MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DB23C0.FC366D80" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

A Influência da Capacidade Absortiva no Desempenho Inovativo dos Grupos de Pesquisa no Piauí

The Influence of Absorptive Capacity on t= he Innovative Performance of Research Groups in Piauí=

 

Romario Martins de Sousa=

https://orcid.org/0000-0001-6305-3511=

Mestre em Ge= stão Pública. Instituto Federal do Piauí (IFPI) – Brasil. romariomartins@ifpi.edu.br

Marcio Nannini da Silva Florencio

https://orcid.org/0000-0001-5557-4181=

Doutor em Ci= ência da Propriedade Intelectual. Instituto Federal do Piauí (IFPI) – Brasil. <= /span>marcio.florencio@ifpi.edu.br

Luis Felipe Dias Lopes

https://orcid.org/0000-0002-2438-0226=

Doutor em Engenharia de Produção. Universidade Federal de Santa Maria (UFSM) – Bras= il. lflopes67@yahoo.com.br

Thiago Assunção de Moraes

https://orcid.org/0000-0001-9729-4858=

Doutor em Administração. Universidade Estadual do Piauí (UESPI) – Brasil. thiagoassuncao@pcs.uespi.br

Mauricio Mendes Boavista de Castro<= o:p>

https://orcid.org/0000-0002-8463-1197=

Doutor em Administração. Universidade Federal do Piauí (UFPI) – Brasil. mauricioboavista@ufpi.edu.br

Alexandre Rodrigues Santos

https://orcid.org/0000-0001-8564-0258=

Doutor em Administração. Universidade Federal do Piauí (UFPI) – Brasil. alexandre.adm@ufpi.edu.br

 <= /o:p>

RESUMO

Este e= studo analisou a influência das dimensões da capacidade absortiva (potencial e realizada) sobre o desempenho inovativo dos grupos de pesquisa das institui= ções de ensino superior públicas no Piauí. A pesquisa foi realizada entre julho e setembro de 2023, abrangendo o universo de 670 grupos de pesquisa nas seguintes instituições: Universidade Federal do Piauí (UFPI), Uni= versidade Estadual do Piauí (UESPI), Instituto Federal do Piauí (IFPI) e Universidade= Federal do Delta do Parnaíba (UFDPar). A amostra foi composta por 90 líderes de grupos de pesquisa, representando cerca de 13,4% do universo total pesquisado. Os resultados indicam que as dimensões da capacidade absortiva (potencial e realizada) exercem um efeito positivo no desempenho inovativo, tanto no que= se refere à inovação comportamental quanto à inovação tecnológica. Assim, recomenda-se que os líderes dos grupos de pesquisa adotem rotinas e process= os contínuos de renovação do conhecimento para melhorar seus resultados de inovação. Este estudo contribui para uma compreensão mais profunda sobre co= mo a capacidade absortiva influencia o desempenho inovativo dos grupos de pesqui= sa.

Palavras-chave: Capacidade Absortiva; Inovação; Instituição de Ensino Superior; Gestão Pública.

 <= /o:p>

ABSTRACT

This study analyzed the influence of absorptive capacity dimensions (potential and realized) on the innovative performance = of research groups at public higher education institutions in Piauí, Brazil. T= he research was conducted between July and September 2023, covering 670 resear= ch groups from the Federal University of Piauí (UFPI), the State University of Piauí (UESPI), the Federal Institute of Piauí (IFPI), and the Federal University of Delta do Parnaíba (UFDPar). The sample consisted of 90 research group leaders, representing approximate= ly 13.4% of the total population. The findings indicate that both dimensions of absorptive capacity (potential and realized) have a positive effect on the innovative performance of these groups, in terms of both behavioral and technological innovation. Consequently, it is recommended that research gro= up leaders implement continuous routines and processes to renew their group’s knowledge base in order to enhance innovation outcomes. This study contributes to a deeper understanding of how absorptive capacity influences the innovative performance of research groups.

Keywords: Absorptive Capacity; Innovation; Higher Education Institution; Research Groups; Public Management.

 

Recebido em 16/02/2024. Aprovado em 19/09/2024. Avaliado pelo sistema double blind peer review. Publicado conforme normas da ABNT.

https://doi.org/10.22279/navus.v14.1872 =


 

1 INTRODUÇÃO

 

A teoria da = visão baseada no conhecimento da empresa aponta que o conhecimento é um recurso estratégico para a competitividade e inovação, onde a base do desempenho organizacional reside na capacidade de gerar, combinar, recombinar e explor= ar o conhecimento (Grant, 1996). Aliado a isso, a teoria das capacidades dinâmic= as surge com o propósito de explicar a habilidade da empresa em integrar, desenvolver e reconfigurar suas competências, tanto internas quanto externa= s, para responder às mudanças do mercado. Em outras palavras, as capacidades dinâmi= cas são aquelas que levam a empresa a criar e modificar sua base de recursos propositalmente para atender o ambiente de rápidas mudanças (Teece; Pisano; Shuen, 1997).

Nesse contex= to, a capacidade absortiva emerge como sendo a habilidade de uma empresa de reconhecer o valor de uma nova informação externa, assimilá-la e aplicá-la = para fins comerciais (Cohen; Levinthal, 1990). Posteriormente, os estudiosos de Zahra e George (2002) dividiram a capacidade absortiva existente em capacidade absortiva potencial e capacidade absortiva realizada. A capacidade absortiva potencial refere-se à aquisição e assimilação do conhecimento, ou seja, compreende uma combinação de rotinas e processos para identificar e adquirir novas formas = de conhecimento. Por sua vez, a capacidade absortiva realizada diz respeito à transformação e exploração do conhecimento, ou seja, envolve a combinação d= os novos conhecimentos assimilados com os conhecimentos existentes, além da aplicação desse novo conhecimento gerado às atividades da empresa (Zahra; George, 2002).

Dado a relev= ância do tema, um número significativo de estudos buscou investigar o papel da capacidade absortiva na melhoria do desempenho (Florêncio; Oliveira Júnior, 2022; Mikhailov; Reichert, 2019; Oliveira et al., 2018; Xie; Zou; Qi, 2018). Esses estudos identificaram efeitos positivos da capacidade absortiva sobre a inovação e o desempenho organizacional. No entanto, a influência da capacidade absortiva sobre o desempenho de organizações públi= cas tem sido menos explorada na literatura. Sousa, Florêncio e Moraes (2022) defend= em a importância de se estudar a capacidade absortiva na inovação do setor públi= co como uma forma de entender como esse antecedente organizacional pode ajudar= a gerar inovações que respondam aos variados problemas da sociedade. 

Autores como Harvey et al. (2010) e Murray et al. (2011) também ressaltam a importância de investigar a capacidade absortiva no setor público. Eles explicam que embora a capacidade absortiva seja concebida originalmente para incentivar a inovação no setor privado, e= ssa capacidade organizacional pode ser benéfica para a administração pública ao passo que pode ajudar no incremento da compreensão das demandas dos usuário= s, além de promover continuamente uma melhoria dos processos organizacionais e= dos serviços prestados à sociedade.

Nessa linha,= Brandão e Bruno-Faria (2013) chamam a atenção para a necessidade crescente de se estudar os determinantes, indutores, facilitadores e barreiras na geração de inovações no setor público, o que corrobora a necessidade de se investigar a influência da capacidade absortiva sobre desempenho de organizações pública= s. Diante disso, Oliveira et al. (= 2018) reforçam a lacuna de pesquisa apresentada, destacando a necessidade de novos estudos que abordem a capacidade absortiva em sua forma potencial e realiza= da e seu impacto nas práticas inovadoras.

No Brasil, e= ntre as organizações públicas com grande potencial de geração de inovação, destacam= -se as Instituições de Ensino Superior (IES), que compreendem as Universidades = e a Rede de Educação Profissional, Científica e Tecnológica. Para tanto, divers= as políticas de inovação foram estabelecidas a fim de criar um ambiente favorá= vel para que essas instituições públicas produzissem inovações que pudessem ser aproveitadas pela sociedade.

A Lei de Ino= vação (Lei nº 10.973/2004), por exemplo, criou a figura dos Núcleos de Inovação Tecnológica (NITs) com o objetivo de auxiliar na gestão da política de inovação no âmbito das instituições públicas acadêmic= as (Brasil, 2004).  Mais recentemente,= foi estabelecido o novo marco legal da inovação (Lei n. 13.243/2016) a fim de eliminar as disfunções burocráticas para promoção da inovação e incentivar = as atividades de pesquisa científica e tecnológica (Brasil, 2016).

Na dinâmica = de produção do conhecimento, além das atividades de ensino e pesquisa, as universidades possuem a terceira missão de criar valor na sociedade por mei= o da inovação (Castro, 2011). Com isso, espera-se que essas IES possuam um papel mais ativo de engajamento regional, interagindo mais intensamente com atore= s, demandas, problemas e desafios específicos de cada região (Gimenez; Bonacelli, 2018).

Considerando= a importância das universidades para inovação, faz-se necessário estudar como= os grupos de pesquisa dessas instituições estão desenvolvendo pesquisas aplica= das, com o objetivo de gerar novas invenções e inovações úteis para a sociedade.= É relevante que os grupos de pesquisa das universidades atuem como fomentador= es de atividades de Pesquisa, Desenvolvimento e Inovação (PD&I), contribui= ndo com o desenvolvimento das diversas áreas do conhecimento (LEPES, 2020).

Assim, Mikha= ilov e Reichert (2019) verificaram que a capacidade absortiv= a é um importante antecedente organizacional para geração de inovações. Aliado a i= sso, Padilha (2020) identificou uma escassez de estudos que avalia a capacidade absortiva em grupos de pesquisa para inovação.

Em função do exposto, este estudo teve por objetivo analisar a influência das dimensões = da capacidade absortiva (potencial e realizada) no desempenho inovativo dos gr= upos de pesquisa das instituições de ensino superior públicas no Piauí. O estudo adotou um recorte transversal, com dados coletados entre os meses de julho e setembro de 2023, abrangendo 90 grupos de pesquisa de quatro instituições públicas: Universidade Federal do Piauí (UFPI), Universidade Estadual do Pi= auí (UESPI), Instituto Federal do Piauí (IFPI) e Universidade Federal do Delta = do Parnaíba (UFDPar). Esse recorte permitiu uma an= álise pontual da relação entre a capacidade absortiva e o desempenho inovativo de= ntro do contexto institucional e temporal delimitado.

 <= /o:p>

2 RELAÇÃO DA CA= PACIDADE ABSORTIVA E INOVAÇÃO

 <= /o:p>

Estudos seminais, a exemplo de Cohen e Levinthal (1990) e Zahra e George (2002), propuseram mod= elos de capacidade absortiva em nível organizacional e evidenciaram seus efeitos positivos sobre o desempenho da empresa e a inovação. Com isso, uma vasta literatura, tanto nacional quanto internacional, buscou avaliar empiricamen= te tais efeitos, considerando diferentes contextos, metodologias e bases teóri= cas (Algarni et al., 2023; Florênci= o; Oliveira Júnior, 2022; Cassol; Marietto; Martins, 2022; Fernandes et al., 2020; Padilha, 2020; Mikha= ilov; Reichert, 2019; Xie; Zou; Qi, 2018; Oliveira et al., 2018; Fosfuri; Tribó, 2008).

No tocante ao setor público, Oliveira et al. (2018) avaliaram as relações entre a capacidade absortiva potencial, desempenho organizacional e a inova= ção a partir das percepções de 150 discentes de Administração de uma universida= de federal da região Nordeste. Eles descobriram que a capacidade absortiva potencial afeta positivamente o desempenho organizacional e a inovação da universidade pública analisada.

Fernandes et al. (2020) analisaram as características de um órgão público de meio ambiente em relação aos temas inerentes à inovação, como sistema de inovaçã= o, cultura inovativa, Capacidade Absortiva (CA) e regime de apropriabilidade. = Eles concluíram que a CA é o principal fator explorado na busca por melhorias através da inovação. Somando-se a isso, Padilha (2020) estudou como 16 laboratórios de pesquisa de universidade pública adquirem, assimilam, transformam e exploram a capacidade absortiva externa para gerar inovação. =

Para Algarni et al. (2023), a capacidade absortiva potencial e a capacidade absortiva realizada são capacidades complementares, mas distintas, envolvendo diferen= tes objetivos, estratégias e estruturas. A CA potencial é um processo e também = uma capacidade pela qual as empresas adquirem e assimilam conhecimento externo,= o que pode auxiliar no desenvolvimento da imitação e na inovação. Já a CA realizada é um processo e uma capacidade através da qual as empresas transformam e exploram o conhecimento absorvido que pode ajudar a desenvolv= er a inovação. Aliado a isso, Cassol, Marietto e Martins (2022) observaram que a= CA potencial e realizada possuem efeitos positivos, mas disintos sobre a capacidade de inovação, o que reforça a necessidade de se investigar tais i= nfluências separadamente. Logo, assume-se nesse estudo que não há uma associação igualmente forte da CA potencial e realizada sobre a inovação.

Portanto, as hipóteses da pesquisa são formu= ladas da seguinte forma:

H1: A Capacidade a= bsortiva potencial afeta direta e positivamente no desempenho inovativo dos laborató= rios públicos de pesquisa, ou seja, quanto maior a capacidade absortiva potencial maior o desempenho inovativo.

H2: A Capacidade a= bsortiva realizada afeta direta e positivamente no desempenho inovativo dos laborató= rios públicos de pesquisa, ou seja, quanto maior a capacidade absortiva realizada maior o desempenho inovativo.

Todavia, Mikhailov e Reichert (2019) alertam= sobre a necessidade de observar as forças externas (isto é, turbulência tecnológi= ca, dinamismo e competição, barreiras culturais e regimes de apropriabilidade) = e as forças internas (isto é, clima autônomo de P&D, aprendizado organizacio= nal, inteligência, cultura da organização, cultura de inovação e uso de sites de redes sociais) que atuam sobre a relação da capacidade absortiva e a inovaç= ão.

Nesse sentido, boa parte das forças internas= e externas apresentadas pelos autores foi analisada em estudos empíricos, conforme mosta a revisão de literatura de Florêncio e Oliveira Júnior (2022= ). Contudo, pouca pesquisa foi conduzida no sentindo de investigar o papel do tempo de atuação do líder na relação das dimensões da capacidade absortiva (potencial e realizada) sobre o desempenho inovativo. Porto (2006) explica = que existe um gap considerável entre o tempo em que o pesquisador inicia suas atividades na universidade até o momento em que inicia sua trajetória = na coordenação de um grupo de pesquisa. Somando-se a isso, Verbree et al. (2011) argumentam que as características do líder, a exemplo do tempo de atuação, têm maior probabilidade de influenciar o desempenho do grupo de pesquisa indiretament= e do que na forma direta. Ademais, Freitas (2016) verificou que o tempo de víncu= lo do líder afeta positivamente nos resultados de pesquisa do grupo. Portanto,= a hipótese final é definida como:

H3: O= tempo de atuação do líder modera positivamente a relação entre as dimensões da capacidade absortiva e o desempenho inovativo, isto é:

H3a: = O tempo de atuação do líder modera positivamente a relação entre a capacidade absor= tiva potencial e o desempenho inovativo.

H3b: = O tempo de atuação do líder modera positivamente a relação entre a capacidade absor= tiva realizada e o desempenho inovativo.

Com isso, pr= opõe-se o seguinte modelo conceitual da influência da capacidade absortiva sobre o desempenho inovativo dos grupos públicos de pesquisa, conforme observa-se na Figura 1.

 <= /o:p>

Figura 1 - Modelo conceitual da influência da capacidade absortiva no desempenho inovativo

Fonte: Autores.

 <= /o:p>

Dessa forma,= com base nos estudos anteriores assume-se que a capacidade absortiva de conhecimento por meio da aquisição, assimilação, transformação e exploração afeta direta e positivamente o desempenho inovativo dos grupos públicos de pesquisa, ou seja, o potencial de geração de inovação é fortemente determin= ado pela capacidade dos grupos de pesquisa em aproveitar o conhecimento externo valioso em seus projetos de PD&I.

 <= /o:p>

3 METODOLOGIA

 <= /o:p>

Para alcança= r o objetivo da pesquisa, foi realizado um levantamento de dados (survey) por meio da aplicação de questionário enviado entre 27 de julho e 10 de setembro de 2023 para os pesquisadores dos grupos de pesquisa das IES públicas no Piauí, utilizando e-mail e WhatsApp®= . Dos 670 pesquisadores contatados, 101 manifestaram interesse em participar. No entanto, apenas 90 questionários foram considerados válidos, uma vez que es= ses respondentes preencheram integralmente o instrumento de coleta e atendiam ao perfil de líder ou vice-líder de grupo de pesquisa. Esse valor está em conformidade com o tamanho mínimo da amostra (n=3D68), calculado no software G-Power 3.1.9.4, considerando o tamanho do efeito médio (f² =3D 0,15), poder estatístico de 80%, nível de significância de 5% e o número de preditores relativo ao modelo estudado (Hair Junior et al., 2017).

O questionár= io é composto de quatro partes principais: perfil dos respondentes, escala de capacidade absortiva potencial, escala de capacidade absortiva realizada e a escala do desempenho inovativo.  As dimensões da capacidade absortiva (potencial e realizada) foram medidas atr= avés das escalas de Flatten et al. (2011) e Padilha (2020). O desempenho inovativo foi medi= do por meio das escalas de Wang e Ahmed (2004) e Padilha (2020). Todos os iten= s do questionário foram avaliados em um intervalo de Lik= ert de 5 pontos (isto é, 1=3D “discordo totalmente” a 5=3D “concordo totalmente= ”).

A técnica ad= otada para análise dos dados coletados foi a modelagem de equações estruturais us= ando mínimos quadrados parciais (PLS-SEM, do inglês Part= ial Least Squares and Structural Equation Modeling) co= m o uso do software SmartPLS® v. 4.0.8.6 (Ringle; Wende<= /span>; Becker, 2023).

 <= /o:p>

 <= /o:p>

4 RESULTADOS

4.1 Perfil dos respondentes da pesquisa

 <= /o:p>

Os dados rev= elaram uma predominância de líderes entre os participantes do estudo, corresponden= do a 87,8% da amostra, em comparação com os vice-líderes, que representaram apenas 12,2%. A escolha dos líderes para este estudo justifica-se pela sua posição es= tratégica na gestão dos grupos de pesquisa, sendo eles os principais responsáveis por decisões que impactam diretamente o desempenho e a inovação no grupo. No que diz respeito ao nível de escolaridade, 86,7% dos respondentes possuem doutorad= o ou pós-doutorado, o que demonstra que os grupos de pesquisa são conduzidos por profissionais altamente qualificados.

Além disso, a pesquisa mostrou que uma parte significativa desses líderes atua entre 3 e 7 anos= (35,6%), seguida por aqueles com mais de 10 anos de experiência (32,2%). Apenas 5,6% dos respondentes têm menos de 1 ano de atuação, o que sugere que a maioria já possui uma experiência consolidad= a na condução de grupos de pesquisa.

Em termos de= áreas do conhecimento, os respondentes estão distribuídos em todas as grandes áre= as, com destaque para as Ciências Sociais Aplicadas (21,1= %), Ciências Humanas (17,8%) e Ciências da Saúde (15,6%). Por outro lado, as áreas com menor participação foram <= b>"Outra" (1,1%), Linguística, Letras e Artes e= Ciências Agrárias, ambas com 4,4%.

Após a caracterização do perfil dos respondentes, foi realizada a análise das dimensões da capacidade absortiva (potencial e realizada) e suas influências sobre o desempenho inovativo dos grupos de pesquisa das IES públicas do Pia= uí, utilizando a modelagem de equações estruturais.

 <= /o:p>

4.2 Validação e hipóteses do modelo

 <= /o:p>

A partir da = técnica de modelagem de equações estruturais, desenvolveu-se um modelo conceitual q= ue busca explicar a influência das dimensões da capacidade absortiva sobre o desempenho inovativo dos grupos de pesquisa. Assim, buscou-se observar as relações existentes entre os construtos de capacidade absortiva potencial, capacidade absortiva realizada, e desempenho inovativo.

Para análise= da relação entre as dimensões de 2ª ordem e a possível interferência da variáv= el controle (tempo de atuação), foi criado um modelo estrutural parcial basead= o em variâncias, seguindo as etapas propostas por Lopes et al. (2020) adaptado de Hair Juni= or et al. (2017), sendo elas: a) especificação do modelo estrutural; b) avaliação do modelo de mensuração; c) avaliação do modelo estrutural; e d) análise dos modelos pela análise multigrupo.

O modelo est= rutural estabilizou após 2 interações. Foram utilizados os seguintes critérios para avaliar o ajuste do modelo PLS-SEM: raiz quadrada média residual padronizad= a (Standardized Root Mean= Square Residual, SRMR), distância euclidiana quadrada (square Euclidean distance<= /i> – dSED), distância geodésica (G= eodesic distance - dG) = e índice de ajuste normado (Norm= ed Fit Index - NFI). Os resultados confirmaram que o modelo estrutural sugerido se ajustou aos dados com índices confiáveis como SRMR =3D 0,068, <= span class=3DSpellE>dSED =3D 3,087, dG =3D 0,= 664, NFI =3D 0,876 (Henseler; Hubona; Ray, 2016). Observou-se que o SRMR foi inferior a 0,08 (Henseler; Ringle; Sarstedt, 2= 016) e o NFI ficou acima do valor sugerido de 0,8 (Hu; Bentler<= /span>, 1998), o que indica que o modelo se ajustou muito bem aos dados.

A análise do= modelo de mensuração é a primeira etapa no processo de avaliação do modelo estrutu= ral proposto. Fase esta, responsável por avaliar a confiabilidade das dimensões latentes (variáveis não observáveis) com base em seus indicadores (variávei= s observadas). Em outras palavras, antes de proceder à análise do modelo estrutural propriamente dito, é vital garantir que as dimensões estejam sendo medidas = de forma correta (Hair; Howard; Nitzl, 2020).

Para avaliar= os ajustes do modelo proposto, foram analisadas a consistência interna, utiliz= ando o Alfa de Cronbach (α) e a Confiabilidade composta (ρc), e a validade convergente, analisando a Variância Média Extraída (VME) em função de suas pressuposiçõe= s apresentadas na Tabela 1, que apresenta os critérios de avaliação do modelo de mensuraçã= o.

 <= /o:p>

Tabela 1 - Critérios de avaliação do modelo de mensuração

Teste

Critérios

Consistência Interna=

Alfa de Cronbach<= /span> (a)

0,7 < a < 0,95

Confiabilidade Composta (rc)

0,7 < rc < 0,95

Validade Convergente=

Variância Média Extraída – VME<= /p>

VME > 0,5

Fonte: Lopes et al. (2020) adaptado de Ringle, S= ilva e Bido (2014).

 <= /o:p>

O Alfa de Cronbach é uma medida para avaliar a consistência int= erna entre os indicadores que compõem as dimensões da escala de mensuração, ou s= eja, avalia o quanto os erros aleatórios interferem na medição dos dados (Lopes = et al., 2020). Já a confiabilidade composta é uma estimativa de consistência interna mais consistente no método SEM (Structural = Equation Modeling) por ser mais robusto em função de analisar a variação das cargas fatoriais (= l), que vem a ser a correlação dos indicadores com suas respectivas dimensões (Peterson; Kim, 2013).

Quanto à Var= iância Média Extraída (VME), esta é definida como sendo a média das cargas fatoria= is padronizadas ao quadrado e se refere ao grau em que as dimensões estão correlacionadas. Em outras palavras, a VME mede a quantidade de variação de= uma dimensão captada em relação à quantidade de variação em função do erro de medição (Santos; Cirillo, 2023).

A Tabela 2 a= presenta a avaliação das dimensões a partir das pressuposições da Tabela 1. <= /p>

 <= /o:p>

Tabela 2 - Alfa de Cronbach, confiabilidade composta e variância média extraída<= /span>

Dimensões

Alfa de Cronba= ch

Confiabilidade composta<= /b>

Variância Média Extraída=

Aquisição

0,760

0,848

0,582

Assimilação

0,849

0,892

0,624

Capacidade Absortiva Potencial<= /p>

0,850

0,883

0,558

Transformação

0,892

0,926

0,757

Exploração

0,868

0,911

0,720

Capacidade Absortiva Realizada<= /p>

0,899

0,919

0,589

Comportamental

0,815

0,880

0,650

Tecnológica

0,694

0,815

0,530

Desempenho Inovativo

0,822

0,867

0,555

Fonte: Dados da pesquisa (2023).

 

Com isso, observou-se que o modelo proposto apresenta excelente consistência interna, cujos valores de α e ρc são superiore= s a 0,6, e VME’s superiores a 0,5, ou seja, demonst= ra que os indicadores estão capturando a essência das dimensões e não estão tendo intervenção por erros de medição ou outras dimensões não relacionadas no mo= delo (Shuai = et al., 2022). Lopes et al. (2020) escl= arecem que os valores de Alfa de Cronbach e da confiabilidade composta entre 0,70 e 0,95 são considerados bons e eficiente= s, porém os valores abaixo de 0,60 sugerem uma falta de confiabilidade da consistência interna do modelo.

A validade discriminante busca avaliar o grau em que uma dimensão é distinta e diferente das demais dimensões do modelo, essa técnica avalia até que ponto as medidas de uma dimensão são diferenciadas das medidas das outras dimensões (Alem et al., 2016).

Quando se trata de PLS-SEM algumas técnicas são comumente utilizadas para avaliar a validade discriminante: Cargas Fatoriais Cruzadas; Critério de Fornell-Larcker e Heterotrait-Monotrait Ratio (HTMT), avaliado pela técnica de bootstrapping utilizando 5.000 subamostras. Ao empr= egar as referidas técnicas, os pesquisadores podem ter maior confiabilidade que as dimensões do seu modelo são distintas e medem diferentes especificidades do fenômeno pesquisado (Iwaya et al., 2022). A Tabela 3 apresenta os critérios da validade discriminante do modelo <= span class=3DSpellE>proposto.

 

Tabela 3 - Critérios p= ara análise da Validade Discriminante do modelo

Teste

Critérios

Validade Discriminante

Cargas Fatoriais Cruzadas (CFC)=

CForiginal > = CFdemais

Critério Fornell-= Larcker. (CFL)

 para i ¹ j

Critério Heterotrait-Monotrait Ratio (HTMT).

Confirmado pelo método bootstrapping

HTMT < 0,9

 

LS(HTMT)97,5% < 1,0

Fonte: Lopes et al. (2020), adaptado d= e Ringle; Silva; Bido (2014= ).

 <= /o:p>

Assim, a aná= lise das cargas fatoriais cruzadas (cross-loadings) consiste em comparar as cargas de cada indicador na dimensão que ele preten= de medir (carga fatorial principal), bem como nas demais dimensões do modelo (cargas fatoriais cruzadas) (Iwaya et al., 2022).  Neste estudo, observou-se que as cargas fatoriais originais dos indicadores apresentaram excelentes correlações com suas dimensões originais (<= span style=3D'font-size:12.0pt;line-height:115%;font-family:Symbol;mso-ascii-fon= t-family: "Myriad Pro";mso-hansi-font-family:"Myriad Pro";mso-char-type:symbol; mso-symbol-font-family:Symbol'>l > 0,6). Quanto às cargas fatoriais cruzadas, ver= ificou-se que as correlações dos indicadores com as demais dimensões foram inferiores= às correlações com suas dimensões originais. Portanto, o modelo apresenta vali= dade discriminante.

O Critério d= e Fornell-Larcker (FL), proposto por Fornell e Larcher (1981), sugere que a raiz quadrada da VME das dimensões deve ser maior do que os valores das correlações entre as dimensões do modelo. Já o critério Heterotrait-Monotrait Ratio (HTMT) compara as correlações entre indicad= ores medindo diferentes construtos (heterotrait) com as correlações entre indicadores medindo o mesmo construto (monotrait) (Cheung et al., 2023). Conforme pode-se observar na Tabela 4, considera= m-se adequados os valores de HTMT abaixo de 0,90. Pela técnica de bootstrapping, os valores do limite superior da estim= ativa de HTMT devem estar abaixo de 1,0 para indicar uma boa validade discriminan= te (Hair Junior e= t al., 2017). A Tabela 4 mostra os critérios Fornell-Larcker<= /span> e HTMT para o modelo da pesquisa.

 <= /o:p>

Tabela 4 - Critérios F= L e HTMTDimensões=

Matriz de Correlação de Pearson

CA - Potencial

CA - Realização

Desempenho Inovativo

 

CA - Potencial

CA - Realização<= /span>

Desempenho Inovativo

97,5%CA - Realização<= /span>

Desempenho Inovativo

Fonte: Dados da pesquisa (2023).

 

Na Tabela 4,= observa-se que a menor raiz quadrada da VME (0,745) é superior à maior correlação entr= e as dimensões de 2ª ordem (DI vs CAP, r =3D 0,714), portanto o critério FL foi confirmado. Já pelo critério HTMT, observou-se q= ue os valores do limite superior da estimativa de HTMT para 97,5% de confiabil= idade foram inferiores a 1,0. Portanto, ambos os critérios apresentaram validade discriminante, e, juntamente com as cargas fatoriais cruzadas, apresentam b= oas condições para avaliação do comportamento estrutural do modelo.

Para avaliar= o modelo estrutural propriamente dito, recomenda-se, inicialmente, avaliar a = multicolinearidade entre as dimensões.Essa técnica tem por finalidade ident= ificar situações em que duas ou mais dimensões poderão estar altamente correlacionadas, o que pode comprometer a precisão das estimativas e a interpretação dos resultados do modelo. A multicolinea= ridade, no contexto da PLS-SEM, pode ocorrer principalmente no modelo estrutural. A técnica usada para avaliar a multicolinearidade= é a VIF (Variance In= flation Factor), porém outros critérios (coeficiente de explicação – R²; Tamanho do efeito – f² e relevância preditiva – Q²) são relevantes para avaliar o modelo, conforme se observa na Tabela 5.

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

Tabela 5 - Critérios p= ara avaliação do modelo estrutural

Teste

Critérios

Avaliação do Modelo Estrutu= ral

Avaliação da Colinearidade = Variance Inflation Factor (VIF)

Coeficiente de Explicação (= R²);

Confirmado pelo método Boostrapping.

≤ R² ≤ 0,075 (efeito fraco);

Tamanho do efeito (f²)=

Confirmado pelo método Boostrapping.

Relevância preditiva (Q²);<= o:p>

Confirmado pelo método Blindfolding.

Validade do coeficiente estrutural (bConfirmado pelo método Boostrapping.

b¹tc. > 1= ,96 (p < 0,05)

Fonte: Lopes et al. (2020), adaptado d= e Ringle; Silva; Bido (2014= ).

 <= /o:p>

A VIF é uma = regra utilizada principalmente em regressão múltipla para diagnosticar a colinearidade entre as variáveis exógenas e endógenas, e ocorre quando duas= ou mais variáveis estão altamente correlacionadas. A mult= icolinearidade pode ser um grande problema pois compromete a precisão e a interpretabilidade dos coeficientes estruturais (Kyriazos; Poga, 2023). Valores de VIF maiores que 1 indicam alg= um grau de multicolinearidade, porém como regra ge= ral, uma VIF acima de 5 sugere excesso de multicolinearidad= e, porém esses limiares podem variar dependendo da literatura e do contexto (<= span class=3DSpellE>Alauddin; Nghiem, 2010).<= /span>

Para avaliar= a qualidade do modelo, utilizaram-se o coeficiente de explicação (R²) e o coeficiente de relevância preditiva (Q²). O R² representa a parcela de vari= ação nas variáveis endógenas que é explicada pelas dimensões exógenas do modelo = (Hidayat; Wulandari, 2022)= . O R² varia entre 0 e 1, com valores mais próximos de 1 indicando que uma grande parcela da variância é explicada pelo modelo, porém utiliza-se critérios de= classificação proposto por Hair Junior et al. (2017) e ajustado por Lopes et al. (2020) (Tabela 5). O tamanho do efeito f² serve para ava= liar se há impacto considerável na dimensão endógena quando uma dimensão exógena= é omitida do modelo (Lopes et al., 2020). Já o Q² é uma regra usada para avaliar a capacidade preditiva do mod= elo, que no contexto da PLS-SEM o Q² é obtido usando a técnica de Stone-Geisser, também chamada de validação cruzada (Sharma = et al., 2021). Valores de Q2 maior= es que 0 indicam relevância preditiva para o modelo, podendo ser classificados qua= nto ao seu grau de predição (Tabela 6).

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

 <= /o:p>

Tabela 6 - =

Dimensões Exógenas<= /p>

Dimensões Endógenas=

Desempenho Inovativo

VIF

2,844

3,175

Efeito f² (p – valor)

0,189 (0,014)

0,152 (0,013)

R² (p= – valor)

0,580 (0,000)

0,504

Fonte: Dados da pesquisa (2023).

 

Analisando os valores da Tabela 6, observou-se que o modelo não apresenta multicolinearidade (VIF < 5). Quanto ao coeficiente de explicação, apresenta efeito forte (= R² > 0,19) e a relevância preditiva da dimensão endógena apresenta grau for= te (Q² > 0,25). Em relação ao tamanho do efeito (f²), percebe-se que, para o desempenho inovativo, todos os efeitos das dimensões exógenas foram considerados médios e significativos.

A seguir, são apresentadas e avaliadas as hipóteses propostas no modelo inicial, bem como= a interferência da variável controle (moderadora) que é o tempo de atuação. A Tabela 7 apresenta os valores de beta, desvio padrão, da estatística t e de= p.

 <= /o:p>

 =

Relações Es= truturais

β=

DP*

Estat. t

p-valor

Situação

H1

CA – Potenc= ial ® DI

0,475<= /o:p>

0,149<= /o:p>

3,187<= /o:p>

0,001<= /o:p>

Aceita=

H2

CA – Realiz= ada ® DI

0,451<= /o:p>

0,159<= /o:p>

2,841<= /o:p>

0,005<= /o:p>

Aceita=

H3a

Tempo* CA – Potencial <= span style=3D'mso-bookmark:_Hlk158988258'>® DI

0,163<= /o:p>

0,254<= /o:p>

0,640<= /o:p>

0,522<= /o:p>

Rejeita

H3b

Tempo* CA – Realizada <= span style=3D'mso-bookmark:_Hlk158988258'>® DI

-0,461=

0,222<= /o:p>

2,078<= /o:p>

0,038<= /o:p>

Rejeita

Nota: DP =3D Desvio Padrão

Fonte: Dados da pesquisa (2023).

 

Os resultados obtidos na Tabela 7 mostram que a capacidade absortiva potencial afeta posi= tiva e significativamente no desempenho inovativo dos grupos de pesquisa (β= =3D 0,475, p < 0,05), o que corrobora a hipótese H1. O estudo encontr= ou suporte para a H2, pois foi verificado um efeito positivo e significativo da capacidade absortiva realizada sobre o desempenho inovativo (β =3D 0,451, p < 0,05). Por outro lado, o efeito indireto do tempo= de atuação do líder na relação entre a capacidade absortiva potencial e o dese= mpenho inovativo não foi substancial (β =3D 0,163, p > 0,05), o que refuta= a hipótese H3a.

Com relação a hipótese H3b, observou-se que o tempo de atuação do líder modera negativamente a relação entre capacidade absortiva realizada com o desempen= ho inovativo (β =3D 0,-461, p < 0,05). Portanto, essa relação foi avaliada em separado, ou seja, através de uma análise comparativa entre os tempos de atuação (isto é, Análise Multigrupo – MGA) (Henseler; Ringle; Sarstedt, 2016), conforme pode ser observado na Tabel= a 8.

 <= /o:p>

 

 

 

Tabela 8 - Comparação entre tempos de atuação (H3b)= Tempo de Atuação

Relações Diretas

β

DP*

Estat. t

p-valor**

Até 10 anos (n =3D 61)<= /p>

CA – Realizada ® DI

0,454

0,145

3,141

0,002

Acima 10 anos (n =3D 29)

CA – Realizada ® DI

0,704

0,187

3,759

0,000

Diferença

Até 10 – Acima 10

-0,250

---

---

0,256

* DP =3D Desvio Padrão

** Teste de Henseler

Fonte: Dados da pesquisa (2023).

 

Na Tabela 8, utilizou-se o Teste de Henseler para comparar os betas entre os tempos (H3), porém observou-se não existir diferença signifi= cativa entre os mesmos (p > 0,05). Isso significa que tanto para os pesquisadores que atuam há menos de 10 anos quanto aqueles que atuam há mais de 10 anos apresentaram relações positivas e significativas e= ntre a capacidade absortiva realizada com o desempenho inovativo (p < 0,05). = Portanto, a moderação significativa não inverteu ou desfavoreceu a relação.

A Figura 2 a= presenta o modelo estrutural final da influência das dimensões da capacidade absorti= va sobre o desempenho inovativo, com base na realidade dos grupos de pesquisa = das IES públicas no Piauí.

 <= /o:p>

Figura 2 - Modelo estrutural final da influência das dimensões da capacidade absortiva sobre o desempenho inovativo

 

Fonte: Dados da pesquisa (2023).

 <= /o:p>

5 DISCUSSÃO DOS RESULTADOS

 

Estudos semi= nais, como os de Cohen e Levinthal (1990) e Zahra e George (2002), enfatizavam os efeitos positiv= os da capacidade absortiva sobre a inovação e o desempenho da empresa. Todavia, f= oi necessário observar em que contextos essa influência se mantinha positiva ou não. Em razão disso, boa parte da literatura nacional e internacional dedic= ou atenção especial à avaliação de tais efeitos, considerando diferentes áreas de atua= ção das empresas privadas. No entanto, as pesquisas dessa natureza envolvendo órgãos e organizações do setor público foram consideravelmente menos freque= ntes.

Com essa lac= una, buscou-se investigar a influência das capacidades absortivas (potencial e realizada) sobre a inovação dos grupos de pesquisa, considerando a realidade das IES públicas do Piauí. Aliado a isso, foi examinado também como as forç= as internas, isto é, o tempo de atuação do líder no grupo agia sobre essa rela= ção. Assim, a hipótese inicial demonstra um impacto positivo e significativo da capacidade absortiva potencial sobre o desempenho inovativo dos grupos de pesquisa das IES públicas do Piauí. Esse resultado é consistente com as conclusões de Oliveira et al. (= 2018), que verificaram que a capacidade absortiva potencial percebida atua de mane= ira positiva nas práticas inovadoras de uma IES pública. Ou seja, indicaram que= a inovação é resultado do acolhimento de novos conhecimentos externos. Nesse sentido, a capacidade absortiva potencial é importante porque pode levar a = um melhor desempenho por meio de produtos novos ou aprimorados (Fosfuri; Tribó, 2008). Al= ém disso, Ali, Kan e Sarstedt (2016) mostraram que= as dimensões (aquisição e assimilação) da capacidade absortiva potencial se relacionam positivamente com a inovação de produtos, a inovação de processo= s e a inovação de gestão. Esse achado hipotetizado = do estudo corrobora diversas outras descobertas que destacam o importante pape= l da capacidade absortiva potencial na inovação (Algarni et al., 2023; Cassol; Marietto; Martins, 2022; Florêncio; Oliveira Júnior, = 2022; Mikhailov; Reichert, 2019).

Assim, os re= sultados obtidos sugerem que, para que os grupos de pesquisa consigam um maior desempenho inovativo, é importante que os líderes estejam dedicados a estim= ular a aquisição de conhecimento externo valioso para seus projetos e pesquisas,= bem como consigam assimilar esse conhecimento científico e tecnológico externo adquirido à base de conhecimento do grupo. Em outras palavras, é relevante = que o grupo de pesquisa desenvolva rotinas e processos para adquirir conhecimen= to externo valioso para suas atividades, bem como estabeleça meios para analis= ar e interpretar esse novo conhecimento entre os seus membros. Todo esse conjunt= o de rotinas e processos é crucial para obter melhor desempenho em relação à inovação, quer seja no aspecto comportamental quanto no tecnológico.=

O resultado = da segunda hipótese mostra um impacto positivo e significativo da capacidade absortiva realizada sobre o desempenho inovativo. Esse achado corrobora est= udos anteriores que verificaram uma associação positiva da capacidade absortiva realizada com a inovação (Algarni et al., 2023; Cassol; Marietto; Martins, 2022; Khan; L= ew; Marinova, 2019; Florêncio; Oliveira Júnior, 202= 2; Mikhailov; Reichert, 2019).  Para Algarni et al. (2023), a capacidade absort= iva realizada é um processo e também uma capacidade organizacional que facilita a integração do conhecimento existente com o conhecimento recém-adquirido e assimilado para a inovação. Isso confirma a posição adotada por Khan, Lew e Marinova (2019), de que a inovação seja na forma radical ou incremental (isto é, exploration e exploita= tion) depende do processo da capacidade absortiva realizada. Cassol, Marietto e Martins (2022) identificaram uma maior influência da capacidade absortiva realizada na capacidade de inovação, o q= ue reforça a ideia de que a forma como o conhecimento é transformado e explora= do tem maior influência na inovação do que a aquisição e assimilação dele.

Esses result= ados apontam para a importância de os líderes dos grupos de pesquisa se envolver= em com rotinas e processos que melhorem a transformação e exploração do conhecimento, a fim de gerar inovação para a sociedade. Nesse sentido, a capacidade de explorar com sucesso os novos conhecimentos adquiridos nas atividades do grupo de pesquisa é crucial na busca de soluções inovadoras e incomuns e no aproveitamento de novas tecnologias dentro do grupo de pesqui= sa.

O papel mode= rador do tempo de atuação do líder do grupo de pesquisa na relação entre as dimensõe= s da capacidade absortiva e o desempenho inovativo não foi identificado nesse estudo, muito embora estudos anteriores como os de Ver= bree et al. (2011) e Freitas (2016), apontem para os efeitos direto e indireto do tempo de vínculo do líder no desempenho do seu grupo de pesquisa. Assim, o tempo de atuação do líder jun= to ao seu grupo parece não ser importante no que diz respeito ao estabelecimen= to de rotinas e processos de absorção de conhecimentos externos valiosos visan= do a inovação. Por outro lado, isso não significa dizer que a experiência do líd= er seja inútil. A liderança tem um papel importante na condução de um melhor desempenho do grupo de pesquisa em termos de resultados de pesquisa, ou sej= a, a habilidade de liderança ajuda a concentrar os esforços dos membros na produ= ção de conhecimento de alta qualidade (Freitas, 2016; Verb= ree et al., 2011).

 <= /o:p>

6 CONCLUSÃO

 <= /o:p>

A partir da liter= atura e das teorias existentes sobre a capacidade absortiva e a inovação no setor público, desenvolveu-se um modelo que visa explicar como as dimensões da capacidade absortiva (potencial e realizada) influenciam o desempenho inova= tivo de grupos de pesquisa no Piauí. Buscou-se também compreender se, e em que medida, o tempo de atuação do líder do grupo de pesquisa favorece a relação= da capacidade absortiva com a inovação. Essa abordagem permite mostrar quais as práticas específicas da capacidade absortiva de um grupo de pesquisa ajudam= a influenciar positivamente na inovação comportamental e na inovação tecnológ= ica.

Os resultados do = estudo empírico indicam que a capacidade absortiva potencial tem um impacto significativo no desempenho inovativo, ou seja, para que os grupos de pesqu= isa promovam uma inovação comportamental e tecnológica é importante que eles estabeleçam rotinas e procedimentos para adquirir e assimilar os conhecimen= tos externos valiosos. Aliado a isso, os achados da pesquisa mostram também que= a capacidade absortiva realizada possui um importante papel no desempenho inovativo, ou seja, o conhecimento transformado e explorado permite que os grupos de pesquisa possam inovar. Em suma, observa-se que as dimensões da capacidade absortiva (potencial e realizada) apresentam um efeito positivo e significativo em relação ao desempenho inovativo. Isso mostra que os líderes dos grupos de pesquisa precisam se concentrar em estabelecer rotinas e processos para renovar continuamente o estoque de conhecimento do laboratór= io, visando obter melhores resultados em termos de inovação.<= /span>

Mesmo com os importantes resultados obtidos, é preciso avançar na compreensão do papel da capacidade absortiva na inovação do setor público. Levando em conta a administração gerencial advinda com o novo modelo de administração pública,= é urgente a adoção de práticas e rotinas organizacionais que permitam que as organizações públicas possam produzir soluções novas e efetivas para respon= der às demandas da sociedade. Nessa linha, entende-se que o presente estudo deu= o primeiro passo na compreensão do importante papel da capacidade absortiva p= ara inovação no setor público, considerando a realidade dos grupos de pesquisa = no Piauí. No entanto, é preciso que novos estudos de cunho longitudinal avalie= m se tais efeitos se mantêm ao longo do tempo. Além disso, os novos estudos sobr= e o tema devem considerar diferentes contextos geográficos e outros tipos de organizações do setor público. Também é importante levar em conta medidas m= ais objetivas de mensuração do desempenho inovativo como, por exemplo, o número= de patentes concedidas.

 

REFERÊNCI= AS

 

ALAUDDIN, Mohammad; NGHIEMB,= Hong Son. Do instructional attributes pose multicollinearity problems? An empiri= cal exploration. Economic Analysis and Policy, v. 40, n. 3, p. 351-361, 2010. https://doi.org/10.1016/S0313-5926(10)50034-1.

 

ALEM, Farid; PLAISENT, Michel; ZUCCARO, Cataldo; BERNARD, Prosper. Measuring e-learning readiness concept: scale development and validation us= ing structural equation modeling. International Journal of e-Education, e-Business, e-Management and e-Learning, v. 6, n. 4, p. 193, 2016. http= s://doi.org/10.17706/ijeeee.2016.6.4.193-207.

 

ALI, Murad; KAN, Konan Anderson Seny; SARSTEDT, Marka. Direct and configurational paths of absorptive capacity and organizational innovation = to successful organizational performance. Journal of Business Research,= v. 69, n. 11, p. 5317-5323, 2016. https://doi.org/10.1016/j.jbusres.2016.04.13= 1.

 

ALGARNI, Mohammad; ALI, Murad; LEAL-RODRÍGUEZ, Antonio; ALBORT-MORAN= T, Gema. The differential effects of potential and realized absorptive capacity on imitation and innovation strategies, and its impact on sustained competitive advantage. Journal of Business Research, v. 158, p. 113674, 2023. https://doi.org/10.1016/j.jbusres.2023.113674.

 

BRANDÃO, Soraya Monteiro; BRUNO-FARIA, M= aria de Fátima. Inovação no setor público: análise da produção científica em periódicos nacionais e internacionais da área de administração. Revista = de Administração Pública, v. 47, n. 1, p. 227-248, 2013. https://doi.org/10.1590/S0034-76122013000100010.

 

BRASIL. Lei nº 10.973, de 2 de dezembro = de 2004. Dispõe sobre incentivos à inovação e à pesquisa científica e tecnológ= ica no ambiente produtivo e dá outras providências. Diário Oficial da União<= /b>, Poder Legislativo, Brasília, DF, 2 dez. 2004.

 

BRASIL. Lei nº 13.243, de 11 de janeiro = de 2016. Dispõe sobre estímulos ao desenvolvimento científico, à pesquisa, à capacitação científica e tecnológica e à inovação e altera a Lei nº 10.973,= de 2 de dezembro de 2004, [...]. Diário Oficial da União, Poder Legislativo, Brasília, DF, 11 jan. 2016.

 

CASSOL, Alessandra; MARIETTO, Marcio; MA= RTINS, Cibele. Inovação em Pequenas e Médias Empresas: a influência da capacidade = de inovação. Revista Ciências Administrativas, v. 24, n. 62, p. 102-121, 2022. https://doi.org/10.5007/2175-8077.2022.e73575.

 

CASTRO, Maria Helena de Magalhães. Universidades e inovação: configurações institucionais & terceira missã= o. Cadernos CRH, v. 24, n. 63, p. 555-573, = 2011. https://doi.org/10.1590/S0103-49792011000300007.

 

CHEN, Yu-Shan.; LIN, Ming-Ji James; CHANG, Ching-Hsun. The positive effects of relationship learning and absorptive capacity on innovation performance and competitive advantage in industrial markets. Industrial Marketing Management, v. 38, n. 2, p. 152-158, 2009. https://doi.org/10= .1016/j.indmarman.2008.12.003.

 

CHEUNG, Gordon; COOPER-THOMAS, Helena; LAU, Rebecca; WANG, Linda. Reporting reliability, convergent and discriminant validity with structural equation modeling: A review and best-practice recommendations. Asia Paci= fic Journal of Management, v. 41, p. 1-39, 2023. https://doi.org/10.1007/s10490-023-09871-y.

 

COHEN, Wesley; LEVINTHAL, Daniel. Absorptive capacity: A new perspec= tive on learning and innovation. Administrative Science Quarterly, v. 35,= n. 1, p. 128-152, 1990. https://doi.org/10.2307/2393553.

 

FERNANDES, Eduardo da Sila; VECCHIA, Fábio Antonio Dalla.; VOLQUIND,= Rafael; GAYER, Bruno Dones. Inovação no Setor Público: análise de um orgão estadual de meio ambiente e estudo de casos. The Journal of Engineering and Exact Sciences - jCEC, v.6, n. 1, p.1-6, 2020. https://doi.org/10.18540/jcecvl6iss1pp0092= -0097.

 

FLATTEN, Tessa; ENGELEN, Andreas; ZAHRA, Shaker; BRETTEL, Malte. A measure of absorptive capacity: Scale development and validation. Europe= an Management Journal, v. 29, n. 2, p. 98-116, 2011. https://doi.org/10.1016/j.emj.2010.11.002

 

FLORÊNCIO, Marcio Nannini; OLIVEIRA JÚNI= OR, Antonio Martins. The Importance of Absorptive Capacity in Technology Transfer and Organisational Performance: A Systematic Review. International Journal of Innovation Management, v. 26, n. 2, p. 2230001, 2022. https://doi.org/10.1142/S136= 391962230001X.

 

FORNELL, Claes; LARCKER, David. Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, v. 18, n. 1, p. 39-50, 1981. https://doi.org/10.2307/3151312.=

 

FOSFURI, Andrea; TRIBÓ, Josep. A. Exploring the antecedents of poten= tial absorptive capacity and its impact on innovation performance. Omega, v. 36, n. 2, p. 173-187, 2008. https://doi.org/10.1016/j.omega.2006.06.012

 

FREITAS, Pablo Fernando Pessoa. Relaç= ões entre Competências Gerenciais de Líderes de Grupos de Pesquisa e Resultados Alcançados. 2016. 209 f. Dissertação (Mestrado em Administração). Universidade de Brasília- UnB, Brasília, 2016. Disponível em: http://icts.u= nb.br/jspui/bitstream/10482/19827/1/2016_PabloFernandoPessoadeFreitas.pdf. Acesso em: 10 jan. 2023.

 

GIMENEZ, Ana Maria Nunes; BONACELLI, Mar= ia Beatriz. Universidades e região: a terceira missão como instrumento de inserção e de engajamento local/regional. In: II SEMINÁRIO DE CULTURA E EXTENSÃO DA ESCOL= A DE ARTES CIÊNCIAS E HUMANIDADES DA UNIVERSIDADE DE SÃO PAULO, 2018, São Paulo,= Anais... São Paulo: USP, 2018, p. 1-5. Disponível em: https://www.researchgate.net/publication/332910147_Universidades_e_regiao_a= _terceira_missao_como_instrumento_de_insercao_e_de_engajamento_localregiona= l. Acesso<= span style=3D'mso-bookmark:_Hlk4746433'> em: 10 jan.= 2023.

 

GRANT, Robert. Toward a Knowledge-Based Theory of the Firm. Strat= egic Management Journal, v. 17, Ed. Esp., 109–122, 1996. https://doi.org/10.= 1002/smj.4250171110.

 

HAIR JUNIOR; Joseph; HULT, Tomas; RINGLE, Christian; SARSTEDT, Marko= . A primer on partial least squares structural equation modeling (PLS-SEM).= Los Angeles: Sage publications= , 2017. Disponível em: https://eli.johogo.com/Class/CCU/SEM/_A%20Primer%20on%20Partial%20Least%20S= quares%20Structural%20Equation%20Modeling_Hair.pdf. Acesso em: 15 mai. 2023.

 

HAIR, Joe; HOWARD, Matt; NITZL, Christian. Assessing measurement mod= el quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, v. 109, p. 101-110, 2020. https://doi.org/10.1016/j.jbusres.2019.11.069

 

HARVEY, Gill; SKELCHER, Chris; SPENCER, Eillen; JAS, Pauline; WALSHE= , Kieran. Absorptive capacity in a non-market environment: a knowledge-based approach= to analysing the performance of sector organizations. Public Management Review, v.12, n.1, p. 77-97, 2010. https://doi.org/10.1080/1= 4719030902817923.

 

HENSELER, Jorg; HUBONA, Geoffrey; RAY, Pauline. Using PLS path model= ing in new technology research: updated guidelines. Industrial Management &a= mp; Data Systems, v. 116, p. 2-22, 2016. https://doi.org/10.1108/IMDS-09-2015-0382.

 

HENSELER, Jorg; RINGLE, Christian; SARSTEDT, Marko. Testing measurem= ent invariance of composites using partial least squares. International Marketing Review, v. 33, n. 3, p. 405–431, 2016. https://doi.org/10.110= 8/IMR-09-2014-0304.

 

HIDAYAT, Rachmat; WULANDARI, Patricia. D= ata Analysis Procedures with Structural Equation Modelling (SEM): Narrative Literature Review. Open Access Indonesia Journal of Social Sciences,= v. 5, n. 6, p. 859-865, 2022. https://doi.org/10.37275/oaijss.v5i6.142.

 

HU, Li-tze; BENTLER, Peter. Fit Indices = in Covariance Structure Modeling: Sensitivity to Underpar= ameterized Model Misspecification. Psychological Methods, v. 3, n. 4, p. 424-453, 1998. https://doi.org/10.1037/1082-989X.3.4.424.

 

IWAYA, Gabriel Horn; STEIL, Andrea Valér= ia; LOPES, Luis Felipe Dias; CRUZ, Roberto Moraes. = Predictors of the intention to purchase organic food in the Brazilian context. Revista Psicologia: Organizações e Trabalho, v. 22, = n. 2, p. 1943-1952, 2022. https://doi.org/10.5935/rpot/2022.2.22269.

 

KHAN, Zaheer= ; LEW, Yong Kyu; MARINOVA, Svetla. Exploitat= ive and exploratory innovations in emerging economies: The role of realized absorptive capacity and learning intent. International Business Review, v. 28, n. 3, p. 499-512, 2019. https://doi.org/10.1016/j.ibusrev.2018.11.00= 7.

 

KYRIAZOS, Theodoros; POGA, Mary. Dealing with Multicollinearity in Factor Analysis: The Problem, Detections, and Solutions. Open Journal of Statistics, v. 13, n. 3, p. 404-424, 2023. https://doi.org/10.4236/ojs.= 2023.133020.

 

LABORATÓRIO DE ESTUDOS E PESQUISAS EM EC= ONOMIA SOCIAL. LEPES. Universidade de São Paulo. A importância dos Laboratórios= de Pesquisa. 2020. Disponível: lepes.fearp.usp.br. Acesso em: 10 jan. 2023= .

 

LOPES, Luis = Felipe Dias; CHAVES, Bianca Michels; FABRÍCIO, Adriane; PORTO, Adriana; ALMEIDA, D= amiana Machado; OBREGON, Sandra Leonara; LIMA, Mauren Pimentel, SILVA, Wesley Vieira; CARMARGO, Maria Emilia= ; VEIGA, Claudimar Pereira; MOURA, Gilnei Luiz; S= ILVA, Luciana Santos Costa Vieira, COSTA, Vânia Medianeira Flores. Analysis of well-being and anxiety among university students. Int= ernational Journal Environmental Research and Public Health, v. 17, n. 11, p. 3874, 2020. https://doi.org/10.3390/ijerph17113874.

 

MIKHAILOV, Andrei; REICHERT, Fernanda. Influência da capacidade absortiva sobre inovação: uma revisão sistemática = de literatura. Revista de Administração Mackenzie, v. 20, n. 6, p. eRAMD190033, 2019. https://doi.org/10.1590/1678-6971/eRAMD190033.

 

MURRAY, K.; ROUX, Dirk; NEL, Jeanne; DRIVER, Amanda; FREIMUND, Wayne. Absorptive capacity as a guiding concept for effective public sector manage= ment and conservation of freshwater ecosystems. Environmental manageme= nt, v. 47, n. 5, p. 917-925, 2011. https://doi.org/10.1007/s00267-011-9659-7.

 

OLIVEIRA, Ronniel; RABELO NETO, Alexandre.; NASCIMENTO, João Carlos; MELO, Rodrigo Santos. O desempenho organizacional de uma instituição de ensino superior: uma anális= e da capacidade absortiva potencial e da inovação. Revista Base (Administraçã= o e Contabilidade) da UNISINOS, v. 15, n. 4, p. 291-316, 2018. https://doi.= org/10.4013/base.2018.154.04.

 

PADILHA, Rafaela Oliveira. Análise da capacidade absortiva para inovação: uma pesquisa empírica em laboratórios de pesquisa universitários. 2020. 148f. Dissertação (Mestrado em Tecnologi= as da Informação e Comunicação). Universidade Federal de Santa Catarina – UFSC, Araranguá, 2020. Disponível em: https://repositorio.ufsc.br/handle/123456789/216114. Acesso em: 10 jan. 202= 3.

 

PEREIRA, Bruno Alencar; FARIAS, Josivania Silva. Absorptive capacity and the diffusion of innovation in NTBFs and startups: A study in the Brazilian Fed= eral District. REGEPE Entrepreneurship and Small Business Journal, v. 12,= n. 1, 2023. https://doi.org/10.14211/regepe.esbj.e2380.

 

PETERSON, Robert; KIM, Yeolib. On the relationship between coefficient alpha and composite reliability. Journa= l of Applied Psychology, v. 98, n. 1, p. 194, 2013. https://doi.org/10.1037/= a0030767.

 

PORTO, Geciâne Silveira. A Decisão de Cooperação Universidade-Empresa sob a Ótica dos Líderes de Grupos de Pesquisa da USP Cadastrados no Diretório de Pesquisa do CNPq. 2006. 187f. Tese (Doutorado em Administração). Universidade de São Paulo-US= P, São Paulo, 2006. https://doi.org/10.11606/T.96.2012.tde-23042012-113635.

 

RINGLE, Christian; WENDE, Sven; BECKER, Jan-Michael. SmartPLS 4. Bönnin= gstedt: SmartPLS, 2023.Disponível em: https://www.smartpls.com/. = Acesso<= /span> em: 15 set. 2023.

 

TEECE, David; PISANO, Gary; SHUEN, Amy. Dynamic capabilities and strategic management. Strategic Management Journal, v. 18, n. 7, p. 509-533, 1997. https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z=

 

SHARMA, Pratyush Nidhi; SHMUELI, Galit; SARSTEDT, Marko; DANKS, Nich= olas; RAY, Soumya. Predictionoriented model selection in = partial least squares path modeling. Decision Sciences, v. 52, n. 3, p. 567-= 607, 2021. https://doi.org/10.1111/deci.12329.

 

SHUAI, Chunyan; SHAN, Jun; BAI, Jincheng= ; LEE, Jaeyoung; HE, Min; OUYANG, Xin. Relationship an= alysis of short-term origin–destination prediction performance and spatiotemporal characteristics in urban rail transit. Transportation Research Part A: Policy and Practice, v. 164, p. 206-223, 2022. https://doi.org/10.1016/= j.tra.2022.08.006.

 

SANTOS, Patricia M.; CIRILLO, Marcelo Ângelo. Construction of the average variance extracted index for construct validation in structural equation models with adaptive regressions. Communications in Statistics-Simulation and Computation, v. 52, n. 4, p. 1639-1650, 2023.= https://doi.org/10.1080/03610918.2021.1888122.

 

SOUSA, Romario Martins; FLORÊNCIO, Marci= o Nannini; MOARES, Thiago Assunção. Importância da Capacidade Absortiva na Inovação do Setor Público. Revista FSA, Teresina, v. 19, n. 9, p. 49-62, 2022. http://dx.doi.org/10.12819/2022.19.9.3.<= /p>

 

VERBREE, Maaike; HORLING, Edwin; GROENEWEGEN, Peter; VAN DER WEIJDEN= , Imge; BESSELAAR, Peter. Addressing leadership and management of research groups. A multivariate study. Working paper. Rathenau Instituut, Den Haag, 2011. Disponível em: https://hms.harvard.edu/sites/default/files/assets/Sites/Academy/images/Ins= ights/Strong%20Research%20Groups%20Verbree.pdf. Acesso em: 10 jan. 2023.

 

WANG, Catherine; AHMED, Pervaiz. The development and validation of <= span class=3DGramE>the organisational innovat= iveness construct using confirmatory factor analysis. European Journal of Innova= tion Management, v. 7, n. 4, p. 303 - 313, 2004. https://doi.org/10.1108/146= 01060410565056.

&nbs= p;

XIE, Xuemei; ZOU, Hailiang; QI, Guoyou. Knowledge absorptive capacity and innovation performance in high-tech companies: A multi-mediating analysis. Journal = of Business Research, v. 88, p. 289-297, 2018. https://doi.org/10.1016/j.jbusres.2018.01.019.

 

ZAHRA, Shaker; GEORGE, Gerard. Absorptive capacity: A review, reconceptualization, and extension. Academy of Management Review, v. 27, n. 2, p. 185-203, 2002. https://doi.org/10.2307/4134351.=

------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAucAAAJvCAIAAABXhugqAAAAAXNSR0IArs4c6QAAu1RJREFUeF7t nXnUFNW19oMuBxRE0DihqAw3IuTiAIoDuRFlVFSuIJPGMSDGeUJBl/g5QoxTDILR64ygRlEGBRUT nFAB9S7FRAEVJ5xABMfE+P3iTs6tVPfbXV1dVV1V/dQfvfqtPmefvZ+z366n99lnn0bff//9j3QJ ASEgBISAEBACQiD1CKyTeg2loBAQAkJACAgBISAE/oGAWIv8QAgIASEgBISAEMgGAmIt2ZgnaSkE hIAQEAJCQAiItcgHhIAQEAJCQAgIgWwgINaSjXmSlkJACAgBISAEhIBYi3xACAgBISAEhIAQyAYC Yi3ZmCdpKQSEgBAQAkJACIi1yAeEgBAQAkJACAiBbCAg1pKNeZKWQkAICAEhIASEgFiLfEAICAEh IASEgBDIBgJiLdmYJ2kpBISAEBACQkAIiLXIB4SAEBACQkAICIFsICDWko15kpZCQAgIASEgBISA WIt8QAgIASEgBISAEMgGAmIt2ZgnaSkEhIAQEAJCQAiItcgHhIAQEAJCQAgIgWwgINaSjXmSlkJA CAgBISAEhIBYi3xACAgBISAEhIAQyAYCYi3ZmCdpKQSEgBAQAkJACIi1yAeEgBAQAkJACAiBbCAg 1pKNeZKWQkAICAEhIASEgFiLfEAICAEhIASEgBDIBgJiLdmYJ2kpBISAEBACQkAIiLXIB4SAEBAC QkAICIFsICDWko15kpZCQAgIASEgBISAWIt8QAgIASEgBISAEMgGAmIt2ZgnaSkEhIAQEAJCQAiI tcgHhIAQEAJCQAgIgWwgINaSjXmSlkJACAgBISAEhIBYi3xACAgBISAEhIAQyAYCYi3ZmCdpKQSE gBAQAkJACIi1yAeEgBAQAkJACAiBbCAg1pKNeZKWQkAICAEhIASEgFiLfEAICAEhIASEgBDIBgJi LdmYJ2kpBISAEBACQkAIiLXIB4SAEBACQkAICIFsINDo+++/z4am0lIICAEhIATShMBnn322YsWK Dz74wF7tzeeff/71v66vvvrK9x71N9xww8aNG/Nql/f9JptsstVWW239w2VveN10003TZLR0qTEC Yi01ngANLwSEgBBIPwJ//vOfX/vX9dZbbxlH+fLLLxPQfKONNjIes8MOO7T/17XTTjslMLSGSCEC Yi0pnBSpJASEgBCoJQKvvPLK4sWLHU3hzV//+tdChZo2beqNi7jQSGEQxd1BiDcAY5EYd6cweAM3 WrNmTeHQ6623nmMwvNl55507duxYS8g0dlIIiLUkhbTGEQJCQAikFYFvvvnmmR+uZ599ltdVq1b5 NN1xxx2NHPDarl07W75p0qRJAgatXbvW1p7eeOMN+JPRqTfffNM3dPPmzffee++99tqLV64NNtgg Ad00RPIIiLUkj7lGFAJCQAjUHgF4gJepeBVq06YNoQtHU3iz8cYb115jjwZffPGFhYKMxBAcWrp0 qVdDL4OBY6VKeSlTDQJiLdWgp75CQAgIgYwhsHDhwlmzZs2cOfO5557zqt65c2eLUhCuaNWqVcas +tGPli9fboEirgULFnj133PPPQ888MC+ffvuvvvumbNLCvsQEGuRSwgBISAE8o/AnDlzYCpcLiZB lus+++xjTIUrmeWeZIBmUcnoC9dTTz1F3oyNSwwJ+sLVs2fPZDTRKJEjINYSOaQSKASEgBBICwKT J0+2yAqJrqbTdtttR9TBHt7rrJP/kl1///vfMd9AeOeddwwEdlNb9GXo0KFpmSrpEQwBsZZgOKmV EBACQiA7CLzwwgt3/nCtXLnStN5ll12MqbAAlB07ItaUJSQLOL300ksmukWLFkf8cHXp0iXiwSQu HgTEWuLBVVKFgBAQAokjsHr1aiMr8+fPt8HhKIcffjhkhY0/iauT3gHZjgR3ueeee+AxpmXXrl2N vjRr1iy9ekuzH/1IrEVeIASEgBDIPAKPPvqo8RUWRDBms802s2cwObaZty1OA8jbNdw+/fRTxmHJ zHDr0aNHnMNKdngExFrCY6eeQkAICIGaIzB16tTrrruOtFPTpE+fPjx0la5R6byQAAR3efjhh60j 6cmnnHLKoEGDKpWj9nEjINYSN8KSLwSEgBCIBYGbb775t7/97csvv4z0li1bHn/88fCVtm3bxjJY fQhdsmQJ3OWmm2567733sLhTp05wl2OPPbY+rM+GlWIt2ZgnaSkEhIAQcAgQXIGv8Ijlzn/8x3/w ZP3Vr34lfCJE4He/+x0gv/7668iECJ588smAHKF8iQqNgFhLaOjUUQgIASGQNALjxo279tprqXDP wLvuuiuP0qOPPjppJepmvFtvvRXu8uKLL2IxJxiceuqpo0aNqhvrU2qoWEtKJ0ZqCQEhIAS8CNx7 770XXXTRq6++ys1u3brx63/gwIGCKAEEQJ7I1pNPPslYHTp0uPDCC4V8ArA3NIRYSw3B19BCQAgI gfIILFq0aOzYsdOnT6cpNel5f9BBB5XvphaRIjBjxgxYo50V0K9fP2Zht912i3QECQuEgFhLIJjU SAgIASGQPAIUtOVJec011zA0ZxrzK59FiuTV0IgOAZbnmBE7E/u0005jRiizK3ySRECsJUm0NZYQ EAJCICgCrErwg96K27IexHsKuQbtrHaxIcCMQFzId2EE6uJAXJid2EaTYD8CYi3yCSEgBIRAuhBg 2y0PwgceeAC1KGsLX1GxuHTN0I9+xFIR80KBXRT77//+b0gMm8/TpmQu9RFryeW0yighIASyigDl ztgZRKlWfsfzLFS9uDRPpCYr+dkRa0kec40oBISAECiCwLfffkuI5cYbb9TP9wz5hzcwNmLECIjm +uuvnyH9M6dq/o8pz9yUSGEhIATqEAEOEqISq1EWUj7/8Ic/aMUhE27ANN1///2WMT1p0iQmkanM hOYZVVKsJaMTJ7WFgBDIDwK//vWve/bs+ec//5lCLNQ0UxnWzE0te7uYOKaPSWQqmdDMmZAVhcVa sjJT0lMICIF8IsAD75xzzsG2888/f968ebvssks+7cy7VUwc0zdmzBgMZUK1Rz2mCVdeS0zASqwQ EAJCoAwCX3311bBhw2yv0G233faLX/xCkOUAgdtvv/2oo47CkP79+991112NGzfOgVHpMUGsJT1z IU2EgBCoIwQ4mQ/KwgZaDrjh2bbffvvVkfF5N/WJJ55g89eKFSvYss7kcsJl3i1Ozj6xluSw1khC QAgIAUPg8ccfh7J8+OGHXbp0YfcspwoLmZwhwIncEJcXXnhhyy23hLjsv//+OTOwVuaItdQKeY0r BIRAnSIwa9YsasdhPNXJoCwbbLBBnQKRd7O/+eYbiAs7jDCUenR9+/bNu8VJ2Kds3CRQ1hhCQAgI AUNg7ty5hx56KG8ozcL2ZlGWHDsGk8sUW71/Jp2pz7GxiZmmWEtiUGsgISAE6h2BZ599tnfv3p9/ /vkvf/lLK82iqx4QGD58+O9///tNNtnkkUce2WuvverB5PhsFGuJD1tJFgJCQAj8HwLU84CyfPTR R0ceeSTbTARNXSHABrE77rhjiy22gLjsuuuudWV7tMaKtUSLp6QJASEgBIogQPGxXr16LV++fMCA Affee68wqkMEBg4ceN9997Vq1Qri0r59+zpEIBKTxVoigVFChIAQEAINIrB69eo99tiDrc4HHXTQ 9OnThVTdItCvX78ZM2awEfq5557bdNNN6xaHagxXNm416KmvEBACQqA8AqQ1QFm6d+/+4IMPlm+t FvlFAAfADXAGzlnMr5XxWibWEi++ki4EhECdI3DFFVfcc889zZs3Jx9znXX0lVvX7oADkIWNM+AS OEZdYxHWeK0QhUVO/YSAEBAC5RCYM2cO6Sy0IpeFjJZyzfV5XSBAdgs5LphKgou5h67gCIj4B8dK LYWAEBACFSDw8ccfszZEh9GjR4uyVABc3pviDOeddx5W4h44Sd7Njdg+xVoiBlTihIAQEAKGAIfn TZs2jd3ODz/8sDARAj4E+vTpQ6yF6nN2fKaugAgo1hIQKDUTAkJACFSAAOkLUBbqc6iaXAWo1VNT HIMjinASeUhF065YS0VwqbEQEAJCoDwCX3/9devWrT/44AOqyVFTrnwHtahLBKg7R/U5Dv1etmzZ hhtuWJcYVGy0Yi0VQ6YOQkAICIHSCIwdOxbKcsABB4iyJO8qgwcPbtSo0csvv5z80JWOiHvgJLgK DlNp37ptL9ZSt1Mvw4WAEIgFgcWLF48bNw7RF154YSwDBBM6fvx4Ht6lr0w82oOZ+3+tPvvsM/5Y s2ZNpR1r0t6cBId57bXXaqJA5gYVa8nclElhISAEUo3ARRddhH5sD9l3331rqCiV49lV6y5qhKBM mzZtvDebNm1aQw01NAjgJLbRTOGWgP6gvJaAQKmZEBACQqA8AjNnzqRs/wYbbECmwjbbbFO+Q1It 2Mo0e/ZsftOfc845SY1Zm3HM0ieffLK2rDG48e+//z5sklwoiv0feOCBwTvWZ0vFWupz3mW1EBAC sSBwww032O/mVFGWWEyV0IgQwFVsncicR1dpBMRa5CFCQAgIgWgQ+Mtf/kKsZd111z3hhBOikRi/ FFJbSF9t0aIFGTC8nnjiiUSJvMNyx5Jbn3rqKcIYlijDzU8//ZRm1t1u8sbXF4FcNJs1a1aXLl0a akYDpI0ZM6Zt27bWhsbk5dgQpS+v5ELlXd+yZpYbJ97PcRjcBufBheIdKQfSv9clBISAEBACUSBg BU+PPfbYKIRFLMMqx7NC5JV79913c5OUF6r38tGgQYPsz5deesk1s44jR460j1wF+s6dO9OdO3bT 5c188sknrq89Iq2vpdRYM16XLl3qmjGcu29pN9aRIbzSChGxrGdryWWSGYg3rBC59kHMjBjuysXh Nqh97rnnVt61vnr8qL7MlbVCQAgIgdgQoPAGD54//elPsY0QXnAha4EQGOfwEgh7wNPYx1qMfBiH gGS4X+yOWPCR0QUk+FiLly3RzOgF0lwzd8dxFFQqbOYznjamhhsRxayXl7UENDM8shH1xG1QGxeK SF5uxYi15HZqZZgQEAJJIjB58mT70Z/koMHHKmQtEydORGFefUKMfDgqYx0Jw3ibWfjEFwuxyAdh Gx9r8Q3BOogFRayZcSD+9IVVCJYY/2jIRhvOp5hxFC9rCWhmcCTja8m6GJrjSPENkQPJymtxvxn0 RggIASEQHoFbb72VzkcffXR4Ecn2tONvSPggg8R7mRZsbPGqs9tuu3n/3GGHHfiTg4s322wzd5+9 1rxfuHChz44OHTp47/Tt25c/V61aZUkw7PfhlZwYryjusAPI+Af5NEWBmTt3Lvc5x8f7KUL22GMP 752KzEx2BvyjHXXUUdwyR9LVEAJiLfINISAEhEC1CJA3OmfOnPXWWy9DrMVsZt/KqH+/bOUlRCmX bbfdtiIcjRgtWrSIV6NBvsvHP4oKDzhohGZWZGNFjXEeXAhHCpKGXJHkPDUWa8nTbMoWISAEaoPA 008/zcCEBzbeeOPaaBB2VG/Wqnf5oFOnTmFFVtbPStnGfdXczCAG4jxWY6ah8FIQIblvI9aS+ymW gUJACMSOgD1mslLWzAvHu+++Gzs6/z6ACyS0b9+eT7p3787r6tWrC9V4/vnnuVk66hNQ/4DNEoai cDhzISPBuooiINYixxACQkAIVIuAsZZ99tmnWkEJ9t99990ZLYEsildffdVr1qOPPsqf5PxaIotl w0ydOtVnOpCS+0JqS0NRH9N/3rx53o6k6RjXcVdiZkYydeZCirWUAFOsJRJPkxAhIATqF4Gvvvrq 2Wefxf5sxVqOO+44dCYZdtKkSd7JmzJlCgXfIpxOSqi5IcjAPf/88xFuh+9wkYdru69d5TpuQj4s Q4j6JQ1p0qdPHz4iYYVCc9aGXvvttx9cx9slMTMjQcxcCHfCqSIRmD8hYi35m1NZJASEQKIIWDx/ zz33zFZSS+vWra06C6yCCrbUvbXSt0OGDHGlUCLBkQ3SDEHdW+QTYrFaLEYm7HrooYeMf7Rr1442 bADeZZddaMb+6hKnJvGAtw3YnN1DF+uFfKuV567EzIwEK1wIR0KUFokawlOsJRJPkxAhIATqF4H5 8+djfMoDLZtuuilKNmvWzDtPxDlIU7XHPEEXLqqzUODkd7/7nfepX9jR5PikWRcbyHtdffXVVlsF +VaH95FHHvHucwY6qrYYBaHNggULUANGNWHChNJeRQMkw1ToAssxyYRbfL2CmJke9zVHMqfSVYiA znyWVwgBISAEqkLgtNNOu/baa6+55ppTTz21KkG560zkBpsydPxyGmYAX8Kj8CU8Kg36pE0HxVrS NiPSRwgIgYwhQD1WNN58880zprfUTSUC5kjmVLoKERBrkVcIASEgBKpC4OOPPxZrqQpBdfYgYKzF nEqXWIt8QAgIASEQMQKKtTQEqB1pFKLMbsQzlClxirWUni7FWjLlzlJWCAiB9CEg1tLQnCxZsoR6 u4mV2U2fa4TRSKxFrCWM36iPEBACQiAgAmItAYFSsyAIiLWItQTxE7URAkJACFSFwLrrrltVf3UW AkIgAAJaIQoAkpoIASEgBBpGQD+O5R0RIqDQnWItEbqTRAkBISAE/Aho04d8IkIExFrEWiJ0J4kS AkJACIi1yAdiRECsRawlRveSaCEgBITAj3/8Y0BQWTB5QiQImCOZU+kqREB5LfIKISAEhEBVCGiF qCr41PnfEVCsRbEW/U8IASEgBGJEwFjLO++8E+MY9S16ypQp48ePX7ZsmcHAG/7MKyTmSDogoqH5 Vawlr54vu4SAEEgIga5duzLSU089ldB4dTbMmDFjhgwZMmrUKCrtQl+w/tFHH+XPvMJgjmROpasQ AZ35LK8QAkJACFSFwFdffbXRRhshYu3atRtvvHFVstS5AIEWLVqMHDnyjDPO6N2794IFC0aPHj1n zpxVq1ZReDd/aH3xxRdNmjTBri+//LJx48b5M7B6ixRrqR5DSRACQqCuEeDpstdee+Uy3PLyyy83 atQIulDDCYagtGrVarPNNnvkkUegLJdddhl3/vCHP9RQpfiGtkAL7iTK0hDIYi3xuZ8kCwEhUC8I 7Lvvvpj69NNP58zgNWvW1NwiTjIaMWIEakBcLr30Uv4kypLXs43MhcyddBVFQKxFjiEEhIAQqBaB ffbZJ5exlmpxUf8KEbBYi1hLCdjEWir0KTUXAkJACBQgYI8ZHjnkJWQIHhaATjzxxLZt27IMxDV4 8GBvTjF3unXrhjmzZ8+2Blxm3aRJk3hfuJGHHBQuLwKlh7CWn376KaJMDbqjBr2cED4lIbdLly6m AG8sJ9d3zZo1i47WxoRkLj8a5zGdjQTrKo4A0TZdQkAICAEhUCUCPXv25Ev2+uuvr1JOYt1nzpxp T4XOnTv36tWLHTr255NPPmk6cJOPuNO8eXPe22UfjRs3jvu8+rQ1Ce5m2SFoSXkS7yj2nmvp0qV8 yiuj8yfqOX0KhyZdt6gtd999d2J4Vj8QzoMVOFL1onIs4f/cK8dGyjQhIASEQNwITJ48mUcOkYC4 B4pKPpxj0KBBRg7s4k9M4NXdgcFwx5EVdz8gawkyhBEOyAr0xeQzKH++9NJL7r0jUtyZOHGiESkf N+JOYTPHfqICLVY5xthwpFhHybpwsZasz6D0FwJCIC0IbL311jx1/vSnP6VFoQr1MI7CszMq1lI4 vm8IdwyClzyV1drCKo7lGNkqDPxAtoreLyu/Jg1wG7TFhWoyeoYGVV6L+b8uISAEhEC1CBx11FGI uO2226oVVKP+lp1DTZT4xvcN8dprrxlPat26dfBBjY5YX66pU6fyOmDAAJ+E/v37c2fu3LnBJdew pbnN0UcfXUMdMjG0WEsmpklKCgEhkAEE7JHD4+ezzz7LgLo/qEh1fKuXb1ccapcY4tVXX2VEtjSX HpeEXJJtnZLe+nIub7eQ93To0CEOc+KQicMYazHiq6sUAhmKC0lVISAEhEDKETjwwAP5wr388stT rifqscJiQYvCK6oVorJDWH5MYd6MFz0qyxVV0rJYbMmJq6HVqNLCUzJNOAwm4Dwp0SfNaijWIlIr BISAEIgMAcstveiii95///3IhMYjaNiwYWxpJinE8l7tqmio1atXl25fdoi9994bCYRSGpJDfIVi uCwhsR3JKeklW660SaEQC+RsuummFRmVfGNcBYdhXLcTKnkdMjSiWEuGJkuqCgEhkHYE+Ll8+OGH f/311/YcSvMFZUE9lofK1pktPPGnY8eO9OU8IK+B3iIrdr/sENtssw3NyKRx5zn7ELOslKuvvrpv 374NgWl7tjlS0dfggQce4M5+++2X5llAN1wFh8FtLFCnqwwCaQ4ESTchIASEQOYQsJ/4XN6NuCm0 wpR0O3HQ0P3W92przXx7fPjT7rsQCJVRrLAKly9yU3oIC5wQ8nHNEM5NQ88+9QZaGMgHr9sL7QXc 1pVQyTt6CmfBrXAtXrw4heqlUCXtfE7hpEglISAEso3AqFGjeGQecMABaTbDNgwTqCC5hIs3POMt buFV23iDFZrzVkmx7lyu+BvrOFZxxHUPMgTrU0Z3bAhXZc7WrRwjgYWgpCljbbwcxa0ZWcU8J9C7 +JXOucBJsOXcc89Np3op1EqsJYWTIpWEgBDINgJfffWV1W65/fbbU2sJQQgjK8YYCLRYkMNLTVCe Zo6geAvQcR8m4QrXWrkUX/eAQ8At3BAWd/EyEoIrjsrYR5bD62Mk8BvXDKPMnNSCb4rhHhjCMhkO k3JV06NeI1QxvqxLCAgBISAEokLgxhtv5KTiLbfc8oUXXthuu+2iEptjOWTYDBkyBI7CEUI5NtOZ 9s4771BJ+cMPP+RQp+HDh9eDyZHYKNYSCYwSIgSEgBDwI0CVs2nTpvXu3fvhhx8WOkEQ4ABFgjfw vCCNs96mT58+jzzyyKGHHmpZw7oCIiDWEhAoNRMCQkAIVIbAxx9/zJrF8uXLzzvvPLbvVta5nlpz 0PEzzzyDxVdccQWvK1euzL31nGKNS2y//fZQtB//+Me5tzdCA7XzOUIwJUoICAEh8H8I8DRinYi/ qSF23333CZqGEHj33XfhK6Qwt2jRYsKECbkHCmcwFot7iLJUOt2KtVSKmNoLASEgBCpAgOcxsRZb +LDUV131jACVaYjArVq1Ci7L1qF6hiKc7WIt4XBTLyEgBIRAUATY+XLPPfd0796dSmjrrKMId1Dc 8tfu73//e48ePSidR005O/RRV6UIiLVUipjaCwEhIAQqQ4Cz8fbcc8/XX3/9oIMOmj59emWd1TpH CPTr12/GjBn/8R//8fzzzzdr1ixHliVnilh/clhrJCEgBOoTAY7CYTNRq1ateGINHDiwPkGQ1Uw9 DoAb4AyiLKH9QawlNHTqKASEgBAIikD79u15Vm2xxRZkYv7iF78I2k3t8oIAk87Uk3uLG+AMeTGr BnaItdQAdA0pBIRAHSKw66678sRq2rTpHXfcoapideUATDeTztQ/+OCDuEFd2R65sWItkUMqgUJA CAiB4gjstddeEJf11lvv97///SmnnCKY6gEBJprpZtKZehygHkyO1UZl48YKr4QLASEgBPwIzJo1 68ADD+Tuf//3f0+ePHmDDTYQRrlE4Jtvvhk6dOj999+PdRxb3bdv31yambBRirUkDLiGEwJCoN4R 4On12GOPkePC86xbt25Lliypd0TyaD/TyuQyxUw00y3KEtUki7VEhaTkCAEhIASCIrD//vtzdvHu u+9O6bmf/exnTzzxRNCeapcFBJhQKAuTyxQz0Ux3FrTOho5iLdmYJ2kpBIRAzhCgaAfPMw7P++CD DyhAd/vtt+fMwLo1h6lkQlesWMHxmUwxE123UMRhuFhLHKhKphAQAkKgPAKNGzfmvN+TTz6Zpkcd ddQFF1xQvo9apBuB888/n6lER5JwWR5iitOtb/a0UzZu9uZMGgsBIZAzBH7961+fc845GMWywnXX XbfLLrvkzMB6MOell16CqRBcwdjx48efffbZ9WB18jaKtSSPeR2NyInz73uu995778svv/zqX9fX X39tb31v+HWy4YYb8trQm4033rhly5bbeC6Oiq0jWGVqHhHgiCKeeX/+858x7pprrjn11FPzaGVu bbr22mtPO+00zNtpp53gnRw2lFtTa22YWEutZyAX4y9duvTVV1994403vByF93CUZOzbaKONvCSG 9+3atevYsWPr1q2TUUCjCIHqEfj2228hLpMmTUIUKRG//e1vYefVi5WEWBHgxxhrfKz0MQrV5Ji1 9ddfP9YR61y4WEudO0AY88kye+WHC6Zir2vWrCkqiLM2IBDeuAjVIYtGULw3fQGYwmAMwxk94vvC 3qxevbqoAgzXoUMH6Iu9cm211VZhbFYfIZAUAlRwgbt8+umnm222Gb/aKfiR1Mgap2IENFkVQ1Z1 B7GWqiGsAwFvvfUWi7ULFiwwjvLhhx/6jN52222hBRyu4eMoTZo0SQaetWvXekkM71977TVUfffd d30KbLnllsZgOnfuTA7BDjvskIyGGkUIBEcAOm65nHShHt3YsWNx1+Dd1TIBBPg+ZF6oHcdYCowl ALgbQqwlSbSzNBaLPjAVrnnz5vmqYDVv3tyFLuzN5ptvnk7bPvnkE29MiPerVq3yqtq2bVuqZUBf uNq0aZNOK6RVfSLAWsNFF11E0AXzITEXXnih8rfS4Amk68FXmB2UYUZ4b7vAdCWDgFhLMjhnYxQS U+AoRlaWLVvmlIam8FDfZ599bJGFk9azYU8xLZcvX27LW08//TRmekkMSTBGX+AxpMVk10ZpnhsE PvvsM4gLyblYxL8hxEVZurWdXLJumRH73iD9lhnZdNNNa6tSvY0u1lJvM17EXjYvPPTQQ9OnT3/7 7bfdx4RP7BHOlePoNGFeY2lcBGac+dtvv32/fv0OOeSQAw44QC4iBGqLwKJFi/hBz38oavDPyJPy oIMOqq1KdTj6jBkzmIWFCxdiO18OvN9tt93qEIeamyzWUvMpqJkCrMhCVjg53eWpkPPhmEodHqf+ 4osvOgbjxQTuwqVjRGrmqRr4BwTuvfdefuWTrcV7/k9ZlRg4cKCwSQABkGc9yAqxsCYOaxTyCcDe 0BBiLTUEvwZD//3vf4emGFlxiyMs+vBUPvjgg/fYY48a6JTKIZ9//nlDibUkU5D4vNEXgFpnHRWV TuW01YFS48aNY5GCQwCwlZ8W5LscffTRdWB3bUy89dZb2cbF7xmG33rrrVmeGzVqVG1U0aj/QkCs pV58gcgKm/R4DH/xxRdmM+FNewarEGcJJ6DepdEXovTWjBp34MZ+VDZ31Iv3yM6UIcCjlF//libP MTdwl1/96lcp0zHb6vzud78D5Ndffx0zyNknsgXI2TYpL9qLteRlJhuw4+OPP+bnwi233MJOYGvS tWtXmArP3Z133jnnxkdq3uLFiy1MNX/+fBPMTu9jjjmGX7o//vGPIx1KwoRAIAT+53/+hyfryy+/ TGuqIh1//PFHHHEEj9hAndWoGAIQwTvvvPOmm25i8zmfd+rUCb5y3HHHCa30ICDWkp65iFiTP/3p T5CV2267zeSyKYZHLMux+lKrEmi+11jnBlu2XJkoDksD2//6r/+qUrK6C4EQCEydOhXu8swzz1jf Pn36wF1Um65SJAlFw1cefvhh67j33nsTXBk0aFClctQ+bgTEWuJGOGn5VJK14MoLL7xgYx966KHE AwiuJK1K3scj9ALU06ZNM0O7dOlioRed8pr3mU+jfewE5KHLRe4a+lFXF+7CleMNgJFMA7sIDTer i0PKmuGmg4QigTcOIWItcaBaG5lUsP3Nb34DX7HMFXLHeIhyKbgS63wQcTGaaAmSZL2A+Zlnnqmq u7HCLuFFEeBoC3sGu3XMvfba6/DDDycHSyWIvIjxb0uq3z333PPss8/afZbOja9wDom8K80IiLWk eXaC6kblNPgKUWLrsP/++/PgHDZsWND+ahcFAnfddRfc5fHHHzdhhJfhLpmuyBcFKpJRGwQItRp9 oZCraUDSPdyFCx5TG51SMCocBbLCRZa9qUNxWyMrxEpToKBUKI+AWEt5jNLcgnN2rrrqqquvvtqU 5H/vjDPOqMNSK+mZIzZJMiM8LUyl008/nRnhnKb0aChN6goB0jVmzZrFc5oyu2b4dtttB3eh/hCv 9bCHnyUzYyrg8M477xgIFLQ1EJQAlLl/B7GWzE3ZPxVmPYL4Cpf9zf8ev+xVqzEl08k2aaaGB4bp w9RwsWaXEvWkRh0iMGfOHHt4c8SYmU8C1r777kvaqV2JnXWaAPgcp0p6sl1PPfUU2X42KGeNWcCp Z8+eCaihIeJAQKwlDlTjlUnZVuMrlnY3ePBgnojKuYsX9FDSSfRjmqZMmUJvftQad6EAcShh6iQE okGAmvQWfXnuuee8EvkOMfrCElIWVzZZKGcByJgK/3pe0/bcc0+LrOy+++7RgCgptUNArKV22Ica meSVMWPG8EuC3mxj5inIP2QoSeqUEAI8G+AubJZmPHJ1L7vsMpWrSgh6DVMSgRUrVtgz3h723rbE JCiZTUUiqjrxyoXrpgpO9hxQg4qLQkq8UsPaxZBMT6NfxsO22mqrVCkvZapBQKylGvQS7cspGPAV OwvjsMMOg6/Uc1ZdotBHMRgPBrjLH/7wB4RxiMyll17KaxSCJUMIRIDAN99842Uw3rPQTfqOO+7o SAzbkeABrHgms6jEjzQWxOFYbPxxNOXNN9/0mc2ZG16mssEGG0SAi0SkDwGxlvTNSYFG/KoYPXq0 bRHiNxA/1tnKmAG9pWIBAuy0ZCrtRyERF6YybT9hNWlCAAQIXVgMw11//etfC5Fp2rQp3MUu4zG8 kui64Q8XeTP2xl1Wyogsk6///XJ3SBmGncBRjKbYmzVr1hQOvd5661kQyC5iQgSHNHf1gIBYS9pn meK2POfef/99FOXgLn6jr7vuumlXWvo1jMB3331HzIwz8GiyzTbbQFworSvAhEDKEfjzn//sGAyl oYxPfPnllwmoDbM3SkQNJEdTdtpppwSG1hApRECsJYWT8k+V/vd//5fH24wZM/ibjHf4ilJu0ztb FWpGtiCTy7YO+h100EFM7n/+539WKEPNhUCNEXChEW+A5PPPP3eRFG9Yhfdc7CGAhXjDMN73m2yy iREUX/CmxnZq+DQhINaSptnw6MKBrpazufnmm/NIGz58eEoVlVpVIHDjjTfCXT755BNksALIOW1V CFNXIZBqBP74xz/279+fajH8Hku1olIu3Qisk2716lE7gq6/+MUvjLKccMIJf/nLX0RZ8uoHzCzz yyxjIDPOvCcTcs8rnrIrzQiwvkPC7O23355mJaVb+hFQrCVdc8RBzSNHjmT9mKjpxIkTeYylSz9p Ew8CfJXDXYifs1rPvOv46HhgltQaIMAq0kUXXXTqqafqZK4aoJ/HIRVrSdGssjP25z//OZSFPbFU ghJlSdHcxKwKc82MM+/kPOIDruRxzMNKvBCIFwGO+7EDRqhr547+iXdISc87Aoq1pGKG+TnCT+2p U6eiDcfW6KGVilmphRKU4eEYI0YeNGgQQRc2kdZCC40pBKJBgG820lkOPfRQ3nAp3BINrPUtRayl 9vM/d+7cX/7yl8uWLeOEdB5UVOivvU7SoHYIcALAiBEj2IjRunXr3//+9927d6+dLhpZCIREgHND DznkEAKH9GentPhKSBzVrQABrRDV2Cnuu+++/fffH8rCK7thRVlqPB8pGB4fYLXIeQUekgKlpIIQ qAAB9gqxHrTLLrvQ55prrjnmmGMq6KymQqAkAoq11NJB2PjKr2o0IAN3woQJtVRFY6cPgRNPPPGG G25ALyJw5ie6hEAmEJg2bRpRFtY3ibLst99+DzzwgDEYXUKgegTWHTt2bPVSJCEEApdffjlBVDpS sUOJLCEAzH0XTqn929/+xslTVBrkUBWdW5T7Gc+6gZCV+fPnQ1DYCkcVf8yBuPBn165ds26a9E8P Alohqs1cnH322dTpZ2xSLy+55JLaKKFRU48AvmHJuXgLPpN6faVg/SLAbzB2OHvzV2zTkKW26BIC USGgFaKokKxAznHHHfc///M/dLj11lt1Bk0FwNVrU86iOvroo7H+2GOPvfnmm+sVBtmdagTcqpDT ku83Ai1aG0r1tGVQObGWpCeNTYAPPvggAf977723X79+SQ+v8bKJwPTp0znom+Nd2JfB4yGbRkjr HCJAQOXaa6+95ZZbcmibTEolAlohSnRaKMIBZWnZsiW7nUVZEoU+44PhLY8//jhnROM/eFHGrZH6 OUGAaArbhQpLOWvfUE4mOJVmKNaS3LTYlpDNNtsMyqIDfpPDPUcjcewcO6I5bVGbznI0qxk2xTJX fGtAtm+I6IsyWjI8tSlWXbGWhCbnggsugLI0atSIhSFRloRAz90weM4999yDF+FLeFTu7JNB2UCA KreUYOG1obSVCy+8UJQlG3OZQS3FWpKYNOKltlGIRw6/QpIYUmPkFAH8By/CODwKv8qplTIrvQjY 0ULbb799QyqyjciSx3UJgTgQUL2WOFD9N5l33nmnlQjTGc6xY10fA+y8885bb701RVxmz57dtm1b he7qY9rTYiWFWCjHwrlpVpHFdxGDIcpS9KO0GCA9Mo6A8lrincCHH364b9++jHHppZdagRZdQiAS BC677DLqEyKK03T79OkTiUwJEQINIcB6EOVYqNSgncxyktoioBWiGPFfsmQJu1UZgGOcRVlCAP3y yy8/9dRTZTtycA+pHjQu27JsgxY/XGWbpaEBHoVfoQk+hqelQSXpkFcELJGFtaEShyCyn4jjnfOK gOxKDwJiLTHOxUknnbR27dqhQ4emp2A/xzSylYllBR7zXDzvOWE4RgiqE82vOsrYlyUufKUyzpo1 a6ob7R+9V/1wVS8nGQn4Fd6Fj+FpyYyoUeoTAQrzUyjoiSee4E1RBPgftPNJdAmBuBEQa4kLYZIl STto1arVb3/727jGqFAuBKVNmzZsP1m5cmWvH66pU6cOGTIEHlOhpISaN2/enJGaNm2a0HgZHOb6 66/Hx/A0nQuRwdnLgMpkfBNEQdHSCbZUPqSB9g1lYEZzoOL3umJAgIos5hsPPfRQDOLDiLz77rtN JZKCXX+r/MFNjugLIzQdfaBfUZlgEKXDrKBa4GOmNl4XtI/aCYEACJx22mnEO998880AbdVECCSE gGIt0TPPv/71rxaxP+ecc1JSAPfTTz+1gAqUxTY02UXJuwkTJkBoFM+I3g+SkoiPjRo1itHwOnwv qWE1Tv4RoOgtq0IlclkMAq0N5d8V0mShWEv0s8HDY/Hixfvss8+4ceOilx5K4n333Ue6BstDXsri JJHd0qlTJ/sTfsPOlC5duljiC298iS+TJk3iPq/GhMhd5U8SZbjjU62sKGuPfO9w48ePp6N9ZPk3 5OJ4JbNlxrVHAd+nAa2wZoxlQ2CFd1yfIeT5ApFZymtDg4aamWg6XXHFFfgbXqcEl2gArW8pJNWS ewsGHJrWUCKLF6FTTz21vgGT9ckikFBMp26G4Xhem8AXX3wxPUbbGgq7TkqrtHTpUkslgd/QpXPn zmYL9Mt1NCrGUTjW0tvMKz+IKGTa+pTJMSW9w9mf3tUrRwTRzdRDDbT1Ngs4tBuONybB2etFyVbW GAXrGN3OAOJP9lOkZ37RxGqrc+GBqVJMymQLgauvvprgygMPPBBE7VR9ywVRWG1ygEDGlvBTjjjb WFhz4clBjmSqVC18/BdVD37Ak9vLElhRsoe0j7XYM949uV3SDIzBWgYR5QiBk0OeDcxg5syZJsSn NsLtDh2tAR0d1XBqhxuaQY2HcTlj0YebXM4uPjK14TqpmmKUwetQDA/ED9Omm/TJCgIsCQVMZCF8 S9ZLQH6TFfOlZ/oREGuJco6sKEvv3r2jFBqFrICspehQ1pfnt31q0Q6CE+6O3Tf24E31LZTmE2Vd HAVpqL2jIy7M421pxAI5pROKfUNboMWnLRJ8rMVIW6FRFpvxUpkoZikCGfgeipUNqkUwkkTkCwGi JmwCqsgmcnW5KuqixkKgegSU12LPqQiut99+m3Kl9syIQFxqRNgD/rXXXvNqRDqIRZXcNXDgQN6X LvXmE7VgwQK69OjRI6CttjOLtXZve9TYY489ykrwDc1W4cKh9913X58cfkeaUWS9eC9r9v7775cd N+EG5nv4Id6Y8NAaLrsIELPs37+/S24LaAhHJHIFbKxmQiAqBMRaokLyR5dffjmyhg0bRmG0yITW QhDJsGS8uod0RXVXfbmxJUQ5fuNjP2Ut3nbbbcu2oUEQK1q3bh1EFBVu2KTjvWytKoUbr/A9PBDd zBt1CYEgCJDIQjoLgZMgjWlDTbm33nqLRN0guboBZaqZEAiKQPXhGkkAgUWLFhnir776agoBsRUN b1JtQ0o2FCjyLdMUZnXY8o33fmlRhcsxZVeIGqrLUni/rBU2WQ2N6O5HWAkmMa/AA806fDKxQTVQ FhEgMYVVoRAZtXS85ZZbsmiydM4BAoq1BKV3pdvZ2tApp5zCebzRSIxUSs+ePZF37733lpZKfAVD SDdx+bC4uNtrU7rv6tWrabD77rtbs7Ki3HKM2+cc0OJ33303KiuK7pouFF52xICaJ9MMD8QPGct8 UpcQKIoAwZL99tuPYEnZciyF3elVulRufJjzdUH1ASoRVDSEHVUW8P+9IslqnDwCYi0RYP7YY49R EGX99dc/77zzIhAXgwhOq0EqeSQs/RSKp2KKnfVjiSPEiu2c6hIXy0Y+tsHhALT/6U9/ar2CiLII 0KOPPhrQYqNE8+bN87Znpen555/33gkytCUC+zoWHslkI1pF8wxd+OEGG2yAT+KZGVJbqiaJAGSF Oiv8s1e0ysPa0K677grj8alq1YyKprXxA8YqPHm78L9mTMJqIPE+4OmnN998M5EeX3JbWdysjtGV V15ZtqUaZACBHMSLam5C9+7dmemxY8fWXJMSClhlFLbb+Cr622KKbeSxsIo30OK2NPtWiGjGg99t orHlIYS7jUXBRcFdnBy6o57bVWT/P94tzXbHaUgWoduu7JoFH9q7pdlZinwHo9tr7dtGROOU79PB GzEEz0yzT0q3miBACm3o9R36Ft1q5PtX9dplXw7e5Wm3gOut0hSwBpJVIgiBm/1G8u18DCFHXWqO gHY+VzsFlkbQuHHjr776qlpZcfbn39UqpBm98H5fcN9GdtVZrKKaPf4tLOFjLXwFuCpz9nXgqE9w Uajkqq0ErDLnqtK5KnO8MbuchkGs8A1tJiDH9PHOg2MzDYEW56SFl4034pPYks5Eq/CGqWd1CNgZ hwErshQOBd0h1FF4vyLWwj8aXy+OQPDbwP0DljbO/hn5EgiBgVGl0qUZQohVl+QREGupFnPq3/PP cPzxx1crKJH+/Nu7srb2nPZGVlCBBo5J8ClUwH4quUJwLuuWO44G+WrTmSllRdHGyso53oMcvlzc 11nRsiiuvdWrtfCMl7UEH5qvP1cL2L7OzCLfVACCFzQIFo3T/6MNn8QW/DMRz9Ig2UCAzfxFaUdZ 7Uv3qoi1FI5VWM2yqD727+n7ynItuc//ZkN1m6x4dAqLQ5ZFXg18CIi1VOsSlstWP8ftFu4VqhZB 9Y8HAcvvwT/jES+pWUKAirdVVoRjq1EJCVWyFgiHxYBLY2q/MRr6wVC4FOV/2v2gZfp/b2TJsWqh q7Jx7d8t5DVjxgwS0zp06EA2fkgR6iYE4kEAn8Qz8U+8NJ4RJDUbCHAmM6chcoBzNepSvJ/U3Wok lOhrLmpbHRu6SNcl3kM4ttIKT05g0YKZMVkksfEhINZSFbaTJ0+mv9X10iUE0oaAeaZ5qa66ReCQ Qw4hUlLpvhsHF/uG4D28xgQg24so5Ijw0nswrTx3aMpCX6sq+cwzz8RkiMQmg4BYS3ic2fpr2WF1 xVpatWqFyRXtlgwPsXpWh4B5Jl5aaVGc6oZV71QgQCaHxYBJv63mH/aaa66xSrhlrYLccBKW77rx xhsLO8JUrBnbnk844QQSVtC29JECy5cvR45t2Ax3hahME24g9YoVAbGW8PDedddddO7Xr589yOvk orICS5mFpU3qxPxsmYln4p/obL6qq34Q+OMf/8jRQkcddVT1Jv/pT39i61AQOVSE4oQv3+XKB3gl sNxjzVj04T7VnuAxIbj1iSee6EiS0SNe3R3bKuG7LN9LV3YREGsJP3dWsa2uAi3hwVLPGiFg/lm0 umCNNNKwSSBAGgpUI5IKtmTyBgm0YFXR/TuWJOu7JkyYYHmc5MYSC2S3IItE7dq1q5S4zJkzx5Ek o0e8ujsLFy5MAmuNkSwCYi3h8Z4/fz6dCw8KDi9RPYVA1AiYf5qv6so9AmSfkHhrCzosDFVp77Rp 04jZVCmkdHfyVAjfPvfcc+wPIu5CQeeKhqNIt9vFUriH6JFHHqlImhpnAgGxlpDTxCosJ++0bdu2 ZcuWIUWomxCIHwH8Ey/FVwNWTI9fI40QFwKQFcrtR3gUMwm8yeSCwF322GMPcKGcTGl07Lyzai53 Vlo1QtS3hgiItYQE3368du3aNWR/dRMCSSFgXvrss88mNaDGqQ0CMAw2J1d6tFBDuhJo4aNkWAsD 2dpQiWTbZs2a0aCaRR87Psnk6MouAmItIedOrCUkcOqWOALGWrRIlDjwCQ1oO5ONZITe3uzTlX1D 1157bRwGcFBrly5dfIlWpM2Syctwe++9d0ODUnyIj1gSCq2VnfncsWPH0BLUMQ0IiLWEnAWxlpDA qVviCIi1JA55ogOSyMKCdfVZLE5paBCUJaaack2bNoWgHHjggex5dpufL7vsMkYnLbdEmqB9RLJt Qxm7FkQpsaOTLF0a7LnnnolOjwaLGgGxljCIrlix4i9/+UuTJk20RBoGPvVJFgG8FF/FY/HbZEfW aEkgwPZm0kECbvMJohCiqErHLqQgja2N1dqHkTTUxa3LUJQF5sERYOwbss0+dOFP9h+Rllt6RDuH iNTdos1GjBhBZm5DQojx0Kua0rrB0VDLWBEQawkDrwItYVBTn9ohoHBL7bCPa2QWccaOHYt0VoUi pCy20lSpwJUrV8IYipaJO+ecc/gISuGAoEYtO59feOEF2/5DX/4MshnT1r/CnVDx8MMP09eOFNWV aQTEWsJMn2V11ef6KPXlGjVqVPZXURhYo+jDThn7UaXLi4D5qvmtrhwgQCLLbbfdFkk5Fh8apN/a 8cgpvHr06EFQJ1yJSwrZYRESUmiXVKoIAbGWiuD6Z2NbWK3mRIwwoybVB0YCL2HV2ZLXfJfV1Y7v UJIqrSSs3a1bNxEXH4zmq5WW8KpyLhLozkTjq5RVrWgsfJvd4BV1SVtjjhai+FscG3z4D6pobShJ ZHBj1pIo61IpccFPbFnKjiLSlWkExFrCTF+OWQum2Y8SvhpuvvnmMOgk0seoVSE7Kbu+noh2qRsk YdYCLWB2ilaIGT9+fEM8g9mETBSd1oYAveSSS/io0h/Q5557Ls+wSp98aZhUar6Re4smVR4tVNQW lpzSf3b9cccdx/+4LWMFv66//noan3XWWcG7qGVqERBrCTM1OWYtVpuSHyW8Gn1J59VQsKfE+no6 DUlGq4RZix0us2bNmoas89UK4x+Kva8EyYqeWdOQEDvLhgzNSn9ADxgwAJm/+c1vkgE/qlFuvfVW KAtRlqgEeuWwesi+oQsvvDAO4RHKZK75H6+UcdKeBJpK/SRCtSUqQgTEWsKAmWPWctNNN9mPEjL8 eYSooGoY/0hfn4RZS0UA4GNsRmXvK/yDLR7B+9rCUIgKJTy9GIj9t9lyb+IrrAqFsDcIpKTfstU5 wu3TQQZVGyEQAgGxlhCg/TM/IH95LSSy8FXOFzpf67bJsETGANSNA1dtLYDAfmFLCklRTopPrYHv /FX7eW0rAly0ZO3Al3jBp8hHDVpaM34z2RKDbZjk17nd56ZNpAm0jBxriZK+OeZZxX1qRdh9/qSN 04S1p/ylxaSZtTCV/HqeOXMmk1vR/5T94G5oeQj3Y4obmkrbS2JelPKLKIgdLUQWSxyJLJhP5BLW EhMfSjm8Ui9zCIi1hJmyvMZabHnIvtAPP/xwXhuKxFKhkgNaOaaV00NgOURlTjjhBEcdjO5QSIqV Ao4046KNd70JokB3fl7zuOr1wwVbGjVqFI8ZL3FBLBKgFLREAuEfcoGpIkV7y1/hpnV3paVsieH9 99/n1epsFppwzz33cN9q7fBsI/cQQxCIHIZAz/zl86aZtQD7G2+80bdv34r+FXEhfKNE+Y1XXnkF UvLMM88UFWuFVu+9996KBk2+Mdt5+vfvz47imPiKWXTRRRdpf1nyk6sRQyLgDszUm+AIbLTRRsD9 xRdfBO+SiZY8s7GLB79pa3/yI9irvDt33siKfURRS/M/d8dYBcfQFzXcFgLInnEN6Ohuui7Op5Hv k8Ojjk+pTOW7b13c/aIm2E2eB/TFHKJKTm3uWJCJ10xMWUAl8VWMWn/99akeFrBLNc18s1DoP8Be VH5D01rYeOLEiYwyevTohvQsPAG4qKtUY2YCfWFmrAolMJCGEAJZQUCxlpBsj27rrrtu+M7p68mP V6MOLmfNnt9Fazrx4OcUeNeSVRXjHI8++qhZZvmYRS8GIrICrbn44ovdigCirII4YQ9fL55MocvD FJpgZqK/VcSiBBbBGG+a3kknnWT0K31TVK1G3377LWcCU+qjWkEp6G8pKdWchGfkNZ2rgSzZsCrE jiEWbmLNNSHDlysF8ykVhEBQBMRagiLlbWfPWuIEYTqntY+tm3hrR9oiETSisM4HWSC+FISBAwfS 2KU32o/mYcOGFRZ9sWQCiIhPAsUxLULje5D06dMnNGaF61xmprGZopfV6LSz3HJz2QxusskmvLLB FZwTeFZBj+ygGe914403RoKq+VWJw/bKjpLaki1QFlaF0D/uuikMxNpQrGtPZWdBDYRApQiItVSK 2D/apzlLIIw9P/SxIIc3t5FohP0edRGUssIdR6FEN9EXCAoSeGh5k0sWLVqEnKLflWTJlB2iogZm AoEfd8aspddQ9cErB7Utz9euiobIRGNjLYSU7HwZ+ynPFWu1QJifHTTjvWINYpEC5RiS0SNe3R1f PrhNXEOJLzWcVuIrp5566i233FJpWf1KdWaRlAzcWGM5laqk9kKgLAJiLWUhKtIgf6yFh7qt6Xi/ 9/m6J1uWm5XWdLIHJOeMkI9i3GXIkCFuL0+sT8rC2Ro+fDg3bZ2rcBWMxzlmwmzQkHRgu8L4RLr7 uPxxKAvExRbjCLfsuOOO8QVdCrOOLJEoPqjmzJnjGJLRI17dnYULF8Y3dCSSCYNxISqZ7TzwlZgO do4EDQkRAkUREGsJ4xj5WyFyySu+X8ZGZYhPFK3uX4id7xBsloHgLjy9WJIglmMRl+7du/PqqzNm op5//nleS5wcG2K2rKSYDV24CsYallUqs+Rcu0KMkvIutprpluROO+00uAuPRgu6kOySjy0kbG1z k1iYjUsmVpqniYngaKFk+Ao4pL8MbponS7rVEAGxljDg5yzWwg9xe6h7n9zu27/oIhGPB1+yiwXk f/rTnxYCSqYINdS5b2cY2S7lwsK7pLNAkuA3RU+OLTpP7777btn5s5JitkhUeIKaJdlgfvBBy46Y wgaFe/UJujzwwAP2U5t5J+hiv/KzdX3++edVKpyeM1CpSxvT0UJFIWIFqkro1F0I1AQBsZYwsOeM tZC2wkPdbavxIWIrLFYz110E3llYcQEYckG4A+GwtBj4B1XjXGYuj8y5c+c6vkIAhpa0Z83IUR8a 2wG2xm/KXhawmTdvXtmWNLAUY54KDEqacGFhby8DK6xKF2SIlLexlb7CGm4EXZh6Q57kWYIuqT3v 14ew5XxQlCU08jBv+lqGcg0vd7QQmV5xJ7KYmYxoNetqaLWGFgKhERBrCQNdzlaILG3l7LPPLoqF rbCQWeldJLIaJ5Zpy14MywUhA9eQYYmH9vyah7vQgIJyhDQIeLhU34ceeohmrBnxEQ1oRmM7lJWt yEGmxDaPIIG+Vle3RC8b17YF2RPaXbaZiIryloeLLcRdLLyUp6tEXUSelPzsJu7CYwzKkpWt0bvt thsTVM3CliW+tG/fvoYTPXbs2PiOFipql60JVoNbDeHS0ELgHwhkpbBMqvTkKx7oDjjggFRpFVoZ bLHgR0MSbBuzVQaz6l688oRz+4dhJL5idOSyuE8hAdRc8VWcozscxbY6czFEYSk5X9U7n3q0twa8 utEb6mImMJxPDf7ELuvFp6hk8Rjeh8YzhR3xVQzEb0vrRujFpgMSWU1xMxNSIhvXW2WOubMCx4Ul jwtdwumPcIbA8RqyyBy1IQlluycziWQXvfnmm8mMZaMQcWSWkxxRYwmBaBEQawmD5wcffMAXYpMm TcJ0Vh8hkDgC+Coei9+WHZnnqFs7CP14MzJaNE3KkmShFE4ToxdFr4ZK6Frf0vWXS1tqapQorVsW qGoa2P7zhPmKU5g1wWqUV18hUFsExFpC4v+Tn/yEbz0WHUL2VzchkBQCtjSGxwYfkF/kRiNs/Sh4 xyRbEhgrEU0prYmVci7Kq+I2wXghedBxD+STr8MBEgZcw8WEgPJaGvqZV+Z+165daTF//vyQ/dVN CCSFgHmpeWzAi3wLXz26FGZCDB06FHNCFBOys80bSj8PCFHoZlAWiKBbjAstp9KOENCESyVVqqHa C4EgCIi1BEGpSBuxlpDAqVviCIRgLeiYZD26cJCwo97OEg9YTMiNYmebX3LJJeHGDdfL6vQT3Yn7 aKGi6hnpTKwYTDiI1EsIBEFArCUISmItIVFStzQgEI61mOberdEprEfHMTooGfzECTPqiiuuINAS +kjOEHMKaWBzFlGWmuw3NsKUwmhZCCTVRQg0YuVJKIRDgN9MFHil0FnLli3DSVAvIRA3Au+99962 227L2chVrg5Q+J+CLiaErBeWkOLWPGfyqZJSqxN/mCy+qVS8P2ceVbfmKNYSfuptkSidJ92Ht0o9 84WA+WdFSS1FAaDODXterNoNEY4M1aOr4XxC8qB6dtJTrSgLQ7PY59Kra4iGhhYCkSAg1hIexr59 +9L5rrvuCi9CPYVAzAiYf5qvVnnZfiLbApOhenRVWl1Nd9bU7FzlaoRU09diYyiQTNXdalRVXyEQ EAGtEAUEqkgz6o1uvvnmfPD222/b2Tq6hECqEODgp+233x6VKKZXWM6/GlUJIdi5RfY7voYP5mqs iLsvlCWxOv1FbUEBVqaS368UN7CSX88IKNYSfvZ5DFhCn8It4UFUzzgRMM8cMmRItJQFmSRJ2NZo notkekJi4rQjY7Lhc0RZjNLVNsiBAqIsGfMeqVsOAbGWcgiV/HzYsGFiLVUhqM5xImCsxeqaRH55 t0bznKZSrSVw1PlF6uttt9126qmn1hYHS6nRvqHazoJGjwMBrRBVi+qOO+7IVwNnGu+3337VylJ/ IRAdAhwkxMnYrFCQRRud1CKSCLfwgGQlgs9YKiIMU5P9vbHaGFw4ONQ8xIK2kCfOUbcT03QJgTwh INZS7WyOGTPmsssuO/7443//+99XK0v9hUB0CPzyl7+86aab8M9kyqkRbnHrRBCXeluYgLqxKgRT rO2SkHMf5oJ8o5QoE51Th5S0cuXK9z0X5QC+/PLLr/51ff311/bW96Zx48Ybbrghrw292XjjjSl7 sY3natGiRUgV1S0wAmItgaFqoOHixYs7dOiAW/OPgYtXK079o0OATb9Nmzbt1KlTcJEnnnjiDTfc wEHBSZYgC65e8JZ8//IFyhfxq6++uvPOOwfvWE1L70Zf4g380K+ToAtLY+wGh6spK7ka/6m+Lwe2 4/BvvPGGl6PwHo5SvfAgEjbaaCMvieF9u3btOnbs2Lp16yDd1SYIAmItQVAq02b//fdnhYiQbKaL IlAWnfroHLHmrKV+KHdOOukkSqdHAFOyIqAs3bp1Y8yK6ij27t179uzZHAh8zjnnJKtvxKPxEMUh WSF6/PHHIxZdTpw9wi2jok7q0UHXuFJC0cCfEEs98KcVK1a88sMFU7HXNWvWFHVPqiz6giL8nika QfHe9AVgCoMxDGf0iOCNvaGaX1EFGI4ft9AXe+Xaaqutyv0n6fPiCIi1ROAZjz32WI8ePTbYYAO+ qbPri+4x36tXLwPl+eefNxITIvZArIIDYp588slaMR4W9fm5T4ooMbDgc5wP1sK3OU/Qb775hlL3 BxxwQHDzI2zJcokl5zILVHnhNULhKREFU8HMFObx8EWUEgoV7UxhF18pnHxpHOXDDz/0yacMNLSg ffv2BDm8NKVJkybRatKQtLVr13pJDO9fe+01VKWEuq/LlltuaQyGX4b8vsrlfMWFeUxnSdeb2AED BjBDp5xySnYN5+vAnMyZQJGPkSNHcodnP6HXikwz6oPMinrVvLGpTayl5ppUowB+iBX4ZDVCqu9r 9ejMqUhzqV5gqiSQ4wwVg7KkRyt+Y0AQ06NPJJosWbIEo4499ti2bdv6noJ8L/Gj6IQTTrj++uvJ KPr4448jGTEOIeiGhuiJtnAUNPfZgnXYiKXYG4cCeZL5f4+oPFmVvC2LFi0yL4RWJz96JCMWshYT yzoRdk2cOLGiUcRaKoIrwsZ4oLkiPhmh2NCi3LKpldYNLSeFHXkOpUorS6xJlUrhlHn99ddJJD/q qKN86SA87A8++GB+VMycOZPanuGEp6QX+mMFtmCRj8RgNbaDADikRNtUqSHWEtl0jBgxgkcFFVwi k5isoIZYS2H4ge0SxGDcfxoNWEJyyvJ/WBgY9EYv6D5o0CDrziuifIEcC/DQDJVoadJ4wx0fJESD kGy8isurCTK5w0feLqa5a49MXzQoB7EWqyGENybrPqVGs3p0NkecZERIID26VaoJyhM3ItG40o4J tCeyBdQJDBTTEHPmzCGLzqo5u4v645QxvOqqq1544YWYxk2DWKzDRiy1euvuAg0wYak3DUqmRAex lsgmwhV0mjdvXmRCExQUkLVAUOw/imc/z3gWZe1P2IApSwPuGynhU957yYR159PRo0dDOIyU8KeX kRh1cItTTppvoQrKYqNz36uJEZFCc/hlY6qaVo67eIlL1lkLvmc24o0J+k6godyZw5kOuhDM4Eon 8UqnVmWdY8aMGcOHDyfPwz2qec/65rXXXpuSeGFZE6JtgNXYDgI+TECJL7Fox8qiNLGWKGeNJzH/ eH369IlSaFKyirIWmIHxD/tvIYBhf3oXjOhoN70Rl6IrRCbNRz6Mx9DeGerSgSEudOG+Iygg7JoZ rYGCWBtTz0VuCs0xkuSN6xhn4tU3dHbzWvA9LPKilJT7BBqHSIDb20L0hdSQQN3S1Chtq0KGDbGf bIH53Xff3X///QTevIsjpKZSXui5555L04TXWBfQABOQcZQOxMCNGQfDGitXo+HFWqIEno1wduAL WVdRyk1EVtFsXHuuu3UWyIqPYZhqtipUyDx86y/WvTBFxsIejk8Ya/GSCYbwkRuYiv0bN5Qm3FDo yIultYH35IO14HWYgwfih4m4TMhBXNAFbVOVzVrCHqubF9Lg+LtBB7PCWoiscMQE9dncY3i33XZj q3ym17bin+HvwQeUwMrhBoYgCZ4JjJ6qIcRaIp4OjiAxrypMwoh4pKjFuce8rem4gId3+cZuemMq pgXGmtW+x3/RrBHCIbAc72WsxTUuukxj6jliVEg4fHgEYS10Kap2FmMtfKmZLXhg1K4RvTzWMvi9 aAqnP+gCX0mzkpngKx999NH48ePZk+weul27dqWqeHa3L0T/XxFMIoiBG+g5JEEVbEE4mIDMtxJr iX4KWX3En9iSF73oOCW6x7z7ZyAIwfPbrb8wuIVzi+5nDs5anHzfG8fzgrCWhqI+DqGGWAuxGViX 40y5YS377LMPtuB7cfpIxLJZbcnE1mgYYWpTRggC/fznP494YiIVx8FM7Ihx/+zUiuWhS/naSAep R2FgCJLg6bAFZ9DOPRZiLdFP8bfffms11EeNGhW99NgkBglO2L9HlaylbBGXIKylcE2qbKwF+uUC SD7C5AsRZS7WgqdhEUWr8L3YHCQuwe7EIjtEOq5hKpcLqUo5ISDKktp9QxTRnzBhQpcuXdz/GilN 06ZNq3we1KMMAqDqLYUM5iAP/nkFbp2GfvjqfmgE1ltvPcsw4OE3ffr00HJS2NGe+p9//rlPNwrR cqewdFJREwrLRIawdO+996bXp59+GrwvW4Kp1u/bQR28e2pb4mPG4X7729/ie6nVsyHFiBZYPTqC bbvuuqs7grG2hlDYl7q3p556am3VKD06oKWw7jD7104++eQf//jHnOrFht6tt96a9HACAySQHnLI IWnGM6O6gSrYUtwFnEEbzEEe/JkFt7M1o6YVVVusJZbZ3G+//S6++GJE4zfek31iGSxBoVb0ifwv 35iwAe707NnTd99HUHbffXcaWKH3Ki8qdiOB2t4cnxRQlCk5ZcqUis5TDCi8Vs3wLso5MDr+htfV So0qx7WsEcvS5exo6G8kTlKNVvx4JdaS5tN87IFENKgaM6Ptu3z5cnjejjvuyM+2L774ggPa7rzz TqraX3rppYWVbaMdWtJYKgJn0AZzkAd/ZoG5YEaYl1zhk9cgUhrsssgEad5pUKasDkFWiFzWrXcf kKuD4l36sV//roiLjW6V37h824hINPFu1g2yQoQ0t9XIu/MZOZYfU2iODe1N07G901zZXSHCu9Df u3ur7ESnuYGvHl3yeaYoAA9IftwQk0LR4fTo+c4773iDZEcccUR9lloJMY8xdQF/ZsGRFWaHOYpp rITFKq8lRsAJitqpXWeccUaMw0QkOghrYShX+taqzLlabb6NRU4aKb2W1WtquiJ1VhrOJZqULZri 20OEKNiJK7AbpMqc28VtqbhoTnfTP6OsBb9CeXwsZ7mN3q3RSR4CYGkiWdmMHdH/fbVi+HF/5pln uqcjNHrhwoXVClX/iBBgLuyHjV3MFPMVkeyaiRFriRf6WbNmmbsQu4t3pKqlWxyFB3lZSQRXXKF9 2hfWxXcExTgBr96Sjlan33sgAKGXwhCILx5j6vmCClZWzifKRi+s6O8t/+9OEkCg12Szq9JDl8oi FkcDPMpcCx+LQ35tZdZqa3Q6i8j55gImlwZqxdHiZ5999jrr/DPNgGPe8110v7b/EdWMzrwwO/Z1 wXwxa8xdNQJr21esJXb877jjDnOXTDwLY4dDA0SBgG385sK7opCXUhk8nin/b5ayIBKTlsaQMsFX QABtCQjVXFtKzlsgmWvgwIHz58+PaXYkNioEmCNmyqaMCnXMYFSSE5Yj1pIE4C7ife+99yYxnsbI NQJ4kX31pOEHd9xI+4IukW+NNhLA7uvUVmTxIQwC8RG4ILPJWVfdunUzDzzssMOeeeaZIL3UJiUI MF/Mmk0f85jFU/PEWhLypfPPPx8vadSo0dy5cxMaUsPkEQH8By/Cl/CoPNpX3CbbGm1ftZFX1k/n Ac4pnNy1a9eecsopNgss+06dOjWFSkqlIAgwdy4lkTllZoP0SkkbsZbkJsJ2rHAQOdVNkhtVI+UI ATzHDrL3bc7KkYmlTPHWowtBNdjG7JVOxCJyAhT3RLCSVauYEHvRrdwAF1UN//a3v8VtrOTHigAz aNUpuZhZ5jfW4SIULtYSIZjlRR1++OHmIk8//XT51mohBDwI4DP22MCL6hYY79boijgHLAfoXK1b GExWdjjXfK7hygcddJA93qjJpJTbms9IhAowm67OFrOciV/UYi0ROkAgUVYdcsMNN3zooYcCdVAj IfD993gLPoPn4D/CwyWKkasbcGu0q8ZmyUBscq5V0CLc9JF+G3lOTxBNrrvuOuMrBPkmTZoUpIva ZA4BZtaCuFzMeMr1F2upwQQde+yx5h8ZCsrVACYN+S8EXKFYPEeoGAJWDs7+j1g3KV1vzQIt7qr5 BpxKJxGCRfnghNWmuOqRRx5poJ1wwgmcnlGp2mqfIQSYX2bZppt5Z/ZTq7xYS22m5qyzzjL/uOqq q2qjgUbNCAJ4iLkKPpMRlZNT01uPrsSOKl/ZeyI06akqGwQsTKtoOSyIzNJtODq4ffv2eF3jxo1v u+226gVKQiYQYK6ZceZ9p512Su3x0WItNfMlDhm3p9GYMWNqpoQGTjcC+IY5Cd6Sbk1rpl3ZenRE ZbyBFnvPjqSaaRxq4CTXs6688kpDiZ2xixcvDqWvOmUVAWbc7WzHE1JohlhLLSfF1Qqrzy0htYQ+ C2O7Y5KUT1B2ushucVujfeVMWD/yshYCLay2ELpIeMGlrAlFG0BWAibuhJPv68Vwrux1Js4hicRq CSlEwE4L4cIfkmTMQeZCrCUISjG2cRXDOKUzZ6fJxIha3kXjCfiDfWuoMmHw2XYEBV5iuausBBlN YdMQ6yzcTNtXcFnrQuzxLiuzaIPHH3/cDnVv1qyZ71ixcALVK9MI4AObbLIJ/oBX4BvpsUWspfZz 4b4scBF9WdR+PmqtQWq/LGoNTKDxffXo4CiZoynOziSTb/TzKZB71VmjdP58EmtJhRsqMJuKaUiB EmkOzKYAnqAqsEhkkSoCLYnFKoIqF6xdkvuGWII0uLRUHWxy6quVW6pOyVF6Yi0p8j8lwaVoMhJX Jf1JcIlDUtWA3np0NSwpG9qGxEr3altA6Dmqn46p2hYg1pIux2OzGVvO+NGjDYfpmpiYtXEbDtlu mtoNhzFjEIv4EPXoYtGjcqHJpOCoBEPlM1OnPdJTgkGsJXUuqOJOqZuSOBXKUHGnOGGIUTaPf1Jx bQWEtNwkk0XCWZVYLo7KXYaboLrtlZJyl2ItKfVAFdJO6cREqla2CmlHanrSwgLWo0tarWLjwat8 m7fj0MqOFtlggw2mT58eh3zJzCUCaThaRKwlva6lQ8vSOzdVa5bFQ8uqNrrGAsrWo6uxfgkOb8e4 tmzZUse4Joh6Toaq+TGuYi1p9yQdEJ/2GapQv+weEF+hoSlt7tsanSotbd9Q3GtYtiVks802y8QB v6maICljCOA5dtpiTTadibVkwA/Xrl17yimn2MJ8mzZtpk6dmgGlpWIxBJg7ZtCmkjllZoVTTRCg Nq7LdKnJWcpFrWZhiBScWAE5//zzMbxRo0Zz586NdSAJzzcC+A9ehC/hUQlbKtaSMODhh5s3b547 HuKwww575plnwstSz8QRYL6YNXtSMo/MZuIqaMB/QyCFQRe4VKw18Vxyjwou65+hegRcZcISB5dW P0qhBLGWOFCNUea111678cYb28Nv4MCB8+fPj3EwiY4CAeaImbIpa9KkCTMYhVTJiAaB7G6NrtT+ O+64w5wwJbXCKtVf7VOIgDtKD+9KTD2xlsSgjmygFStWnH322euss459Bw0ePJjUzsikS1B0CDAv zI5NE/PFrDF30YmXpGgQSEM9Ogr4xnpK4qxZs8wPL7300mhQkxQh8AMCeJS5Fj6WDCRiLcngHP0o 77///plnnmnuwjV06NCFCxdGP4wkhkKAuWBG3OwwU8xXKEnqlBAC3q3RsRKIhOzxDMNpMgT58EYd 45w8+PUwop1Dgo8lcwCwWEu2neqdd945/fTT3dPxiCOOWLRoUbZNyrj24M8suBlhdpijjNtUL+rX ZGs0g8adFtCrVy/7YVMvEyk7E0fAfqThaQmMLNaSAMixD/H222+7TUa4zv7773/nnXfGPqoG+HcE wBzkHV9hRpgXgZQ5BAi0cOaizWMC1d6gLLHuG7r44osxpFWrVitXrszcXEjhrCBAjW98DE/D3+LW WawlboSTk0+Zh5NOOsnl6m699dajR49+/fXXk9OgLkciKArOoG3POfBnFuIuuVGXSCdqNAcu2oRS QCXWrdE77LBDfPLZnmpWUNI0Ufg0WP0hgI+Zs8W9qV6sJW/O9eWXX06YMKFLly7uRz+/5KZNm5Y3 O1NgD6i6A25AG8xBHvxToJpUiACBFG6Nrsiqb7/9duedd8YzR40aVVFHNRYC4RDA0/A3vA7fCych SC+xliAoZbINRwcfddRRjru0a9eOI+mTyZbKJF6BlQZDkARPhy0466DmwPhlrKG3Hh07fSLUnqWo +KIs6Dl8+HBcdJ999olQZ4kSAqURwN/wOnwvPqDEWuLDNhWSP/roo/Hjx7dv3949Yrt27cpD99VX X02FftlRAsTADfQckqAKtiCcHSOkaRgEvFujITFhRBTrQx5ufCuJt912mzlqrMQoKigkJzcI4G/m eHhgTEaJtcQEbOrEzpgxgzRvl/WCV+22224XXXSRvtRKTxX4gBJYObIChiAJnqmbYykUJwLR1qOL j6+AwZo1azhmCI+9/vrr44REsoVAEQTwOnwPD8QP4wBIrCUOVNMr87vvviPKTaZh8+bN3WO4Y8eO Y8aMee6559Krd+KagQaYgIxDCcTA7f777wfDxNXRgKlAAAr785//3FwCZwjNPCBAyInPJNLD0bBP nz7xDSHJQqAEAvgeHogfxoFSI4S672W9qSsEKGX44A/Xhx9+aIZvueWWHJFj16677lpXaFgs/cl/ XQ6TLbbYgpTbgw8++MADD6w3QGRvUQSuueYaVyQJ/uESXwLC9dZbb+233378eGB3UsAuFTVjvz37 kujiPbmsIglqLASqRIDv0Z/97GcIwdu33377KqX5u8dBhSQzWwg8+uijbNb1+RYHkffv3/+qq67K 93EBWIeNWGoHr7sLNMBkzpw52ZpKaZsMAlXWo3viiSfi03PEiBG48bBhw+IbQpKFQFkE8ED8EG8s 27LSBoq1RMwCMy2O3TH8PrNww7Jly5wtLI4QfSE5nBUTLqsmlNFr+fLlr/xwPf3005jJ48cZ0rp1 a4sz8SvBu0Uoo5ZK7bgRuPXWW8l54tckA1GPbuzYsWVHfOmll2IKsdjQxAstB4vkcdv2rEsI1ASB xYsXd+jQgaEpFx5t5F6spSYTmoFBly5davQFHrNkyRKvxpAYuAse6V59gYr0mPfJJ59AUPgGN6bC Gy9NQc+2bdvCUYystGnTJj2aS5OsIHDMMcdAX9AWOsJm5tKkhJYs37jkmMht5HTx++67j7rMHC0e uXAJFAIVIXDqqaded911AwYMuPfeeyvqWLqxWEuEYOZWFL8moS8LFiywB7/L+XAGb7vttpAYdgJv 86+rZcuWvLUz2xK41q5dy/GEdr333nu8vvbaa6j67rvv+kYnT8UiRp07d4apWAaALiFQDQJEUFhk tKALaS7egxirEVtp38cee6xHjx7rr78+qS1bbbVVpd3VXghEiwBH3PMF+80335CEcMABB0QlXKwl KiTrSA6+6EIXxmPY4VbU/mbNmhmNMRLD1bRp08aNG2+44Ya8et9433/1w/X111/bG+97u8lwPo6y evXqogownDcmBFnRt3kdeWqyprJCxIIRY3KMEUEXb91kbpLD+/LLL3M/PqU4Boti6qjBclV8o0hy AgiwQE/ol6g2p0clMFx8Q/AfgUN279798ccfj2oUsZaokKxrOfyPQV9Ii3Fkwt5Q3j4ZXDbaaCMX 5rE3JKbAUUhVSUYBjSIEQICgCwtGvPKerdEEXewgxs8++4ylfShLfGtDlkYA++c5x6+C2k4Hp1sQ mvXqQGiTmxQ62nfffWurWyZGf+qpp4gEo2rWN/nyO7NFixb81Iww0UqsJRM+nFUl+QL18hjWbr74 4gsXRGnoTdFgjAvP8CkcxQVvjKPwj5FVjKR37hBwW6OhLBAX6AuLR2S0BEnXDQ3G+eeff+mllx5/ /PG///3vQwuJqmOjRo0QBVOxYnccCOxIDDU80DOqgfIqJzeshQn65S9/edNNN0U575VuOlJ7ISAE hIAQKI0Ae3ncChH5uaHr0QXH2TK04j5uN6A+RiZIhnPtyYsfN26c3R85cmRAOXXbDOgMqxwgYAeP 459R2bJOXrmq7BICQkAI1AoBmAp15CyLhQWjHXfckQBMfMpwvgThHFaIqF8X3yjVSCbocs4559jD +IYbbiCWUI009c0QAvgknol/4qWRqC3WEgmMEiIEhIAQ8CPA2pCrR0c5XVJbbJ9R5NfkyZORaXW9 0nyR1EKgBQ3tqBp3sYR04oknUoaApSWuwYMHF9IaanmTGWMNaMmBGxVJmDJlCh0nTZpEEh5jmZze vXuTIo0cU4CFZm4yim909OE+LbnsfdFmpg8nqjo9ecO4Xj19argRsa6hiUOgIcMr7wuboZVT3ozy DVpzlzDPvOuuu6LRJKqgjeQIASEgBISAFwFq4BJx4Q4LRm6PfYSnRttYLL7Yw4ANzynB3/TxrhA5 xWbOnGmfujvEouxYNAgNq0i82p933323azNx4kTusK2GBlyDBg3ifUUSbH2Kjia8V69e9oZXVLJa Tdx0RZvQysnnvqln7b3N6OtdBSOVx+QwHJkcJs27IlaohhvRK8qtEJlAXu0Nl+9wH1Cy+8hhXNcs VctweKYpia9W76J5WDarHgVJEAJCQAhEiwBRFrJxvcX73YlFrB9FeNa6FZTr169ftPpXI80eUUVZ C2J9nxon8D6zjcdwuYecMYyGnnlBJLisGp7rlNA0tucYA/IdTYHZ+KiGyefiI6eDkRgvebIhvKyC xkYjHBSFaqCJiaKlw9yxFhRzfR1BcTpgiCEDq/P2LaR91cxmJH3xT/TEV6uXJtZSPYaSIASEgBDw I0CUpTCsEkfQxZ6pLAqkZw6CsxbbJQ4b8ClvD3IXbinxSz2gBKMLkAwv9TEe4KUsqGGMwcshDGGf ki7E5eiOMS2fITaEi3wUVQPyYQYWshZvyIdPjWY5HmMhKNTzDWqjFN6voYfYolUkKimvxbxFlxAQ AkIgSgTYQ1RYJNf2E9l98nN5yNlpANVc8+fPp3tG66DMnj0b5alnQ8aG97Jz0Dg1zJAx3kB6hPd8 NPsooARrTGqIbca2i6LevO6xxx6dOnVyN6mkwHtfvRnu2AFP7kKOaUUZbl5JhSG6Rp6KzxBOROFT n9o+NUqUlfIqZvp7dYAZ8yfpU96bvDfFDJmUXOaf5qvVXjUkXxpaCAgBIZBLBKhOW9ougi7uxCJL 2g2HA3LsYRaue0y97LFUdIXIF6JwKyZFn2Ru4YNohMvY4JHsTXkJKKFo+MHCKoUBAFPGgWMkAAk+ uLz33ZpOUUNcnKahKIhvxIZ2PtuIDlhbCSqKs09gTBNdkVijXL7oUUUSrLFiLdXSPvUXAkJACPgQ KPz562tgqS0WdCHcEjroYj9eu3btmpUpsMgElzeKUEgI7Pk0YsQIa0w04oUXXoCswF0IIQwZMoRd M16Ty0pIBp+GVkBi2tTjOws2GRtDj2Je+uyzz4aWYB3FWqoEUN2FgBAQAv+HgKVZBDyVk8QXtzWa owBCbI3OHGuxTdqW8equgBvC2XUMdyG0AMmj6IuXCgSUEK2nsl8agZwc4sQuWbIk2iFKS7PQy+ef f+5rZtu5LRKTnstYS/WLRGIt6ZlTaSIEhEC2ESA/A/Ixbdq04GbYUYtcvAlRjy5brIWnKWwDcE46 6SSDyB758A9jAEEuMiTOPfdcWlrWSwgJQUYpbLNo0SLvTVJVLPdlp5124pUT73llJSvJAnqWEFNY vc0yWnr27BnO0ph6ibXEBKzECgEhIARCIsAJt5yP6DvtOYiswnp0FrMpfXH6+l/+8pcmTZrsvvvu 5drW/nOoiZXuZUONyx3u27cv+2IIOF1wwQVe4sKzn8iKKc17yrVZ/ICLZlYkvlWrVrwGkRCJ8VOn TmVZypTklR3OvCHaYdSB5Fzb90Q5QW/urRW1c8pHookTYitoEEGq57mbFKwbNWoUfzpqGO2goaXh pfgqHovfhhbyj44hcmHURQgIASEgBAoR4OkbOq/WpFW0Ndq2kBxwwAFpmwt7JpGDwkPdLveU8hVJ Q3NXZc5IAJer/2Z2OQJnAu1T3rs9zGUlIKT6bFxLB7Yqc05Db26pq87ibC+sWRdtNq6zixGtypwb 0ZuwnB73wFdR1Uovhr7EWkJDp45CQAgIgX8iAFmJ8IhEbz0671c8o7CW5EC3ZN7Ii+1WP6luv48j KzxQ4StW3q3w4j6BCvfEpbuvMbksLhWGZnzqqzhXVoLVTfHVXGmo1ouxE6en2ytEKTxnGqIKzbFD Il0bVMUu7x6fomowkNEgN6IpVlj9xUDwbRpCKwcOXXjfUH2/6me2Sgnm2PhtNXLEWqpBT32FgBAQ Av9AAD5R5XexD0fv1mjHS+xL39Gj888/nz8vvvhizUGsCDS08znWQXMpHF/FY/HbaqxTNm5V62vq LASEgBAAAXJpXYAkEkC8W6OtHt3YsWPt4GgSfm0Iy7Hwlk2LZGgJEQIxIWC+GjzzuqgaYi0xzY7E CgEhUBcIsG8oxI7lgNDAhAi6kN7LKKT6Wq8//vGPtk1JrCUgjGqWEgTEWlIyEVJDCAiB+kWA+AfV WQIWaAkBE0EXUlvYmuTta+EWsZYQeIboYruEmjVrFqKvungREGuRPwgBISAEaowAfIUM2ViVIDfT txGa0AsLRmItscLuhE+YMIE8DFeoN5lBczlKJKylEZORS3RklBAQAkIgVgSgDqSzxDqECafMCatC hQNtvfXWH3zwAcXWtttuuwTU0BBCoEoE3nnnHars4K7uXMwQAsVaQoCmLkJACAiBf5wDd9tttxUe 7Bw5NJSr54Ik2evbb79td/jq//vf//7FF19stNFGkQ8qgUIgcgS+/PLLjTfeGHfFaUMLF2sJDZ06 CgEhIAQSRQDKYqtFEBdeKRr7t7/97euvv95ggw0S1UODCYFQCIi1hIJNnYSAEBAC1SFgO3ouvPDC ZFaIKBJvZIVxvYpvscUWH3300bvvvtuyZcvqDFJvIZAEApGsEGnncxJTpTGEgBDIEwK33norCzTJ UBZw+6//+i/yWnyUhe3Q22yzDZ9WWf0iT/MiW1KOQCT542ItKZ9lqScEhEDqEHjwwQcJtCSmFgSl 8ETGU089NZIdGYlZoYGEgFiLfEAICAEhUAMEnnjiCcqoJDZw4fnPkBgquBhr4eybxDTRQEKgGgTM V6us5qxYSzVToL5CQAjUFwIUpS26CTk+FBiRnc+8ehekLNKjWEt8sEtyHAgo1hIHqpIpBISAEGgQ AYIc8ZXB9Y1KIgt5uP379+cNkRUOTbSjjo4++miL9Ii1pM1Tly1bxsYuZRo1NC8rV65UrCVtTit9 hIAQyC0CdvpPMqyFiA7HG3FcACEWSsKwJmVvoE1ktBjEuVwhevnllxs1atSiRYssutGJJ57YrVu3 m2++OYvKJ6CzYi0JgKwhhIAQEAL/QAACce211yaDBWMRYmGbEjEV+Ir3NGnOJHIpNcafXnnllWS0 SmaUNWvWMNCqVauSGS7cKJMmTYJajR8/3tfdVvF0YlFDqJqvVsn7ldcSzmnVSwgIgTpCgDUaKEsC ZXAZCL7CwhBvICul0367du3KHMyfP7+OZiIdpq5evbqoIlOmTNGJRSWmyHzV/Db0JdYSGjp1FAJC oF4Q4De0N8gRk9msCu24446WeMtwkKTSJWG22mqrn/zkJ2vXrl24cGFMKkmsEIgKAbwUX8Vj8dtq ZIq1VIOe+goBIZB/BCydJdatzpZ4y14hS7x98cUXCwu0FAW6HsItpLiyHDN48GCyIliUadu2LX/y WrhAA0SkxZBcQloMbbh69+5N/MNBRxdu0sAHpiXT0NjumxAbyIYmx9Y+4g13Ro0axXte3Sj2Kb24 YyNaS4QUTpyp5+5j15gxY9xwXbp0Qc/8pfRGEmj5B2iEs3QJASEgBIRAQwiwTMMVHz5wFKNElm9L SkfwsW644QY6HnHEEcG7pLzlk08+aY9zp6fd6fzD5X3D+9GjR3vNufvuu61vmzZtevXqZe25Ro4c ac1MVPPmzX0gIMdJmzlzpvWiO0IQZX/Sl17UznE3bRQupwbvaTlu3DhaUpuEgfiTLt7hTD7C7Saf WjNeTZobHQkpn6yK1MNLMQ2PrahXYWOxlioBVHchIASEQHgE3DIQxAX6UqkguvAk4Gd6pR1T274h 1mLPdaMOXI6guEf70qVL7fE/ceJEL+Oxm7S3m8ZCoA5eBOym0Qs4x6BBg5DmGvAnn/Lq7tDGsROv HC9r4T5syZEh18xuOiWNWnHTa4i7mdppCqGYhZ1COLlvLLGWEOCrixAQAnWBAJSC4igxmUpMBeH2 w5o3FYVYvCrZjhXOUIxJz4TFlmAtvqCFUQ3HY+AB/Alv8ClsDMPdt7CKi77Q2EoPI60hS12wp1LW YmEVn2RjUcaKbGju+MIqhSAkPAuRD4d/Yim+Wr1k5bXYl4YuISAEhMC/IWD7ho466qg4cLFyLJzC yKrQLT9coc9itNQWl3gRh7YpkdmpUyevJr6UEfKXjf/5tLX4x+zZs+3+4Ycfzqs32eWee+7hjgVU il777rsv9xcsWFApDn379oWRQFBIlLG+s2bNgp4SSmndurXTirwZX5F7RjRyk5tpNUOq3D1kGIq1 VOqHai8EhEC9IECshdzYaK11FW8px2KJt4UP2opG5NFI+7vuuquiXvlr/Pzzz2PUtttu6zPNx3X4 k+AH1AECYS2nTp3K63HHHeftSAowzIasWLtCwwUjoa8RI64ZM2bweuaZZ9qfixYt4rVo/ZI99tgj 9KAp7Gj+ab5a5SXWUiWA6i4EhEAOEYBbEPwIuJEnuP2sCBxzzDEUkaMLlIjwQJUVt5AzbNgwXqdP n758+fLgmuSvZfDCdMOHD3cEgigIsRAX/OA+m3fYTASzGTJkCLuE7AoN19ChQ+lrxIjLYjw9evSw P3Gz0JIz1BHPxD+dr1apuVhLlQCquxAQAjlE4KKLLiIWEq1hrAfZOYgk3rIkRBG50KtCXsVYXOD5 yp06D7fYStDnn3/umzVbnbEFF7sGDBjgCIRFQY4//nj3KSyQ5SQWjLxpNKE9gbUeCJAtEtnyEJLd elD37t2RXLRmnYWOmjZtGnro9HQ0z8RLqzzt2SwSa0nPzEoTISAE0oIAgZDqoyDOGH5SE2LhsnIs 7KOONopjP+jrnLVYpogtwXgvy2jp2bOnu0lLgiu2SGRREBf84L21JyjiW1oqdM2AvNYyZqBHppt3 6lu1asUdF4lxQ5AFgnowrbI6pOUfpqQe5pnmpRFc1Sf0SoIQEAJCIDcIWFHaCM2BoxgBsnIsEUr2 irIh5s6dG5P8xMSW2EPk08GCK24Pke3H4fLufHbFV1wzE2IbjmyDsW/bkQnxbuqxvcpcTgFTsnDb kW/ns7V3e5RgIYXbhSwI5N35THvbHmV1X7J+4ZPYgn9GZYh2PkeFpOQIASGQeQT4gQu3iKqmHNIu vPBCWwYKV44lOKAUV2UUVjqCd0lny9CsBXNsk7PxCW+BOFesxZnMko370e/71EIjSEAaF28gFkYj XHdXQc4VmrOPirIW7rtSdd4d19bF2WtV5gor46VzmoJrZatv+GfwLqVbirVEhaTkCAEhkHkE2NFD ukkkZkBZ3FoAMkOXYwmozKuvvsqzoXHjxl999VXALuls5kqY+BhGYUFboxe+IArBFbeHmS689zVw Yo1hFAY/YCRGVuxTeAYUh8Y+BdDTGAb3XVDEojKFJMnRqaLKIIqOLvOGsQolpHOyymqFN+KTYIJ/ lm0csEEj2jnKqTdCQAgIASFQPQKUY+HoZtuIROJttFksDam3//77E40fO3YsAZ7qTZAEIVA9AmS1 45AkHT/++OPVSzMJysaNCknJEQJCINsIcH5h9QaEPgex+qHPO+88hFx++eUrVqyoXpokCIEqEcAP 8UaEmGdGdYm1RIWk5AgBIZBtBE499dQqDSDUz95myrFY4q3Lw61SbMDuBxxwAHt6v/nmG3tU6BIC tUUAP8Qb8Uk8M0JNtEIUIZgSJQSEQCYRYEGHPQ5VbnWGrBAPJ9Zi5VjsGOeEL/JydtttNwYljWDn nXdOeHQNJwQcAosXL+7QoQN/Uv+XwysiREaxlgjBlCghIASyh4Ct6bh9syEMQAJZLAjhDYm3hFhq QlnQnMfDiBEjeHPZZZeFMERdhEBUCJgH4o3RUhZkKtYS1RxJjhAQAplEgGxBipOyoBNOe+I0lI+j 4JitClV5qFA4Hby93n77bQsazZs3r1u3btULlAQhUCkCbJX62c9+Ri/+L7bffvtKu5dur1hLtHhK mhAQAhlDIPSmm8jPQYwEOB4So0ePVrglEjAlJBwCFmjBDyOnLIq1hJsR9RICQiAPCEA7WBgKd6qz nYPIKyEWdhoTYonkUKFIYF27di3hFk4BvP7663/1q19FIlNChEBABPC6k08+mSOHCLQ0adIkYK/g zRRrCY6VWgoBIZArBOAZ4Q7dtXMQoSzRnoMYFbg8Kq666iqknXTSSXZ2oC4hkAwC/FNAWRgLD4yD sijWksw8ahQhIARShwA/BENsGrJVIVgL9hBfIZElPSEWH8QkQt5444377LMPR/GlDn0plFMEOOP6 6aefHj58+KRJk2IyUbGWmICVWCEgBNKLgO36CXhmrzODxFs2REBZLPGW7c2ppSzoTKCezc88Qs49 99z0zoQ0yxECo0aNwt/Y8IzvxWeW9hDFh60k/2jlypXve6733nvvyy+/5GQKu77++uuibzi3YsMN N+S1oTcbb7xxy5Ytt/FcLVq0ENxCIDgCZOCydMLxzgG7wHKoxQJf4Q15MPCVEHGagGNF2Iw92BRT R+BDDz3Ur1+/CCVLlBDwITB9+vSDDz6YmxwrwfppfPiItcSHbR1J5nQxqlq98cYbXo7CezhKMihs tNFGXhLD+3bt2nXs2LF169bJKKBRsoXAtGnTIB8BIyWEZFgVogs2knhLRZaAHdOAySWXXHLBBRe0 atWKhAN3Pl8aFJMOeUKAH6iEIZcvX37xxReff/75sZom1hIrvPkUzukSr/xwwVTsdc2aNUVNbdas GQTCGxdp2rRp0QiK96YvAFMYlWE4o0cEb+wN9TaKKsBwhCuhL/bKtdVWW+VzVmRVMATsRMNgbf/R qibnIAZXL0jL3r17z549e+jQoXfddVeQ9mojBCpFYNiwYZMnT+a06kceeaTSvpW2F2upFLF6bM9v TaoGLViwwDjKhx9+6ENh2223hRa0b9/ex1FiyiEvnAO2enpJDO9fe+01VH333Xd9jbfccktjMJwy Tw2uTMT569HnYrOZkANEhHhJ2RFsVYg6/bQkMMNyUkV0p6z8xBosWbKE38H8j5xxxhm/+c1vEhtX A9UJAmeeeabtGOJAibZt28ZttVhL3AhnVT6LPjAVLips8q3nNYM4swtd2JvNN988nXZ+8skn3pgQ 71etWuVVlf8xajhCX7jatGmTTiukVfII+MqxBGE5ySsZfMSHH364b9++tL/00kutBp0uIRAJAhSU GzNmDKJmzZrVp0+fSGSWFiLWkgDImRmCxBQ4ipGVZcuWOb2hKTzU2UJpiyyskWfGpAJFWXm15S1y 3THTS2JIgjH6Ao8hLSa7NkrzoghY7ISDncsG2NJwDmLkk3jnnXceeeSRiJ04caKdVaRLCFSJANub TzjhBITccccdRxxxRJXSgnb/XlfdIzBnzhyqUflKLxM+YWsocb8XXnghxwhhHTZiqS9cBBpg8uij j+bY9nowjf3JhEnMUhJpDz300NJWw2JpY9+edOTPPKHkzlq6995782SXbKkJAniR/afgV0kq8KMk B9NYqUJgxowZ1AIiz8MxXN4PGDDg2muv5WzxVKmajDJYje0g4MMElGbOnJmMDholWgTsLEMq2LIH mPesu5eQTxsLw5C/QhZLtJqkRJrt72jUqBHbU1OiktTIIgL4D16EL+FRCesv1pIw4DUe7rvvvrv/ /vv5+vbugWTRh4XJ5557rsbKpWl40AATkHGUDsTAjYcZGKZJU+lSCgEXOLHYSUNNiam4zBUSb998 880cwzpy5EjQILhIxZocmynT4kMAz7HgNL4U3ygNSRZrSR7z2oxIZIWtj9Rnc4/h3XbbjWX+0r8+ a6NrmkYFH1ACK4cbGIIkeKZJTelSHAGiLN7F8qJBFKbYmlnF25ytChXF5fDDD8dedvyR3SXXEQIV IYDP4Dn4D15UUceoGou1RIVkSuV89NFH48ePZ0+y++7u2rUrWd/sCk6pxmlVC8TADfQckqAKtiCc VpWl1/eFibdQE28oxR0kZKtI9QPZIYccgidThJqyufVjtSytEgG8BZ/Bc/CfKkWF7i7WEhq6tHek KMVRRx3lHrFsiuGhyy6htOudev3AECS9m4zAGbRTr3jdKejb5Q5fISHXhVJ4Y1kvXLyphxCLzwOO PfZYM5+TCurOOWRw5QjYoaFceE7lvSPrIdYSGZQpEUQR/QkTJnTp0sXxFZb2KUaeEvXypAaoetMm wBzkwT9PNmbaFpZ+3H8B2SrexVBv4i2HCmXazGqUP+usswwidtJVI0d9c48AHmKugs/U1lixltri H+XoxL3ZrOsyV7beemvKSSm4EiXExWS9/vrr4Aza9i8N/sxCvtM544Y0KvlQE2aEpR/vhiBLvLUq t7lPvA2CJIFDc13Sz4O0V5s6RMDqyHHhLTU3X6yl5lMQgQJvv/32Kaec4n5W7r///lSUikCuRFSC AJiDvJsFZoR5qUSA2kaMAEEUX3Yt4RYLj9VP4m0QTKk7Z35bky0hQTRUmxoiYJvOuKgpV0M13NBi LWmYhfA6vPPOO5xG656UVCesz1Ir4RGMuif4e2tEMjvMUdSDSF4YBNxBQqTo5rUcSxhcfujjKobB vBWgDQ1jzjriCe6XWHoqE4q1ZNXNOCCQM6scX2Ev7sKFC7NqTO70Zi6YETc7zBTzlTsrM2OQrxxL HSbeBpmqxx9/nEMtcNpNNtnk7rvvDtJFbXKMAD6AJ+APeAW+kR5LxVrSMxdBNVmxYsXZZ5+9zjrr 2ENx8ODB+S66HxSX9LVjXpgdmybmi1lj7tKnZs418ibeJlx6PHPIwucGDRpkHssB0ZnTXwpHhQCz b26AP6SN5Yu1RDXLCcmh5DwHgps/DRw4cP78+QkNrGHCIsAcMVM2ZeTqMoNhJalfxQh4y7GooGJA +K688kpzV04SXbx4ccBeapYPBJhx5t0cAE9IoVFiLSmclOIqcRqzc6bDDjvsmWeeyYzqUvT775kv Zs09DJhNoRIrAvk+BzFW6BBO/aGddtoJd23cuPFtt90W93CSnxIEmGtmnHmnhGZqa1CJtaTEW0qp sXbtWrdFqE2bNlOnTs2A0lKxGALMHTNo3IU5ZWaFUxwIsCpke5tzfA5iHLh5ZX7xxRdHHnmk+eoJ J5zw6aefxj2i5NcQAeaXWbbpZt6Z/RoqU3posZbUTs0/FaMcoR36wDVq1Ki//e1vaddY+pVEgBlk Hm1CmVmVJY3WX+rqHMRooSsq7brrrjNf5bS8lGx8TcDqehuCmbXTELmY8ZSbL9aS3gniXM2DDjrI PKlnz55KuU3vVFWuGbPJnNrkMss6fbdyCIv08J2DGIlMCdEXUY59IItfRGItKXVI/cRJ6cREqla2 fuJEanr0wpR4Gz2mHokK+sYKb/LCsxv0FWtJ3lvKjKjl5NRNSZwKZWg5OU4YqpKtxNuq4AvcWQl2 gaFKe8NMJ9iJtaTLvUjbJnmbVQOl7qdrYmLWxqXus3Ejtan7MWMQUrzOQQwJXNhu2swYFrlU9MvB ZkaxllR4kimhMgkpmozEVUl/mYTEISkzoM5BrOGMUHbIHdSqwlE1nIjgQ3sLR1H0K7uFo8Ragk96 jC1VkjJGcDMlOs0lKVMFJIm3nNhMVFLnINZqXlSku1bIVzpuzop0i7VU6gDRt3fHfzRr1kzHf0SP b9Ykpvb4j/QAyWHOVo5ll1120TmItZ0XHYhWW/xLj57LA9HEWmrscjpqtcYTkMrh03nUahqgIip5 9NFH247xQw89NG0npKQBoprooMPnawJ7iUFzfPi8WEstnY2Nr/b9O3LkyFrqobFTiQBeYe4xceLE VCqYtFI6BzFpxCsc7+2333ZVvPHb/fff/84776xQhppXiwCYg7x9dXAxI8xLtULT1F+spWazcdll l5lXjRkzpmZKaOB0I4BvmJPgLenWNF7tlHgbL76RSn/zzTdPOukkl6u79dZbjx49mvBhpINImB8B EAZn0LZvDPBnFpiL/CEl1lKbOT3rrLPMt6666qraaKBRM4IAHmKugs9kROWI1VQ5logBTUTcl19+ OWHChC5durgf/azoTZs2LZHB62sQUAVbhzOYgzz45xUFsZYazOyxxx5rHqYzaGqAfgaHxE/MYfCc DKpflco6B7Eq+FLQmfpDRx11lHumtmvXjsChQi/VzwwYgiR4OmzBuR6qPYm1VO88lUk45JBDcLIN NtjgoYceqqynWtcxAnjLhhtuiOfgP3UCg+8cRCXeZnreP/roo/Hjx1sJTbu6du3KQ/fVV1/NtF3J Kw9i4AZ6DklQBVsQTl6Zmowo1pIo7Icffjiu1rJly6effjrRgTVY9hHAZ+z0b7wo+9aUsUDnIOZ1 imfMmDF06FCX9YI/77bbbhdddBEznleTI7ELfEAJrBxZAUOQBM9I5GdIiFhLcpNlW0I222wzHfCb HOj5GgnPsQPl873pTOcg5stti1jz3XffUWiHTezNmzd3j+GOHTuSfv7cc8/l3vzgBoIGmICMQwnE wO3+++8Hw+By8tSyEcY4OPQmPgQuuOCCSy65pFGjRtSU22+//eIbSJLzjQB5Hmxr5N/2/PPPv/ji i3Nm7GeffXbMMceQXYhdp5122oUXXmjV5HTlGIFZs2Y9+MP14Ycfmplbbrllt39du+66a45tL2oa YZUn/3U5TLbYYgtSbg8++OADDzyw3gDx2SvWkoQDXHPNNaeffjojUVNuwIABSQypMfKLwH333cfJ L9hHTIJHe24MJZEQyvLWW2/BVKh+690WkRsbZUgJBB577DG4y/Tp06kv4poRXHQMpnPnznkFcMGC BY6pfPLJJ87M7bffvl+/fpCVHj165NX2Su0Sa6kUsYrbU/PnyCOPpBu1wkaMGFFxf3UQAgUIUJ/w hBNO4PYdd9xxxBFHZB0hQiys2bNVijecLgRl2WGHHWpo1FNPPcWTstJ/2BY/XEuWLKmh5vkYmt0x nCxtT/Fly5Y5o1gcYV722WcfVky4WrVqlV17ly9f/soPF/lqmEmyubOldevWRtR+9rOfebcIZdfY iDXP03JXCm0h+GkTdumll6ZQvZSr9NJLL/H/XFbJQYMGgTCNy7Ys24CvRa6yzdLQAI8y18LH0qBP aB18ibcl9gpZDkTRiR43bpz9MPCqwYlO+Ib14pX3AZ2kV69edFm6dGlFRpkOOkqsItDKNoYFwmLZ 89+2bVvfw89IDPT9+uuvJ1D38ccfl5VWqwboxtoueqLtvvvu683mMaOwDhuxFHtrpWRWxlU2bowz xS8GDgTHIznIN8ZhKhHNFzGJnG3atLF/Fb7H0/wla0qWJS72jCnbLAhONmKQlmloYwdE42PZrX7h PQeRr/XSqJbwB2MMvDoJ7jwE3MM8xLhLWeJCA/vXqHSK+eeiI6sYlXZU+4AIUOn19ttvp0R99+7d yX3xkRj+3HbbbZlrlk3ZCUyQe+7cuX/5y1/WrFkTUH71zRiLEfHku+66Cx3QBH3QqlBV8lSwAluw KJcVbKsHsyEJWiEqdKfI7vTu3Xv27NlsTsODIxNahaApU6YMGTLEvrv32GMP3qAer3y/U0uxCsFx dSXezi9vniKdOnUqMYbhDGvhR0yVqpAubaylSjmJdR82bNjkyZP5ZnzkkUcSGzSSgVgMItnLCuix J8LtGyoh3Gan6ETzhBg1ahSs5ZxzzjEJgwcPZpvocccdx649/mT7FVnwuFNZrE488cQbbrgBNo+E Si2lLCkJCmU9tlKxal8UgRUrVtgiCyVM7BXSULRls2bNqBrARdUJe9O0adPGjRtTA4lX7xvv+69+ uL7++mt7431vNxmOI6/teu+993hdvXp1UQUYrkOHDqxq2SvXVlttpWkNiUB8hKjOJdv+DlZeP/30 0zRAwbewuYg3ik7al/0kjSRQUSsz6zbWAuArV64kX48ZxN9qhX+Icb3nIBJuCSjBHLiorxbGWgpl 4vkmofRwFr3nX6Nos5kzZ+JvDf2/2BDekE9A09QsEgQId5HPe+WVVxKGhHSSF8LKy0YbbRTy6Vh5 N8ZiRMZldHRAE/SpdKkxEihyLESxlsodM0APvpSJ/tGQkqZkgAfoEW8TmBNZXfzQLJpgSAyG6oql 4xnx6led9HqOtYAcey7YYsAb4uHp31RfTeJtRbGWQp+yHFtjLQ15HCGZXXbZhVWeF154oWibwqCO t5kNUaJ7dZ6u3iERgNy7oIjFRb744gsXRGnoTdFgjAvP8CkcxQVvLIRDeDikiuoWHIEcM7Jamfbt t9/uvPPOTAHB6lrp4BvXfgKSzlJWH35icnCo22HIG1/ii4ni1eI09sMUyb5ESAYqK8qUQb53OH6n up+5ln/j+6XCj13XHgX4tDDWEnBoxrIhsMLGtX8cH0oE/L1JnTZoWSSTbMDiCGrjdfhekuNWOhaJ t7afmb3NLAlVWqTfZqfKWEvpbGtzb/4FGjKtbFCnqAtVCpTaCwEh0BACmUk8zNAUDh8+nG8utuel R2d7rpf4LjZVeRg7FkIXRw68EW/71nZPcW8zr/wgohixaMqkG67wKWWjc6GbqYfCxjzcwyzg0C5D kzcmwdnrnThbWWMUrGN0268UJKkz4dm3nB58L+Fxgw9X/TmIVbIWm7vSabbmkCWWeMqyFp83BsdH LYWAEAiCgFhLEJQqaHPbbbfZd2uqjtUo8XXvtY0HP09u729Z++np/Xnq5Q1uO4ZLmnFBiCCiHCFw coh2IJ9oimnlU9v2aHC58A8dHdVwaocbmkHddkSHCfrYXmhvcMXUhutU4BbxN7WdL1x4YPyjVTZC VOcgOsJq24K8l3GFEmwDrwjyX1A2R6osaykroTLs1FoICIF/R0CsJUqPIKXcNiywLz9KuVXLCvJ9 3dAg1tet2ti3Ng8JX7qisYfCdSKvWJ8o61Ji67VPbRfm8co0YkHL0gnFvqHt0eLT1j3YnHy3HOYD p+jSVdWzVK0AvA6j8MAkt3qWVdqbeMuqUNn2JRrYJJa4GmItOIk5W9lwY1HOQQDGMSSbel7dHZ9M k6CE3GomWn2FQAkE1in3PaDPK0Dg8ssvJ++V5NBf/epXFXRLd1P7Fn7ttde8apInb/zMXVZjnmTG Etb4RLFHlMbBK1WTbUp7X6F31LBd3KUv39C25ds3dOHGaQ54M6PIwfReNhZpfeWGTfRzvK5Pnz54 IH6Y6MAND8ZZFv3796dIPymu0JdIzh8okdfSkCKcAoazQVxcab6K8JkzZw4OY5cF/Hh1dxYuXFiR NDUWAkKgGgTEWqpB79/6cnbGZZddxi1+e0UmtBaCeOxRbtU9pCuqUO4tv43uJUQ5fuNjP2UtLlqy qbBXECuonF12OBpQvYN0V+9ljy5qMATpnmSb8847j+HwQ+9JLkkq4MZirxB8hYosvIGsQFkgLjXR xOqvQFlCl7TxlistXCEKLbYmaGhQIZB1BMRaIptB+4FL1S/bXZmqy8LazzzzTFmtOBWd48o4VtQ9 pF02Sdm+vgalRTVUD6rSUYq2j9AK5De09pTCveL4Hh6IzrUNt1BenaN6ObqZvULEq4JUkItk3guF QL6hLKwh3nTTTcH58eeff16lPpQRq1KCugsBIVAUAbGWaByD3FsOtENWOgMtPXv2RDdOnC5tLV/x /EznV6nLh2Vx0e21Kd3XikLuvvvu1qysKLccQ1Ckojl49913o7LCFxlqSGzZESvSP+7G5oF4Iz4Z 91iF8q3iLWVjWBXiHES31Tl5TRiRQkSQbygLkZ6AFBOaRUcKrYZW2GKTm2yySWgJ6igEhEAJBMRa onEPWxviUAmr1JK2i1MFUImlfXeao1dDvtypjsUdSxzhl3Hfvn1Lm8BXs49tTJ06lS4//elPrWMQ URYBevTRRwPCZZSIw2C97Vlpev755713ggxtuZm+juDg08RGtKrzWbnwQPwQbc0nk7zYxwRfIZfF yrEQZanh0c12fkVFlAWsOASAVyhXaNwsNknZxtAS1FEICIESCIi1ROAejz322H333bf++utbVkEK LwIbVojiiCOOsJiQXTAPFlP4cveGE7zhcb76LXHVd/HVTNKxi1UQWbEqKb781tKirLDN+eef7+Sg D+oVsgcbnVRTXgn4O+7lDpcp1LD00JY7TMaDG9od0uQVxSk2/AkCXtC4Q2NwS+FEm0r44QYbbIBP 4pmJKQlZgbJAXFzircUtanXZkVvUKiXcgq96L9y1Ia323ntvPmqoMC4fcaINr5zUUVSCsX84cfDV qFrho3GFQFYR0A6r6hGw4v1jx46tXlR8Etj8aVW2uKAXtm/T/nR1t1x1FquoZg0sLOFyO9zOZ9tv 7Eq08d67hzmIKLcf1eQ4fUpUmXNV6VyVOd6YXU7DEENb1Ac5Zqx3FlwpmoZAi2/KqpGMN2IInlmN kIB9KcfC8YfmS7yptOJtwFFoZi5X9NBmc0vvVnZXfafwq7l0obnS5xCV1tbUKLu/OrjJaikEhIAP AdVrqdYlOGiU7ynOpOAI0Gplxd+fZ7Ara2vPaW8KC+N76+vzKVTAvojdo8L+hGFYnXt7JPhq05kd ZUXRxsrKGWkwOXzjl67o7y3Db42NpnhzZgMOXXgigVnkmwcke0HDdjvQIP7pCj8C3ohPYgv+GV5K gJ7hzkEMILhmTYwZlygjVEIzY71FeVXN7NHAQiBfCIi1VDuftlJw/PHHVysoI/0da8mIvvWrJj4Z 6+9+q3hry0Ak3r755pv5wNqKDZaOxxS11DJagpz2lQ+gZIUQqAkCymspjB9Xdueuu+6ig6W76hIC 6UHAfHLy5MlxqEQ44ZhjjiGXBeE1T7yN1kCSwAiZkF0ecIuZG51EIt5fcskl0eojaUJACHgREGup yh9mzJjBdoMOHTqQh1iVIHUWAlEjgE/imfgnXhqtbDZVIZxyLCTe3nLLLS7iEu0oNZR20UUXMXrw 3W2m6hVXXEGgZfDgwTXUXEMLgdwjINZS1RTbD1mr61Unl+2eqO32kDqBunozzTMtHBjJRTkWQixc vGFViKQW3wELkYxScyHs/Cf0PWLEiIo0WblyZUWFpCsSrsZCQAgYAo345xQW4RBgmy5lZOlL9fSG dkKGk6xeQiASBJYvX7799tsjitzh6vfiUvEWvkLwBs564YUXRnKoUCRmSogQEAL1g4BiLeHn2n7C 9uvXT5QlPIjqGScCeCb+yQhVhluIrLCV2s5BtIq3oixxzptkCwEh0CACYi3hncNqndXV8lB4sNSz RgiYfxatiRxQI1sVItXDzkGsbcXbgDqrmRAQAnlFQCtE4WeWODmH71BVtmXLluGlqKcQiBOB9957 j1OyqegK5wgxDqtChFjoi7eTeJvLLJYQsKiLEBACtUJAsZaQyLPzE8rStm1bUZaQCKpbIgjgn3gp vsrpBxUN6M5BtMTb2p6DWJHmaiwEhECOERBrCTm58+fPp2fXrl1D9lc3IZAUAualzz77bPABfecg ugK4wSWopRAQAkIgDgTEWkKiKtYSEjh1SxwBYy3msUGuwnMQg/RSGyEgBIRAAgiItYQEWawlJHDq ljgCwVkLi0FksZx++umWeEuIhTpyieurAYWAEBACDSKgbNwwzrFixYqtt966SZMma9asCdNffYRA sgg0bdp07dq1H3zwwVZbbdXQyN5yLBTpd8c4J6upRhMCQkAIlEJAsZYw/lHPgZYpU6Y0atQotWXL yTl96qmnwkxqrvuUDrdY4q23HIsoS67dQcYJgQwjINYSZvKotUW3jh07humc+j4wEnhJixYtip4e R7lVLAi3jTYB01nR6Natm4iLD2rzVfNb30XiLXwll+cgJuBvGkIICIGEERBrCQM4tfzpVn2J9DBj x9wH0zjtlkFWrVp18803xzxaePFGrQrZSfPmzRHKgkh40Xnsab5qfuu97BxE1obyeg5iHidTNgmB ukZArCXM9OeYtdx3330gMnLkSF6NvqTzaijYwwl2HK3VqVOndKpdK60KWYv3HETWg/J6DmKtANe4 QkAIxISAWEsYYHPMWm666SYQOeuss9q0abN06dJKS5OFQVN94kfAx1oIruy6664EWqziLZcO8Y5/ EjSCEBACESAg1hIGxLyyFhJZFixY0Llz59atWw8aNAhoJk2a1BBAgHDiiSeS/sJKDdVXC1ty9k2X Ll341BqMGTPGK4ru3OG+NaDl+PHjfUsYfIp8etHSmpELTDPezJ49m/uksNh9bppwE2gZOdYSJX0m QMW437t3b7vPn7RxmrD2lL+0GMdalHgb5h9efYSAEEgPAoTTdVWKgBWxoMZ5pR1T3n7cuHHYNXHi RPQkSZP3pIn4dLY2RGIsg6RXr16wHPNnPnKNEWLNuMkFB+K9+xTh1p1XJHCZBER98sknrpndtOUq PjJpd999N+2tOzetOzetl3V58sknec9rURNGjx7NfV5pM3PmTDc0chjCKyHl8xVcPXwVu3beeWc7 SIjIyoUXXkjqUnAJaikEhIAQSAMCP0qDEpnTYbvttuOrn900mdO8tML2zGZhyJrZnzzXvb2MtRhj cC0hDXbT3TFW4aUgXiFGdKAjrgEd3U0fa6GlIyXuIyM6xk68l49zFDXBbsKc6GiMyqnNHQsy8Zqn ybWdX+us84/YKpSFc5vzZJ1sEQJCoH4Q0AqRPeYqu3K5QsRCiVEHlocMDnt+z5gxoxAdHvyPPPKI a8mqinGORx991BrzO74hTBmIdShozcUXX+z2YSGKymZ0ueGGG3wdCYqELg9TaIKZif6WsXvOOeew 6uQM4c5JJ53EK20q84l0tzac+V7jHMQ333xTRzene7qknRAQAg0iINYS3jnWXXfd8J3T1/Oee+5B qeOPP96pdvjhhxuNKNwxSxaIb+P3wIEDaeyydy0WMmzYsMKiL5aSAhHxSdh3330tQuNLK+nTp09o tMwEeImTYGYamyl6oQb34VWhB01txw033JC9Qkq8Te0ESTEhIATKIiDWUhaiIg3sccvqRpjOae1j QY4ePXo4BYlG2GKKi6CU1d1xlAkTJhB9gaAggbxXL29YtGgRcnbYYYdCaXvssUfZISpqYCYQ+CE1 2Dradu7jjjvOKwe1Lc/XroqGyERj452bb755JrSVkkJACAiBhhAQawnjGw3V7AojKx19eKjbmg67 aSAZ7qL8CTenTZtWqZqsubzwwgvkoxh3GTJkiNvLk3Bd3eHDh6O8rXMVroLxOMdYmA0ajvrXVamx 6W+fyzXN9MMuDYWAEIgcAbGWMJDmj7W45BUYhvcyKkN8omh1/0Lsdt99d+9NloHgLuTMsvRDLMci Lt27d+d19erVhd2ff/55bkZb2XbAgAHItKELV8FYw8JeFowsOdeuMD6R7j5iLemeH2knBIRAUATE WoIi5W2XsxUiHmn2UPc+ud0jvOgi0ZIlS3zJLjfeeCMSfvrTnxYCSqbIueeey33bydKqVStjQr6W pLNAkuA3wSvbvvvuu2Xnj6gP8R5bJLJBvatglmSD+cEHLTtiChvYamYuz6BIIdpSSQgIgfgQEGsJ g23OYi2krfBQd9tqfIjYCovVzHUXW2xYWHEBGHJBuAPhMEIA/6BqnMvMhd/MnTvX8RUCMLSkPWtG jvrQ2M4ZNn5T9rKAzbx588q2pIGlGFOhhEFJE/buGLLuXgZWWJUuyBApb6NYS8onSOoJASEQEAGx loBA/VuznLEWS1s5++yzi2JhKyzsqfEuElmNE8u0ZT8RCSG0IQPXkGGJh/bU4oO70KBdu3aENAh4 uCDHQw89RDPWjPiIBjSjMQKp4MJW5CBTsvfee5sE+lpd3RK9bFzbFmTcyF22mWjPPfe0PFxsIe7i as0F0SQTbSw/SbGWTEyWlBQCQqAEAmItYdwjZytErJu4MEkhHEQmbBuzHazYrFkzXjkomD20PPKh I1blhWJ0rqoKqy3ksvApRIEGVOWn5gr1XdxTkzUjVqOs6C0NaGb1beE9XgWMPWyzzTaFWiGB9jSg L4Gijh07WpuiXZwJhWb+7ne/s7p5EK8rrriiZ8+eCIS72B7s3FyKteRmKmWIEKhzBBrlMvcw7kkl ONG/f/8DDjgg+JbguFWSfCFQAgGiTY899hglcVVfTn4iBIRAphEQawkzfStWrNh6662bNGmyZs2a MP3VRwgkiwBrdmvXrv3ggw+22mqrZEfWaEJACAiBKBHQClEYNPnq/8lPfsJjYOHChWH6q48QSBAB vBRfxWNFWRJEXUMJASEQCwJiLSFh7dq1Kz3nz58fsr+6CYGkEDAvNY/VJQSEgBDINAJiLSGnT6wl JHDqljgCYi2JQ64BhYAQiAsBsZaQyIq1hARO3RJHQKwlccg1oBAQAnEhoGzc8Mhydi5l6SnP2rJl y/BS1FMIxInAe++9t+2227JfPeHjn+K0SbKFgBCoXwQUawk/9xZuoQ5seBHqKQRiRsD8U0ktMcMs 8UJACCSEgFhLeKD79u1L57vuuiu8CPUUAjEjYP5pvqpLCAgBIZB1BLRCFH4GqTe6+eab0//tt9+2 EwF1CYFUIcBxldtvvz0qcXqiyvmnamqkjBAQAuEQUKwlHG7/6MVjwGrYK9wSHkT1jBMB88whQ4aI ssQJs2QLASGQHAJiLVVhPWzYMLGWqhBU5zgRMNYydOjQOAeRbCEgBIRAcghohaharHfccce33npr 7ty5HChYrSz1FwLRIcDxlt27d99hhx3efPPN6KRKkhAQAkKglggo1lIt+vZDdvLkydUKqqf+U6ZM adSo0YknnuiMXrZsGbtd7Gji+K6XX36Zcd3Z1PENlAbJ5pMWDtQlBISAEMgHAmIt1c6jWyT6+uuv q5VVu/6QhhYtWvBEdxd/8nSfNWtWHEqRJYpYBnXCYTDdunW7+eab4xjOybTTLuuhcgneqOWhWH1J woWAEKgJAmIt1cK+8847E4f/6quvxo0bV62s2vV///33V61axfi9/nXxfurUqQceeOCYMWMS0IuS fYxCMbQExqqHIfBGfBLPxD/rwV7ZKASEQJ0gINYSwUSfd955SLn88stXrFgRgbiainjkX9fKlSuN h1122WXeoEhM2rFm9P33348YMSIm+XUlFj/EGzHZPFOXEBACQiA3CIi1RDCVBxxwwIABA7755ht7 VOTmOuecc9q0aYM5jz76aG6MqgdD8EO8EZ/EM+vBXtkoBIRA/SAg1hLNXI8ePRpB11133eLFi6OR mA4pbdu2RRGOW/KqM378+C5dulgGDG8Ik/iUJamWdaXSbXxdyGtBmhM1adIkb5KNvfdm0ZJww5+W i8Mr3QsDQqjBfWuDIYV6mg5BRKVjNgJpgQfihzQ1n9QlBISAEMgVAoTldUWCgK1ukJwbibSEhTz5 5JPm1t5xKahqN1966SW7z53OnTtzh+wX1o94LlowZuTIka7j0qVLmzdvzk0+opm156K9a2NrT3zq 7vDe22bmzJkuw4Y3Nopr757H1saG4xX1nEDeu/uujVPeNQsiKuG5qHI4Sw/HG6uUo+5CQAgIgRQi 8G9PqRTqlyGVqNpij+d58+ZlSG1TtZC1cKfwGW9sgye9lxxYM9o7Udxxf3Jz4sSJxiqCsxYfgDYE VMbuG2dyHIU3RmsYyHWESHGHjq6ZS5f2saWyojI0m/ieOSHemCG1paoQEAJCICACYi0BgQrUzH64 9+nTJ1DrNDVyrMWeee7CIm8AA+bhJR9mwd133017b7il0DIT6CMQJWItXgnGNgYNGlQCsEI6ZSO6 KJH1LYzxFMosFJWmiSqjC77no5UZUl6qCgEhIATKIqC8Ft9juqo/2bLBgS8PP/zw7373u6oE1a6z d82FQMXhhx/ujrChChy7o0kTIa/Fe9nv+9L7jGwB6LXXXqvUMsReccUVUCW2MpXou/fee/PpwoUL rQ2q8koAplOnTt5e1qz05RNVrnmKPsfr8D3mS1uHUjQrUkUICIFIERBriRLOJk2aXHXVVUg86aST KMMapeikZNnGZ7Y9EztZsGDBYYcd5huZtJVR/37dcMMNtLGCK+4iE5YsV0dulixZEs4Cgj1QpXPP Pbd169Y+CSBM0q4NUbQ2saUSB7nKigoipLZtiCrhdeiAB+KHtVVGowsBISAE4kKgbDRGDSpFYPjw 4czWvvvuW2nHGrYvmo1rySIsAJli1sa7rNOQwg3tXnHJLmWzcU0yiSyMSMjHNxBPaNPNdzndGlK1 8H5ZUTWclIqG3meffUAD36uolxoLASEgBLKFgGIt0dPB66+/noKkLFIQIYheeoISL7nkEkY7//zz vWOWjZoQ+WA1B6rhkmf5l7AVooouojWnnHIKXa6++mpvR+5zUCUhH6gPr15G5ZNfVtXgoirSPPnG eNrTTz/doUMHfC/50TWiEBACQiAxBMRaood6vfXWs4cHj9Xp06dHP0BSEnv06MFQMANLE2nfvr33 z4a04Phroxp9+/atRlNWOhiahSqiVl45JMewZgQNoghe4bKRtXSq+rJtfAtJQURVY0IyffExi139 9re/xfeSGVSjCAEhIARqgoBYSyywEwy4+OKLEX3yySfb+T5ZvMjrtP3D9rB3f55++uleNsB7irn5 8ng+//xzZzLl3WbPnl0RAkgjYEMSrsFYeHlPh+Y9KnnboKpFd1DMteS9peD4rtKiKlI7+cZ4l6Wz ABRel7wCGlEICAEhkCQCYi1xoc3CCg/Ot99+2x4qGb2GDh2K5jzs7dHOo5GlH7J0SSuh9G3v3r3J eOW9lw3079+flkcccQTlcVktos2QIUNcrbmAOJBmS0v2K1EzDQnu4iZxFEZEB24in1HatWtXKJbw A6QHtsSntEQUSvpOuAwoKqDONWmGd3GANp7mW8iriTIaVAgIASEQOwLZSsPJlrZvvPGG7eY444wz Uq45SanoWViLBbUt79UlqVBzhWe/YyF8SjzGW1OOLiTwugbUWeFTowuueorVnfOWYLGgjsv8tT8L L6v4YitHrgKvlYnzCaQZwzGECXGF7+jlTSgOKCqd04dfYRo+hqelU0NpJQSEgBCIFoFGiIudGdXx ANTPsPSOSy+9VOfC1LEjRG86K2jEmZDLDnMrLqdLCAgBIZB7BLRCFO8U8zi54447GIMHjK166BIC 1SOALxllwbtEWarHUxKEgBDICgJiLbHPFBketnf3hBNOuO+++2IfTwPkHQG8CF/CSvwK78q7ubJP CAgBIfB/CGiFKCFvuOCCCyh/0qhRo8cff1x7PRICPY/DPPHEE/vvvz8Lu6TfNrTBKo92yyYhIASE wD8QEGtJzg9s5+3mm28OcfnP//zP5AbWSHlB4H//93+hLKQek4w8YcKEvJglO4SAEBACQREQawmK VCTt2NJyzz33bLPNNvfee2+Qk/wiGVRC8oHAM888M3DgwPfff58jLadOnZoPo2SFEBACQqAiBMRa KoIrgsaHHnrogw8+uOGGG0Jf+vXrF4FEiagDBCiAC1n5+uuvDznkkGnTptWBxTJRCAgBIVAEAWXj Ju0WPHKOPfZYHj8HH3zwbbfdlvTwGi+DCOAneAs+g+eIsmRwAqWyEBACkSEg1hIZlMEF3XzzzWed dRbtjz76aN/RgMGFqGWdIICH4CcYi8/gOXVitcwUAkJACBRFYN2xY8cKmuQR6Nmz5wYbbEBaLiXn //a3v3Xv3j15HTRi+hFgo5CV6qem3P/7f/8v/QpLQyEgBIRArAgoryVWeMsIp1aYFd7QlpBaTkNa x3bHPeInw4cPT6ua0ksICAEhkBwCYi3JYV10JCqGsTGEj9jRyuk8HEZYY4U0fAoQWLJkCXSWUBy6 sN1swIABKVBKKggBISAEao+A8lpqPAc8kHg4tW7dmtfdd999ypQpNVZIw9caAXwAT3BeIcpS6wnR +EJACKQIAbGW2k8GSS0LFy6klMvnn38+ZMiQM888s/Y6SYMaIcDs4wN4Av6AVyjhqUbzoGGFgBBI KQJaIUrRxPzmN7+xvUXdunUjlaF9+/YpUk6qxIzAa6+9NmLEiCeffJJxrrzySpHXmPGWeCEgBDKJ gFhLuqbtT3/6EwkNf/7znxs3bkyayy9+8Yt06Sdt4kHg9ttvZ96/+uorqCrHPvzXf/1XPONIqhAQ AkIg2whohShd88fjinWBI488kgfYUUcdxd6ilStXpktFaRMpAswvs8xcM+PM+4IFC0RZIgVYwoSA EMgVAmItqZvOjTbaiF/e1113HZoRbvnJT35y4403pk5LKRQFAsws88ssI4wZZ96Z/SgES4YQEAJC IJ8IiLWkdF5PPvnkl19++aCDDuKAX9IdevXqxa/wlOoqtSpHgNlkTplZ5pdZZq6Z8crFqIcQEAJC oL4QUF5L2uebM2hGjx7NSb8oOmrUqEsvvXTddddNu9LSr2EEvvvuuzFjxowbN44mnP5N0VuWhwSY EBACQkAIBEFArCUISjVu88UXX0BcbM2oTZs2POc4/rfGOmn4UAhw0DdTuXTpUnqfcsopTOXGG28c SpI6CQEhIATqEQGxlszMOnti+Y1uO2MPO+wwdsbutddemdG+7hV99tln2dn+hz/8ASTY2U7MjNe6 R0UACAEhIAQqQ0CspTK8at6aiAs/1om+oAlHAcBd9txzz5prJQVKIPDcc8/BVyjMT5smTZrAV4iy CDEhIASEgBAIgYBYSwjQatzlww8/5CnI9fe//x1VBg8eDHfp3LlzjdXS8AUIkHLLNNkpDeussw7T xLXlllsKKiEgBISAEAiHgFhLONxq3+uDDz4w7mKqDB06lCfibrvtVnvNpMGPfrRo0SKmZvLkyQaG 8ZWtt95a2AgBISAEhEA1CIi1VINe7fu+++67V1111dVXX22qHHHEEWecccauu+5ae83qVYMXX3yR GbnzzjsNgNNPP50Z2XbbbesVD9ktBISAEIgSAbGWKNGslazly5fzy942GXHtv//+xxxzzLBhw2ql T32Oe9ddd91yyy2c1Wzmk7xCfKVVq1b1iYasFgJCQAjEgYBYSxyo1kbmW2+9BXfhwWm5uqxHwF2O Pvrodu3a1Uah+hh1yZIlYM7Fmh0Ws5MZ2OErO+ywQ30AICuFgBAQAskhINaSHNbJjMRxNrfeeisP 0RdeeMFGPPTQQ+EuhxxySDIK1M8oDz74IFBPmzbNTO7SpYvRRE6+rB8QZKkQEAJCIEkExFqSRDvR sTg+Gu5CaV0blYgLz1Q2S7dt2zZRPXI3GMEVtjGD7RtvvGHGUdwWbHXqYe6mWgYJASGQOgTEWlI3 JdEq9PHHH1vo5bXXXjPJXbt2Pfjggwm97LzzztGOlW9pixcvJrjy0EMPzZ8/3yxt3769BVd+/OMf 59t2WScEhIAQSAkCYi0pmYjY1Zg5cyYbcXnuWtYLF9uk4S4wmF122SX24TM7wEsvvQRTATc2M5sR ZK6AG1vNDzzwwMyaJcWFgBAQAplEQKwlk9MWWmkK09kzmGvVqlUmp2PHjkZf9thjj9CSc9bx+eef N6BeeeUVM6158+aGEq+UjMuZvTJHCAgBIZAJBMRaMjFNsSg5a9Ysoy8U27UBKNvK4Th21WHRF0qt cMyTXQ6TLbbYgnRmyIoiK7F4oYQKASEgBCpBQKylErRy2vaxxx6Du0yfPv3tt992Jm6++eaOweT4 uACK7jum8sknnzjzt99++379+kFWevTokdNpl1lCQAgIgewhINaSvTmLT2M2xcybN8+e4suWLXMD sTgCg9lnn31YS+LKdOU0KvKx6MP19NNPY6ZbJsPY1q1bG1H72c9+piI38bmZJAsBISAEQiMg1hIa upx3XLp0qdEXeAx7fb3WQmLgLh06dHCvBGbSCQfhEwjKq6++akyFN16ags7sA4ejGFlp06ZNOq2Q VkJACAgBIWAIiLXIE8ojQNVd6AuLKfbgdzkfrifn7EBi2Am8zb+uli1b8rZJkyblpUfRYu3ate// 63rvvfd4y05vVOWcJp948lQsYsSyF0xFFWyjgF8yhIAQEAIJISDWkhDQeRpmxYoVLnRhPGbNmjVF DWzWrJnRGCMxXE2bNqV07IYbbsir9433PeV9ub7++mt7431vNxnOx1FWr15dVAGG88aEICtbbbVV nuZCtggBISAE6goBsZa6mu64jCUJBvpCWowjE/bmyy+/jGvIf5e70UYbuTCPvSExBY5CqkoyCmgU ISAEhIAQSAABsZYEQK7fIVauXOnlMazdUOPOBVEaelM0GOPCM3wKR3HBG+MoLVq0qF+UZbkQEAJC oG4QEGupm6mWoUJACAgBISAEMo6ASnxmfAKlvhAQAkJACAiBukFArKVuplqGCgEhIASEgBDIOAJi LRmfQKkvBISAEBACQqBuEBBrqZuplqFCQAgIASEgBDKOgFhLxidQ6gsBISAEhIAQqBsExFrqZqpl qBAQAkJACAiBjCMg1pLxCZT6QkAICAEhIATqBgGxlrqZahkqBISAEBACQiDjCIi1ZHwCpb4QEAJC QAgIgbpBQKylbqZahgoBISAEhIAQyDgCYi0Zn0CpLwSEgBAQAkKgbhAQa6mbqZahQkAICAEhIAQy joBYS8YnUOoLASEgBISAEKgbBMRa6maqZagQEAJCQAgIgYwjINaS8QmU+kJACAgBISAE6gYBsZa6 mWoZKgSEgBAQAkIg4wiItWR8AqW+EBACQkAICIG6QUCspW6mWoYKASEgBISAEMg4AmItGZ9AqS8E hIAQEAJCoG4QEGupm6mWoUJACAgBISAEMo6AWEvGJ1DqCwEhIASEgBCoGwTEWupmqmWoEBACQkAI CIGMIyDWkvEJlPpCQAgIASEgBOoGAbGWuplqGVohAi+//PLgwYMb/XD17t07YO9ly5Y99dRTn376 acD2cTfDCvSJexTJFwJCQAgkg4BYSzI4a5R0IdClSxejI77Ly04OO+ywqVOntmnTplevXs8//zyP /yA2nHjiid26dbv55puDNA7RBlbUokWLQrXHjBnDR4UCd9llF/QRcQkBtboIASGQQgTEWlI4KVIp dgQWLFjAGJ07d4aReK/dd9/dxuYxv3TpUijLc88998gjj6xcubJTp05B1Np0001p1qxZM9fYAjZR 8Yb3339/1apVCHdqo+Ts2bMvu+wyzJkyZYpPyebNm3OnadOmQZQv22bSpEnYMn78+LIt1UAICAEh EAcCYi1xoCqZ2UDg6quvhpF4r0svvdSretu2bTfbbLOKjIE3fP/99yNGjHC9Pvvss4okBGzs1F6y ZAkEa9CgQbCZIUOG+IgLfAt9AlKuskOvXr26bBs1EAJCQAjEh4BYS3zYSrIQSAiB1q1bQ1bGjRvH eCxRpSerJiH7NYwQEAJ1g4BYS91MtQwNhgBLOSyCkAtCc1ZeLIOElRHrbSm6llnCKxTBl03CHT6y gAcrKbxHCO8RaKK8yyvQC/JRiOjYR2Tb8GloznHOOeewWkTE5b777nO2mnCnJIqZORhiH/HqGpew zmAZNWoUjXk1hb1pQNHaEmyu1EoICIG6Q0Cspe6mPOsGx7Tg4mAhBYSUEXJEuENSiKWPbLfddvzJ I5/k1jlz5owcOZLARs+ePW+44QZaehN1jR8sX76c11atWtHXMktcDg03HQFq164d+Sgs4tgoZNtA CKACoYkL60QIf+CBB5w5LB7xnmwYu2OKPfHEE/vtt5+Naw3KWmewwIpoaRnKXC4NCAQityXrjir9 hYAQiAUB1rx1CYEMIfDmm29CHW655ZZqdLb/JV82LlzEyXzyySdpwIPZ3fnkk0/gH1w85t3Nu+++ 29eMLtyB07g2dgeBPoWNGDEoku0jJLubDVlninEVbVD4qTV2o9sqktnuxkVUQOusu9c6UyOcLdXM oPoKASFQnwgU/+6rTyxkdSYQgLXYc7ca7lL0FwAhhBKsZeLEifTi1YeShR8clQnIWl566SV6wYG8 1AHJpUlJ2QYBWYuPeyE2oHVFWUtoWzLhb1JSCAiBVCGgFaJYIlgSmgACPCyPOeaYXXfd9dZbbw03 nC/+wWacEnJs2YWlEFJPvJd1cUswATWxZBdSZHx7lPbdd19bUYpqp3RRffbYYw8SeL0fVWNdbW0J CLiaCQEhkA8ExFryMY9lrChSTy2zt3bccUevtdVzl4o8gEQWUk+8l+WFVFoQZdGiRfTaYYcdCkeH UlSkkrfx559/biGccBLCWReTLeFMUC8hIATyjYBYS77nt16so7YbWbpxJ+qCZmF6isVOKy2IEpOq r7zyCkqG5j3hrIvJlnrxXdkpBIRAJQiItVSCltqmD4G9996bYnEscJx22mlWlzbW6913341Efvfu 3ZFTtGgbpweECN6YVjfeeCOv/fv3D6dkOOtisiWcCeolBIRAvhEQa8n3/P7TulTlUlWpjMvG/fnP fw5fmTlzZjJ8xXb5hs6h8REC2//MOUc+/yOdhYIrLPFUGrxBDlVYWK6i74ABAyp164qse+utt7zy 47ClUv3VXggIgTpBQKylTiY6V2YaX0ksvmLYHXfccbySeeoqztl9irhQKa4EvhaKmDdvnrcNebi2 kcdbypZU36OPPppm5557bkUTRn0XEoRPOOEEek2YMKHSUwiCW0dki8ZUrInPlooMV2MhIATqDoEq f/iquxBIHgGiEVUOav/nhacnupIthfVaGNGqs3C56nP2J7XdnD6FO5/dbmSG43LFTtx9k2YlT7i8 ZWMKzXS93OmJriNy0NDXxWT66rV469C49kGss7IuCHSF5qx7OFuqnER1FwJCoA4RUL2WOpx0mfzP qmiFv1FcyRZ7DHvpiHs8c9Nt0uHxT6UTb80VOAcdfeyBP11VWZa03ASwAYr2XmmFtMM3W7YG5NXc SI9PDdfLV07GqElDxAirS1uHWHR2hYO95eZC2CJHFAJCQAhUikAjOtRdfEkGCwEhIASEgBAQAhlE QHktGZw0qSwEhIAQEAJCoC4REGupy2mX0UJACAgBISAEMoiAWEsGJ00qCwEhIASEgBCoSwTEWupy 2mW0EBACQkAICIEMIiDWksFJk8pCQAgIASEgBOoSAbGWupx2GS0EhIAQEAJCIIMIiLVkcNKkshAQ AkJACAiBukRArKUup11GCwEhIASEgBDIIAJiLRmcNKksBISAEBACQqAuERBrqctpl9FCQAgIASEg BDKIgFhLBidNKgsBISAEhIAQqEsExFrqctpltBAQAkJACAiBDCIg1pLBSZPKQkAICAEhIATqEgGx lrqcdhktBISAEBACQiCDCIi1ZHDSpLIQEAJCQAgIgbpEQKylLqddRgsBISAEhIAQyCACYi0ZnDSp HD8Cn3766YknntiiRYtGjRq1bdt22bJlQcak11NPPRWwcRCBcbd5+eWXMXDw4MFuIJTHBAyJe+hq 5KMhak+aNKkaIVH1RY00KFM4lVUaaAL5L6hSjroLgWgREGuJFk9JywACY8aM4eu46OW0v+CCC264 4Qb+7NWrF6+PPvpoEMNuvvnmbt26xfpFD8OI8Bm5Zs0a7Prss8+cdSiPCRgSxN5atbnkkksYukeP Hk6B3r1724QyuSW0gpMZE+XiqRyJ/qtXr0aOvdbwKpzKKpXp1KkTzs9/QYZYeJUmq3smEBBrycQ0 SckoEVi4cCHi2rRpw5ey73LDGGV54oknHnnkkSVLlowYMSKIBs2aNaPZpptu6hrbD1aeqUG6B2lj DCO+Z6Qpb4ZEchlLiESUCQHS2bNnDxo0qHXr1k4sd+z9ZZddVuIpe+WVV65atcpa2mNeVwkEjj76 aD5NOYXVDNYbAmIt9TbjsvefCAwfPhxG4rt86PBzsyK8IDfff//9lClTXK/MPRpRHhMCsrQg4DiW EKRxkDa2MHTooYcWNu7cuXOJpyzLXpBRY6tBBlIbi2YZg9clBFKCgFhLSiZCaggBIRAIASOF3uUh 1+3MM88s8ZS97777+BS2GmgYNfrRjzbbbDNiWvBOEomEhxBICQJiLSmZCKmRFgQs6cG0sfcuWdVS dEnOdfd93+Y8UL0JjLwnRwQ5rF+4NBqvnYQNunTpYh8hFuEhcgjoyCoMYhndpPEnogozan0pxt6Y kNOKjkhwH6GPIUBfyx1BuDcjZPz48c4E3nhlWnsvkvzpRWzWrFmWpmNieV/26cjQPESJqfBALfSY bbfdlo9oUNS0X//613QZMGBAUVdDssu/tkW9okJo5nSmTUMKl3UVwxlpjGKLaC4dyjQp4WboH2Qq zcyyPmZOSzPGtUF5dRDttttuvH/44YfT8v8pPYQA0WBdQiBDCPBMqlJbWyAYN25cUTmW6WLfDPbe Wr700kvNmzfn5siRI7nDq/159913Oznct152hze2ZkFLl0BjH33yySf2kRvFpPHKQCUMLFTehKAP r97lD+R75TCiGwIh9t50cAqbzl5wnnzySWvmWtKRm14TDKLRo0czumli43LHhyR/OutMYRPOfevr w7MQh4kTJ9IGyb6PrC+KMR28IULga2CG2H3Tyqywy3o5AN3UOFusmQkpxNmLGM2CuIrp4GbNQKDv zJkzi8Li1TbgVAb0MXNakGFmzVH50yFjJns9pIRz6iMhkAAC/+edCQymIYRA9Qi8+eabu+yyyy23 3BJalH0vF2bj8i3vZNqTwzuE9eKh4m7aw4nLdfSxFvecK/zS57mLNJ5VS5cuNYEIcc+wEqY1xFqQ xhPdOrqnpldbE86IPm19z6SirIU2hXTKjPUSCPeY9D5iC5F0z2ZHgExtYyRcDpNCHMyKQsZpHRnX PdF9Qngqu+nzsRZaGodzANrEFbJSHy1jLBPrUymIqzg+5yNGmIZMr/I2hJeHBZzKgD5m8+jzDYc8 mhSdwdD/feooBKpEQKylSgDVPWkEYC32NRqau7gHhslxl/dR4fumhgf4nhxmtj0/XLglOGuxJ6L3 6W7Epej9QvLkfWybqt4nrlOssJkvkFOocEOsxUuATB9jbL7pt6CF90lc9JlnT+JC8lHIyXzyC8Mk 1sBGMTwLmY09euEc1tgnxNhSIbP0gWNRh0KTfToHdBXr5YuHFf1fcuEu96kZW3YqA/qYmUnjhshi 0RlM+t9e4wmBfyGgvJZ/f3Dpr+wgwLf2Mcccs+uuu956660htC58ZHp30voE2sZadh2TxuG9LA1l +fLlFSlAMgTrXDxE9913X29HcjV69uzJnWeeeaYigTTu0KGDt8sOO+zg/dPSLxjRtytq7733DjhQ 3759fQIxgYQMHyDz5s2jWdnsnKlTp9KsMMWkf//+3J87d25ArYo2Gzp0KPdvvPFG92npPNwHHniA lrbL13sZsXB7qm1SvBX5rHH37t29vSpylYEDB5a11JxkwYIF1jLgVFbqY3vssUcJ/3fjltVWDYRA 3AiItcSNcCrku1RQ35s//vGPPv1OP/102owdO9Z3f9q0aUWF2O8537XjjjvS2H50ei9IRlEh3Pe1 pC8tkVMoHJrivVkld6loenggjfr3yx5RlVY3efXVV+nlzXl0aljyY0xX0RGrGYtf5z5AbJest2JN oXyXzFv4mPRxr3C68ZiHn6Eb2b4m4YorruC1oTzc559/nk/J5PUNV3Tfu48ONqRhla4C7SNJ1jHC wlHKTmWtfCzclKmXEAiOgFhLcKzUMr0I8JgkEOKt8RqHrg0l8FZa3SS+GnFxWF1CZkNJmkV33zg5 CdSwOfvssxnu9ttv5xVlCAuxbNRQLCHyijIMGtpVbK8WrGvIkCGOEYaY1tz4WAjb1SXfCIi15Ht+ /2ldQ0uiP//5z332X3311TQujLVQ1KuokKLf+KSe0Ji8E5/whlJoue9rSV8kuBQW76cvvvii909M QGeC/Keddlrpn/jVz/Rbb71VvRAk2LpM0bN+Fi1axEeVBm8CakWR34AtAzYLJ9CtixUiYBGCsvP4 +eefl9bQqrmwDkXQwhYQbdmo6GUrQYUyLSbkiyYG9IGAzQr1GTZsmFX+9aatFDYri3zkPta+ffuA XqFmQiBWBMRaYoVXwmNEIEm+0rFjRyzhV3u4YwV9z5htttkGaWQq+PI/ED5nzhw+6tq1a7TA2SOH RRPfiJMnTw43kBNYtsKKyfeNa5txCk93shST/fbbryGtjNC88sorpdUmrGIJv5TwhwQUphB5u1sM ZsaMGT6ZtvxnmUZc5gM2Qe5iyu69917vnSpdxQbF0xqqyxxwKqPyMTdxRQvkhHMe9RIC1SAg1lIN eupbGwSS5CtmIbmoPPkILHGqope48MwuTM/0gmJxBR9dcM9UnqzuqYBYfmczBD/9Kz1JoOw08Mix iIK3+hzvQxdrR6Bt1SERystIeI9Ybxk6G9dyR9xlKzi09JIeDj7kmU1so6EEFLpY3k+QSMYvfvEL WpqBNlxDly3w0dJ7iDQ5MSzQcP+kk06yjnvuuadttHEHNNpqjsuTrdJVvOp5fcx3GGfAqYzKx95/ /30UcwVsynqaGgiB2BHQdiohkDkEqiw011C9Fu67Wib2j+dFxhVB4T4tuVzRNtescCOx22dr9bvc vlm3ydlJsxG99VSKzktD9Vp8m6hNE292hdPfaWINTAE3VkM7nwuV8RYx81WK865uuHIgSIb5OT3d /nPr68AsXWSvcBtw4c5np6qrXOetxFO485k7Tkmr4tNQyTtfMTqgQ20ri1IU6hKu0tAebwsRoQAC uXjDEKaPsyvgVAb0saJO63PpwrJ+mfvSkMK5QUD1WnIzlTIkKAL2mCl6uZIV9kDySeRTAgzukcbj FlHeKheF1UqQ4K1F5q0Vxn1XT9b4Cs8P3/O10CR7qnmrs5g+voe91SDx5YTSxlVFYzgjEEZi3EC+ CjS+Sic+fdCWIdwPcTShu48/0QUzjZR4q+pxHyV9fUvUl3NDmygfUHazaAkTXxk35BgIvsYUpHHg II33hYbQl2ZOZysHZ3vlfFCXdRUfzs46g9TmFDVohigv37WWQabSfK+sjxV1Wh+LLazWE/SfTe2E QNQINEJgQ9/gui8EhIAQSBsCtrDFs7b02lza1M6iPixUbb755pCnlStXZlF/6ZxLBJTXkstplVFC ILcI2G4gCgjl1sLUGGbp0mKHqZkQKfIPBBRrkR8IASGQMQQ4XJocWJZOSpdzzZhV6VOXXGPyo4Vz +mamrjVSrKWup1/GC4EsInDRRRehduHG6Szaklqd2QgGZSlRnS+1mkuxfCOgWEu+51fWCQEhIASE gBDIDwKKteRnLmWJEBACQkAICIF8IyDWku/5lXVCQAgIASEgBPKDgFhLfuZSlggBISAEhIAQyDcC Yi35nl9ZJwSEgBAQAkIgPwiIteRnLmWJEBACQkAICIF8IyDWku/5lXVCQAgIASEgBPKDgFhLfuZS lggBISAEhIAQyDcCYi35nl9ZJwSEgBAQAkIgPwiIteRnLmWJEBACQkAICIF8IyDWku/5lXVCQAgI ASEgBPKDgFhLfuZSlggBISAEhIAQyDcCYi35nl9ZJwSEgBAQAkIgPwiIteRnLmWJEBACQkAICIF8 IyDWku/5lXVCQAgIASEgBPKDgFhLfuZSlggBISAEhIAQyDcCYi35nl9ZJwSEgBAQAkIgPwiIteRn LmWJEBACQkAICIF8IyDWku/5lXVCQAgIASEgBPKDgFhLfuZSlggBISAEhIAQyDcCYi35nl9ZJwSE gBAQAkIgPwiIteRnLmWJEBACQkAICIF8IyDWku/5lXVCQAgIASEgBPKDgFhLfuZSlggBISAEhIAQ yDcCYi35nl9ZJwSEgBAQAkIgPwiIteRnLmWJEBACQkAICIF8IyDWku/5lXVCQAgIASEgBPKDgFhL fuZSlggBISAEhIAQyDcCYi35nl9ZJwSEgBAQAkIgPwiIteRnLmWJEBACQkAICIF8IyDWku/5lXVC QAgIASEgBPKDwP8HeaoWln17aNQAAAAASUVORK5CYIJ= ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAGYAAAAgCAIAAABvvJpEAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAA1hJREFUaEPtWDt24kAQFHsWcMDzCeQT8Jw44ggi9Ca+gbNNpNA+giMnK53A nIC3wUp30fZMz6/ny8CDBSwy5ttdU1U9mtk4jsX0y0HgR87gaSxDYIIsmwcTZBNk2QhkT9iDZd1m dgG/7MxONmGWrJiA2OfT+LY6WQjXtnCSZd3ne7lcXFtap4w3Bdnwd1euH+enDOHa1k5ANvz+KARi pqVtOpmnv7UwmvVYhY3sfdh0g9Po8U3PEv8TZ/Cy8K+vy7LuZT/8Y5FWuoX1tBW2tmocH9/XFaZl LIALtaIDptCdcQoZz7d0VojGfPLOKMuAY9v7O6XK+d09S2lJdbpYcsDeVrZ6d0VVSXQ0KYbm9R3b qyenpOyg2diwKOaP6zJkDEOzYTTVPD0X82KHAnwgTPCdOeOMTRfBpbLmhDJ72Qqi2eWOMzpFmL4H ijMaVrXF8dTMY/qLyGQbMRAb06AJQQgwpj7AxMIYAbNbie4PEaFCrgR3oPYQ8Zy2RkfBHcEU+D/v 8dNVEDJ+Wna0DmLChjRkQcA4uGycSRwBmAd4YX7mefCIqGmmmCGR24d0EAszX36kVdtWnKYywMRG BXP4spIWboxGntDpRDqRHVSXppkeHdCfqgrKknx6T+EGxy/UWkBaKdKhbGBcelk9QgrT0RwtlmKC kW30SDTcbIbQojgAvoZLIEvDHornpIXCSRVb12j22UN7GU3FixgSmaUb57AhWJwBHi1BClwbDove l2EGy4L1Rhw0WV6lbNg/KgNJ6kdMQeYTrV5fGplYiF7OYrLME4iNV46X8bnZFRp3NCumULYgkTd+ Dj+r65HsKAOtAwvI0tdsIh8VzEEVk9PCp1xkDnUO4bOYNL1kiMihhAQwIXP9eQQikZXZ+0HgzgEr Slf84+5lUVm6XybKW6x7GRItHGwyEV33XB6aNdHoRaP2/eJCZVepZE0M0zOYipfdhhU5V1nT0fap H7c3xmfUJozON+bqhV3Rv/ELGTwQ0u9c4D/72FaYuJ/l8+ev8ev5276QwQMhY8zQNY164Sr6P1sD xtsT1pEZobOSLwJa9dNv/+d6UrncfYbmYfGx7qX0Ug/Zl5vIuSIbul8/t+TN7kga3/R0ceXijx76 Nwkzm62TMCfIshHInvAPLhZ/hyudyzwAAAAASUVORK5CYIJ= ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAADkAAAAbCAIAAABJHrDvAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAW JQAAFiUBSVIk8AAAAnNJREFUWEftVztSwzAQtTlLoMjkBM4JPDSpaOmUEho6Sjoau0w6Wioa4hOQ EzApsO9iVp+VdiXZmmQSAjO4cqT9PL19u3Lyvu+zP/Jc/BGcEuY/1tMU65/X0/CawRxIPBtxotT7 hs2TM6tZ5m+LflXuG/n49km9Nm/rYnp5/MQHRExh7b4+i5vryQGRj++SwNq9v2YGKmiBPstGg2mW c7s8rzuDsKvdap67dbXNN3OMBBs0GMsGP8BstLHaqiiqFk1ck4mNXex7s0wMpQO4OmbFhqRhvTrk RdZ1JAgxyiuwup1dWQGUCzMRQMBOFaASFerjLlBKIQQBrKF39dOaHOIx9FK7JO3kapZlsmdGsba7 rVgkBkDzfL/NiurBNwPfbDadalifX0YcXX0L5kK4Q3NZSy/5sHYuV32vmBjRABSLFQ+rDdBQAqqe Xh1VRLkB654+jDmqIHC08uB5DUbNqxT13OuADKaVx+rllJdU11NE6qiE4eq43bVY/qJ6uVaq4YXW MHDD0NrVS9aXsn1QV34L+Oe2/aINFQtRBpSh3EEPeFevMqIXxRWWtaPRBoWAGrDNhq58BOhVlsXm jqjIKMB5FFWFB7NBkgqQUSgVTq9cejGoFOsYUko4HVCkGjGVD/KNZJDe0mF1wChUO0pNI0fLj/Sb TVdXQ+Ng+wzzHcFqaENJxZCELMXGiFUAkQ0WfJi86CGs8GUePrNwpgTTykCiN9fQsNNorBiZtHCG RXoyAtVYW9K8+ZrQzOBgtMDdacKp6/U5vb3phcxvB9JdwV1AVTv6rfDzm8EdWz7AGX/LFyunOP2/ wCvJGX+mvrXPCC1I/Q1LXC1ipC6ZLQAAAABJRU5ErkJggk== ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAo8AAAKXCAIAAABsdzfaAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAAuzhJREFUeF7tnQd8VEXXxg8JhAAhodfQEYlERIqgAqIooKgo6iciYG+IqGBX bNgQG4qNFxWQ+gpYUUBRmgJSRAnSWwi9JqGEkuR7lsl7ueymbLl195lfjDd3Z86c+c9lnzu9WG5u rjCQAAmQAAmQAAk4mECUg32jayRAAiRAAiRAAh4CVGs+ByRAAiRAAiTgdAJUa6fXEP0jARIgARIg Aao1nwESIAESIAEScDoBqrXTa4j+kQAJkAAJkADVms8ACZAACZAACTidQDHXreBKyxT8bM6QbZly 8Jgcy5bsHFGr0IqJREdJyWgpV1JqlpW68ZJY1vPDQAIkQAIkQAKuJuAOtT50QlL2yKKdsjVDTuTI riOSdkgyjgvuZ52U4xDsU3IdXUxioiW2uMSVkPgYSYyTqqWlRJTUipfW1SS5suc+AwmQAAmQAAm4 joDT1Tplr8xKlS3psueorNov2w/L0ZOBQS5VXGqUkaQKUrmU1EmQjrUluVJgFhibBEiABEiABOwl 4Fy1Xrhdpm2UfVmyZJdsTM9rPYcCCy3v+gnSsqpUjJWu9aVNjVCMMS0JkAAJkAAJWEfAiWq9fLdM WSs7DsuCHZ7GtOEBTe0Lq0v1MnJDI2lWxXDzNEgCJEACJEACBhNwllrvPSrjVsn6AzJnm2zNNLio XuZqlZVLakrD8nJrklQqZW5etE4CJEACJEACoRBwkFqj6/urNbJkt/yzN5QSBZa2aSVpWUVuOpsd 44FxY2wSIAESIAErCThFrceslMU7ZfoWQfPa4oCGdZc60qqa9Glicc7MjgRIgARIgAT8ImC/WmMV 1vBlsnyPzNjil8cmRepcR5pVln7NucrLJMA0SwIkQAIkEDwBm9UaLelhS+WPHbJsd/BlMCpl8ypy UXV5uAWHsY0iSjskQAIkQALGELBTrSHV7yyRudtk5T5jChO6lSYVpX1NGdCSgh06S1ogARIgARIw jIBt+4SjAxytakdJNaDivQEuwTG4x0ACJEACJEACDiFgm1pjrBod4M5pVWv1AZfgGNxjIAESIAES IAGHELBHrTEDHNPKnDBWnW81wDG4BycZSIAESIAESMAJBGxQa6yrxmIte2eAF4ke7sFJuMpAAiRA AiRAArYTsFqtMbMMW6BgXbXzA5yEq9av/3Y+GXpIAiRAAiRgMQGr1Robi2K3MldIIJyEq3CYgQRI gARIgATsJWCpWuO4DuwBbuXGoiHChatwGG4zkAAJkAAJkICNBCxVa5ysheM63BXgMNxmIAESIAES IAEbCVin1pixhUMwzT5Zy3CUcBhuc7qZ4WBpkARIgARIwH8C1qn1tI2e86rdGOA2nGcgARIgARIg AbsIWKTWKXtlX5ZsP2xXMUPKF27DeRSBgQRIgARIgARsIWCRWs9KlSW7bCmgMZnCeRSBgQRIgARI gARsIWCFWmPP7S3psjHdlgIakymcRxG4ebgxNGmFBEiABEggQAJWqHXKHtlzVLJzA3TNSdHhPIqA gjCQAAmQAAmQgPUErFDrRTtl1X7ri2ZwjigCCsJAAiRAAiRAAtYTsEKtt2a4dX6Zvj4w1wwFYSAB EiABEiAB6wmYrtZpmXIiR46etL5oBueIIqAgKA4DCZAACZAACVhMoFhurrnjydhX5L1lxp+4VTde qpUpkBWmg5mx4KpzHXmkubSpYXEdMTsSIAESIIFIJ2C6Wk9cLcOXy8p9RoJOriTfXycHsvKfZ14h Vs6vIp+nyMA5RmYKW00qSr9m0qOxwWZpjgRIgARIgAQKJ2C6Wr+9WEavMnjD0WW95Ov1MnhhgUWD nM+7WdpNMriFXaus3JYkA1vxoSIBEiABEiABSwmYPm598Jjxy5TrJcjPZ56QveluaVP9NDh0g/+1 W+JKGIwSHewoDgMJkAAJkAAJWEzAdLU+li1Z5k8xK1fSm9v+LONJoiAoDgMJkAAJkAAJWEzAdLXO zpHj4aJwKAiKw0ACJEACJEACFhMwXa0x49ykXcwwLRy93+oHIanCGX+awREFMXcCvRlO0yYJkAAJ kID7CZiu1uYh6tZQfuqe94Nc3umQdz2hq3l50jIJkAAJkAAJ2EDAdLUuJhKN/0wIw5ZJ+Q/zfmD+ yql51/VGmpDZKZMoiDlFMcth2iUBEiABEggPAqardXSUxESHBytPQVAcBhIgARIgARKwmIDp4lMy WmKLW1wos7JDQVAcBhIgARIgARKwmIDpao21VYave/Zl9OIC2Xn4jNv1E4wniYL4LhUzPhtaJAES IAESIIEzCZiu1jXLSnyMwdSnrpPX2p6eAY454Yt2eLYN16aID2oj5WO99Tt0J1AQFIeBBEiABEiA BCwmYPrOo2ac6oGdwIe2l+5nFchqU7r0mW7wtqPIjKd6WPx0MjsSIAESIAFFwHS1xhGTQxfLmFXh ALxPkjzeShLZvA6HymQZSIAESMBNBEzvCYe2lYiSUu6faIYioCCUajc93fSVBEiABMKFgOlqDVC1 4qVGwWdRu4UkioCCMJAACZAACZCA9QSsUOvW1Tzbgro9oAgoCAMJkAAJkAAJWE/ACrVOriyVS5m1 o5k1yLCLGYqAgjCQAAmQAAmQgPUErFBrLFOukyBmLIC2jBecRxEsWDhuWYmYEQmQAAmQgIsIWKHW wNGxtrSs6iIs3q7CeRSBgQRIgARIgARsIWCRWidXkoqxbp1rhvllcB5FYCABEiABEiABWwhYpNYo W9f6cuGpg6hdF+A2nGcgARIgARIgAbsImL47ir5gg+bLtxtla6ZdhQ0m31pl5fKqh66KXli8ePFq 1arFxsbiIjExMRhbTEMCJEACJEACQRGwVK2X75bPVsjY1UF5alOiXo1lyUcPLPr60/j4+GLFisXE xBw/fvzkyZPQ7KysrNKlS8fFxf35559Vq7p5WN4mtsyWBEiABEjATwLW9YTDoWZVpGF5aeqeAWC4 CofHvvkYVDk9Pf3gwYO7d+/G70OHDuE31BoXl1xyCaXaz6eN0UiABEiABIIjYKlaw8Vbk6RlFalU KjhvLU0FJ+EqHG7QoMGrr76KtrVv9lDxt99+21K3mBkJkAAJkEDkEbBarSGBN50tXeq4gDSchKvq xaJ///6NGzeOjo7W+w2pHjBgQOXK3DPFBbVJF0mABEjA1QSsVmvAalNDWlXznD7p5AD34CRcVQEj 1l999VXZsmccv4We8AoVKmRnZzu5IPSNBEiABEggDAjYoNag1qeJNKsszas4FCAcg3twUh9q1679 5ptvav3hCQkJ6B6fMmXKeeedN3PmTIeWhG6RAAmQAAmEBQFL54TriR06IUMWyW9psnKfs0A2qSiX JsqTrfPfZ7R9+/YLFizAnPBzzjknJSUFbe7vvvvuiSeeqFu37jvvvIObzioMvSEBEiABEggLAva0 rYEOe24/3ELa1xSoo3MCnIFLcKygLcEnTZqE/nCEkSNHQqrh+bXXXrtixYquXbtedtll999//549 e5xTHHpCAiRAAiQQHgRsU2vgwwSuAS09DVmHdInDDTgDlwqZsl69evX333+/Q4cOF154ofYElChR 4qGHHlq9ejXWXqN5/frrrx87diw8ng+WggRIgARIwAkEbOsJ1wqPLvHhy2T5HpmxxU4gmFaGsep+ zf06aAtrrzFuna+7GzZseOqppxYvXvzaa6/17NnTziIxbxIgARIggXAhYL9aK5JjVsrinTJ9i+w9 ajVatKSxWAszwL2mlYXix/z58wcOHIiucqzGvvjii0MxxbQkQAIkQAIk4BS1Rk0s3C5frZElu+Wf vdbVC3YrwxYoWFetLdYyMO9x48Y988wzbdq0Qd94/fo8GMRAtDRFAiRAApFFwEFqDfBoWI9bJesP yJxtph/+geM6Lqnp2VgUu5WZt7ca1mSjef3ee+/dcccdUO5y5cpF1vPF0pIACZAACRhBwFlqrUqE wz+mrJUdh2XBDtl+2IhSnmkD51XjEMzqZeSGRp6tyy0Iu3btGjRoENZ64fd9992HE0EsyJRZkAAJ kAAJhA0BJ6q1gouO8WkbZV+WLNklG9MlOzdU5tHFpH6CtKwqFWM951Wb0fVduItYn43B7NTU1KFD h1599dWhlofpSYAESIAEIoaAc9VaVUHKXpmVKlvSZc9RWbXf09Q+ejKwyilVXNCYTqoglUtJnQTp WFuSbT0EbPr06dBsrARDDzn2QQusMIxNAiRAAiQQkQScrtaqUrDKK2WPLNopWzPkRI7sOiJphyTj uOd+1kk5np3X8kbrOSZaYot7VmHFx0hinFQtLSWipFa8tK4myZX9Wp1lwWOArcWxucqLL7541VVX vfLKK1BuCzJlFiRAAiRAAu4l4A611vNNyxT8bM6QbZly8Jgcg1TniOomx9Zi0VFSMlrKlZSaZaVu vCSW9fw4M2RkZLzxxhsjRozAAV+PPeY5QtuZftIrEiABEiAB2wm4T61tR2asA5s3b8Zc8Xnz5uGM kN69e6vdTBlIgARIgARIQE+Aau2I52HhwoUYzMZ+pRjMvuSSSxzhE50gARIgARJwDAGqtWOqQgRH hjz99NPNmjUbMmTIWWed5SDP6AoJkAAJkICtBOw81cPWgjsx85tvvhlHg2DvM2xW+sgjj+zfv9+J XtInEiABEiABywlQrS1HXmiGMTExOC3733//PXHiRFJS0rvvvosLZ7lIb0iABEiABCwnQLW2HLkf GVaqVOnDDz+cM2fOrFmzcATn119/7UciRiEBEiABEghbAhy3dnrVQrAHDBiADcbfeeedFi1aON1d +kcCJEACJGACAbatTYBqqMmOHTv+9ddfffr0ufbaa2+77ba0tDRDzdMYCZAACZCACwhQrd1QSVFR d91115o1a+rUqYMZ488///yhQ4dc4DddJAESIAESMIgA1dogkOabiYuLe/nll5cvX75ly5azzz77 s88+y8nJMT9b5kACJEACJGA/AY5b218HQXiwdOlSDGYfPHgQg9noKg/CApOQAAmQAAm4iADV2kWV 5e0q5opjuRfa2W+99Vbjxo1dXBK6TgIkQAIkUCgB9oS7+AG5/vrrsTIbbWtsVvrggw/u3bvXxYWh 6yRAAiRAAgUToFq7++koUaLEo48+umrVKlxgZfabb755/PhxdxeJ3pMACZAACfgQsFmtoS44dWrj xo1BVM38+fMLSduwYUMYL8gsEiICPg069yAcNi9JhQoV3nvvvd9//x2ng6BLHPuNm5cXLZMACZAA CVhPwGa1xunOnTt3njx5spUlh4rj2IxRo0ZBqpF7/fr1rczdvLxwEMjUqVO/+OKLoUOHYqdxKLd5 edEyCZAACZCAlQTsnGWGxvHtt98O1cTv9evXW1ns8M4rNzf3yy+/fPbZZ9u1a/faa6/VrVs3vMvL 0pEACZBA2BOws209fvz4e++9t23btqAM5dZY9+3bF61eBK2fHBeq4xph4sSJ+Egl0fqxtSRaNH1P uPZply5dlBFlWQV91vnedN1DgFJg7zPspoJe8ZYtWz7zzDMZGRmOLUVapizcLhNXy9uLZdB8eWKO DPxNBpz6wQX+xE18hAiIhsgMJEACJBCBBOxU648//vjGG28EdGg2lFsTY9zfsGEDGoi//vqrP1UC /Z45cybiI/gOV0OYtU+VTkOen3zySRX/gQceeOWVV1QuSIsectycMGECWqXBjab747A1cUqXLo1d z1asWLFr1y6s8vr000+zs7OtybrIXA6d8EjvsGXy2GwZuljeWybDl8voVTJujYxd7bn44l/PDy7w J27iAhEQDZGRBAmRHEYYSIAESCBCCNim1pBYbcwYmg2FVuo4d+5cKKgaS37uuef8qYbExESoOwwi 8vTp07EEWZ8KQ+N4G1B31KdozUOS1R1kqjrhIeEwot4eevTo0aBBA4tH0/0paRBxqlevjl3PUPCv vvqqadOmuAjCiIFJUvZ6tPb5+fLhcvnyXxm/RsaskhlbZOU+2ZopB7Lk6EnJzqsczwX+xE18hAiI hshIgoRIDiMwBYMMJEACJBD2BGxTawxXz5gxQ/U8QxoBWqmjvkVbo0YNfyoA6ovW8C233OLbs62S 165d28uO1uOt3VenZWgzzrQedX8ccH6c884775dffkHPAZZ74SUpJSXFep/RGkaf9kfLZdwqj+j+ sEk2pHvEONCAJEiI5DACUzAIszDOQAIkQAJhTMAetYYkQ6pVX7QKEBI0gvV6ievt2/39DkZrWLOD TmyvCktNTdXfQWc43g9U/Msuu0x9hAa6/l0hLGe9XX311egYx1lel19+Ofob0ENuzZO9fLdHUEeu kKnrZcIaWXfwdOs5FAfQ8oYpGIRZGEcWyIiBBEiABMKSgD1qjWY0Wnh6oOiCRkc0uqN79uyp9Ypr g9loHONT1exGo9yrJvRz0BBTtdS1AFlS7wEImG6mTTRTdzCArS7QQNd6v/W94mFW68WLF8euZ6tX r8aB2cnJya+++mpWVpZ5Zdx71NNZ/dkK+XajTFkv2w+bkhXMwjiyQEbIDpkykAAJkECYEbBHraGR WLWlR4kuaOg35Fl1a0M41cRvFdB0xqfqptYa1j7FUHSnTp1U5zb6wzGnTG9Z/yk+UkPX0H4Vf968 edp7ANrTcAw30TrH/bBZh+37yEKq8YqzaNGif/75BxPQxo0bZ8Zjjd7p1xfK1HWemWIYeDY7IAtk hOyQKTvGzaZN+yRAAhYTsHO9dZFFRRsXwgk1DV040aS2fYJVkeW1JQJ2QBs4cCAGBd5++221ms6Q MGalLN4p07fY0NKtVEq61JFW1aRPE0OKQiMkQAIkYD8Be9rW1pf7o48+0jfWrXfAsTmqXc8efvjh Xr163XTTTXg3CtFVLKx6Y5H8uMnT0rWlUxqZIms4ADe4yivE2mRyEiABhxCICLXGcDV60b1Gyh1S AQ5xA9MFsJtK8+bN27Rp89hjj+Hk7OAcg1IOWSQ/p3pWW9kb4ADcgDO2vDHYW3bmTgIkEH4EHN0T Hn64nV+iPXv2DBo06JtvvsHGpffffz+O9vLfZ+jiO0tk7jbP2miHhCYVpX1NGdBS0D3OQAIkQALu JRARbWv3Vo/1nleuXPmTTz7BLnLTpk0799xzv/vuOz99QJ/zsKXOkmp4jvcGvD3AMXaJ+1mPjEYC JOBMAmxbO7NeHOEVptAPGDCgSpUq77zzTrNmzQr3CYPE6Hle5sgVz82ryBW15anWjqBKJ0iABEgg CAJsWwcBLVKSYF3c33//jeVzV1555Z133lnIZjWYAb58j0OlGrWFdwi4BycZSIAESMClBKjWLq04 i9yOjo7G9jJr167FfuPYZvyll146cuSIV95Y3IzFWrZPKyucCNyDk1yHbdFzw2xIgASMJkC1Nppo ONorW7Ysdj1btmzZunXrGjVqhO3kcnJyVEExs+yrNZ511c4PcBKucoq482uKHpIACfgSoFrzqfCX AHZ1HTt27NSpU0eOHIljs2fPno2UOFdjyW53SCB0Gq7CYQYSIAEScB0BqrXrqsxmhy+44ALsMff0 00/fddddL/3n2/UH5B/3nFkJV+GwUYd/aCe5mb3xju+p7XgIcESsn/lig33ERK3Z/OgwexIggRAI UK1DgBfBSbHr2apVq46ffc2cbS6jAIenrA3VZ6V/ODhOneSGne39FM5QM2Z6EiCBSCVAtY7Umg+5 3Mv2xuw6GmXBcR0he3qGATi843Co082wO94DDzyA42GUaXXqDA5KMdZVzRrOm9HyMikLmiUBEnA4 Aaq1wyvIue5N2ygLdjjXvUI8g9twPpSA09mxV6vegjrbTd3BETJaJ7l2B1qubqJbW0uo3fTqqdaS o7sbkfU94ZrxuXPnFm5HM/7WW2/pXfUyHgoHpiUBErCMANXaMtRhlVHKXtmXZdZ51WaTwnnYcB5F CC6oc9Zr1KiRb3LVwlY95NidXmtw4zBWHMOKm5Bedcg6BpJxU8VES/2VV15RBhFB9bHjhBWcAKuy UwHW0M5WSbSTYfO1o27CAmLq/YRx5KUZ52B2cM8AU5GA9QSo1tYzD4ccZ6XKkl0uLgicRxHMCGhh a2ezQiw3b96scoFGqgNJn3vuOTTNcYE/NSmFJEOGlYQj1Y033ohrHBSLCPrjYkeMGIHl78qgpu75 2sFR8eicV2lxTItKooyrP7UT5c2AQJskQAKGE6BaG440/A1iz+0t6bIx3cUlhfMoQnCbhysJ/PPP P/Xl11rAUEStq7mQY99UfK8Oc81gQQe6Q2uxjs6Xu68d2C/ICFr8Kr56aWAgARJwBQGqtSuqyVlO puyRPUcl+4weVmd5WKQ3cB5FQEGCC5Bh/bAxjGBsWPVvo8mrupq9uqC9MoKUolsbwqliXnbZZflq v1cqxE9N9e4TyNcO7Ou70PV2VPe4Cjj3PTgCTEUCJGAxAaq1xcDDIbtFO2XVftcXBEVAQYILELmP P/5YG5PGXDD86aV8aGTrG6+IoORTyblXvhhjVnfQrQ1Jnjx5svoTLWA10UwFdINrMdGj7uu89ikm wSF3NSytzTJTxrU/Ydy8eezBgWUqEiCBgghQrflsBExga4Zb55fpi4q5ZihIcAEtV7RQIY2qSxlz wfCn6nmGiEKYcROqjMli2lwwKLTqgkYcpesY4UYqZQET0HCt5BwD2JplWMDyMM1JJIEdlUQbwM7X DoQZq8DbtWuHmHXr1tUswLhyD0G/CC04DkxFAiRgGQGemGkZ6jDJKC1Thi6WMWGxf2efJHm8lSSW Nb1q0EkOLWe3s+mgmQEJhC8Btq3Dt27NKRnUepf3KVwG5FQ3XtpUL/AnuZIBWfiaQEFQHAYSIAES cD4Btq2dX0fO8nDiahm+XFbuM9IriPH318mBrPznmVeIlfOryOcpMnCOkZnCVpOK0q+Z9GhssFlf c2xbm46YGZBAuBOgWod7DRtdvrcXy+hVYuyGo8t6ydfrZfDCAn2FnM+7WdpNCn5Lk3xN1yortyXJ wFZGM6I9EiABEjCaAHvCjSYa7vYOHgtymXIhYOolyM9nnpC96W5Pr7gWsO/YX7slroTBcLHeGsVh IAESIAHnE6BaO7+OnOXhsWzJOmm6S+VKemexP8v4TFEQFIeBBEiABJxPgGrt/DpylofZOXI8XBQO BUFxGEiABEjA+QSo1s6vI2d5iB3MTNrFTD8tHGVOqnB6irhJCFAQwzdkUydfeR3FoT93y6iy6A/m Msom7ZAACTiWANXasVUTcY51ayg/dc/7QeHf6ZB3PaGrm1Dg4A3sS6ptRmas69jXTO2vwkACJBBp BKjWkVbjoZYXWhFtjl4MWyblP8z7gZdXTs27rjcyVJ8LSo+CGFsUtdMntjODZpvl9P/sYlcy7URt s/OifRIgAdsJUK1trwKXORAdJTHRLvO5IHdREBTHwIBzKrEhqDoZ0+voaCy5Vvt9ap3k2sFZ+s26 +/btq+7jQjmGhOpm69atscUp7qjmteoJ92ptq8j4VHXIq8BDrA2sYpoiAbsIGPpdZVchmK+FBEpG S2xxC/MzMysUBMUxMGALbnU0NTQbyq1Zxh7gt99+O868wr7f2C1caTCucUftN64kHBKLfcXV6Vj6 U0PUzUWLFmHrb0TTn+6FXcRhUDv5Ayd54PhqyDNsKjvYDFw7CdvAktIUCZCAxQSo1hYDd312WFtl +LpnXygvLpCdh8+4XT/BeHQoiO9SsaCzgWRixFqd7QHN1g7dwp8QVHU4h+q7hpoimjovCxfQVJUK /efaWR3Qcq07vVOnToV4hSTq+E7NATTuNUXHewD6zIMuFBOSAAk4hADV2iEV4Ro3apaV+BiDvZ26 Tl5re8Ym4Yt2SLUyp+8MaiPlY731O3QnUBAUx6gwatQoNG1V57NqQGtzzbzmhKelpeGED0i7iqx9 inZ27dq1lT/aRZHuXXTRRXgzQDRoNlrwKr7WDV5kckYgARJwBQGqtSuqyUFOYp1VYpzB/jw+Vzal n54Qrs0M1y6ubyjXfCObgz3gsiB3URAUx5CAJiykWnU+q6BvHHu1bhMTE5Hp9OnTVUxcq8FmaHxq aqryR7so0j11arU6Y1u14NGjjjvK+GWXXVakBUYgARJwPgGqtfPryFke4nzJqqUNdgn7lN018/SE cG1muHbRfKzBO4SrAqAgRh2XiWY02sp6LugMR1tZzfDChRpaVjoKfdWvlsa1OoIafdpa77e+V1wz q2TeNyAhJqJjiNr3I9XfzkACJOB2AlRrt9eg1f5D3kpESSn3TzRDEVAQo9Qaoqj1QqsqwVA09FvN NYNCo58cvdOIhiljuIPWNq5VfzX+VOPZ+I0hanUTF74LtNRsc5XE982gZ8+e6iYS4v1A2Zk3bx6u 9bu1WP3EMD8SIAEjCPAMLiMoRpgNLIz+8l/ZkO7uYjdIkN7nyMPN3V0Kek8CJBAhBNi2jpCKNrKY rat5tgV1e0ARUBAGEiABEnAFAaq1K6rJWU4mV5bKpcza0cyaomIXMxQBBWEgARIgAVcQoFq7opqc 5SSWKddJEDMWQFtWTjiPIliwcNyyEjEjEiCB8CZAtQ7v+jWrdB1rS8uqZhm3wC6cRxEYSIAESMAt BKjWbqkpZ/mZXEkqxkqNMs7yyk9v4DacRxEYSIAESMAtBKjWbqkpx/nZtb5cWN1xXvnjENyG8wwk QAIk4CICVGsXVZazXG1TQ6qXkVrG7dxpTfHgMNyG82YEbb9Pry1FzchLb1O/14pvXoV/arZvtE8C JGAIAaq1IRgj1EjzEpsuqemyssPhGxqZ6DOOydI2H4VMagdf+mbpddiliT7RNAmQgPsJUK3dX4d2 lGDLli3du3d/snfnunEnmrpnABiuNiwvzapYhAy7m6nzNswO2BnNd+MzszOlfRIgASsJUK2tpB0O eR0/fvzVV19t2bJlixYtUlJSbmtaomUVqVTKBUWDk3D11iRLXVWHcSGolrR24hb2D7/llltwX9tG FK1wFQFHX6sk2FQc12igq/vaIdaaKS2tvq8bSXgAl6V1zMxIwBICVGtLMIdLJjg2Kjk5eenSpUuW LHn22WdjYmIggTedLV3quKCEcBKuWvligZM21NHUSpuxXzc6yaGsEFTs+I0+c3ykzuCCMKMV7nUk F+7jXC9sMK5O9II1L1O4qUm7JvDKJgJeFGDWBRVDF0mABPwgQLX2AxKjiKiu7/79+7///vtTp06t U+e0PmPGVqtq0tnZgg334KRJk8v0DwhUWd+0xTnW+BRne+CED5zzgWuILjTY65gNnLgF6VV29P3n 6sAu3MRx1xB7L1Po/cb7kz53/R3E37x5Mx9eEiCB8CBAtQ6PejSxFF5d316NOZVxnybSrLI0t2o8 ONDSwjG4ByctCPpZZtqx1tBmJdUINWrkPx9dO5JL9ZAXEjRTvnHQiNfeFbxO8LSg7MyCBEjAPAJU a/PYhoNl367vgkrVr7lcVF2aVHRcqeESHIN7Ngboq9aY3r59e76eoG2tTSZX3eMFhUKOv3zllVdw yrXWo25jkZk1CZCAsQSo1sbyDB9rhXR951tI7Ln9cAtpX9NZgg2pvrha9jXlN9q7JThOntZ6v7Ve 8cTERI3kvffei7a1+hPTzTC2XdCTpDdVyBowNLKRY/g8jiwJCUQ8Aap1xD8CPgD86frOlxomcA1o KZcmOqVLHB3gcObcAz9379x+9erVNta0mlOGQWh0U8+cOVMNNqsBaTWvG+PNaBOrTmxMN9O60H19 1ptSM9f0cTAojuQwgkY2GuvIy8ZSM2sSIAEDCRQrvM/NwJxoyhUEICSYSoaJ3++++65+Kpn/zh86 IcOXyfI9MmOL/4mMj4lpZRirRgc4WtVjx4596qmnZs2adfbZZxufEy2SAAmQgPkEqNbmM3ZJDuj6 fvTRR7GEGrO+851KFlA5xqyUxTtl+hbZezSgdAZERhMfi7UwA1w/rWzMmDFYcgbBbtTIzJ3MDHCf JkiABEggHwLsCedjIUF3fRfCDkqJfUiurScW73SG7JApsvaaAd6nTx90Dnfs2HHdunWschIgARJw HYHoF1980XVO02EDCaDr+5prrsnOzsYqalxER0cbZTyxrLSoJidzJDFODhyTjONGGc7fDo7ruLa+ XFxT+p4vjSrkE6dZs2YVKlS44447rr766ooVnTd53Vw8tE4CJOBuAuwJd3f9heK9sV3fhXiyfLdM WSs7DsuCHbL9cCgu558W51XjEEycrIXjOorcA/yLL7544YUXfv3110LmXRvvIi2SAAmQQGgEqNah 8XNnanR9Dx069L333nvkkUcef/xxbCBqQTkWbpdpG2VflizZJRvTJbuwFcV+uRNdTOonSMuqUjHW c161//uUff755y+99BIEW9vE26/8GIkESIAE7CNAtbaPvU05hz7rOxTHU/bKrFTZki57jsqq/Z6m 9tGTgdkrVVzQmE6qIJVLSZ0E6VhbkgM/BGzkyJGDBw+mYAeGnrFJgATsI0C1to+95Tlb1vVdZMmw yitljyzaKVsz5ESO7DoiaYc8A9u4n3VSjmfntbzReo6JltjinlVY8TGe8e+qpaVElNSKl9bVJLmy 537Q4T//+Q8OE4NgF7KRZ9DGmZAESIAEjCVAtTaWp0Ot2dL17SeLtEzBz+YM2ZYpB4/JMUh1jqhu cuwbEh0lJaOlXEmpWVbqxgtmruHHqICzNF577bXffvutXr16RtmkHRIgARIwgwDV2gyqzrJpb9e3 s1j4ePPpp5++8cYbEOy6des63FW6RwIkEMkEqNbhXPvO6fp2MmVs1YlzoCnYTq4j+kYCJMDdUcLz GTBjw5PwJCWCDboxMf6yyy7Dy024lpHlIgEScDsBqrXbazAf//0/5jIMCx9UkXDs1cCBAyHYqamp QRlgIhIgARIwlwB7ws3la7F1dn2HAnz48OE4ywRd4rVr1w7FDtOSAAmQgOEE2LY2HKk9Btn1HTr3 fv36Pfzww2hhb926NXRrtEACJEACBhKgWhsI0zZT7Po2Cj1OC33ooYcuvfTStLQ0o2zSDgmQAAmE ToA94aEztNMCu77NoI89WT/88EN0iScmJpphnzZJgARIIFACbFsHSswp8dn1bV5NYPt0TBRHl/i2 bdvMy4WWSYAESMB/AlRr/1k5KCa7vs2ujAEDBtx3333oEt++fbvZedE+CZAACRRJgD3hRSJyVgR2 fVtZHzipDOd/zJ49u3r16lbmy7xIgARIwIsA29aueSTY9W19VWHXlLvuugst7B07dlifO3MkARIg AY0A1dodDwO7vu2qpyeeeOKOO+6AYO/cudMuH5gvCZAACbAn3OnPALu+nVBDr7/++pgxY9AlXrVq VSf4Qx9IgAQijQDb1s6tcXZ9O6dunn766d69e6OFvWvXLud4RU9IgAQihwDV2qF1za5vp1XMM888 07NnTyzr2r17t9N8oz8kQAJhT4A94Y6rYnZ9O65KdA4NHjx40qRJv/76a5UqVZzsJ30jARIIMwJs WzuoQtn17aDKKMCVQYMG3XTTTR07dtyzZ4/zvaWHJEACYUOAau2UqmTXt1Nqoig/XnjhhRtuuIGC XRQnfk4CJGAkAfaEG0kzOFvs+g6Om72pvv7662XLlj355JNxcXH2esLcSYAEIoEA1drOWkbXN3bL whkS2JgaG3HExMTY6Q3zJgESIAEScCoB9oTbVjPs+rYNPTMmARIgAbcRYNvahhpj17cN0JklCZAA CbiZgPvUOi1T8LM5Q7ZlysFjcixbsnMk91QdFBOJjpKS0VKupNQsK3XjJbGs58c5gV3fzqmLfD0p VgwPkTRo0GD9+vX5Rti4cSM+nTdvXtu2bRs2bLhhwwYtWufOndFfoiJoNxGhfv36elOI0KlTJ2W/ b9++H3/8MS6UQa8c8/20IA/hzCuvvNKjRw8YwfXMmTO98nU4ebpHAkEQcLUcBFped6j1oROSskcW 7ZStGXIiR3YdkbRDknFccD/rpByHYJ+S6+hiEhMtscUlroTEx0hinFQtLSWipFa8tK4myZU9920M +Crv379/cnLyu+++W6dOHRs9Ydb5EujSpQs2P8HG4JBJRPjoo498oyHOjBkzfMUVIqpuTpw48bnn nitI7GEQFmAZUqrFnD9/frt27XJz1TtnXsj304I8VO8NEyZMUGqtfyFgXZNAmBEIDzkIolKcrtYp e2VWqmxJlz1HZdV+2X5Yjp4MrJilikuNMpJUQSqXkjoJ0rG2JFcKzELosdn1HTpDsy2oNrFqCucr n3AACjpq1Chftdar+5tvvrl58+Z8lR4WYBktYLy3KdlWLwe41reMVUl9P73gggt8PVRuQ6dvueUW Ta2RHC61b99eiTcDCYQHgfCQg6DrwrmzzBZul0Hz5aPlMm6VjFklP2ySDekBSzW4QN2REMlhBKZg EGZh3JrADU+s4Rx6Ltu3e54J1Xtco0YN/IYQepmFIvrKMKKhN/uxxx5TkSHV+BNNbQSou5eF8ePH 33777eom2t+1a9dW11Dr1NRUfWTfT/P1EA6jUe6rypDquXPnho6FFkjACQTCQw5CJOlEtV6+2yOo I1fI1PUyYY2sO5jX0R1iUdFbDlMwCLMwjiyQkamBs75NxWuxcbRWhwwZ4jsYPHny5AceeEC7jwFj RIOComMc6o7GtN5PfJqYmGiB52iIIy8LMmIWJGAqgbCRg9ApOUut9x6VYcvksxXy7UaZst7T721G gFkYRxbICNkhU8MDur67d++OUer3339/6tSpHKU2nLDFBiG6ED/Va+0VRowYgdM+tJtoE6toGMPG vLM//vjDYle17PQz4OzygfmSQNAEwkYOgibgldBBao2+jtcXytR1Mna1bM00qoAF2kEWyAjZIVMD O8bZ9W16zZmTgb73W9/nrHKD6EL8VP82/sSkMNVoRjc47vtO5y7IR/R4ax/pe7/1/d4qgu+nhXvo m6N+aro5zGiVBMwiEB5yYCwdp6j1mJWeQeXvNsk/e40tYBHWkB0y9QyNr/Q333379hUUlV3f/kJ0 Xjx0ZaMpjG5tuIbRZXRu631Ecxmd2yrgvjYn/M8//0QqfUzIuRJy/MZ8tBtvvFH/KXJJS0tTdzCA jXa5ignJ9xp79v20cA+9iMIxrBNzHmZ6RAJFE3CRHBRdGONi2K/WmI7/xiL5cZOnpWtGp3SRrJAp soYDcAPOFB7WrVvXokWLQ4cOeUVj13eRnJ0fAS9b2PcbcotObzWbDNPEMDe7EM8xNcxrJBu6i5Y3 jOA3RN3rU/SZY1a5Mgh5hqBqMdVN/Klmt+X7qa+HBfmGKWaYaOZ85vSQBPQE3CUHFtedzSu4PCMT S+WPHbLM5Alf/mBtXkUuqi4Pt5BKpfKPjnYVpDolJeX+++/HgLSKxA1P/GHLOBoBbb21eUy43to8 trRsHgF3yYF5HAqybGfbGnXzzhL5Lc0RUg1AeGOAM3CpoCY++i3Rcjpx4sSYMWNWr16NJOz6tv6R dXuOaLWb3UcN+1oL3u246H+EEHCdHFhfL7a1rdHjMWSRRx1XFjgKbD0NT45NKsqlifJka++Nz3bt 2tW4ceODBw8iDrorzz33XMziQTsbjezCO0vtKQZzdQwBdMl8+eWXW7duHThwYGxsrGP8oiMk4BQC rpMDW8DZ1rYevszTAe40qUYdwCU4Bve8wh133KENV+P7d8WKFTjgEmpNqbblwXVRpni36927NyaX XXHFFb4zHlxUELpKAiYRcJ0cmMShcLP2qDWm/C3f45QOcF9A6BKHe/pZ4t9//z3W8Jw8eXrXUwj2 r7/+ikFrW6qNmbqLAAQbHeBNmjS56qqrDh82ZxsBdxGhtyTwPwKukwO7qs4GtcZCusU7ZcYWu4rs V75wD06qddiZmZl33313enq6V0q0k5555hm/zDFSxBOAYGNH0qSkJAp2xD8LBHCagOvkwMbKs1qt MZXgqzUy3dlSreoDTsJVOPzwww/v37/ft5KOHj362WefqelmDCRQJAEI9ieffNKoUaOuXbuyhV0k LkYIewJulAMbK8VqtcY+JEt227OuOlDKeJLg6gfz93/xxRdIW6FChXLlylWqVCk+Pr5MmTIVK1Y8 66yzzjnnnN9//z1Qy4wfsQQg2FhZgH3Krr766iNHjkQsBxacBEDAdXIAh20Mls4Jx/7s2JobW5G4 KPxfgxOVNnzTtFJO1apVK1euHBcXx02/XVR9znQ1Jyfnnnvu2bRp0w8//FC6dGlnOkmvSMBUAm6U g16N5a5zpVkVU8EUaNxStcaxVzhLw4I9wA1kWausdKsvg9saaJKmSEAg2JgMgS3wINilShWwHQ85 kUD4EqAcBFq31vWEYzbBjsMuk2rQxLsF3Dbw2I9Aa4jxw5JAVFTUyJEjcb71NddcgwkQYVlGFooE CiJAOQji2bBOradtlAU7gvDQ/iRwG84zkICxBCDYmKVYs2bNa6+9loJtLFtaczgBykEQFWSRWqfs lX1ZZp1XHUSxA0qC87DhPIrAQALGEoBgYw5j9erVu3XrlpWVZaxxWiMBZxKgHARXLxap9axUWbIr OA8dkQrOowgMJGA4AQg29vTGHEYKtuFsadCZBCgHwdWLFWqNPWC3pMtG781FgnPYnlRwHkUo8jxN e5xjri4noAQbiwOvu+46trBdXpl0vwgClIOgHxEr1Dplj+w5Ktm5QTtpf0I4jyKgIAwkYAaB6Oho HOyGNf3XX3/9sWPHzMiCNknACQQoB0HXghVqvWinrMpnK7CgfbYnIYqAgjCQgEkEINg4qgs78HTv 3p2CbRJkmrWdAOUg6CqwQq23Zrh1fpkeK+aaoSAMJGAeAQj22LFjy5Yte8MNN1CwzeNMyzYSoBwE Dd90tU7LlBM5cvT04VVBu2pzQhQBBUFxGEjAPAIQ7HHjxmGDsxtvvBHHyfzzzz+//PILdlDBb1xz VNs88rRsAQHKQSiQrVDrXSZsh1w3XtpUL/AnuVIoTApMi4JQrU0hS6M6AhDs8ePH43enTp02btyo FBq/U1NT58+f73sWHOGRgFsI4PvTDDmwpfjWy4HpO49OXC3Dl8vKfUbyhBh/f50cyMp/nnmFWDm/ inyeIgPnGJkpbDWpKP2aSY/GBpulORLwJTB79uxnn302Ozv7qaeeKl68uBYhISGhXbt2JEYCbiRg hhyAAxpv1coUyAOz0M3YLcN6OTBdrd9eLKNXGbzh6LJe8vV6GbywwOqBnM+7WdpNMriSsGf4bUky sJUb/5nQZzcR2LVr1+LFiyHVb775pq9gt2rVCuuz3VQe+koCpwiYIQd2Nd6slwPTe8IPHjN+mXK9 BPn5zBOyN93t6RXXAt6k/totcSUM/ieCdzQUh4EEzCagurvRGf7EE09gNfaQIUNOnjw99YOd4Wbz p32TCJghB2O6eHpSm4+VG7/P5+eyrzzNtjuTxfDhUevlwHS1PpYtWeZPMStX0vvp2m/CNo4oCIrD QAKWEVCCjexUI9uyfJkRCZhBwAw5sKvxZr0cmK7W2TlyPFy+ZFAQFIeBBMwmgMFpLQsMWj/55JM4 YVMTbP2nZntC+yRgIAFr5MCaxpv1cmC6WmMHM5N2MdNPC8fzlFTh9BRxAx8vvSkUxM0bsplEhWaN J4BhaUiy1piGYGOumRrGjouL46C18cRp0RIC5smBJe6fkYn1cmC6WpsHsVtD+al73g9yeadD3vWE rublScskYDqBzMOZi5YvnLd8zsoNKfoWNgQbLez33ntPP4ZtujfMgATcQMD6xpv1VExX62KYLIP/ TAjDlkn5D/N+YP7KqXnX9UaakNkpkyiIOUUxy2HadRGBQ4cPLf7nz9FTR42ZOmrLts3Foovd3vP2 2rVrx8bGohT4Xb9+/ZkzZ6KF3bNnT45hu6hm6apGwDw5sL7xZr0cmK7W0VESEx0mjysKguIwkICB BA4fObx0xZIxU0ePnvIFBLtzuy4P9n7o8os7Va5QuUa1mk2bNr388suvvvpq/MY1NiWdPHnykSNH br31Vgq2gbVAU9YQME8OrG+8WS8HpotPyWiJPb21gzWPhFm5oCAoDgMJGEVg/uJ5X0z+LD0z/Yq2 nR7s81CHNpf+u27lkaNHVq3/N+msc/LNpWTJklOmTMGmpL169aJgG1URtGMNAcpBKJxNV2tMzzN8 3bNvgV9cIDsPn3G7/ulJtaHwOSMtCuI729Aw6zQUeQQuaNa6X5/+l13UsXqV6rm5ud/MnLpz786S MSU9at0wf7UGJAj21KlTDx482Lt3bwp25D01Li6xNXJgDSDr5cB0ta5ZVuJjDKY3dZ281vaMTcIX 7fDsPKftHD6ojZSP9dbv0J1AQVAcBhIwikBMidP/NmbOm3E06+j/db0541AGFh9USKhQSC4Q7K+/ /nr//v19+vShYBtVHbRjNgEz5MCuxpv1cmD6zqMLt8t7y2TGmVuPhfhMYCfwoe2l+1kFmtmULn2m G7ztKDLrXEceaS5taoToPpOTQD4EDmYcjCsTVzy6+B9Lf8fc77atit4MHEd9dOvWrUqVKqNHj8aW Z8RKAg4nYIYcfNZJsEHKM/MLLPoVdTx7mV36X9ls6JHH1suB6WqNQ1eGLpYxqxz+FPnlXp8kebyV JLJ57RctRvKLADrAN6ZuaFCnoRZ75KT/XN+5e8VyFf1JD8G+9tprq1WrNmrUKAq2P8QYx0YCZsiB XY036+XA9PdxaFuJKCnl/olmKAIKQqm28Z96+GUNqf7ul28X/LUAF6p0aGHn5GT7KdWIj5Vd3377 7Y4dO+644w60yMMPEUsUTgTMkANsMn3XzNOrebVlvdoFthA3/AwuW+TAdLXGo1YrXmoUfJyZW55F FAEFYSABowhAob+f9V3m4YweV99SrFjeSv7C55flm3WpUqW+++67bdu23XXXXRRso2qHdkwiQDkI GqwVat26mmdbULcHFAEFYSABowhAoWvVqN3j6p7646tbNb3ggvNaB5oFBPv7779PTU29++67KdiB 0mN8KwlQDoKmbYVaJ1eWyqXM2tEs6JIHlBDb1qAIKAgDCYROAK1qTP+GnfPPOV8v1biDP7GCK4gs lGBv3rz5nnvuoWAHAZBJrCFAOQiasxVqjXVpdRLEjAXQQRc70IRwHkWwYOF4oI4xvhsJTPv1+1/m zzTc89KlS//www8bN2689957tYFww3OhQRIIhQDlIGh6Vqg1nOtYW1pWDdpJ+xPCeRSBgQRCJ/DD r9/vT9/f5ZKrQjfla0EJ9vr16ynYZuClTUMIUA6Cw2j6Ci7NrUHzZep62X7mjmPBOW1xKswv695Q Bre1OFtmF4YEDh059PO8mVdfdk2JEiXMK97hw4evuuqqxo0bf/LJJ9r8NfOyo2US8CKwbt26F154 4cSJE7hfoUIFvERieWF8fN403ePHjx9u+9TPu8pSDgJ6cqxTa6yLH7lCpqwPyD1HRL6hodx9LjdF cURd0Ak/CUCwr7zyynPOOefjjz+mYPsJjdGMIoCBmFq1amGdQkEGb3h0aLnOj1EOAgJuUU84fMIW YNWxCMptW4vAYbjN/csCeqoY2ZfAj79N+2f135aRKVOmzI8//rhy5cq+fftyDNsy7MxIEcAL4uDB g3FknC8QfIRen/Fv9KccBPq0WKfW8OyGRnJJzUA9tDk+HIbbDCQQCoEfZ0/bvW9X4wZJoRgJNG1c XNxPP/20YsWKBx98kIIdKD3GD5EAzojDOgVfI+XLl//5559jYmIoB4EStlStm1WRhuWlaaVAnbQt PlyFw3CbgQSCJrB+87pde3f1vLaX/gyPoK0FlFAJ9t9///3QQw8FlJCRSSBEApiZgT1xo6PPOGMY Q9dfffVVYmIijFMOAiVsqVrDuVuTpGUVqZTPK1egnpseH07CVTjMQAKhEGhY96w+19+GxkQoRoJO i97I6dOnL1u2jIIdNEMmDIgADoWbOHHieeedt3jxYn3zGo/iwIEDL7vsMs0a5SAgsFarNSTwprOl S52AnLQnMpyEq654sbAHEHMtisD8JfNw/CViebUwikpn8OdKsJcsWdK/f3+DTdMcCegIYLL3f/7z HwxLY27jkCFDli9f/vjjjyvBxhmvrVu3HjRokB4Y5SCgx8e6OeF6t8aslB83GXyMZkDFLjIyTkO7 qp70aVJkREYgAXcQyMjI6NSpE74xhw0b5g6P6aV7CGANwogRI956663zzz//6aefvvjii5XveOrq 1KmTnp5es2ZNzHnUFnFRDoKoW6vb1spFqGCzytLcqePBcAzuUaqDeJ6YxLEE8EU5Y8aMhQsXPvLI I451ko65jsD+/ftffvnl+vXr49HCMgRszqNJNcqCpw6nw2EYCL07+Uo15cD/GrdHreFfv+ZyUXVp 4tcZvv4Xx4CYcAmOwT0GEggzAgkJCTNnzlywYMGAAQPCrGgsjvUEdu7ciY7uRo0abd26df78+ZMm TcJYta8baGqPHz++SZPCOiopB/5Un21qjd1iH24h7Ws6S7Ah1XAJjnFLcH+eHsZxHQEINlrY+G7F fB/XOU+HHUIAe9E/8MAD2Hvn5MmTWHGAseqzzjqrIN8qV67cvXv3wj2nHPhTs/aMW2ue7T0qw5bK Hztk2W5/vDU3DjrA0aqGVHNmmbmgLbc++IOXkGf5hPL9+uQ/zeqPZb9v3rqpZ7deyrWVa1Omzpii T3Ig/cDwMe+rT2EEprwKgQjjvv1S2cfq6qUrluDi9hvuwJmY+ph6O5opLT7uDHroBRVf+YzQ4tyW V3Xoigs4cGu33r5ZB4Hz4MGDV1xxRYcOHYYOHRpEciaJWAIpKSlvvPEGemjuu+++hx9+uFIlI9fj Ug4Kf65sVms4d+iEDF8my/fYPOkM08owVo0OGbaqw+ybaPy3Y+vWqndR84shiiiaUj59gFTP+v2X BrUbKLVWgqokGUnKxZdDWtzpdvl1kF5EXpay1Ff1kcuVHboiCZT+t4W/IsLW7amjpnyhqa/KUftU cwB3/l61XGWN7A6mH8A1rJ2X1KxJo2Ql290734Br/QtB6HV04MABCDaW07z55puhW6OFsCewaNGi 119/Hb8xjHL//ffnu09Z6BAoB4UwtK0nXPMJ6vhUa88E7F6N7WnUoiWNrOEA3KBUh/7vzVEWoHAb UjckNTgHXp3b6FzV5NUH6CJa1Wi/ajdXbfi348WXqyYspB1SjQuor2ol16pWCza9jECYcUclgfQ2 T27hiVmjthJvfeT0Q+n1azfQ34EMa236OjXq4HgufIo7SqoR8BqBVMo+0noZDJq22lJq1qxZTz31 VNBGmDASCPzyyy8dO3bs0aMH1hTgAHWMVZsk1YBJOXC0WivnMAEbK+WvrWf1TmfYrQyZImvOAA/L 751DhzM1HY0r49m12EtroYuaWCoCEG/8RosWP9Byb2HeuRXy6XVzxdoVaAqrm5DbhLgEdV0hoYIS Wi0czDiINwZl3Fd3ERlJvIzrDULOt2zfYlRNKcFGrybmARllk3bChgB2q/3mm28uuOAC9Hjffvvt OFYLe85j2bQFBaQc5AvZ/ra15hZOzni6jXQ/y9PSteDwD2SBjJAdMuWhHRb8C3RRFugYRw82fqCU 6PrWPIfE4iNNmLX7G1M3xMflnQZYeDEREw13WMaQNobGVaNcBVzDeLtW7fUWVO+91s6uUbUmLBhI EqcZouWE1TXPPPOMgWZpytUEMHfsyy+/TE5Ofu211/BgYKy6d+/exYsXt7JQlANf2g5SaziHTumH m8td50q3+oJzKnGwtBkBZmEcWSAjZMc5ZWZAdrVNCKryH33aqqmtgpJwqGzQ3dHoUVdd6+gnRxt9 686tyjJa/Bjkxvi0flYaXhTQEPcaI/fthw8RtRJsrJR97rnnQjTF5G4ncOzYsY8++ggTvEeNGoVd dP7888/rrrvOrhNXKQdej5Oz1Fo5h93eB7f1HCndvaHccracVU6iixnwrwBGYAoGYRbGkQWP6zAA q7NN6Hu/9b3ihXhdLqE8+qsLiaANJGtx9N3X+t5vfSd2IQbRqsYsNrS2tTY0IqNVjelsXpPUcN+Q OeFezlSsWBGC/f3333ttDOnsuqV3RhLIzMzEAoG6detiZAS7fGNCw+WX572zGplN4LYoBxozJ6q1 cg49IRDUvs1ODSonydX1pEGClAq8MwZJkBDJYQSmYBBm2fUd+L8aV6aAtkFcMXEM3mN0WT+brKDy 6Cejaf3e6ANXvdb4jWlrmGumTw6BV/uBI6CfHCqrYqIdrBdg3PSyg+lvqlWtzWJTRtCqxuRw35nn 23dt85qkZlStYCkOvqC/++67F17IW0JmlGXacTiBvXv34i2tQYMGWDmNeQwYq8b2tE7zmXKAGrF/ BZc/jwWm9afskUU7ZWuGnMiRXUck7ZBkHPes/so6KcezJTvXYwat55hoiS3umVgYHyOJcVK1tJSI klrx0rqaJFfmlG9/YIdhHK/11vpFU6q02tIp9ae23lpb66xfJ63WU+kxQZjnLZ6rzVbzXW8NB9SS ML0dtRpbv9ha2UR7Wltsre5obiAyJpp55W5ghe3Zswezf7GXxYsvvmigWZpyJoFt27ZhZ+/Ro0ff fPPNmOmN3UOd6aeXVxErB+5Qa31tpWUKfjZnyLZMOXhMjkGqc+SUWAv6y6OjpGS0lCspNctK3XhJ LOv5YSABswlo663Ny8jY9dYF+QnBxiLsG2+8kY1s86rSdsuY4I119l9//TU28caudtWqVbPdpeAc iCg5cJ9aB1epTEUCphKwQEq1HVpMLQiM7969G4KN9haHsc1Gbb19dHdjpvfs2bMffPDBfv36YY6h 9T4wx+AIUK2D48ZUJBDOBCDYl1566S233MKJ4mFTzb///js2I/vrr78ee+yxe++9t0wZc5bchA0v 5xWEau28OqFHjiSQtjOtQrkKpWNLO9I7453atWsXBLtXr15cim08XGstYj09dHr79u1PPPHEbbfd hvMrrc2fuRlDgGptDEdaCW8Cvy+Z/8/qv/t0v71M6QhqkUCwcfJHnz59uNmZGx/vnJycqVOnot87 OzsbNXjTTTdFR0e7sSD0WRGgWvNJIIEiCCxbuWzhX39AquNKx0UaLJxhDMHGXKQnn3wy0sru3vKe OHFi7NixQ4YMwbA0dPqaa65xb1nouUaAas2HgQSKIHD46GHsmRyBUq247NixA13id955J/pR+aw4 nMDRo0dx2jTWZSUlJUGn8ablcIfpnv8EnLs7iv9lYEwSMInA5jTPtqNlSpWJWKlG8atXr/7bb799 9tlnPAzbpMfMELPp6eno9K5Xr96cOXOww8mMGTMo1YaAdY4RqrVz6oKeOIvAwr8WTPvth6xjWc5y yw5vlGCj0fb222/bkT/zLIwAJvCjGd2wYcO1a9diadaUKVOaN29OZOFHgGodfnXKEhlAAFK9NGVJ n+tvjy0Za4A595uoUaMGBPvTTz9955133F+aMCnBli1bHnroobPPPvvQoUNLlizBURyNGzcOk7Kx GD4EqNZ8KEggHwKY+937+tvKxnEnvNNwatas+euvv3788cfvvfceHxp7CaxevRpnTrds2TIuLm7N mjUffPBBnTp17HWJuZtNgGptNmHadxkB1fV97tlN/Tyy2mXFC83dxMREtLCHDx+O4xRDs8TUQRJY tmzZDTfcgDHpRo0arV+/Hgupq1SpEqQtJnMVAaq1q6qLzppM4M+/F034bpzJmbjbvBJsNObef/99 d5fEbd5jTLpz5844cPqSSy7ZtGkTdq1JSEhwWyHob/AEuIIreHZMGWYEFv/z56LlC9EBnlCWX4JF 1G1qaiqWdT366KPYazrMHgMHFgdHj6MNvX//fqx6x+5yJUqUcKCTdMlsAlRrswnTvjsIYL+nKdMn d27fhVLtZ4UpwR4wYADOh/AzCaMFRADP5FdffQWdxh5kaEnjJNOoKPaGBoQwrCJbWvc4o61YsWIb N24MFGHfvn27dOniTyosY0Au8+fPDyIjJEFy5BJEWn98YxwnE8AX4v91vZlS7X8d1a5dG5POsKbr o48+8j8VY/pD4Pjx41gvhwnemNOHLckwVo0zTF0h1fjy1II/JQ3vOMEpUUFMLFXrESNGYNxl8uTJ DqwhaDz+VWAJBB41OOmWg9kdSNJ1Li1dsWTOotmuc9sJDmMeMgQbu6ZAVJzgTxj4cPjw4XfffReb nHz77bf4OsJWJ342VGwvO5ph+PLEtyg2/kOYMGEC/rTFK+Q7ceJEa7L2vyUZuj/W9YTjLQNLDvD8 4TemMobueiEWkFe7du02bNhA0TWVsz/Gs3Nl7lY5nuNP3FDjxERJ+1oSHchXxLKUpb8vnY+x6nLx 5ULNPlLTb968GV3iTz311H333efFAG1Envjk53OBYWlMtv/www8x3xv93uedd56fCR0SDW8V+L7V d7TgDg5Kt37DWqg13hV69OhhARmoNV5TcMpZvnkZrETqPciC8MADD6jXrgYNGsybN0/LUSuk9lKG mOomYqpouIP2Li7wG9G0T6HHXjGRBBFgH/fxKZJocXAHdrR8tVyUZQTNMmLm66H+pgXEwiCLkzm5 w5fl3vZjbodJVvwgI2SHTP0Mew/sfX/UewfSD/gZn9EKIoAvLLSzsXeKPsLo0aPvuuuuoKFtzchd sC13wqrct/7MfW5e7uOzcwf8mvvoqR9c4E/cxEeIgGiI7N6Andhx5nTFihXvvvtu7Efm0oJ4fW16 lUL7vtW+hIv8MveKoBmEEnt97eOrW68a6lNEy/dbXSmC9m2PC/21ykXLAjHVHZXKSzW0hEpEfBVE r0ShV2ueK6EbKtKCJp+KrIqv6kNjASLApIm09qlerTV8qkqUHa1ufNUad1S16cEhU69c1KfKmpYd rpVBrf7UGwCDPwSUVPeallvhw9xyw634QUbILiDBxmlF/pSFcYokgH8aEGyMdqmY6EWLj48vV67c yZMni0yrRcg87pHe95bmDvwtt/+s3Ju/z714Qu65o3Prjcyt/kluxf89SLjAn7iJjxAB0RAZSZAQ yWHELQHQ7r///vLlyz/yyCNpaWlucdvXTyVmBX096r9vlVKqL//Cv8xVBNVGwrVSRP3XuHZTyaSW uyYH+X6ra7qrfasrPVIKrWWh8tU816dS1yqCJhb55mWsWls0bo1RBG0wGNMlMMql5pqh50SdxIcL lBy/sZoTLNSoA7oXfHtR9O9Q+nY2Zqgq/fYK6HVXXSL4x4DfOJIdv/Gdcu+996qYKpe2bdvCAXUH vqm+evRjwBk4jGsYgXI7c9A934LbexMd4J8sl4U75MfNkpPH1XSPkBGyQ6bIGg4UEv5e9feuvbsQ oXjx4qa7FRkZ4B/vrFmzXnnllZEjR37xxRf9+/fPyMhAn+TcuXP9AZCyV4Ytk+fny4fL5ct/Zfwa GbNKZmyRlftka6YcyJKjJ0/XKSoXf+ImPkIERENkJEFCJIcRmIJBJ4eUlBSsxWrTpk2lSpXQnsZY NbaKc7LDofim/77Flzb+VNaK/DJHBHwzI+Zzzz2Hc0pwMX78eE1K1E0lJfhy9h33zPdbXWXds2dP /Ibc4Dc6NrRrWFNZqHzx5Q8JgBDoU6mMlKBooZC8QkGnT2uRWuNFG1jVXEFghQdK9jDIAS7qvpqP jTLjHeeWW25RNzVMQRcY4wrKFHzQG8GMVi+bvlMZVX1oD4HykKFIArZItfLKH8Fe/u9fcxb9FlMi psiCMEJABPBPG5PO8P6Nf3SQaqQ9ePAglLtwIwu3y6D58tFyGbfKI7o/bJIN6R4xDjQgCRIiOYzA FAzCLIw7LSxatAg7nFxxxRUYmYYSDB48GILtNCcD9Ud9Sf7555/6hNryHxRT+771/eL1Py8YRNC+ kLF3fZFpg5ug7qVWReaiIgSXl5/GEc0KtQZfFF7feaJ/vULTVn0Eb/CPHL/RilV3EA2TxfwvjG9M ZI12vOqy8Fpn4tUWx5xwrW8cMyOUKfXmpT1zZk+OC6Wkzklro1QrCIUL9uoNqzEDvNf1fconlHcO tLDxBNucYWZZVlbewWX4d/fDDz/k5OQ/yXD5bo+gjlwhU9fLhDWy7mARPSJ+UsITCFMwCLMwjiyQ kRPCL7/80rFjR3y/derUCVPzHn/88bJlw2cjerS7vPpRcMy2mtCOr1bt+7agTlB/Kgg6jaB9IauO 0kJCvt/q/mSkTWZSSqTa2SblVZTh059bodZoRqsRCC1o3QtqebS6j+u6deviT60Ji7cw1RA3JODR 0eygG1zrjfGdgq865xFQSVrvt75X3BB/wtKI7VKtqBYi2HUT6/bpfnuFhAphyd/eQmGJ8MCBA3Ee lN4NNDjU6J0+7D3q6az+bIV8u1GmrJfth01xHGZhHFkgI2SHTG0J+LrHgdMXXHDBww8/jBUx69at w3dOyZIlbXHGvEzRHELTSPs+x2gm/lRtJP33rb5XvEhntDFTjLCobnP0YGu93/pecb2pfFVD+1Yv MlOVherWRSkK334DmuVr0P+8inRGH8EKtYbreEb1ueL9CPoN1mit4lPVgYAIGD9GwIunuoP+8Jkz ZwZUHq/IyAh1jAY6rLVv3x61+Mcff6iMtFyQhRq6RneNyhdfLrhWb3CahzCC+1wSVkh1OESqlYe+ gr11eyq+N3ECJlvVofybKigtvoXVWLVXhAMHDngNQqF3+vWFMnWdjF3tGXg2OyALZITskKnFHeOY Yffll18mJye/9tprWJSFserevXuH61QJfDfia1P7Pse3t7aGVv99iy9e/9d04dsbX9pKHZTwq6FS dVN9dfs+P8gCuUNoC/pWL/yRU1ko1YCdwr/2L7roIkg7uhCCyyugh9+69dYBuWVNZCAuaJ2cNQ6E Uy6OkmoNbFQxuaqutKkuF5daMWfBL3fedDcPwTTpqcMX3CeffLJ8+XL0e3s1rytUqLBnzx61FdeY lbJ4p0zfYkNLt1Ip6VJHWlWTPk1MYnDa7LFjxz777DPsGwMNe/rppy+//HLTswy7DHwXcIddEQMr UESrNVrPaqw6MGaM7UPAmVKt3FSC3axCVp9GhytXqMjaM5VAZmYmen2x8HrFihWabJcpU+ann346 v0274ctk+R7PFG4bQ+c60qyy9GsuceYcjQECeGt55513WrduDZ3GbxsL6+qsqdZe1WdFT7gznxgM HUGqvQbUnemqw71yslQDneoSX74/9r9bKha+rMvhnF3hHqZNobMXY36YTISduS688MK4uLgjR468 PmzEkEXyc6rNUg2GeFeAG3DG8GHsvXv3Dho0CN8qf//9988//4y3Fkq1Kx5atzgZ0W1rt1SSk/10 uFRr6LQu8fubBbY1qZPhu8I3LOL64PMJO8665Z/D5bA22iGhSUVpX1MGtBR0j4cetm3bhkms2Lvt 5ptvxkxvzm4JHSkt+BKI3LY1n4bQCbhFqrUWtj8bp4SOhRb0BIqXKXf8ggccJdVwD+8Nc7fJsKVy 6ERI1YUJ3vfccw9WTmPu2L///os5zJTqkIAyccEEqNZ8OoIk4CKpViX0Z+OUIFkwWcEEMFb9xw6P OjotwCU4BveCC+juRksa84dr1aqFzcgwoaxatWrBmWIqEvCHANXaH0qM403AdVJNwbblIcYMcEwr W+aMzUl8CcAxuAcnAwq///771VdffdVVV2HfUMxUff755zHpPSALjEwCQRCgWgcBLdKTuFSqKdgW P7hY3IzFWvbOAC+yyHAPTvq5DhsLPi+55BLsHtGtW7dNmzY9+uijmO5eZBaMQAKGEOAsM0MwRpAR V0u1Vk+cdGb2I4sZ19iN5LtNxk+9NtxzTDS7tp483abAGWdYijZ16lTscJKdnY1FWTfddFN0dLTh btAgCRROgGrNJyQAAuEh1arAFOwAKj7wqNjpE9uH/ePsg7C0YjWtJN3Pkoebe5cTB6qOHTsWBxag rxs6fc011wROgilIwBgC7Ak3hmOEWJm71dNtaOUhmOaBVZPOUBwUisFYAjhFY/0B10g1yo63Cjis P/zj6NGj77//PhZPYwNL7HaCHYsp1cY+JLQWKAGqdaDEIjr+8RzZkmndedVms4ZgozgoFIOxBKas lTnbjDVpujU4DLcR0tPT0eldr169OXPmYIcT7ALdoUMH07NnBiRQFAGqdVGE+DkJkEAgBDBja8dh K47rCMSpouPi8A+4/dG0v3AGIFZkzZ49e8qUKc2b+3SOF22JMUjAFAJUa1Ow0igJRCyBaRtlwY6A S4+TVw486PlZ1iuftBhRVp/qI0y+Ju/O25ecToLkKhoMBhrgdlpc0yVLluDQsMaNGweanPFJwFQC VGtT8dI4CUQWgZS9si8rmPOqf+ouLy6Q8h96cOnVV+GrXVY2pXs+xU/zsZ470O+OteXKqXLXTLkz 2TNHTEuIODAFg4EGnId98ER0Zpk6gSZkfBKwgADV2gLIzIIEIoXArFRZsivgwiqtXXSqRf7bVo/6 eoVLa8nG9DPuQb8RsJXsslPZ1Tr1JxIiuWZKmQ0owHkUgYEEHEiAau3ASqFLJOBKAthze0u6t6z6 UxKltfpQN/70X7iul+BpSasubvVRaqbnN7q7m1f1XGDUWZ9EJfY1W6QzeCdAEULcPLzIXBiBBIIg QLUOAhqTkAAJ5EMgZY/sOSqGH0ta7dR2YejxRhc3Gr5/9fb8ifXcqrv7s06ej7C225AA51EEFISB BJxGgGrttBqhPyTgVgKLdsqq/cY7j+5u6LTS43mnFoahSY2x7RcvlPO/9PxAsH03NgnaDxQBBWEg AacRoFo7rUboDwm4lcDWjGDml6G06Mf2CpszioCAkWzMO0M0FbNdzbwLfTJfs/6QxVwzFISBBJxG gGrttBqhPx4CB/sVC+WHEK0nkJYpJ3Lk6Mlgclbt5tan1lxBhj9P8VyoVVtoRmOyGC7UlDGoMkQa rW0MMGMwG2PVarhatbmREMk1U8F1j6MIKAiKw0ACjiJAtXZUdYShM/gyxRduQT/JlcKwyJFZJMjb riPBFx1rsdCzDVVGGDjnDDsQXcgwurvxKeaaqRVcN37vkW2MYeMHg9kYxtYSIhpMwWDQAQWhWgdN jwlNIsBTPUwCG6TZLl26YKdDr8QPPPDARx99FKRFQ5PN2Cxv/Ok5EtjPADH+/jo5kJX/POEKsXJ+ Fc8Xsde3M4yjYe1nFvlGKzc818/kzSrLUxdI57p+Rme0AglMXC3Dl8vKfeGAqElF6ddMenB/lHCo zPApA9vWzqpLHKCbeyp07twZIq2uHSLVQZAa08UjxmgMoSXk+3PZV9JukmeNbOEtbAVh/fr1yoEe PXp4AcFHuBmEe0xiIIFtmZJx3EB7dppCQVAcBhJwFAGqtaOqI9ycwcjiz1vOKNSmu8/YEhJbX/21 W+JKFFhwvL48+eSTxYoVmzlzZr5vLZBqHJQUbuBcWJ6Dx8JnmTLWW6M4DCTgKAJUa0dVR2HO4OQ+ iJYKKt7GjRtx/eabb6qbuNBf5xtBy0AzNX/+fCsRlCvpndv+rALzr1+/PvoYJk+ejBjjx49HZ4M+ Kj5Fm/u5556z0n/mVRCBY9mSFdQUMwciRUFQHAYScBQBqrWjqqNAZ6Cpt9xyy7x586BPQ4YMwTFB WtTNmzfj5oQJE9AG1V9rEUaMGIEIGzZsQARIPu4jOYyoVO3atYPqO5NCjRo11DsHfm/fvh2/odCa q+plRZWIwXYC2TlyPFwUDgVBcRhIwFEEqNaOqo4CnUHLEq3Mtm3bIsaNN94I6dXaxD179sTNxMRE /H7ssce0a02DcaCQ0jm0TefOnYuESA4juInhXnQjq8areUE/LRy5JFU4PUXcvExp2WICmNdn+C5m FhdByw4F8Xeaol0uMt/II0C1dk2dY6646r4OZZgWEp6WlqbEW5Vc30w3iUW3hp4dItUPwjsd8q4n dDUpQ5olARIggXAjQLV2TY2iba1mR6ug2tmBBoi0aoVrLW9trnWgpvyPj7Ww6qxDdR4iFsKq63oj i7Ch7/3W94r7nzVjWkYAkymiQ1p2Z5mnRWeEgoRLUYouLGO4hQDV2h01he5utK1V77eabub/YPMr r7yi5Pnjjz+GHci81vut7xV3IAj4jFKrTnt4Dv8d6CRdUgSioyQmOkxgoCAoDgMJOIoAH0lHVUeB zkBi1Yww6LSabqafb1V4GRBT9Z/DgmqRoz2tlkXBYECmrIeF7WLUhLhOnTr17dvXegeYo58ESkZL bHE/4wYQzZa98FAQFIeBBBxFgHuZOao6DHYGbVOINPQ4uG5zX28C3csMe0Ci3xu7OmsBmz9/u/6M AxiW9ZK+s86Ig8iF7GWGmXHt27cvXLm5l5nBT5If5t5eLKNX5XM+hx9JC4wS9F54oWSKtDgY+7Yk GdgqRDNMTgJGEmDb2kiatOVFADs8v9b2jE3CF+0QHFesbRs+qI2Uj5Wdh0nO9QRqlpX4GINLYche eEH4hIKgOAwk4CgCVGtHVUe4OfP4XM/RC9qEcN+L6xvKNd/kc9ZhISAwbM8ucQc+KOiyTowz2K/Q 98ILziEURB3txUACziHAnnDn1IULPAm0J9z5ReKpHkbVEQ6tGrpYxqwyyp7Hju9Iiu+dydfIW0u8 R1JCdKJPkjzeShLZvA6RI5MbSoBta0Nx0hgJRCoBaFuJKCllwkQzi4miCCgIpdpi7MyuSAJU6yIR MQIJkIBfBGrFS40yfsUMKJLFe+GhCCgIAwk4jQDV2mk1Qn9IwK0EWlfzbCtreLB4LzwUAQVhIAGn EaBaO61G6A8JuJVAcmWpXMr4Hc2C3gsvCI7YxQxFQEEYSMBpBKjWTqsR+kMCbiWAc8rrJEj9BLf6 D7/hPIpQyIHrLi4bXXc5Aaq1yyuQ7pOAkwh0rC0tqzrJoQB9gfMoAgMJOJAA1dqBlUKXSMCtBLD7 WMVYU+aaKSIvLvDeS8fApjzml8F5FIGBBBxIgGrtwEqhSyTgYgJd68uF1Y3x3+K98OA2nGcgAWcS oFo7s17oFQm4lUCbGlIdi6CM2FrEjL3wCsIKh6vEnrzriiaTJk1yK3r6HdYEuJdZWFev0YX7LVVG r5TvN0lOrtGm7bAXVUyuqSe3NZFLOVRpKP/lu+WzFTJ2taFGTTbWq7Hcda7sWzHrmWeeOXny5Ouv v45j30zOk+ZJIAACbFsHAItR29eSVtXkqroCnXN7QBFQEBQHhWIwlkCzKtKwvDR1zwAwXIXDcLtj x46LFi2CYD/yyCOXXnrpwoULjSVDayQQNAGqddDoIjEhVqPe38xzgpbbBVtJNQqC4qBQDIYTuDVJ WlaRSqUMN2y8QTgJV+GwFm644YYVK1b06dPn5ptvvv766//991/jc6VFEgiQANU6QGARHz0MBJtS bcFTDAm86WzpUseCrELNAk7CVa8Xi+jo6DvuuGPt2rU4TP2yyy67/fbbN2/eHGpOTE8CIRCgWocA L1KTulqwKdWWPbaYboaBhs7OFmy4Byfhar6hZMmSjz766Lp16+rWrduyZcuHH354z549lgFkRiSg J0C15vMQDAGXCjalOpjKDiFNnyaCM0mbVwnBhJlJ4Rjcg5OFh7Jly7744ourVq2KiopKSkp64YUX MjIyzPSLtkkgHwJUaz4WQRJwnWBTqoOs6dCS9WsuF1WXJhVDs2JCargEx+Cen6Fy5crvvvvu0qVL U1NTGzVq9Pbbbx87dszPtIxGAqEToFqHzjByLbhIsCnVdj2m2HO7fdRfzcpmOEqw4Uz7mvJwi4C3 BK9Tp84XX3zx22+//f7772edddZnn32WnZ1tF1vmG1EEqNYRVd3GF9YVgk2pNr7i/bCIqdRPPfVU tWrVurRrOf3pKy5NdEqXODrA4cyAlsFPWUd/+NSpU7/66qvx48cnJydPnjzZDx6MQgIhEeDuKCHh Y2JFIDtXPlkuC3fIj5sdt3GKJtX3Ns0pEc3XU9Of2Y0bN44ePRoN0EOHDmVmZmKnEcyvHjp06D39 Hh2+TJbvkRlbTPehkAwwrQxj1egAN+qgrZ9//vnpp58uVqwYNlS5/PLL7Swb8w5rAlTrsK5eCwvn TMHWpLpD2dV//7v05q49oBwWUomgrLZu3Tpu3Dj0DO/du/fw4cMnTpzQCp+QkJCSkpKYmIg7Y1bK 4p0yfYvsPWo1HKzRwmItzAAvclpZEJ6hnT1o0CCUEZrdqlWrICwwCQkUToBqzSfEMAJOE2x9B3iU 5C7/969m55yPNpBhBaYhHYGPPvqof//++Q7inn322atXn96GdOF2+WqNLNkt/+y1jiB2K8MWKFhX XdBirdBdQS/CqFGjXnrppdatW7/yyiuNGzcO3SYtkIBGIBorE4iDBAwhAHVsUc1zoGGp4rI+Xezd StxrrBoiXb1KdUq1IRWdrxE0KCtWrDh//nyvmdJYsoxdPNu2baulSizreU5O5khinBw4JhnHzXPK YxnHdVxbXy6uKX3Pl0YVTMwL67uaN2/+4IMPbt++/Z577sELyvnnn49+BROzpOlIIkC1jqTaNr+s DhHswqeVHTt+LKpYFJXb8MfhggsuqFChwty5c/WCjcXK77//fvny5fXZlS7h2fa1Rpzk5HjUNP2Y ZJ7uODfML5xX3amOtKwqt54j1zUUZGpBKF68+EUXXXTvvfdi71Jo9s6dO1u0aFG6dGkLsmYW4U2A PeHhXb/2lM7eLvEiZ4DP+v2XgxkHune5kYJt+POBnvA2bdosX74c3cLKeL169TDvrJCM0DE+baPs y5Ilu2RjumfGYogB6xTqJ3hEumKs57xq87q+i/Rz9+7dgwcPnjhxYr9+/QYMGIAXlyKTMAIJFESA U2T5bBhPwMZlXUVKNUrboc2laAAdzDhofMkj2yKkunfv3lWqVPn000/j4+MBo0SJErhTOBWo6eC2 0reZ51yNPklydT1pkOAZTAk0IAkSIjmMwBQMwqyNUg3/geKDDz5YvHgx3lewOHvYsGHHj5vc7x8o NcZ3DwG2rd1TV27z1PoWtj9S7TaKrvE3Jyfntttuwzba33zzTWxsLOaH9+3bF97j0EmsTvazGIdO SMoeWbRTtmbIiRzZdUTSDnkGtnE/66Qcz85reeN1MCZaYot7VmHFx3jGv6uWlhJRUiteWleT5MqG rc7y021/oq1cuRIHcf7999+YKoQ3GK5N8Aca4+gJUK35PJhIQAk2VuxsyTQxF810nbKe9Tk8BNMK 1mfmAam+66670tLSvvvuu1Kl8o7J/O9//4tFTWvWrAnOn7RMwc/mDNmWKQePyTFIdU7e1EVM68fK +ZLRUq6k1CwrdeMFM9fw4/ywYMECLM7GOw0mjeMsTuc7TA+dQ4Bq7Zy6CE9PINhzt8rxHCtKFxMl 7WsFdl71us1r125a2/XSq63wL0zzyM3NxaSq9evXT5s2zWs6FQZu0RscpuUOvljTp0+HZmO2PBZn X3rppcEbYspIIkC1jqTaZll9CGATj/Hfj2uR3DK5UTLxBEEAUv3AAw/gfKoff/yxTJkyQViIzCTg NmnSpOeffx6z8F577TXMG49MDiy1/wSo1v6zYszwJHAy+2Tx6MAnNYUnjIBLhdnOf/3114wZM+Li 4gJOHPEJMHMeu7+9/PLLWI+O2eM42ivikRBAgQQ4J5wPR6QToFQH/QRg2xOcIIl+XUp1cAyxNuG+ ++7DIAK2VWnXrh3WZ2PsPzhTTBX2BKjWYV/FLKC/BI5mHV20fKG/sSM+3mOPPfbHH39AqrmMOMRn AfPynnzySUzHwxj/eeed98QTT+zbty9Em0wefgSo1uFXpyxRkASwWcqKNf/MXzwvyPSRlAxHYc6e PRsd4NxZ06hqL1eu3KuvvoqFXji7DHuMY9I4DkcxyjjthAEBjluHQSWyCIYRQPP6yNEjFctXNMxi OBp67rnnMP171qxZ2Gc0HMtnf5mwmwomoIHws88+i/n2MTEx9vtED+wmwLa13TXA/J1EoFRsKUp1 4RWCM6awqBqHOlOqzXty69evP3bs2JkzZ2KgAe3sL7/8EivazcuOll1BgG1rV1QTnbSBwM49O6tV rmZDxg7OEl21EyZM+O233ypXruxgN8PKNRxrhsXZBw8eBPxrr702rMrGwgRCgGodCC3GjRgC2PJ6 xMRPzmvc7KIWF0dMoYso6JAhQ3B+M4arq1atSiYWE8Bydmg25t5jcfYll1xice7MzgkE2BPuhFqg D44jgG2ce193W67Nh3Q7CMvbb7/9+eef//rrr5RqW2rlqquuwslm2HodO7xeeeWVuLbFDWZqIwG2 rW2Ez6xJwB0EcHjU8OHD0aquWbOmOzwOXy+x+97IkSOxlQpa2PjdsGHD8C0rS3YGAbat+UCQAAkU RuDDDz98//330aqmVDvhQcEhpNjqFRuqNG3a9KKLLrr//vu3b9/uBMfog9kEqNZmE6Z9EnAxAZxU /dZbb0Gqa9Wq5eJihJ3rOD0Fw9jYUAWrtM8991wsfz9w4EDYlZIFYtuazwAJkIAfBLCFNQ6JglTX qVPHj+iMYjWB8uXLv/HGGytWrMCM8bPPPhuVdeTIEaudYH5WEeC4tVWkmY8dBFauTZk6Ywpy7njx 5Rc1z39294H0A8PHvH/7DXfUqlEbMbUk5RPK9+vTX/NaRcMd3PcqCj4a9+2XKvKPs6ctXbEEF5pB fWTfT/9Y9vus339BnAa1G/Ts1ktF1qJpbiPrW7v19s3aPKiY/o0NOrBYq0GDBoXkgg3g9J927twZ S4TN88pAy2+++eaIESPQpWygTRtNoSA4TXzOnDn4fffdd6PD3EZnmLUZBNgTbgZV2nQEAYgopBoi OuihF6CIW7en5uvWT7On6SVZS1K/dgNIqfpISXVBpYIFSKlS+o2pG5AdpHrUlC+84vt+CpeWpSxF fPzsT9+vskM06D3uwHPNbdjHC4FlWLE1B770f/nll8KlWvmDFdg4/1EF/NmlSxfL/GRGGgFMN0NF YKEX9q5JSkoaN26cqg6GsCFAtQ6bqmRBvAms2vAvGqyqPdri3JYr1q7wZQRp1N9EEjRnVZKrOnRV zXHEgVR373xDvojVS4BK8veq5c2TPQcVo5mOO17GfT9FNK35jpeDgxkHkTb9UDrcVjbxk3EoQ10j gpdBk6p84sSJOGQCu5UFcYAjGtbYPBwbepjkG80WTqBZs2Y//fQThjA++ugjXEO8SSxsCFCtw6Yq WRBvAhC/cv/rtS4XX+5gej7TcNCSvrJDVy3l5q2bcD34g5fwM/7bsep+k0bJaOnGx8XnixgvAecl NVMfoX2cEJegriskVIDu6pMU/ika5XVqeIaHa1WrtSF1Ay7QoMePli8+3bJ9i9nV/NVXXw0YMABS jQ0vg8sLneHjx49XabE+GF3lCFqDG0Ku7iDoRV27iXcFlRZJ0Fmt7qPhiK2ztWt8qv7UIuBC89Y3 U5jSbiIV0mqR8VEhzrj0tQOLu37//Xes78JbFw7idGkpgnv8wjgV1TqMK5dFK4IAhoe1lrQWFZ3P Xl3ThVuByhYk5H5WAFrMeDmAMOO1wKPWNWqjIx131DC5Gk1HqFG1JvLy02Zw0b7++uv+/fujcXzO OecEZwGpsMe1SgsF/fjjj7UecuglbkI85s2bh5votr399ttVTIgxViXh5oYNG2655RZNXSA2Kjnu o09eu9YUHQPP6lPEVDfzzRT3NU/wMoFZ7ipfJMQJJbCA3PXOYNc25SG81Ut70ExsSYhtSv/++28c CtKnT5+rr74ak9FscYOZGkWAam0USdpxBAEIsGoZ46Jwh9CDDfHznXoG/VYJ0aetmtpmB9V2R087 3EZe8Hze4rnqjQFj1drYOT6CopvnDMY7IajoR8WKIENygZRC9pQpaCH0EhcQXZwFiYsePXqoGV7Q ZqgmTsvGNZRe3zSHiKrkSKWZwnVqat4UBEyFU6kQc+7cubjON1Pc10whsibAMNW2bVt82r59e/ig OXPjjTcqDxFh8uTJhtCwxUhUVFTv3r1Xr16NLoROnTr16tXLvS8ftgB0VKZUa0dVB50JlQAGm5XO 4ULf+63vFVd5bN25FeKnpB1/YlIY9Bs952rw2P+AHm8tsr73W9/vrSIU/imazogDl9BjX7dWPZXE 643BvDnhOAETjTD8xmCn/2XPNyb0oG7duuojNHlVPzNazOoOFBptd3VTtbZVgC6qm/g0OAc0HfLN 1H+DaWlpiKx1D4THTmE4cLNfv34gj9GN1q1bA/vOnTv9Z8KYDiFAtXZIRdAN4wkkNTgHA8CqPYpZ 1uc2OqPJiFa10nX8IIJacIU4av0VArrEtQHpQpyDwKuJYAiIjzneuIDwaz3bWlrfT9X8NRVhwV9/ qGllMKi16WFNU+7tu7ZhopnxmEQwNQy7T3///ffNmzcP0T4kE3KLPbaUHdWlrJ8xjptahzZa21qf Npq2WjTMkArCDU1i883UT4OJiYmIqQl/2KzvQqHKlCmDbn+0s3E0SJMmTXByNlZp+4mF0ZxAgGrt hFqgD6YQgPKhexlyiNYz+re15dTa9DHfXBFH9UjjB9PI1UBy4QECj8neKg7iQ1CRFi11yL+6qcak 8/0U8dF6VtnhLUHND0evgEqFHzTHtb56TDFT09CMDVimddttt33zzTetWrUK3TLabejKVt3LaKyj mats4r42U0wNSytxhToiMhrW2liymjvmpyeqUx3iCuHv2bNnvpn6aUpFU86o3m/VRa96xcMmVKxY EXgxnr17925sqII3m6NHj4ZN6cK8IPo3X16TAAkEQWDcN1/uP7g/iIT+J4H9D0YP8z++nzGxT1mV KlUwf9jP+L7RvL4fIdX6ONpoMaKp+5hipiXRN4K1m2q6GQJMaddq3FrdV9dqmFmzr1/z7Zup3hQ+ VU7CiDZzDck1D/GR5oyaEBeuARuX/t///V+NGjU++eQTHBYSrsUMm3JxL7Mwfxtj8SwgoN/LzKTs 0EPQ7fLrtPnhhuSCaVk33XQT2pGY+WyIQSuNoD0NrYWaqnY8Q9AEli5d+swzz2zatOnll1+++eab 0bcRtCkmNJUA1dpUvDROAg4lgPZ09+7dJ02a1KFDB4e6WKhbVGtjaw1bzOKYkGPHjmGzce5GZyxb o6y5T63TMgU/mzNkW6YcPCbHsiU7R1TXFd4Jo6OkZLSUKyk1y0rdeEks6/lhIAFrCGC62ZGjR6pV rmZNdkHnsnDhwm7dumEPk44dOwZtxN6EVGsz+GPBPWaiVa5cGZp94YUXmpGFsTYjSg7codaHTkjK Hlm0U7ZmyIkc2XVE0g5JxnHB/ayTchyCfUquo4tJTLTEFpe4EhIfI4lxUrW0lIiSWvHSupokV/bc ZyCBCCfw559/Yt+M0aNHY/g2wlGw+L4EsrOzv/zyyxdffPG888577bXXMHvcaZQiVg6crtYpe2VW qmxJlz1HZdV+2X5Yjp4M7OEpVVxqlJGkClK5lNRJkI61JblSYBYYmwTChgAGKbt27fr5559fddVV YVMoFsRwAsePH8c0e7Sw8Ur30ksvaQvoDc8oIIMRLgfOVeuF22XaRtmXJUt2ycb0vNZzQFXrFRkt 7/oJ0rKqVIyVrvWlTY1QjDEtCRRGICcnZ8zUUV0uucpRveLLly+/8sorsdvXNddcw/ojgSIJZGZm vvPOO8OHD8e2bjiTDcsHikxiUgTKAcA6Ua2X75Ypa2XHYVmww9OYNjygqX1hdaleRm5oJM1se/wM LxYNOovAmo2r/1j2xx033ukQt/755x+0k9Bguu666xziEt1wBYG9e/eiS3zMmDFY/IYNYhMS8s6t scZ5yoHGORrjE9ZA9yeXvUflPytk1haZkSoLd0rmCX8SBRwHZtGpvuOI7D8q6w5Kw3JSmuPZAVNk giIIVCpf6bzG5zlkPczKlSsh1R988AHmgdtSc9gaJSsr6+KLPSeQmhosy8jUUjjKeOnSpfHwoHn9 ww8/PPTQQ3ikW7RoUbx4cbOdpBx4EXbQXmbo63h9oUxdJ2NXy9ZMs58ETxbICNkhU2TNQAKGE8CZ CobbDMLgqlWrcKLDu+++G2bbcmkosH2pQ96KgqgdtySpXbs2js2eM2cOFhTglWjkyJEnTwY4hyiQ olIOfGk54tsEbo1ZKeNWyXeb5J+9gVRpyHGRHTJF1nCAgQRMIrBo+cJ9B/eZZLxws2vXrr3iiiuw 2SQ2vrDFAYszxc7eTzzxhMWZRk52OBcE2+lMnToVb0jJyck4Dd2MslMO8qVqv1pjOv4bi+THTZ6W Lro+rA/IFFnDAbgBZxhIwHACsSVLjf16TNaxLMMtF24Q0nX55Ze/+uqrt956q8VZF5Qddt7AnuHq uC0E7fwM1T5G0I69UjGVHUTDR2qDcdzXkuNP3FQHfKnmNZLj1aSgtL65OASLu9zAlvLYXh6zz4C6 ZcuWP//8s1H+Uw4KIWmzWkMphyySn1NlxhajqjtIO3AAbsAZW94YgnSayVxC4Lyk82659tbYkrFW +guFw+YnmJiCQzuszLfIvDDTTdsJXB3moRRXHcMFuVV7aWGbDnUkNgLWiKvDQtSBH9qG4fgTN7Vd vrWs802bby5FessIBRHAi+DixYufeuqp/v3740lbtGhRIay2bt1aJEnKQeGI7FRr1M07S+S3NFm2 u8h6tCIC3IAzcImCbQXuCMujSkVLlx9s3rwZX6A4FfHOO50yKV2rcO3UDRzDpdrW2FUNYqxO5YLQ 4sxN3FfHYan29KhRo26//XZcoJcb53sqU1B3FDPf5yjftPnmEmGPofHFxWSIlJQUHICGPecxhxGT JHzzmDJlCp5GbGtaSPaUgyLrxja1Ro/HsKUyd5ustGc4L38ycAYuwTF2iRf56DBCcAQOZhxMz0wP Lq2fqVJTUy+77DIIG86s9DOJvdGgzdrp1DgSSnMGk+MgsfgT+o05ybiAeGvd4IXvxeabtqBc7C17 GOQeHR2N89HXrVuHOf+XXnrpHXfcsWXL6c5SbI72yCOP4Jl8+OGHCyos5cCfx8A2tR6+TP7Y4Syp Vrwg2HAM7jGQgBkENqVt+vLr0dhR3AzjsJmWlgapfvTRR/UHR5qUl1FmtUY2DG7ffnqFBlps6AzH YLNWFhxorR2jWXjuvmkLysWoUkS4nZIlSw4cOBCzGjF7HEu88ATu2bMHTNAvkp6ejoY1Bizw1pUv JcqBPw+PPWqNKX/L9zilA9wXE7rE4R5nifvzADFOoATOP+f8tq3am7TiCFIHqX7wwQexLjZQx2yM D2VVvd/wQd9frTq00TeOCF7uoZGtffUnJib6Ou+btqBcbCx4+GUdHx+PnUrRH47t/JKSkrADGga2 sScaSpqRkdGrVy/steJVasqBn4+BDWqNhXSLd9o/raxwQJh0Bie5DtvPx4jRAiLQLKlZ2TLGnw23 a9cuSPXdd9+NZk1A/tgeWc0UgzDjJWbmzJnayDQcU5352iHWavoYoqGRPWTIEETWPvV9AfJKW0gu thMIMwdwitewYcOWLFny008/7dt3erATjez/+7//0xeWcuB/1Vu98yimEmA3Eixxdv5Mrkql5Np6 8nQbwQUDCZhE4PiJ4zElYjTjJ06cOH7yeJlSZQLNbvfu3RgyxEqtZ555JtC0jE8CZhBAk7pOnToH DhzQG0fjG29aqu+HchAQdqvb1tiHZMluF0i1epLgKhxmIAGTCGzauumLrz7Dkdia/X/X/zt/8bxA s0PvIubcYv8TSnWg6BjfPAJY6I/tZr3soz8c3eNq6jjlICD4lqo19mdff8Dq3coCwuEVGTudwWG4 zUACZhCoV6ve2fUbr9+yTjPeqF6jtZvWBJQXehqx8vX6669//vnnA0rIyCRgHgFMMfvkk0+OHs1n xyv0h+OJXbL9JOUgIP6WqjVO1pqzLSD37I8Mh+E2AwmYRKBDm0ubNj5PM14qtlSFchW37UzzMzt0 M2KpEg6rfvnll/1MwmgkYAEBrLGOiYmpdCqUOxWQqbqIjY3FdMgvlmRQDgKqCOvUGrMJcAimBcd1 BFT+IiPDYbjN6WZFgmIEowgkNUhatcGvAZiDBw9CqjGzDAcaGpU77ZCAIQTuv/9+zKVACxsB75QI 2IFOXaDBvWBbblZMecpBQKitU+tpGz3nVbsxwG04z0ACphI4fOTwVz/+99jxY+gbx9nYReaF8T/s 0Il5zkOHDi0yMiOQgKMI4Bt14U7Pvu6uCzbKgUVqnbJX9mXJ9sOuqxqPw3AbzqMIDCRgLAHML8Oy VGWzTOkyWNY1Y+5P6mLnnp2F5HXo0KErr7wShyvgHExjXaI1EjCbAOUgOMLR2PQ/uJQBpZqwWmZs lv1WH0EUkI+FRT6WLXEx0qa6YQZpiARA4O/Vyyf/9NXe/XswwpdQttxZdc+qU7Nu8eLF0cLesXtH 3cR6+VI6fPgwpLpp06YffvghMZKA6whQDoKrMiva1tgDdku6bDR3a+Tgiu9vKjiPInDzcH95MZ5/ BFqe26pv7371atX/8+8/Pxg97Kc5P+7e51mB0LhB0uoChq6PHDly9dVXY5coSrV/jBnLWQQoB0HX hxVt62W7ZHaarDljiXzQDtuTMFckMU7qxkui8TtQ2VMi5uoQAtFR0Tieq0mj5GbnnH/s+PFlKUtm L/wNbevU7VsSq9ZK3Zy6YsWKf//9F4cioPcbWzFjpVbdunVHjBgRFWXFq7ZDKNGNsCFAOQi6Kq34 B79op6zaH7SHTkmIIqAgDCRgEoGSMSXVMdh333xvxXIVc7Nz/zv1vxBptb8Efq9fvx6rVLEeZuTI kZRqk2qBZs0mQDkImrAVar01w63zy/RYMdcMBWEgAbMJYMl18+QWFyZffHbds7W8sCMplmnFxcXh BCpKtdlVQPvmEaAcBM3WdLVOy5QTOXL0ZNAeOiUhioCCoDgMJGA2AZzPgf2eNFU+efLk66+/XqpU qQEDBmDvZXxqtgO0TwJmEKAchELVCrXedXoX5FBctT8tCkK1tr8aIsADSLVWSkj1G2+8UaJEicce e0zpt/7TCIDBIoYPAXx/Ug6Crk7T1XpzhqQdCtq9AhNiwhfWUxX0k1zJ+BxhEQVBcRhIwDIC2dnZ avOTxx9/PDo62rJ8mREJmEGAchAKVdNPzHx7sYxeZfCGoxDj76+TA1n5rwqrECvnV5HPU2TgnFDI 5JO2Vlm5LUkGtjLYLM2RgBcB9HUvXrwYG6dAqo8dO4aTtbAIW4uDTVGqVq1KaCTgOgKUg1CqzHS1 HjRfxq3xKKuBYVkv+Xq9DF5YoEnI+bybpd0kgzcgKx8rt54tg9saWBSaIoH8CcyZM+eFF17Aqq1n n30W3eBapISEhHbt2pEaCbiRAOUglFozvSccu4BlGT3FrF6C/LzljFJvuvuMjcaws91fuyXu9Fdc KIhOp0VBUBwGEjCbAFrVH3/8MaQarWq9VOPwImxhZnbutE8CJhGgHIQC1nS1zs6R4+YrXLmS3hDM 2OUUBUFxGEjAVAKQ6rvvvnvv3r2//PJLw4YNodDIDr9r166NMzzQtjY1dxonAfMIUA5CYWu6WmMX sGz8FxYBBQmXooRFfYRjIXCqII4a3LRp03fffYeTgNGSxo4o2GoUv3GtlJuBBFxKgHIQSsWZrtah OFd4Wv20cMRMqnB6irh5mdIyCZhK4MEHH1y1atUPP/xQunRpUzOicRIIJwKRIAemqzWOMI025xjT bg3lp+55P3js3umQdz2hq1kPIQpiTlHMcph23UXgoYce+vvvv3/66acyZcq4y3N6SwL+EKAc+EOp oDimq3V0lMSYs0x02DIp/2HeD4p35dS863ojQwFSWFoUBMVhIAEzCDz66KNYtQWpxvaiZtinTRKw nQDlIJQqMF18SkZL7OmVoqG4an9aFATFYSABwwlg85P58+dPnz49Pj7ecOM0SAIOIUA5CKUiTFdr zNY2fCVVKAUOJS0K4jv5PBSDTEsCIIBlWr/++uvMmTMxrYxASCCMCVAOQqlc09W6ZlmJjwnFQ7/S vrhAdh4+I2Z9E9a5oCAoDgMJGEjg+eef//HHHyHV5cuXN9AsTZGAAwlQDkKpFNPVGlP1Eo0ehpu6 Tl5re8Ym4Yt2SLUyp+8MaiPYd8xLv0PBpNKiICgOAwkYReDll1/++uuvsa66YsWKRtmkHRJwLAHK QShVY/rOozh0ZehiGbMqFCe902In8KHtpftZBdrclC59phu87Sgy65Mkj7eSRDavjazMyLWF86rH jRv322+/ValSJXIpsOSRRIByEEptm67WcO6x2TJ+jeuPuC5VXHqeLW91CIU205JAHoE333zz888/ x2bgPJ+Dz0REEaAcBF3dpveEw7Na8VLD/ctHUQQUhIEEQifw7rvvjhw5EjPLKNWhw6QFdxGgHARd X1aodetqno3G3B5QBBSEgQRCJPDBBx98+OGHkOoaNWqEaIrJScB1BCgHQVeZFWqdXFkqlzJrR7Og Sx5QQuxihiKgIAwkEAoBnKyFhjWkOjExMRQ7TEsCLiVAOQi64qxQayxTrpMgZiypCrrYgSaE8yhC 2CwcD7T4jG8IgREjRmC4GlKN07QMMUgjJOA6ApSDoKvMCrWGcx1rS8uqQTtpf0I4jyIwkEDQBDCn 7NVXX501a1bdunWDNsKEJBAGBCgHwVWiRWqdXEkqxrp1rhnml8F5FIGBBIIjMHr06BdffBFSXb9+ /eAsMBUJhA0BykFwVWmRWsO5rvXlwurBOWlzKrgN5xlIIDgCWFT97LPPYguUhg0bBmeBqUggzAhQ DoKoUCvWW2tuDZov326UrZlB+GlbklplpW3Cvn+GdmvatClOXChVqlRCQoLaJLJEiRJqWi++hTlp yLYacnbGkyZNGjBgAKQ6KSnJ2Z7SOxKwlIBL5aBbfRnc1lJQWmaWqvXy3fLZChm72p6iBpdrr8ZS OmXC0Edvzc3N1SxER0eXLVs2Ozs7Jyfn2LFj69at42BkcHjDO9XkyZP79+//888/N2nSJLxLytKR QKAEXCoHd50rzWzae9C6nnDUJQrZsLw0dc8AMFyFw0MevqVdu3ZRUadZQacPHjyYmZl58uTJe+65 h1Id6D/USIj/zTffPPTQQzgEk1IdCdXNMgZKwKVyYJdUA6+lao38bk2SllWkUqlAa9aG+HASrsJh hP/+97/5nmaIjnFM9LXBOWbpbAJ//PHHl19+OW/ePAygONtTekcCthFwqRzYxctqtYYE3nS2dKlj V3kDyBdOwlX1YoEdIv/zn/9g3FqfPiYmZuDAgTzoMACmERP1oosumjJlCqeVRUyFs6DBEHCpHART VCPSRGNhiRF2ArCBM6z2HhWMAm9IDyCVxVE715EOtaRrg9PZYpbQsmXLNmzYgG5wdbd48eJr1qyp XLnyueeeW6xYMYs9ZHYkQAIk4HYCLpUDW7Bb3bZWhezTRJpVluY2jdUXCRqOwT046RU+++wzrT8c 7Wy0tsePH//RRx+1aNECS2mLNMsIJEACJEACXgRcKgfW16M9ao1y9msuF1WXJhWtL3IROcIlOAb3 fAMUGgtyVH84ziTu1avXxRdfjBHKZ5555oEHHrjyyitTUlIcVx46RAIkQALOJuBGObCeqG1qjd1i H24h7Ws6S7Ah1XAJjhW0Jfgll1xy6623YgXXp59+qvV+33jjjStXruzatevll19+5513btu2zfqK ZI6FE0BlIRQykLxx40ZEmD9/vrKDmCoJwsSJEzXjKhp++2aHm5r9vn37qrSaQX38fD/19dDXB9zJ N2vWPgm4moBL5cBi5rapNcqJKQYDWsqliU7pEkcHOJyBS4VPWccZSphcdtlll+mrCjul9OvXb+3a tdgv5bzzznvuuecyMjIsrktmVxCBLl26DBkyBCvmO3XqBKXMN5r+PhQRExQQkAShR48eKgnuN2ig m8twpiFYmDlzJu5B3XGBhJgTjrV/Xtnl+6mvh/n6ALMoAiuaBMKPgEvlwMqKsFOtlWA/2VquqC2Y 1WVvgANwA84UubqsZMmS+OrP11t0kr/yyit///339u3bGzVqNHz48BMnTthbLuYO2ZsxYwb6P4Ci Z8+eOLPSl4m+9YxPUX1QZa89vREHNydMmJAvUtWGVklGjRp177334qJt27ZI4mXc99N8PczXB9iH WnsZZBWTQHgQcKMcWEneZrVGUdEH8lRruaqeYNewIpXSDDTIFFnDAbhhyJmYNWvWxIFL2Gxy2rRp 2BkDG1qZ4TZt+kkAsqfpqNop1rcz+ZZbbsFsQc1gWloaGtaqa1prc6OFjeZyQVvMYr7h7bffriys X79eOxMTfdepqal6V30/zdfDfH2Anfbt28+dO9fPsjMaCbiLQPjJgYH87VdrVRhMC8RK+WvrWb3T GXYrQ6bI2ncGeIiUk5OTf/rpJ7TkXn/9day+/f3330M0yOQmEYAeo7NE35KGHHbu3Fl1g6MGcSh1 kVmjj9rYveIL8uGCCy5Q/e0MJBCuBMJPDgypKaeoNQrTpoY83Ua6n+Vp6eIsDbMDskBGyA6ZImuT QseOHZcsWQI9wNy07t27Y2DbpIxoNjgC6MGG+D3xxBP65GhnY8dQdQdC/uuvvwZnPJRUhfiAdn8o lpmWBJxPICzlIETsDlJrlASd0g83F2ybjnNObmho1nnYOK8axpEFMkJ2Zne/ozcVa72wj8qFF16I gUwo9+7du0OsNib3n4C+91vf56wsYAGe1umNPzEpLN9Z3EVmp59tru/91vd7KyO+nxbuoW/Whcx0 K9JPRiABtxAISzkIBb6z1FqVBNum40iyu8+V7g3llrPlrHISbcRGYTACUzAIszCOLKzcnx1z0x5/ /PHVq1dja3EMZg8ePPjIkSOh1BzT+kkAXdzo1lazBzC6jJXx+oRoVaseb3XGGmZx440KM7S13u8n n3xSG5AuJEfkgpFmFQHxR4wYgQsIP14FtCnlBX2ar4cF+fDnn39yWrifVc9oYUAgLOUguHqx9MTM IFxM2SuzUmVLuuw5Kqv2y/bDcvRkYGZKFfe00ZMqSOVSUidBOtaWZLsPAdu0aROWeM2ePfull166 4447sHo7sCIxduAE1OJ4tErR2MUFplVjbrbW3a3sIY5Sa1yjBaw6nNETru8nhwCj/Y2PvGaM4z6W A2gG0YOiJp9rBmFcS+X7qcpd72FBPiAtJpp5vQEEzoMpSMB9BMJSDvyvBqertSrJoROSskcW7ZSt GXIiR3YdkbRDknHccz/rpBzPluxTZ0+j9RwTLbHFPVO742MkMU6qlpYSUVIrXlpXk+TKxkz59h9u 4TExng0Z2LVrF5px2FnFKLO0YxcBtIYx2Oyl4sY6g9nsaFirFw4GEohMAmEpB/5UpTvUWl+StEzB z+YM2ZYpB4/JMUh1jpwSa0HbJDpKSkZLuZJSs6zUjRdsGY8fJwes8oJm44wvaHbLli2d7Cp9K5yA BVKKFj+6BFTrn4EESCDM5KDwCnWfWoffA4pDvfAV/Pzzz3fo0AG9qfXq1Qu/MrJEJEACJEACoRBw 4iyzUMrjxrQYt77rrrvWrVvXuHFjrKbFtqb79+93Y0HC1WeMVmD7lO+//z5cC8hykQAJOJ8A1dop dVS6dOlBgwbhdJCjR49CtocOHXrs2DGnOBfBfmzduhWb26Dz+ZprrolgDCw6CZCAzQSo1jZXgFf2 OIgTM5UwwXjBggVnn3322LFj1coiBlsI4Dg1HN/Sv3//Bx980BYHmCkJkAAJKAIct3buk4DNSrFE Gy1sTEDDnmjOdTRMPduxYwdmEuB8DoxNhGkRWSwScCiBvInD+N+pzTZO/T9H7yuaMcWK5a19RYsm NzcnKsrPxmdOTm7UiWIem54EuVKimMoEAVlE/S9P9aeWKeL6ad8spFRrs8gaZRfbejzzzDNYKIy+ cew9bpRZ2imcAMaqIdXY5wS7o5AVCZCAlQSgl0okIY95OqrUO/d/2lksBy3NM10KYNeKXInC2YhI jzSelURKp5XxYh5V1hzQ8lAx7Q02vyzYW3hX5I6jHjGYjQXZl19++Z133om+WVe47Won9+zZg84M 7BdLqXZ1PdJ5lxKALkZJDn58/FcN3FM/uZp6ejV/CxE1LblHoYuf0ukzpDovvzyDSrP17Wt7eVKt 7eXvV+4lSpTo168fTgTBhtLnnXce9kHLyMjwKyUjBU5g7969kOqbbrrp2WefDTw1U5AACYROIAf9 3uonr5kNaT71kwuZ9ih1VG6x4ujDzpYSuVISv7MlKvtUc/nUDxrH+fwggvpBiJac6NyTxXJPiufH +7Xg1OtCnpb/T9FDL1SoFqjWoRK0LH18fDxWY//99984mqJRo0bDhw8/cQLdOQxGEsDauSuuuOLa a6994YUXjLRLWyRAAgEQON0I9ojzqeCR4f+pt9bk9RIw7X6+F2fk71FoJe4qRHn6wD3d4CrkvSt4 RN3zY383OHziuHUAT5BzoqakpGACGvadfu2119BV7hzHXO3JgQMHINUYcXjjjTdcXRA6TwKuJ6DJ aF6Hd86pG3mN4FP3Timr5+6pi1OzxvwMHtGHWntGvlUr2kf081rbOpOeGW02N26p1n7WrxOjzZo1 C7uW4nQvTEC7+OKLneiie3xKT0+HVOPAjLfeess9XtNTEghTAtpu0nnl04aPdR9oUn1Krf83xbtA IKc0Xun96aFu9JmrvzUp9kTzqLWK87/sTs0+s5c11dpe/qHmjmUM48aNw0h28+bN0SJED3moFiMy fWZmJk7LaN269XvvvReRAFhoEnAQAaWQ3tPCNenM02a9w14Dz2pl1ulQuE6ryKoNf8YsdNtngZ9Z Jza/LDjoAXGnKzhmEVOX16xZc+GFF2K/LRynuHv3bncWxTavDx06hOOzWrRoQam2rQ6YMQmcScB3 OrhvT/f/5pR5ppUVxS8fe/okel3Ok/lTXevaT1H2rfi8yEJa4QTzCJEAOsMxjL169epSpUo1adJk 8ODBR44cCdFmhCQ/fPgwVsede+65H3zwQYQUmcUkAVsIqG0Zc3JOC6e6Pn78uKd1+79NGz0Xuaem lmHDE/XBqY9w99TgtOd3XsAHOZgOJjnZ2acsRanfOCfpVGrPR/g54bGf95GKgJ+TJ/MS4o+ck56M 1I9KorLFhZqLpt05efJknjO6suDm/9zME3rlgOHBMLVG6wTtPK+App6xHk+cOFFlgdMJjbVcuDXk iMMKEcf6rP0vZoUKFd5+++0///wTsn3WWWeNHDnSpIfGf5ccHhPvNFdffTWGDz7++GPUrMO9pXsk 4F4C2ncR/qFdddVV6ms8JiYGv9HGwG8sUsUil1M7lJ0KWEBVLMqjtSdO6P9t4hpxIJAwqN3HwUjq PrYzw2/8mZWVpbY2w46QsI/d/tWLQlRU8d9+m4Pf33zzDe54EmLhNVJjZdfJk+orAJax6/Prr79+ Kj6+8z3vEyq74sWL4zeOcsBvOKaywE1VL7iplBtmzagp48etIdv169fHZtdmuAvj2LcZU6vMMF6Q TWz8iY9wtEO7du06d+48ffp0K3MPLq8lS5aAEjbkgvNoOwZnxJpUdp1Qi39yWKmVmJj42Wef+b1n oTVImAsJhCEBKBmETekxiocLfJ2iFQSxgBYqhVMXKg7E8n/CLSqtgnJKRP+3rOtUTC0+kmN3Ci0O /sSBC/jexgmHqrmF8NBDD7Vp0+bWW2+FBuN1QWUKC5p93Klbt+7DDz/86KOPQpKVQX3WiA8HNA/h G3xWLimfcWHG27/L1BrEsea4R48eYfgsm1CkadOmQbOrVq0KzW7ZsqUJOQRp8tAJSdkji3bK1gw5 kSO7jkjaIck4LrifdVKOZ0v2qS4lvPfGREtscYkrIfExkhgnVUtLiSipFS+tq0lyZc/94AJeva+7 7rrKlSuPHj2aUh0cQ6YiAf8JeMmeamrjXLtatWp98sknmuLipoqpibom4RBC1QutdB0HKGAE0EtH 9f4ogccJSVDrLVu21K5dW32KWT5oOqtrZVBTVr0Mqza6EmDf61N98DlebWjls95z//n4E9OwnvCC MoNOoD9ce0VCD3ZeR0exYlo/OVrMWhx8qvVyazFV6xZSjRXGOGlYJdR6xbWXJmVcmcKnMIuEygji aFl7xVcR9J32mjOwoMql2UFMVL9WWM1D/U1/uFsTB63qf/75B2+R3bp1w+9NmzZZk28huaTslWHL 5Pn58uFy+fJfGb9GxqySGVtk5T7ZmikHsuToyTyp9vwrzfX8iZv4CBEQDZGRBAmRHEZgCgYDDXin vuGGGzBwMGrUKEp1oPQYnwSCIAABVk1YpdP45oTUQVBjY2P1zdAJEyagvYvIqoWdNwJ9SjihzYj8 3//+FzI5ZMgQ7DOBFrDqS8dN9Q9ZEwVos74dj440mFItb5xHjMjz5s1Tap2amqq+xjEohi/8d999 F+8BSUlJuFAD6jiCD7nAAXTrIiEusGIWxlWv+C+//KIJv9baDoKPP0lMV2s4gUFBqKx6i8E6GdQH rgEL9zVhxvWpyQSevhG14BXgUCW4g7TYrhkx169fj8MtcFOdKQnZVmahvpqsIiGqEDdV+xsJlVnE RFrtGpVakDMQ5pkzZ6qYSqeRl2bngQceQONekUW+ykOUCK9vFg+l+1O7iINn66677kJHEJ7RCy64 AMdJYbsuP9MaG23hdhk0Xz5aLuNWeUT3h02yId0jxoEGJEFCJIcRmIJBmIVxPwPe3PHvvEyZMl9+ +aVJw0t+esJoJBA5BNQ3qibSSqEhn5g7AnVU+o0NJNCoWLp0KVZUYj0qJFNFw2lG+NbFhFA0i3v3 7o1vWijlDz/8gLdtCCq+op966ilEmzt3bs+ePTdv3gw5x7xRSIn2HlC6dGlc4ybswA2sesXOCko+ oB3Dhg3De8Ntt90G6VVNdvViAZF+6aWXfv75Z+SC3ri4uLhXX331119/RYelioB2HaYKqYIovVCv F/qZdAZWsRVqDZnESLZyGoqrdDQtLQ2/sYmmug8VVBeIqWQPF+pMBVwAhGZBRRs/fjwqQ93EauMZ M2ZoYokBZg2QZlbJvLqPa7xPFeTMiBEjcEiiiokhalQMVkapmkBQLw24gISjstU+YigRbOKwLC1f p13gYR00aBBOB8E7JmQb74bqX4g1Yfluj6COXCFT18uENbLu4OnWcygOoOUNUzAIszCOLJBR4QH/ Jv/v//4P/9Tx/FCqQ4HPtCQQEAGIpWrsQsnUBQL0D1PAVIc2/sTMr0svvRRHIaANjX+n0OY//vgD 08Rw0adPH6TCFz7+CePLFr/RhY5T8pAQU0+g0JBJtMEgCvgTWeDcQqgsvq7VKwK+9zD9dtWqVRj/ Ut/Y9erVwzc23gwwJxetanwbdO/eHTfhD5Io9YUdjJTdc889+BSN8u+++w5nB6CFrSLgU+SLhhAM qmluuFC/Teqxs0Kt9ZWqdTLjtajwykYDWr0cqX5sr8ioBk2/cdZFQM+NFrkgZ7QRDi2m1uOt3VFv G5oPvh4G55KpqapUqaK6JTDzAiM3Y8eO1d5CTMp371FPZ/VnK+TbjTJlvWw/bEo+MAvjyAIZITtk mm/APzD0x+Df2KRJk/QzSkzxiUZJgAR0BFRzU5sgpvQMDWvoLm6qGde4RvtY9TBDOBEB1yohvuTV fG81jQvXkFU1oqy0H3oJUUDHKi4QqlWrpr7cEFnFUd/Y+N5TFlR/OFQcH9WpU0cpLr7G1Xxv1W+P CLioWbOm8kEptLKJVHilQJsb16rDXPmvvYiYUfmWqjVooscbfeDA58+kcTRt1SsYSu61GExrguMj rYEeEKBCnFEtby2gp0XrRceLlbqPNzj81hr0qsHtioAFS1OnTkVfEKoAW4Kg98kkt9E7/fpCmbpO xq72DDybHZAFMkJ2yNS3Yxz/0tDJhn+KX331lX6Sp9le0T4JkAAIaGurcK2WOWmtbfWpanNj91+I H77z1WouTN5WL9bqm1a1mnChhFNNzFYCgd8QeG1qDrQZaqrpK2KirYJoiKAsoEmtXELAF74yggt1 E3HQDY4LuKrpC/7Ep+iiV3IAP3FYH1Lh+0SpuDabXeuBN7bqLVVrvetF7saM1xw1uQwB13hp0ifH +ITW+63vFQ+Ojt4ZdIOjM1zZwSuCfkQcd7QDj9E9rvV+63vFg3PA+lTYVxy9TOgvwmDBlVdeiWNC jPVhzErPoPJ3m+SfwGeBheIJskOmnqHxlafN4N8SBqWwE/iUKVPUmg0GEiABKwkoCUSOUFAlwGqn ESWBqr2L3u+ffvoJq0/xJ7qdcQcijV0aIcNqppFq744ZMwZKjDhKI/EKrmQbPWeYcqR0Ha0R9JNj 2wmVF2JioBrf2OhXQ0z0rkO2MdX0kksuQcMPb/AqCbrcVZ82Gv3K5n333YdWjeoJwHQzvEyoCHiZ gE0MwqpyIagiqDJikNsMtpaqNbhAGzAhC0VS7CAYBZUKrVVIo1Z+rzXWEEvM7YIFREANBbEGuiBn kBGmwql8lWXcwRC1uoOOAVyrB0LzECXCfa+RdTNqy3CbGHfHYDamjuPgqTvvvHPbtm2hZ4FVWG8s kh83eVq6BXVKh55LIRaQKbKGA3ADzuBfEYqGDVm//vpr/ZIPU32gcRIgAT0BfHmqTm+onZo0o3q8 lQYrCcQXKcaJIQ34E1KKATs1UI3v2+effx7/eJHknXfewUQzTEPTkmtd4kiIqaNQaJiaPXs2hF/p NP7EOzr0Fd/YTz/9tMpozpw5GPHENb7hITRoH6PVh35y1a2NtwEINpQYX/5qLxcINhbEYiwc67Dh D5yBk+i3V3Kg1Fq9PajkZtS+8eutzfDSeptoUgfxBmC9n0blmJGRgZ4MLHy8//778YDiLO3gLHsG qpfKHztkWVETvoKzH1Cq5lXkoupy4re3Fs/+CTNI8a86oOSMTAIkYCABfetTTdRSIq01u9FK1iZ5 aSPWqmsaIoo7iK8tiYZjapxY2zgFLVolk8qydh8XyMV3VqkSV63rG3/i5QBvA2i9aK/1qr9d81DR UKPsuK8ywh1toxVc410EN82YGWNp29rAijfbFHo/1HtfhATIM9Y2/P333xikwcD28OHD8SoaaNkh 1e8skd/SHCHVcB5vDHBG2j06+itKdaCVyfgkYCQBSKbq8dYmf6nGsVI+NQdbSTX+VFKtKSX8UG1Z pY6q+avEGF9T2sQuJdWq+Y4LpZfKoEqlxsvVYLYyjl1T8OnChQsRDZ3t6FzEajHkBbP63cuVFqj9 R5V9VRZc4Dciq/E1VTRcmyHVnhcLIyskXGxhuBp97JiRHi4F8rccmP34+eefY9Eh+nxwOkhAa9LQ 54xW9dxtnm1MnBPgzPyd0Z/+WwruMZAACdhFQAmYavJqkqmkWt3HBRrHqrfco0ynWrSaBCq3EQ3S CDXVGrvapitIjo9UyxutWy2tkmolqMoHRNDml2E6FAatsegXd7BI7IsvvlCHDiOJEmAl87AGr9Qe KUqn8ZHyXA1pq6DtXq7KaHhgT7jhSMPEIOaKo0sc/zCwOBtT0oosFQaJf051Sqvay1t0iV9RW55q XWQhGIEESMAUAqotm2/XserozndOidabrZIrz1QDXTWg9b3r+jgqpupvV01wtZspDOq3NVWd53qD SKW6tdULgVcfuOoh0Aqi9RPop8spITeja5Zta1MezTAwisUJmJyJbgYsfMK+AWvXri2kUJiAvXyP Q6UabqNLHO7pZ4mHQQWxCCTgIgJ6qYbmQQ61/b8glkqqtY3AtBlbWpey1qJVc8jVWilNFxFf62nX pnqphjssQH3Vok38qV2oLFTnuRJgzQHlm5JbZU3lhQBrKqZ+sZZada2SK1NmSLXHTxfVN121mACe uV69emFVAxZRYBI+lBszq319wOLmxTs9m3g7OcA9OOn/BqVOLgt9IwE3EtDmeWm94lo3uCqOiqAE T9/DrD5VdzQhVBdad7S+l1tvDdf5Ltr0yiJfTzSX8lVf7aayr94hTK0XqrWpeMPBOF57H3/8cWwm gDkgGMwePHgw1jZoBcPMsq/WyHRnS7XyFk7CVVsWlYXDc8AykAAJ2EqAam0rfvdkjhOrsH899tqF bGNF48iRI1W3FfYhWbLbHRIInYarcNjAoAaoTBqm0vup3yxIu69OHPKnOGpJqDNPivPHf8YhARKg WvMZCIAANhXCjj/ffvstdhJo2rTplAUb1h+wereyANz1iYqdzuBwkYd/+JOF0j91CBsC9urxUzj9 Mc44JEACJOBFgHPC+UgESQCrvOaX6TwttbgFe4AH6WJ+yWqVlW71ZXDbUE1i/xzspaDf7h53sI28 16Z7oWZTaHq0rbHbojYFppC4eLfAokTsuIf5B6a6ROMkQAImEWDb2iSw4W+24vld9xxzmVSjVvBu seOwAdPNsE09NqvXV7PapFbdgXJ79ZDjDnaLUzf1J7ZpN716qrXkaodkfU+4ZhwbH2oO5GtHu+m1 Lb+X8fB/WFlCEnA/Aaq1++vQphJM2ygLdtiUd2jZwm04H0pQG8UXdFSrOo1G9ZCjRasdToPtiNUB dJBedVoMBpJxU8XEFvrYTk55hQiqjx27EKP1rB31ho9gDdsdqyTYx17Fz9eOugkLXo1vGEdemnEO ZofyJDAtCVhGgGptGeqwyihlr+zLMuu8arNJ4TxsOI8imBTQwtY2mYdY4sh6lRE0UnVE4+geNM1x gT81KYUkq3NX9Ue6obMdEfQHxuCAOBwTpwxq6p6vHf3ZdI899pim63BJ/Qmz2LAP0UziQLMkQAIG EqBaGwgzgkzNSpUlu1xcXjiPIgQdlHxihrzegtYChtxqXc2F7F+rP7LXd4ZaQUe6QWtxdpCv575T 02G/ICPq8DoE9dLAQAIk4HwCVGvn15HjPMSe21vSZWO64xzz3yE4jyKEsnk4ZFg/bIysMTas+rfR 5FVdzYXP/4KUoltbnWyPgBlq+Wq/V6EQPzXV+0UjXzuwr+9C19tR3eMq6CfK+Q+QMUmABCwmQLW2 GHg4ZJeyR/Ycley8zfhcWSI4jyKgIEEHiNzHH3+sjUljLhj+9FI+NLL1jVdEUPKp5Nwra4wxqzvo 1oYka0eqoAWsJpqpgG5wLSZ61H391z7FJDjkroaltVlmyrj2J4xrRQgaBROSAAlYQIBqbQHkcMti 0U5Ztd/1hUIRUJCgA1quaKFCGlWXMuaC4U/V8wwRhTDjJlQZk8W0uWBQaNUFjThK1zHCjVTKAiag qZPtcR8D2JplWOjRo4fmJ5LAjkqiDWDnawfCjFXg7dq1Q0ycNaRZgHHlHgJMWbnkLGjaTEgCJMD1 1nwGAibw2GwZv0aOmnIoXMDOBJ2gVHHpeba81SFoA4El9F2fHVh6xiYBEohsAmxbR3b9B176tEw5 keN6qUa58baBgqA4DCRAAiTgfAJUa+fXkbM8hLztOn2oh2G+1Y2XNtUL/EmuZFhGekMoCNXaFLI0 SgIkYDQB9oQbTTTc7U1cLcOXy8p9RpYTYvz9dXIgK/955hVi5fwq8nmKDJxjZKaw1aSi9GsmPRob bJbmSIAESMBwAlRrw5GGucG3F8voVZ79Ow0My3rJ1+tl8MICTULO590s7SYZvKUJ9gy/LUkGtjKw KDRFAiRAAqYQYE+4KVjD2OjBYyEtU86XTL0E+fnME7I33e3pFdcC9h37a7fElTCYK9ZbozgMJEAC JOB8AlRr59eRszw8li1Z5s8GL1fSu9T7s4zngIKgOAwkQAIk4HwCVGvn15GzPMzOkePhonAoCIpj eFAnX3kdxaE/d8uoHPUHcxllk3ZIgAScSYBq7cx6ca5X2MHMpF3M9NPCUf6kCqeniJuEAwUxY0M2 HLyBfUm1zciMdR77mvluKm5sFrRGAiTgQAJUawdWSoS61K2h/NQ97wcI3umQdz2hq5uAqJ0+sZ0Z NNtsv7ErGXciMxsy7ZOAQwhQrR1SEa5xA9tmRnu2zjQ+DFsm5T/M+4H1K6fmXdcbaXxeyiIKYnhR cAAlNgRVJ2N6HR2N7czUfp9aJ7l2cJZ+s+6+ffuq+7hQfiKhutm6dWtscYo7qnmtesK9WtsqMj5V HfIq8BBrs54h2iUBqwhQra0iHS75REdJTHSYFAYFQXGMDdiC+8Ybb4RNaLb+6GjsAX777bfjzCvs +43dwpUG4xp31H7jSsIhsdhXXJ2OpT81RN1ctGgRtv5GNP3pXthFHAa1kz9wkgeOr4Y8w6ayg83A tZOwjS0srZEACVhGwOjvKsscZ0Y2ESgZLbHFbcrb6GxREBTHwADJxIi1OtsDmq0duoU/IajqcA7V dw01RTR1XhYuoKkqFfrPtbM6oOVad3qnTp0K8RNJ1PGdmgNo3GuKjvcA9JkbWEyaIgESsJ4A1dp6 5u7OEWurDF/37EvkxQWy8/AZt+snGM8NBfFdKhZKNqNGjULTVnU+qwa0NtfMa054WloajuGCtKvI 2qdoZ9euXVv5oF0U6dJFF12ENwNEg2ajBa/ia93gRSZnBBIgAecToFo7v46c5WHNshIfY7BLU9fJ a23P2CR80Q6pVub0nUFtpHyst36H7gQKguIYFdCEhVSrzmcV9I1jr9ZtYmIi8p0+fbqKiWs12AyN T01NVS5pF0V6qE6tVmdsqxY8etRxRxm/7LLLirTACCRAAg4nQLV2eAU5zj2ss0qMM9irx+fKpvTT E8K1meHaxfUN5ZpvZHOGwfmiICiOUQHNaLSV9dbQGY62sprhhQs1tKx0FPqqXy2Na3UENfq0td5v fa+4ZlbJvG9AQkxExxC170eqv52BBEjA1QS4T7irq88G53Fo1dDFMmaVDVkbnmWfJHm8lSQa1LxG zzOmgKmmrRbUsdZQYkgvJBmNb6XcapRaWzkNmUc7W6VCI1t1a0N60VuOC6+zsVUqNJphECKtBsLR ssdLwLx589R0dL1x3GzXrp2WqeEYaZAESMACAlRrCyCHWxaPzZbxa1x/xHWp4tLzbHmrQ7jVDstD AiQQlgTYEx6W1WpuoWrFS40y5mZhgXUUAQVhIAESIAFXEKBau6KanOVk62qebUHdHlAEFISBBEiA BFxBgGrtimpylpPJlaVyKbN2NLOmqNjFDEVAQRhIgARIwBUEqNauqCZnOYllynUSxIwF0JaVE86j CBYsHLesRMyIBEggvAlQrcO7fs0qXcfa0rKqWcYtsAvnUQQGEiABEnALAaq1W2rKWX4mV5KKsW6d a4b5ZXAeRWAgARIgAbcQoFq7paYc52fX+nJhdcd55Y9DcBvOGx60nT5DOfkKi62xuhq+aRfB+clj sIPjxlQk4FgCVGvHVo3THWtTQ6pjEZRBW4tYVlo4DLfhvBkBu6Potx3FniRm5EKbJEACEUiAah2B lW5YkW9oJJfUNMyaNYbgMNy2IKhzM4M+WBq7mGm7m1ngLbMgARJwOAGqtcMryLnuHT9+/JuPXiyf s6+pewaA4WrD8tKsig1U0bOteshVR7cKuC7opCzVE479RL062JX86++r40C8DKoDNIvMxQYQzJIE SCAoAlTroLBFfKLZs2efe+65KSkpN591smUVqVTKBUTgJFy9NckiV9VZmWrXbpzkga2/vY7bwk18 pG5ii2/1p1dQR1+rgG3DsZ24MojjrlWvO/YA107RhgWc9KUiz5w5U5nyJxeLiDAbEiCBEAhQrUOA F5FJ9+3bd8cdd9x2221vvfUWBKlJ3ao3nS1d6riABZyEq6a+WNxyyy1aUxgnX+EgDcUFR3rg9Ex1 jfOn1aEdOI1D6+tGzM2bNxcCEaILAdbiQ5XV8SE4Jxu/t2/frnLBIR/KyCuvvKIuAsrFBbVIF0kg UglQrSO15oMq9+jRo5s0aVKhQoWVK1dec801ygZmbLWqJp2dLdhwD06aNLlMY6nNMkNbGU1hddCW ChBvJeRQdHUHfdqatHsdtelVOZjgjeRacxmfav3qo0aN0iJD8mvX9l5F7n8uQT0RTEQCJGARAaq1 RaDdns26desuvfTSDz/88Keffnr77bfj4s4447pPE2lWWZrbMR7sD1g4BvfgpGUBbV80oPWd22hb a33auIAnaP5C0bXu8YJ8wxA1BB493pr24w6M4w7SqiM1VcArQmpqqpcdP3OxjAwzIgESCI4A1To4 bhGUCrPJXn755Ysuuuj6669fsGDB+eefn2/h+zWXi6pLk4qOIwOX4BjcszignY0GMZQV+aKDGtfK ATSLcS613hk0f9W51/kGaDBMaadWe8XBeIR2R5/Lc8895xWz8FwshsPsSIAEAiVAtQ6UWGTFx9Ti pk2bLl++/K+//urfv390dHRB5cee2w+3kPY1nSXYkGq4BMes3xIc48ro34bWghgGj9GMVv3eaBaj 5Y2bEFRc4w6av2h56zu6Nciqda4fDscdNLJhDYu5kbZ9+/bI4o8//vDKRRvA9ieXyHqmWVoScCeB YqpTjoEEvAjs37//sccemzVr1vvvv9+tWzc/+ew9KsOWyh87ZNluP1OYGA0d4GhVQ6pNnVlmYgFo mgRIgAT+R4Btaz4L+RD48ssvMZssISEBs8n8l2oYgi4+2VquqG3/pDNMK4MbcIZSzUecBEggDAiw bR0GlWhkETCb7P77709PT//0009btGgRtOkxK2XxTpm+RdDatjhAnrFYCzPArZxWZnEZmR0JkECk EWDbOtJqvMDyYjbZ4MGDMZvs2muvXbRoUShSjTyglNiH5Np6YvFOZ8gOmSJrSjWfbBIggXAiwLZ1 ONVm8GXBcqD77ruvUaNGH3zwQa1atYI3dGZKNKzHrZL1B2TONtmaaZTV/O3guA7sAY6NRSHV7P02 lzWtkwAJWE6Aam05codliNlkmLGMCcmYTXbdddeZ4d3y3TJlrew4LAt2yPbDxueA86pxCCZO1sJx HbbsAW58kWiRBEiABM4kQLWO6Cdi7Nixjz/++M0334w+8LJlzT38cuF2mbZR9mXJkl2yMV2yQ16L EF1M6idIy6pSMdZzXrXZ+5RF9IPCwpMACdhNgGptdw3YlD+W/GLNLhrWmE3WsmVLy7xI2SuzUmVL uuw5Kqv2e5raR08Glnmp4oLGdFIFqVxK6iRIx9qS7J5DwAIrKmOTAAmQwP8IUK0j7lk4ceIEdth4 7733nnnmmcI3PDEPzaETkrJHFu2UrRlyIkd2HZG0Q5JxXHA/66Qcz85reaP1HBMtscU9e5vEx0hi nFQtLSWipFa8tK4myZVt2PPEPCa0TAIkQAKFEKBaR9bjge0nMZsMO19iNpnvCRC2sEjLFPxszpBt mXLwmByDVOeI6iYvJhIdJSWjpVxJqVlW6sZLYlnPDwMJkAAJRBoBqnWk1PiBAwewVTXO5Bg2bFj3 7t0jpdgsJwmQAAmEBQGutw6LaiyqEOPHj8feZLGxsdibjFJdFC1+TgIkQAKOI8C2teOqxFiHcAYU 9ibbu3cvZpO1atXKWOO0RgIkQAIkYA0Btq2t4WxDLphN9vrrr7du3RonQf3555+UahvqgFmSAAmQ gEEE2LY2CKTDzOAIRZyZWK9eveHDh9epU8dh3tEdEiABEiCBwAhQrQPj5fzYBw8exGyyH3/88d13 373xxhud7zA9JAESIAESKJIAe8KLROSmCBMnTsRsshIlSmA2GaXaTTVHX0mABEigUAJsW4fJA4LZ ZH379t25cydmk2GsOkxKxWKQAAmQAAmcIsC2tesfBMwme+ONN6DQl19++ZIlSyjVrq9RFoAESIAE fAiwbe3uh2LBggXYmwxnXH744Yd169Z1d2HoPQmQAAmQQAEEqNZufTQwm+zpp5/+/vvvMZvspptu cmsx6DcJkAAJkIAfBNgT7gck50WZNGlScnJyVFQUZpNRqp1XP/SIBEiABAwmwLa1wUDNNrdp06YH H3xw27ZtmE3Wpk0bs7OjfRIgARIgAScQYNvaCbXglw8nT57ESZcXXHBBhw4dli5dSqn2ixojkQAJ kEBYEGDb2h3VuHDhQswmq1mzJmaTYYcydzhNL0mABEiABAwiQLU2CKRpZtLT05955plvv/327bff vvnmm03Lh4ZJgARIgAScS4A94c6tG3j21VdfYW+ynJyclJQUSrWjq4rOkQAJkICZBNi2NpNuCLY3 b96M2WRbt27FbLILL7wwBEtMSgIkQAIk4HoCbFs7rgoxm+ytt97CAZft2rXDbDJKteNqiA6RAAmQ gOUE2La2HHmhGS5atAizyapVq/bRRx/Vr1/fWc7RGxIgARIgAZsIUK1tAu+TbUZGBmaTff3115hN 1qNHD6e4RT9IgARIgAQcQIA94Q6oBJHJkydjNhnO58DeZJRqR1QJnSABEiABJxFg29rm2tiyZUu/ fv2wQ9mIESMuuugim71h9iRAAiRAAo4kwLa1bdWC2WTo9G7ZsiVE+q+//qJU21YTzJgESIAEHE+A bWt7qmjx4sWYTVapUqVPPvmEs8nsqQPmSgIkQALuIcC2tdV1hdlk/fv379at22OPPTZz5kxKtdUV wPxIgARIwIUEqNaWVtrUqVMxmywrKwuzyXr27Glp3syMBEiABEjAtQTc1xOelin42Zwh2zLl4DE5 li3ZOZJ7qgKKiURHScloKVdSapaVuvGSWNbz44SQmpr60EMPrV+/HnuTtW3b1gku0QcSIAESIAG3 EHCHWh86ISl7ZNFO2ZohJ3Jk1xFJOyQZxwX3s07KcQj2KbmOLiYx0RJbXOJKSHyMJMZJ1dJSIkpq xUvrapJc2XPf+pCdnf3++++/9tprjzzyyBNPPFGihB1OWF9s5kgCJEACJGAcAaerdcpemZUqW9Jl z1FZtV+2H5ajJwMrfaniUqOMJFWQyqWkToJ0rC3JlQKzEErsJUuWYDZZhQoVPv7444YNG4ZiimlJ gARIgAQiloBz1Xrhdpm2UfZlyZJdsjE9r/UcSj2h5V0/QVpWlYqx0rW+tKkRirGi02ZmZg4aNGjS pElDhw7t1atX0QkYgwRIgARIgAQKIOBEtV6+W6aslR2HZcEOT2Pa8ICm9oXVpXoZuaGRNKtiuHmP wW+++QYTvzt16vTmm2+iYW1KHjRKAiRAAiQQMQScpdZ7j8q4VbL+gMzZJlszza2EWmXlkprSsLzc miSVShmWF864xGyytWvXYjYZDtEyzC4NkQAJkAAJRDABB63gQtf36wtl6joZu9p0qUaN420AGSE7 ZIqsQw+YTTZs2LDmzZu3aNFi+fLllOrQkdICCZAACZCAIuCUtvWYlbJ4p0zfImheWxzQsO5SR1pV kz5Nis4ZW4+de+65F198sVdUHESN2WQJCQmIcNZZZxVtiDFIgARIgARIwG8C9qs1VmENXybL98iM LX57bULEznWkWWXp17ywVV579uyBEpcrV27dunXaQqxDhw5hNtnEiRMxRN27d28TXKNJEiABEiCB SCdgc084WtJDFsnPqTZLNZ4CvCvADThTSOP+/vvvP3LkyN69e1955RX14Hz77bfYmyw9PR17k1Gq I/0fE8tPAiRAAqYRsLNtDV18Z4nM3SYr95lWvgANN6ko7WvKgJb5zDubN2/eNddcA2GGSfR4T5s2 DSdo/fvvvzjpsn379gHmw+gkQAIkQAIkEAAB29QaHeBoyP6W5iCpVtgg2JcmypOtz+gSP3HiBPrA cRa1ilOsWLHo6Gh0gD/11FMxMTEB8GZUEiABEiABEgicgG094Rir/mOH46QaANHQh2NwTx+ww8m+ fad7AHJzc2NjY3F8FqU68EeOKUiABEiABAImYE/bGjPAf9xk/1h1IbQw6eyqenmzxLGEGvPAVR+4 PlSsWBHTzcqXLx8wdSYgARIgARIggUAI2NC2xuJmLNaydwZ4kYjgHpxU67DvvPNObCPqmwQ3+/bt W6QpRiABEiABEiCBEAlY3bbGzDLsRvLdJhvWVQdKCuuwr60nSTu/eaDPTSdP5p0lguHq0qVLlyxZ EtZwTDV+//HHH2h5B2qc8UmABEiABEjAfwJWq/WwZZ7tw/7Z67+HdsZsWklq7lv007NdGjVqVLNm TfyuXbt2lVMBF9WqVcPotZ3+MW8SIAESIIHIIGCpWuO4js9WePb7dFHo1VjuOteswz9cxIGukgAJ kAAJ2EjA0nFrnKyF4zrcFeAw3GYgARIgARIgARsJWKfWmLGFQzDNPlnLcJRwGG4bcuyH4b7RIAmQ AAmQQIQQsE6tp230nFftxgC34TwDCZAACZAACdhFwCK1Ttkr+7Jk+2G7ihlSvnAbzqMIDCRAAiRA AiRgCwGL1HpWqizZZUsBjckUzqMIDCRAAiRAAiRgCwEr1Bpbgm9Jl43eW4HZUt4gM4XzKAIKwkAC JEACJEAC1hOwQq1T9sieo5Kda33pDMsRzqMIKAgDCZAACZAACVhPwAq1XrRTVu23vmgG54gioCAM JEACJEACJGA9ASvUemuGW+eX6esDc81QEAYSIAESIAESsJ6A6WqdlikncuRo3jbb1hfQsBxRBBQE xWEgARIgARIgAYsJmL7zKPYVeW+Z8Sdu1Y2XamUKZIXpYGYsuMIxmo80lzY1LK4jZkcCJEACJBDp BExX64mrZfhyWbnPSNDJleT76+RAVv7zzCvEyvlV5PMUGTjHyExhq0lF6ddMejQ22CzNkQAJkAAJ kEDhBExX67cXy+hVBm84uqyXfL1eBi8ssGiQ83k3S7tJBrewa5WV25JkYCs+VCRAAiRAAiRgKQHT x60PHjN+mXK9BPl5yxmYNt0tbaqfvoNu8L92S1wJg1Gigx3FYSABEiABEiABiwmYrtbHsiXL/Clm 5Up6c9ufZTxJFATFYSABEiABEiABiwmYrtbZOXI8XBQOBUFxGEiABEiABEjAYgKmqzV2MDNpFzNM C0fvt/pBSKpwxp9mcERB3LwhmxlIaJMESIAESMAKAqartXmF6NZQfuqe94Nc3umQdz2hq3l50jIJ kAAJkAAJ2EDAdLUuJhKN/0wIw5ZJ+Q/zfmD+yql51/VGmpDZKZMoiDlFMcth2iUBEiABEggPAqar dXSUxESHBytPQVAcBhIgARIgARKwmIDp4lMyWmKLW1wos7JDQVAcBhIgARIgARKwmIDpao21VYav e/Zl9OIC2Xn4jNv1E4wniYL4LhUzPhtaJAESIAESIIEzCZiu1jXLSnyMwdSnrpPX2p6eAY454Yt2 eLYN16aID2oj5WO99Tt0J1AQFIeBBEiABEiABCwmYPrOo2ac6oGdwIe2l+5nFchqU7r0mW7wtqPI jKd6WPx0MjsSIAESIAFFwHS1xhGTQxfLmFXhALxPkjzeShLZvA6HymQZSIAESMBNBEzvCYe2lYiS Uu6faIYioCCUajc93fSVBEiABMKFgOlqDVC14qVGwWdRu4UkioCCMJAACZAACZCA9QSsUOvW1Tzb gro9oAgoCAMJkAAJkAAJWE/ACrVOriyVS5m1o5k1yLCLGYqAgjCQAAmQAAmQgPUErFBrLFOukyBm LIC2jBecRxEsWDhuWYmYEQmQAAmQgIsIWKHWwNGxtrSs6iIs3q7CeRSBgQRIgARIgARsIWCRWidX koqxbp1rhvllcB5FYCABEiABEiABWwhYpNYoW9f6cuGpg6hdF+A2nGcgARIgARIgAbsIWKfWbWpI dSyCctvWInAYbsN5BhIgARIgARKwi4B1ao0S3tBILqlpV0mDzBcOw20GEiABEiABErCRgKVq3ayK NCwvTd0zAAxX4TDcZiABEiABEiABGwlYqtYo561J0rKKVCplY5H9zRpOwlU4zEACJEACJEAC9hKw Wq0hgTedLV3q2Ftqv3KHk3DVFS8WfpWHkUiABEiABFxLwGq1BijM2GpVzXP6pJMD3IOTnFzm5Dqi byRAAiQQOQRsUGvA7dNEmlWW5k4dD4ZjcA9OMpAACZAACZCAEwjYo9Yoeb/mclF1aVLRCRDO8AEu wTG4x0ACJEACJEACDiFgm1pjz+2HW0j7ms4SbEg1XIJj3BLcIQ8o3SABEiABEgCBYrm5uTaC2HtU hi2VP3bIst02epGXNTrA0aqGVHNmmf2VQQ9IgARIgAR0BGxWa3hy6IQMXybL98iMLXbWDKaVYawa HeBsVdtZDcybBEiABEggPwL2q7XyasxKWbxTpm8RtLYtDmhJY7EWZoBzWpnF5JkdCZAACZCAnwSc otZwd+F2+WqNLNkt/+z103kDomG3MmyBgnXVXKxlAE2aIAESIAESMIeAg9QaBUTDetwqWX9A5myT rZnmlPh/VnFcB/YAx8ai2K2MA9XmsqZ1EiABEiCB0Ag4S61VWZbvlilrZcdhWbBDth8OrXz5pcZ5 1TgEEydr4bgO7gFuPF9aJAESIAESMJqAE9ValREd49M2yr4sWbJLNqZLdshT16OLSf0EaVlVKsZ6 zqtm17fRzxLtkQAJkAAJmEXAuWqtSpyyV2alypZ02XNUVu33NLWPngyMRanigsZ0UgWpXErqJEjH 2pLsnkPAAisqY5MACZAACYQpAaertcKOVV4pe2TRTtmaISdyZNcRSTskGcc997NOyvHsvJY3Ws8x 0RJb3LMKKz5GEuOkamkpESW14qV1NUmuzNVZYfoUs1gkQAIkEO4E3KHW+lpIyxT8bM6QbZly8Jgc g1TniOomLyYSHSUlo6VcSalZVurGS2JZzw8DCZAACZAACbiagPvU2tW46TwJkAAJkAAJBEHAtn3C g/CVSUiABEiABEggMglQrSOz3llqEiABEiABNxGgWruptugrCZAACZBAZBKgWkdmvbPUJEACJEAC biJAtXZTbdFXEiABEiCByCRAtY7MemepSYAESIAE3ESAau2m2qKvJEACJEACkUmAah2Z9c5SkwAJ kAAJuIkA1dpNtUVfSYAESIAEIpMA1Toy652lJgESIAEScBMBqrWbaou+kgAJkAAJRCYBqnVk1jtL TQIkQAIk4CYCVGs31RZ9JQESIAESiEwC1ql1MZ/QpUuXgKA3bNjwzTffDChJkZHnz58Pv/r27YsL 2C8yPiOQAAmQAAmQgPUErFNrlG3ChAm5ujB9+nTrC+yV4yuvvDJv3ry6deu2a9fu3nvvtd0fOkAC JEACJEACvgQsVWsHVgDeGNq2bfvEE0/gLQK/HeghXSIBEiABEiAB+9VadUSrmkDfOLqjN27ciJvo 9FZ95/n2fmvd6ujB1tLCDu6rDnYtOe5ocXBfSzhx4kQtoXZTeyDwqbrJ7nH+IyEBEiABErCfgL5r 2tRr36KqjvENGzbgI3RHDxkyBBfanQYNGmjXKibuII7+AveRBBZws3PnzioJAqwpUwgPPPAAPlLX mgWVKX7DoO+nKrlmVotgKh8aJwESIAESIIGCCORJmgWAoH9e49Zapkp0lWbr9VuTWyiuprV6KdUL MDRVRfMKmop7JfSNCQeUBb3AF5nKAnTMggRIgARIIMIJ2N8TDo3s0aMHWr3QSAwh59vbgL5x7X5a Whqu69evr+4U1FPt27mt4msJ1Z9qTrgK0HV1E9lp0WrUqJGvS7xJAiRAAiRAApYRcIRaq5Hpjz/+ WBtL9iq/XmITExOVoKo469ev94UFg1qv+GWXXaaPoBd+3MeccK1FrkVDdlq07du3W1YZzIgESIAE SIAE8iVgv1qjdfvkk0/OnDkT/eG33HKL5iV0VKkyVLxnz57afbS/ocSTJ0/GHaTF6PKNN95YSO3C uPpUnxB/ojGtfzmAqRkzZqiYyA7XSrDHjx+PNrdXi5wPEwmQAAmQAAlYSsCykYB8S6VGhdXcMQQ1 xqymgKHJq5Joo93aHDHE1KypoW6VVj9urY+AazVlTJ9QZaocQEBy3NFa5NpQunbHMlDMiARIgARI gAS8CBTTC5ilrwkFZ4ZGLTQSOlrQMHYofsL4W2+99dFHH4VihGlJgARIgARIwEoC9veEW1lalVf7 9u21Fd7W584cSYAESIAESCBQAhGn1mi1Y3Qcgh0oKcYnARIgARIgAbsIOLEn3C4WzJcESIAESIAE nEkg4trWzqwGekUCJEACJEAChRCgWvPxIAESIAESIAGnE6BaO72G6B8JkAAJkAAJUK35DJAACZAA CZCA0wlQrZ1eQ/SPBEiABEiABKjWfAZIgARIgARIwOkEqNZOryH6RwIkQAIkQAJUaz4DJEACJEAC JOB0AlRrp9cQ/SMBEiABEiABqjWfARIgARIgARJwOgGqtdNriP6RAAmQAAmQANWazwAJkAAJkAAJ OJ3A/wNQlOEtWqwtuAAAAABJRU5ErkJggk== ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





A Influência da Capacidade Absortiva no Desempenho Inovativo dos Grupos de Pesquisa no Piauí

Romario Martins de Sousa; Marcio Nannini da Silva Florencio; Luis Felipe Dias Lopes; Thiago Assun= ção de Moraes; Mauricio Mendes Boavista de Castro; Alexandre Rodrigues Santos=

IS= SN 2237-4558  •<= /span>  Navus    <= /span>Florianópolis    SC    <= /span>v. 14 • p. 01-20jan./dez. 2023

15

 

 

 

                  =                                                                           <= /span>       

 

ISSN 2237-4558    Navus  • &n= bsp;Florianópolis  •  SC    v.9    n.2    <= /span>p. XX-XX    abr./jun. 2019

 

 

------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/image005.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCtriHaI9sB /v///wAAAAAAAAAAXwAxADcAOQAxADAAMgA0ADEANQAyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA40sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb9iXb76z v9mZc/bM7M4/e35z+3zee11Vt+4ru7fqDQ/hLuVUgJYR/kZEEJAQ7u4fIaD8VRrin/whOAgID/78 f3d/f/+X5Pt/y/8pgQMg/zmGf+HXmKMCoAE8AkAHeAyAAYAJgAWA/XsKIOAC4AHgAxAAEAIQARAD kACQAoAAyADIASgAngBQAlABUAPQADwFoAV4BkAHQA/AAMAIwATADMDy53v+W/51ooJgC/ycgLGQ RLAB7g4Ibn/rCv5bIUJ4+J9r/pc/0NqUNQofS2yQtGBVuNjpjv/rsod8pdQzT2cRkYDntv/0KYoI 7xBM/ymbfy3oCA8Q/7o9/6gewZ93JMC+EYIVggzQejOgJ/5ZwQPsI/5Rz2/f94/o/Cr/F7/6CkEC QQXoe1eg703/GAHHf8o+0Z/tR/4n7P8aJ5w/n/963f9b/v8TxN/T4X8hSP9vT/A/EOpYEAJEFAnh yJYaIXfsf1PTv+V/Iq8QTACf/wrwfL98jyGCJXA3BVJU/4gFpkDK+/9Wnw6YPn89n/4Rmw8BZhT+ FW//W/5Z+/9q+b9sX0kOCRmIhWhoCPMKdjLWs++vMoHQVCH0exdnbGvjZGrjxG5i6GT4x4WTDbju a8u/I5Mk8HYB4VIV5Zz64iR4ZjMRyuDTy8to5QdMPcundQbRy2tXo0c2R0bc4l/RY4kGodkvjdME RF87IuQ4iK341lHZh0fX5UgHklFRi7UHogUU1QVcLOy5+qw4N1kXBnHZ8ghWctu2uJ1sDMxq7iug y5IkLtOeGvWIYbzJxpDkh3AOakTIMbaiPUToWdEFcU0xRZXwSC9RrD/+NJEXWaKaeMdEnn7zzYG4 3PuRB77QoNdee11ElTda8q07bZ9ptYRA4mvzKjWWpB6LV/QInm+9cSSYPsspqlJQXy7VIh2eziMd YnRJQWBqKnw+RTh3bZ8j+haXI9CP5uGun3c/R3LbEQg2hHuWGTUlsDxIXyhSmm6MN5/pTqZ4i41N KTJXy8gBm8dJ7rgf2MlAP5Irhh3p9Y0i5kIL+2+eb4jWHysWBDD2sszGCH3GLrtmWKDxjo+YwU6f K7rkPNsWOFq+7Vz+Ugbb5N1qQiU6/r4QB4Nb383XP/EUmMI6NHu5hhSFstTsKFxOCXVc8r/hfhpK MG15tShaE7TBV2urQ3/tIvHJYdvGcPBt1yKmV6+yVvHQGzM6fXq9GU5p96LHLtTcLMppn9nsJuwu vi1g60qFa4W6BDSIl0wS9v0AvdxA0Zzc/Qa5dPuyrMobPkkrMt9325HRdvMQTZwSw3ivcYg1eMbg w5lMLJHY0GqAJq6L6btX7Ux02QLFCoTObgLgDJX2T7XgoozymzKwyU7t1zYsG4YrLqhxA5ryApul a5l0DI1kKAGjSv7fPahlZVI890lMga+fD5y1wZ6eO7FeTeNbm5dWlem6Fjo+CI0OYnkn/gg9GsK/ wHh9r4JmFP09OohLSwLh01W/Op67IdGYOstjQ3nEdrcNZDTecasHDhbaaqnr+s6ymLXhDrqI2tY9 i6grHlpY/hDTlcI8zaYN3IJasC5JSUPwFYlc9ne5t2AiSj9JV/lNpK2RAntw5mpWeBfnhhuGQ3NT Tx3jBtsbKUl+5h71lyI/SFbZvU9nx7mM5O1sHu2aLzuzjLzD469N/55KIydxLct98cCKNaIhlz1c 3IfZtUxMcpLY8qVFc1EtWnKX5DH7kfkiSc1+dbh5uscZRMUMc7CcB7QLXn3BShV66fXVZCRF8JaT Rb9z9IG2FBaeuscRzXvpWpkIc52VuiSm8EqZp/3fTF3FXFOcYyF8yZUdX/NSYiSd9gun7pKEDNHS Qk8E8OYQ4E+UY999XmpwNnZZ836nXHOK/toojOS+S/osiUQUZonybIU8cazvzGxRGUovbC2nBeVJ 6mDVm2yO3FACDZz7S7OyL3vHD2xLu5p81RHc9/owJ5PpXMJ4b95tUXJRmcu3eVP8Vk84i7CzebGy xnZiV3Ok6VKI+SNflMbjvBHCd+9nmWzNJd8vTP7scqwN3ScxHXdM//C8o1llfr1e0nJOW2t24iTB ZnNuqjLRTtJEKKLAeWEi0ho66rtbE+GhVUmPtmQjOHAzikxzeqzr92F17PrugiXX1J6+9EjxpvHp uFWt6uwZTu6ePrrQRx1CxVMKsYE+XWdc7XMDcnMKZVFOOGYe9Gl2ra9bJq54pJEipy4EHPPjLdmm PZpHWDk2QRAZzbuh/DM8neHun7LQMDaOiNowDhp2WDTrFF5+2JOYHjw8oSAznrzM4gxvQ+EuDVzI csCuN9vRDFUzHWgr7prMaS+vLchk9F1tlXbPIfn6l0qwkCmLXLk+RhuBdnGyZEgs+FRsz1z6XuwD zL1vR/isfktGhIymCb9va4G2Y1e0ZVegwnh9ajPmA5eTTrG/3ZOOG1v2e8u0nxfhzzLZl6sT3XTX nHy2eJiQpDYGqd+Ed7/6hkjezd9+GQAy0E8e7o7e0Il/n5cv+j4sURMHdsFZQ/n56bSK9DrR7CPW Dm/hIT0XFLnuw2ne4Jy0LL7CimIyuWv7EiXQGmgFzQi05gbjLaHEdQdBp1/tgk31vISbaD4ynJ14 zCnWdDriS/aHHdmoCklF5fmA2pyF93Kwjb2ESLhbHYVivtR0oBNkutTZkFh92WQc18ttaLQLeyps aD1ZLzH/mXKZcH6VVGRCZvSh1wdqWpHjiTg7eAW8/Iz+oHzwrnqetMElHqtcHtHLK3uOcXjovVBp 1uwlwcSnHYr9q9y00rxa0YtWpbwaj8EKpFZ7l6JFD9QxUbhrcGTNsHLCiAbd1Vaf49KOK56XixvZ Gi6OuxdHlts0yJ5oQMv2oOTF9dYkEXZokbO/Q2rY9Snlf41okS1c4tdAJCN98PsbxH+JaO8NHZ1M HZQMzU1/hbWbi/t7HzoUFBScO1ST+6dtMNRRlpcsDzpAL6FIHUQv9xA7RF7qYHVQPWdPJiVhK+fm EBo2NmBIbW+Lbh3f4Qibk4c9U35/Gw65EJshJRFL1fTDQb5D4mxEQMJaao/uje4GHFaPEjS7P3pQ CX2N/kGnee4LKZwwRzMj+8EIr0DVMA2pa8VmfCaqD/EDOAfkdEWOvlQPax2xuAg48x9QZLdFP8gn JJH1vZWA0FINIgpwURYZsaW211Xwv2MjCnoETs08m01bq006c5m112xHC7cTcN3CybRzQBVEXmEg SRmKxsAo06Fix95Sil5VewkRp6BH+vkZgRD1BTLy32wCQkVjlDWpgKMhGuLfbwLsgM76vQnIeKQT //PiHrudiwUJI3ejy9fMYiPVI94oN5bZjM2yNNjDqs5WX16eY5KH0LG3zPLTZ00rK7MV0EaqrM16 rOxgO9fqx0N1yEnj5hNwfNFy/+7Z87s7dlcvx6xNkYv6oYzlq3THzfSgdxLpI1OkNtjM2NMrm+9Q zwwRllhk7ZWZQo1wCj4x5OQGhIjfKG4jlr5BDdZj27HWf7Fk1DBsJT9J2qJQXTpsuCSBWh9qey2u fAq+DCtrKjxxtGs4EW2qtehIsq3VPrWWytuO1i6RKhxbT1fwPIPvjg3gdz7bdEpwLC31Y1jOrSIy fa2Qpj2omOlyVRHn3NdUwXOKdB+sKUNp03Kjr2dqTYL2yhDhFIKrhHndzqAMY60ZgnKT95jzc5+Q YjXNnMs2rvNpl6bUNA+aOsHhQ+0powe2kJOmrSa+cH+GYAhV9guW1myMqcWHX4f4XxRrd3LavEAq SxljxrxmVW4I5gpGYZUNZRifiNMjUo5c08HQ7YGxdmb7yR1IYOKPcWN8eZVvQZlRyScR/0gJ8TrE koymhbmN+ZuIik67nT2hWhlVlzLil1AusIKL/pXPffe5fKxHUEgvJeN1drNylHuu8XXoPlKmheij Ul4R/HKmbYeXZekxw/G5riVyj0ZrVl7YClykw9cLfRbnvk797DrffTT73HLCN4Q1dWq3vez93aD6 XmvD4WIDXsbH8+la29QnaJNQAY70xwGf5ZywduGda7uOG61Yh2VKHcYnPsrhu98YhCUbpZWLms0V PMaMyzoz0id/3ElOlktpRE+XJnDPthtUeVJiEgduOJlkavjXtjIv2I6sXH7KheMo5zpqPQ/kPeSt wmMVFEe1QLENzbISebPTd28dcu/WH7f4E/1SdcH2yTQa54E0J5F7GYGN031/hWSoskQILGcF2r4u vX/St1nydJPuopFpvH/64gLmJFWmYXulzb2m2KoeKRWvfRkskjvgm77YuRHVnJS5V1krpGFekeV9 MxOSh9LbchLZL3JAvRK8PCxxS8BaE3GlGoW0Zk16lsSau+aa2qcHXpvmk64qPGo5S7pIaLpAy6zA fXFiSOlY0q0n474ZFe8ofD6y0ATLnnsRBj3B8sTXats9/OZasnu33njoc4K1x1xm7YuzbGh066Zv b/OqTEe0gg+mo3ibRiQvEbGZF+XpAxY+Z3p9G/bDa4QT3hl8d+B5Vc14S3pFGOV+Kjj+Ykgw+8C4 7PjltGNVvHvp9OzUonZeh5tUqLCTfkQ8LNTv+OAkf8Vz2ZGuLY1g2U1xai8e0oF0ojoSv4R4tvvJ aH8QyitzEHsj4hQEP0kZz6yjFcDUDoMTKuT3nksIZNYpn0rd7MPJVlYLZ+87Z0yzrbrd2ME69eRt z62NL2fL5uCRpt8IeMq3m77WlHx4Qb3ck7fqMl52m/WlW8+DNg7eNMkaTHxjrt4QM+xstS01a61m RpoumGk6rKzbmx8r8yxOli7htYg11wsXn/IQEwct4kRhml4Ts0S9vtzNdxsnpily5w0yKbQqN/xi sd/RjUR7aarpR48kdqLOZ298drimJ9efF/7oM5kkWqfu0EC9QUkIwuJLJ58wPn0Y19ubO8IDTLm/ WGFKYenjInXimlKTnwsMmj/xDymzkPZsboXIlV19T7wC1eh3sggH1gv2Ycca8dx+i6P0PGHH/HB6 7H89/zycdAdVAc7jaZtKGYCNe/YMiu3CPbYKz35Nv1G7DDJDc7H9tLyj7B1NtQU6QPXXNzrv4clL M7h/bHa6tY2qD+PNo05MqUu9GlUQLafgNZ7197ZbJeYeFOzw3A2mrArlMxZHqdRsoNThN+vKWWkY 1DXjrX8PvjnjnYKhEp9B8dhAE/jvsIUGX2iaNbF2+TD/DGflu/p++tVsD7f7NNL0WvHQP8NsQ4bs xO4FpmLxoX8NYX3r7tBmJn33azSPB6eqJHDyuzpCTuFby2RczDd0JOjWYJKd+CAxP4GpuTqhgAUn h7f6yi9tPWIsatXiCftmB6W+JJDmQNFMwQzcuQwpuJs+WLxXYY126SGmSW8daiCfTFafztTiw3Xg bfBUSO0B6Jn1Apf4qCbdk/HyRIMZF0z6UHjzhHVdV2eUZqwlI4z+Av8zHENM4K4ydq6Ms9Dnxg1D XP8e0T7CpR45kFBDn+Jm6efXQ/qdyB3Nh6cjsBBwSq4JI6UwJaLqypcO9ZCveJO5tKUFkShpergf lutnIzgKmiEdKTArkqsS3NTHlE3LWETTW9gp80YRhzd21KGc0HwZ8OWp1/fv4O12RduBdO3EbcOz wFGkZEL94WFVDibNy6XOCA6PLNJWi8Hbar6TjBHw5U4daZji8x+fmM1eu4WbKnB8LeZdDfEDvxXS v1xbhlY/T56UJVtu5+de4CLJmWLiZvvAJV5gb1a8bhtQFhS6+oWM2t6X9ALC7bPTny6UcIGtZxRA Cks7agM/Jb+bCq/s9GyqT9im9fS8EUrA2V9kHbjt0W8/g5EZ5ou1F/eCSZg8j45XIw57hbnBofYg m5QKI3ozB12zzVBwPd3L2xdv29k+RtDw3H7JwW3AGrfToze7oYZijOgr8WHeKOJ2KdRByDqu+gIt HTIXbKH5z1Fv6jCibu+6ExGP2TCELKuFJGdN0/sh4rNsYwqoMrP5Dm+ib2/blIVLfB8jyeRm0Mmm apFcjs1rTrP1uSjXhH3TDU3cj61nnVJTmAvsbt5lfh9xCnpNTKw/NZdV/5VmbL+BNGriNGH3xs8/ eZA5xUPh5odcK2eY+oRdGZXXAk6T3w1Z2lgrXOgs6FL81ADTA2rcVXIYqJjGLdMfEsPLLcI3Rsyi MeD6joO74vlJJ6SlnDftSmlKQh25rGb40OTxwdBCa4ZiKasQPAHCyLaKXjJhfI4ilnIsIC2ER5u0 TfET6XHRxFCIi6nkIzWrjCgapuo3ViXjWp+dlVV2EY++0+El4Fp7rXF59V3pnPNZS8/u5+87aMIt e7TD5Vxz1kvmyV14YV79g5/yGhzACU2MbqrHn9b2NeNq65D2wumSDmMUjO5PFmKNed3lzOOlBxli 0kcm2VzlNh3FOCl7RwZSntNdSv/KsJAXcwCvLqx578Nn63PqopzwFH+au4d695A+i+WWpTV3MmOl 3PbkZRp8F3PAWn+bWusEDlkLL8WhNa8K+al9Xivyax3cWZqPP/R+zFKsdbHVa+X5XkAwLXJHtiRB i/mPRl1rqu4ierwtgftwSZs7RrImeZFZxOZE8OzFvfdN5sD0+q4NSVS0P4MkNVpcZrTypeN/IVdJ mWYJJ50bJOOV4PCYMFNpZS7c4MrPoau3T4dINVYmDB8SmnWrQA0y+DCy8pf3X/vf8nvLoVRqNYh5 Y4hS+U1vBSN+ipyMLvUfVCQfjkxZldh8hDQUgcq+YzVfJ/LV3iCJioTK01zqLO2h2u6iRKN17tzf DUKGoL+8aafu5cU6yqVQZ/gmMYkBlJVb764NQds2ueKn9Mbj/ZTaXRD/d9nyrEM/Y+TJqlGO5mrE T9jDJh4r56RQx9zWyxbQhLaZ71UzD3lTFwK+Ec8ckbnvRWBfJM4mtboe6QBPS0cxzMT3rjklPlqS Z55ndYYJheGimfQVKqdPehcP6/MeKr5bKMJjrLQRb2FF1xFDxfmC848RgUTbzXosP8asKtAEvxAz G9DWF1qsPZXlJJTJjMJhinlDUyKhFeKkjLd9CfOXF1thu51zZg/2UWhX+26zziNk1y5nxohfqD52 mG3QXwoSyDiNpXH34nXUZDbrJ242eMP36eLkNd5ZA66eioQgi4H3NeHJdZSeilq3zuFHPClo8nkl cQCasvMi7KFUXID9YXWSjh1lS/y0OQt3dRpx/gLnapKuW9O5vS3BmTC1UTrMVUajZZSKfdu9cMiE d7ZHp3LgMVHVz/LvvDa2omy2r52n4uTWFSVHwr4HiDNf104ifR/K9ycUaUI7KFqo8rX5EGwx+Tb+ U9/+oNTzhFxmSY3QUoJmBkb3ywWDuKC6x/p3XapsdB8U+ta/6lvy57VMPnVpYJjqPsG1FKQwLxTO Zd6zlHROgCQGJrb5kSEVjGntO2U7aVH8TFD9Sqskkx378pnfUCpyF325qsdou6pAkLWwcIGq4Pd+ VYFqCQcrevRY1Ubmef+M6RIo1shr3YAgJ6uQtXG83s/yFPvUGW/LdKGDrRxJBW7ShTWQ4UcOVpOm 7tKFvHeJQLmMIQ9p+hoHoUpoIbRaVThfleyqJYi8zGvOSzIjfSxkTChf1cO0JcjJiO+94YwC92L9 GnWG1q4k0CmlDPzVYkoNw6EirhzMNfbK2eHtLmoaMfqyI7874K6Y8Xpwn/wqgX8mg1J8Jnp6dla3 yxKfUSFNOlRrm/ADaZKwPXLlpoDZtv68aTpvzEpVP5pK+vl4yVxWs4+g6JN1ttXC1jDjhZu5v6jZ zzwlquuv2+vLS64W4DRvOmBbrQohKKR4CuSwV2/eEW2c2ooOiVIU6j6ySUH/OqErjkQ9m+9/Kf3G WOrs6OCh6q7FiEIT+bdmFeuCid/Lnq3PiuJGtTxkbWfQudmziTDmCfWTw0q9LzvsJ8nMEM5Xgjvr TzuseSb7pYKDJLaAZ2GPrQKBxaiJfikImVHyE32u7vcjQCY+46BHE5WweJNKvJ6I+G37tfsVmj2N sHi6dBRO1uwb9hK/K+NkW3YDG83CpCgc0WZ1dkoKPSPBk1uFZh10WzjqSQ9ms2cAvy7xb5VafdiF /u56XnPIaV35/MdTNHsQvWRdBMFqoVRwlk5pUhTGvTDkaoRkI1bsT0NCCtFPqBcMI/XAxco+VZGG ooowXHeSmwIIJnjHcBpLXk8jjZJHiC+EVCRC5uRizAbTvvSJVaiLcNKW4Qhfbpbi2bBtJaSaj8P/ nMvnSgbb+NwC7WMtu7Wr4+OxpI2beAgr387yICdmhqg5m07n3NEj2Af4W+zVIavLHRZObGJXcsNW y8tO/o2PDBujbO4W3mrtYbYnzlNlm63uPNei5JEaFC4EMw7XGlcv+TVkUYVfTXE5qGnskvc5qCTG fUuPXz8t1lRAcjgeSdtz8WcSTwmJ55wwN2UjljpyEbxo5KK0MHv3BIbCns63+iPPhkPtLUM1/jyV cRYp36JdHJGCFgq38hDRUCqeexHcn/QrylZOk8VkfbqeyJaTp4zw6WuuVQZR4blGyy6lDxsrHjax k6rzBjsUG7Ls8rFdjiP5PhIg9ve1lbZCUXGlYf7ox31nY2HcRUiOQCisHaEVdWYgbrNHjtzZf0xi fgixGAfHnzMNUlFKqv3hgatVdnPzJzQukNOYQhrtjCDMTte94TI2xTV3iDZcT5YMdM1uDTYKK2wc hP3eUveHOyOnJY7YQUn4GNTl2yG2DX6LzKAaCyq1hs+Q3S+N3/f4kimdjK6lrC4jphR3KU21Ofud zDM9ktTrDiz4UnBr7UPJoCmly9AYm2HXREiSR33vWaIZa4qmafLA+1KldwSVEh4bvSigLrfG3rqg 2k7nYvac5aIam2P7bXOBip9iTWmGXZUfTwLOYoZn5L13lPOenByevN7Z/GCoXjVaj6gFZHDrXwn1 CO0NpWWGiuE8gBHMUG15Jz4U3fKTQW/Ja0AXUkPx40KLF8vG+Gg+QLX10w8JW1vPLgHRU2zljYJf 0MVDy++Z0n5BEuhCxV496uh2IZZQfPnkuAe6pkvUMcjJQBZSaqPsKyMwy8mpllkvpY7p0jIkrpTr sNzz41cMIU/TQuCaXjWoDpH05I2qt2Dg3pLXIHV1ffGx25ryglC5EOEHRkXWA+zGc4cEP0hCIUd3 qdndt+/qKE+wFtr297sJA9vaPylVDId6e6Y8auHYzp7mxC8mDt0v0qvwDdVT4EHHK8hVOfVUU2Vs UHEq2JIdCYvNzSIO1RObCxQ0qWvzyulpJN6IfUJI7MGQdKqU3EGpsyZ1AfPaf3B2x7F6nPDaS39j sqzhpZyt/DcvsuW+xwJDY4d6osRXyp7woeTPR1Avcx2DOzpM/caDB09FJg/beYjr3FXao0rrXyZU glxE92hExfXhpJVejmbRCw8bSkbsGtMep1v0YmCMDmvNPSwV5sjTcCa2REzH/ODH+MMIzW3yYQOM M8/5ReW1t1l3GttxDp8T3LA7xQkOKW/yKdzLOpzR/jHv+8PqdvnJXsJQ+qBefV7D8UxCF3OEBqiM 505z7LIiY8o6Cx5Teep9w2KXqOfhHzg4ak0fO6lAW+Y1Tmu+XfAByxBEuUV7kTkmU5YhrScY03SO OS2wXUAfICB3fWHgQrrP0ny+RmK+XS2lYJ+od9OxDFSwODumaXU6QAR1/A5dyAQSsI+Xjma6dfXG e29sltYBjfWC9IIkkXLEk8ZSqErML5XxoNnZKGZ0PQ9kcsaqXMqvZrE+Ce8s6eMw4hzVKNVfSvpo 8LgrxivLjpwoy/8aml9hhF02NPPwTfn2M3tiF9KyOJ+M8CnDKsjPbk7uoO1sGCrobiEi4UbceMOZ 0owiB+v0YkiUkPaxr3RUMObpaG95PV4Zl0fzAA94l0qTwXXfZ9sEobXbZGPvwpnLcKmzLJmCd3dt 8VVWXQgr0krhveFMt+VmLLBZ88Fc7ajz9wzo5HyDyi0UkCQqjqp7kHr0hj2DfLL9DZSNnXNMdtvk B2LMKBbrx1OG+UGjVkkdjdYJqD5NSoLUjoEkMeZF2B0swLJOLR32sggyuHJrC+HIKssSZHu10Kqs 8LPcZw877gOkTpwMc8AWVZrPR9WeF538pzG6Bc9roohPIXh54RDPAE1SzD4LJbA/Fyg0dsRgn+Dd F7qDH4+vBXpZRGhMWQ8sYbQRH0fAG9ZvoptS0bisj9YMozXDkhT8oFpzdqQmEysrjVR5x7w7GbST rR0suv0yZqx4jNYV4VSmrHeu+CYTRgkZVJVEIfHV0vnFnTv0YiCy59wp94wbtKTK00BZ8KR97Ejg 7C5XN69TLFjKwWejjYE+pVp6UlIzTKJPq0rftjYpw4SXOuYbUYiJxDA/ULWrOlCAn6VNBsSnOp9S 3eEafBYn5n0qBtSP8jG+2nVyFqhXxcfk9fTQib7phTAmdy79KVMVKeeak+/rEes4PKoBZCnnhB+F v8/C4im4Q6mkuLOBqpelgb6vnZ+qoKezcSQR5CsChwwDd5qCw2eBH18vf50HmaAvpkRSxaHPgCv2 hij6yQn7MbQxuAJhU+jRjJ6k/WKfDhM0H3AFlnU8iGb00DBOOQNzFmI+TPkhlU8gQhNhfltYn380 6iLIGDjkrXvvhK5PMM5cpaU//UOheTME4WoacHyyy6p/cffmCiWCDuiLRRXB8bHnYhg0n/cnCINP Sb3WaqF6jFDwE6oMa+DVMpxRU35ocOHHqFwOZoHzCVryM4Ljf0zeMkvILgMNoQTSZ2Di+Z2+81Ip i/Au8gyI9E6a669krUch2QQtxGO4jIG2o88ltDzrrvAdp7+lX9P+VtWPpSo4/JkVJl2BljILFCq7 lAEywkSCpN+gAupgNKDI/Wpw/LcPx9pm4yC6s1eMnr2qQMEhEX1JhkBbtDqiGSo0TVwE/wfOh7PE iMdDq/xfyhiyb1qkq7SZ+tDXWzafNvRRKf129ErxGB+vYMhpt526ddZkElrP6WNvPEqc2PZnQ8yt nzbojx32o0M9nuHGDXIdUXG/b4TkGPmUnYGwigb2FsPrn3+8wP/s5YpMqXjzuZX7BXx26JXNhWg5 rwheZBJzcV0LNw/CzOWWwTEekaLUmf1DgskLiUbl3HDVldQoX0Z79T++R1gr402qiOt4AUeciJ1p lddnq5UFwaWLPem3vrWKgj1Nx5q8o8bwoBJoV7CROHKS2erLDEhX53TdUc2hiqiZu1fHLPvAYNd8 LsXg0qqNlL3o+YmwVuWGa3UhdTq+gVtOYKURtx6k5XlwUg7FT/XQVDyFZ+my/Al2ItY/3KqZC4si WNIijsVY17/FqIx/fPAtxuhLcHwuMKDVB9fv6lnmLqPluRxBjrq2ZCqhoJjEwBCC4BaqCbqk2trb Ds9LVG6CX3qD1//BuHdGw/V+bUe06KIGQSS6GYRREyQ6o0SJNqIzwShRR0+ILnqvIUr00Ubv3ei9 i9579MHj9/+/73rX8/v0frnXOWeds/e9r3Wdve+91rXNX+X8rjrpl1VUC3U3klJUg0CRTDnZ9PdJ V+1UG3SMc5Hq4/PUs2vw/dVc0ZxkbGA5U85vZUMbKUUF6+aM2msccnUbeQ6rUPWaxtuarMisc3Fp ar2RQwnqRzFKouw0fSUlDxRV03hoOj49FLa/UOUR8jrHEL2Li4rs3TdwCPfu5FN8b98rGQeqUUwL LXOL5TrFtipsunTKEtuweiKhT69XaQ3pSlRJ8fftYrqHiKA4oCrjiV8W+hQm7Rq9Fntn5UT8nqB5 dDRRoeaIvdZPInLDseExVACFl0p2M8z1+sGSZd7yuKxgqvjXJEnuWqPiKtqDAut2Q1erSz2E8F1k ANJEEC2u1p7BV26/VUo7Kd6b+ldgzEuNitWQdOpVScUoj9KNc5sWUeBhX9tUtWWi0wuCPJspRKvu xqQT64/dk83+8zKl659ourL7kzlai1QLdR8X9eYAuVZLH3xeH7469DYAs0My5iGfTqXgtPbLDtp7 6LhNTxpsImy/GIHmyVYVn66TjLDrUqB8jEHP0bhhODc/eC6QOuAgo0a56s6EzG9GXsfFSk/MJdnJ JZNI730SSZ+2ff/Nc9DLjw5pjebMl9ef48Ou/nvqN0AdM7I0xF7rUfz+xJiiAuaIafbWqOt7tnxJ ctzLC7v55Jdz5HMU/G2srT9tlFS1JYJqOrJP3fAODjqU9KNCyF3omBwMOZs0ktzckiPMTNnseu9B gu8qrCyjDUqoPF/AQWFuK2HYhrfVGHVTiJVv8nbPpmdCZhjdpe4NtPZ8hukMtuxkeK9boH7FNdkp JIkBkOOYQ8+frpWUYgVXitxeCUmgbmrW5lalHoS8+16lUer0vUmqDJLNm3z/lUhHRNJtqFA2EGmU gbnIu2xKMOgxRTdvoWd/u7vI680e0wVGJ6TrOhrSJgt6+H0xp6W6b5Er30HJ9h4unsZkT+W40G/0 G6BFR9A06SAVBp6roi/TrmJ82oTK94FlTlOuP76YlTj1cwtm9Mf5G9MEMgppi+rzKTgyg4SfHMht PZ90pRzWv9IDzXL3cZuXCIPwYmuz+inNS9gdc9iTuN54YKVYBXuUH+6WkK5CZUyChYqnKyIKY/fX JvqPp5JyxOaNdni5bC9c/VYxi+Fl6XT9O7adrcu2Rvjm6hJSWNoTynEdKA44LCMFZGgBGwMfFG0y DSSUTIixWMOOvuNoJ9nQ5Zpc6qk+Oa6WT7cyaTVecm8rFAPCLxvYlBhgrd5TYpmDHlTo6QUCtJze UbF9rg/g9ECU57IMM+a6tnIEfA5OHePGVv30N9aC+oefMN0Ci01CohdZ4qdz3qk9I5e5DeIBLNPq uvYggl4d27I3nt7iNB5KTrgkrcjbeePOWjPCYPtAUd9SIQdc0j2tGN2rj0IKjK+HzGez5Udr9k7t 4G1t8NGTJyiFdZTQ4JGPJRzw7dScoF7lxPz0UeLINE0lFjnIuthRxxX4c9mY/HSLmbaOs709s4ar XYqGoe/oQ4CcGt/b+XqcFPkiQebalinKIvm32+aUbXuPu95QAVxbsGXZ9Hid4snNFlW6fEicfdXy oo8N6NimkUI0hU09YQ7G3vaYRvu9ZqmvbO8YdaKPL2F0o8cscjOR19ZvhwPGJaIG5QAzAyGlnTNH P15reZ6JO348g/WC6SuiCFPXWmfgucWUN9pffPloOHQucvk/iKEzK0BfczXtMazu5bRz71VYP5Gc 2TU3vd3FP+/w7J3OY1rhMv6UKdPwyUG3VpSXB/DOO3H5t3dro9HLu4rPCez4VdovS6T1g2vIvrCs 3B8GwdFzrbnnK+lohDbVdRhYZiV2Ox+uczTtq7nHAr+v0Kz82992MqdxDGxVlFN/nStH5a6v3Em/ UHEUcZOvo3gUDqX1PlWhiudKCBjA2pbC82l1Y1KaorK8PM1U6l3afA1x7u2oK81ZdvyW9OzChPZA OOWbcpjl5bI2jc5MNOfMDu+pAXADv1qzIS3x25ht7p9M/KSac2n89J3IYLom1da4Cv4oLbYCemhX lUdQpehyg7/u/aDU35kYX56E/rZCNo1h/rcE1skaa8483ENTqqf2PwOJLvx5PWSzjfwGdOULcYeq 3dhFTmG5a+uT/bWbfEcxD92bmxlOuBsTdrfegWnjb4qGmmNxg6X2VP1XH8unmTYCuix1BNbFuSGs G6YfcBZFMwKoyfkQVfXYm6A+6c0XBItifdlXLk/1KaP8T38B4UejUmjzJOyYI4xT8QrpPkx9oPBl HyaM/XJhGxe+R04gKHr5yBrfYOn60asEvWHDo1/CBCsbuPKMo57I8FonkTEq1N7boKsvlBuCQ7g1 L9MVCunnsC2rgs/Hdsiq2B66nEyzVUeSMmlDLgY8VNsXYBGcFHap9ZrrgPpUb4cgdE3lS+P5lSC6 Uw4UQXoD5QdkBLJKLEzEVfHWDQfoXmGbZy8LsJUVgRqeT0x0i/bxagQk8fXHGp/D6CzaPU67RaFS h69kYkg56phZt5pAwgwGCgmEup1OKZHhjj7grvftY8dnu73TDcqio5x9k5FODabyUdneQWKcusx5 DaatV03bOnbl2JDDmkCCTbx2kwUxJX2jVsPNhXb1UECN/bQYrHnaFzi70C4CBlwe/vEYJdWJ9tYu 17h9Ex2V3t8pZGsKHRl03xK0pe6u1nel85JAGl3Pz132ylH1p8Pp6gcpbxvgdDYxADhu8bPJH1eS CGx+Gy2lY5W4Pfe32OBPyKylXIq98ujabFz+8kzKQ884Xwmt6pXZfQ7hUaNOyI06Yl2KoMnZX+H2 +wzgcuCUqndMlMudEaHYvrZkcyg/6izvZ65exzxwqghl/dEtfh/QoNW7hP47vqKwVYgI6EY8X/1G 6BeSBQ9W14j9oNbmcJ4xWhFF2vi85XC/rnvuYHvMJWI3h0YCZ3zn5Q8cv8shSrj0zfkhbuNxKffe /b/ECH8Bb6L+mRv5Z0bk2b/ECLKWMHMlS0enf+QIYAWAAmj8YV3uUwZwKwDx5ZVUsR0JvhIi/i1v UPo1mCSC/ejRHuN/VfD/16KDnd1/LBXPGCpBPj7HPRrjy8kP/iYeGaT0IlrkgT4b0gm1rCktK4R0 0e9BZHexc7D64Vkqe9aQFBxmC5dgnO52/Hbd3JhlRkC7RCyuNBnLMQaoS8DCQspQa9OsQ4b6bcJ5 X6bnzCHDX9ZAD8frxub0IZHq6pzi6U/qDhwpZWn1nIpxk7J2tKawKDuqJtd52xWfMZ3Cqamii5SE 65lRJPQiJo6hye64QGS2jN+76GQDHCqXmAa0M7n/1WZqcn/b4PbuXmvRN9i0WvV467bd8x0/zO3t qeehk9AaSICdW+zUgdi0NLcjQmxRVuaQp8doL7xBunlpd+qm6tYvAjA1337RhzFRSg/tjKCDO+5c iS4ykJ9Ym0tKWoRuHBV6u4YaTvBXNOTYgp/FXPMwX3uhn3sBBZ84Fk4UraHW8x0FOAtQbBbP+530 UeNT9Rlj18p4v5pqd3fv94eeMoxZGfzxSKi/++my96fbasHYzsGLiz+NdJ9T4r3zm92/yRiLId+T rSfKSJ3d4aHPfp/Gbk86q5xo2ejVGvTS7JfXcJt1VUwmQ5AmtgPW/cU0/cXJZ0sbWoXbd4wbWqVj 1j/D48ogkyOT1yrGi89dV0XDfo/lFMd82BxSEtc2UB0sEI2/jGUdumflT78vDr6jyqjQLSLXPNC1 VKUd+rh4nqJtwO9dsjKQD7Vy41LQHVQCiN23TpgK8hPQOrJjR4ik+nbPc4XV0obNdB6OLbEMfkTj ajYa1hsgIZbgmMioKiVIGYtVZ7w4ZnyKFuxL7li8kH9Ykbk4PURwGrFOYbyttH5BTYdMbQxFotnN zIBzfGXrx0qwbTYA21Xd874OKjC3DQcVX3k8ee20Ays1ZJEV4HPqnNTXGR/sOcvH8/BFHPb0CqAl fuw7S9fUetxj2LH4O8j1g49OWDdVCj1kkQkwM29SbYpqMpl1kO7p0eOmMkUddk6T8SG4t0lMUSvE s+pbOs0sf1riDXCRhM8Q0s+n+XQUIVmSspPljYSQdPb2eP7v63zVoDhjsIyIjQjng0+JBFNUlQPM LQExfenVj6SGnBR8Buc8REuobYySpkQ2yOm4nDjXavoDLyaG4zmZXlnT5LfGl1oh1ou+OV/l4EBs QaPxnua38dzYEHcKmNtSi7WPZmv8N9bZk8YHK2/Hw4A5A9N88jrpm0MrVl3xocWVLI02t/HQOcS6 /ANa/AjuvFkEy9FLm+AnNLpglzdICqQpitR4ptuQZ31/enTqPaSJ8gG0LBXYFycTFC6OwU1V2vSK VxryLwHN9pApBqwM+yGNtUV3A88fIfcOc4H0D+HyTf0AEixMn0R9c+6FE0AEcS3BVQ+7SSUxQWmS QsRZAcD5E2tSSDreSLzpw+sOLN+BQlLTfLA/Pms/MKcdrp/bJD19cAqUmi63fgIRf22v6kL8gFki 8jkl32gGsH3aARgGNMa8MJt7ggSFjcQLfQ8rWo94DVMINkIFfTvkPvhhhLpMqFwveHC6l9YRP6sA E1HVIXZEgWOmHVbpZqMlGr3BUyDkXyVT1O9vHidbIKSnmBTkjuzBaR60bH0YgPS0+pOOngUgEew2 HP88XlWDbYeaoKDf14VsaSJMUMPmsyf/sHIvsT3+RAR2lYoIcwj1IIYIdn/+J1bvpQhjlCYhpOkF oNry8OY1rNYhDQnT12le98eGiSC/Ak2/r+PeAfwIpkfL5CFtDyBEtyoNl3OMZMCCn9V0KZJtllyX 8ExI6+EDUTS4MffFGoW/bkuo5cevcP93mj0qeTs5/JBeCzH+Oyxoagezc+D5z8oNt4H5Rw4R+PJS dB++v28n9RXNXn//ZJK4GEEcxb7stgPWcvSzkb69MA/WwUljOLwRX7og0GCJZb2k/B1NZYvsfVms ov9opXM0GNXPxEqs/bk6s9XzKZbGUpppKcEdYmTH+0vPiLJ+rGTAbxMqfJDKqBTovfZ9qcT4nq0D awuTtblaT430HezvWLU29hN1VVifHUb3C4Jh/fj6zS+j0c+wKtD4PAHaRgJDZRfKAmKzEbAkt7s/ kWlM1QGpibxfG1XLLHaOvX4XTmp6aDHuxyXL9Ngf/avGkM3L0dPhPHoEovrvRKSNuZPxfxWH/+fi HwgWdMCOK8KkTZvaNQ1VH+txeUkCv8Ueaz5mklI2wO612GBHPNqfjgfHY+6VLsWbhdn0JhWL2BJ/ cd3VKJy4Zq46EmfMGnbvBrCAGOYWXLqR9g25GMHVpjdn5pO0s5PQ+7Y3+vRZzG3PdYeZVEqJTemw nfxL31FZdJ/zAC5PdRC1ekpQEcLKssbVt7UOqbfeS4sXc7E2aQefQQ6iYnlT1hhZcQym4cTFwrfA C3V48orTgHwbkyh467MMvzjSZr3Jnv7Xkzw8vdXzZL7nbfc9SVj9T6Owg35FQ7bdZU3Tm3KFf8+G GtsNTzpYeaUGqCxiBaDB5sOHxKL0QxyQgunSy5o8gLzXEEcH50qUAyB5onr2XBIelKnsVWgzRbOk ttHMbUedHsP1sYMPcvtj6vl1Rvb12+hXr+bS3qWuc1p8WwpOjd8V8df3n/8Vq+3LQWOFEfUoGm+5 x87LXzKJ5aw4ZzmxBxCkWmXOgKvbN/NUj6AsBG4B6pn0ZLhEqEA7n7hjaV2ZANu3V64HrgXZ3Xvi 9e5ishV9ozNDGnrln721GMHn99k6F8uD/cYme9mUCYhuTV/Tq9umxaCpo6duQ8XNJkcNWEj++r6s KV3xDpHyXepX4+wZlQm+0Zd0STQzR0xIOE6hsUfahyy5iQ+b4IaBYWRim0JxVq6TWMY1huyCMrTK srZ1o3yd+NM8rQvPDXANJyFNjVevdqFkkx1mAzEf4Ycre33mMSNyiAhHmImwaltxPaZfkm9x9S6d e+qD4PVXCPRudSA/k80YnJ7P9ctjbivTCdEUriamcqrIkj/jFNgRS1hjBIi47XM6GQ+XqYYZCdvW mhVIJiif3aaP8pITLaGbEt/NDGPdGgR6l45ZVYzo/nr8PYxtWHaxbM1TYaK1+vgNseXLKP+i9tww VhT9vJYHBsBS9C9rRxlzERmhFIMw6rGACTdtg1GQjHuUL3Fii8tPmtP1j5nSUpxbDBUK8mRJQZKv 4QSWgFfqvsQ1uCtBLlcTKYbPQpZPzOwPGbGLsuhGFdRVktZC5Dd1Cz8ldMmch+EG4Ps5UFx7CZPE Zb86eDZA1qrL8owv6vWLEPtMZvoy0qn0NYvb65gBoe9y8qxvEwgJnxhTqnd+1R9/TyK8MCDPrvCh J5eFOAIS1x3z2y/9wM65EFbLdkzi3LQRTaMlHjQARXwX6frWUE9ouxnJHpBGSV/zVpbLKjEHlrpC FIyX0J1gpKwg4JrYzSF3TAu+1H39fQFUcuFL4lC8Xi2rctrIossfITQOaoTFvWgC3zYVZcQWtTNY PjKuaw///eexaQfJ1s9kLDWCHCojKXYRKToTCko1DUm6Pj0BPSm5XgT0VMnnoDLz1NKOhpVNq8DY aigoEyjVe1BZ8NFvcZmWOCc25gzPcMT5MiyY7XvRx1iz6Su1tgiovu7ti8VKMphUdJwcy9ZXoSul Ry0pdwaRX3uJ0aW1v7U6BOwnCf3W1ydKiz87QtV+DvwUlXmOE+CrN9EiYPoDd2P9PB79jDbws2dS kjt8pV/g8INzvFgyD2oqsYcTAhuMgf0kGPhp9LKM09ZxxhPLnDBDhYkp2fZbbKF2Sd0TfOVA7/ee jeTsLImf2dSLbWP1QXGMTAJRUoIbCoLVVEGRlzGBh4ZibNr9Tamy0Kyj17gYGk9eTy02nV32Y9kc 7ALJ++5RHQPhKe7tO7ug03Q+BsE9817R1mKca6Cl/JpyMVa7uNS2ysL6AzNDXVeQmtR3CoJx+W/I cPP4crJpssiG+qAAt489rO5kLpyU+FdTl1CDgHsCy36sY+lvPJwaXB104shlQmfcA7a5FRDN3K/l P+VTVcCriv7pA2ceOa+pqmLK9VRZ03qBPVe52/Bi+gg+LI3BZwukqwpcKdRzE7iBXz31c0Pr6ay9 39A4yfm9L5yiOrTYH3FLd/4lZ0dG74OGIabOy20al+MEMoNWW65Nr87/ovPOFm/gwxZTR+nvujXv W6UZ3RVrnXHZGiZ20XfHnxlrYiUYaMjSK+os9AnmMDUDVhodtQpewLOwE6PgbyJE3v7BrrQtaLxf Pg7NJG2zTGLZSeW+HS9IjnV7nXZFna6Bvts1RBP872riF0BZQ/VQRqse/6uaOJnDnSxtLez+qSY5 0Wqqfryk3UtXFMoXhEJHMvLGwdFiQKt+9KNPkKeYQMtCp6XF8qe+th3SN8N/D67vFyRqX9FNCW5p fNbgSloV1jNlZtZoiP8Ybng+d0T1S/kpaUIt0to/p4cgu1c/nEMbN+rqIhJHH6uHMevK+lzftttO vO84peoTzvCF1/iStKI2aZ4l/i5WNPNfCUnH2Pi6D8kT8knyObxKU2lnB8OkY37XCJEuKPp7fCVl 7i8laSXLkct6f48SY/uu/Bz+PbxbOJy6X5yw4DAu/5i+mJtLoyo/NK1As6OGlZeVW8SeUtqo7M3M yK/h+/IqUaYPaFwIeKCXvLiDJ5cUnQ0M6jEQhlxH9VNCwRW6EfVYq3xXt36WGKF//gWkQ1u3xNUD kBh4/x0A/++ZxMzO9IMxzNzJyfwfHKu0em3neEkbqbckSN+mnMi/rHqE9NMMZFDHlCXB8Fyz0P4W /zU69EXGuOqWgISW1ZeX2FUxBJl+VJ83BhrcItZ2NvIBw3Y2yQ0lk9MXj5ZgTd66YieS1cWy3Rol kzps6tjGzD3v2Z5mvqB8SmEiSRL7eNMyyzxMrRPc2FXPHf0qJ6pgPX/8I0QIXhHtrJZiYUrOeHYZ YFbRNePi40o8IPluLjGzkeTrweMAtRTt4lu8BlI06IT6TyfI32hEDJtwFItHIolQXP48WJqjws0X 5dYC7vYwam6Pm22iMei9Bo5lNfMWKHv3cxns4Zw3X6yBOeIyFN9/puCXFBljfhpCji35ZFCmjcSe ZscgRf2eM9fIe6qMHDG3qfE+m9tpbEe7Jd0AentbRCfOMvoLM5UckTayf1N2pRJZnqp9FisJxbII jhP66WX0iU9AYZTpXMlgLD55YCYJ4c7cBrZ1ap0ww1qoScu0gP1k9ZIjovNaEvH2bEhdw6228Em0 BjlonUxyl35EQW1dc1IXUIancD5yhAo3dLkGYvSdiseH9efIH/fuu5/3Z7iNgtdFc+5Il5vpIZN6 7NeeccNyWRK0XDdu1auccgt/56jpO71G3gsXioZ8Y1n1lJIIa9+NSe6o0zC2KKwSp0e6Jc6EAWWh 3IEa3SeeT3TDu+k8Rv99fC1PS0xGkT56lPPs8X+o4ujkBjN3/Icrzjbmtk7cpmaOjvtpNjFZXbQB zZvaOlppdsnROJ4zdgd7sGjRiqTiNAWkino+BX6YGSWgY0+lvNdOgugJ5l+C37yi8CHN8vDbHtTY /PnYxcTW0pKT6ILyUU1lXamoz5jEVsa9AuOoBAxa249WzsBjmDK2194+T0//e1eJrjqseT/N14Mc hmoH3MPXgWISsAb3i+b7c++6+rthOunmvhd3doibbce7BLRZdX3STfz6YnGxWyW4jkU54pe71LW2 K/WV6kl0STVRfLj1uqqs53zADSlLDqR8akuIjq+CKty66ceplmdVWaW4aOuKy3mgAPSChmFgVEfV a+mmvwlufEnV3OswwGXaaJx+3+44f/PJdZ1W/I0FwkjVrWKRPi566KzviecmeDzyr95d6qbzRYkl jMqu4YWyE9LGcuZ9cmApOtfyXQQcSVQkzGHI3zwDX3LTCUKejWt9MQXla8H9vdZYXdex4n1Wh33a WMWmlOeU/0wPzj95PvTDsEe/0XH2pivV9qXPLd8JxRNNl3whttEdvoHUgncFLNCWOGuWVkUWCPcs 2YyiP1d8iXTDyytFLP33bURBOtym+ZEXCeX6/bg9tUrD6gpgmbTmyQRQC9BgG0ltuDZV8SHR3zYr Yaxr5VMg3WbpltUInlqs77UEZPkqsFgKuLSC1TW67Dw0KbDtTL8b6dF7miIIqs8AcBo30aYJlLaW 72tC5kFeNc1PWSx33nSpJ74yBzWlAmYCfGxgj9VyDegwvDIo8kKUuNk+gjdbScOqrEXHxS+73KMY rVfBiA/GMpw+Zul5frHrhiPji8U/aqUcB4lqMhuZiC63rixY3xkT5MDfgL6cIJLMPZrO0tMT3w4i tjfwjf3Vj1AkqY6v9nK1wm8wN58HwP7Yxvi/i9M47S4+LDJaTurPxHYizRgUXIxuqnKkWxKmc78d +tV1Z/bOJ/TpBQH0rrdKcKTn53ZyCfXLjQwzj0QfzoVOtIYto1KQCOQutkf66QEXNcsSlFvT23vm g7rlEnO1nbmSj/8btpxeZztXu8ejBkq+5fUMYCHtTO3CvSsOzupdJjHrl4TA/X3mD7Mzlh9sh/aK OMh1ZycUsivzxn7Oh2/rsrf1nNg2gReHc25TZc1di2Ul2obxxT5ZbiYh5hfPlo3Yg4H7eyD12TlV tdq0iK5fxzrP9GaXLH9Xtmdkld+wrtpvtn0YbIp5L3DtKlTpkmdXUn8U/wfYCvGtxrLL169kKY/D 1wZ8CobLnMQ9qfH9Tkdapt+lznTIY16bSBLpmPQzJzo+pO6LnQLL6vvWD27bKu9uJ9UJYsYjK8bb lCZsAeu5b3jjjQCtOr5lWKZ4XeqsCgm2gMbmu2PbWf8HD3iLZA0scPB6FjCqWLPGZFuxgyu6VLqF knn+a9A6Xzy+mw8HqtPzayoKCxhXqTn+wwNsxkdDMmeOM34IrOJVIHIDA/sp/rHw/zYdTD7xtdpJ wIsEmv8quaBN17cCC4o3SJbKIgze3AVwhJTsACFQ9eaq8S6AwBqw6vXHIR+550+FpW5ElYrEMAM5 bPzbsQKD6fAC8Yg1Zl/bJ6ps8iZ9mgYjEox4Wg18GzX/P3+IBXQbi40wh9KVYR3NcEtbzjlLfr4/ eB9FQcXdquVbjAXBQ5LBWKYVU3/jwHKqw5vxRC9UIq/s7RYJqXDICVmfKfEmGvGuhxM83OR6XqQd aSRofrJMejXcksddxaOg7LWjfsP3MaIVNMedoHUkqGJnfstqSW/dvvzbSm+I0+PYTbUW22H+/Hah rWzmWtAWrTv5TFlKEnMX170rtfxteJ2zzJtcbeEh2lBI+76sBms6AbVdoqGbGY6+guyiYsjrEX95 uVrXgPs/CDYKIh1fwTf96lsA/PI1SMqfSWJMQd8gL6rFs49NFbV5UqL5ZpHlg3hTjB+NIzZeGUW0 MfiL9RH4il3jn/9mr2Te7wKkM5/Lq77ClKHxJmLruDb6GXnEtP1jy1mpsnTZyf1tLoZfG8oO4NcU bNbKIPSiWAngssWL/HZxu+puXIuz2QFtMves45tUW75NMA+QGgmYUaMQ+MRtaUQbOdf/cqb1TTfR K1vABRO3G4WaDrw/ZWrkjz6DUJXpoSLpeSM1eqWTpUhStvMCZwkyhrlJ4RVaM08+LpyZK3SxSHd9 ssW5FtZt52XnbOfVq13vZoreuG66SQ245Ng/+gqlYjyM2iRh0Z5tfFHqCer/EWePurIJrFv3/9v0 uRn9fN4hPR6sUlgXzK1eqTm2XsA9UqU5Y2IDHgdOVksvU4IWv/atiyZwevkUoya8vy6iKHkmGjTP BpZIlWLV5sThTd/ofCGJObm2T2yNC6wMK5MK875IHXGTTTIXKejEIFiNlXMV6p5b89Ho/vIh99tJ Wx4iGjt9oyVsmJmTMtr5eBDMn3eSR2wdModjXfAJLDK3JUkZg0GCz6CpH3ZYpr9nLoxzBvkAVFKX ItYk4D/TDxWVED3wU7ifG4+cqVA0stkVpcyyeqWifqEzl2/vstg/qxL7kl1GTz8klkeZde/MxbfX X+BCvwIvl8HtigvlFNYSIsjg0l+aFLTksIysdsZcVXjuv1dENKY07yaw9He9D9/V2XquvrVaFT/w pEeaQnRioeTgcSjXdBz0pGMn0LpIfdPAmM5HMH5uy99d+dAGXVaNdN6T+jjU7OY4Vc6vdlMELcWg +Z92zjOq6bONwyEGhASkzDBkI0v2KEKoBlBAwwhhKAgJIMvKXlYJglhWVSREAlhApqBWCQFFKiOy Z8TIBkFkyUhktCAFpQHqe0Ja3/Oefn7/14f7w3PO7/ry/J8P9/Ocu+wcd4rtENgT5Nl4E6QN1D4F 42h9H/Zw8Lya0CNSsmO5gCtC8sG5Q5dKeJvbGnyJN6WoYnqXjkjapCa0Szub8h1z1NWLOkjzXDuT XRhpH5YvJBhKLVr263FHTCXkE+tRlxzE0tXTFEeIOmiVlykWVPYkEAPPIbissSxsalmNj2hf78GH 8FTlJx1vF2ocicmaiiWcuhxt2+EVFUPsKFITqrQflcZto9glaDGJ4zJiS7JPfLycOx6si5IgxSn5 yrfjEGrmYkU4qdpIq7DvZq284Jc9c3ub5eZHLivjF36spvfyceqWqxmMqVq+J2HLu1u4x1SzBE31 ITSht95XS/oA+r1tlZ5Grzga2ug+FWORitHY/TQQzdLZGGYMq8LlZudmn2+JiYiNmE7mqSgPr7Cj xUZso+2/vZQdsk7gPKPiXpZ4SFuYy0l2CuwRAKeEGCMO1dSVTJGOwgemqISfzqoEdlszoOC9wRUr raCn72oRvd7XkcqzjTN4b+cH9kpxHrp2eQfRdz3zCPkPYcQ4cBy+d+bFXfPOI3MLCDetL1jXX22K +Yt3ZkeFG4pTIo7bOXZr7kBc+f0OvEG7FMBzQacWwLOPAewu6Gls/LidRblrMmqSisCZvehPUoSS 0WS0TboOEUqEavAPQAYO00TcNNxKR8rYIp+wR47LacDylQ9vr25TrfCDFRmddUFyYL4zFbTgoGdH RpsrfDMAKeI8hSOkyaZfqzkT9kTqDw/aQfUNjwZAHaCO9CgGs0sshWMTyKCdMjz/I+YjqDHZ9x34 I/suLVzJAm+hM3f2bxqWy7NdcegSfNuP4wJtmijHogq9ilqnyBoHqofwV6w4HOibHg3wOjgjORez CyP5E5BBu/XIfC5m7XX/xTcKL/o3Zm+tVR5Dr72vqxurqaspPn3WZSE1z19UoKhU7N6bfu+C4Ghv xt+v+PQRxSqNW8GRfvt7Nkw1L30/z8S+n50vZZiN3f8NfVsaUOYqhuH/5uHJ5gSKEzuce6wBd/6+ h7VWwEnaak+wSTrCVWX105Q6dJMtVQNaY7+KGtdPbq+QsQUf3UD4iP9eQBJWuC9j31dv+R1UZWIW mmXZ94xXboL2TNSMYGySeqNV2nTi7pAjfbiBlODF2yFJ+E418oq8auSZVWBHzm+62sjb45QsKSV5 rMXlvH3bxzZ2+9gO6l0P1hhwwMBCS0MlLh8Ou5MUKPCTetv1ZepKcTIM8cw/3bdwgsI/SqD0a2ko 7OswcE9vCSX2vQHHwBBBPm2Qio5gH646vouEXEFj5ZCAIguD32T+c/LYPaWZVh6UyUrzMjRzOyHO C5vut2wMrAoaHv716pJ8sklEX/x5BaRZl35UFane9c3QasAiDV+fZ6TNF2cdXvnwOfkdOGIq06js j7zoNKB4nP/m4JmAAuicXk3lUgsaWypg4U4FozhRrTdByiBlSxhH4Tf6a5PJPCIkVxH+MXoPX9og OWWXxc9vP7GZhjy+5Naqg+DX9Oy1ZDOVzCQLuFnEvVe5JSKZINsrczYReCL/YFVPSKGt4Pr48/7j /fhRe45Ccw5nf00S5VE6sM2acx4t8eKYznBqQ1f9j+oQfUhUJ7mr/qSWb3k3+qqfcND3PJ522VhE s4C/ZtbCFbONmovLLRdzrXMphUIlAiV4ca4erp7MCG6kItKHPhBjOBxnuOSKlsCdYOvh2iWQb1QW qcjYvXNGjN0b7tgliJzBcfk1SaQ/6BLOQ3Um2dhSKuzvI8FNvvdMDKqPtvGrnTh90R4iBFZ86LPF jglfPZQh8gXFcTePLwTLJSSNN5jD8tdVkCI7DKyLWcHdM08D4p5kugLi2Bhk2wDPXq1fHC8YVDdX DpktsijomW/EQzQ1NEuLO0Q7IZ3XoVzT7NNpEdwZ0IzT9AFytfOL6sWT6RKvsEKM1R3MBG4oaGpQ 9Hinw71PAlce3FHWLJUT4JyOQ4GKLDpO4Trc0aqVQ7ciy9AHoNgyd2mMNGbQMUVjF2Ofa9irDLxm aE9wGthFd3PdC+zrwB1i34Cec01eD+26hs12SoXXPvAGT863gmKxeYydRyWhJkNaoQkutKRahWsq a4xkOAbOSM7V2MXYZ18UGwMvRXp4bmk0z7Fc6EOdW7VNa2P0z9y/aFGbsKFLSxg5l9imjy4lOQYZ RhtVjVK3DMWygnW7D6/Pct2FgxMTfftcL9yduhW4tBF/YWZT+Qf03PcdEmczhtx/sgz0Dr9Xq1VQ LNMuWE0zqR1FifobreWFQjOyed9V33d+vtJcvQSx9M84oCnhZkgOi5kFvJbBF3ZoSXxcwVeVuVCh tzshw0fYVX9BT1gqNV/LEc7USsh2Sa6omT9sr3D8dGSUgxSf1fxIt1pEALUY75P5DFN7YJZX9Nsy D+uR0pbsjes55pIhcz6GuB6LzzXrRcLrL7Vwfu6Pc7xkBwnVSy3mr52c6M1LLjdSZo6ZeH+bjUmP fQUtCFw2MsPcqBWJeqkWuPlKfzkYsrig3YxGHSEoiHrNZexD3YsEFDa+JyD4zPRvBOyfuXlppTLq XFqUuHJTuvlYdMEcPnjKPufouZp39/uDtniKcaEfbj7A57WbhRACtdbGguiUk47NVn5Pa1NGo/Gi dvJOuDdk4tbFF0HCWzNDVfOfnT7ytB/4i5wPUOTqqt2qXzKxQgqxIe40tNX1OP86TzxF4QcXs7Xe Zi/pbJPudk3ilS1Se198BaIgYPTJvecLYoNnQ3XskhMeCQiJx+eXnEPIfXo14PjH0Ij0pzJ30U8G trNTMNLNsjv4RHEb/18/NEiISrye6ya9crr88+J41mpb/AfT9eEir9Xz6b8Y9ScdmO4vGa9cDKtb n9na2/wQ3QhJ1AcAAHqA3QGgfucDLoRuN8fKy0pbu2yVEGoqlM6X5Q7aPTpIlEUXgmLT1omodADz BL9+gkQRKydIbW2dHaudiI7T3ZUTQAASwQZUA3xtzJQ8y0iqfx46Bd4ZF7o9PFEEMFNZcwwAp7Kx VlbP3uEfzB4qx38dBcIsE1Wr3QlnrayyvWMzmGXsnF8bovFvPHtfxDB7UpW+/j6G2SSbQ95JZq2s pr0vZZhNk0p/fzfzbwx7L4mZDQj1v10ZMwvIAY07gayVVbD3IpZZYKHxlWtZZs3yxG4sa2XV7O3Q M2sIel/p1zNrBLSbdmJZK6tmb/+aWTP27T93s5ktZcC2nVTWymrZ2/pktoAN/rkRymypV95NZa2s lr1nDLNl/ymmE4c52uZ1504Ua0Ui2HfGqUIYYEAAgNcpwP+///H7EyYX3FIAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DB23C0.FC366D80 Content-Location: file:///C:/AE096712/Navus_v14_1872_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DB23C0.FC366D80--