwebE+dRvunY5H5JZbC/OhPOGLje3slrBVyM/twyJ21VCcOvmrfcZ5zuIryXkfA8sXw5f atZn0CnhmGYq6IzJsCi4UoLzISTK3z/55KUXX4SJlZqYzAP9/bfb2pCcDeLemTNnRvvjR13lkabm wY2AmfPdvHnrO9/9bsGzBdOmTzcHEg/0tZufi4LmZoUVwWcCWRmhi/iP//iPp596CvcocD6kAgr0 zfL9/Inzqcdcu5yvCFqwnNLy6mLxLgDtrn2pUH9fwLPy/3n/Pw/UHGhpaf7+Cz9YuGhRVFQkqJH6 ntXvjad6AID8TopFBdO6sCJ4PCEe3ukvTx06fPjE8RNFRUUqOR+0scePIa/HUWTpfe7ZZydPmeKp XaB+CAGPICDpdn/2s8aLjY89/hh0hVOnTgWrQPYYj/Tv307MeUiDhsViRcjBfeny5cOHD3/y979/ 4xvfIM7n9hkjzuc2dOaG2uV8goCktCh54CvKjE8kMSohaG5u/suuPyM2x4EDB6ZNm4p4P4hUaeJG QRHMGIG/sSSUsPC+/n5oGxHQSCVo2mkeFqYbHhlqvtXc1NwUFRX92j+/hvvp5MmT4QTv3iRbmpv3 IcDKnj3o5KV1a9XEanFvAtSKEBgbAdydYCT6/7z5L4ePHI6Oik5PT4uLix8YGFR/M/Q78rowAepy GNEiAyIUL4ODyBIR6DerERZJeGSko7OjqbkZ1LywqAi63Xk+j8rm9831yASI86mHUcucT1pdUa6u vBr2fLalLDef5edQV5B3AYE5jhw+jGytfT09UcyBI4wLxAI9gQVbAMR7OpZUG/4EQ4NDCCqB+6n4 AM1QC/S7KVsCFNa64d7uXnDZtFnpcKVcunQpbK3c9r1AfL4vZPH5pquIz6fuYFJrQkAZAdyaYBz2 m19XHDlypLmlKTYmBnYIw0OBLebjNyvcenGrwncZK4+JiQZbGhrE3Sqgb1aiFa9OgDoCic6mTpu2 5sUXly1dqsb+JJS/GMT51O9+AHA+XW7RSHW50lI94MUBa33QPoQmR8atu3fusPBp4lc0CAq+HvwR s7W5BQu8efPmsvuXIeAcRAKIAw71ddCsEzdT+Fukp6UtWrw4CZLa8HC3vSU62tuRj/LkiZMJCQn5 X1+VnJwcBCeBlhBkCCAFHDJoXbt6ranpFsLHiDmpAruInjEREIOdOH782rVreP/II1/Bzaqnp29o BMlVA/xmJbpzIQYvvG0W33cfV0SEkQu/62eWOJ/rmNm2CATOp9OVllrkfCV10hpYAJdyD0TpwzHC vebO3bt4xJRC5gbHt3GEPWJCwge/0YaGhrozZ57Oy8vU68VMNQGb5V7pyHN2Oy42dlxcnMrEhXgG QIi+zs47+NWZPGUyqKT67xj1QAh4FgF8haH6xF0LeUECne1JyOBmFRbWdOvWu7/97Yljx/FFXr9h PegRqBKeTsU6gfwgLhqIh4WHQXMdFxfnthbCs6coEHsjzqd+1wKA88GZo3zEwJeaW2aoKcnHGxat r1whgIt6RIKsB/ww3LxxA1KBUydPfv2ZZ+bPnx9kC6TlEAKEQBAggKdTPJeWvvMOLG0mTJi4cfOm nNxcGFhDcx0Eq6MleAQB4nzqYRyN84Wp79pTPZSz4HyZVUKmrogRvhxBMJTm5JXj4c8DQj5PTVKz /WCDYUqCKHEgf1ADaXaeGpkY5ApQ8UMyiiRsPEofFUKAEPABAm23b8NC8XRt7SWYK167+ve//e2z Tz5BAsMg8E3xAXo0BCGgEgENcT5wuzKjkK8rEiryoc+tNpRmFiuE61O54KBtLpqSMBWJah/noIVI tjBYSiHa384Pdn788ccw9AyFJdMaCQENIDBy+3briePHwPzCdWGDff0ImHTg4MHWlhbu0kGFECAE vIqAhjgfgjOX6HMFoQL6XCbzy5TiMPNQLlQIAQ8iAAUTXHeNBsOli439fX0e7Jm6IgQIgdEQwBMp 7PkmJiRkZmTMmzcXObWQTScpKYmlqKaHVTo3hID3EdAQ56sp0QtCTWVpjr58xCjkwVmXv5jkjwoh 4GkEYDQAt+Zgi17taZSoP0LAUwjguzY0NIxcdgXPPvfiSy997/nnv/bMM2vXrUM2Ybi4wj3LUwNR P4QAITAaAtr6mkHCJwirDWVl8hckf7R/hIBnEUAABfjqxsXHxY6LpR8bz2JLvRECigggvADc7ceP nzB37tx7Fy1acM89GRkZ+FeflTVhwgT6GtKxIQR8gICGOF9pDlx0R/KKi21euE6FEPAsApFRkcmT k+dkZsxMS6NALZ7FlnojBEZDALQPEUyio6PxpcMb/h4Fb9yOtUloEwKEgPMIaIjzjZZsQ30SDufh oJohgsC4cXEL5s/Pe/rpFStWUBL0ENl0WqZGEGChUvsQc5CFHhTDiFIhBAgBHyGgIc7noxXTMISA gNzE4UjdNm36dBYrnwKD0ZEgBHyJAPLsmoovh6WxCAFCQGfjLdXY2Lht2zZc3Lx5M4wtyMYiUI5I b08P9u7MmTOId/rNb30LVjKBMnO/zBMx+brudt25y/JwqIwHC18Q/H5BYtF19y6SHbPlBHIqAb9s h+YGFXMz4mEA2RSghSS1o2c3qKe722g0Xr58+XZbGwTtaWlpnu2fegt0BCgms/odDIA8HOoXGco9 EOdzafeRdq0O9Ph0LYzHH39yJaJFuNRcXhlhX5pbWKbjs3V14JHge8GR0s9tQIKgIfy5wfMQUuSe 7OyMOXPGjRsXBIvSzhKI82lnL7Q5E+J86veFOJ96DDXdA3E+l7anpaWlev8X+/ftT05OXvPij6an THepubwyMnkgsPPhw4cPHTrU2dFJcj63kdROQxZGThBwNh5//IkXfviDOXPmaGduQTAT4nxBsIle XQJxPvXwEudTj6GmeyDO59L2NDc379u7b++ePbDne3nt2pTUFJeayytDwvdv//qvX3zxBdRVCYmJ 0AaKQf94wngqgYcAJHzICYETgkQRyx9cvnHjxnsXLgy8ZWh4xsT5NLw5mpgacT7120CcTz2Gmu6B OJ9L29PW1nb82LGjR44mJiY++9yzk6dMcam5vPKVy5fLSkuPHz8+MWHi888/nzV3Lr5sg1ISPLLs cxtX/zTkMeRgmvm3jz8+d/ZsbEzs+lc3LFm61D+zCdJRifMF6cZ6bFnE+dRDSZxPPYaa7oE4n0vb 09ffh9xrTU1NCBQ2e86c2NhYl5rbcL7Sd945deoUTNFfKS5euGihMCLIRX3kF+w2tk42hEmlkzUd VwPp0+lut7bu+vDD40ePIaII9pQ4n2PcXKlBnM8VtEKxLnE+9bs+GuejWC3qsaUeAg+ByIhIuOvC TssjMZlFnsBKeFhYeBjkROFwBwbV48WMjrEsV6pXVCVUFeEfV0pVkU7nYhPevdsNXZmde3UZIsiz 7V5jSysz1B54g50LD8c2hSEFbBjStZCkVu3uUHtCgBDQDgLE+bSzFzQTnyKAxyCEVkHxzKiOjPjA vPQl2ZW8WsEuXb5LGQVBjlxrIFsUstuMlOd5ZpWuU9Uxxq0q0pfUeGhenu1GzAzLCtllehZY6o0Q IAT8iwBxPv/iT6P7BwHkALh06dLBQwdPnjzZ3d3tkUkwfjCa64axbGtFTqnBRL1Aw8Tc0k6XzOJq 1xo43bNLFdkyXGowZuW8coN2Eys64vCeg4F6IgQIAULAVwgQ5/MV0jSOlhAY6O9vutXUUN9w8eLF vr4+b0/NuHtHjZCdlWklfTMRQKZ7FYtJyylpPE3XrRS6Jv2wWSNqd0HU5cr6M+tPcT23rErUL6M1 b2dRrNr0ozAHXGJyuYp8s47Zbuay9VkU2ZYxRqlvkHTeUkU+dBlbBVu6/QK9vVvUPyFACBACQYoA cb4g3Vha1pgIDAwMtrW2Xr506ca16+B/3kbLUFcj5CzQKwzDlLaCqPGtLKwp0YuGfoxZ4f2uAvGq ULHVbPFWkb9G2D4yAvFYzY7dzAzOWLZmx2oDq5ddsoZVs+7v7Sqz/rSqCMrhmpKtaG8oFUr0rCP2 5m3RqtCmH8U5SLLGQsyW0VX7mcuXV/W2SZFt2JIlfjBafT4ntijMqkiacE1JHVt9eZ7dAr29VdQ/ IUAIEALBiwBxvuDdW1rZ6AjARD8iKjI6Gm67yKzl9W+BfkGO8lyYAFAig3mboOisbTByjadJEWzd srCyuhjCwsysbKGmzgAeheZgh5CIMUKHK7gglG4Sjfe4GZ9Zf8rfFG5h7VHMbzgfs+lnrDlIC1GY uXyJeQWFTCAI0V1mXh4bctT6OaXbxTllFm8pxPr10vL5IuwWSIeaECAECAFCwG0EvP5r5/bMqCEh 4D0E4OCJLAuZmRnp6WlR0VHeG4j3LJI0LpkzFWNZEeRyTACosjC5Gy9cWSySQTeKbT8OunA0c0Y5 mfQRhFRUTjuqP/pwLk7MjaVTE0KAECAEQgMB4nyhsc+0SmsEkEF13vz5Tz791MOPfGX8+PFehyev 3KS65UNVFa0RNkG8BXEYFK5cvwpWlLN6ldzmz+G0MletzjGpfsXgL/IL0KYyWulMsevHcSMHM68q Y0Mz4ldZCOEl3jpaKfMPsZY+YhJuTMzx1KkGIUAIEAKhioBJRiD9Hybt69atW7t2bUNDAw9VQCUg EECY07N1dTs/+OC/v/nmmdragJizfyfJsmWIBW/UzARGga+uX7/yq1/90Q9/ePLEiTG6knneWmRX zDhPuvnwi+a/8afpfU5pqeTmC52v2eVXrC+vzse2DCPvobBQHKawUmpg+cx+2FHmALtBqW+bJujV dtlKa7VdqXz24tRsly92ar9ANbvlXNtbt2796pf/e91LL//ohReOHT3qXCOq5SwC3V1dX5469deP Pvrd734H93lnm1G9kEEA92RQkZJXflLySnHjxcaQWbcnFwr+BhYHLgdGBzDNXevwTk53Gxsbt23b houbN2/OyMhAVNJQJcMBtm7Kw+HShuH70N0NntyNCLwTJ05EIF6Xmssr89xrp06enDFzZsn69YsW L3a7K2qoEQSQoOVPO/+I7HwDA/2Uh8Pjm0J5ODwOaZB1CAaCh4Gyn78jCLqSDevTZ6UH2QJ9sBzK w+EDkGmIgEGgp6fnvNGw9/PPDx04iOSqATNvmighQAgQAoQAIeAuAiTGcxc5ahfICCAm35UrV48f O37mzBnwv0BeCs2dECAECAFCgBBwCgHifE7BRJWCDIHhoWFowzs6Ou503h0aGg6y1dFyCAFCgBAg BAgBewSI89GpCEUEwsLD4LqbNCkpIXFieER4KEJAayYECAFCgBAIMQSI84XYhtNyRQTi4uIW3HNP /qr8FY+u8EWsFoKdECAECAFCgBDwNwLE+fy9AzS+PxBATOYpU6ZkZc2dPXs2snH4Ywo0JhBgGXit 8gkTKoQAIUAIEAJeQ4A4n9egpY41jIBOQL4yHUK0oOCN8zNFkJc7d+60tbV1dnYitp+loSudOD9c cNYUw0eLhSeI0+oq2blw4WxodRnamxf78olFe1OjGRECwY0Acb7g3l9anTIC8Nu9du1a7enTDQ2G 3t5e52FCaLEvT57c9/nnhw8fbm9vZw2Rrzc8nCJZOo0hS7jhdGX/VsTWEjPx/BYAUwjXUfDF8Xzv 1CMhQAiMjgBxPjodoYhA/0D/zZs3v/zyy/qzZ3t7GOdDBMv+/n7wP4Ruwb/mJDQDAwMgiLiIgjec LCLCy4EDB44dO9ZQX3/79u2hwUGT2GJUyYWxLFeSbeSaEqKZLpkviKpOS8ktKxP/5p/zz8T3rKH0 IQRmlkZcesY/NZoum1Wn5nqm8WwbKh4Eq0lKfxRVsaasGz5WlbQ2i5bWZmmyCet0+pIaoSJf1OlK UzXNmi99DHx8eFS5GGpEPBV9OBBUPIQA/xKx71hvLyTlNkkBfLjDNBQhEIoIUB6OINl1ysPh0ka2 trbu27P3z3/+86RJScUl69PS00Dpbt64cberC2wPEoipU6fGx8fjB6m5ufnu3bv9fX14jyv46OOq qpqamhOnTk2dMkWv18+eMwcJG25evzFr1uyflBQvXLRQaSYgSbsKRDWmsapKyMvLZHxnjbC9ujgT H21dYJC/YZ/p67aw6uzdjtXsU5HMsfdb6vT5TFCGXGW8Au9GalOwSyd+yj9G3/m1pWgumHtklwR8 prdpqKhiHW2S24XdhuJiAV2xsZAQjo9Qkm09J7406wkzjipOQJxcBW/MQHCIj0s7rKoyNv3Pf9p1 9MiR27dbv/P89+YvWIDuePIiVf1SY0GA5BQ0+sKFCwA5PDLyiSeeSE9LI2AIATkClIdD/XkYLQ8H cT712GqiB+J8Lm0DaByI2nvvvTcuLu6VV16ZNWsWfoG++OILJM8d6O9PSEx88KGH0tLS8LWBMO/y 5cvtbW3ggjPT0pYsWXLk8OG9e/Z8tHt3d3cXWGBiYhKk5THRMfctWQLOl52drTgTOcGR5FpM4CUV kaCZCdbYnI/TKxMR5B3w3jnPU6CJ1at2S8zQdm7yhvbzZl3ZTNJMPeU0VHxvJnNgkzat2BXzhM2c z6orJ/BxaYdVVW5pafnoo48OHTjQUN/wwPIHsO+6sLBhMf+4qn6pMTOF0AFJPHRFREbiy5L78MPw piJgCAHifJ49A5R7zbN4Um+BjUBUVNS06dMXLlw4b+7cmJgYLAY/RZFRUXgfExsLYV64aGnELkZG xkRHi5djo6OicGVkZHhEGBFdQNAiOjpKNEviSt3RKQHzVhipzC7RyxxVQdGkIgrZMou3r96Bz5n6 M7vSWdcGUUMLGdlIZeGYe1JTZ7D+3MmGNpMUBHSTU7NjN9M325WcBXp+za6Vo/PiBD6OuvD05yMC mF44tpidihiwevaiohYBfJtiY5OSk1NSUlJTUmLFbx8VQoAQ8A0CJOfzDc5eH4XkfC5BDKoFoyL4 3oIvJSQkgNjBbu/unTvQOuGj8IgICPDAC/G+q6sLF5l53/AwCB6UvB/95SMY89WdrUtPS58/f/7s jNn79+2HgDAtLb24pGQ03W5Zmb5YkoblNmySdLGS7At+rEI503XyT6xWIpOKWSlqpaYWLTATs4nq USU5n5Vo0FhWtHvVJmGNpD42N1RAUNYXnyQkdm9nVZsVwzKFLuuG66jlCmlzKwdyvion8HFph1VV bm5q/vDDPx07evTu3TsvrV27cOEikeuTblcVqubGHEk8ViEuOhgkf76iQgjIT8ilS5fKfv4OnrtL NqxPn5VO4LiKwGhyPslIxSRuGLl48eK6devWrl3b0NBgNmM3f0pvNIsA/EnP1tXt/OCD//7mm2dq azU7Ty1PDF8S++nhIr/O39xuvf3HD3b+/P/7+S9+8Yv9+/ZdvHABsL+6YcOTK1e+uGbNyRMnR1mg TAhnFoEZSnOshGLmv6VvN69oaZmTI9aX/ifJ0mwa5RQWWjo1fQaTOauOxI5tG5ZWitOxCOj4Sqwm Kf6BGtLFwkqrTmRN7VuxmUsVpBUVlkrrZ9NzBh/fnZ1bt2796pe/Wvfy2h/98IdQ7vtu4NAYSfGL FhpLp1U6hQBOCKhIySs/KXmluPFio1NtqJI1AuBvYHHgcmB0ANP8Icn5XGXPGq1Pcj7fbAzEfrW1 tRAQJiUlwYFjwoQJV65c+Z+lpSdPnpwxY0bJ+vWLFi92dyYm7w7eHiI2JlHzaPA6iyhulDkay8rg m+H8mHKZorvL1mC7pqamP+384/HjxwcG+l8pLoYRpwYnSVMiBIIVARAUkvOp3Fyy51MJIDUnBBgC sOqD4fny5cvnzZuHBG7skvgAhX9VAmQsW7O1wdKHcfeO7ALnyZdTgxv1CwpHs8RDB2CEa4RVHh7T qYlptBLfVtU7q9HV0bQIAUIg9BCg+Hyht+e0YhUIIPYyqB7Ee/jXs3ZIFg8OMTQcArB4VsYHweEa fUlF4RYbg0ELGHCjsLUmHBupqiLmn1tToqf0aSqOFDUlBAgBQsBXCBDn8xXSNE5QIACB+QAiyXol lmxmcbXFIsM19uUMtrx7TxJJ0deWFU926sxSqA4hQAgQAoSAGwgQ53MDNC02gWZR1DCy8CKUJNRL OwTC193djXB958+fRxoP5BJgzh18MMod6iXQqVtCgBAgBAgBDyFAnM9DQGqgG+YNJ4xEREaEhVPu cq/sBxS78OH4+8d/e/e37+7c+UFjYyPL1TsyEhER4Vk9r1dmT50SAoQAIUAIhDYC5LcbJPvP/XZr a0/D2fCxx1ZmZmYiukiQrE1Ly7h189Z7v/99fX19wqTElStXZumzEKH5wz/9EV7xKampxfDbXbTI h/OVRe9zc1SeaoMl8BB4lEA3+wmqZpLf7rFjkt/u0qVBtTxaDCGgbQTIb1f9/lDuNfUYaroHxA1u bmo6eeLEX/78F5CPyZMnI6CcpmccUJODAhd5QlE6OjqQog3ZQjs6OxMTJiIss37u3KtIztbePjtj DuJ6ILeH11cmxXD2xDg8OAtPnMsT+FIRBOJ8dAoIAT8iQJxPPfgUq0U9hpruAerF5MmT5y1YkPPw wxMnTmSpI4aHkTuCXh5BgOVb0yHhmgADPiTk7enp6bzTCZ535+6d4ZHhcKba9VkuAWPZVqTW9VDJ FKPxcWcMInweApW6IQQIAUJAmwiQbleb++LmrO7cuWMwGG/euA7OBxYi+nNQ8QwCSKoLPFuaWyo/ +muDwTA4MjRn9uyMjIy0tLSTx49fv359xsyZP4GcbzTdLleiIo1GqZifzFzEOMmVq3fkl9Tgo+1I iSa+MdVh2luR4vFrpl5wAWK5TQ25Yk6zrLd5JVFSx1vI3rLWZhmeTX9iVD4+gEzOZ1fJMxAGTC8k 5wuYraKJBiMCJOdTv6uk21WPYQD0gHQrSCOL1LHYbyJ8nt0wjmdLc/PuysprV69Omz79oQcfTE1N bWtvf/e3v0W+uxmpM5g932JFez5wNUTcA2mzSYUhsStG6FbtBikUpDd1W5jYzZJNV6zHiZvZho+3 tXBB3gZFSl5rHtPcjXV/ArpD/lw+L8tHioN6Fkut90acT+s7RPMLagSI86nfXsq3S9n4CAG1CPBY LfCVgQ8HUq5Bw4seL1+69Or69Ssfewy5WWFPqTyGdXJbq5y27CNzAlz7NzxXLs97a8mbK/VguSjm 5eWfG0pLxUS9UjFlt8U1VDd1Zz1NWR3ZQPJB1UIXWO3FfLv/e91LL//ohReOHT0aWJOn2RICgY4A 5dtVv4Oj5dulWC3q+TT1EEIIREVFzZw5E5l2kV03JiaGr1wKjugABgvTc9ZwzlAHXbCzJW9TqVDy dpVQtducPw2CQJ1uV4HIB6VSU2ew7tCujkuDOjs5qkcIEAKEACHgfwSI8/l/D2gGgYIAGBRC9KHY 6M0dR8HOXLU6p2JrmVHUvBY5m6osr6AQmc3A41BAxXJWr5LZAdqBllm8pbAiX7crS7IWZL4e1q64 8llAb1xUZrSvI7g2aKBsHc2TECAECAFCQCDOR4eAEHABAXetJJFNF2I4PQv3sqtAJudDElw4dlTs qjK/EYy7d+BKPiOGeeVQx4LHoeQLlZJbByNl7FpRmdi2pmQN55Kovqk0p7DAFG5FZHhiW2b2V5Gf W2ZE+rXKbD4Lnb6uoDhToY7yoC5ARFUJAUKAECAEtIkAcT5t7gvNKugQMGfTtdLsSlfL88xvBMs7 YGDJwWtpJqW5LS+W8vNa3IBRW9a7Vf7ekRFeDY0lyz+xpmIdpUGDbj9oQYQAIUAIhBwCxPlCbstp wV5CgIkAAyE4jlG/oLBmx25JNuglMAK7W6ashwY/jG6Pgb2PNHtCgBCwQYBuanQkCAEPIKBjDCEs AMIhQoesL6ko3CIPEeiB9QdXF6DvkRHIXB3hrio/uOCg1RAChECwIEAxmYNlJ2kdfkLgyuXLpaXv nDp5MjV1xv/14/+SnZ09MiLA095P03F+WN2d1hvnG2pb4+ePnzR9QbIuPsoJyiquC/8FMRnC0tpu 397917+ePHGyv7/vJyUlSyjfrvPHimoSAqoRoPh8qiEUKCazegypB0JAAQEE6vtfZWVHjxyJio7O /9qq2bNm48uGFG2ap33M+zg8nLkhI7Mc4ng7tbucywaCCtup5dhVAu1FAhtEYdy3d19j48WkpKRX N268b8kS93qjVoQAIeAGAsT53ADNpglxPvUYUg+EgAICN27c+Pd3/33//v11dXXj4sbFxsYyKZ/m 5XwjzGItHGmaw3QsI/HAIGiqg/0FH2IabNFscWh4yHGDQDwvok8zwpnevn0bsRgfefjhDa++mn3v vYG4FJozIRCgCBDnU79xo3E+sudTjy31ENIIREdHz5kzZ8E9C2bMTIWICJmOITMb1HwZGhwY6O/t 6b7b1dXT3YM5jzVj9uHQECq1tDRDrnnt2rWe3l5wPlzU/EJdnCA2r78fnG/ixIkIvp2p18fHx4f0 +abFEwKEQBAhQPZ8QbSZtBR/IACSAJnQzZs3kZCtt7uHWboxSZg/puLNMcPDwru7uvbv23+psTEm NubJp58CJQLBDUJpH8wxoZwXRkD75s2bnz4rncluqRAChICvECA5n3qkSberHkPqgRBQRgB3KDC/ rq4uyIdQgzG+oON8ILLXr1375f/6xdEjRxMTE3/6f/+3JcuW4rYSlGeCq+ah+B43blxkZGQQO6wE 5fbRogIdAeJ86neQOJ96DKkHQiB0Eejt7T154sT/ePt/HD16NHnSpA0bX819+OHp06fD6C10QaGV EwKEgBcQIM6nHlSy51OPIfVACIQoArgFN926tefzz8+eO9vc0nLtxo0PP/zwz7t2tbS0aN9bJUT3 jJZNCBAChIAdAuTDQYeCECAExkIArE70Y22rP1ffc7d7XHR0hC7MUN9w+ssvb7e2wkWC4CMECAFC gBAICASI8wXENtEkCQE/IwC/DThtzJs7F6/MzIy5c+empaeTYtfPu0LDEwKEACHgCgLE+VxBi+oS AqGHgBi6OTw9Pf37L7zw/A++/7VvfAOhp39SUvzy2rWgfXB0CD1IaMWEACFACAQkAsT5AnLbaNKE gC8RAO1DvJJp06ZNSk6egBAmExNmzJiRkpISExNDPq2+3AgaixAgBAgBNQgQ51ODHrUlBEIIAYSs g2GfGJ55kFw3QmjjaamEACEQLAgQ5wuWnaR1EALeRmBEGEa0YpZMGCGLqRAChAAhQAgEGALE+QJs w2i6hAAhQAgQAoQAIUAIuIEAcT43QKMmhAAhQAgQAoQAIUAIBBgCxPkCbMNouoQAIUAIEAKEACFA CLiBAHE+N0CjJoRAaCNA1nyhvf+0ekLA6wiIOa+peBwB4nweh5Q6JASCGQEdFkcBWoJ5h2lthIAG EMBNhhUNzCS4pkCcL7j2k1ZDCHgRARahBU/fYXQn9iLI1DUhEOoIgOuxmwzuNSTs8/RZIM7naUSp P0IgSBHA7XdomEXoG0K4liBdIy2LECAENIIAu9UMDrIIUUT9PLclOpvYqo2Njdu2bcPFzZs3Z2Rk hIURKfQc2NQTIRDICHR0dFRXV9fX17e3tT300ENIxYFYfYG8IJo7IUAIaA4BCPnAQG5cv/7+e3+I j4/f+N82z5o1W3Oz1PyEcHM+f/78W2+9BTxfe+21WbNm8SkT59P81tEECQFtINDT02M8f762tnb/ 3r24F8fHxSElh0Cm1trYHZoFIRAcCOjCwoaHh7q6ulpamiF4WltYlJqaGhxL8+UqiPP5Em0aixAI QgRwEwHta29vv3LlSm9PD3tkDMJV0pIIAULArwiIcj7cW2JiYxMTE9PS05HX268TCsjBifMF5LbR pAkBrSGAW0lfX19vby/ekDOH1naH5kMIBAcC4WFhsXFxERER5Lvr3oYS53MPN2pFCBACtgiIKXdZ IWgIAUKAEPAGAsx1NwwPlaRLcBNd4nxuAkfNCAFCgBAgBAgBQoAQCCAERuN85JYbQJtIUyUECAFC gBAgBAgBQsBNBIjzuQkcNSMECAFCgBAgBAgBQiCAECDOF0CbRVMlBAgBQoAQIAQIAULATQSI87kJ HDUjBAgBQoAQIAQIAUIggBAgzhdAm0VTJQQIAUKAECAECAFCwE0ElDkfBWJwE05qRggQAoQAIUAI EAKEgL8RUCRyCpwPEXF48feEaXxCgBAgBAgBQoAQIAQIAZcRQIDDcLHIWyrn20Wc/R//+MczZ850 eRBqQAgQAoQAIUAIEAKEACHgVwSQJPPXv/41cpls3LgxMzOTkz9bznfhwoXXX3+9sbHxgQceSEpK Ak+kaPt+3TUanBAgBAgBQoAQIAQIAWcRgJ4WzK2lpeWzzz6bNGnST3/604cffnj8+PHKnO9nP/uZ wWCYP39+QkICcT5nMaZ6hAAhQAgQAoQAIUAI+BsBzvlu375dXV09ZcoUcL5HH310woQJCpzv+vXr //Zv/9bc3Lx06dLExETifP7eOxqfECAECAFCgBAgBAgBZxHgnK+1tXX//v0Q77344ovz5s2Ljo5W 4Hyw5IMOeGBgAIQvKirK2RGoHiFACBAChAAhQAgQAoSANhAAnQPtgz3fjBkz4uLiuGOurT2fNqZK syAECAFCgBAgBAgBQoAQ8CQCFJPZk2hSX4QAIUAIEAKEACFACGgTAeJ82twXmhUhQAgQAoQAIUAI EAKeRIA4nyfRpL4IAUKAECAECAFCgBDQJgLE+bS5LzQrQoAQIAQIAUKAECAEPInA/w/qRTGMO32W rAAAAABJRU5ErkJggk== ------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Perspectivas em Segurança no Trabalho: ensaio a partir de modelos proeminentes de Comportamento Seguro

Carlos Manoel Lop= es Rodrigues; Cristiane Faiad

IS= SN 2237-4558  •<= /span>  Navus    Florianópolis    SC    v. 16 • p. 01-11jan./dez. 2025

1

 

                  =                                                                            =        

 

ISSN 2237-4558    Navus  • &n= bsp;Florianópolis  •  SC    v.9    n.2    <= /span>p. XX-XX    abr./jun. 2019

 

 

------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876_arquivos/image002.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAqAqI3U9wB /v///wAAAAAAAAAAXwAxADgAMgA0ADMANwA5ADUANAAzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA40sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb9iXb76z v9mZc/bM7M4/e35z+3zee11Vt+4ru7fqDQ/hLuVUgJYR/kZEEJAQ7u4fIaD8VRrin/whOAgID/78 f3d/f/+X5Pt/y/8pgQMg/zmGf+HXmKMCoAE8AkAHeAyAAYAJgAWA/XsKIOAC4AHgAxAAEAIQARAD kACQAoAAyADIASgAngBQAlABUAPQADwFoAV4BkAHQA/AAMAIwATADMDy53v+W/51ooJgC/ycgLGQ RLAB7g4Ibn/rCv5bIUJ4+J9r/pc/0NqUNQofS2yQtGBVuNjpjv/rshxONzl8qnOISMBz23/6FEWE dwim/5TNvxZ0hAeIf92ef1SP4M87EmDfCMEKQQZovRnQE/+s4AH2Ef+o57fv+0d0fpX/i199hSCB oAL0vSvQ96Z/jIDjP2Wf6M/2I/8T9n+NE86fz3+97v8t//8J4u/p8L8QpP+3J/gfCHUsCAEiioRw ZEuNkDv2v6np3/I/kVcIJoDPfwV4vl++xxDBEribAimqf8QCUyDl/X+rTwdMn7+eT/+IzYcAMwr/ irf/Lf+s/X+1/F+2rySHhAzEQjQ0hHkFOxnr2fdXmUBoqhD6vYsztrVxMrVxYjcxdDL848LJBlz3 teXfkUkSeLuAcKmKck59cRI8s5kIZfDp5WW08gOmnuXTOoPo5bWr0SObIyNu8a/osUSD0OyXxmkC oq8dEXIcxFZ866jsw6PrcqQDyaioxdoD0QKK6gIuFvZcfVacm6wLg7hseQQruW1b3E42BmY19xXQ ZUkSl2lPjXrEMN5kY0jyQzgHNSLkGFvRHiL0rOiCuKaYokp4pJco1h9/msiLLFFNvGMiT7/55kBc 7v3IA19o0GuvvS6iyhst+dadts+0WkIg8bV5lRpLUo/FK3oEz7feOBJMn+UUVSmoL5dqkQ5P55EO MbqkIDA1FT6fIpy7ts8RfYvLEehH83DXz7ufI7ntCAQbwj3LjJoSWB6kLxQpTTfGm890J1O8xcam FJmrZeSAzeMkd9wP7GSgH8kVw470+kYRc6GF/TfPN0TrjxULAhh7WWZjhD5jl10zLNB4x0fMYKfP FV1ynm0LHC3fdi5/KYNt8m41oRIdf1+Ig8Gt7+brn3gKTGEdmr1cQ4pCWWp2FC6nhDou+d9wPw0l mLa8WhStCdrgq7XVob92kfjksG1jOPi2axHTq1dZq3jojRmdPr3eDKe0e9FjF2puFuW0z2x2E3YX 3xawdaXCtUJdAhrESyYJ+36AXm6gaE7ufoNcun1ZVuUNn6QVme+77chou3mIJk6JYbzXOMQaPGPw 4UwmlkhsaDVAE9fF9N2rdia6bIFiBUJnNwFwhkr7p1pwUUb5TRnYZKf2axuWDcMVF9S4AU15gc3S tUw6hkYylIBRJf/vHtSyMime+ySmwNfPB87aYE/PnVivpvGtzUurynRdCx0fhEYHsbwTf4QeDeFf YLy+V0Eziv4eHcSlJYHw6apfHc/dkGhMneWxoTxiu9sGMhrvuNUDBwtttdR1fWdZzNpwB11Ebeue RdQVDy0sf4jpSmGeZtMGbkEtWJekpCH4ikQu+7vcWzARpZ+kq/wm0tZIgT04czUrvItzww3Dobmp p45xg+2NlCQ/c4/6S5EfJKvs3qez41xG8nY2j3bNl51ZRt7h8demf0+lkZO4luW+eGDFGtGQyx4u 7sPsWiYmOUls+dKiuagWLblL8pj9yHyRpGa/Otw83eMMomKGOVjOA9oFr75gpQq99PpqMpIieMvJ ot85+kBbCgtP3eOI5r10rUyEuc5KXRJTeKXM0/5vpq5irinOsRC+5MqOr3kpMZJO+4VTd0lChmhp oScCeHMI8CfKse8+LzU4G7useb9TrjlFf20URnLfJX2WRCIKs0R5tkKeONZ3ZraoDKUXtpbTgvIk dbDqTTZHbiiBBs79pVnZl73jB7alXU2+6gjue32Yk8l0LmG8N++2KLmozOXbvCl+qyecRdjZvFhZ YzuxqznSdCnE/JEvSuNx3gjhu/ezTLbmku8XJn92OdaG7pOYjjumf3je0awyv14vaTmnrTU7cZJg szk3VZloJ2kiFFHgvDARaQ0d9d2tifDQqqRHW7IRHLgZRaY5Pdb1+7A6dn13wZJrak9feqR40/h0 3KpWdfYMJ3dPH13oow6h4imF2ECfrjOu9rkBuTmFsignHDMP+jS71tctE1c80kiRUxcCjvnxlmzT Hs0jrBybIIiM5t1Q/hmeznD3T1loGBtHRG0YBw07LJp1Ci8/7ElMDx6eUJAZT15mcYa3oXCXBi5k OWDXm+1ohqqZDrQVd03mtJfXFmQy+q62SrvnkHz9SyVYyJRFrlwfo41AuzhZMiQWfCq2Zy59L/YB 5t63I3xWvyUjQkbThN+3tUDbsSvasitQYbw+tRnzgctJp9jf7knHjS37vWXaz4vwZ5nsy9WJbrpr Tj5bPExIUhuD1G/Cu199QyTv5m+/DAAZ6CcPd0dv6MS/z8sXfR+WqIkDu+Csofz8dFpFep1o9hFr h7fwkJ4Lilz34TRvcE5aFl9hRTGZ3LV9iRJoDbSCZgRac4PxllDiuoOg0692waZ6XsJNNB8Zzk48 5hRrOh3xJfvDjmxUhaSi8nxAbc7CeznYxl5CJNytjkIxX2o60AkyXepsSKy+bDKO6+U2NNqFPRU2 tJ6sl5j/TLlMOL9KKjIhM/rQ6wM1rcjxRJwdvAJefkZ/UD54Vz1P2uASj1Uuj+jllT3HODz0Xqg0 a/aSYOLTDsX+VW5aaV6t6EWrUl6Nx2AFUqu9S9GiB+qYKNw1OLJmWDlhRIPuaqvPcWnHFc/LxY1s DRfH3Ysjy20aZE80oGV7UPLiemuSCDu0yNnfITXs+pTyv0a0yBYu8WsgkpE++P0N4r9EtPeGjk6m DkqG5qa/wtrNxf29Dx0KCgrOHarJ/dM2GOooy0uWBx2gl1CkDqKXe4gdIi91sDqonrMnk5KwlXNz CA0bGzCktrdFt47vcITNycOeKb+/DYdciM2QkoilavrhIN8hcTYiIGEttUf3RncDDqtHCZrdHz2o hL5G/6DTPPeFFE6Yo5mR/WCEV6BqmIbUtWIzPhPVh/gBnANyuiJHX6qHtY5YXASc+Q8ostuiH+QT ksj63kpAaKkGEQW4KIuM2FLb6yr437ERBT0Cp2aezaat1Saduczaa7ajhdsJuG7hZNo5oAoirzCQ pAxFY2CU6VCxY28pRa+qvYSIU9Aj/fyMQIj6Ahn5bzYBoaIxyppUwNEQDfHvNwF2QGf93gRkPNKJ /3lxj93OxYKEkbvR5WtmsZHqEW+UG8tsxmZZGuxhVWerLy/PMclD6NhbZvnps6aVldkKaCNV1mY9 VnawnWv146E65KRx8wk4vmi5f/fs+d0du6uXY9amyEX9UMbyVbrjZnrQO4n0kSlSG2xm7OmVzXeo Z4YISyyy9spMoUY4BZ8YcnIDQsRvFLcRS9+gBuux7Vjrv1gyahi2kp8kbVGoLh02XJJArQ+1vRZX PgVfhpU1FZ442jWciDbVWnQk2dZqn1pL5W1Ha5dIFY6tpyt4nsF3xwbwO59tOiU4lpb6MSznVhGZ vlZI0x5UzHS5qohz7muq4DlFug/WlKG0abnR1zO1JkF7ZYhwCsFVwrxuZ1CGsdYMQbnJe8z5uU9I sZpmzmUb1/m0S1NqmgdNneDwofaU0QNbyEnTVhNfuD9DMIQq+wVLazbG1OLDr0P8L4q1OzltXiCV pYwxY16zKjcEcwWjsMqGMoxPxOkRKUeu6WDo9sBYO7P95A4kMPHHuDG+vMq3oMyo5JOIf6SEeB1i SUbTwtzG/E1ERafdzp5QrYyqSxnxSygXWMFF/8rnvvtcPtYjKKSXkvE6u1k5yj3X+Dp0HynTQvRR Ka8IfjnTtsPLsvSY4fhc1xK5R6M1Ky9sBS7S4euFPotzX6d+dp3vPpp9bjnhG8KaOrXbXvb+blB9 r7XhcLEBL+Pj+XStbeoTtEmoAEf644DPck5Yu/DOtV3HjVaswzKlDuMTH+Xw3W8MwpKN0spFzeYK HmPGZZ0Z6ZM/7iQny6U0oqdLE7hn2w2qPCkxiQM3nEwyNfxrW5kXbEdWLj/lwnGUcx21ngfyHvJW 4bEKiqNaoNiGZlmJvNnpu7cOuXfrj1v8iX6pumD7ZBqN80Cak8i9jMDG6b6/QjJUWSIElrMCbV+X 3j/p2yx5ukl30cg03j99cQFzkirTsL3S5l5TbFWPlIrXvgwWyR3wTV/s3IhqTsrcq6wV0jCvyPK+ mQnJQ+ltOYnsFzmgXgleHpa4JWCtibhSjUJasyY9S2LNXXNN7dMDr03zSVcVHrWcJV0kNF2gZVbg vjgxpHQs6daTcd+MincUPh9ZaIJlz70Ig55geeJrte0efnMt2b1bbzz0OcHaYy6z9sVZNjS6ddO3 t3lVpiNawQfTUbxNI5KXiNjMi/L0AQufM72+DfvhNcIJ7wy+O/C8qma8Jb0ijHI/FRx/MSSYfWBc dvxy2rEq3r10enZqUTuvw00qVNhJPyIeFup3fHCSv+K57EjXlkaw7KY4tRcP6UA6UR2JX0I82/1k tD8I5ZU5iL0RcQqCn6SMZ9bRCmBqh8EJFfJ7zyUEMuuUT6Vu9uFkK6uFs/edM6bZVt1u7GCdevK2 59bGl7Nlc/BI028EPOXbTV9rSj68oF7uyVt1GS+7zfrSredBGwdvmmQNJr4xV2+IGXa22paatVYz I00XzDQdVtbtzY+VeRYnS5fwWsSa64WLT3mIiYMWcaIwTa+JWaJeX+7mu40T0xS58waZFFqVG36x 2O/oRqK9NNX0o0cSO1Hnszc+O1zTk+vPC3/0mUwSrVN3aKDeoCQEYfGlk08Ynz6M6+3NHeEBptxf rDClsPRxkTpxTanJzwUGzZ/4h5RZSHs2t0Lkyq6+J16BavQ7WYQD6wX7sGONeG6/xVF6nrBjfjg9 9r+efx5OuoOqAOfxtE2lDMDGPXsGxXbhHluFZ7+m36hdBpmhudh+Wt5R9o6m2gIdoPrrG5338OSl Gdw/Njvd2kbVh/HmUSem1KVejSqIllPwGs/6e9utEnMPCnZ47gZTVoXyGYujVGo2UOrwm3XlrDQM 6prx1r8H35zxTsFQic+geGygCfx32EKDLzTNmli7fJh/hrPyXX0//Wq2h9t9Gml6rXjon2G2IUN2 YvcCU7H40L+GsL51d2gzk777NZrHg1NVEjj5XR0hp/CtZTIu5hs6EnRrMMlOfJCYn8DUXJ1QwIKT w1t95Ze2HjEWtWrxhH2zg1JfEkhzoGimYAbuXIYU3E0fLN6rsEa79BDTpLcONZBPJqtPZ2rx4Trw NngqpPYA9Mx6gUt8VJPuyXh5osGMCyZ9KLx5wrquqzNKM9aSEUZ/gf8ZjiEmcFcZO1fGWehz44Yh rn+PaB/hUo8cSKihT3Gz9PPrIf1O5I7mw9MRWAg4JdeEkVKYElF15UuHeshXvMlc2tKCSJQ0PdwP y/WzERwFzZCOFJgVyVUJbupjyqZlLKLpLeyUeaOIwxs76lBOaL4M+PLU6/t38Ha7ou1AunbituFZ 4ChSMqH+8LAqB5Pm5VJnBIdHFmmrxeBtNd9Jxgj4cqeONEzx+Y9PzGav3cJNFTi+FvOuhviB3wrp X64tQ6ufJ0/Kki2383MvcJHkTDFxs33gEi+wNytetw0oCwpd/UJGbe9LegHh9tnpTxdKuMDWMwog haUdtYGfkt9NhVd2ejbVJ2zTenreCCXg7C+yDtz26LefwcgM88Xai3vBJEyeR8erEYe9wtzgUHuQ TUqFEb2Zg67ZZii4nu7l7Yu37WwfI2h4br/k4DZgjdvp0ZvdUEMxRvSV+DBvFHG7FOogZB1XfYGW DpkLttD856g3dRhRt3fdiYjHbBhCltVCkrOm6f0Q8Vm2MQVUmdl8hzfRt7dtysIlvo+RZHIz6GRT tUgux+Y1p9n6XJRrwr7phibux9azTqkpzAV2N+8yv484Bb0mJtafmsuq/0oztt9AGjVxmrB74+ef PMic4qFw80OulTNMfcKujMprAafJ74YsbawVLnQWdCl+aoDpATXuKjkMVEzjlukPieHlFuEbI2bR GHB9x8Fd8fykE9JSzpt2pTQloY5cVjN8aPL4YGihNUOxlFUIngBhZFtFL5kwPkcRSzkWkBbCo03a pviJ9LhoYijExVTykZpVRhQNU/Ubq5Jxrc/Oyiq7iEff6fAScK291ri8+q50zvmspWf38/cdNOGW Pdrhcq456yXz5C68MK/+wU95DQ7ghCZGN9XjT2v7mnG1dUh74XRJhzEKRvcnC7HGvO5y5vHSgwwx 6SOTbK5ym45inJS9IwMpz+kupX9lWMiLOYBXF9a89+Gz9Tl1UU54ij/N3UO9e0ifxXLL0po7mbFS bnvyMg2+izlgrb9NrXUCh6yFl+LQmleF/NQ+rxX5tQ7uLM3HH3o/ZinWutjqtfJ8LyCYFrkjW5Kg xfxHo641VXcRPd6WwH24pM0dI1mTvMgsYnMiePbi3vsmc2B6fdeGJCran0GSGi0uM1r50vG/kKuk TLOEk84NkvFKcHhMmKm0MhducOXn0NXbp0OkGisThg8JzbpVoAYZfBhZ+cv7r/1v+b3lUCq1GsS8 MUSp/Ka3ghE/RU5Gl/oPKpIPR6asSmw+QhqKQGXfsZqvE/lqb5BERULlaS51lvZQbXdRotE6d+7v BiFD0F/etFP38mId5VKoM3yTmMQAysqtd9eGoG2bXPFTeuPxfkrtLoj/u2x51qGfMfJk1ShHczXi J+xhE4+Vc1KoY27rZQtoQtvM96qZh7ypCwHfiGeOyNz3IrAvEmeTWl2PdICnpaMYZuJ715wSHy3J M8+zOsOEwnDRTPoKldMnvYuH9XkPFd8tFOExVtqIt7Ci64ih4nzB+ceIQKLtZj2WH2NWFWiCX4iZ DWjrCy3WnspyEspkRuEwxbyhKZHQCnFSxtu+hPnLi62w3c45swf7KLSrfbdZ5xGya5czY8QvVB87 zDboLwUJZJzG0rh78TpqMpv1EzcbvOH7dHHyGu+sAVdPRUKQxcD7mvDkOkpPRa1b5/AjnhQ0+byS OABN2XkR9lAqLsD+sDpJx46yJX7anIW7Oo04f4FzNUnXrenc3pbgTJjaKB3mKqPRMkrFvu1eOGTC O9ujUznwmKjqZ/l3XhtbUTbb185TcXLripIjYd8DxJmvayeRvg/l+xOKNKEdFC1U+dp8CLaYfBv/ qW9/UOp5Qi6zpEZoKUEzA6P75YJBXFDdY/27LlU2ug8Kfetf9S3581omn7o0MEx1n+BaClKYFwrn Mu9ZSjonQBIDE9v8yJAKxrT2nbKdtCh+Jqh+pVWSyY59+cxvKBW5i75c1WO0XVUgyFpYuEBV8Hu/ qkC1hIMVPXqsaiPzvH/GdAkUa+S1bkCQk1XI2jhe72d5in3qjLdlutDBVo6kAjfpwhrI8CMHq0lT d+lC3rtEoFzGkIc0fY2DUCW0EFqtKpyvSnbVEkRe5jXnJZmRPhYyJpSv6mHaEuRkxPfecEaBe7F+ jTpDa1cS6JRSBv5qMaWG4VARVw7mGnvl7PB2FzWNGH3Zkd8dcFfMeD24T36VwD+TQSk+Ez09O6vb ZYnPqJAmHaq1TfiBNEnYHrlyU8BsW3/eNJ03ZqWqH00l/Xy8ZC6r2UdQ9Mk622pha5jxws3cX9Ts Z54S1fXX7fXlJVcLcJo3HbCtVoUQFFI8BXLYqzfviDZObUWHRCkKdR/ZpKB/ndAVR6Kezfe/lH5j LHV2dPBQdddiRKGJ/FuzinXBxO9lz9ZnRXGjWh6ytjPo3OzZRBjzhPrJYaXelx32k2RmCOcrwZ31 px3WPJP9UsFBElvAs7DHVoHAYtREvxSEzCj5iT5X9/sRIBOfcdCjiUpYvEklXk9E/Lb92v0KzZ5G WDxdOgona/YNe4nflXGyLbuBjWZhUhSOaLM6OyWFnpHgya1Csw66LRz1pAez2TOAX5f4t0qtPuxC f3c9rznktK58/uMpmj2IXrIugmC1UCo4S6c0KQrjXhhyNUKyESv2pyEhhegn1AuGkXrgYmWfqkhD UUUYrjvJTQEEE7xjOI0lr6eRRskjxBdCKhIhc3IxZoNpX/rEKtRFOGnLcIQvN0vxbNi2ElLNx+F/ zuVzJYNtfG6B9rGW3drV8fFY0sZNPISVb2d5kBMzQ9ScTadz7ugR7AP8LfbqkNXlDgsnNrEruWGr 5WUn/8ZHho1RNncLb7X2MNsT56myzVZ3nmtR8kgNCheCGYdrjauX/BqyqMKvprgc1DR2yfscVBLj vqXHr58WayogORyPpO25+DOJp4TEc06Ym7IRSx25CF40clFamL17AkNhT+db/ZFnw6H2lqEaf57K OIuUb9EujkhBC4VbeYhoKBXPvQjuT/oVZSunyWKyPl1PZMvJU0b49DXXKoOo8FyjZZfSh40VD5vY SdV5gx2KDVl2+dgux5F8HwkQ+/vaSluhqLjSMH/0476zsTDuIiRHIBTWjtCKOjMQt9kjR+7sPyYx P4RYjIPjz5kGqSgl1f7wwNUqu7n5ExoXyGlMIY12RhBmp+vecBmb4po7RBuuJ0sGuma3BhuFFTYO wn5vqfvDnZHTEkfsoCR8DOry7RDbBr9FZlCNBZVaw2fI7pfG73t8yZRORtdSVpcRU4q7lKbanP1O 5pkeSep1BxZ8Kbi19qFk0JTSZWiMzbBrIiTJo773LNGMNUXTNHngfanSO4JKCY+NXhRQl1tjb11Q badzMXvOclGNzbH9trlAxU+xpjTDrsqPJwFnMcMz8t47ynlPTg5PXu9sfjBUrxqtR9QCMrj1r4R6 hPaG0jJDxXAewAhmqLa8Ex+KbvnJoLfkNaALqaH4caHFi2VjfDQfoNr66YeEra1nl4DoKbbyRsEv 6OKh5fdMab8gCXShYq8edXS7EEsovnxy3ANd0yXqGORkIAsptVH2lRGY5eRUy6yXUsd0aRkSV8p1 WO758SuGkKdpIXBNrxpUh0h68kbVWzBwb8lrkLq6vvjYbU15QahciPADoyLrAXbjuUOCHyShkKO7 1Ozu23d1lCdYC237+92EgW3tn5QqhkO9PVMetXBsZ09z4hcTh+4X6VX4huop8KDjFeSqnHqqqTI2 qDgVbMmOhMXmZhGH6onNBQqa1LV55fQ0Em/EPiEk9mBIOlVK7qDUWZO6gHntPzi741g9Tnjtpb8x WdbwUs5W/psX2XLfY4GhsUM9UeIrZU/4UPLnI6iXuY7BHR2mfuPBg6cik4ftPMR17irtUaX1LxMq QS6iezSi4vpw0kovR7PohYcNJSN2jWmP0y16MTBGh7XmHpYKc+RpOBNbIqZjfvBj/GGE5jb5sAHG mef8ovLa26w7je04h88Jbtid4gSHlDf5FO5lHc5o/5j3/WF1u/xkL2EofVCvPq/heCahizlCA1TG c6c5dlmRMWWdBY+pPPW+YbFL1PPwDxwctaaPnVSgLfMapzXfLviAZQii3KK9yByTKcuQ1hOMaTrH nBbYLqAPEJC7vjBwId1naT5fIzHfrpZSsE/Uu+lYBipYnB3TtDodIII6focuZAIJ2MdLRzPdunrj vTc2S+uAxnpBekGSSDniSWMpVCXml8p40OxsFDO6ngcyOWNVLuVXs1ifhHeW9HEYcY5qlOovJX00 eNwV45VlR06U5X8Nza8wwi4bmnn4pnz7mT2xC2lZnE9G+JRhFeRnNyd30HY2DBV0txCRcCNuvOFM aUaRg3V6MSRKSPvYVzoqGPN0tLe8Hq+My6N5gAe8S6XJ4Lrvs22C0NptsrF34cxluNRZlkzBu7u2 +CqrLoQVaaXw3nCm23IzFtis+WCudtT5ewZ0cr5B5RYKSBIVR9U9SD16w55BPtn+BsrGzjkmu23y AzFmFIv14ynD/KBRq6SORusEVJ8mJUFqx0CSGPMi7A4WYFmnlg57WQQZXLm1hXBklWUJsr1aaFVW +Fnus4cd9wFSJ06GOWCLKs3no2rPi07+0xjdguc1UcSnELy8cIhngCYpZp+FEtifCxQaO2KwT/Du C93Bj8fXAr0sIjSmrAeWMNqIjyPgDes30U2paFzWR2uG0ZphSQp+UK05O1KTiZWVRqq8Y96dDNrJ 1g4W3X4ZM1Y8RuuKcCpT1jtXfJMJo4QMqkqikPhq6fzizh16MRDZc+6Ue8YNWlLlaaAseNI+diRw dperm9cpFizl4LPRxkCfUi09KakZJtGnVaVvW5uUYcJLHfONKMREYpgfqNpVHSjAz9ImA+JTnU+p 7nANPosT8z4VA+pH+Rhf7To5C9Sr4mPyenroRN/0QhiTO5f+lKmKlHPNyff1iHUcHtUAspRzwo/C 32dh8RTcoVRS3NlA1cvSQN/Xzk9V0NPZOJII8hWBQ4aBO03B4bPAj6+Xv86DTNAXUyKp4tBnwBV7 QxT95IT9GNoYXIGwKfRoRk/SfrFPhwmaD7gCyzoeRDN6aBinnIE5CzEfpvyQyicQoYkwvy2szz8a dRFkDBzy1r13QtcnGGeu0tKf/qHQvBmCcDUNOD7ZZdW/uHtzhRJBB/TFoorg+NhzMQyaz/sThMGn pF5rtVA9Rij4CVWGNfBqGc6oKT80uPBjVC4Hs8D5BC35GcHxPyZvmSVkl4GGUALpMzDx/E7feamU RXgXeQZEeifN9Vey1qOQbIIW4jFcxkDb0ecSWp51V/iO09/Sr2l/q+rHUhUc/swKk65AS5kFCpVd ygAZYSJB0m9QAXUwGlDkfjU4/tuHY22zcRDd2StGz15VoOCQiL4kQ6AtWh3RDBWaJi6C/wPnw1li xOOhVf4vZQzZNy3SVdpMfejrLZtPG/qolH47eqV4jI9XMOS0207dOmsyCa3n9LE3HiVObPuzIebW Txv0xw770aEez3DjBrmOqLjfN0JyjHzKzkBYRQN7i+H1zz9e4H/2ckWmVLz53Mr9Aj479MrmQrSc VwQvMom5uK6Fmwdh5nLL4BiPSFHqzP4hweSFRKNybrjqSmqUL6O9+h/fI6yV8SZVxHW8gCNOxM60 yuuz1cqC4NLFnvRb31pFwZ6mY03eUWN4UAm0K9hIHDnJbPVlBqSrc7ruqOZQRdTM3atjln1gsGs+ l2JwadVGyl70/ERYq3LDtbqQOh3fwC0nsNKIWw/S8jw4KYfip3poKp7Cs3RZ/gQ7EesfbtXMhUUR LGkRx2Ks699iVMY/PvgWY/QlOD4XGNDqg+t39Sxzl9HyXI4gR11bMpVQUExiYAhBcAvVBF1Sbe1t h+clKjfBL73B6/9g3Duj4Xq/tiNadFGDIBLdDMKoCRKdUaJEG9GZYJSooydEF73XECX6aKP3bvTe Re89+uDx+//fd73r+X16v9zrnLPO2fve17rO3vde69rmr3J+V530yyqqhbobSSmqQaBIppxs+vuk q3aqDTrGuUj18Xnq2TX4/mquaE4yNrCcKee3sqGNlKKCdXNG7TUOubqNPIdVqHpN421NVmTWubg0 td7IoQT1oxglUXaavpKSB4qqaTw0HZ8eCttfqPIIeZ1jiN7FRUX27hs4hHt38im+t++VjAPVKKaF lrnFcp1iWxU2XTpliW1YPZHQp9ertIZ0Jaqk+Pt2Md1DRFAcUJXxxC8LfQqTdo1ei72zciJ+T9A8 OpqoUHPEXusnEbnh2PAYKoDCSyW7GeZ6/WDJMm95XFYwVfxrkiR3rVFxFe1BgXW7oavVpR5C+C4y AGkiiBZXa8/gK7ffKqWdFO9N/Ssw5qVGxWpIOvWqpGKUR+nGuU2LKPCwr22q2jLR6QVBns0UolV3 Y9KJ9cfuyWb/eZnS9U80Xdn9yRytRaqFuo+LenOAXKulDz6vD18dehuA2SEZ85BPp1JwWvtlB+09 dNymJw02EbZfjEDzZKuKT9dJRth1KVA+xqDnaNwwnJsfPBdIHXCQUaNcdWdC5jcjr+NipSfmkuzk kkmk9z6JpE/bvv/mOejlR4e0RnPmy+vP8WFX/z31G6COGVkaYq/1KH5/YkxRAXPENHtr1PU9W74k Oe7lhd188ss58jkK/jbW1p82SqraEkE1HdmnbngHBx1K+lEh5C50TA6GnE0aSW5uyRFmpmx2vfcg wXcVVpbRBiVUni/goDC3lTBsw9tqjLopxMo3ebtn0zMhM4zuUvcGWns+w3QGW3YyvNctUL/imuwU ksQAyHHMoedP10pKsYIrRW6vhCRQNzVrc6tSD0Lefa/SKHX63iRVBsnmTb7/SqQjIuk2VCgbiDTK wFzkXTYlGPSYopu30LO/3V3k9WaP6QKjE9J1HQ1pkwU9/L6Y01Ldt8iV76Bkew8XT2Oyp3Jc6Df6 DdCiI2iadJAKA89V0ZdpVzE+bULl+8AypynXH1/MSpz6uQUz+uP8jWkCGYW0RfX5FByZQcJPDuS2 nk+6Ug7rX+mBZrn7uM1LhEF4sbVZ/ZTmJeyOOexJXG88sFKsgj3KD3dLSFehMibBQsXTFRGFsftr E/3HU0k5YvNGO7xctheufquYxfCydLr+HdvO1mVbI3xzdQkpLO0J5bgOFAcclpECMrSAjYEPijaZ BhJKJsRYrGFH33G0k2zock0u9VSfHFfLp1uZtBovubcVigHhlw1sSgywVu8pscxBDyr09AIBWk7v qNg+1wdweiDKc1mGGXNdWzkCPgenjnFjq376G2tB/cNPmG6BxSYh0Yss8dM579SekcvcBvEAlml1 XXsQQa+ObdkbT29xGg8lJ1ySVuTtvHFnrRlhsH2gqG+pkAMu6Z5WjO7VRyEFxtdD5rPZ8qM1e6d2 8LY2+OjJE5TCOkpo8MjHEg74dmpOUK9yYn76KHFkmqYSixxkXeyo4wr8uWxMfrrFTFvH2d6eWcPV LkXD0Hf0IUBOje/tfD1OinyRIHNtyxRlkfzbbXPKtr3HXW+oAK4t2LJserxO8eRmiypdPiTOvmp5 0ccGdGzTSCGawqaeMAdjb3tMo/1es9RXtneMOtHHlzC60WMWuZnIa+u3wwHjElGDcoCZgZDSzpmj H6+1PM/EHT+ewXrB9BVRhKlrrTPw3GLKG+0vvnw0HDoXufwfxNCZFaCvuZr2GFb3ctq59yqsn0jO 7Jqb3u7in3d49k7nMa1wGX/KlGn45KBbK8rLA3jnnbj827u10ejlXcXnBHb8Ku2XJdL6wTVkX1hW 7g+D4Oi51tzzlXQ0QpvqOgwssxK7nQ/XOZr21dxjgd9XaFb+7W87mdM4BrYqyqm/zpWjctdX7qRf qDiKuMnXUTwKh9J6n6pQxXMlBAxgbUvh+bS6MSlNUVlenmYq9S5tvoY493bUleYsO35LenZhQnsg nPJNOczyclmbRmcmmnNmh/fUALiBX63ZkJb4bcw2908mflLNuTR++k5kMF2TamtcBX+UFlsBPbSr yiOoUnS5wV/3flDq70yML09Cf1shm8Yw/1sC62SNNWce7qEp1VP7n4FEF/68HrLZRn4DuvKFuEPV buwip7DctfXJ/tpNvqOYh+7NzQwn3I0Ju1vvwLTxN0VDzbG4wVJ7qv6rj+XTTBsBXZY6Auvi3BDW DdMPOIuiGQHU5HyIqnrsTVCf9OYLgkWxvuwrl6f6lFH+p7+A8KNRKbR5EnbMEcapeIV0H6Y+UPiy DxPGfrmwjQvfIycQFL18ZI1vsHT96FWC3rDh0S9hgpUNXHnGUU9keK2TyBgVau9t0NUXyg3BIdya l+kKhfRz2JZVwedjO2RVbA9dTqbZqiNJmbQhFwMequ0LsAhOCrvUes11QH2qt0MQuqbypfH8ShDd KQeKIL2B8gMyAlklFibiqnjrhgN0r7DNs5cF2MqKQA3PJya6Rft4NQKS+Ppjjc9hdBbtHqfdolCp w1cyMaQcdcysW00gYQYDhQRC3U6nlMhwRx9w1/v2seOz3d7pBmXRUc6+yUinBlP5qGzvIDFOXea8 BtPWq6ZtHbtybMhhTSDBJl67yYKYkr5Rq+HmQrt6KKDGfloM1jztC5xdaBcBAy4P/3iMkupEe2uX a9y+iY5K7+8UsjWFjgy6bwnaUndX67vSeUkgja7n5y575aj60+F09YOUtw1wOpsYABy3+NnkjytJ BDa/jZbSsUrcnvtbbPAnZNZSLsVeeXRtNi5/eSbloWecr4RW9crsPofwqFEn5EYdsS5F0OTsr3D7 fQZwOXBK1TsmyuXOiFBsX1uyOZQfdZb3M1evYx44VYSy/ugWvw9o0OpdQv8dX1HYKkQEdCOer34j 9AvJggera8R+UGtzOM8YrYgibXzecrhf1z13sD3mErGbQyOBM77z8geO3+UQJVz65vwQt/G4lHvv /l9ihL+AN1H/zI38MyPy7F9iBFlLmLmSpaPTP3IEsAJAATT+sC73KQO4FYD48kqq2I4EXwkR/5Y3 KP0aTBLBfvRoj/G/Kvj/a9HBzu4/lopnDJUgH5/jHo3x5eQHfxOPDFJ6ES3yQJ8N6YRa1pSWFUK6 6PcgsrvYOVj98CyVPWtICg6zhUswTnc7frtubswyI6BdIhZXmozlGAPUJWBhIWWotWnWIUP9NuG8 L9Nz5pDhL2ugh+N1Y3P6kEh1dU7x9Cd1B46UsrR6TsW4SVk7WlNYlB1Vk+u87YrPmE7h1FTRRUrC 9cwoEnoRE8fQZHdcIDJbxu9ddLIBDpVLTAPamdz/ajM1ub9tcHt3r7XoG2xarXq8ddvu+Y4f5vb2 1PPQSWgNJMDOLXbqQGxamtsRIbYoK3PI02O0F94g3by0O3VTdesXAZiab7/ow5gopYd2RtDBHXeu RBcZyE+szSUlLUI3jgq9XUMNJ/grGnJswc9irnmYr73Qz72Agk8cCyeK1lDr+Y4CnAUoNovn/U76 qPGp+oyxa2W8X021u7v3+0NPGcasDP54JNTf/XTZ+9NttWBs5+DFxZ9Gus8p8d75ze7fZIzFkO/J 1hNlpM7u8NBnv09jtyedVU60bPRqDXpp9struM26KiaTIUgT2wHr/mKa/uLks6UNrcLtO8YNrdIx 65/hcWWQyZHJaxXjxeeuq6Jhv8dyimM+bA4piWsbqA4WiMZfxrIO3bPyp98XB99RZVToFpFrHuha qtIOfVw8T9E24PcuWRnIh1q5cSnoDioBxO5bJ0wF+QloHdmxI0RSfbvnucJqacNmOg/HllgGP6Jx NRsN6w2QEEtwTGRUlRKkjMWqM14cMz5FC/YldyxeyD+syFycHiI4jVinMN5WWr+gpkOmNoYi0exm ZsA5vrL1YyXYNhuA7arueV8HFZjbhoOKrzyevHbagZUassgK8Dl1TurrjA/2nOXjefgiDnt6BdAS P/adpWtqPe4x7Fj8HeT6wUcnrJsqhR6yyASYmTepNkU1mcw6SPf06HFTmaIOO6fJ+BDc2ySmqBXi WfUtnWaWPy3xBrhIwmcI6efTfDqKkCxJ2cnyRkJIOnt7PP/3db5qUJwxWEbERoTzwadEgimqygHm loCYvvTqR1JDTgo+g3MeoiXUNkZJUyIb5HRcTpxrNf2BFxPD8ZxMr6xp8lvjS60Q60XfnK9ycCC2 oNF4T/PbeG5siDsFzG2pxdpHszX+G+vsSeODlbfjYcCcgWk+eZ30zaEVq6740OJKlkab23joHGJd /gEtfgR33iyC5eilTfATGl2wyxskBdIURWo8023Is74/PTr1HtJE+QBalgrsi5MJChfH4KYqbXrF Kw35l4Bme8gUA1aG/ZDG2qK7geePkHuHuUD6h3D5pn4ACRamT6K+OffCCSCCuJbgqofdpJKYoDRJ IeKsAOD8iTUpJB1vJN704XUHlu9AIalpPtgfn7UfmNMO189tkp4+OAVKTZdbP4GIv7ZXdSF+wCwR +ZySbzQD2D7tAAwDGmNemM09QYLCRuKFvocVrUe8hikEG6GCvh1yH/wwQl0mVK4XPDjdS+uIn1WA iajqEDuiwDHTDqt0s9ESjd7gKRDyr5Ip6vc3j5MtENJTTApyR/bgNA9atj4MQHpa/UlHzwKQCHYb jn8er6rBtkNNUNDv60K2NBEmqGHz2ZN/WLmX2B5/IgK7SkWEOYR6EEMEuz//E6v3UoQxSpMQ0vQC UG15ePMaVuuQhoTp6zSv+2PDRJBfgabf13HvAH4E06Nl8pC2BxCiW5WGyzlGMmDBz2q6FMk2S65L eCak9fCBKBrcmPtijcJftyXU8uNXuP87zR6VvJ0cfkivhRj/HRY0tYPZOfD8Z+WG28D8I4cIfHkp ug/f37eT+opmr79/MklcjCCOYl922wFrOfrZSN9emAfr4KQxHN6IL10QaLDEsl5S/o6mskX2vixW 0X+00jkajOpnYiXW/lyd2er5FEtjKc20lOAOMbLj/aVnRFk/VjLgtwkVPkhlVAr0Xvu+VGJ8z9aB tYXJ2lytp0b6DvZ3rFob+4m6KqzPDqP7BcGwfnz95pfR6GdYFWh8ngBtI4GhsgtlAbHZCFiS292f yDSm6oDURN6vjaplFjvHXr8LJzU9tBj345JleuyP/lVjyObl6OlwHj0CUf13ItLG3Mn4v4rD/3Px DwQLOmDHFWHSpk3tmoaqj/W4vCSB32KPNR8zSSkbYPdabLAjHu1Px4PjMfdKl+LNwmx6k4pFbIm/ uO5qFE5cM1cdiTNmDbt3A1hADHMLLt1I+4ZcjOBq05sz80na2Unofdsbffos5rbnusNMKqXEpnTY Tv6l76gsus95AJenOohaPSWoCGFlWePq21qH1FvvpcWLuVibtIPPIAdRsbwpa4ysOAbTcOJi4Vvg hTo8ecVpQL6NSRS89VmGXxxps95kT//rSR6e3up5Mt/ztvueJKz+p1HYQb+iIdvusqbpTbnCv2dD je2GJx2svFIDVBaxAtBg8+FDYlH6IQ5IwXTpZU0eQN5riKODcyXKAZA8UT17LgkPylT2KrSZollS 22jmtqNOj+H62MEHuf0x9fw6I/v6bfSrV3Np71LXOS2+LQWnxu+K+Ov7z/+K1fbloLHCiHoUjbfc Y+flL5nEclacs5zYAwhSrTJnwNXtm3mqR1AWArcA9Ux6MlwiVKCdT9yxtK5MgO3bK9cD14Ls7j3x encx2Yq+0ZkhDb3yz95ajODz+2ydi+XBfmOTvWzKBES3pq/p1W3TYtDU0VO3oeJmk6MGLCR/fV/W lK54h0j5LvWrcfaMygTf6Eu6JJqZIyYkHKfQ2CPtQ5bcxIdNcMPAMDKxTaE4K9dJLOMaQ3ZBGVpl Wdu6Ub5O/Gme1oXnBriGk5CmxqtXu1CyyQ6zgZiP8MOVvT7zmBE5RIQjzERYta24HtMvybe4epfO PfVB8PorBHq3OpCfyWYMTs/n+uUxt5XphGgKVxNTOVVkyZ9xCuyIJawxAkTc9jmdjIfLVMOMhG1r zQokE5TPbtNHecmJltBNie9mhrFuDQK9S8esKkZ0fz3+HsY2LLtYtuapMNFaffyG2PJllH9Re24Y K4p+XssDA2Ap+pe1o4y5iIxQikEY9VjAhJu2wShIxj3KlzixxeUnzen6x0xpKc4thgoFebKkIMnX cAJLwCt1X+Ia3JUgl6uJFMNnIcsnZvaHjNhFWXSjCuoqSWsh8pu6hZ8SumTOw3AD8P0cKK69hEni sl8dPBsga9VlecYX9fpFiH0mM30Z6VT6msXtdcyA0Hc5eda3CYSET4wp1Tu/6o+/JxFeGJBnV/jQ k8tCHAGJ64757Zd+YOdcCKtlOyZxbtqIptESDxqAIr6LdH1rqCe03YxkD0ijpK95K8tllZgDS10h CsZL6E4wUlYQcE3s5pA7pgVf6r7+vgAqufAlcSher5ZVOW1k0eWPEBoHNcLiXjSBb5uKMmKL2hks HxnXtYf//vPYtINk62cylhpBDpWRFLuIFJ0JBaWahiRdn56AnpRcLwJ6quRzUJl5amlHw8qmVWBs NRSUCZTqPags+Oi3uExLnBMbc4ZnOOJ8GRbM9r3oY6zZ9JVaWwRUX/f2xWIlGUwqOk6OZeur0JXS o5aUO4PIr73E6NLa31odAvaThH7r6xOlxZ8doWo/B36KyjzHCfDVm2gRMP2Bu7F+Ho9+Rhv42TMp yR2+0i9w+ME5XiyZBzWV2MMJgQ3GwH4SDPw0elnGaes444llTpihwsSUbPsttlC7pO4JvnKg93vP RnJ2lsTPbOrFtrH6oDhGJoEoKcENBcFqqqDIy5jAQ0MxNu3+plRZaNbRa1wMjSevpxabzi77sWwO doHkffeojoHwFPf2nV3QaTofg+Ceea9oazHONdBSfk25GKtdXGpbZWH9gZmhritITeo7BcG4/Ddk uHl8Odk0WWRDfVCA28ceVncyF05K/KupS6hBwD2BZT/WsfQ3Hk4Nrg46ceQyoTPuAdvcCohm7tfy n/KpKuBVRf/0gTOPnNdUVTHleqqsab3AnqvcbXgxfQQflsbgswXSVQWuFOq5CdzAr576uaH1dNbe b2ic5PzeF05RHVrsj7ilO/+SsyOj90HDEFPn5TaNy3ECmUGrLdemV+d/0XlnizfwYYupo/R33Zr3 rdKM7oq1zrhsDRO76Lvjz4w1sRIMNGTpFXUW+gRzmJoBK42OWgUv4FnYiVHwNxEib/9gV9oWNN4v H4dmkrZZJrHspHLfjhckx7q9TruiTtdA3+0aogn+dzXxC6CsoXooo1WP/1VNnMzhTpa2Fnb/VJOc aDVVP17S7qUrCuULQqEjGXnj4GgxoFU/+tEnyFNMoGWh09Ji+VNf2w7pm+G/B9f3CxK1r+imBLc0 PmtwJa0K65kyM2s0xH8MNzyfO6L6pfyUNKEWae2f00OQ3asfzqGNG3V1EYmjj9XDmHVlfa5v220n 3necUvUJZ/jCa3xJWlGbNM8SfxcrmvmvhKRjbHzdh+QJ+ST5HF6lqbSzg2HSMb9rhEgXFP09vpIy 95eStJLlyGW9v0eJsX1Xfg7/Ht4tHE7dL05YcBiXf0xfzM2lUZUfmlag2VHDysvKLWJPKW1U9mZm 5NfwfXmVKNMHNC4EPNBLXtzBk0uKzgYG9RgIQ66j+imh4ArdiHqsVb6rWz9LjNA//wLSoa1b4uoB SAy8/w6A//dMYmZn+sEYZu7kZP4PjlVavbZzvKSN1FsSpG9TTuRfVj1C+mkGMqhjypJgeK5ZaH+L /xod+iJjXHVLQELL6stL7KoYgkw/qs8bAw1uEWs7G/mAYTub5IaSyemLR0uwJm9dsRPJ6mLZbo2S SR02dWxj5p73bE8zX1A+pTCRJIl9vGmZZR6m1glu7Krnjn6VE1Wwnj/+ESIEr4h2VkuxMCVnPLsM MKvomnHxcSUekHw3l5jZSPL14HGAWop28S1eAykadEL9pxPkbzQihk04isUjkUQoLn8eLM1R4eaL cmsBd3sYNbfHzTbRGPReA8eymnkLlL37uQz2cM6bL9bAHHEZiu8/U/BLiowxPw0hx5Z8MijTRmJP s2OQon7PmWvkPVVGjpjb1Hifze00tqPdkm4Avb0tohNnGf2FmUqOSBvZvym7UoksT9U+i5WEYlkE xwn99DL6xCegMMp0rmQwFp88MJOEcGduA9s6tU6YYS3UpGVawH6yeskR0XktiXh7NqSu4VZb+CRa gxy0Tia5Sz+ioLauOakLKMNTOB85QoUbulwDMfpOxePD+nPkj3v33c/7M9xGweuiOXeky830kEk9 9mvPuGG5LAlarhu36lVOuYW/c9T0nV4j74ULRUO+sax6SkmEte/GJHfUaRhbFFaJ0yPdEmfCgLJQ 7kCN7hPPJ7rh3XQeo/8+vpanJSajSB89ynn2+D9UcXRyg5k7/sMVZxtzWyduUzNHx/00m5isLtqA 5k1tHa00u+RoHM8Zu4M9WLRoRVJxmgJSRT2fAj/MjBLQsadS3msnQfQE8y/Bb15R+JBmefhtD2ps /nzsYmJraclJdEH5qKayrlTUZ0xiK+NegXFUAgat7UcrZ+AxTBnba2+fp6f/vatEVx3WvJ/m60EO Q7UD7uHrQDEJWIP7RfP9uXdd/d0wnXRz34s7O8TNtuNdAtqsuj7pJn59sbjYrRJcx6Ic8ctd6lrb lfpK9SS6pJooPtx6XVXWcz7ghpQlB1I+tSVEx1dBFW7d9ONUy7OqrFJctHXF5TxQAHpBwzAwqqPq tXTT3wQ3vqRq7nUY4DJtNE6/b3ecv/nkuk4r/sYCYaTqVrFIHxc9dNb3xHMTPB75V+8uddP5osQS RmXX8ELZCWljOfM+ObAUnWv5LgKOJCoS5jDkb56BL7npBCHPxrW+mILyteD+XmusrutY8T6rwz5t rGJTynPKf6YH5588H/ph2KPf6Dh705Vq+9Lnlu+E4ommS74Q2+gO30BqwbsCFmhLnDVLqyILhHuW bEbRnyu+RLrh5ZUilv77NqIgHW7T/MiLhHL9ftyeWqVhdQWwTFrzZAKoBWiwjaQ2XJuq+JDob5uV MNa18imQbrN0y2oETy3W91oCsnwVWCwFXFrB6hpddh6aFNh2pt+N9Og9TREE1WcAOI2baNMESlvL 9zUh8yCvmuanLJY7b7rUE1+Zg5pSATMBPjawx2q5BnQYXhkUeSFK3GwfwZutpGFV1qLj4pdd7lGM 1qtgxAdjGU4fs/Q8v9h1w5HxxeIftVKOg0Q1mY1MRJdbVxas74wJcuBvQF9OEEnmHk1n6emJbwcR 2xv4xv7qRyiSVMdXe7la4TeYm88DYH9sY/zfxWmcdhcfFhktJ/VnYjuRZgwKLkY3VTnSLQnTud8O /eq6M3vnE/r0ggB611slONLzczu5hPrlRoaZR6IP50InWsOWUSlIBHIX2yP99ICLmmUJyq3p7T3z Qd1yibnazlzJx/8NW06vs52r3eNRAyXf8noGsJB2pnbh3hUHZ/Uuk5j1S0Lg/j7zh9kZyw+2Q3tF HOS6sxMK2ZV5Yz/nw7d12dt6TmybwIvDObepsuauxbISbcP4Yp8sN5MQ84tny0bswcD9PZD67Jyq Wm1aRNevY51nerNLlr8r2zOyym9YV+032z4MNsW8F7h2Fap0ybMrqT+K/wNshfhWY9nl61eylMfh awM+BcNlTuKe1Ph+pyMt0+9SZzrkMa9NJIl0TPqZEx0fUvfFToFl9X3rB7dtlXe3k+oEMeORFeNt ShO2gPXcN7zxRoBWHd8yLFO8LnVWhQRbQGPz3bHtrP+DB7xFsgYWOHg9CxhVrFljsq3YwRVdKt1C yTz/NWidLx7fzYcD1en5NRWFBYyr1Bz/4QE246MhmTPHGT8EVvEqELmBgf0U/1j4f5sOJp/4Wu0k 4EUCzX+VXNCm61uBBcUbJEtlEQZv7gI4Qkp2gBCoenPVeBdAYA1Y9frjkI/c86fCUjeiSkVimIEc Nv7tWIHBdHiBeMQas6/tE1U2eZM+TYMRCUY8rQa+jZr/nz/EArqNxUaYQ+nKsI5muKUt55wlP98f vI+ioOJu1fItxoLgIclgLNOKqb9xYDnV4c14ohcqkVf2douEVDjkhKzPlHgTjXjXwwkebnI9L9KO NBI0P1kmvRpuyeOu4lFQ9tpRv+H7GNEKmuNO0DoSVLEzv2W1pLduX/5tpTfE6XHsplqL7TB/frvQ VjZzLWiL1p18piwlibmL696VWv42vM5Z5k2utvAQbSikfV9WgzWdgNou0dDNDEdfQXZRMeT1iL+8 XK1rwP0fBBsFkY6v4Jt+9S0AfvkaJOXPJDGmoG+QF9Xi2cemito8KdF8s8jyQbwpxo/GERuvjCLa GPzF+gh8xa7xz3+zVzLvdwHSmc/lVV9hytB4E7F1XBv9jDxi2v6x5axUWbrs5P42F8OvDWUH8GsK NmtlEHpRrARw2eJFfru4XXU3rsXZ7IA2mXvW8U2qLd8mmAdIjQTMqFEIfOK2NKKNnOt/OdP6ppvo lS3ggonbjUJNB96fMjXyR59BqMr0UJH0vJEavdLJUiQp23mBswQZw9yk8AqtmScfF87MFbpYpLs+ 2eJcC+u287JztvPq1a53M0VvXDfdpAZccuwffYVSMR5GbZKwaM82vij1BPX/iLNHXdkE1q37/236 3Ix+Pu+QHg9WKawL5lav1BxbL+AeqdKcMbEBjwMnq6WXKUGLX/vWRRM4vXyKURPeXxdRlDwTDZpn A0ukSrFqc+Lwpm90vpDEnFzbJ7bGBVaGlUmFeV+kjrjJJpmLFHRiEKzGyrkKdc+t+Wh0f/mQ++2k LQ8RjZ2+0RI2zMxJGe18PAjmzzvJI7YOmcOxLvgEFpnbkqSMwSDBZ9DUDzss098zF8Y5g3wAKqlL EWsS8J/ph4pKiB74KdzPjUfOVCga2eyKUmZZvVJRv9CZy7d3WeyfVYl9yS6jpx8Sy6PMunfm4tvr L3ChX4GXy+B2xYVyCmsJEWRw6S9NClpyWEZWO2OuKjz33ysiGlOadxNY+rveh+/qbD1X31qtih94 0iNNITqxUHLwOJRrOg560rETaF2kvmlgTOcjGD+35e+ufGiDLqtGOu9JfRxqdnOcKudXuymClmLQ /E875xnV9NnG4RADQgJSZhiykSV7FCFUAyigYYQwFIQEkGVlL6sEQSyrKhIiASwgU1CrhIAilRHZ M2JkgyCyZCQyWpCC0gD1PSGt73lPP7//68P94Tnnd315/s+H+3nOXXaOO8V2COwJ8my8CdIGap+C cbS+D3s4eF5N6BEp2bFcwBUh+eDcoUslvM1tDb7Em1JUMb1LRyRtUhPapZ1N+Y456upFHaR5rp3J Loy0D8sXEgylFi379bgjphLyifWoSw5i6eppiiNEHbTKyxQLKnsSiIHnEFzWWBY2tazGR7Sv9+BD eKryk463CzWOxGRNxRJOXY627fCKiiF2FKkJVdqPSuO2UewStJjEcRmxJdknPl7OHQ/WRUmQ4pR8 5dtxCDVzsSKcVG2kVdh3s1Ze8Mueub3NcvMjl5XxCz9W03v5OHXL1QzGVC3fk7Dl3S3cY6pZgqb6 EJrQW++rJX0A/d62Sk+jVxwNbXSfirFIxWjsfhqIZulsDDOGVeFys3Ozz7fERMRGTCfzVJSHV9jR YiO20fbfXsoOWSdwnlFxL0s8pC3M5SQ7BfYIgFNCjBGHaupKpkhH4QNTVMJPZ1UCu60ZUPDe4IqV VtDTd7WIXu/rSOXZxhm8t/MDe6U4D127vIPou555hPyHMGIcOA7fO/PirnnnkbkFhJvWF6zrrzbF /MU7s6PCDcUpEcftHLs1dyCu/H4H3qBdCuC5oFML4NnHAHYX9DQ2ftzOotw1GTVJReDMXvQnKULJ aDLaJl2HCCVCNfgHIAOHaSJuGm6lI2VskU/YI8flNGD5yoe3V7epVvjBiozOuiA5MN+ZClpw0LMj o80VvhmAFHGewhHSZNOv1ZwJeyL1hwftoPqGRwOgDlBHehSD2SWWwrEJZNBOGZ7/EfMR1Jjs+w78 kX2XFq5kgbfQmTv7Nw3L5dmuOHQJvu3HcYE2TZRjUYVeRa1TZI0D1UP4K1YcDvRNjwZ4HZyRnIvZ hZH8Ccig3XpkPhez9rr/4huFF/0bs7fWKo+h197X1Y3V1NUUnz7rspCa5y8qUFQqdu9Nv3dBcLQ3 4+9XfPqIYpXGreBIv/09G6aal76fZ2Lfz86XMszG7v+Gvi0NKHMVw/B/8/BkcwLFiR3OPdaAO3/f w1or4CRttSfYJB3hqrL6aUodusmWqgGtsV9Fjesnt1fI2IKPbiB8xH8vIAkr3Jex76u3/A6qMjEL zbLse8YrN0F7JmpGMDZJvdEqbTpxd8iRPtxASvDi7ZAkfKcaeUVeNfLMKrAj5zddbeTtcUqWlJI8 1uJy3r7tYxu7fWwH9a4Haww4YGChpaESlw+H3UkKFPhJve36MnWlOBmGeOaf7ls4QeEfJVD6tTQU 9nUYuKe3hBL73oBjYIggnzZIRUewD1cd30VCrqCxckhAkYXBbzL/OXnsntJMKw/KZKV5GZq5nRDn hU33WzYGVgUND/96dUk+2SSiL/68AtKsSz+qilTv+mZoNWCRhq/PM9Lmi7MOr3z4nPwOHDGVaVT2 R150GlA8zn9z8ExAAXROr6ZyqQWNLRWwcKeCUZyo1psgZZCyJYyj8Bv9tclkHhGSqwj/GL2HL22Q nLLL4ue3n9hMQx5fcmvVQfBrevZasplKZpIF3Czi3qvcEpFMkO2VOZsIPJF/sKonpNBWcH38ef/x fvyoPUehOYezvyaJ8igd2GbNOY+WeHFMZzi1oav+R3WIPiSqk9xVf1LLt7wbfdVPOOh7Hk+7bCyi WcBfM2vhitlGzcXllou51rmUQqESgRK8OFcPV09mBDdSEelDH4gxHI4zXHJFS+BOsPVw7RLINyqL VGTs3jkjxu4Nd+wSRM7guPyaJNIfdAnnoTqTbGwpFfb3keAm33smBtVH2/jVTpy+aA8RAis+9Nli x4SvHsoQ+YLiuJvHF4LlEpLGG8xh+esqSJEdBtbFrODumacBcU8yXQFxbAyybYBnr9YvjhcMqpsr h8wWWRT0zDfiIZoamqXFHaKdkM7rUK5p9um0CO4MaMZp+gC52vlF9eLJdIlXWCHG6g5mAjcUNDUo erzT4d4ngSsP7ihrlsoJcE7HoUBFFh2ncB3uaNXKoVuRZegDUGyZuzRGGjPomKKxi7HPNexVBl4z tCc4Deyiu7nuBfZ14A6xb0DPuSavh3Zdw2Y7pcJrH3iDJ+dbQbHYPMbOo5JQkyGt0AQXWlKtwjWV NUYyHANnJOdq7GLssy+KjYGXIj08tzSa51gu9KHOrdqmtTH6Z+5ftKhN2NClJYycS2zTR5eSHIMM o42qRqlbhmJZwbrdh9dnue7CwYmJvn2uF+5O3Qpc2oi/MLOp/AN67vsOibMZQ+4/WQZ6h9+r1Soo lmkXrKaZ1I6iRP2N1vJCoRnZvO+q7zs/X2muXoJY+mcc0JRwMySHxcwCXsvgCzu0JD6u4KvKXKjQ 252Q4SPsqr+gJyyVmq/lCGdqJWS7JFfUzB+2Vzh+OjLKQYrPan6kWy0igFqM98l8hqk9MMsr+m2Z h/VIaUv2xvUcc8mQOR9DXI/F55r1IuH1l1o4P/fHOV6yg4TqpRbz105O9OYllxspM8dMvL/NxqTH voIWBC4bmWFu1IpEvVQL3HylvxwMWVzQbkajjhAURL3mMvah7kUCChvfExB8Zvo3AvbP3Ly0Uhl1 Li1KXLkp3XwsumAOHzxln3P0XM27+/1BWzzFuNAPNx/g89rNQgiBWmtjQXTKScdmK7+ntSmj0XhR O3kn3BsyceviiyDhrZmhqvnPTh952g/8Rc4HKHJ11W7VL5lYIYXYEHca2up6nH+dJ56i8IOL2Vpv s5d0tkl3uybxyhapvS++AlEQMPrk3vMFscGzoTp2yQmPBITE4/NLziHkPr0acPxjaET6U5m76CcD 29kpGOlm2R18oriN/68fGiREJV7PdZNeOV3+eXE8a7Ut/oPp+nCR1+r59F+M+pMOTPeXjFcuhtWt z2ztbX6IboQk6gMAAD3A7gBQv/MBF0K3m2PlZaWtXbZKCDUVSufLcgftHh0kyqILQbFp60RUOoB5 gl8/QaKIlROktrbOjtVORMfp7soJIACJYAOqAb42ZkqeZSTVPw+dAu+MC90enigCmKmsOQaAU9lY K6tn7/APZg+V47+OAmGWiarV7oSzVlbZ3rEZzDJ2zq8N0fg3nr0vYpg9qUpffx/DbJLNIe8ks1ZW 096XMsymSaW/v5v5N4a9l8TMBoT6366MmQXkgMadQNbKKth7EcsssND4yrUss2Z5YjeWtbJq9nbo mTUEva/065k1AtpNO7GslVWzt3/NrBn79p+72cyWMmDbTiprZbXsbX0yW8AG/9wIZbbUK++mslZW y94zhtmy/xTTicMcbfO6cyeKtSIR7DvjVCEMMCAAwOsU4P/f//j9CXVk3CoAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DC531E.7C8F6990 Content-Location: file:///C:/26696716/1876_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DC531E.7C8F6990--