MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DA3A4A.09494A80" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo da Web. Se você estiver lendo esta mensagem, o seu navegador ou editor não oferecem suporte a Arquivos da Web. Baixe um navegador que ofereça suporte a Arquivos da Web, como o Windows® Internet Explorer®. ------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Comunidades de aprendizagem profissional: a avaliação como suporte da ação

 =

Professional learning communities: evaluation as a support to manage= ment action

 =

Michel Franklin de Oliveira

https://orcid.org/0000-0003-0535-955X<= /o:p>

= Mestre em Educação. Universidade Cidade de São= Paulo (UNICID) – Brasil. m8frank@gmail.com

Sandra Lúcia Ferreira

https://orcid= .org/0000-0002-6891-1332

Doutora em Educação. Universidade Cidad= e de São Paulo (UNICID) – Brasil. 07sandraferreira@gmail.com=

Luiz Dalmacir da Silveira

https://orcid= .org/0000-0003-0790-7353

Mestre em Educação. Universidade Cidade= de São Paulo (UNICID) – Brasil. luizdalmacir@uol.com.br

 <= /o:p>

RESUMO

Este estudo propõe o Sistema de Acompanhamento de Dados Educacionais= (SADE) para aprimorar a gestão das Escolas Técnicas (Etecs) de São Paulo, transformando dados de avaliação classificatória em insights para a avaliação formativa. O SADE visa facili= tar a tomada de decisões informadas, processando informações do questionário socioeconômico e do Resultado do Processo Seletivo – Vestibulinho com softw= ares como Microsoft Excel, Power BI e Iteman. Com o Power BI, grandes volumes de= dados são convertidos em <= i>dashboards interativos, otimizando a anális= e e visualização de dados, o sistema destaca a importância da reflexão contínua= nas práticas de gestão educacional e a colaboração (Comunidades de Aprendizagem Profissional (CAPs) como um suporte para gestores, professores e políticas públicas para o sucesso de sua implementação.

Palavras-chave: Business Intelligence. Dashboard. Gestão educacional.  Avaliação.

 <= /o:p>

ABSTRACT

This study introduces the Educational Data Monitoring System (SADE) to enhance the management of Technical Schools (Etecs) in São Paulo, turning classificatory assessment d= ata into insights for formative evaluation. SADE aims to facilitate informed decision-making by processing information from the socioeconomic questionna= ire and the Selective Process - Vestibulinho results using software such as Microsoft Excel and Iteman. With Power BI, large data volumes are transform= ed into interactive dashboards, optimizing data analysis and visualizat= ion. The system underscores the importance of continuous reflection in education= al management practices and the collaboration between managers, teachers, and public policies for its successful implementation.

Keywords: Business intelligence. Dashboard. Educational ma= nagement. Assessment.

 

Recebido em 18/12/2023.  Aprovado em 29/12/2023. Avaliado pelo s= istema double blind peer review. Publi= cado conforme normas da ABNT.

https://doi.org/10.2227= 9/navus.v13.1826

1 INTRODUÇÃO

 

Este estudo é impulsionado pela seguinte questão: Por que os dados coletados no momento d= e ingresso dos alunos nas Escolas Técnicas Estaduais (Etec) não são utilizados para o acompanhamento e aprimoramento das atividades pedagógicas? Esta indagação crítica norteia a pesquisa, cujo objetivo geral é transformar as informações coletadas durante o Processo Seletivo, conhecido como Vestibulinho, em conhecimento que possa informar e melhorar as práticas educacionais nas Ete= cs.

A necessidad= e de reconhecer e valorizar as singularidades de cada aluno é um aspecto crucial= na educação, conforme destacado por Zabala (2015, p. 199). Ele argumenta contr= a a imposição de padrões universais de aprendizado, enfatizando que cada estuda= nte chega à escola com experiências únicas, moldadas por seu ambiente sociocultural, familiar e características pessoais. Esta diversidade ineren= te desafia as abordagens educacionais padronizadas, especialmente em relação a= os objetivos, conteúdos e métodos de ensino. Zabala (2015) ressalta que o aperfeiçoamento da prática educativa é uma tarefa fundamental para todos os educadores, que devem se dedicar a adaptar suas abordagens pedagógicas para atender às necessidades individuais de seus alunos.

Nesse contex= to, a gestão educacional desempenha um papel vital ao fornecer aos professores informações detalhadas sobre os alunos de suas turmas. Essas informações, q= ue podem ser extraídas do Processo Seletivo - Vestibulinho, oferecem insigh= ts valiosos sobre quem são os alunos e o que eles já sabem ao ingressar na esc= ola. Essas "pistas" são fundamentais para que os educadores possam pla= nejar e implementar estratégias de ensino mais eficazes e personalizadas, garanti= ndo que cada aluno receba a atenção e o suporte necessários para o seu desenvolvimento acadêmico e pessoal.

Pensando nis= so, foi desenvolvido um sistema que visa melhorar a compreensão da avaliação classificatória do Processo Seletivo - Vestibulinho, focando na transição p= ara uma avaliação formativa contínua ao longo do processo educacional. Dessa maneira, são propostas várias metas específicas que incluem: a apropriação = da estrutura do banco de dados; contextualização da avaliação; o acompanhament= o de estudantes do Centro Estadual de Educação Tecnológica Paula Souza (CEETEPS)= no Vestibulinho; a investigação dos conceitos e elementos das Comunidades de Aprendizagem Profissional (CAPs) para fundamentar as ações de gestão educacional; a apropriação da pesquisa aplicada nos questionários socioeconômicos, utilizando o programa Microsoft Excel para análise e o Ite= man para avaliação das questões de prova; e análise dos resultados obtidos para propor o desenvolvimento de um Sistema de Acompanhamento de Dados Educacion= ais (SADE) que possibilite a exploração dos bancos de dados do Vestibulinho, in= icialmente focando nas turmas do Ensino Médio com habilitação profissional de Técnico = em Administração.

Essas metas = visam aprimorar a gestão educacional e o acompanhamento processual dos alunos, proporcionando uma base sólida para decisões pedagógicas mais assertivas e eficazes. Para a gestão escolar, essa apropriação da estrutura do banco de dados é essencial para extrair insights significativos que facilitem= a melhoria educacional por meio de uma abordagem proativa de avaliação.<= /o:p>

O Modelo CIP= P (Context, Input, Process, Product), desenvolvido por Stufflebeam (1971, p. 4), “é= uma abordagem proativa para a melhoria educacional através de um processo sistemático e contínuo de avaliação”. Este modelo enfatiza três etapas: a formulação de perguntas pertinentes, a coleta de informações relevantes e o fornecimento dessas informações à gestão escolar. Tem por fim facilitar a tomada de decisões para aprimorar programas educacionais em andamento. O mo= delo CIPP aborda quatro tipos de avaliação: contexto (definindo objetivos e necessidades), insumo (escolhendo procedimentos adequados), processo (verificando a execução conforme planejado) e produto (avaliando a eficácia= e o alcance dos objetivos).

A apropriaçã= o da estrutura do banco de dados aliada ao modelo CIIP proporciona à equipe gest= ora insights significativos que podem auxiliar no aprimoramento de processos pedagógicos= em andamento bem como possibilitar o desenvolvimento de um modelo para explora= r o banco de dados com vistas à qualidade do ensino ofertado. Este modelo permi= te a extração de informações relevantes, como: desempenho dos alunos, eficácia d= os métodos de ensino e outros dados essenciais para a gestão educacional. A Fi= gura 1, a seguir, ilustra o modelo de avaliação apresentado por Stufflebeam, McK= ee e McKee (2003).

 <= /o:p>

Figura 1 – Modelo CIPP=

 <= /o:p>

Fonte: traduzido e adaptado de Stufflebe= am, McKee e McKee (2003)

 

Este modelo = de acompanhamento visa não apenas considerar as competências e habilidades avaliadas no processo seletivo, mas também integrar o perfil socioeconômico= dos candidatos e a localização geográfica de suas residências em relação à esco= la, o que possibilita um olhar mais amplo sobre os estudantes e suas necessidad= es de aprendizagem. A exploração dessas variáveis é uma oportunidade para compreender o perfil dos ingressantes antes da efetivação da matrícula, permitindo aos educadores um planejamento de ensino mais eficaz direcionado= e consciente – do que o aluno sabe e é capaz de fazer.

Nesse sentid= o, a motivação para este projeto de monitoramento da trajetória curricular dos alunos emerge das experiências com a gestão escolar, onde a assistência aos estudantes com dificuldades acadêmicas é uma prioridade. Assim, o reconhecimento precoce sobre o que os alunos ingressantes sabem (conhecimen= tos) e são capazes de fazer (habilidades) representa o ponto inicial para assegu= rar a cada um deles um suporte apropriado, o que poderá contribuir para o seu sucesso a longo prazo.

Portanto, es= te modelo de monitoramento e acompanhamento curricular é essencial para aprimo= rar a gestão escolar e o suporte aos estudantes, especialmente aqueles que enfrentam desafios acadêmicos. Esse enfoque na compreensão aprofundada do estudante antes mesmo de sua matrícula é um passo importante para um planejamento pedagógico mais consciente e adaptado às necessidades individu= ais. Este entendimento precoce das capacidades dos alunos ingressantes é a chave para fornecer o suporte necessário que pode influenciar positivamente o suc= esso acadêmico de longo prazo.

Este trabalh= o está fundamentado no conceito de Comunidades de Aprendizagem Profissional, em qu= e a equipe gestora utiliza dashboards interativos fornecidos pelo Micros= oft Power BI para analisar e debater coletivamente as decisões relacionadas à aprendizagem dos alunos. O processo começa com a avaliação e segue com o acompanhamento contínuo dos alunos, realizado através do Sistema de Acompanhamento de Dados Educacionais (SADE). O SADE é uma ferramenta essenc= ial e dinâmica que coleta, monitora e analisa dados sobre o desempenho dos alun= os, proporcionando aos gestores escolares informações detalhadas e atualizadas.= Com esses dados, é possível identificar áreas que necessitam de melhorias, plan= ejar intervenções educacionais eficazes e realizar ajustes nos métodos de ensino. Assim, o SADE se apresenta como um componente orgânico que dinamiza ações p= ara a melhoria contínua da qualidade educacional nas escolas técnicas do Estado= de São Paulo.

 <= /o:p>

2 JUSTIFICATIVA=

 <= /o:p>

A Educação Técnica no Brasil representa um i= mportante vetor de desenvolvimento social e econômico, preparando jovens para ingress= ar no mercado de trabalho com habilidades práticas e teóricas. No entanto, a eficácia desse ensino está intrinsecamente ligada à capacidade das institui= ções de formação técnica de entender e responder às demandas individuais dos alu= nos.

Neste contexto, o presente artigo justifica-= se pela necessidade de aprimorar os processos de avaliação e acompanhamento pedagógico nas Escolas Técnicas Estaduais (Etecs) de São Paulo, utilizando = os dados coletados no ingresso dos alunos de maneira estratégica e informativa. Assim, sua relevância é amplificada pela constatação de que, apesar da cole= ta sistemática de dados durante o processo seletivo, conhecido como Vestibulin= ho, essas informações raramente são exploradas a fundo para melhorar as práticas pedagógicas ou para auxiliar na tomada de decisões educacionais, seja por desconhecimento, por falta de uma equipe específica para organizar os dados= ou mesmo um programa digital disponível no mercado para transformar os dados em informações úteis. A implementação de um sistema que transforme esses dados= em conhecimento aplicável pode resultar em intervenções educacionais mais efic= azes e, consequentemente, em uma gestão escolar mais eficiente, alinhada com as diretrizes da Base Nacional Comum Curricular (BNCC) e com as necessidades específicas da comunidade escolar.

Historicamente, o uso de resultados de avali= ações, principalmente aquelas que são realizadas fora do âmbito da sala de aula, c= omo ferramenta de gestão teve início na década de 90, com a implementação das primeiras versões do Sistema de Avaliação da Educação Básica (SAEB). Atualmente, o SA= EB consiste em um conjunto de avaliações externas coordenadas e aplicadas pelo Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INE= P), visando diagnosticar a situação da educação básica no Brasil e identificar fatores que possam influenciar o desempenho dos estudantes. Desde então, at= é os dias atuais, numerosas pesquisas foram conduzidas, gerando amplo debate na comunidade acadêmica e nas instituições escolares. Esse diálogo abrange posições que variam desde oposições radicais – Werle (2011); Cunha e Muller (2018); Freitas (2014) dentre outros – até o reconhecimento da contribuição= das avaliações e das medidas educacionais como orientadoras de políticas e programas educacionais – Alavarse, Bravo e Machado (2013); Basso, Ferreira e Oliveira (2022) dentre outros.

Nessas considerações, este estudo possui pot= encial para contribuir com as reflexões existente sobre avaliação educacional e ge= stão de informações, oferecendo um modelo de organização dos dados coletados de forma replicável e escalável para outras instituições. A proposta do Sistem= a de Acompanhamento de Dados Educacionais (SADE) baseia-se na premissa de que a análise e a visualização de dados podem facilitar a identificação de padrõe= s, lacunas de aprendizagem e tendências, permitindo intervenções pedagógicas m= ais assertivas e um acompanhamento mais efetivo do progresso dos alunos.

Isso se deve à observação de que, embora os gestores reconheçam a importância de decisões baseadas em informações rigor= osas e confiáveis, há uma dificuldade no investimento necessário para o tratamen= to de dados para gerar essas informações.

Para atingir esse objetivo, o estudo utiliza= uma abordagem baseada na triangulação de conceitos e proposições do Modelo de Avaliação CIPP (Stufflebeam; McKee; McKee, 2003), do Modelo Data = Wise (Boudett; City; Murnane, 2020) e das Comunidades de Aprendizagem Profissional (Dufour et al., 2016). Esta abordagem é projetada para contribuir significativamente para a geração de informações importantes que podem auxiliar os gestores em suas decisões.

 =

3 METODOLOGIA DE PESQUISA

 <= /o:p>

A metodologia utilizada nesta pesquisa adota uma abordagem mista, combinando análises qualitativas e quantitativas. Inicialmente, a pesquisa focou em um levantam= ento bibliográfico e documental, visando compreender o contexto específico de uma Escola Técnica Estadual (Etec) localizada na Zona Leste de São Paulo. A par= tir do banco de dados do Vestibulinho, os dados são coletados e analisados usan= do as ferramentas Microsoft Excel, Itamen e Microsoft Power BI: para processar= os questionários socioeconômicos e analisar os itens de provas.

Posteriormen= te, os dados obtidos são integrados em dashboards interativos desenvolvidos= no programa Microsoft Power BI, seguindo princípios de Business Intelligenc= e. Este processo se inicia com a definição das necessidades de informação, seg= uido pela coleta, organização, análise, distribuição e avaliação dos dados. O principal objetivo é fornecer suporte para tomada de decisões e promover um acompanhamento cíclico de fatores impactantes na organização e no aprendiza= do dos estudantes. Desse modo, a incorporação de tecnologia de Business Intelligence possibilita transformar grandes volumes de dados em painéis interativos, facilitando a análise e visualização dessas informações. Os dashboards gerados pelo programa Power BI permitem a análise conjunta de dados, desde a avaliação inicial até o acompanhamento contínuo dos alunos, dentro de um sistema orgânico e vital para o processo educacional.

No que diz r= espeito ao SADE, este combina aspectos do Modelo Data Wise e das Comunidades= de Aprendizagem Profissional, utilizando a tecnologia de Business Intellige= nce. O Data Wise fornece uma abordagem estruturada para a análise e ação baseada em dados, enquanto as CAPs enfatizam a colaboração e o compartilham= ento de práticas eficazes entre educadores. Os dashboards gerados pelo Po= wer BI organizam e apresentam as informações de maneira estruturada e visualmen= te acessível, integrando dados do questionário socioeconômico e das avaliações= do Vestibulinho. Isso facilita a identificação de padrões e tendências, auxili= ando gestores e educadores na tomada de decisões.

Desenvolvido= por pesquisadores e profissionais da Harvard Graduate School of Education em parceria com as Escolas Públicas de Boston, o processo Data Wise organiza o trabalho escolar permitindo que professores e gestores estudem juntos uma variedade de evidências para aprimorar o ensino. Este método tem sido adotado globalmente para impulsionar melhorias educacionais.

Como destaca= do por Boudett, City e Murnane (2020), o Data Wise é mais do que um process= o de melhoria, é uma linguagem e uma série de ações e conceitos específicos que organizam o trabalho educacional. Ele se enquadra em ciclos de melhoria baseados em dados, com foco na colaboração e análise aprofundada das prátic= as de ensino. A escolha por um processo de melhoria e sua implementação efetiv= a na organização escolar são cruciais para o sucesso educacional.

O Processo Data Wise compreende oito etapas, detalhadas na Figura 2 a seguir:

 

Figura 2 – O Processo de melhoria Data Wise em 8 Etapas

Fonte: Boudett ; City ; Murnane(2= 020, p. 27)

 

O processo de melhoria do Data Wise é um método estruturado em oito etapas, cada u= ma com um objetivo específico para aprimorar a educação. Inicia-se com a “Organização para o Trabalho Colaborativo”, visando criar equipes e estrutu= ras eficazes. A segunda etapa, “Construir o Letramento em Avaliação”, foca em aumentar a competência dos membros da equipe com dados. Em seguida, “Criar = um Panorama dos Dados” e “Mergulhar nos Dados dos Estudantes” buscam identific= ar problemas prioritários e centrados nos alunos. “Examinar o Ensino” analisa a prática pedagógica, seguida por “Desenvolver um Plano de Ação” para abordar esses problemas. A penúltima etapa, “Planejar a Avaliação do Progresso”, estabelece como medir o impacto das ações. Por fim, “Agir e Avaliar” implem= enta o plano e ajusta as estratégias com base nos resultados. Este ciclo visa melhorar continuamente o ensino e a aprendizagem através de uma abordagem colaborativa e baseada em dados.

No artigo The “Data Wise” Improvement Process” – O processo de melhoria Data Wise<= /i> (Boudett et al., 2006), as autoras relatam que as escolas se preparam para o trabalho estabelecendo uma base para aprender com os resultados da avaliaçã= o do aluno.

 

4 RESULTADOS E DISCUSSÕES

 <= /o:p>

Os resultados da pesquisa demonstram a eficácia do SADE em oferecer uma compreensão mais aprofundada das necessidades e habilidades dos alunos. A discussão com a literatura existente ressalta a importância de uma abordagem baseada em dad= os na gestão educacional, sugerindo melhorias e implementações futuras. A pesq= uisa também aborda as limitações na implementação do SADE incluindo a necessidad= e de formação contínua em análise de dados para os gestores.

A estrutura básic= a para a avaliação – contexto, insumo, processo ou produto - precisa responder aos questionamentos sobre o que cada avaliação procura saber, como se pode conseguir e para quê conseguir.

Segundo Lima, Cavalcante e Andriola (2008), a estrutura da avaliação está dividida em qua= tro categorias, a saber: 1) Avaliação do Contexto: foca na caracterização institucional e necessidades, utilizando observações, questionários e análi= ses documentais para definir metas e mudanças desejáveis; 2) Avaliação de Insumos: examina os recursos necessários e o perfil do programa de trabalho, através de análise de documentos e dados estatísticos, para selecionar estratégias e estruturar o planejamento; 3) Avaliação do Processo: avalia a execução das ações planejadas e sua eficácia, utiliz= ando investigações e entrevistas para aperfeiçoar procedimentos e controlar processos; 4) Avaliação do Produto: analisa os resultados alcançados= em relação aos objetivos, utilizando análises qualitativas e quantitativas para tomar decisões sobre a continuação ou reformulação do projeto.

Cada categoria ut= iliza métodos específicos para coleta de dados e tem objetivos claros para a melh= oria contínua dos processos e resultados educacionais. Desse modo, a comparação adaptada de Stufflebeam, McKee e McKee (2003) com as avaliações formativas e somativas, reforçam a ênfase na avaliação conforme segue: a) Avaliação Formativa - Contexto: visa a identificação de intervenções necessári= as e escolha de metas, com base na avaliação de necessidades, problemas, ativos e oportunidades; Insumos: foca na escolha de programas ou estratégias, analisando estratégias alternativas e planos de alocação de recursos, segui= dos pela análise do plano de trabalho; Processo: orienta a implementação= do plano de trabalho, incluindo monitoramento, julgamento e feedback avaliativo periódico; Produto: fornece direcionamento para continuar, modificar, adotar ou encerrar o esforço, baseado na avaliação de resultados= e efeitos colaterais. b) Avaliação Somativa - Contexto: Compara metas e prioridades para avaliar necessidades, problemas, ativos e oportunidades; <= i>Insumos: compara a estratégia, design e orçamento do programa com concorrentes e necessidades dos beneficiários; Processo: descreve o processo real, registra custos e compara os processos e custos projetados com os reais; Produto: compara resultados e efeitos colaterais com as necessidades e, se possível,= com os resultados de programas competitivos, interpretando-os em relação ao contexto, insumos e processos.

A combinação dos modelos CAPs (Comunidades de Aprendizagem Profissional), CIPP (Contexto, Insumo, Processo e Produto) e Data Wise desempenha um papel vital no monitoramento e avaliação das práticas educacionais. Esta abordagem abrange= nte considera o contexto educacional, os recursos utilizados, a implementação de práticas pedagógicas e a avaliação de resultados, visando otimizar o ambien= te de aprendizado.

Investir nessa combinação pode potencializar a produção de informações por meio da identificação das áreas que necessitam de melhorias, fomentar uma cultura de desenvolvimento contínuo entre os educadores, engajar a comunidade escolar = na trajetória educativa e embasar as decisões educacionais em dados e evidênci= as. Essa abordagem não apenas destaca a importância da avaliação, mas também ressalta a participação ativa de todos os membros da comunidade escolar no cultivo de uma cultura educacional mais colaborativa.

 =

5 CONCLUSÃO

 

Este es= tudo destaca a necessidade de uma reflexão intencional e persistente sobre as práticas administrativas e pedagógicas, com ênfase especial na utilização de dados avaliativos para monitorar e superar os desafios da aprendizagem enfrentados nas instituições educacionais.

A adoção bem-sucedida de ferramentas inovadoras como o Sistema de Acompanhamento de Dados Educacionais (http://bit.ly/_etec), não é apenas uma questão de planejamento meticuloso, mas também de colaboração entre gestores, educadores e agentes públicos formuladores de políticas públicas.

A pesqu= isa realizada enfatizou a relevância das CAPs como um suporte para a gestão educacional, promovendo uma transformação na avaliação diagnóstica (via processo seletivo – vestibulinho) para uma avaliação formativa contínua e significativa.

A integ= ração dos modelos CAPs, CIPP e Data Wise mostrou-se essencial para o monitoramento e a avaliação de práticas avaliativas, sublinhando a necessid= ade de implementar e sustentar essas políticas de avaliação em uma comunidade escolar comprometida com a construção de uma cultura colaborativa.

Este compromisso coletivo – gestores, educadores e agentes públicos – desafia a comunidade a reavaliar e redefinir suas práticas, promovendo uma parceria sinérgica entre professores, alunos, funcionários e gestores.

O estudo destacou a importância das CAPs como fundamento para ações gestoras eficaze= s. A utilização de ferramentas como Microsoft Excel e Iteman, para processar os dados do questionário socioeconômico e das questões de matemática, demonstr= ou ser um empreendimento que exige tempo e dedicação, muitas vezes incompatível com as demandas do dia a dia dos gestores educacionais. <= /span>

A revis= ão de literatura foi necessária para impulsionar a investigação sobre os conceitos que fundamentam as CAPs e a compreensão de que a experiência coletiva pode = ser um catalisador para mudanças significativas nas escolas. É essencial supera= r a visão tradicional de que o professor ensina, o aluno aprende e o gestor dec= ide, promovendo uma visão mais ampla onde todos ensinam, aprendem e tomam decisõ= es juntos.

Os d= ashboards interativos do SADE oferecem um modelo participativo onde toda a comunidade escolar, incluindo os alunos, pode discutir resultados, entender processos e contribuir para a construção de práticas educacionais mais efetivas. A anál= ise dos resultados, facilitada pelos dashboards do Power BI, destacou a necessidade de abordagens direcionadas para melhorar os resultados educacionais, especialmente em áreas críticas identificadas pela equipe ges= tora.

Este es= tudo conclui que a implementação de ferramentas como o SADE e a aplicação dos modelos CAPs e Data Wise requerem planejamento meticuloso e colabora= ção entre gestores, educadores e políticas públicas. Termos como Big Data, Business Intelligence e Learning Analytics indicam que o futuro = da educação já chegou, e é essencial aproveitar esses recursos para ampliar a compreensão das dificuldades de aprendizagem e melhorar os processos format= ivos na educação.

 

REFERÊNCIAS

 

ALAVARSE, Ocimar M.; BRAVO, Maria Helena; MACHADO, Cristiane. Avaliações externas e qualidade na educação básica: articulações e tendências. Estudos em Avaliação Educacional, [S.L.], v. 24, n. 54, p. 12-31, 30 abr. 2013. DOI: http://dx.doi.org/10.18222/eae245420131900.

 

BOUDETT, Kathryn Parker; CITY, Elizabeth A.; MURNANE, Richard J. = Data Wise: A Step-by-Step Guide to U= sing Assessment Results to Improve Teaching and Learning. Harvard Education Press, 2005.

 

      . The ‘data wise’ improvement process. Harvard Education Lette= r, v. 11, n. 4, p. 1-3, 2006.

 

      . Data Wise: Guia para o Uso de Evidências na Educaç= ão. Tradução: Faermann Korman. Porto Alegre: Penso Editora, 2020.

 

BASSO, Flávia Viana; FERREIRA, Rodrigo Rezende; OLIVEIRA, Adolfo Samuel de. Uso das avaliações de larga escala na formulação de políticas públicas educacionais. Ensaio: Avaliação e Políticas Públ= icas em Educação, [S.L.], v. 30, n. 115, p. 501-519, jun. 2022. DOI: http://dx.doi.org/10.1590/s0104-40362021002902436.

 

CUNHA, Eduardo Carlos Souza; MÜLLER, Euc= inéia Regina. Avaliações em larga escala: uma tentativa de controle, regulação, captura e padronização do cotidiano escolar. Cadernos da Fucamp, Campinas, v. 17, n. 29, p. 143-163, 2018. Disponível em: https://revistas.f= ucamp.edu.br/index.php/cadernos/article/view/1317. Acesso em: 28 nov. 2023.

 

DUFOUR, Richard; DUFOUR, Rebecca; EAKER, Robert; MANY, Thomas. Learning by Doing: A Handbook for Professional Learning Communities at Work. <= /span>Bloomington: Solution Tree, 2016.

 

FREITAS, Luiz Carlos; SORDI, Mara Regina= Lemes de; MALAVASI, Maria Marcia Sigrist; FREITAS, Helena Costa Lopes de. Aval= iação educacional: caminhando pela contramão. 7. ed. Petrópolis: Vozes, 2014.<= /p>

 

LIMA, Cláudia Ibiapina; CAVALCANTE, Sueli Maria Araújo; ANDRIOLA, Wagner Bandeira. Avaliação Educacional e o Modelo CIPP. In: Congresso Internacional em Avaliação Educacional, 4., 2008.= Anais [...], p. 1076-1091, 2008.<= o:p>

 

SADE. Sistema de Acompanhamento de Da= dos Educacionais. Disponível em: http://bit.ly/SADE_etec. Acesso em: 12 nov. 2023.

 

SÃO PAULO. CEETEPS. WEBSAI, Relatório= de desempenho por curso. 2017. Disponível em: https://WebSai.ceeteps.sp.gov.br/  Acesso em: 12 dez. 2023.

 

SÃO PAULO. CEETEPS. BDCETEC. Mapeamen= to de Movimentação de Alunos. Disponível em: http://www.cpscetec.com.br/bdcetec . Acesso em: 12 dez. 2023. <= /span>

 

STUFFLEBEAM, Daniel Leroy; MCKEE, Harold; MCKEE, Beulah. The CIPP model for evaluation.= Portland: 2003.

 

STUFFLEBEAM, Daniel Leroy. The relevance of the CIPP evaluation model for educational accountability. Columbus: Ohio State University,= 1971. Disponível em: https://files.eric.ed.gov/fulltext/ED062385.pdf. Acesso em: 23 nov. 2023.

 

      . An introduction to the PDK Book. In: STUFFLEBEAM, Daniel Leroy; FOLEY, Walter J.; GEPHART, Willi= am J.; GUBA, Egon G.; HAMMOND, Robert L.; MARRIMAN, Howard O.; PROVUS, Malcolm= M. Educational evaluation and decision-making. Itaska: Peacock, 1971

 

WERLE, Flávia Obino Corrêa. Políticas de avaliação em larga escala na educação básica: do controle de resulta= dos à intervenção nos processos de operacionalização do ensino. Ensaio: Aval= iação e Políticas Públicas em Educação, Rio de Janeiro, v. 19, n. 73, p. 769-= 793, dez. 2011. Disponível em http://educa.fcc.org.br/scielo.php?script=3Dsci_arttext&pid=3DS0104-403= 62011000400003&lng=3Dpt&nrm=3Diso. Acesso em: 12 dez. 2023.

 

ZABALA, Antoni. A prática educativa: = como ensinar. Porto Alegre: Penso Editora, 2015.

 

 

------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAVIAAAFCCAIAAAAsYcIjAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAS dQAAEnQBFTrM3QAAlaVJREFUeF7t3Xn8fulcP/DvLAZZil+hQoNCRhuVGcqWjKWMZSZZQmMwljHC IGs0NBiGVJZUWuxksgxSjUmNKDWISCVkLQxjH2N+z5m3ro5z3/c51znnOuc+9/25zx+fx33fn+tc +3t7vd/X+9rv/PPP37d7djOwm4G9NAP776XB7sa6m4HdDFwwAzuy3+2D3QzsuRnYkf2eW/LdgHcz sCP73R7YzcCem4Ed2e+5Jd8NeDcDO7Lf7YHdDOy5GdiR/Z5b8t2AdzOw385vvwWb4Itf/OI555zz +c9//lOf+tSnP/3pL3zhC37x+PClL30p/p577rnf+MY3LLfnIhe5yHnnnRcD33///Q888MCLXexi l7jwueQlLxkfPN/xHd9xhStcwd9LXfjst99+WzBXuyGYgR3Zb9I2+NznPvdfFz7/9m//5i8i/8xn PoO8v/71r3/ta19Dz6gXfV784he/6EUv6rPHZ78gZh+CwhH8k570pDvc4Q4//MM//NWvfhUv8DcY h78+f+V/H7/gF6o96KCDvKjOy172st/1Xd/13d/93Ve72tWufOUrX/GKV7z85S+/STO46+uFM7Aj +/luhP/+7/9+73vf+773ve+DH/zgRz/60U9+8pPkNkH9bd/2bZe73OWQHApEdT6jxv934UNE54zn Nre5za/92q9d5zrXaS2Mm1AfPPiL/nziE5/4n//5n4997GP6ozM0CBxBN77ne77n4IMP/v7v//4f +qEf8lknW2veFVjjDOzIfo2TX2/6wx/+MDF+1llnoXafCVsimpp9pStd6apXvSoB+33f931ojNY9 pNNo9YgjjnjEIx5xwxvecEg9FAEsgNLx7xc+Ovzxj3/8s5/9rD5TB65xjWv86I/+6DWveU3sgJow pKHdu8VnYEf2xae0Q4X07fe85z1///d//3d/93coh3KNZtDJta51rWtf+9qHHHIIyUkz71BjRtFS ZL+0KXrB+9///ne/+904FxbGKtH/7/3e773uda97vetd78d+7MeYGxl93BUZdwZ2ZD/u/C7Wjrbp 7W9961vf/va3/8d//AciRNs/8RM/gSqufvWr+zx2h0Yl+1rnCX9jfMc73mG8TBVjp7n8+I//+KGH HgpZuMxlLjP2YHf1L52BHdlPtDEowH/zN3/zl3/5l//8z/8MgaO0E4A3uMENiHSQ20SduLCZKcm+ Oi6j/td//Vd6DX5HF9ANLODGN77xz/zMz7AIppyBXVs7sh93D7zrXe/6q7/6q7e85S0f+chHQG4/ 9VM/ZZf/yI/8CGV+3IZX174usq/2iHeALXD66ae/+c1vBgpgfD/5kz95s5vdjBbA+7Cumdk77e7I fpS1Zq7/2Z/92Zlnngnuprrb0MQao32UxjpWOgeyr3aZj+Bv//Zv//zP/xyLpBHANSCON73pTTks Oo5sVzx3BnZknztTOeUo8K961ato8lButvrP//zPE1+XvvSlc96drMzcyD4NHMD5T//0T6997Wtp ARyHJvD2t789O+iAAw6YbHL2SEM7si+w0MCqV7/61W9605s4tEJY0eRnC1nPluyrKwECMKW0AObA 9a9//dvd7na4QIGl2lVx4QzsyL7/RkA/r3/96//kT/6Epwq1i4GhzIuc6V/jJG9uBNnHTOgqWORP //RP3/a2t337t3+7yMKjjjrqO7/zOyeZp21uZEf2fVaXj/2FL3whmheySpO/053uBJTuU9E63tkg sk/TI3LpNa95zUtf+lLRgeymX/qlX9oJ/yF7Z0f23Wbvda97HfHO/yScxuY7/PDDN+6AyiaSfVok sB+Ge8YZZ9CqjjzyyF/4hV+YrTHVbWNNW3pH9lnz/eUvf/lFL3rRH/7hHwbNEO/iZLPenF+hjSb7 mE7+EY6Sl73sZc4I3PrWtz766KOdUJjfTM+3Rzuyb1kbKN0f/MEf2GEA+WOOOYZtSbGf73pm9GwL yD6Nkov02c9+9jvf+U7nC4499lgqWMYE7IrsMueu3gMf+tCHHvWoR1HjRZU5qcotR8hvOs1v2ZYH 8v/xH//xS17yEqbWL/7iL975zncG/m/ZGMcYTuFjHmN0cfo6//M///NXfuVXOI0dLPm93/u9l7/8 5T/7sz87fTd2LWbOADfKs571rDe84Q0io44//niAPy0g8929WWxH9t+y7k6Sn3DCCbe61a0Y82TI c57zHKdH9+bO2LhRM+8lERAKfdhhhx133HHMMWraxo1img7vyP6b88yGt2ngQz6w5BH8D/zAD0yz BrtWCs4ACOahD32oUF9nnEB9d7vb3ZwCLlj/dlS1I/t9AmlPPPFEMfMf+MAHfv/3fx+At0OGNn1z O/WEiYNjZP5C+fe6172EWmz6oAr2f68j+TT5U045RQYb2WYohwVntndVMuQJStGlQKdSBksJs2Sw kqnGMfUhwQIzRPJF43PIgUudwCnuh3f28alPfSr5D/Bjwa3x7GPvLVH+xUilugcfh+TY8FI+vPKV r1zX8KWd0A3n8FMHxPlGkjx+qbTYiBxJSFOD8iXPE6w+pMNOudzylrcU8TKkkrLvvuIVr4jB/uZv /maqGS8o2AonH4xWeh/If8FqN7SqfRva7yHdJkvvc5/70OSf/OQnI7whVfV4V6ZaR81/53d+5/nP f75ovzhe/sQnPjGqgkX5yih1vOeXf/mXgdJiUYMk8ALh6KS9Q35RmNXq/I9cPZ26MTeyd9hWGoIY 421ve9s0lpNPPvnmN7+5Q42dRtdcGIs3nxAc2X4KVrtxVe05sn/mM58pu+s973lPbvkpVwtS+MY3 vvFXf/VX5ZNI6fEEmSWpLuZXaloHTqSddf409U1GGuUlokAAUtN5xb8oBSgk6vH3537u5/7xH/8x czhzI3snbY2Cbm/gNB3H72MgoHi/I/7McWUWM/ynPOUpP/iDP3i/+92PgzbzrS0rtofIXkZaJ+QI lqpSPfZy2sTgA3kyBfAnpZ2i7iSpUN9o/dd//df9C2Hf6EY38uGud71rtVei0P0oKzaaj98lq5WR 1o8OojNS/MtnIFYcU219ZkX2dB/2vP5TfyKTr3w7MYSf/umf9tXxu9YR9ShA47vHPe4B7X/xi1/c 4/VNf2VPkD0Q67GPfayE07T6aRbMbsZchI7EyTyCC2ToAyGDOPVHN1xEIUwg+sPnFExBSpl/+Zd/ qXZSPX6HSLu7In4XLOgXyTb/+q//WkMqiV/oEcINWgc4K7L/i7/4i2B50myC3H0+6aSTDEHUfThQ kzYO6QRJ0Gsk4WodY2YBigZr33meiVW/zO6NV2z7yZ70cEjTdulqA/ebdIlin/a0p1WPhXIQEFmM cJtYrkj2PH1eJClbXVRZkuHktgKw+mS6Rwcc7/U7uRT33vzDP/wDrd5jy6Ye0vzjnH+Oqj8rsrcu SQmKDw4yGxfa5oHHDkRMxtfAODg4GDj9lmbpW+b/QQ96EHbM2ipY7cyr2may55B/4AMfaEWf97zn jb0MBDgB9du//dvVDJDgt6Sjsttt2doWv8lNbsLm1zdWQMoeba/jEanDYoe8hXfEDXaPf/zjfaUP V0fkOHpk2paOqnWk8yF7ig8PBQ8l5NKIZBM2BEn1LZwJ8dkvhgPdlF3bVxGTYitigHQirvjWwWYW 4Ncww7QJaGvmKxtdbGvDdWRlspOYcEK1RWvU6K3sVwY8A1XcvssnuYWdA2e327Ihn6MtIHzIK1TN gYwTEfsiSdnkfuRYllIek2IXoGG6gHwy8aKv/kK8wldP7vmboO8oAwKUkBvHYQuUHdp4tQHwn/CE J/jLq8KBh/DE0lJ/LJmZAbZpGviKvFEjgMOpG8kO3Lfl9xe84AVy7Hlw1SI9tFVYTG4rAPKL1ypS 56wr2WimtarzbHiWPNk76uiCqj0UxZBU3M5M0PjxYQ97mF9ucYtbpD484xnP8ItwwFqvSDZ6AZ98 WK3O8ytGBuJcvrJ1fbUd4y0BJ77WYD+KcZRJd9o2DHwm0p5yxBmBFTKLUm/vfve7G8hv/MZvwEF9 cJVATKxzkIHw++v4c6Koe9/73mWXmElIp7jLXe6y3SD/tin5FELCgTAkH8puiGptNHaedvY24Rwo 2nOf+1x70Y5JxcIIR89kV/zI8PYLk5V1SqaJGwHvCxmSb9O7aQefffbZIED43Kmnnuot4Wt2P0qI SkBcxL56eCKVZCPog9f9kqPhq2EmZB/DCXQzPZyUsE+S/9GPfnSibbMRkyyvnisG/A4W8fgwBg5P ZRM3QdGomlrj7aW11LxVZE9E0BKJ2dpmKj6zDIe0KdnnXOuaCLnklG40J8gsVHH+ufjF3rWZ/EIT qWbRtpVp9TUwuSq3k1oR9eA40Tp7PuEFqZXWwc6K7Ff1FswWYxRhEWU42yOuFgrIAuLhx1KTqc8j QC1Csa3DzyzwR3/0R1wJj3zkI5khma9sULEtIXs0RujxZp922mkjzb7lTy40H0LsxOOCV5I2Am94 m1NUKSvDL8IBUywgkR6vIHv6P5NecG6OZl4bFJyPOhBV8Q50wiw3guwp81KbcLsaOA1OVuI02/A/ Tn5f+T6CJqH9gEC/SHxWcPVBhsIE6WKi+gtWO4eqtoHsha9YG1QE1hpjTlX7mMc8hqBG3gJ+wsEm /UbIW2anD3RswGHkck7Koe0i6s4viRlJ/4A9AaKSx753h+14cJf4XJhfp0o2guyrIwrkQgQEeQ7Y S/QPAVUMS42AH/9KwEqnCWku/PCHP5wKCXwtWOfaq9p4sne40qoAukaaSmEk6k9bLT6Q0pq7ylWu Ip5UmHdgdZ64vwUmlzpDe/cLS3Wk7vWoduPI3imaxz3ucRF2AQhEhzHPVB6/yIPkM2NnPN8b45EF Jxyjx2zP85XNJvunP/3pLpYbA9eJ1SJIw2NMm4Az8ZM5HhMUzrwMVTOQeb6llLwVLwA+RQ2QRd6m cM7P5Nk4sq/Nm8nk9WDYMwQgKcFta6cSZdQHdvSwnlatkXVkU4gjxHdmso5DurGpZC+y1Rpc5zrX oeUOGX/zu+EWBu1wqqeScURE/DxFPRC10OqZgoHJe3ikx+vVwJo3newZ8GZYlARYJGITF+HMsAuo WtWFGzhv3LSCoMVfjqdWDOxh/usbSfaf/OQnUR1opyByG1PGJQYegxUD4aHEgdJpqDqhLOq4jJW/ HXn7oHwUYGeKouNaS8fI8ldispKbTvYSZsBQ0pFkTtDFqXvIQx4S/Jfvs6zBz41CDKTzQpOtWtmG No/siXcOc+tadiLU5tBLNZ2WkBi6oq3DQVA7lh+Hw/h4bKmIxs08/Va8zz0q3HSyN2SBDyny0gGH 2iRYNSYAzV/UHfFQnAUzKpmWG52uY8PInjoNSAOh9djuza8w3kJj5IeXUU+QDOudZyhyPNXgA2X8 KE+GOqGJwuPKng8pPrpqhVtA9obDwhfjbBVoXlWwTYRveE+E/bAER4rgEMlL5qcYqlHXa4zKN4ns BUu7gmqMHFiwHxmX7BXBobVcTiLG/c4tzJKMBcACHCCB21Hyx1iSsevcDrKPWYrIZQ+o1VfWn1Ao X6UzqIbZsNfuf//7/+7v/m7BuWXhg5bue9/7FgQOC3avuaqNIXuwDUdahKkXf+iB4XJfBAjBB5Eq X5A8ppDiRlyYU7wb01S4TWRvxhxADh+KWP2AVNnzSbF3JJn3NM47ecLnV+qhcYja4K/tGjpRqgO9 69kMsn/wgx8sHUL1zEbvAS99MbJZ2RaL59UJCvpF9VYce8hRn03k8TH2LSN7IxLGx40ahM3BHkf0 obOU/9qVmPysZXeOyYQBMfoKugzK9nBpbRtA9tRs57Qih1yRZzElq8WLbNlisGtNON0pPg9fl+5C lA4Yb9NDNbeP7C0ZqovIKEo+VZ+TD+7rq2NLwD9iw2eO99rphiLbSSVUffun4BYt1bFV9cya7ElU znmMvCArFR6LiSxm1wpfnTiQaqY9zjw/MuNDgGzHs5Vkb2lwc5YXWyzO5McjnhoE4yCtzxyr460g 1xJTf1OSc82X7O1OvlmR9ukAzPA1cxMG144dkI6vpzodj4sDc7LcOOwlUAcLj60jGm940/OpYVvJ PmaYRcZ1B2Z3aIL6HQuKcXPTOLuhAJlMF+AMksi4bCp+Bzc4gDfCpzNTsucnFwMjDUOpPPbENSYS ZOwIByIXZVnz7iiDYSdB4YOTnqOKiLXwgu0me1MKl41oaGC+tY4FBfj5RdajagIiXv2y7hguPVEe ZescY5PMkeztSzQvn2mpo84i5APaYfhFcju/yLF37LHH1ppgTTjvyayQZUk227J3M4yxfj3q3Hqy r84JSD+SFPK/wmWCBYTjLdKcCgMpK59plI5CT5OvtcfqxyuzI/twoXsKQuVOTcZ6R3wFwo6LJeTh EdHRe+429MU9RfZxXIpUF8YTkVcSeESuHvMgVb5fbLZSAia2BA/Cta51Lf6F2e6Q2ZE9e0yeqeLU GBlpADxxB4NHFNfGuVuLbKM9RfauvrHWUp7FTQTp9ETMJFsgknO5OsVXSZPsPTtwOMUKM5GIJdCE GT7zInsGmJQJ8iUPnynR8qK1HZWx5HFkKvJheHDi5L/lsRfCXQpBGN7tCWrYU2QPwHPjNfKLtMWL fnvgLp0/sAAp9GKH+DB8IVx85lCADTa8quI1zIjsoS+c5KIshg9SGKYw3lhCj1Acrjg7wC1UvorT jCY48yK5HdYwvNFNqWFPkX1alAjgk5m7tkzyICbKFAMqbSkYCOwnCfJwZIdBwT1U/CzQ8J02F7Ln /BBNMTxLMb09nc1i0aHwdGOsHCmvec1rrH2kxEHq4czDkmW5HT6Vm1LD3iR7HhlrLc56qWudAGDn A/+ohJGiy8MuGL6msidKyDc3dXIWZI8CuT2GR78Jz4pgOynuqO6xZrx0cZyG5xbfjZukUX4sLX68 1yz8vUb21tdJCuQX5ymogdT+pO0L6a9dyAWKf85zngMLLCWleY5r9xoM5yYDa1g/2VsAK1G92rn3 kNIBLFllq5XgtXGchvIPxWXb++xQXUpu3bvFTXxxr5E9pywvnRWPjObxiORD2JE3weOUV1w3bCuW ova0N0SIaEgKwPnsljWTvaMvJlq4e6kZoa5HCnpivFonI8KPstb60WFpmE3BG9RKdX6aevYa2ZvV uEuLTScAjBqI74d9Fw8zEKm7wsznkY7Quw1FAN/Y1zTl7591kn3c0172FLSRp6gMuSvTRISHlhsv f2q2teQeJHtLadTpBKcTGQI3hOsA252nxALo4ew+iO94x2nk/6VuxE1Ha3/WRvY0H1x2pEzSceJK eEbkxhB9LczWShcxJda+ZgM7sDfJvjppQvGlTgo/sXxNkWrBQyX0C6e9/NxwOHk4GfkFQ0jsQ+ZG ytcycB2HvL42shd763TdkK43vGup3GNhIZn0QqZC7Y9F3T07sq/tgd/6rd+yPYh9zmO+ntp95AC/ Ik7laFQiNtr+eDpF5vZeD9kLjyXqh4TlODbDDAOQuh1h6Y0lbo+tuu5lvCsY7Zs5ubMtRo659mO2 3ZuyY8Jyw6on4Z25joSoNicL0bmduCWBJ6hgl6iiosLLHv7r2r39vJCwjWk+CIHkTqfwVM9Fd2ra XQhWAstMb4nBdFVGFafxL1mNpT2xkNi5GxQ7NdFa2HFgh/Nbi01fAHfjrYBRiTwjpvBWX/3lx6IE 6Q+Ppj0tfEWokvyT6eG1pu76a8Zkp5i+52tpUUyOebjUpS5FeEjI56tk+GRy5ER3SgcLkCHf7w7Y FOkhgkf2skWBGIpU2KOSqcme4UT9FjtRc5bmd92ZCgEVqA4qyy+CQ7uUzuskP/YcZ2zSIyrLVk4Z l/JbWVpSNJEzlRwBUuXzx4QoWONjA+F9FB+z6i8FB6nbo0HeqPeggw6S7dP5cwwRuuGrz/gCzqvz l7vc5YIXqIfQ88FjAu14ZpFgdeqSzNDMUR8iwHH7HhvJQUxgm2gxjn0YM7O/eh+xfGqu0wXFyZlX avguVkEFLvaMjEDTP5OSvV2FYrG66u3lXcds9kn7BzzgAc961rPiXYlxfLWbhf2kK2W7VruqPFLH 6R3UpRW7AxMeKwpAngYyoVQTnepB3vqjG6JKuYWIcSSNgFmkiNPjA4qVZIYygvLjurjaYw6FrBA4 6XdkTylAA7zcglWNFCsRQIWt+IovwEeFrKIK/IJ16lBTp27Pv7DcKli5CPGI54uHs0kQp0kQxheR YKUewoNygZtEePjEz6Rkjybtqri3LOexEbnciPR0iobWaucJyyFvfUiVMN1PPvlk/li6wHDdW7Zc AQW4vod7HwYG77E8vA9sE8xFPuac/pcqow/CxXXGKW7yGUlLHCBXnJQB0sgISeykk1Pykb0DiOkw YnM/cQS7H5eh6bz3ve/Fd/SBDqUDwqIQgw6UGuka67Etwcw2G4KMbth+UvGjTKl48X3qUtnusT3p p+5urSoXZZtYVdt0ZG+EzG8XSNq1mWNjoKI324vjLcJpEaS9Tkdit0dYVTzkHpr3X5Iwcid2fWAc Tl9y5/CvIDNLHtRFxSXZ7HKb3nkeosDm6Fp5j/JYDP3CnkDtmJ2YQnyHnUnYxl3uvZ+uZL/YEEXA XL31rW/FBegCdA1nqIAF/CYp6rl399b1os0jpMcqC+WCPdF3JOFnQqJ2gaRxIUrxRzgJlu0CiOI1 N1c4EdmDRkhs9wdV7ydv6BkiBDs5MGPGI1dJKkzSYsDORftX+pH8QZ9he0fsbdeHeGfFoXNAo79M WWqtbtBvmbv2N2mAbaXMXF3rzyyP3ZA2rBg0T3tHSDacSUNamTW0FhtO9tUmAAokIW5u5k0UxgRz oQLUQJbWXs2hAI6v84RK6gyp44qkdDlC8U7iNaQXbN9NfsUrb6hwCrJndaMo2zffpJf6KgiMJm/S 4fDpknmbTFWo0aEaWGioXieeeGIkMCQbA4Pt+jiA8cIXvpA7EFVQa9Wv21EJC5k7l/lAlchXVbp2 AOXgLLiPETmt6Rw4kGkM4ilL9mmYIA/y38kWxKPbKJ9aVIUPuk7IWspLzcBaJOTBn5BgHqJFAJ+r jxyivYa3b+CDy0szcdppp/V2bPXowBRkL9OIPe2i0vxNzLEv+TFKlqLE1NtSrCzEjxIM0sIw5n1g W9ItLVXcSD0EbpVTGT1QIsjb2jxSw+iunAJSd7gbr3bjQo9Jr77CPEHtxDtwjrEtwZOg0U62etcO jET2Vfp3EajpQv+UJiOioMX9gpvyWAt7dZGqoTwwP+COgQCq4sPwxy3JIEMnU/IJZGCjo5O9HeAO KTRfPf/U2mnclIePcUWTp+1HecRABeBuQeoy51CNGJbxL8qYaDwNtda8tABSx9o9dApLu1jGelC5 qQNaJPmvdKUr9Wuo+hb1gX+YeDczBCOO009P6dqTsck+9YfNhRHjyOxkChqZBpfp2tv5lMf0meKI E2ZMI+MrpSE68TW8h/RKscCmiKgbXltODeOSPdOFBHNzQA/TBeYvdITSKKQMyamHek/sGxWTgTZO 6voFgwBxYQdDdCT+sDve8Y6yqWLwSbevTV9QPtcdPwLKr+Zdzpnoahkqgyzu4HF4By9Osl+61tOv /GRkn7rnWCQGxwRghRGSVSy23xCmfwtyQd90ko9/VL4W0RAc75yjNJoivMyda8w62B5wdILRfUtw S/H2nHCy0j1oXk8izzEZCNAigUVQovCgbXi732XRoTpKfsTdOoTmVRhuv8DwVk0CdiDugC1g4Wki /Fg9pos+j6kLK6awCALxYWKa79Hn4a8wzZxpwSu5G/FrYM3pp58+vNrJarDfEDma50wR6YRtIU7K izAHYqBIN8wMlyoByb4oUmFzJSOSPR+bgEfod9dh8FeBAxj2nFhkLGUeNfKcOSlNQhLIYpuo2dA7 gToRkTbwwbM5n7Hw5lBllB8oA/0C5fNj5bdL3aWkGAVLhJLi5P9mmbv5I11Vkn4kRigipm1xNv9G ED+9DJ8SsUPrRPPAphhgRD0IZxg+M1EDxyFXMUlQqsKGesYie+QhFRlp39XzhKeyscUtAucFTum6 SZfblAuNVIexWwY3zNMYedEZ27U4/B5ThphVzmmn8tbXg/LxHfFwtDKOydZXbHQEbyy0HtAm+3Bz ndutg20tIDSFwKfpEJgM46OOOsolNq1vrbGACAUrTveUJKMamATt16t0aLdID92tGt6cIrWtgexF 1xGJjtZ2GgAnMNSXpS0iElXHHWaIJAEnpCVh60eVU/KLgOpIV1yQCkGGVIlWNDUoHxYAiiMBGvi9 f5HtBDvVgGQzG0tDZTtN0XYUdvSFQoshMozZTda3erBqVmPkJGZRQppAP2Cd6Bs1My7eiNN7dnvk aBz4sFWdMXvYwx7GfzywqubXR5H2GCTYo4d6z5MhBQr1z4ZA1cnuRf8YgZHExSZlH8wVNWLkLAin elA1bb+5iTjlRlIxySgjPIi18mAzY/Evyo5IO5Q/XCspO+o51EaEusgA1M+sA3aw/+fQq1ofuFe4 6LmKOZUEI/EiQ905lemGrkUXYcG1JCBFpC3H0/D+Yx92V6QAGO8pT/bMY1qc8EZqc6d+c5DQcEBr XHE1V5Y4GQRGGqMlW6RTta2FYQS6yh8jG5co4MjJlUn5mL2AIjKfmZAaErdvNwizE2VIbQs9cJWD oLV7W1+AiOOjpUKDx1DUBCpu1ym1ggIrrDUcV9AehA/DcmcurwRFgPfedqWTcr/x0XStvFbexhOW Qpsg/wZW1fB6ebKPa6HTTaP5XadBibFF9nE/UfUxC9QH1bIMy9KP2qjilo0PFjaLv2gdr9VWK+Ur A3elmzgF4HALmQ/apaQJJaIQ2ihxOoBFgJ2V7Xb+rG5KSYAOAJjMp/NDc3NwltahESTVsO7W8g0F xB1ZREEoPJG2In8bye84KZCCVWit2aSWGCOwhYY05F1Ilk0F9RxYz3RkT2aiGWhkq4W82CeOMVE3 lgpeWvsva9+c0qm48csC4JpzmA+TRvMm2v05FhXmHJTfir0F5cMjBM+j/Fvc4hbsBdIgMnbGA6EV gNnKRMZb402p2RRBbdlZFCUUNVzsC7AlgVlYQiGLTAJfMiUfrMMvg08RyJG/ADuw4k5/205MP3FK A5uz1UFOInYH1rPq9cLSnuNNMHa/k8nEbBxus05iFVOPad3xFTA28PDZ4izYYfxw5HM6L0Dy4+vg OhEBkJVMyqfnc+oCNaBT1YwUjEB+h7iJaffkzACjyXZ3JIa7hLmX88qqMg5QMJWtI3JlHiZAbkid 1BCaLCEhloRrWdAehV+UPqeSBBDc+7ZxD5lX6xIMS+XEJ5BoSG9XvVsySo96w/5h2VaT2HXqNGaJ QtRj2Hinc878eQZvrokCZ05BfUDgTnU2FybhhRIGKlt9hAPYdnQ5+wZHb519uAN+YeyQAlwjjqAA OJj3zBbyv1NscsEBLlY1fZRev+HAWewBPBTU19UNXG0R50WcIFv+GjGRrDA6Xb8uectWpIFH6BE9 0d4QTmKrEA8UfucpKIBFjuioRxAnFdIu6t3bKaQ9k4xhlk/zBsaLw3/r4A2pa0KtLkeXcA6BOnBR +hL1we9EsWppfSkIv8hEEOaWEJi0WBvg3XKSPFyGOpAp862TiDTdpp4IW4Dh0/+dCB4SyVtkpJtY CdZpM4hgIQlS6oseA6Hn48isBhHcjnKIscPlFw9cZdZM/ET2WyKBSeItOr8mkLrNadsUoXnVEiSi V+CFZfd8DPMAgVOZA24uRjHjiQFsMKgyK1Qe5i9zEyzHixwkkFIWPjyMwkxTIidB4pyiVl1kGw0K 5xuuQaXumVme/1XH3TByRCsqA2tHzCi/FZbDIJz2Dz5FpaSnUfvR/HgHtjOnulrMKOAXJjafQfdo pcgrlkBMFP0uLj4gS3tUCwa2Z+R6UBXzMw5WeGzU2GZd67QtySpSwb5lddJJRewhflPatarm8nYO 5ZFETNmlStVfRsmnN2KiVLKIpcl8DIlgx3fJQ3C3c1rxosWg20hvhN8Hqk9+uqj0ZS97mYyOmZWX KoaGRQ2gXogDys/R9u0ntgmt0sM6NS3F8/YOGd2mKPnVMZpPgU+Ijf3c41QyTmfnsPBhrnRMa+p0 EIORBWFZ+6VOYb5FrM7ShE5a4eHTbZc+DUFzAU8gLSyGfjFk0WvvdmZ1S9uGutFtOtF8MG/Ruz6w tRyGoU4H6xWtKTIXhzPaaI61TOpOT/OatmY0QxzdKkJxcrR9uAAYgleCXwNTi0Cj3TNkBswniwly jgYEzHWqirSkbdHz7R8sj4Bh3BH7NAiAC1tM6HRctdCpWsyCBSrycmkqQbyJqS8eQZlO1dYKk4ga KhIIVK25ANnb5UCXyHvR9WHb81KSpWwYAAmuTM7L0AAjwZirKYrzbYeufWgtj/KpiOK0hA/kUL4K 44AQvxGYF/bT2sSuQOsMcNxy39J7hfRkHoLCIGxLTgHihFQX9BnKGgoP254TTiSs9aVK9DChmXIC +OKoaO0BIjL+/SgMMT9n7NJJ4Dhw7Jd60jpF+QUKkD2WZuTSYGe2ylRG0kaiPB4shte8E+94h4At pIW9cXqZuCLZLDJ71VwsjEMCHN/NpHx2qd1pRAUzrpo03TBjnFKYYyl3dJEpmqASq2B7IGNWulCO 5hZZ76iayBVCQxu3HHhx1UCICGvqGz5C34xUDsMf1drMHLrI3okDWjBNdki1YgQBzwN9mbUODCV7 k8V6IbQzB0bv5dnm6ILkxStAAVHNPlgSEOtsE7Dj2WxCgXeQf6PO0T6cLCql4cvryIZia9AqzTbZ Be+wm0tt1szlm0MxsDmvqrFDeZf2h0WNNbAfafJEJSVc9OSqwy1xsApD6YHtVVu3sUXpwKfAwFxa keuRQ0fUtg1v8wxZKT5I4YawsFLzP5TsHYPFjTKRRmTDTx7BxmR7OsFCEWJlUb24aksNrGw9IrF5 awRL00FEZYrkFZzXQPn2EB+kWONI/jfw0ZbbOGhA5BVbg+0DNKYo2Qd80QMrn//rSMhMVvvJ1yP8 Bgdk8Fd/F4Ihvo39T5mn3lspM7Y0S1rZUWMrgvPh+dyEAnVphVRgGpl4IT3Br8WhOXnd6gla1SsV 4vI9zratqnAQ2duOyB4okjmJjrhJG8Sh4hEPC6vnt/MuGwFCSxnGocvaMJkday7GfqO2wRdtIyUN 2eqifIu9ivKplE6SGlERANbm5sKkLlLskbrIUILORNGzpr9ZociUdq3E9qhZNGjJEnCRAOSjNgtk R3Ek+xGZWRo6fCtQ18MvsNh5lgLggGAnk3Fk6xVpHck26l4EHZAcJEHXgafyNGKHR6rRq72r8uIg skcAdPK4UjrnYavbskLWhGFwxgBRhExRijjnqK/cyDyiczugCsYnWGypqrqO3ig4eJYL55Yqh/ac QVFhupIl1GpRd43M7WamykTYjfb3GCeRc5ZysQwrunpzQb9Klr6Fh9owzjLW/kuTJ1Hpj/AOcWLA Ob4hWr1YDAJp7CPr1c5Yboc4nMvwIzRaBh7aPgWNVkIBCe8PHW1IgClEU83cSUUmtj/ZU5+QBCMz vx/WD9RBTYXe2yXIyYzEqQYPTokjruVKsFVD4JuF1gKHFk102BI6ZLMllx65AZskk6nf1DnuidgH mY/9IUDA/GAo9PnqW2bM1GExwhz8lyhzvIdlNPywSmbfWos5DU2+0a4hu4snqVpfby1AHhD4AQNX H545qqKmTQ6tM9IudtXqaQTWbqDYp8+T7RaIACPY6B1iorjfcCVMAfdn4WuiNe6jYSpkoHA+p8ii 9yd7Wrr9zefZumZLCyAPsYe4OIIXnIfmwbMR/zCTh24GPGOkhW5fe/BdW41LInLymAofROaR1ZiX yEIapv/mjwXZ44DKe5HsosGmd4UtOeyBp5AhUo/jNWwlv9An6R35TYxXUuBGqCRoHuXjSiyggs2Z XoHbhlxV2kV5ojFeOvLDzsGFc7T61Ktg0wU7Sdfg/7eluQbcp4YJurkQkmcqiH0sAJKNMfVeMgIf ufV+vTrS/mRPw4epZPLIVTAmVd+aqQTPrt40WnAx+lVFsDi2QbFcekk2jwN8JS5Itt2du0TqFE4M HqLLN0E0WfIcPM8rzAGdFI8Yl3lSBW1uwSS01tR54DCGYq64o0IpgKTa5WKrezic+83JqreYrJEN hsmG35HMuFLZlO8EOB4qHi4y1QrxEAxriuhTZCCs3lR00upJYNYZVjsQwF+cEzuHAuiYCUe1+mmF kQDOL4YAkRkCyKvHvkpesN7r2DM410an3pOHOTc6OEFNVbZf0UnNdId70Vp5XJANMus9jLIvEqrY qt6Kq12s2UJS2HB0mjzPPInBmGS2YOTEcr4DEghvDhlKwBFCkhrPPWuuVG67mBBNy7opkGmp558h TZ4oYx90ClYvHpyrh+ZKoCv9EwWS/LRuogkBOGFRZGnMjIm12SJXujBtwtPww9/eittV+2CeaWdY LbyGdoY94SmOzcICixzr5sZDlmHfOYQPD6b+YAQQfr8g/ohM7f2ok7ChKfeuwYs9pT1xB1DJoXlt 0EvDewkArxl+EPLwss6H5lEFYrO3FmmePKF7c6KStKQE5EZ+RS49O8ZAvJJP81g+akfz5ofpHksY h3PZyck/Aqyy48lzij2gIVmGegI7CNUgv9EhG2XVu8Azao7/Gk6EqYZ3A08MaoRB4PiUoIGtI2+8 FTfhzoCWUXlww65avR3Li0zDcopOJQiSYYUmM5XWnCFwtgXNCyiK+Dx7Hs27S4+YRLSatqxdQ4xT 0yYT7ksw5HRmVZk+ZC/8SNg8+y2zYYofqrBg3A8mGlFR0rzLS89QwXrprplVTVCMBKamoufFtsh2 IjrSv4A2cG7Kdg8REY4Aw0fndob5iYy6EcZLSGooqaw2DeCKWct8hSxyXJGlPkReEFrfek/1kpmR R9BAhFcyTJyq9NVpWfzIf/XceGUKH752UGSTAHARXd8Vq8eMaJo0I4YbBQ21k/OYOJZqIYr7j7A8 jvq468Jn5jAbDUdg91kyX4nAoIKuD6WSPUjf6fpitXwfJd/SMucWU1M09wMIaX/HhXZgT9EvwA+K AAutbODhkOkwKG45HVsaaI0UB2a8FnYijCRdmQgXrLpCaLBsB0KMUIrETOQbLrD0ChD6LdWaLM2J F6zOSUElX8fgnfQOooz4kiUlGuJotLJUaDAHucQOZ7Nk6oZLly8uzwRhBkrfKe4ltHoRkyBAYwet Q0xTKzZkXKxm8kuZJEHqtD8sm+0D6BFs40e/0A2NQn94smiL5H9XF6966Ds2qhnuDUl2lvZgSXBl vqhP8ys6HdKDomwFeiwLR79Nd+QqmMMjdlocXhwxWNqfgTTP9AUZBM3HhdlQzGqCVIoDPzzFFc0T C7R6XWII0D4UFmoaV/2C93TSTT4OCHSl+bLzTFtG8/gU4UkDAnOCrA2KZPMjPzOaB7ZDQ4bQfLXP CD6f5qnuuoFZoxPeNWaIjlVpXs1UJ+RHJpXF9jRtdeTeiqMTgBiMIJI+k3NYjJ3ACmDN9VgRoAaT B77W4914pTPZs2NRhbXMaRK2YVvDupl2dgBWDRgXVmUrx4WBFK0h+ZJy+pBZRvcA0UI7OznbMyuP YtRLJj2Cp/paeOKaMi/kJglzZB/5BcSc2KCseoyGWsus8K6Zp99SHUl4m3UOB/vYqHqLvPkgcHBi kxTSeWMk4QVfk3UQvlVstNPsdS3MYkfzmBF7jT3PujZ1wW2rD/pkgRK5RW5Vq9aMm7BuyDnT4ti4 hiL6Azf3l9jzCyWox6V3lAU2FJ7bdU5S+c5kL5IEApcDgRBuxmnw8G20hFMAnFkm+BxMQtftXeyw d9fLvghxdKh7pP7w5aBh3kq4Bh1HvA1hHp55TDBl78QIAp+Tt7+am8mMiUVZ3LJlZ6BHbdAN87Z4 EAvlGybCI82kG+pR85BXIi8Ti0Pr6A1yhGMyl1bVSesGQOQrEZ36FusYOp3Vp52xNbB75ED+Mz16 kL2q4JE4Wm+gtBvZ670eZwbVcF2w7qAABCkkjB5FIXR3HasGo4KjEHS9jZNOU99amP8GkwpEuvhD sFtvEtvsEX0p4I/zIo4eUt3Tkey4ujfuV5v/wweBecV1AOkh8FmzvtJyhWCtGoVgp/wBRiBdTnkS XmFGB0nLRMKYIjy++aHoLc2W0fZe+//JSF0SqGP/4/WwG0YcCz8yhfkdmhiRTp0ezJSECKdgj6cb 2QuWIL2rCaEbmgRgRE57pxTsY/AGzmcKHFyl29AP++XV7jHI5ld46aVAsX2HJFRd1QRhTrbb4tSc OLNUDR1F8OFylyMwziNGfrsid/sVn6icCsnVuA0O+hMJ8BYfJ7JEGdEBKQVDjqPWaqZcQBCwb+yG CEUS7HnGUY72zphqzZuUM/zFMmwxi2sDQO8ReQQv2nK4GCTbZhDGSw00J13rjyiPrm99szzWmPlA QfVP1zPLK8ZjF/4trp1QZUGa+a9PU5K+ZP+N0RavVdyEhcEJTNIENwE6B8ak5rhCgzniC5A8Qcok v6keoz9Rp63GjapvYzTBsRQoo1OoFMNaE0aH9/Fjpc0Km8zphg7TjEBCVInFB3lTLSVWp0kRgxzj qU4eVpEtOU2MVwaSx12Xhky6YPFUv4SL4/KcoF07QIOmbdGgu76o/AWehswnLie2aTLLRzHbOmJO PRgqpKrT62MXtk3hDsyQ4g3xdwTNQzGD5mn4YdQADqvNRcCpB+ZUvBuLFY5K9ppj1YfO4m/kqPOw 6YD8CZ4I5BKD4EjPGbLgHPIDDMYZhKoT5dMcKfOcI+SK850UjZjq9Igx4Vzk9chpZbwypD2IAfcn 9oB8Ohwqs/0AGSH8+zUtoqy2lzLr6UD2dJXMNgAV1eV0LCGi02n4HJWZPZugmMUA44VzpewDOk6x d3F7Hyg01EgbVLu15ujDvDLMvx7d4DAXrE57zHx3bLLXDdIsskdbcWo2QZ0QSsOkMLJ4/Zf5k9ln ehC8nfwwq6Q3HQG1R5CFYBBhAmxmhuTS2phvMFFuvMy2xi4myjO4vBB96vCQ5khi7nBWTNdKcsme DYZXAeRyGoioY4tNk4ny+FnoOdx1Y5BZTq8Wy+gnP1O/d1vfsiThmyT0UHX43m33RJ9ogyrUWk+t AMXErJIYdAdGLIsRbIanRGh6zjMB2esG1gbITJptfICxo3l+7DiwCPjI6XAqwwAWtiC0kdaJCyB+ wh8uw0HYQD/Gq7ySndoaqXCEqzFzMKxaEzz8XScEhIG99uAduWRPW4M9ZNqcKYDPvqe4Ck0zQpB+ 8Hh22khz2qla1hT1jxLY6a1OhcmfauAXFpNoXmCmCFNwbrNtZsIROSyArwEoTYlVCTpnsppMqgpE gFLdqVfFyR410m6W9kFcBsVebzHBgPqo9xEZwfOcJLCDMQBg0T45A7FkBCbiF37DJw8KMSckZ4M8 50wBRVMZcuoftQxrxdhFNFVbEYgp9sHvDBm6W6cOmFWT3OkVhXPJnnsWo82vHd9KR/Ets7WJdy2Y cIX8esYryQ1ZHOwhcuUOqPaZfhSUT9ClgcuOhOP4kQ/GkjeMUQ+Rhz0tLJ9KzOVpIUTp8TP7RXR3 rbmc6SpO9oA6cXir1A2DTb2qnm5Ks8HwDt8+Q1eAQ84QlKEo8cyx51kNYpw5EbmHGt51lkE8aGbl 4xWLGAcaSjRBJ4pgIT8K0IyEAp0eDjJ6dKY8TjVnkb2NQqr0QOPIqJQHyjblXOk0pPEKw7Gx/0Ub e2CL/NVgedaNuMtUFZgj3BkQPso54CN2uS3bLOr9FxwI+haWZ6PYHx4feL/8DmfJV+xr46IvlEW5 GNginXLwhbj8lyQIbNiJpiqw3xXUNLewEh5i28xf4SurVhBvwhqS1TlwoXu/btoBmbQ83gfRRDZh mD9SboXiKY5TtEt+/VRptClCIf8VJbOO4sDhbDJ6fr8IcCPkXLHdWXQ47sCjwjVzsd9XKiVbI9TO Ug+r226OmxtwbtoE7DqAPfzOulKGUT6lF3THZ2PHN4SOeQv2C6tTppYliuIQOTxaTy560WYib5nT SMJpM5zOj5bShqMnIzldoo84vi5cOlyJPR41Oy0juJAvOvwXSx9xKRAiO4Gl7QgqLgn1YCAwzim3 /pqoHncfYaaq4sSmDcH5V7VO17Djl9502mPIvV9hrFVzkJABTBU6i7X2L64ljj1Qf2Z4km7QoPkF aAr5Xcoie0furE2nfL3K8yuiAWabyHyYk1hC3cJxDS+/f2OUFCOF9RD4pc6HRCfxXUK4muosMmfw gIBbkTpbNBLpILO4TrNhdCjEyWp7gmSoxY3aELav/sPMFvMUmHneMrY0ZSGuFcRokDecxeZAWhwK uBLJjAWIYCVbGL0e0WP+S2YahQ53jQUWGCf8geQh+dH/0qERHgSAPUA6KWaXKyZCjmfbOQXwJPe7 X2wYHe66OiK+ET9tKPlQan0w+dQc9macB1njA44F4FlHKjBrn6VmWkQlxGlr8YKAp/zgsRg4pDw/ 5rWd7O05+xXonZk2z4ZjZREyaD5Oj6bHzrPGVNY1zrimOXvYyWOE31stc4XYjBR2lVI+4uVYp61M xcAd8J3WfDgcVAgJFSHjxemywIiWQkjtB7VGAYyVrKAIxDUe5CrMjxjPkeHsBcQWly6hSfgrXcCm hMZl3urDvKTdgCpJe1x16WEtQgwTdNYYnUf6IP2HUNBo6CN0ECkoTY6lAVCjja7H4I2CUtMQ4wif Mm+Rpn0OD6ODqLfW+DglLvg7lycIIF/aGxHtVSX5xx/ayZ6fCXZiMTLPUREU6TZykBXpIT4RA2bf YmD2cf54xlgYCiFDA+LYVZhkdoaDij5vCYkd0tUSSh8U7+I1zH5EmCy6VXVyzBDjGAe9YFWKOAYX KYHFaMIaUZt9Nr12AIIPf2Hvh0YG/SZAKAVYlQ2Qcys2jkNqURPQMDaHvS52gJpj/nEHJO0QBI0m cnLhg17HC/COcLlF4HrvISx9kcC3OtDEVfpI2eYaasP4qPpMEoO1JSy37PoUNBocfte1GyJNcUyT mfliO9kDHqCF+df30TcYb/h3HMaMeCx2L6bOfrOWA0+tZw5sVTEIEKrIv9KjR3Oi7phn2Ao9HNRE cYVukMzEoG2Xw27QGx+P+FZCoOFkGMqHVMG08Rfj8mSy5vxB2YtczTgXbsIOj9Vc9egtXxrtQDcY GjS7pZcgs7EFzKN2DIViYjniHBQWE8kXwCJcAw0YQX7/F0tiMZBz2OGQSoa/i0awHovLMqeDOJbn L+2Msqx71BYKXb6yw5cBRcb6MzvWTvagF71Zdawipxlcw0qL1bMbKP9V5Dbn9YJlTA3BZSuX7YOh GSMJH4oMamS1+pGCbRVpy+KooBtopuFEWhom4iHx0AMBa/nFt62ifM1plG7FhSNpTMGJqlVF+KMT /IUhyoO4lHELLsAgxMZS7tg4lG3GAgJm8NdqI99AgOHdwBlBCVihcPpIvIUjL96EUXBo9gDRSilr ZmEFW1xVlX1I/wXxRFYlxcCZZo+MZGSZExI389oI9p1T/WRqppbXQva2HY8LyZOT+3lxePYu5Ia6 S1PFO3B0JsAEE7qqCZwVmlWW0xsjYhYzs7RRpmwkk85/iD7HlhjnBCaCZ7pj/KsoH9kzqvlWeSXA h/mt9CgZGbstJXDX+blUAwZHORehQLmzazEjZfSZ9BZAZsUheasEFzM+ZZjBTQR60VR5uVACUFOa QDp5xDgUfFhbrCH8q2CdQ6oC5kVSaaRu1GmtqU6ZuTTIFcEdgBLGUU5PWg7eYo1WEcXm1FUrQ7AD hDiZbYLIuLBemudZYD3mnL7uNFh7tErz9j3Nlq0FxgOJZeYmqLYImMXsmXlEKxiVddBwZ4stYrtw HGIukUt3vAcDorzQ9m3HEMjgSTYd1sZWR0jMOqpKgBG4oU1sxbEDePDSTK9AX8ptdJjsJYFxLkmv 2PnsXp42Or9qI6C14GNiWRlLsdKCreRXpT+cuzYn4k/JpvD9HN0wWrEH4nh7ZqMtZA/64u3o4a6H BcAYqL4kgNQRphj+lNmnkYpxmYiQqeWEGN4WWYTLRq5rD+cFhEYgHeyKZ37p7RoNjQLD7Ehyz75n XkF0KcOYb8NpcHNrrxCMXCS9063kzwMT1LIiUayN9uSAPfyCMmjnRaxYqirYPUyed2DppdSQyzgM D4IG45tDRA4ZUQlGBh/xFbPmjddcfg9bS9KotZtPJK0VDiygMwZIINHyWEm2KBkJT1k81NDQEKac f/FGC9lbMFPfaVTkj97To+xgaA2TL0IRCbFO9RQvDL+NyOeyDyJHouxYJ71sX9uU4IVoWkX8u2tb Nj0Chs0Ev8Bw6dXhXWugfNYyZo/MMKCRkkNVB0LIY6BAKeATqo7rnJe2G5RPkjMEFqfC/mb30Yls ev33gYaIhRm+HWzrgy0YL7GjCibkAJdQo+KSgrU/ZsYc2pnUIvvH2Bk4LGvmeqfbb6hIEJPMK5Ka yN5EszS6WvUWKSXxptqxoCJZFSEGF+TRTTcTTznjFGB+hLhGZowHRmikTFkANUll6rhhcEyxa/kZ TjlgeewsfDVSjbpEwCID/22IxyDzucqJCBj4GAOMOqnleJx1ZHfA4QWWaLf5FiocH3fAI5b2iiSn ExmjeQMc4iD0RGpOKJi0HkaiOSF+ypowyMxcZRLJePOpZmuK2fHFIBM0gqWaWBuAz5saBdz1S04H 4Mfh2ckp3ET2vMHmPamvOdXFMAg6XhydEP4hZBIb8zuqIw9JfosqICyztlLFhL6QwMX9wLXuAWYh UoifJJFA3o7XrvizzFGYNHpdLTwLXUlARkCJBSJUV+V1jngPLD/S8ma22LWYXcV4gbqDMPD3HPNY MSOi+jUvelgBMHZuy2qvKFPhdilLomAIlDbeROVPLH+NsYNvgRqMfI4PNh2fF9MYwXP98oPmaHDo DrPIZI5NZK95GlemS6A6TqEaCB4ijQA4FaCR4qLkjSPqefLG0LSbZ9mscQ7RIfMXY0hJ1GsJmY4o EPqVHw64FEPBQ1nsRCLwnNBriHogdfE1+Csv7uKd0ENGlN4Vg4gs0XAc/Mip0+TbQkDK5kSR4ftc TNPINowk9sVTXBoLYCJnCGOX4aUT2CY2mVWIdLlF+EpRny2EKXD9QlJz+kA78FZOySayR7fp/FxO XakMc47KEfGh/Aq2vlgd6BQzFfArOURmvGenRhsKGwite2I/AvoEcGB5/fwgMRwMFLVYeLErJhBV k/kNCCtSRDnC7PPDqzpNspWllusS51z+fRJUFXrBKj0/OhAQEuWoegO8kErgNsQLibaGNnYaiMJc ErRrEFrXF8coj1wJSCAIZYrKA8flBzEn7DvN+VdOo6YIHFCdwFVvtSj5mddg5PRpjWUwdTPSQ21Z Y581LXJTz4F8kZGKqszQdXiGsF0K7/lRyKcgkKX3dpYaC6UDaIz75ERbKkOMx3VU1ft/FjtDPyLo iDs+PLo3ZwG/IJlhsCShg33550wyR8pOwSLXgjQt9hCnphaxQ2uCNmKKMnmTd7HjnCS8K8k+7rHp J+0z532yYnG97GTNFWlIOID4doG91QttOQsFY8Gi6MxVqkNaEaLPoUBX5MkbKbI1hsZsiUMvDZRP F9AlMCTDFSgdVwA1zIwOO0wC/KPVc7CBtYTu8FAQPOEjhHirJxPfylwC+EuROzkzm2soRrybMZyx ioCY4QBoM8/YMMlBIekMSENzK8k+DkvkHMAYPuZRa8D8TN9McvJnjpRay3FFwVvUttCD2PtIqxD2 sO3iYcgQjBx4Pa4nzOxVKgZ4l9IrLrpdfPSK3oFiIRHAeSFbbBOALoHWrH9izZFdE3SvCToLk5Ce zzMizo+WwakkCq0gDsfus88Luga7zmQqLzqG047RwRwmpawvrqd7lBF8P1Jx5TwA+BxUbyXZw4T4 ZvPtt5w+raUM/xku2OM66rX0NhqFfUKw4s6cxYf2a5egc3pvEBj/NnFKMqRDuGN3XiQiYsZSa7q3 r/YMvcO0002EMOBfOBHbhKbaGk1E/HL92Ljcn2Q+BqcVUXoUH3KeHIJ1aTquEhn+UKqp1mtPABG8 2zkOKo+EVCaBR8YqY6zwfMgOpCxzsDZGs1YV9awke4xnC0S9ESKJVXkXMqdy4mLUe7g9NH5Vu0hL FOC+fftZYNFBBghdF8o65UX3qJE1YZPA6kLpiItloH2OD8Yxcvs4zrfqHm0LrUbaj9YHI1O5OIjw R0Ar/BVzgdPRHfAOXqHWSnIKgJbR1UzC9egyorwJdqADOhfDIwIa1NcJijacyLrfPPyVZI+Rz+FO 1ZzFayhj/Nw/m0X2LHPGczMN01+e8Osn/teHP/Kuf/pHPlFBbA2HNM//xte/8KXPfeXCm+ELPiLG 7RCUz4YPNBEDwoZsXFG3tbvihTNE6EFOB/AO2w8EG5HUEQ5kQzNx8Tv8BbKtoZyqWsuwHXKM4dZ6 ihTQGXLeZPIBwUQcRmSDiAHxN7N+sCh0gG7Vh+xpPnjq2lMRZA61oRjOB5jMPL04vLnhNQC0KMPp BoXVFZ73gQ+86t+/+tEj7vtQF60odvqbfuvIXznyVWctCdL61L++8YeP+MHjf79z8oaWrbP//gxR vRVIA2yjKhPIDA3aKfFeTRenHuExbPVMAoNLhe0QNmaouBHeS4llr0Exlkb79ph/6AmTpJatsEc9 RV7B7Nh3mGNgeASAyCgRXDx5VP2cJnBbXLgVzF8u7XELnoCu8Xk53Zq4DB0JOFw80mOkUdBNnGll DGek4jjgvM//5wfe/89vPftCofeNzz7j+Y985evfcIlLX5C+8ryvf+Wzn//Ml8+9QEh6zv3q5z/4 wY9/9NP/Jx4/d85nv3TuklxdaVznfe2LnzmndiPt+Z/7/Ge++K0qA5qhizpFY5sieHpHZOAjplA4 a6U6UaLNCOoc/Axhk1p2YNjwkfpOhhKIIEkYzstS0h4/Yqc0OxdHWu7FapkbsE/YHhsHiiGkVRm+ Z5qUKW1FRhSmIrG/WoeznOyxUufSy+aimGzuqg2xBuPq6I14GLE0tMwoxlsdfs/vO3jfq9/wx2ej gX9/y1+++5xr3+o+N7vqdz7/Ofe6yi2vdu2jDrnWkT/2gOf99he+sY8Kvv9F9x10ofz84Pv//Mhj D73aba72A7f9oQf/wfO+tG/f+V/6t7sdd8M7PPb+Dz3pbj/z0Ht/9Avn/MHv/8q1b3/Nq9/2Gj91 /7u89UMXRLP8/Zl/fKujf/KQow652q2udrfffEaVYdDeEbwNWoWdQFMkfy1lnQLSgeSQK67HY69d AAenRojiyMZNffNAnUpdCkyz8KCxOeyQiKiPkyMgEvzIZ7EM0E2GTw5E70XmYasqtJzs2cNofqSr f6ecX+Nfe5rU/PE6c+boTuYx50tc4ceP+qkfOeddZ/ztv3/yLW977Re/sO+ON7+D5bzy99/ghPs8 4aT7PuqKB3zyt09+4Js+8OlLXPSi+nDgRS5+/tc+cc+HHfnKsz726AecfNtDvvOUx9/nqaedud/+ 3/i7d7zlT9/44n/+1Jeuc81DXvXiRx598jMOvfnxp9znuHef8aJ7PfNpnzn7w8c++m6v/5dPHn/v pz7p3g/6/v93qXMvSPT4zYcmBXleHKNQMw68mraZn5DXERS+Cag+bSLuSkbqZkb4ih+5uAoeoKbV lnIN5K/10pLhtA+NKU6yOCkIEwl1FWKSU7/h9CR7r/He5bQx8zJ4pBOdM+9kdA+rldC+yxHrA+9w 8zvt+/pXX/CK3/zDv3zDgVc75HaHXpCB+/KX/fZ3/ePrfu91L/3EV76+7yL7f+YLn2Mi+/0iB130 7P982+nvPudGtzr2QXc4+sn3e8zFL7Hv9W/5833f2P/A/fdd9Udv99qnv+KpxzzwHW9/3b4DDnr/ e//ixW9+0/kX3fehD7/7S+cdeM2Dr7zv0x95/sufdca//tehP3KDi7cc175gOIAhMTa1w63oNsN+ ueB1VoPQdMgl3kG8241xvQIlluhbDN0fssS62konQ+rPfzdEFDPe4StxRFwkcf7aQR1/q4FbDXUa TmtU3/IFTKnO8ns8w5IsIs7eTQEmCTF0krm0Mds/cb0jfvya33bqy59+6ts/csOb3umQ7zjoi5/6 +9vf7/YveufHHnHsSfe68U/vO/e8/ff75hLz6Rx40MX2O2DfF798wUHOL3/5i18/13n+i+670P3m OfeCP1874ID9MYIbXv/I4+5ywsuf+WfPve8DLnmJyzzx0a/83Sc85QZXvuwLX/SMnzvhnv/2xYq4 X73wsEZmS87psaV1iNJl64pacSbXh05+rE67kWBAJ83HhztV2Luw02K0GG48tn2kwYZGi9QEUTGR 8mP1mEVsooZuLCd7KWLKMtTeEzHkRcAGt1bNkzSkwlHfxd0PP/zwTk0ccOlr3uH6h339g185/8v7 fuFnbuvdC87CnrfvK1/67F/8zamvefuZ+75w/ldd8Hze175x9r5Pf+4zl7ry9e9+06v/w5+dfMdf O+Z2j3nAuQde8pduJf3eVz9z9r7PfuGcCy32i97lNkdf/PyvvOINL3rzWW99+Wuf9ydn/PXHP/au +zz+Xn/zoY9f7ru++2IH7rvsZS73bQd8k1M09xahYrv5zqfF2jgIafvgg1FDEsLpVbvTodNClCoM ZZADCrt0fIsPL66QBY4ieFEMmYdKACuwz6VZzFI/l5M93KWT2Ck17LL10PCplJmTVbbprrUJvKFh xV3gnZ47H/mrD3jQ/Y9/6FOOuM4FLu5LXeHQF5z0O7e55lU+/Nmv3OF2D7n/cQ/80Stc5iKXufpx 97v/kde7zr79L/Vbv/HaE+99zCc/9P5LXfGnX/Dc19/retf4xr5L3//oBxz/80dckNdi376b3OqR b3zuH13/ipc88x1nfOScixx+6E2v+r3XuPVhN/zEB8966wc+cue7P+4NT33e91wsi+wZ53Byh2o6 jWj6wixnor7sef7eozBjcceJU9vB7ATt+LqYgHhVE8geFkjVberD4o15jnmI8eSG7XSZ3gwLUw6d 65phxxa7JKOOQNSN6GqnToqrlUS00ytrKUzPcqZ9LU2P0Sj4w1mGhpqXSHvuQWESxS9a6M3/er/I YNsUDZ/xth2HHWuLJejdKjTbmb3Xt+CLdnsrDFawubGrah3OErKn4YMQu958OPZIetTvyNemkD0Y 3zmzHmOc+SucSUJ0eChm3s9WOpl5/2vdQ7zNXGwJ2QvRi0z9mzXUxd7iX6MeOy81P8AksVlbKe0B K5xwczji1rxYsLScGLhSKz52PbZ9Z7KHbQhoHbtnE9QvvGEjBiKmBZ9N9yJMMDNTNgGXWvsVCa3j tU+aoe/WGmZVANkTJA1dWiLtQXobgX63TrS4zo0ge9I+7pxvHdEmFhBXN39BavJzDgtsyvwbTtw7 supZTvZboOFH/vaNGAh9zDptQUaTpZtMAMhMfGMNZNBKJ5tC8NFPw2k+U7iE7OGuWyB5In/TRqgt m4JB9Nv6yH7++jOtMCfhbL8ZmP6t4GINyTaWS/vaDQ3T93t4i3EfWyR+ER9K8sdDC/D4bzyYoscc xUPT84jZigc64MEHPWyfeESeeWxljwhKj9CIeBhUHmTsobp76LeeuKUIVhoPF4OHkPf4Kqwo/ybz 4TMzcQ04rzkUVx/j9cTwPTEbMTkxUTFpMYEek5nmNqY6pj2WwBMrEgsUi+WJtYulTCsbC+2JdY9t kK70sU98zk/+P/Ecdm2OY8JIG8KNl1x0LTeryCrn++O12lxUvyZ2Eh9yvi4tU/sxVbW02lX/rXaA wmzYTlOK7sTI00Cq01fjhZ2+BjepPX6MSpb+Nwov/svpFAcqxbREJOb2PU7di0Ry/HkpUTVIpDSZ S8sknp7+W5vbhq+1f1mC4EqcKTmVpDLxofq3usQN/622kq4zrlW7WHP8srT16r9s/siWL9nRqtTG S8je/QfekbQMp6y2sTiM2i/NX6vDWDVxS5toaHfVv+RmIRPcr4yFRR6FHl1Nr2SuR42wV71V2xnA vGc+85mm2t/to3kjsvkcnhOuF2xxFYuvcu0aZ8/8V6q8Ki2qLcahoPTf1BO7RaYQeY0k6tRJxZbW UHuxVibWrtZEteeL3VusobWJWiVRf60ew3EaxTUbzkGtxLbiterj5JNbxxd/36xfcC4higJF5t9t dx5Kkjv/fvbrIc3RSbJ+7072luR8jr5M1tzYDTGU5DVjRq1qaIltj2P1Piw5H3mF7On2rMH5dGlV T1hi83dx9Z5Gm2/+blQwQYNp1nvs63qRhYvgG8D8JWTvhS2YAjlJjGL6q3V7rLTDjrZd0jl71DDn V5D9/GMlIwn/nKexa9/CpFr11nKy3wIfsmEzcuZ/CMTCiAyFPmxEV7tuPuWh9PMne+6AbSL7ENsN OvvWkr1hu/ygiJKPa/KxpWhHV45LICG9qcxHPchg8RXZILma5h/T0m+wLrqdf4I20n7iW5j7TWbm WwH4dyP7LdDwY3YELRQh+8c97nGynbhtVp2Sw8n3Ap2G/cp85LbGzJVoKCZ8lfWbeXXE8OaK1CBT vQt5WzWUuKph/vcU2CdbEKuSv7LLs+tsAaRnCpATwzJ/LpaWhItIaQgavclNbqKAu9n8vdOd7hQ5 zP3NyQDd2gcJ/zLTIbdWNU0Bd2+5l9JNGM3ddggHtuoyvGl61bsVizh9FjlJ8myq448/XsgGf4f7 hdgavYdQfTEA/AZTfZvJ3kIOz50QoWMOMFPs7eC4V9CtNbI4u2NLXEQRKU0eziRVe862c0WfNE+u prW3HvKQh8hitCqyFVNg2M8fyWfBTZ+agWXhQlvuW9zTRcZuwqJUyvPjfhQXBMga2hvljRe7kX2z VZCzLWZSBkLeehlYa1cDEY0TciR/eNpiH0dO3iK+NzyFYJxDFsfWCXFMGJ1L8Cq4jRiXP0fWR3ww rnaoPVI7udEx/QjCwCV77+bWvvUrQLdF9tMnj5QcncAXyxQpcYVsESrS5romWJiZC0KGZB/tLO1t 8e04hGghaU0DDRbXhLibCW2Tb3LgMAK5BuNsPFHvb+ZtFs07Ev2wLfH+5mKvfvWrH/awhxUBLPpR iLee9rSnif0yt3G0QbdFhphnMiosoPSw/CXYEKuTfnn5y19uK88NPELzGPr0Sr6pAw89/vGPf/CD H2yK3IZkR5144okRWpfuAuuxUnEOp8E3sUTJd3Zi/kemcuZCggdz15JCtK0iVB3xW8LmjzjiCB/o 9raIa7bi3pJSuZxd/9KcZJY4ZQS+/e1vd9XcUtHaNpQC/5fUld4udh3NR3VioswJIyUyuiP+dL+6 K+7tvITniRh148UMb09HbFZ5jV5GqhOF3BUd7kqQTNVpIqIXcmxL9Fsz5oNo/AbfxHKyLwUt9Ot0 qbfsMDuy9fbP1ubkKnYVGXvB7Yt8UfgxeSV7OcebK19LJcNyDZbLT1aZDCQ8VwItgxFIf4EDiSdt 7XnZAujWdV3sT5uyqqj7TOxTi5gqcV0vtV/Tr3zlK/0Sd9fiDiLeMYsZ3p6OT7kuco1IPsnBbCRF 7DTED+d705vehMXDpPutIGmHkcXML32WkD0jttUx0683E79F1GDhw/M3wvOwYVcRUmLdviabuDot j1Nl2KoLHjMvJ2sePvaBp7zkJS9ZWuxJT3qSRWEL0N+U1PSTn/xkWPpAEyZ/RdAt9d5U0HSSqK++ Hj/CpRC2OXHKgD5PZEUZ4yL89XyG8J7VXGNkgdu+MMrQSQkquAnzfuAVQBF91Jnsi+zj/C01Xklm +XCy1z0zyEaFwbBpSV2nksl8J5zsZvc3Q1+Hewq14rpIWvTiMWnRAY6vulU6DocxRI3rsMMOO/XU U5mF0wCBL3rRi1gW1NGlNB8rGGIfX3AfO7FPJ3Lvvd+5psQ72NOeuRn2uhccfLxN2FAznREywjNC IQfjEfiuAGog18xOBtmvOnWrkuVK/nZIe8ODkRa8zNSedt8GDAb2gfL58BC/HcPXEqjMwCcUeJug Wo9LstAMPNxuSLJdT0AwZAIFlVy1ewY23fy6OaTpuGjdTmrF4fEFlur1rnc9KcCf/vSnQ6rNEvcY pGqGhj0my3YreH9up4WgiqNPEgVkY65KeRNCyW/oyXIlf2ukPQkZESOdFmNVYYfGCT3kd/LJJwvU E6vzqEc9io3tNiW/h2Qb8rCZuXAtf+qwHXnSSSdhXrTrmhbgK8mJutA/QcEMGdJ0w7t4HPXejoxb lnJaCZUEEkHswz4Fw3B22lQzvIZUuCEiybxVMmfsncpIBsE7I/aJ7cN+pL5R8skVxpGwiNNOO61T bamwETUfMVhO9tsB6ZkFNwcjD463ftNXewtt+4X4EqPCjRf/Je1vfetb+/CWt7xleCu8OGqGeKsK nTAoQE0sz6Wci/BHhwx+NrMsHfjFQLfF0v4DGskizIUM76Si6xtGhjHxfcRGZJsMn6KyNYiSQnJr 6Rjbx/X19ER6vntEDj30ULAu3c2iO/dB6WtOet0wD60HCpeQPSa9HQ4882JFyagica9oLIJ/5B2q zXgsT9ebkonERa0KXdEgsH+Hf8RvRaanZnOaXCWKkRaYfbjGsbiZSGxaOi8XfMEkdLI8I3cDfmFH UVhmeBcARM1F12VZSWZtktm4eE8HpPSygiwgZhFGcOc739n9tjQs/qPMqmrFHOviWGl4dznZky1b I/A5nETa9Ju+6lv2bjif7P7q7yQzPc0vuHWnVlC4jnHV1N7iv7HewgTOPPNMCELEVzfUrB4cR/Sb lHW8DJ36kFOYxNafZz/72fYloAHvYzd2EvtaQfYkqqpaWwSOljLKWttSwO2D1TjCnFdKlZFeJaYR iTLlWKMUKzD+C1/4wlNOOYUW0NunCOVtjjVeQvaOf0e4YqnhrbceVATxyjRKm7sKyVeAks8Gs/vR ANxV6kHylm52gxvcoOtIsSSauWDM2ouwPYoAKUQxbnXRoaX3vOc9ZOkJJ5xQJGRw6SgYGrpqmOA9 u1OZfLFvc1M76bGt82OZTDKl16HmCQQPFkPS9li41oHkFLB5aPJsNN1gzItrKMXv2HqdyR7vsdXG sBJz5qJ4GbxcrPGQ8ObUJabX3e9+d4q3D1brxje+cRy8FZr2iEc8ghZAx+5kHzFA7nrXu7rAnGKf XlS/kxhM4ki/0TwhaJ76jbszCMWcFJ+9WoV3vOMdGSDCSLA8jeaI/VBGhBvkkL19D8WkBIlaZbaI TRgebdUwJ0IJTPLBBx889rwt1s8FAwxiMMKGSQ5s8ZGPfKQkDoC9gZ2hGyLeZqfAEmnPhegZfnZt YO9LvY4YbDjbdHiF9HyBKPx2RJ+ZBRyAW8kl1GvBbFMsxt9Oh/AlLEXhb3zjG/EOGI9OchBYORp1 K+/nTsMsxL0/9KEPnczzDI0XJkQmA8OoUai6wT8cc47tUg1yophtPEaTys0tTo2Z8sWIXeMOGL58 izUgOUeJuhosRXoiicNNb3pTZ7rhHTIXCACxqTACyimFf4imI6DThDfDKMsP3hL4lJ8iw5tDJcSy o2BFekK+IUtS3aa072H7FH5LKOQDoeIvdGDKGwwsszkbnQglP5G6Xc6BR9yJdWuV83gQpQzG7nU4 UGZzRYpp+h73uAffAXjfTrVHG8Q+piDZhpLcnDmtU7nFCJjY4CaMKVwGbnLUUUfxlXbFTRtaZJrB evHrnF4VL8Nut8SUxxASFhEP4scxVxK9MyR7twjPowM24wIryb5I2Fnvrpd90RlGtFRQXUSlPK7E F+Vc5Lk9bWsCh0g/q4gGHvOYx4i3yxyFaA3ojnUS5M/XKCrGi61RMagC91E4BcBmNleqGF83nI+R IrYMuKA/i2I/7H8sUuhep6xVeCimRlPFXFAmgSzO30SRkEXCLvWKOq0JqlapCelUD6DewQoKnShP Np132RqEP8lP6LYqUA1tMb5Me3MQ9HKypyEIY+g0jDkXpj4h0eJnVwgiATwGLsTCqTh0i/6POeYY jjQ/+iUTUEAPcHuhr6YdFJ8D4+Es1Aqry+JYY75TUsX2gj5iUuxkzvmE8+mVTpI89CxyvitvsnfV CZei4WOsoMSgBCKx1OlDF0iwyDoxo4Kb3OTQ7Pw1TNFWST1k5+NH0NnebRHYQj+ax7Wc7BmKBWVj 7wEUfBE2XpzseVz4OzBp+me1qyYdPdjxsNnMIQj4QfNUEtTSKudVbmkheYyLZvdsZuu9i+F3NiiB 7LgoUUz7AAmhTz2kwfJII1GGuuATylGnVuKgAcZKDabhayip95nGQnNzNHzUtRiC0amTAwuz53UD rYV6SLePCqEnQwIcKIytU7SS7AVUNt+V22PMfJLi2+wD8JWNIqdqj0r6vYKuEFU6Ct6vktpbgZwz xtIRBnIPGTifT3mjmvoq7iInVz8J7y0nWyPktqF7+IIKudCIQf6/IgPpUQn1mGMZqk8vFc9j48Le iXr9R/NWlliGdDg9im5z3PXRB1iUTfLwhz88aIDKyc7HOzSH+P3u+JOYlh4drr0CksBeu4ZaDG83 NoxZwteAl+aNMShuByoMyUMXObuluRt2UWsQ9PIc+k59Y4RyobA2iwyV/4aah9SrtVHh6KhUnSJN tFZi//G6cZO0lswsgC0CC1m2NrfRQdSdoIwQXdC6o/g3u9nNyGQHdXI8w6aIgUBToD6swvMiETJ1 2upMNm+Ls4Gqad32LhsnOYrIK1a3WAOoOy5m+DSszJlMxQhA6UnTV5XjKcBth47EWQ+xeGs9oUub Z33u2sOB5U0ONEQlGBkzzXID8/SExRHeCvzOIeshrdzmNrc5+uij+ZiahMfS/3FmOnWPbQxpvvqu qCM0bzdYVIRnf9NtKIQMYBhGqVaa6zHdzswXVGGwati7Rp/4xCdaKkSO5qF9DsxxxcP20LxdmymT TQ4glz7SIPCJTU4+6wI1WFdqLaTuoLEja+6KTDTPgBJTSNpjguAJa5pP8y996UtTTDG3KHWGRWCT SDEGIoXkYXAilAvSPC8V/LXKX6bZgVqRZ93aeeJgKO1GSiJnb5KHcuVllXld5NCle17lKldpLr7y xhyTYh9jinnNNZXi4LFLgAXoIc21XcsTBs/E6vhResch5nePCCU3YO+A/fy3WktCYjnzoxicWSC9 wUK2wUWUfBoTuK61kijANMAQEQ8lbdFpH8oz5ZAdATUUHUQy1GCFzIb6FTMoGxSigc1VXYaABmHk NEShxJyXBp5fP0eds8z2gOBixjZq55IkEuhHjEHKVH5V+SWBETSmfFdLfs3NJdE2FoYtCnZG8LgP KhCog1b99dkSU/WH5PDFTehZjmO2gD4R8r34sKOIslX/7fR7xHISerW37OwIMsHsO1XYuzAhjE56 v770RQIqTmsjQoZZlEnUaIFx3/wWiU17Xcgd0oLuPuEJT0BpvvrAcJBagziN2jAUXwlexnB+/f1K Ult4m4hcW8IerVaCmdpnAg1oc7Zyp/qxRWYXMc7KRYqL8py+Sv3pVGdrYeoewnOMorVk8QIOTdgn 1Do4CHWjeP0qtH/oWa01L4f0dM6xk1KQWwiuRXuVWBNJXoqV5tQjyAQ7NOM5hTPL0FOILBovPT9O 49JO+Zxoa5ARv8PeyMPwQhGYzdXSsKi4gCuSwY6PKzEJAXMVSbtpiYEgUiJ8hp9jN4KFwUIF7ZfU Sd2ASoIScDRN8E1UQ4D1zbiYqRR1c9v1GjnODjYLNMsHWC/rxvApgBCfwO0QJyxWKFTmWuQUY0Wz I8pqfDnt2hUiu8LHAacUHWjGil+OAMbPytWxijGQKk5ExI25Ax96aTgkrGikhYrH5o6MpfTDgU3k vx5gW375riXt3VBNmTDoNvKxJmQ05xJ1TkECHBoCJpSrF/P21xah24OgUKD+80qkjikvWIh9Yb0o CAjVxura7Vp5FhmbEzcRboxtscKWVogrMel7N4eVVJPDAqJSVRQBLCZOFtGYejex2G3zCXoYOD9d Xw+OZizUJZRlQYNTCPTAVdFq1wpXlQcqEz+ttV0QDbb04cBjX/GdtFaRU4DKGuMEyaIHblhWXGQm 5wfKqaFUGXgYZbW46pi6FzkwYaJCr+TGS+ErtFlCLC6HSLZA66Cgnjxh/N50bOKd6EOKwtRNI+lR fd3Gkm8bFgNE5DtkoxGVVJt8gmFqcjo4ZkcXZT7gL/xzPOcNnawy8daxLC2gh4ZjxriaF9uK8DVP XBEz/DFpoIfQoaZ8IvcRo92CRrvQZZw6RgcGlq9p+GTaAxGf0jq0pkuwLTynVz4i1aDq6BAsjQSr KaI3v/nN0YnQ1Bw1qVQZyrYYJp0pVWGqh4wCa6HtCJj3OxOAPgmix+yp6H7Bj4EdzlTnnEir9hAj pu6qPI6+IhL4H9wrqk0P25sElr9BSWAqrZKugcPSO2w7VpVf4lSc/6qEAUIdY717kXR1Kp7WYEe2 osGlZs/GIKBMkRCAWp12C6bAM4oBmbfhLRKzRsegGF5Vfg2IEJoARAQtUTbTi5YAQPOUpzzFavK3 saEGHgoS5sAdiKBa/e5NZO8CFsJqoBexOjugOweMeWXopTYiSoBtpOxU+fM4sCTigRURhq1RDV0b gmnBtIO126/WwHJWM8NzWNrB/osshxwCQbGsYiAFNFFDq+JzyRYKJPqXq4f9jHGIDsCP4A4AF5tM aC1RwwSDrXKMC2Ee78T+qsmkyHB/sGJqYR1RnvOFiKbv8Jh0XY5aeUYlJQggMnHSbmEdAHy+D4Rd 49F6CKnhU6BedQ1kXJwN5zgho8CLdmdngz6A+8Y9MAMfOwyyBfVJ9QzXZwZ2yVbjahpYydLXURfs 3Xhr/8XaU1w62xLZ06SY0AP7EFmrOlViOeBwxHunt8YoDNOBcTpdz6qHSiw2If4nQF/6S6cOLDVt qF14bqd6hhe2xGHMLm6J4ZXXauD8o8nmVLvStveyJWHecyfmVNRQxuqCLigOtV1u/0EyMXJa3MAm ur5u0xNuWu/6Yn55cSbQmvBp2YW4TLBn4/VL+HII6vFQhlVdDXhJAoL8sRQvCUeAFDpmR+9gTVCL FvtDo4n78+Ku4Zw+MLJIVMk5MN9aeSi6w3ZxamjKBx3GutOnHFjMHEi/Hsbxh5x3m8ieQghodaAi p6KGMgncDmcp4qfqs6+YwaFSknsDm+jxOpksxUWPF3NeibtrDA3GxnJOaw/LjNep6BHW4vjqxFyP wUzurZHsyfDFyEV+QcnFYnJAbrZK5AWEwrSKenIFVQtoDz2ZP7W2RjBUWjTtNWftCpZhYRkXVIWM CeLHwtgaBZtIVREwXEhUp5zKm8je+yxVlklORc1loPfGjN3yYFXvGAQvWQ8xZ8Ob6FqDvcV3igF1 fTGzvAOnESkViVkxOOG61XcZ3oJt/Iu4g/d01dUzu7FYDNnDe9dF9uRtnFAg6q07koatJggqpoj/ MoiELrBIw2lE8EgqFcYqWIifP9hE4h3VgYPNKA69Z6zfiyBSdMiLLp5STBc/TmAKIBWaDkyXY7Lm junXULxFdTUD4JucSlrIngeF5pBTUXMZXqhYyHhgaSS8VYc25XuYhnejVgMohcaR707r2gGLypMX Q05yvloJpC1YA/d4XE48wbNeshcOYLymBXydBkv3ifgcstH2JbjsDRJCWuHFCcEu8QJgsFcgmpya KIr+HEGEi+VFnVGphiutXZcGcix+Cdqqb/EuCLYWTJ2pk+c0LUKcrZRTUpkWshenQRoPt4hwvnAI MXEx+FqAZ2ZfxyjGSUnbH6PmqBNuHJQvlUKtFeJd4I1/8WXQUcfrQ63m9ZI9xN6QEW2tVyJE4oJX iP3SqcAisQzqp5uzUTiwmecP2fiRC4AGwQUYt27XHkewgCyTTW+1IQgiLc/6VnUrjp6gBREWwykr NUeOEtKZw2wh+whgLhIsEYdwnMap9cxSFRx85rBTMbuNg60qebrW0FqeyhpwNC9OVaTT9PzI10Lp UAnvC13U504x/K2tLxZYC9nDLyIaJ8SdQKbFjiFj/yLAgXm1/1IH2O0ecIw8c1QnpM4iIEjF88NH hRssPREA4aMUZKq+PSaz9ZUIRmLoQTFT4VBtiITW1zMLmDF0yprILL8yJj9UU7Y3NKJI2tmISUL2 UbNHwBxJi+dJCCfyRMBp+tdkHwTP8asRxQVzM9Y6z2ErggLLj1tl4r/2Lme1D7RZlEAGsvMFStBs +fPHvspysunVEAzFOSKrHGwuwDwBhYvpmxhc/mUHL14NIOKDMSg8WcCFFGkKMM0CFfc7HZ6rSOSy r9WhgfokINL6xPFgqQ+cdnEKA4oJcYzu+csYEaguJKHUQjAfyA96UG6FrewB9mCuW4u1FhBbJgAz 2LzPYnJriwGYmTI4P3XYHkJpIsCbh2A7OnO6VI1sHbsCaJ6RGSVJ9VgekbC+mhOf2YHU0YD3HUTF E3Oq7VFmSmkvQKCaDAfMidrjSLlNVUNVIniOc5H7reY2BgmDx0h4AHPtoUhjnaiI1iaitPoitI84 6TFFQ16hWUCyYHgwCE47tj2hElf98iwOqbnhXbt3lXG09K0WJd87HMsQeCGcw3tMnseR4xQmxSSz llwaEISQgcNb6VEDlgxlbHZ+kFpivOwtNqQDBRBjYdUgSawqnxdgMY7NBM0TRLoqxMJnWhV11Fca PnrwiyjOHgPJeWUasjelJipGatPHCWtqnR6KP4/foesROkFiu24g2AFgn74KnarOKm2IJk+fXyT7 +EUElL80ai5n3FmdYD/NRSrOyR5zG8HstlNEZ1LvsQBBuEaHswvTGqMzbB+n+vJrbid7dVFTizi6 cPqEbGPevC8pekFyBVqKmRoPV2+eFPuGumGFGoqRJCGZbS8aWiDJQHgnCwhqpimxA72ny6w67GG8 ocoKE9QQJC/iakPsxxMxqgDq/FXsVHIksicY4u4A2Bs+nhbajIkVl3coMuqFxEuBDFAPfixx8sEI /A4CiIs04thSMAUzLCbf9K4ie7+Dsi2ivcovC+eTJ49y0WlmhheGL9gJIdvTI0qPBRd+a0MrHqBl xgy20zG+ppj81G9ySdXgk+pgenwmyqyxbceI9aEaOYxDM7NZaJE3ukflw1+BhSLCpZHh1cqp6KZC ThiMnDCh1PlL5jtogC+AJ+NMtW26NEs0cAvIx8ZBIXiHd+H5KT8PvoDgOa4ipxq3k/ojJ//wAUYN mgCDMy8TsQ2smQZnTuC+NomBM+VMozhIBgu7OmITPOB0EePonL1D+HuF2KfPx38h3raEDYBpkgFi 181PXFNlihAzJYh7v/mmIO2SqDgvsreakc587IeSiJdZbp20t0F3hAeTEECjJ6zuyJ8Vj1hV09XB CM/oPRiYqBeKn3+SJ4vsbT5nSACPAxN9GQLXnbirWipVQLpdiBgAP+DD/DsVM+akQ5GIr0CErUnd 7SdgJPqkIBARcfF7yApYPZYv/IaIQwmrxoIDUhPwOGFbp512WppYdgR64MwH7PNOUWvZBUiFx4sF VCQ9dlmyZ8c6C4w3mWj9pJnTdHx2vtCyJmsODdOGbE3/AmFGQiuebdgeFMOLIoiMN64Y4N8y2HD1 edRDhHL9gkVbLwK1EDaYV7TFqLZvO+yA7kUNnElCMWGs4XcYGQTHcADYIExWhtkgh/UHEWFnHJA4 fvd2mt6gTwE1O6XWzyJ7c20YDFq6VtkeQ2gj6TJSMVmQz5wks2X7UK1NnELYkKixuRUmKJ2FQNbt lDgoMtsidVRtXCy6Vfkz2TIAJ7sBzacjrrhJGBGOLVGV7VpkowY7xvxgE37velx3cRQFyT7SE+Ju +DVCtfmIO+oM6qX+CNDQOtHHZwFyq14KymYMCKP6eJ2ZQFA7tlg9JIdHgKzSIZOc1cdG+fwobvgF UZzzSr8ydqzQD49Qgtq1CPQOyo5Nkmo28/m5wzP7Q8cEkdAWO2kQLQ68aJs0Q43Bqos8pKIcI+L/ 2CSRgw0QIoPiemne0JjrAYo2JxSjzdqLVOWQb2lOjAuLtPVFm9m49KNV00UiAbGIykTziCRcXMA8 bjz7yWeqB6vYXEEEED9ZEXJ1Jo95CAcV/Ygyz7UGyjItIuqxPLNhFBgoIxHNsyn8Hjo/yR9KQfWh NfjKA187GEta0vlZAZ7MvF1MLT0BoMCPmGNDbpJsnurQv6wd5sJCETBDtwfZ8EfQ++hu7JpUQ3Ga VzM7Qk6HOACS/xwgPWNOaUMii8xgEQ2cRmQHmyBEAoQkXU0TZ488BKYMOAQqm/7gd8yDphmctDVg 8tI+ENQ0AqwwrsGwuRcn0AKz8+3XhGYvllGDWY3f+XWpvlw+OHdYpPQORiNRScPSJX8REmEIFhXm ZRVAITkLt1jGnIsjgHjXkKcetVFt9JbAAc0gbBoKRqB+eB7S9V8LzVqR3oNaBHXTZzNG1EexyDOV HlAc3YGdVTsuTv77BUdmFWsCzJETZEETwXyxSx2wqfhoVx2zN8lqxrN6zIC3bACmir9onnMegAeL EZxmWmj1FtFGGi9wABhsZrrCNFnS3nTArm21UNuGP9ZDbXQ58hC1m/TQErnEbG5zRyas8TYudjtZ QRlZur0YmUAmHDASDS6dDZvb2tMzMy8ORjx4hFfoPoELcmL7is4BXUxHJErLZSuiFpEUJKopKn69 V9eVJYQDk2etRKwRY9AupLtF3kvApIB5Ckvc9+JQPQHo97gwq9Yc2jCoxd/5fWF7JtPesFu4CehK OTf/WSDaAYcxBoSf4qRLBwiNG5JVNWQAZmTDpPqNgl0TviEd7jqxmeWxWtpWHE/u9OSSvWFQyEvp +XRXpE5q4e4c4BaGMYzNC7dkEtNYQGKsMsp/p8EULKwnWl9M5AR6xPv0P/JSrWrRvxy9whQMJKdX iAdhwGNJJKdiyUa6Lk8+jyZFAIuxe5j6EH64F8wPF4CAWm9IWIMpkdP0wDKQJJGXeBNrhcZrn9Co ESdADp3rv0gbuD15KzRDIB1NiqJBAsehzNYHhw1zQECuV0Ah8CA++cgm3Po6/otRIkiKBl65yCgZ IKCl3hdsWSM8ThP8c9WcwjpGVYzgK2vX2s9+BeDfFMZOVn00lEv2itLG7fh031u/jsZbeHD0lbIH 9vCBQWsfi6lCafYENmlI+OWQVoa8a83sBmYIYZXqwaFQJsuftGn2JCF4+xJxZnJ6sgLuRSMlGKmF eB/5KSzanKiEmCLoLLDDKgw5lEZ7RPz2GfWS+opFxiVca3lwJfLAXOkn51yE1sP50l031pHdrgAF mK3bKaEYpQ/ZWAsOOXgn+qQS2oR8qNT4HEsQC8bBoW5YJBg17pOPh3WpbxhWa/K5pROrA3LDUkOY JyahVka7MQOgypHWJQRnewqtheY7kD1pT6lDkwXHQOZj//Y3RCRpdxwhaAAvh67Z3wWb61QVAkNs QKm4hBgcRdpgTGgPWtNclbFYdeMyQBp7frtEIvZqowO6wVF0ioh7sXHxXMYwQadmoQ2IP46skWPU flQBPI+GqNawgFU6bX5nckrqalwjaW8gHmYI2y008KSskfawTz2ETYItM2G5aB3Z83tT/tNV0KgU 5eOGOAgtNycXo+7hFOaWDkK8x9V3WCprjsbEgoi8V10fW5TeZ7BAGatWfV2LFEMorAlp9Qp1bTfK sx+5Rftdi9SB7LVkL0ZC6FJPkITtUjXVmCtWFCu1VJTDUm31qEfHdMD+oIMgM/gcm7/V9LAbLAni tN3hOp3ID/Gw84FAtrsVZd4T+5QLwoqGT3cgVQISh5bxeAsZImlJG7FfkexUu7wMCpe63aR53sg6 AofejpzEHaMos0Tp1TEex3iXdk3uGVePbLx0H+QKDqx2A0fGE1kWhmyYmeEkNpteMaZwc5YUlz79 HKBAP8/RGpbOA+tM6DqgkdcgClADjRSDhgpjSRy9CbjtsQMbXmFfYFjVBK359Xcje5iNZQbb5jfQ XJL+g0js7IjWgsFESLZFRQD0/+nvJK112MySCVRKoCNcs1V0W2M82HbEHxnqLPxMPT+1S3Wn09JF tegz+5C7XjdAnoJPaRDEPkKKq3t5ziw8VdMOYxrwmSM5vIbi14PGeiwrex7L1iWLRZKTycA8TfMk V6886h1uACpnWGF8i33TLqL1X4zVtOfEqIEbCHZYEm8RroSh2My9+6ZLJjzIASOODCI0QWQPcMFN aGEFj9lVZ4A2ocV+ol49WeE61fagI/xJcdNrkSfcvCqkSvgbeXioXujfhib0cOJ+OliR7vGT66El 9DdOdDdUS+zA3unhaICaQPcjroFSBpizKWs1I2A1oCtasZmxOyMPJ4uUGg8W8QspGtRFHWCPkDzk DC5AT8FMq/nLUuUFw3XUaULgZKLfSV08kUmiDzTeIfc3pq5GQP4itu9H6jqjBkPUNLnNgwDjsECt YXwqxxNjOYgceA3WyXbL3y0UK3oWBQeFa9cSxGWnjFOxJ2beigeEOZ5Vz/ilX7C4+yX/7kz21pjJ ba57AAlLZ5b1S7zbMSqkoNrlwCqbmCtLsBdWSuL5ipD6eVbzl3OxpO0Fi7K9mHCBCTfUhjjJEOYJ qgMdESz2E+SZpGL9DgmqN0WRrYEyT8jbanAWCD9HceiWlBFAGiGfuqcACbyU15Ql+yHT2+9dpp+g D6JevFOknQcfmnD2F6XdkuV49SOeUmEOAkuWL5NxW7a6qGorYmU1baqZVHYI/U4Mdcj8sR9uHfSS zjJ2ba6bkq92e86+KYgb28rGoGarxYjAOzXB9OLgtbONDe+kNQmAF+XedXgDy9MGqawEi/3RTPPh uEJ+SD1uB7cndNtuIAYH+tioDKri3UD/drZwXTND1EfUOq++MG/QmrMuTIN0Yr+HfjFwuiZ4HWjC pKfghBkYLRK8NB37hGURPpTWnihmfiKNTycln+5p/qmfNiqa15CwAqYNzxS+z+IQjORHHo1WDKi1 k6sKADI5hhsiwVpr7kz2xkYDjyMTpR6RHqKabFk6GxsV67W/KUsUMHuaPgPEYjAXtCyi5xhNA05h LbnHuOtCDWkYLF0RU0DzAGfIVrUkyQ97g2DnKJ+rmmA7gMGtNPUeMhyBTIgcsuWD3+0wwodZRFmN g739kJ5SCzpSPXYFJ5wBRtxetRXjpVhxcNCAEHMOvK8GiJI5zLdHzDP0zhLzQVLjORTtUpyIH4q2 FT5dkaYMVRqBDyPNA5bHiRMKYL+nM9lrhjQT1SSqrF+Ti2+xT9jDYV9RYpGiVWS3ELagrFhmDB4A W7BRbYWimHLdVDtGukLI0DwTo/WwJ/GiPKFRA5yjQmoL43P4LdTUB/sMkVNKQf0pJiyiRMgcu4Hy yaT3tfg9X6XWunc9fNRGDd1Yul6qZR4CtwV9iVdNOXwamkP2jDIGeaZDUQeIH2a8cDLKPJaBC4P0 0D88n48gODttizS23LZ0887pNxURpkkMDNHm+pC9mQIypyPi/Xq/9C16GuwANQqiqMIhiN8DQSno RNABEwd/QpY1PYKp5hdLa6TNLvo45ikoLS4tX6Ve0gBz5E/OTIKsAebMyISTM4iYRXYhXJf+GQHU w+PtczozWRmeESvCQdh8ASa1K+ws/Fd0UCu8j+wzJwoNM6+o7rSDONjLfIvc+7BejfoXQaWftmjk 8EUjOXGEXefQ5rQnF88vdqqnD9lrwMzyZhc/DQbYE4nJfApNNT08NOQ89mzSLQBYpdMgGwpbG5Yz ayKCSZW0Xegd1hLfiV8aHhuLf471ThQUOQzfY1zoX+sYJfoHHPrK8uxkr/ZodLJX4KnYGWuLzWyA Oe1yc8C6OEEBzw3R+yjT8Yccawglg06JWaooxN4O4Ve2S4koCkjY8DRWIVL2rbVgNYC9rcgQgbxq pGxhDGigFOlJ9ixMvlnyLWcZ8suwzSyDeaxiYJwlrkZksJlWvDkCeFvj5DIbBQtBYjm9gGRmE0hD kaYCRA7z5kqY3HYANmQHpCP3me2WLWbPQfXsQggIHxKBML3Xo+yIojbIsZQ17FgyptOFsIKakD2D iMGvnhr5+UqxJ0XImByyZz3hPqBESI2zEgwofqXIhqxj7MQ09mgIadBNqmELpSaH/MODFgOBu9bf k+w1w+6FwA03Was9thiRDgVexXAS24hlstbCBe0zHxUJLFy/4Alq7kOmIPMM+7fJKPaUt2Y5T7Uj RvAjp1Bsr0h3XQ327roMpcrrFSOTTTGGnCnVyZx6iFZRUhRpFg2NvYdwA6oxvpC9zRNBeObEB8ya Fcn3bu1I+8jt2fwIUVOgpoHy7MZe1UqK5mBtOV0y5Arz5p6wrDURQdlDnv5kT/aaxHBXFHyQENiG pQo4NNEmUVY2nB5wIkBNMIy2sNuCB5ixFUyE4UCZpEfQJBtO1MZI7ULsH53TJ+kIoMfI30jlg/QW nI29WRWdxe7i/gDRRbqhfg8pTfDaPOg8AngRsMhlmCiHH4OIQyrnEI5QS++y5mrumLj6gShKZI+z APCLu5xi+BzY5iTcwwOf/mRvKunbOPEQ19Ri71UrgkK1gpzYSHBRXJ/Yj8Q7cYo7FnLgyNPrzGC2 Awyc1hfBws3uOrgdM0QPYemRD8cD42WYMKrt16rWV6qTe6QeewnZxLl9NsuQKDcLZCHopOw4Bjml DCLI/KGlc81SzqmTWHyOWuRwkUXnlqvRc0SvMBMK7saGhdZ/QS6906tUa+4cpVd9mX+CKsWqjNzg ZR+VC0FhtdL86Wmc0gQy3YwRzkMjwgeQZv14Moan4mKq2Qf4aGuIBdbgsQAcObTExU1js+JT5AM7 cMiuLTuZtVUrmzm3VFdREZc4tgsPT8d4+lXuiB48SAAIgIaER/nkByIX2NNPT7SmkYdK3LHDPOQE fYEPKHAoCmO/fua/RdSzPbnuuubPWtrEILJXo37Qb428VKzuYi95pIToVXMVaJF0xWt4TUnX4WeB NUGZtJyYeoPyEu46UcO4u1VfdfDLVgPkMvnEIGFPKZgsf41HLTnD4FwRL4Ka7CL2HYM5RwI3TBHo h3VtQwJrnc8X4QOg7Re7Xm0FjJ+SZPLgROIJZ7GrGRnGWzghbRxnDMkiTQxVleP2Elu8SG+WVkLO o3kinYbm9CvKdBYN2aN5eEyRSRf3yjUo4qXZ0WqxYRlmn8bYcNjTv+wGCL/4TT4CnHG8ydn0mnlk xNWhTCEuThDjvANpHraCNgC0Aungecx4Qr4TzVMq7bTFiaWD6CExA6InGzizQANFtl/rIlJsybaC mbaHSns9hufze8vgOZLAJ+qtn8Qb9oTmmBVxSo/CJnqvlIOaEUiPokGswvDRvHZtJgokDb91qaJA eNS9i1uPB/BmdiaKzUfa2zmWFU1CRrsmgVw15NAKezvPsCG58ew3gj3S/i0+MGabhIt06XHgTmuR WRiwzdcI88os31psqLTXQBz6jQsPxngibwmEBuqG4/JL+yqEji5XiuZVSCzziCKJpdKGikG5EP4B B8qnedVy89BduXyhQQaCOY4xRRtXJ25IbIJIsHJoSCmaD4LvTfNkOFcOth65cVaRPYLnJZ2M5imh tI84rlbqKUD2DF1udmy7rA8/jRBgDoJC87B9Bx7wY8APwAwIxyavHoBHYIvZ1zNniu6gKgoeCq9R vgEamqh7mEr4bDo93Jw2t97qP7aN+KkMnWrYmsK4qoMVCJ4GJILVeg05RlZ8WjgRsHVULTehygX/ CxwYaVfnd95c2ZydopVaKy9A9tqgFzkQUlAJqfYb2bDWuC7ob2xvBhV5i4QYhAx+pBjZowCttGgM qDkTxqoZgb3z8UrhhOWjc7ycic4/jwv4qg+UGrpf72vVAMiACQQPXmIQMjjZ/K2Og9b125QCABGW IJXKASekzgcOae+dymqMUcvYxzFkg8lNnA5o2Xhw2ep9PmM03VCnM290zOrVOmU6EDe3DX8EQqJG 0nJ4VUtroGOTtNLU8MGGfqW5uBpRVE+6QZU6gG779QEdCtET4obFYChUDC49mh4zjzoqGBNn0SLM uV/96S0qCalC6OHizmwWvwK1uXsj3Xi7qlHxy0x3a2Q+hd+kO44HzmHx1+PGcSEDqWY0H4fzbDy4 T/EWcypkJGJGOSU7lcm66DqzRgF2IWxHeuLC8wiZEEWLBwuVq94NQPMf2DQcWCAUEB6IgJWwycXn cwJxluIFvkYaFuxA6wPb8jqzlj7JpewvHwHP3/A6W2uYhuyJd0c27FqjA5eSCq0dW2+BONtn3avd wKdIAr/z9eBfE/eQkBO/UGSn1XpekuxhDywQkZWjzk7khwW5RysBKLLG+YHGaFfcrgAhihb1HqbA 2BN+Lyg6TlwXaVHoIZlPpBD+LsPR1qgicVSyN10iGnBMPvO4xJZPvsgsjVSJJC6gXJXHfQ0Wt9ZQ uqyBdTlSH5ZWC8NiD5JAYzRakuxj7jD4MTqa6hR0FVCtWL1INcH8po8tNuqAzUj045y2s1B0jYIj dYYPwfPNOhok6otiDAiIeO+yzxhkL9Un0QS5xLnwL+dSkVPZbo9RG0wRJsVaJLHsq0iXoPPJTuSy DW+RYxfocIw+rKqTGAMA9bZYm7tamOxZrVRi/H7UCWKEJ7Ad6raUI9p2DsBTnuNczQY9VH2wP4cN gwLEIHwQEADRwBeKjKIU2cMjxSMB6oBe5BKoAlTJt1Kqn0UG21CJrjroHQgZQIeQSHl76Ck+U/sD RbKLJh4UNhpXwo00CYXJXi9BXwwSoYsj9TiqtdusR4TNLW2IiR7ZpuDGkSlx4x6qCrqi1DBkqABg cEYyd4kfpSHqPZwhZA+yjaxecBwqCX87ktAlXKl3f9byosNdYbQDieLIvfOdRgG+rUVqUmEiUfqU jyBlaz1eiwWi9BY9ClzTjPwwwsd77DYnIhYzroQHTrs2qNhhGKx821wykXByQx84gk1JheHRiRSa MtIbvtM+jmQ5qujJHKDNBJvk8iCim2cDcyF2GOfOO8cd24wOmjB3BogLOG+Ve8fGrHEh8E3YEJOe QSrMjIbPA21ixXpTVLFF0Z8Gy6droqaPraTrie8QojPe9RCjkD2PFGhE4PqQ5J79tgULDad0UjIS yDu654gelJHCDJMbkqy+X3/GeIsmZYb5mZEiuBHQEBCGQAMbBdwoRoD6KjEJ1hABCPGgWAHUtjW1 3PxA3aDE4kyZFeqEvUMryHO07a+HNRuJaBxWxVwQub94TWbOyTHGXqROafZtTgIDzVMJyQn+oDjQ JVYH5UtJWKShHpVYC3vV6uhkj9czXxmF7LUtaI/zAyg1RhbBhrE5LBHZBWVTg4r7QOmIO1hZyENy NmRO6PTF7NqgUgJK5JIPVAOki5JROKM0nugYMlae4mB/wz74RC1QPIJn0ABO4Xe6A5FODcZEhudy mX5Omlsk2BE8Z3PcYsop46vxGruc3DimI9WU/7V0217F0CUIGbf1kewH+wnTQnsj1b9Yre0Od/V7 yloNlcF64vQVT/vGYXsDpw55Ex3keejqAVZ76D5scjgo84em4L/KTG++Dhxdkdch0JRB2wOph/UU NotYg7XsFul3QQyyxRYZXUMl5SG91BgFG1hin409BvXb4hR7CyZ1sa9ss8Dz4lAgfcmPNGET6vjU BP2ZeRMONYI8Z97JCboXSd+RutSpmiP/fSXz2dUTtF5rgkZGUo4UflJra0Sy15L4Fr6QaWZQiF7o RaFipIPQ8EWiTNwIjwhDl/DXJTHh0/Rqhq0MQfJnOJycLsU124slQSQ8EXHkLkxC0kJy7pw6i5fh RGBZTOMpHJfsCVj6JGW7+BwtrRCgEJTP+cET6wNnMhNXVv/4HSMPLYCJKzBuml7NrZW9Rvagyrjz u8HkjLMuYkBkal3LejlO7jDvZH7QccneDBqJRLeTxWzB7VK2D0g1443ab0W59HBTxpss10IJIwEz l6yUyWtZ5jU2utfIHmiX7tKB+yzOPAuRSsg9MVIkbOta26XQBA7p1pKlCoxO9jpKwebjHTuAJ82I eCGgNGjEuRreKc4nFC4FYnXKcIeQ/2Mcbyq1NiPVs9fI3jQi7LDbiQRLvzixNALydqQJb60WVxJU 1lqsYIEpyF53nWeUGrFgv5urAulzaCsDuLLY4i6sa3oFLxCe4Xc50uGOk/VqJg3tQbI386I5I6Cb q5LTfiZroRt8dQxSLpUpuzQR2RuVeLLpDafIwCXCBKmnaZXgwY+wvXD47bVnL5A9o7LK6G2DuKEw ztVAdmX1msO6szqppc5fT9yZicjeqOCl/Hm8x1OOkOkeV5oms835qjD15W+csifzaWvryT6sPFFb cWYONi46O6AcwR1xpwNkVzTeSOfbMtdabAtPKjQxs3zBYtORvU4jOZ7JiQ8wyuJkmTF7KTeTSe98 S8FJ3Kyqtp7sSfKAdYVpWxrBSHGblQRNvsLPYMwh+dcL6Eq8z2O3lkCpSckec8WDHV2ekk4iHapl joh0H5xpXeyAMB6ORtG7/usY9pQ9nLitrSd78+kKkzgz68ICX+W09xmq9973vpd0pevB7XnyI1/T Wh7hwMzeyPAx/TMp2RuecHEAhksjJx6qrBUB3cd9HrXWpYiondIBQK6FDU8wLVtJ9vxEwmwcpxWG HOsr0j5WHAtIN7LH0UwaPiBtgqle1YT4aAavEyvr6sPUZG+c4JbIUTvxmAlzAbyLeh3lP+6rAq4I 9XPmMU6wCtuauIfTNLd9ZE9Tk9XHksHqHSKS7oExn06tEuyInK3HlQvHlfwnQnHX9diBEjSu18xc A9mbbmnJhMqOl2Y3f0UZfnHKUjRhyvrmwLN4Hp6esAa37Nk+shdjCzOiyadsOSHnZTqOkzai7rly nUoUrLVeGM9eustd7qJX691U6yF7Y3aiON0kv8YpiEupAX7yWFa7EddgcPA6iYlJjZSTby0D3yay F53BIxOpMkwmxk1/jlQLrLmY3jhCKweB9ARrmfBqo7AGidLGSIbbaWhlrscI5trpkZCUlyVFy3d6 t2DhuKLcFqneq8U4lHDC75R/IYYO7e6uryw450Wq4g+SOl30p7UTDOYD2U7Dp0UGUB+32XCMx9W0 DLeGu4yLdKm1EiAiR3I6HtpafsQCnZhE2cKMHGHzVqtstZ1qCyWwlmDfhU1B82L4wgRwpW+naudc eAukvSFE0mTGPOssjl15/Ihly40ZX2n+gdSKeJ/mAHjDujvMix/N5Lzz2pT8mCC6GSBtaZj0NJQT F3jZNwlogDhGckXYHn+PjSVRZ9nc2NMMbVUrW0D2st9YIKBdHIyXIhXjjtjbOO5ZvX9aAlLw/nrn PKB7SV/W243U+prJXj9kFAHsy2S2lhlhZREFQfmRfosR6Ctd0WZKt/oJ/AjKp6FIIpCiKZ0vhBID itbS+X6NbgHZxyXI4ZNPT8RfQu9kFvOjqNBTTjnFtYX9ZqngW46EgRudCi9Y58Cq1k/2BuCYBP1n XadiEK3cz1U7SkrZOMkTgZzxuAyLE0ji6thbrkaSt88Bfl/9dT/HGmM/Om2CLSD7AFxr0R84uNS3 fueo7zQhoxYWFGh3rSUCt2FcsyB7/YOc0fYlDxx1DVZVLjJHRIeLrqB3CDjy6hPscWjXv+LKrXjk XaRPCvmIC1vlVJaUFtuqnvZZyygyG91QsifD8eI4vi3Q08zLoVIbcoToDL8KMXMmW4vBHV34qVet JScuMBeyN2xWGdV64utfG6b7zW9+sz0kghIaHACSh+uBMEHkKRqEG5IWsJbsa/32ysaRvYOSiAef FUnhziV4uBsQImk3NT5NArYb2N5MztU6AsTLQGFcSzbO5r0xI7LXUckw6NJsoX4buuxbcb2HVEeY kQ/SzlNJogk9hBJR8t0SEQK/bNOj1rZZZC/LZVA43SrUK49DLC4L9IHaBY4hKthckv/7RTL/MS4O 7LEiLg5ywG6aW4y7dm9eZK/37pMXuljqMtmu01Et7/KppNhzBUmovFgbzTMMAZAkX4AogCEtTvPu BpG9WY17Fk444QQeOPE2KdBDhlk4aywQV2vcWslvP969cZ1WRz/tH4Z9p7cmKzw7sjdyUVaQs7PP PnuyWag2xNfiHB7uE/a8/cQb1HAsJ1BlmP+znvUsJz3cD7eWbuc3uhFkLy8LhCWUKceoqqN74AMf 6EdpFBhf5pxi72AlVFVeqrEvWc+cZIc4RRMMuacws6HexeZI9gYj9S38s5ogpfcIO71oq7nvKWTI McccI+ozGe00SYrl4i2ahx12mMJCDyJb29ww28Xhz5/s3WvKp8tupyQ7P1tT/ejwEVIJajU6AD4k OJx2c3iEewhCmzhJVteBz5TsDYOaJHp54uM6YBibSX5V0V0c+Cifehl5QUK9FMNfnWIOfFoojYBt GZdwivCrFpgscWj+ws+Z7N/3vvfFXWYeuTEERy6Nj4y0aLSw/FFPU5KLwaadCTjVMOT5kr1Ok65i rddyj41zkbH5XHgapCvNtq8C+BzUjQmN0Cs/wvnRUjiNnQBNd2/YBIcccoiQslkR/zzJHm/FbeO+ PcI8dC7nZ5fuXTdV+u+s7ClRG5iRgII5wFKtPG7WZK/3cFoRTmsJqAbUo9h0WIp5H1gxS9LZSU5+ 2L6v1FHcXZqUOLQfD0YQNr9HbC8voLsZZrIh5kn2KZw27iYHoAYLYL3XNjF/CgyFP2+Cu+Ja6ScK OKBpb2BG683SldlbxeZO9roo+gLZzOHoO4IRAVq90Z1Gd9ZZZ+mkI/r2KG8fi1Qe7iB4JeXtSRsa 5u/c4cRJRBe3wqzIXoikE2mPfexjAXV8t2KlUoedqzOHsDpMny6ABUPvOfBjbuOywzk8VDnpW3D5 efrqlk7RBpC9fltvFOVk1RyWmZBxAt9dWmKK00oTQfYiFwD8Nvz8oOZIyC13Evdy5G/zOx0BYLlG V99MyB7oJX9RnIDwXPe61004DoieMhUJsDyIyqyGo9TD5p8+KduqjafPggVpfxMnhh1ICJtB9gZJ JjD51psCrWGuI3rEDohAMYLL6b0oH1AfUhdbKmYr7WZ+XQF/07t250D2bCJTZFrMBjSEYs8wpiHT lnlP4sA8Oc85EklvOUpkwuJSfepTn7p2dSltAwAk7EnaxU05jpF6vjFkr8d8aSC0ajzmQJ5X8PUA meJB/AnLFeFL1JPzoP5ozu2rfDwpYydvMxW3952HHIq4SadEUXMg+0BJHHmqnT+nz8ccSomDqExX 3F9kAud2zBGy6xSJixUL7qLJqtoksjcpwHNR2UTrZBOU0xCqu9GNbhT7FZhXFeAUVD9SAmv1iBv3 O+JH9j70S64GIxQ1IBy1U4DDWsgeAsI5wglK64GDCKcj5+PkFQkvnyq7ie+TwBecExcTAlOPPfbY yHEufGs+Ql7fJMnhuAE35GyPGZbZMLI3g/KlcapRCxcjZ9Y4v1R6B604+av6nowddq1n8cJfAdt2 M/4VN3ZQX1PnWYnub7H7g5gJc2jC0mvP/e5d6aI6OYonJnuBNFhbuoZYh2n1V7rSlXyg9TiFQU9O itItb3nLCIiEm4QPD2J/0kknzcpydmaMnD/99NPXuN8GNr15ZG/AgDTykwSYjwuntgxsV2d4ZW4O +V/7r27z6vkXzV/GFR/AFlJBclwpGQECCgC95CCQDZaVizvI84EAqpcxw5MUQ/adYtRGInvCWWYL YJuBpHWhj8DqDIdTwzzIUEKAGyB7OJG6D0LxzBUK95n3HqQX/3UUgk00cIsXfB330X95WcIA2dxn I8k+ptseot/aajOcfdF7aVs7YlAL6Q/CFsKp56IDUkkgP1xArm6/uMjNf8MG9vBmRRpPYpMkpAyj rgAL5X7vZPeOQfYilCLpYDzweW5Ltg8XTIy0lpiYYi8BpjNXwm+hdJHTNjLewvaoNvx51ndWN5QY gmgcjrotyLC2wWRvoxCVHHszhFWQFgAyInbQQDVCm20SsX2OlBqCi7dCGAIFI0DF4/Yu/4LzxY1O HtGBZGCcOVNh+AjjUSZyAWU+xcmegRP3yULghTMffvjh0TFBCkHJcRedQw2hDoi3XQxbhNqEE2RW yafSlErOJXhE1EbmJM+82GaTvcklKMTMkIrrOrHXvMCOjtaiyiMtL79UBO1JJegrtQUoALDwmVYc oYHQL19vd7vbhSBlTBKSyWVAKxbcwkjmKUjOwpzdVpzs+dh1j+hO94sISfSLsCUHk3xwZgEAFgnI 4mGgccUbDi4A6hPvEFYPp+YMA93YVhaodtoiZ6pnW2bjyd7Mkp8QMhbXurLx5a+ujR7Z+NL1mwQ1 TFtsD6AIebBvXeSmQiol7Z1Kj6TDEqYV+52GGTk/YfhxrZLPnQZeluyT8iKwIs2DRDdxv7hMOAFe xiOQGY+OMEcJMGE0IP34lxNNlIK5HVZ12g+KpM9zCBLN32atJbeB7GOQhAbsdz4xm0unHj2wZsm9 RKgkJDJA+ZE6Rn6ueBGR+6qwz4jHZ17ucBPQlpk2fmFqgpR96HShYFmyd1BKKkEaR4318LboWOQj EpIY91JG3ptQAWgxPnNkireF588KuoslECDEy0ATWfslNq1k3LXA9pC9kcusQvpxF835tDPKF5SS AmzIt2TS63msH14Q17mhFl+JGkyBGpygOzQW4WvxdLqZuzjZBwBRI3swXiL7tCmxLaaKU4n+JWdZ 1806WXn9pIxgqYG/bN+zVWRveYTKcLEwhueJ8C9uID4hKD1pyXpM3CrS+BHv4a5nGsQN7QHvxwM8 T2f+Ot0yUJbsScKIpaWSpL5hT+GNC+c2PEyeHFCfUKvgU3SBuenzqfO8j8IHoAxbpthX9962kX2M jXML7ip4ZoZJSxcpn/ynT6Zk4az3AMarLnq8zC/As+rruAAtlKusU9LIsmSvP5G+2oRT1HEx0QeB TWJkEbDIJZEUExEKgpGnP4mQKbGlUSHkIfbbdNnp4ti3k+yNU8CMPC1Sms3k1rHMbacYGpYZVpRe 9SAndwDKcXylth17eLaLkz2sIVKMiJznXwjrAxj5qle9Ko2atSLiyAmFTnHE+ZM2vCTDCvrIjSJ2 eHhtM69ha8k+5l0CFswbPDar/DY99gRqh1wI8u106mZpQ8XJXitUFT5U8YIIHjzJsD/11FN7DHNd r3BDMAx5TLcgFCdnDrec7E0BD5mwGRsx4LHdMwbZx6w6LQOuF0nRQwdZ17qAV52GhgTP4ba8ySZh bffbJ2Nv7A9C4mjIbGOmvui3uLh+94wxAw4UUpKZ9JFQZP6PiEBHJEGSUqGA8ebf4VI93H6yj5ly slWcPCnkIHdck7x79vIMQHycaGCJcNEJwqvmQdwL07JXyN5aysoEVRIZIqRHGIyF3wsLvBtjbQY4 GkQ90v646Dg+eUn34BTtIbKP1QXvC26RFQN+Q+cXZLYHV31vDplz0ekghxqgG04xOu0fV2jtwWfP kb01ZnmKD33ta18LQXFrpa1A+d+Da7+nhozOiXcxTsKfKfYHH3zwnhp+bbB7kexjCuBPtH1JHWwF GyJiY/byVtjWsbPmJOSTdt1RH3C93D7bOtL8ce1dso85crjKVmDsubsS8cN48uduV3LmM8CbeNe7 3lUQIf+C9AfS+8y8w5N1b6+TfUy0MzBcOI5YyvQC4KX/T7YAu4bGmAHh9JKaEe9igbF1UY8RSrR7 YgZ2ZP/NnQDdkc6Jws+RK3Or29cwgt0u2bgZkJ5Afl5CXoYy9rz8ZelI/8aNZbwO78j+W+ZWHjuu HQqho+yOuPDzyaniGNx4C7CrudQMsOExbgQPshWg5dqiyM+7exZnYL8djrVqWzhSKglEnHVlBaSY 803fRsL7ZbZwTsE5pU0fS/SfGi8igy9WAlJZMSj22zGu8UaxI/uWuSXq6YoOk0t9R/N3SCtdxjbe qoxa89aQPbery9HiHnHHLsj5lLBk1Ancgsp3ZJ+7iDJGSFnp5IazpSR/pMTbxGcLyN7xKikVnJCV 2Ae1O0sjsdcmrsW6+rwj+24zL68ztR8LkN+SqkzIXP7yl+9WxbpLby7ZC7ND6uYf85Vdm+XF5yox 0bpndPPa35F9nzWTHIaTD9ond708tvaf0O50lW2fGid8ZxPJHp2bbSH0snfAWd0dlu4OnXDmtqep HdkPWst3vvOdYD8psSiZ4vwF/McdD3N+NojsoXSyJJDwPkiXgr3ysOzZQPqCm2pH9gUmE+ZP7Sf/ RYlIg0fzdN4jclrP8Jk/2cuJIGjCNWEuC3DHhtybnp14L7iXdmRfcDL3uYvSfuVPsl9dX0U0pVT2 JZsZVtdsyZ7FRG8ygXG7luy69Pm4OGz3lJ2BHdmXnc9v1kYpZYhSAeSZAv6JCbeJZbmNK5/W+8yK 7MVEnHXWWWecccaZZ57pum4Xh7jth64UCcJ3z0gzsCP7kSb2m9VKfe/KGvTPBSAEwL09IACJ/Rz8 rF75Pm4nvrX2OZC9aZFdG7W7VEO+cGmtxA7xie5k+zQ7YUf208zzPrElxBr6d9elyB9ZnBj/vADu jZB8bkovwLrI/sMf/jDehwlKm896B4KCPxlBJiHuBdg9k83Ajuwnm+r/a0hKdixA9ut3vetdWICY E1KOIQCsxguqN8OO0bnJyF7wnBT6EukS6Uhd/n/MzhgZOxL+S60/JbMbYyY3t84d2a957T7xiU/A /9/2trchDCxAvidk77pYKgBh6IpY0GDZLiJ7WWIdNLrxjW9ctmb3WwE1DAQmB9Q0HFn9L3OZy2Bq RLqbsOLarN2z9hnYkf3al+D/OuDSaGg2mvEIUPEZ2VCGhZo7TIYXeDi0HAoAE/buN4hBHuHjjjsu bqfs97BZIHDSUVLdXUDkL3Nd/1Xu0k6HYdyN5YpLbGts5aVf//f4Wzuyn+8GIPlRVDzoykOcClBF WsgedUkd4VS5x+f4685sJoOAFk+DCo1oHTFeNXLoOo3Aoy0hCYQ2U5xv0l+fzz77bB/caeV1R1z1 BBvCj4CU/iL4ISxpvouxXT3bkf0mrSeCR/loj1+QpA2CRIfErAckLkAdKaL5A//38RUjoDJ4+A4U wA7QfBA2CqdQIG92uNc9mkhPsBg1sMk9LrHFXKgebrlD4dJXgOLiluvds1kzsCP7zVqv5b1FvUgU 0WIKuIA7Mz1BxugZR/BXAde2p+uW0H88uMBBBx2EelG1sILgEf56aBMIG8Gj/HW5G7dheeY3hh3Z z29Ndj3azcDIM7BLqjXyBO+q383A/GZgR/bzW5Ndj3YzMPIM7Mh+5AneVb+bgfnNwI7s57cmux7t ZmDkGdiR/cgTvKt+NwPzm4H/D9S1ro0yJHvyAAAAAElFTkSuQmCC ------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAbcAAAHACAMAAAAWbtagAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAKUUExURcnArsnCs8zMzMvLy8nAr8rKysnJycjIyMfHx8XFxbi4uKSkpJKSkoeHh4GB gYCAgIKCgoaGho6Ojp+fn7W1tcTExL29vZqamnBwcFFRUTU1NR8fHxcXFxoaGh0dHTAwMEpKSmdn Z7m5ucLCwo2NjVBQUCsrKxUVFSEhIUJCQl5eXnR0dH5+fnd3d2RkZElJSScnJxMTE0ZGRn19fba2 tqqqqlJSUhISEjw8PHp6ep2dna+vr7y8vL6+vrOzs6KiooWFhUxMTENDQygoKAkJCTMzM4qKirS0 tMPDw8bGxrq6ug8PDyIiInJycnFxcQoKCmpqaoODgw4ODmFhYb+/v25ubiAgIJubmzk5OQwMDGBg YMHBwXt7ex4eHpWVlWlpaZOTkyoqKo+Pj39/f0RERHx8fJGRkSUlJaGhoXV1dVhYWFlZWV1dXbCw sHZ2dkdHRykpKSwsLJycnD8/PwICAqCgoDo6OhAQEIyMjKampgAAAAEBAQcHB8DAwJiYmFRUVIiI iGtrazY2NoSEhC4uLnl5eRgYGAMDA1VVVTc3N6mpqaysrDs7O6Ojo6ioqDExMTIyMq6urpaWliQk JJmZmQYGBgsLC2xsbGJiYltbW7Kysjg4OBYWFg0NDS0tLU9PT2ZmZldXVy8vL7e3t21tbSMjI3Nz cyYmJmNjYxkZGaWlpa2trbGxsXh4eBEREUBAQJ6enru7u6enp2hoaFNTUwUFBZSUlIuLi1paWhQU FEFBQQQEBJeXl6urq5CQkFZWVj09PRwcHF9fXxsbGz4+Pm9vb0VFRU1NTWVlZU5OTkhISAgICDQ0 NImJiUtLS1xcXMe/rsW9rMK5qL+2pb21pL20o761pMC4p8S8q8nBssjArwAAAGIcFpgAAADcdFJO U/////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////wCsvl83AAAA CXBIWXMAACHVAAAh1QEEnLSdAABoB0lEQVR4Xu29u5Hsyg4teN92YdQnjAMUaQKFiaABL+KoVMeB kijSgJp44tACRtCacWfWApCZyA9ZrOru3dV97upqMhNAfkHkj5/8z3/+x5//4sfhP//V24/Ev0Nv u/x+E3693vb9Ps9dN8/zvf9Fyvvletvv3TSM24bfNkzr/GsU96v1ts/TuI3T2s34W8Xd7b9Ddb9Z b/2ybVPX96qqfe/nCVZ3/xWK+7162+fxNqBP89j7aRt/hcn9Wr3t3XZbawVRm8t/9fau2Pd1G+/i Er/Dfdh+geJ+q711o6qtBDSGtnL98U3lr9Tb/meG2krVmH+nxXXq/rn4nfYGk4pTtT0AGjPancb4 sy3ud9pbl7qwvVsiwuBy727Tz1bbb9QbzGocYufWT7eISNyHbTbnD8WvtLfutlJ9gn4wpd1um9ib 0O8/3eB+o95gTX3Uyn283Zb5Pnc4uxHmsDWHmz8Gv09v+5/+NpkbHsyzb2wT77A7t3jSbTDJH4zf aG/dzQ3z503trF+GIVohusDtZzeUv3FcgmbSnEAHvTVuvGHoki9d/jD8Rnsbt7gcssP4bhvv48ww Nq+9pb2e8lPw6/QG7dwGcwP7ioEkurjbOHXewPb1Z88EfmM7eRucYVFvii3Ou4nuv3p7M/RbtDcY 37ptw7IuA7q5rUv63P+rt3fDvo3mIvb7nT1bz/HJ5uyw2zqqlbolHOfrEVN9Hb9Ub3W17AuayjQU gR12955/RFh1lgr9ahUyEV5LH8Iv0JtUdvrJeFIYQHTohCDN6/Zp7O45TH9kisjXgQ++fPCGxK+y N9jKjtrPFo3NiOS5Ba+3bZhNXyVEfdH6+Ps8ML69G8dt/ODs8XfojQqjyrTiV/9gyW73T307Ccp9 G1T4AKq8T9WZYp+nbeqmjz4q8VP1hmKHn1eZYuNEQCoGF/ew3imwwtxGoRH7sq0mXMBHFFvO8P8h SCT3ZRu6fR7ltu4Hov3p9iYNo1VzBBrKUB1cTh7recA+jtpMMmz4b0OU93GtEbh60ERO+77w/uAH tPYD9YaSamFpaJXK1N/FReOdejO4x7j29bZE6QD4DrQH1QXdhf9XsPfLuMzduKANQBx7P8uw8qXo fqi9oRJrM0vggz9WHfeFq1zAGB/i2v/043Y0KgFMgeFfwAnDh/u7fZ4xHJmHccQACUoct2Exw3sW P09vKGXD0GJty6Hb0mr/fu+WaVq4rhywD7fYu2kwCSlIrhpqdoxAonkeGvg+Dju6uG2a58U9UfEU fo7eqC/9nVWtYblxMTJVr++g9j98JraFCxGL2WksPv6ncN+WPzJZQa5Eh0Z/Bj/M3mBpVn8AnOar KnyebC5Q1gn8mMnZoMSHK6LQuEksGABUZ1E9BwuA+dsd41mbS86vPcv5A/TGqtZfu09TmnGCQDds a/s9RVTbVi6VJEj4VioFQl+nOXsK+wATm8LEe58GieHJWH6MvZVKa9RtRoJ29L5NqhCpY0zk/AoX wuhP3e7kUFOAl4cp+9z9uWOURCf++MrQ8zH9CL2heLnWkrtVpUrrptvQlcu3XK3ARNzQ1EcGSAQh nvMAL48wcfUMMikJLe59LTP6CG+tN5SFxTloH7MaNXi5WV9bjBWC2uoWjOKajaQFdFH6qHKPg2rO 8vkE+okD3r0bZIHgPuio8olI3t/ealNrVWJONmc3cYbUiWH0924d4F3jxK2Mpo62pgAkeoaNL58A 5Tt5J0gUxs6uY5NirEt4Z71JQdrtIxzi9kxFRplpYNs4DgPmuhvML2lNofH4MIUXCN6c453PNnIA BpTLfZ8HmN3O97owDXd34x/jbfUmhThoIDNQwqRawlDdNBLT0nmltWQbtJZYDdUc/q9X/b6OuKD4 XtDKVTno8bY8YblvqjfTmlXLc0Ao/TnUZuZORC5ehHdenj0r4nmbg7Vx7t3x7gXfIFr5zsLVWN5O b8i45r3SWqgy/AsrnA2B9ggXRCKOZRscaI45jwV4iH1C+3gfOZOb+RjunO4/PcR72htqIKuYVi3Z +axyT6HBcNSfHoKbUIf3Rrcg9xFPDVFU9M4XTHZ5kfLPn+X6yyZvqjdfJ3X9OBhTTup24kchj+iX wMAxAjj0ZzCbc0YDl/8VQLeGmUCPqeZdGsvLzwa+md6kcE5rdQUl3jGcWB4iOcXlOIVUwfHeBwia I2o9ldhnzgCmbRqmudd28hrez94ujEZCTZpk5VY45zE9AzgFs5TN/AeevLW06WfPxdKGVkDCgHLZ 78OIqQpn4ddU90Z6kwyHkb+UNbou4lxUuE4k+PVXoqAmr7k8M/ekWQFKMy8T547DgGkIn1BqaGXm PKCfxnV94lbce9kblzWacOToVIccs1D0GCE4Mz5RERwK3pmocKNAcqvJ7f06yHf4llU/yjfFp4E8 dr5wwgXLhk4P8VZ6q7Sm/ngs2RmhYl5ACpPHXsQVvQX9BDC5foXSVupQwFtL1Vfd4NPmc+ajC7VO D/EmepP8FxV3UklgJe6RXEm3QHaq2ETgRbSEAJLDvyE5zdUNt/ITbvfJvhlWqwdDycs6I95Cb1KU aGyuMgqPeguSQGg4xJ8ieSOphPFLFOToLeiCikDA2LL3tgT8qttUUVH+fX3yAebv15teZo9GkUf1 dRjsQXyCIxlPh/s0qgPZBcYmBTOglFLQfpGpmpU6oa9uFZ7jPdpJNx4Rh1WAEiPrCA8FIizeeA5Q f0ZqwPPpTv4qMLUTlJPrAzPt9KyZw1Nae5d2Mi90jcDn2f6LIDnFnIGiTOdLyDyAkwNK7lXwgbFM EfCIn+d1azSVz+Jb9caioG1PN2vU4WvrrObAK9hNyiGM1xLJI4o+deSc5I2ebvQLjWhM5m7t5vCY kt5v09K/jDfo31w1eIDsOYU3oc1w1HawFpqSB8FdAiVmKMYKB+z9ggnAbUtPuPZD/ZHFZ/G9eoOx FcNI8/kqKdz6O0GbS2oIGs7hlPyC6PbE3FPAR9CjlUzftNEPFumD7to6oszzx784+516Y94btXGJ 5GtKoIRS0PwlWdAkltS2UCLD4UTECXObtXA83DfqbBu3W3oweZ9GPqz8EXyzvYUy69nVgKIiFMiD R5wGK5k+DudOYtGjjsQ4QHobCOiptmGGytyn1fePfx3s2/SGou27lLNREUIyemTD0RA9IH4pNMUy P8Ejt9QC+JbrVK0X9+5bYa/hG+2tGJDEylC0mARcnpWLddOyrPeZ3y3kk1srX3KjD5XZCWkVMp+g 7EheRR5w0URnFnWeTg7wHHvGqCOUUFpJenmVGpHAJK7S5XP4Fr1JKbzaDqtI3BlXAZL+EuhZh2WF 3oZlXiaoZeQT5d04Sdt174b5jpHe/T5BnbN8T2GY1iV7fDmLEWiQDIGcsemZR9dMdjQ3EUGBjUZ0 /hs4r+D72kkWJsdBDSnIPBBI5FVftu+GhU8ld+MCla3DOKPtMr2NQ3efoKlZeNTZhHMOxJenpD4l 5xyHwFh1dibYB77mug6YBCzZPdFZ3w94Hd+kN+vagFAVeX0kUk4/gkmtgzSEUA9byGmiqpZpWOdh mmbRGzQKc0S7Oa2wSNRmRy0CjXSOk1YOjg0R6C0qiHq7yYASp6gpnHtvlK/gr+tNsmttZFXqRjUQ iQyX/hTeTazjIr3ZtFFv48qPKUBDA//U3qA1dGrgwQrW+zDwwQ4JasiiS/DkQkTzIEQ5+A/tySRg 2wZ+FYB3dYwsA5MfpjeiGJFkyOogl/O+IJZA7zrM1IK2k5j+TujboMlh66A01RvbzZX9HTQGe+sm 9x2TIoGQSiR7fu5xWNO75TAr6Gu5733PcaVbT8YM7qfpDR20lZCQ0vu6qRAkjpGY0BtPaP5gUzQr 6AqnVTo3MtmZ0Rhxnlc0oxjEQIsahUWDUyu1xHWnFjANsJKqvamCpKcLd3b2H2dvzGxjRGKItSGO om5OqioyVz5y33UYiEAlGIFg2LgsbDIxxhR742CE/RvfOJ3ZgFLXErTGaYIKiASp6IS9RZXQ3qA3 +mcYXJps98OP699MbbGcruA1CqIGEiIPwe3AfUzvs1CzfosgwYiBV8qU0SmMqqdaxFHgzMaTqjfi zhZTXAT61x+kN2RV15HrsgeAI0wnEUgOpZ9o0Z5BHt58ONXxkhL+Dc6J+WKaq6Fbs9YR9rYlvf2k +Rszmsb/Ai0ujq7cCQWxKXNIfgUSFQ4WpYs5EB3pCLO9PErsbB1lSUv6N+v4oNaftl5yXu7AdVIN UgBIRk2ul/Fq+EYm/PrkPkFd6FfnBSOUNJ7sp/EnrU+m8X8sZKQ4l6DwCjSUcBpsI8UuC10d3OKN h8gU5D5BjDc4fEKOpr8m+Ng4jUqgM7iB84H0oZJwA+4DqvtremNRrKRHBVY4rjhxOAuQ8+ZpGDiO BJZhwhSgo6/DkHHFHHu+wycrl1wkwdTNZC2O42Q8pyEFkqNiuuhuZ8cPu3G4ImQ2k+ljYS/is/RG tbR+DtVsW/2+0MFRSgKe1GArMMTv5kW/T4JJHOwNk29MCjbOC7p1xvh/njhh49SbLw4v4ctBDohd EnDneMzRogFqcAZ+BI9am5IuYW5oOvPKeRafbG98BKbrkKkiV/Qel5+o6EI4kibACzLBKbYES6Ob 026a2gijo95EmZi3ydIy9KZSevRxHYPMWiBR4BIP3//15ccF61/d5/cTZK5fX9rX8Sl6Y+Kw/n4N bcJtG1d7tyFkzVlbKF88GcSXkwyBoz/z1ODaCE8bj8O0yqwa82/oDZbFlUva2zJN0Btm3ZQC61n4 fDSzAYOzyXYT+3rTWxAmcSh4hk+zN36Blrcr1m6eu2Xg8xS8Ox+gavPFjG46svLDI34jZrwSjtlD Oao3afwm3gO4rxMys1I53QQy7G3hZzupN7XH6st4IWl/Dt42lOsFFhk7NhWyYyantl/ek3sKn6O3 /Q+1NrmvFfX85ou16ThUfdsBKrFGuJOoZH0SYxO6uYbFdnKehwl6AwMUsTeIbWuQlUtfosTBog4p FCklAUHBVRhxuh0827rza3ymtmhxL+CT9IYmfeK3TB1ogGHYlKktuenKfQmVzxHoDP/GEifVsK4T FYKqm9aug71hWDJu88xvLHfUG21yuq2Z7AegCSvUzSM/AyZaKTXTQ21yQSlQPa/p7uN6Q7r8xtxa X197J1vT4y+tkqSiJRz6zBkpcOSyFeZl0jtwsD1ZUuYgkvcDhAGFoeXE1T7zdjhIk8nmaeQoElWv Ujy9ABQ36gZYQS9SEUIm34K+PPv+DHvbV4xrmxnoJ/kWTvsOQF5q8QXSSYXkcILBGQ1I590J9ODf 0TJ2AUTnc1F4cyiz4K/8hFs+rsbo1X/WjQFeVdwn6I1fvCmNTXIDjUFxS3UHgFBX8Cd6gtBaDADk A85L0LhipC7qIpWakwvAR4ISu2njNxO1Kdx36fExHhJeAmruFdV9WG98kFofd7fkmUl1Ef4T1Aor W0TmIUqC+C1U+Bc4htIi500AzfG9ADbYE9/0DlpjPmNe6/7lCj5ub+V2NH23dmkVZ++3k6/iemjt a3GsUKlsdv4SSOQhBT279OB0PvMqxR8PMPPNfJvRLmU9WEh3lV/Hx+1N7xPGxLkCrjsvGzBd0fyV BaT/pOhNYoFMxnvgpvc8jnNuiEOg7ipAk19KoZvFnNY8LfAif1Z5H9ZbX3wBn0963rK7S/KsqZYm FKksWouicHQ49RdOHuaXU8kzkBz+A8wtJ+/OhFrw/CP3ASiSib3SUn5Ub3xFwV8r+vqJ35keJDM4 g+Y55bwsalWuSkJhVJzafAV5tYijeE4h9SoOYi8gLD2wBp+zuI/pDUMld3eXndtw4+69mb3tk+vh fDnodn44PTf606FGTs4kD0IcwYnnTv0pvFeOkXMVeYDge7aV/Li93f1LQ+zsbmO+ISWIszyFeopn yk/ZR/LGL8TgzQPXYp7iyHR7r6CQNRGjRr9zBNCXU/J53gV8VG/c3tWApGe0kh13Ovd6o27ZLcec VuVwUF6LXXOSu2B4GOuI7XFFRlFKXoz9WOzpWdxH9ZY94NJjLDnJszBuPMmGMt6dzHNOX/ivC6WE Ns+ToouO8E8kkRrgCdudC9SUJppiIVaiEkgEdcnx2bHJR/u30T0vza0ox32v7G1f/BTOsl0VB3A0 V6QKlViNBj3GeBRG4QXUbZTMY0d1BtCXUyoYO0lF15MN5UftbbO3lnHgR4zYsdHecr1hzHmlUEeQ YB8JG05lHJmfnkgoJU8hwi5EcOKsTnUEckDux5jyGdV9UG/7NpmLCyc3eYWIT3jWevOIpcn+CZz1 14Jj8qBS5grU4LQjkVwBBaUWeIAyhadQB1a3XP+XVfdRe7vF9xP2VZ8QtP7NXz5ebyelzVnwkXAi nzNbgmeBjaenpqAjwtkUCTBmFPPy0ZE5FZ7wjLl9gr1pcjtG+7ebPqQAe1tnv2apevN5rArQoCSA l7HPZAnlOyk68a+/QEgnQeQL0TjBq0g+PWXc5Epo0YCMHD1P3dL5qL3FcYnsj+0wKpnArE7HJQfF OKSfIgTC+Tx8yX2c2nmIOvzDFEDQn+MFQsIzY8qP6W3/M6T950xhhkHJlOG+PZa1jo4O1rcu+uUD +55Bp2fOz+dulrPKziTLTes7ZXEuCpugFaHsIHQoDBgvhilwFhSIbCcnzpzhuMcwoWcM7qP2tsZH Bee1U1CBS+e+vtiP4SmOWWZyw8YXrde145vz8tbuMizLBDVyl991mvVBOj4aos9bLXwkY6ZsfIc+ VEqol0f1Q36SaUi3InCBcEq+REvIPJm34Ig/0Ty3vUFkEx/V22xfvkGCHIngT+dvPgPzxupmBvnF MWgHyrOnFwc+5QHlwLTm+T7fvN74jqHobR4GOPnkqr1PWtZEDuXiGB0JySOujEef/krG18PSY61d U91H9QZbKpvlcv7GO3SaLdrbMk8wunlaeEuKb4Yukz0MB4i9DVFv9EFv60S5GXrjK6MVQl2fIOdn PvGchgdT+PokNsBGBQ426EaU22s4SHcgHhUVZ6QyHHwYvJGQInap/zV740Yh5gzw6yXMRz/GZa6Z Tw+PNK9p417M3TYM8EgzuECTmb3xc+AihZYUQt048pnxgFDoAPUrKTKcRHA2SCUSPZNY+F0EPtaH 88Tn1TcMm6dx4Gc2eMHhUuRJ2oVxHLmYLhck3yJnF7AyHMrIWDTGGn9Jb0jmzq+X+uRkQpAysGP2 FrPZTXwJhg+ghqeF0WXp2/KzPN7o9Sb2hnZylq0s2L9RBMhq86jyE5xEWyPq5tFTcw+8fJWAT81q 7mj+sCEtBzVBFguC/KNYFFi0qceACv8jOwUCZZSXFYro1X95Z6SP2psMFs1puA+T/5J3b7tlM1/Q G/OMK5TtJJ9IlasR5ZxnvkfPMzkbG5jQTqKZJIUB4/OOZaETlINjJdIKE2mFo6YjP6x3akVy12le eNnxXQQWaWVuqT5+2EZEVavslVHKFd2DGB6rgXSNPfwrqLYrqvuw3v7cR9lLyXyG4OUk4CaZF3Qo JfKOC3CaOPKXF9NAW6FqDjW7YZpQJprW0q2sGGiWl6uoutG/aYFxTCUvECUigvRhkBIWgF0tTWXe ZNLSyVOzE0bC/O4Qrjoqaetoh2wYKQAR5hcalU886EdxbhwWF8Vw+Fv2xmFH/m2A3LOGx4KIWa8z dMzdCohfaJhEaDev32kic1YGlCVlV37o0oGq2q16E6eSeEAyl554zKWTvWFoASdaCA6y6Ea/u6Cf owwvw2hm2k6i6yZlHTkigdbDdNZHH5O7OPn+eDv5p1/4bKt5HUjaO2slPxMonxbZH9twEk2xQIzM SioRaG8c+lr/hkYPmlQVoWHEFAfOeRQNwSjZkOq4hMpmh2eNxW2GOl2dIAGfKHu4Czb3cXtDS8mH kluJ7bDFxrX1ldB0iroIEFo4JAF1Jb93CtS/yLehoBCcl45vJEMb08i3kdmhwZwgpGPndQCkFSUX OiWV352SvpuNrUVapgRcUBrwGXrjo6/DvVQcp+CLe2foKnxRGsUqoBI46q+Fx5E0wEBZwJ5tuT4H KQtDaLk5G5NVIm2+5RB6AhXl9+dJ0OZ9lakbtav+HDG1S4r7hP4Nf/1kX3vzafLlKl5YhpeqL4dE ofHgeBBhIjuB6BSH+XhyMg1Cg/KZiDFnSfwlvSk6zJDt/VIqEn9oPW+xHbeMcTyJiQ1cmK4JE0Mu GXzBP5hLBslohSJDCDjHdyKKmkxec3l+dMPh6TlOmV8Ml7A4L/Vwn6U3dnLbuMx9j2T7Hq39dtPh sAeGnuwf4Bgn6awx8NdOGh1+h14BLm4kzxFat/KN7A6CC9+H2BAgGa/hVBHxWIhp5YiTyJkACeHf UMl8GIhRIo0xuySuGNzn6E1SwvBKXj9Bfy3npLWYp26krjaud9G3ybcFBfKaPL8pyLcJoR928jOX wKhEmTSZoCufQgk4iqNinyMGDijDw1/J5AiNwOfhyv2cT7M3YL+vy6SbeU5VmybndVoGzH9kBQHg ZNok9fMGGDd3ExdOuCDJFT/93AHVjGbTRam/U2QJp6M40sGh9JfgbUO5KSgv1sgUDlfZypuCwgI6 ucpEjtddt+h0lDHbv/4C1BlokfG39YaEuTYug64m0NTBmvg1EfFy2mOLB6o3TIj44QrMemRQjTmt 6I0LEBSUqspgRc1OOOZkQ+4rEIPaKf4iZH1S5mt83wENvGQb8zUUQJZSgIE39mWyxpkbZtuYOTQr w0dc48Lc+xP11ngdWLOXMrlOM0oavgIjbR8I4ha9oSObBnR8s7aTUJfoz8RZZ89C0i5qKdF4KJiV P1KC3mZObuQ7RMwiV+VmubsryoS6MKWTpXJpN9I9qhIWa0xOHOaDwT2wuc/UW8xCDbDI5ZIBN9ni ehCGIWwVO7lpSqXM/MIIVaT6ghfSXBziehJGmXJnPMREyDn6jZqfruFMOEUu6yUL9IapNi6viV8n 1ZuC/LANsciNQvQVXP+66wcC9GMqENVf/CfCucJjg/s8vam5uWzpKcsbF+9wPdKF4QtNCsN/sSK5 kYWCrrw8cRjUSzdvcFHT6lcclLhJFiIP+NefPxgC4wTB3jCcGtlRa5OBUdgiKgXGjo0HeuWRK8ra PKjezpCSlhMPj0cmn6g3JhrxqBIaeFC+gh3LqMjSMw9OGbmFXCCE0HPwGUQ51Nt4XzBN0VmlrBWT BGC0PKLvW9BEjmhL5CIFsV0uizkm4FNiQ/k32klpjvOEBWXevhZ5MpmvyMGDDFURkdDTztAm8kND 0jSq3sTqzN5oYDAvnngjFbLsFZYUnUaV/Md42FB+mr1FcytyFtxXcnsJefzqyyLPPMnLc1sOjoxx hBVTHOhEmnI07E5vutQsU9Bp5f3CmfPOjjfqcQaKJMTdSDaSHjaUn6W38rtpZY4+H40UQFLqSerG quVOwgToDMemOf6IaR3aS3HbNMg8rQXkAkhXks7TlybsBJ/WTlbFJiESK24s8QOUAc2vJ89spEBa Jm/IRZ1P5YUQneKLp09DEZ/3ivuRwX2WvcWEqwIGAs+8t6+z5w6TUjYrpBhXfwkuYIP7CEnYXM9G kPBiMAfGoOnrL8K7M99f0lv6lFN2NkTvOqy64Ro3alvQWXQ8l5ZHcQ1SxGPwVLj1p249qqMJY8mJ B/XjaAxF5rmMbp21N7uIViqR9qCh/By9NafcpBV0GRrzuSbqjg5OxDO1tSJyCGycm5IZMXlass3w B6DsY/m1kw0eAyxQI1wWnTq8lLgfjCg/SW8pvZCsOBPUL49YzPE2ANcVRINnKGNyyFiFnHpxbIRv ipqs/movL7NRvn8+Y5pmudbrTwaOdCxSLJQuvhAR4KJpwFiZxIOG8nP0llKsc+cpqi/qTbwo7Lxy NU+kTJCn8G9QphIc2aGg1kIWPvwbarkTLKPcvJVlVcvyKo/08v4gbw7OsqyMS7GbszfaIxDCp1h4 FZHy5Xrjve0mYr5iXqSdlPsBLNYshdN1ZUVRjBhBCUfNZMRVBakIRCSqo5Spw+j9gCU8TS0YuNpl cziWjovI+tiWzMQZSfiPMEJGA8Tviecv53yKvRVpwuUzIFAC9IUuDYVDeTs6+FhNKPZjaCT+WCPR jyQiHgoYIEdR0Vs3dbjcbFoGy8NcO977ldtO4ZlJdzWeg1HnOVHfeQf3GXpzo5I8AxnI4o0OWUfm UyNcJ+brAtJOOkBQfwa6ki9HRm8KVcTj6ECNP+9V9GgnaVPQ26BzFzSQvGeh65Ao07Dwheigt6JU WVxXcN7BfUY7GZpJzZZlLj8F2JNsQLi7aifI6e8QynMSyVmGDH5P7AU7/3Y5KsG4RQRNhHbSbrYB vGmKhkMbDHTa0zIM1Cx8doeAsYZ/QfLgqD+D98vxS/WGyMslroSYiRbzAF70KGRGzyVa8tSXIOXZ INRMfREVCfbWdfpWLJ+OBEXeylv4iPmy8k4+2g+YGccuflfwJh5nGno7uynwGfZm6SS08/EkYiRw qLuONqMEjyeayiynB1DdWYgivP4LaR0WPqeM9lDeSQGBrSXfclinAX2brB9wWInxifCfQSP50w7u 43rL5tyhjOr0cJwa5CTuqegZq8QFnUXrk6cHA9RVpmRLxu4sR/6zqRSfetUpYCT4L34ehRcwylnW G3qjeepfOJ0i790y1Hn8PIS49azJ6FHhdxJ6VIZQSK+6p9AePZ5EplnWX0DuA85y3ba3fu4eLWxG uGYyz0SAy0/HN3/lEZOh4wejN34jARcnunqy5CEgjNKEgprohvsoUusELt/h5/1kIC+fh3Fgacya 5vAZpNYjxKSuSH4OV4M15c5spqU3fiBt21Y2HXN7P4cAMEVtWbInedUh88z1BeqGE1gZfkFvPHcj xtCzfB52vmFWxEGZronpQyiY9RUrtyktl6oq7QVIsLNZzUnRDvFcGErHf8lUG029TWOH2uNroHGT wEMUzaSe/NEgHlsnUbuSBSNdXqDeeOasp9NVhxHTOxlxi671mSC7B3SOl7WW0G4uY6ECtymV4Nka yv8igtfTFGdNXktvPb/h2o/jNk6NXW8yNB8rcSi4vH0DBXBcBp/aW9CbmCJax2WR8fW4Dp3wZC1z wNgaxPgctBZWYg9nQdarvY68o8tSUDh/cJqUngJRkHkCGnKl4LN6u/OzMTs/UIGAD+ohnwT4hJM7 5W/FTJUa0/mNLPRFexNbQguKUTbsEbqDdmlvIqCvUcuIWxXXxGdpjf9Bc75IGYRxyBWAey7QAkNY wCf1hlqkvRWfSWhD8pUOMcmI6KFD11wxVpaHnsTepOlcuMwAltyRw1AFQxB+m2aQdlLsTbo1aq5Y aHdpfY7WNA5ct9n8BqC3IBlAbTMu4yCGJ/U2cQFu3YrNlFqIzWSVqhJK8srHlLmQl+xNvqwAX7gD zteqMKyWnm6IBjmh0eRmbsvCPpHRllF/kq15HMwKQG0zclbuUI7/yT8RzoR3w2cZaaClN17oGH5z 08szlRNZM5kn2gLHHGjvVv2y3awrsNAGbIgPmuA8y3suk44bZUFC3nHhVm3LbKIBlp6cPl9riDCu 4DVLltNzZxGg8EZkdPO40E/qDY1E36OOMBtYjHQEplAnbpTIgCMJQWEFAiXjiMdT6nBASOnjY8gW 8lGXliKkqCfCyxRI8oc44gv9uFQtvUVAfeZqgRekJEGcJv/5yKOVXH6J5opxVw3NiD9GHBedHMeF 03xlkONSHetNuuYHlWGlCsnJORxiHjLuJyLG9zUaE7Dp0UR87o9LAg6ZuYD4lKO/AOfMERjHJSv1 BkkqjLntVkyAjdxGOeSq8Ih/jLOQGe+0SfgMtC0OecizYeeIswK0ECLMwkEVlosSDXvr0f8v/Erf MCwPDM6iF6RUs6QFoNREg/HCP2FnRw6ciEhgz3aeyQ+BUcdxpWbE5YXOSHH0gEMe/UKLEgnqV65m ooFab/s0ytaOG5R2WiHWa/NQJi1w6RvgDtL2z9NFmHQKIb4vVFmENCsp3VM8Em3zD0NYDmo02snp NmDq1o/l90Br9HmC4jHKYU4eAOE06FkEkfc31CYWZ+lFtHOXqHSlXIZj4h8hSISzJt9Aq51cx3Ht 5/Ch8mMcjrWK1PUUiA2Apb8cB+SIv2JsxNHLfTF3x3k8AkPE4IB3K8RrGajR0BvaBT6aq3o7qhrS 02gypFokTSjJMejEv/7MX6KgJXE7KeQJw7+ju9BUxp+D+SLRc6OwI3o+EEUMmf+wp6r0JoL7fdhk cVlIBzgYTRq1wcxypMj9jTBHQBP9dzRmeDh0JlwBeS6DJHbJCajoh2Vs2ZugG2/5hrMVtCgpqUZm jvJ3DIQI0T4I/FfVxks5AzPnMpjntcp5uyhtqoI8/B/2VbXeaGWsk30Z455FDUBIU8ggWWF64hOY L1Ecj1B+QTRkjNxj2fg7YD00c9gkFjCZIJp5k0d/kWK4rDeog48mQCf7fu80xwdIKYQ0C7RoCg1Q BouejAp4QXX83UZSwetUcxIzoxBvJEdmID9CLeIoRwqo+7d1Q3/PLTLW7rSdrGc1rTx6Gtwtkefx BfdsHmMvVxm0LHmJIq1kiivQE/kQJnq9nexH7gzWjRM/BWq0JmIzmeXC0lNXRKLm9ADShB4F1UG3 +jNQbd+huUZWFIeMQ0iIqngV4bAXr/RGc/uzd1MPBZ50ItWUpko/ngvBHGCe8hUUSZLfY21AmdML OXf5DtLl2SSiN4Mk3kClt2lkHtkSLW7L2QY0HX88SLoFSOqvjdOIvkNtBs1XkXNzGzUyo+Np+JBH E7hqXDLEDUvX22EFgdEaTXpUebbchP8Cjuy4cNayTNzy8XeRD6E1Y3WeBdGf83ESV8lW0JMI6joq acPegui0nVWPa+zVFY/6y91KuAAnGJ10hP/jkvwNND7VeBmuZIKseIc46qoa/Rv3lMWv3+KWiQ2U k+5TtMVIxb/+SrSDAN+ptuxqTXl051a2K1okeEcjJElHxa30tg/bzNdY+infzDlHGpbo2XyNxDOA r7+GZJta4mSo9DdgBmeFOMiwcuMvIfO0UQa8am/7n3nYpq7jPQEjNdFoMHyuvFtRUw7g8hw94f+7 1YZySzY8NF92jqcMjlZK1awcl9tJDJqWgY+Yd7rcdQDRW5kJAp5Ejr82yDDmoUwGDCW/t518uYdz 1ZBK3HIVOBo8Z3ozmZ0v3p1f2dVlV6eYQdhBBudM3Dw8HYkovvxZkguIJXf5a5AiWrRL0IAscUt1 hb3183ztWUTLDk4+Y8ntqRkuiJSgoAh/48wtQXPCg5zMlUHJLaYRHD06E0t/ikv29gedGx8uWTvM 986apKK10FRiWm0Iu5BJ2bOzuDw1MeCWpCUD3wbUis9SRMhqgxlYr8HSLVHobZ+7ZeRbi+Po97rM wJrz3VuBmE11xF+OSMiYlViGSw3B1yNk0hfB46AQICtHjuqLBEdLoOeoR8/1pg8o7/3MocmZwWXx A6X/DG3ZMsfRT4d43qBzA1ArzEwbWSFSzh1KfxMu4LV2cl+SlZ1e3TF5OLKseEaBQrTwAmWQ3P8W nZtAciN5ahTC0Ka2kGJSFCEv6a0f1gu1Ey85nwTcwVuknEOYhYTzwumZzv02aqsbyvBljPDqSXon BQfy7ESCHuSUlfQAvFpbJc/1dh94y41yKntUV0VTcZQ+6P7XwCEjA0Xex9waDSW/MjbNs70LK1tC yEvsfHeP2zzBv9gep3y1fRr1K2URVgeuNuTMw0Gxc73x8+lxHnBSUS6BHEZtMwMaXIswBU8y6noj tTVGlMM08zNP/IAHNCYfhOhu0B7flYW6lEyVQcEU4CcH5EU+F1N0Boecr/Vv3DWR75p2D+rJZ1zd jpKlmwMkx20IFEgS7zEoMWi25KjFoPUsS9gEYuIWW9xFB3rTHZoEEJqnld8c4Ee+VMeCVMoAR7ky ntz1u9UjZgFDvie3BxgSo2Y54dgjqCkEqe2AOZW5Ob2U/hqQi9hQhjyiJVyG1XRBBfLbOuu08gMs W9i5ji9DTzO1BwpVK9AossJ6XLK3fZmg3p5b506H0zegauBTsnkG4Iu/DKWfaIgBSnorc8vbG2IY 0UiFHdHQn23ctWpeB35weVxk32G0kct9Qcc2ioRYYV3cvA7oPCi519veT2E4eT7Fpd5C9D5tc3uS h2TD/gVJ0AeB27xJ8D1MLcJnl6ARUWO0IX57YBn4IQ+MP2Bvokx0dOjf+GXRld/0WdnFSciIVGoi +i7Zmw4nA47rqsy2oCI2pRKMjdMDQeDNzC1cuJJxHnR0yM2pOn6Qkl9CYqM5cxd22ht8ywIDZOPI Hcbk+ywMkqJwyLxX9Lbv1yrIIsapkewBKac0kIeDIxHeqHdTlB0FPzeJ3gWjxYEfhQABRoUTPwjB rfOhJ+7yubJx7KaZIukLlbHMLaDozYLn7eRC9WKYeyRtsDg9DhIP1R9hBCPmvEO8m7m5mcDFEnic BAHLccV5pX+DKeM4c4NOepVaQV7+TvGnhOBSjxwTPaCmGELAcCgE3613A4ocfhhZob3nSv/Wjxz8 z9uIqcDZI+bVcPIhsmwpIqlkeJjE8TX0PdCna2IJDEZ7BugCzXWIC3rDFJGH4b5jNn9SU5a5lG+f Y0fK6IJIjXAez8Qpcr7oozIfgrt0fVafBHf/Zm/YAuPk/4X+jfa2L3yM63x9OctmI89nxVDemUSF N2wm6yaHczQFJ9nim3GYOfqQ3ft6cQoX6GSIMusJVPm6FatFfw4Hhc/0xvXOjY9xzfwCZTsEqIy4 UfNlksFj50YIQwoopySorrcblaAOyiXKGa2U5le+WSvf8OOoX/bJ0a1QZa/5VebbnHjLBxlX2UaT L9Hku1+4KrigN5jZxg+8/tmn6lVTUuWHQ5FnSaagRa85qiAWxtFrEcNBzr8VWgepAN2oa5NUBRcn ufXRJCta0JbpjR9lnLgJ9sxv/t1JW0R4hBHWE3GLO9R6Aac3skW9eydG5yAh0Rv3M+eQIYFmTTeJ CmHhkIsUASqhd2wmi76CE29OtwF+o5GTNm5JyC8x8hubOEKceutkXdk2+BAvVCpfRxVxD0vgxN7+ Y06oJTiyr2Gr0npcSdvN/gZtjxmvq+EAJfCYXJfQjOntRpOClFW60K/od4a5LMkNcqAuEmByaAmT vYE2cYNoUxEUCAl+TpoBpUoRm/4Mj9vJXb7wKsOXcrcEWBo/G8+P7HboS+XzlJIXhyy1CsaKErlo ETDzvsMzkxXSY/aKdVsnrfdl5JY59/vGO6QzamyQ3b7Bgd7maVimsIsaAO8wzLLvTmVvhgv21m+Y bYup9f57odTjPGFSN8ca3HHh8Ilmi9vV9BVHBCj6i+7gU6j7IOPfDL9Ceeca5MovD6uLN0ipENQS BoqjbXwEvcG64OeWVfxA6izLzEM3o2rJYnAPjZtpaZIZkr396cb+z76OsLh7/MaTBOkX7siQh+67 Ca2lxPwcvGKOkaTe0dyAbCIgHxyWhlIGH/yE98ydGEUXaKT4uTN+VF9E0Izys7fTpLtOQsa88NSV Y8Wn8WQKDPYG0sovBC0DDhiyClPAN3MG6/BcQPkcFPKFpK6p4jIsunBCUj7ZN0HSG/KZZmnmwkGm cdQF6OvKu3NoN8mgCL/VDhsTM8QBAiIq0Aq10qO54df4ZOkhqwVnbwNUtk8L7G11Hy7Z++HWvIe6 7924BYuLKaG15h4NOPIk00q5ylYQ5JJCI48DP5osG9zZLtASOEbi0Ur6DVBNvJ/DXA4P2pgxluAT 5HyGHKbjNBfsDTkZb+M4bRN0O/G2t1Khye3wkYX7eAuKM6An7rplxRipY4stqhk412Q7bgOn0KgM MsnR7ryAqY+no7S/GTaJra+za5B9ZhrI4sNY8Lbx2/IyEERf5QYp0d72P/wS9nbjM+Zp+rbvy+3k 29gzdymKQKKiGpDYsmOcxNOMsRaNi49cUMp26UAXPqKlj/PVmOO8Kt5z9oaKkcxJFhNK/4fQDbcN F7W+qLH38/8JxaR325y98X/vOz4XZLe9QZrHIVSdhHd/RLeJLmKGg/Wwm4XS2Ipj8MShlfyTJbvi 0N5GzEHRfMIYG+UFSamSzPshLRo1Ml/ByxzLG0dPy3aTu2kJ+/o/b+P9H/VEe/tzj2bopm/9EN8W 7rs1IVYnH4ERaGpRb2iTR+hsoblxKrOAoFttaDsJNY4dNzCcYkuLGOoyvWn3VvRv3BDBBiF8iDGD 00YoXnDjP5ACzD8PcSzogIE9X+KmM9nbDDNMt0z0zBWvQEFnlrAEgZ7qSdAuTOyNzzJxcWCTLYPR v9kjFcHe5hFD44HPWmQIZTK8dTsZwccTOOzSBWMdal2GldgVmmprf5KcQ8H9D2wu2Rsn15POrWNd 9e4Gaqa31AGuweAEMKEOg162kXw+Fyc+MgMtcYTCjbsBipAPNWJUpXrzmY4g8U3VJnqzysb/sPDp klVHXjrNVib54UgkVxPGhtqaY0HQuCc/Wcne2BJC3uyQ2P/cXXjqbekwWsTYxd0O76FsSUzTlJ1U OnnqBUP8FUUBd6YyOXhUg6MIfRLA7kBVsCL8jHZSnufC0EtHaRyNtRCKVPxXmKfbkrRQAMNzKi7Z G9Gvg39fEcaUukbqDbH1Kwan7vGTvhzJy/0Cfe2EJ+3T4BSCwO4oaDB1SwlahdFE3gwYlTX1Zj0B 10sitDC+SBVK5nLjp+0OsPNWX25vEN7vXAUJyt4HigTPItO6DmrzT1liSEmLOc3Y84jRhYHruyFm UBzU2wx16V3Rtr1piKqeIll/AMbowXQwQswgtG5b/u/C3mBOM8Ys4SpHG2guQMLtd7SS2TMM+5yP KD8NWg5L5d0Q75sqoDeOvOR2NroBmptmn4hSBuWQWnIUQ2rk9tHDvk/YT//z7uwNUztM3eTuWlB3 X3SPUOuATi63gR6DQkvxw6gL85bWhkxZ9gy8ySWr7GtxhysvTFtPBbotrTLuNgxU2KjiH1jKbvb2 zz8Tl0qQeLpbw6lBed8bakO3mFVmzzsWCQc6NPKzGnaZeSvE7s1Uof23oFFECB2pjPTIE4d8X8tq WPQGS8If9Wa10U9bH+0NE+BZJ0vJnOTxII+Zwak58xO933J04Wc0cL3xBUiZxeFaxHXIJ7BJFjZo 1pZQiC8WgZHbbCpoLMJbQYclsb7PkAulgnmn93TDmOas0NvWCQfDihu6NQCTt3Xr1N7+8WskCYXe 0ExyH0YAPVwUx4CSda4pQx8yieGTs9AOhyxo8jmr6zjuxFBZ35+Vm662RzfEMV9lK+OyT9BnibwZ 0ipXluEELUjOSr5mEMPq27h9C5sBTH7ydR+n/8/srZdbQH2uvrqd5FZV1JxbOcvsjTqTtf6Vs4OJ 6hlXmXRTl9AbiLAvDE1phbzzyofaoUcVqfGO1pb0dqaAc7iQeSTL5ta39nXVnbjvqPNlt7XJP/v/ 2qA3GU/e/9dorwhba0nc07pIAidwaYKBubnv37h/LBTTDbQ6DIhx3DD3FmPi1s7DypfWQdB7witf vBRd6rMzAl+ON7Q3ljyfvQE2Cw2T0bK3s+7PJq6BpghnA/ouTUeB1PjjuCKaG6Zk1JvYG66gueOu b2MaTsJMWxPAHhNw9ylYGK2myPpexoUvEuHE9yqhHBgeX9IjvxtJpzQf9IQ9dhs36+YS8wY/dJtf hPS9aTspGbXc8rQMXALiQpCOKieUi/pY4AABl6+1MvRxBZM9vE76BnmMKBYYPUbST8RsphIMbr2p vZkfysOwMg1D9Zv05nVUKD/6OA3UZAn2b0x86URfK6fx3ONZiXzgkyMQ2BwfnlmpyBW2CdlORyoW j8UGh6XyiYg5fxluJwHLKBfOMa5DkVFUtiodunQoZVr5JDlHYfKaKSpnZpPEtxv5jU9y+KnPNZaX eqszWJjbnz//O9qbjk0w/Rg4EQiqWkbX2Pa2/xMXvPj0kFJ3dKSWJorBRg/2xEZv1dumy43ZG5aV 0zzeQYUeeVGKCvnEBfTGK881lA6S5CdCYvtwlKmaDSwACsQBWnx8C8pTS2K3IMXWZkeriEe9K8lJ n1yyArRA9S2QYG4RndkboCuPQz4QmG9pQLlPuhLdY2jj7oHn0259i1L23Z5xkdEnmV+lvZBFZChI pgILhjggUU7MMbyZklXKe7aTIXN2Fr3x9W3UP+8Fa8sxLWGsxX4CfQKMi/fm9Ba/HG3Adnd664ay a4KFwNzyjyZ3wd7+2XlPrtCaKCVqnzOIcVkXWNst9Z27PHAmqK7CDwGxMUJL5hOAcrAo+WLP80D4 fFTCXA7biGHxzNGBfOyCdPTcdEzjwqdP+YUFDJ3Z66HNJINH1ZveRtDqK/s3ZlbMTZ2G2L/9H8v/ gxaSJF8qNJxxBrd3VJgiLqBx4au4HfAcCl2r1xE/zd60WPvef+z5Z0bj59x20lulsDc2+fotp27E yBpVQ2PDj/cetZ0kj7ZGdYkEJ0gJU9aREWzgcnNL40kYE2xJZnCZ5u7O4HC9qNYGt17S3czcCg28 gGYMocZfB8JrFFQaYmwtMDyFco0LYP9GW0FvjTZvwbRmZdOJccm60t7k+wkyCEFLijYLXQhHbtp0 yue8IiZ/k0wwo9rT+j6HkOiy1N7+rzvmAMOIUQlGgspXcNQR4+hxfchdUfODcR8/ZG4RsQrUwaP+ W1IvwzK/m9IQ5QfV1vwwtnbr6LK1m2Y1kQLFoZdb76TxxKdpZt5Zlu8rUIQScUAmGUQL53OIFo3m 5huJf2hNMDcbT2ISgDEpJhxZwXqORhJFbuYk9IPdxAnVzWeHmA15hkjIJLARgYttO5+bEe/c6QM0 OCu7DUvoY4hKAz7c8lpMIUI5owQ8syB+ag2oQxjkCTfR/NmAAUueRfZuxaOQ87ZCbTqe1CkcSyiO CH47hWdRV34l8FIIgxLDMmAUhV4XA3+9Bu+YiOvFx3tTHOaqV56JxzhSzpL1rCICPjAPQEDNM7o0 i40I5FfAsIwry+InIcY5bKlJgIPmFu+jApyu6f2A/wHDw7UPQxL5slR8zssR4TLPTrWlq0USpg7k nS7pqIF5k+EuTEtfvWSPLA37gmsPc3D0zPLUvCJVSKieMjdPwlua4MPNpIsOzjzyT8HKm54plzQ3 v4wPzOOk99/++d8bn2NGFVbFgn+2l4eNErDfh6i2mH2ZVGL8G4dOd45x2TFjsIWuUD/1N6w6kMKc Rwdfefl91Vhiz4M59pVMwFuW4jm0OreYRpHY00B4RjEPN1fq0txgcPv/i6GL9W8YcgwyWtymerx1 D/Nx1oWSUAIMQYtGEpAJCWfWmNCoGcncBGoEB0fVG3prDQrKGkc2Uu6y8PmVdgGaR/58VNH9ZGwe Pk6cm9FX+T9FO9i6cRVRMyrPhWQPHfwDO5p6/3wJLiaMSfMnExRoUDH+MIWyJvceszn2V5KiJKrn aG+TtX7ydDLsbR7l3Upd+uErYVQnH7FkPs1qExijxPriuKSyNEAor9sv0RpKBpQJwt/MQ02sMIQn eHBkCKcR9G53eabV7C2husDp3edhw7QN0zsCHRa05rq2BFl2Y/8WTZEPl/NhZbSNfCeH/RumpOzf EM3AEZa92QxImfKCFZk5A0RFOuvTimp6IjoHizmozcVJZ+HlIZEcM0IFhJM7DfMY5gIhu3a2udu6 /5PszcaTcmxg7yY+/DIOw8DX8zHNs0QUIdFlxKQSfdc08FU9EGYujaF7k4Zx4auX60IrwxRHXoTG IEaeUUi5TiDtMENtpHlagvPD3J6MMKEy4VaWW4Bc/J0jCHT+zZsMfIlUWsTK3g6BtpE6wQQPzVy0 tSIv3YLxP5jhTF3xhtys71aus7wBQTpcNqELQ09Co+PRIr7Uv0FEpCpLy304ZuLXYKKqthhhipmA T385KkKOFltpfA2gbNKZj/0OtUm7Ge3tFKGYvJzLiWJI/kEmH6Id/nGHFPOWz9M8Ij3IXoeEYIdu MWhk5nPOgMQpGIoDekVeuaDBtPEfMy332exx8uv2ZvDNRXSqI0/6ZWTRPNab4IrSgF4foIk1cRF1 23uKvAD2nwEEoyVXLsYRuVqWgJmWr1qERbBr9uZQNfMFMrbPFVGHNYqeIpsO/PNnydaI9S+NQAEL bD4iumWz/eJXwqjCafSYgkRMUds5wbNOuBFJDCN2zKjjWzZ7DxOEDVqmnre3/GZvTMcf0zmg9BuM nHFL0Va1ejSU9hjFc2snaWTR0xn+A9SNoxE9r4IwTyUCcHHJnTO+3o1xhbzgPbl2/mV7O05dOYkf /eLQs9IyNEiEJZuAvGv26ShnVIzER2T+LG7zoGWF8rLYws/OUK6KNiCRZNEmaIKReSwVzl7aIO3M jvE55t1cDsEsLGt6XrM3TSWmJY4yZaBBcigiIaIHDnNLNTbAas3CFlE1QH4u02uPx7gyhVFlVev4 KHrgJEhw6vkgrsSMxUYhMRD0c2/B0/ZWPxTjUTELQjMwiI5eOC1VD63YvF5Lj/4ccl8JLicQHN+0 ujMjaazJowfztxGlHMyLk2MkIo9W1EO8Zm8RIel0UNDpvJXfPA0S4cmuBGoT/DlLy6IgcgJ8lcQn oJWq0NxZHQ6BdwEP71+9am+HGagyV0pWAh41p8w/WzBjBZj/JOJA5/lIpoEgLkFa4a7F1ZQKRJz1 p27DA629Ym+ur7Z05JTS9CjykwmFYOFcwDi+xUDz2GzFgGeohEStzhcRQruYYoQp5gbJOw/wsJl8 3t7iGKuR+kneHuc1yPDoI0otRm1pjWgtuP4SvN8xMpkIoeasQNLfBRxIGVlOmYh6cKTjobm9am8p SXElb4aC7EXzYIVgBkuWaA7LGfYsPHieXYk2wwcCzvor4PgB5szExcWDkhIjokECWFYt8hGetrfD 8aTQcdBfzJGdPBokwAdSh1JQgFCGZG9wRLehQSrhg5fCGlx/bdQBwjlyMpFj+exMh7oj5bG5vWJv MXpLyfkPQIlKygg4HbEUvhBl51aFJEhUBo5NiYhz7hE7ko+DvxaxoZqsNfC8vWljhZR94gcZKchF IO8TVzo4xBUpnOWaKQU8zfG8GNzm9VRDTSIlo8Ij/nCucMRQemQVMs5rTjk9HpV81N7KpIPPOb2E wXOPEaSyUlgPp4x4OEclQgL+fXgj1QhyFQK15MYABSN5czbOziknris8wmv2FlJSZD7niU448hCC RFKXHJ3TkE1Bsx4uA/wxbMlTHDIScpFSOvlzTvCV8iWh4rdxxdw+Zm8uIz5PR/kTesU8kg7IW/vm kLIVR0jsLHrjlSL0nwULgMyhWM5wPnUaoaITj40NeMHespR90g0ccvNIgkNOjiWHvBwmKYBbfwGe mXyZjHqSX9EgCUhUnrKjI4fnx6Mgciokci6Q32E6wvP21pgICAUH/SmcW87q8ccCTSLhm0k1OIge SgvjkOsQBHNZ5zuOhJzELeQOGPDoT90RniLHS2p71d4kBU2sAc+ohYySnyLEr0RjFQWJAXxIuL23 AZU4FYrMttRpWOARv0YrRLyjdI4P2hvc4nW0VmaMWLGMEOjNoPnARA3uFBILDtn5HF5E3YGSh/dy xipJEeI2QkMoIxFGuGZuL9jb4YKJB2XO5E7jEKZKSDx5Ufw8BE79Bd8BPMcChP8A71Y4SukshOHN JTy/kC1QCF8bTAIv2BsueCaVkhOXZiARDSQYMT8VfhzFEbkJ5fJBaKgbomUkTZEceURFgCankMlx xAQ9/tQbnIrgvmhuz9vb/tDeEr+WVMqjGEwiiLX0lgOUB3GqxLmQcR/EpEhC0ZWHo+9STIDK8Xhl yi14xd5SduAST6IkeFqQKxDJGbOSLNuOhuIUQjcmTuqKDkUkxn+FlxFfICSnIwpKfxsNqeQvOFdW JhVP2xuqjQnUmVEI1bOuuA0gOWpyljftg95U3gWJaNESKq4nnAcVlCLwG4mn5DtFlPHCV3u3j9qb wLw4OUYhk5CLEerNiNEjDl6FmeaYg0yeUFFxOlSECicSYBk3c2XnhIKiQYwYPYkEJJc6r6vtJXuL yTVzkACiZkd8GZryigYrV1p15cDnCY0IVKIQyuToKWlAfMte36gXT3JaoBeQhwq+y73bC/aGmH2i VbZBqGhETVeKEgsWQEqgVqUpTb4FiKhUJhuphswToR+h5buwfM2vG+4dv0ut7xENo33kNEOIh+fw H9BOIyBxnzC3l+2tla8sf9EjjqZIDrD0l0mp31JOCGJOUj1KyMgNGD8Ke3m6ZZdLKKubueHXOsi3 m9r7/gIhtI/lDCrHYxbiGbW90r9FezvO5zEHALPgn4oD6OAKk/OLJuehPfdUkswgMMk3fNToqD/5 cJ1sgCZfhFBAWH9H8ALRrd4Wri0oG16wt3wCJ56Qn5KT+XNEViUjhCxwY3ich/LS5uApOfXnUXgz 8MMCC78Aof0a7W3gFzLJ4wu0QXMJKaX4fwbHj+JPqe2l/k0udkmrmb+SCD9J6RRgFIWjZxB6XaTY WOfhzJcTPcDRn8K7E9ZhmUZ973wduLkgerph0K8NcpPZunsjioi8t5FGmfb1qZvgFXs7W9m1nDQz +gipIGUsRdPPItYp1BSgSVQkFlz0hH9+5nSB0sTAJhob+rcOvR28rp00WOBjeG5IosZzanupfzO9 Wfo4JVeNFjEFCXDeZoB6hJwPKb3H3DiVUZX+A8inZ/kxWpgWRihib25csugnyJopCCHSvYB3E8lD l7xM+Qxesrc8TYHPk7hxyMToyWiKBklhVDtZyh7C4cGFd84I0PTnYd6WPOxNPhiAQQm3suP3kRd+ UQAnNpT8skDxMQmCMbVjayFKBsezanvJ3vid2oM8FmTxHouWnOCvQ7Q67ULKeeGsozBUPCPoybGk N5NDDvumvBdtwwkkp0/DCTyrtpfsLdSYS5doUyu0+KRVdBCEJkxLOSG7L9F25h64C++HwTiyaI0Q j0DtaOCJhRLDK/ZWdS36y1DnMhOq2YYgVQg02xHKBHlBHqiIooIFfw5HAUBPrOgqpZ3fnHJ6upX8 mL0BRcZ8ZuQoLhyMkQh29KxT0MAK5G9fH0SjCSQmXZWok6h4H4eLXVGm9dRCieEVezu/k1PgihBl wn8OUJTYKltu9wKLJQY7guM2nalz46H8Sqs6OyEzjE8ruT2VUH9JBZ6bcStesbfmZwaQH8lSI19N nMhZVJlE85oM+TiIy5M1zlzw2Cffz+z4mXHupysLXrqprnw+WVed+aFa/4kqH0Nw5SkkRDocLzSS wEv2lu82yLTNqRAfD56sUpEloCN6DKUfEFKrdMWEpBG0BRXzxwor15VlvUQUyK0tZNULUzt+E072 LB8Wbp6i8oDElA4J5tWT5wXGq3p7vn87vs4DxXHgzOTqQEGm5jhKY+atGclCFbGoN5Oo4AXMAXPj qgh0JqsjMCz5Xi05st7MrUzD5ikSpk4hozQ8kfSS1l61N6ZqKWd5qnDAdeFzGU9Ud6C0G0of1iMG ryDkBi+S4NB1ZShN90zhDg5Bb9AW99WaoL2p8/ZWgzHmCbWSfaVzA16wNyRUZABe/ZlHkQllnoAj YpNuqedQy6e8C1MH1zhzelNKsY7LxP0iB+5lxw9VT0OX2smF3Pk+DLKdZISErlIJ8FTnfmUoKXjd 3iRZOwcc0Q0gH4U4g8q056Z5+CK2OvKSQn/4j+BGYAubwEU2ZR242aBsWqT2Zp8+xY9faCdO04Ez 9wWQ8aK1vdi/xQ6OcDnxMDIz15DxhChSSuX+dkPpcqLiRSTtaJuihJB0XRlNYbehmZRdh7gXPsb9 M+wNzSQHLvKNdn6E2MVlEUaK+RXeEwRf1dqr9obaKrOVkMi5QPQFRzN8zsQxEtqFNHaQCnABryLK dxzez7AlGXt0vJvTLd00cpdsfpxORTgj0J3QLkNScNl6XW0v2RuSs4RTVvTnM3WAINGUVGLFUkK7 lN70FXXMoOgvMd05sD4KiaSMSf2N+EH6gNpetLd8AlcBebqY/4akoEU86MNdFNHpgjtn5i59ggbp ChCsCOkpdaRC0fbjVd29Ym+A5sUfa5COf/1laPhrqYxCV7OhxGglSRRokAAfb5JoyyY84itEqhkp neFfwNJ8wOBetDeXowQQ9XeAktOSLCNw/qOStqIJoeTYFqjhgjRxwL8afY7nb91keNHeQq9iecbp Ue6VHwQfSTdx0FDGHi7E3Ig8UCPLO6I7OHl0xMxNlH4CNCGng4Cu5BMI6UNKA160N6krzU+RKwFo kjv7b0IZTtLJGjXC2AeFdZl5Dj5MIzxIiWqukuCPOUDLyOpX0gcbSeCD9tZClluiIjRRS5WUA725 OVwIgbP+wkmgDk+5giTsgh3FcEAvyB+2tpftLe9UggfndsZJDf9eKpwdHFfg/UerC2dXkaGdUqTr iUf828nhyKeunCteTyrYIHxcbS/bm2TG5ajMHPwklWRPMZdJCkrxgnHUvKjeTEaOByjiU5yGKHAU Du5WNI6WnC+vSXp81N5chl0mPdrkiloQ4G0EbCoN/8V38oIvRJIOiVej4MAbf+lcI5HpckLqrEJ9 grEBL9rbcdOEfFZZDdQ2I6LBThDmo4YyxeDiqqJVAo+BlZ+DrwkLdiJTc533M9pI4jl7Q6Iy74iz 3QDLWcxgkfEnkYWGJ0V7VGpvcMGZxUJUBEVOVl+L1oygJS4oSeJ/+rHkQ7xib/x0/8wtxL8Crrxw lqU/KvbhDVRDwa6lH4RvACF8ILqLSEwiUVVtn6K66/YmycHQ5pVb9+FvHLhcHmCZdIh6VUdSM13z LE9JpXduBY5SRGbe5nf1SSI//KcTz8Ep8H51e3bhzgQiL5ECcm/B9PgUjSmetDfuksS9dtZ1mcZt u435E02uULPc98B50PPK+47rdL+T3nFz/nGAzMAXcfV5qY4vvnQgH9z9Z8SH7cypwQnvREBZQepE MPEOhJTcZmIc+XmKu25vwD6Pt83tbXVfoMTGLSjmG/qQrfCplxWKWbaReoO1gg4VyjNsy8SHAUxv K3TLZzr4KowHYksVcVjyqq6yYDlIP+IJTpkeKZHkEkRvdHyisQHX7A1pooXsJ2gpT35ft61pHqHu 9Qx9LcO4mN6EIXrj4xu880+9DbA31ZuKaIG1zAmHF62bUfYN40vcEkpssgJ4Ba5r1aOnMEehnQSz qDn9FFy3t/0+3ib3dI7loochaTeHTKZ8yqOhPAuvG7p16EYcYFe6p61uVCt0b2/zGF7ILWFxHxY+ pQ0Rt+tRlq3Ml3MKBCZ39UeHwI3pcYmGnV0fh8vxwdX/GtfsDRWBNrK5bT63l/PPNVmmQ92r/rqp g+Etw8LH2tC5QXFqb+zfVCjY2xZeyG2AcbdXG0RVKmQS9UZgzptzzIdT/AXM6wRtTQuMjbvyQoMT X47LkMRdQI/PG/0nXLa3eRw7c5aYh+yBNMm/vlXLNg/nGfoSU2Nnh2JTT2pvaD9B4nNRfMJU2klu 9S2xGLQiU5U0Lh1FmFLGyfnhZjpEwWkLdhh8YbyUIiSBJSIkSArnY4Bbf+JpX2ofwzV72//cMcoz Tw5e6dwoXPOYAONaaFNyRtnZ0XUj35Re5GFg6o2P4XNcwhdyKRvHJbykU8FzHF67NDiG8ALB6Cym IkJ6C5JBqPMKrc15evuMfsH6gFa0VXSvP2p3iiv2RtUsbCQ1BzhycztSxQ/Mm7VtzLZlPezUbeeO RsSXbumHU/w8gMbtvtn8dFAjX8h1TVFdJceNji0vm4+gaNlewpcTar8BGso3p5QIOahmc5/DReFj C03kYZ5fxUV76+JAkktcMvtyV+K+L7d4DSaEwlWFbCCTOQ9giVawN1DTEIBn+a+6OqIgwRt/imkb mmnt/dBQXBUhIVqL1fSZuGJvSBpjhVgbq26Verv5/aWlpWzk/FUwqhgdHOqW47nBtblBdSHKcE4O DyEut1HjchGac58wsjYxHFIc0aWsw4x+HJfsbZ9vqzmd2m43ji8NnZREM5zK8QmoIzvq5jnDPOaC X0WlBB7rVDqozQJSXfpTwLC5nf0DHGfkM3DN3oZRe3scZqhtW+ZuovpSO7LLO2Ffi1C5qJFYhzlg cKczJVpdraIWMNTyc1UERFeVYu7t63gxS5mTx5NcfAYe2xsy0N+mkI29t2YfXdrtFoaY4K7FFSjF mjHt6e484ESP6HYmTw53EERGV5kRSHwUm+MdB1ZEVilnJvWovkQDElUJUPUnmFwLs/cYWHIL9Dmk vKPD1/alCRv5f6XqLtlbt8VCQIk2n6HhTUIR3ENBtPDy9sN9GYdpmqcJoxjM4LZpkqmZTKxXrrJ0 GFJjcgDmLF8O5GLJwC3i+U7MIG/DtHA8tD4ddAeedHamIJ40xxm6cUxR3QfpFYApbt/fY4CtolXo Lxr553hsb8Dk2wzN+S56W4Qg6PkybSqCfvSP6496Fk3JhI1LIhz+Yy6HkfZkq5HztGH0z8GNvA1z 55QPuptjlfi64eXcrpvTVtLh2Ow0oWmbTRA/qg0DaOkgYvQYYTPfDgwo86NrWfgYLtjb/gcXn7kT 9hWlcVPxfcrWl83ebLwsiyMrFcWZ+MTbOfLFOZgUZ9oQmqcBs3GxQd7Vk3er7QhYFUvN8P+gZq5W mMo19sQP3m7gWNKim1FQXlvdCPWZOllevl+VhxetKVdPX4cr9rZvQ5EPlInDyjTiAmnN1kzM3sZJ rEn1Zu3k2HFRZOIqygAGDA+amvkyoLxPJq9QzxLcVqVrXGoOD+DZUF2lO2J1HQM7clVXB4OLPTrK m2cuG7d8OS7Y25/9NphLwNyJ2mIhBOgEQwnwH+wN4xE544AeDR0Z6mTgLZ1pQce2QoPrIMMStKDD kvSmo1PVm1asr95Ho49ngGtQdOdTWUIzSUzQm/QTOwwv6XPminiAKO0vqu2CvSE/fvwhWuvZ5G+d zyhGWKzkULt5/7bwvPBLjvyq48zFZN52G2e0mKF/4wvvvn8DVb8cmJBU9/lV5Du8Gc2kkQF0CHqF 3uFI+uwxORL0MH/Lz9/T3CV7K9pJqIg9NdTmycneCHTby4qBxSIfbmG3pv3bJJbUDdKLUUmwN34Y kHq7rzccxMWqg1mKsRJJY+qiwX1BJcHymMA8TK6j2tm0rFANGky38mUd3F9tHRMe2xtymLWTO4bA UJvdQg2ZZnuvtcyK7TEWBOaO9wTgl9aSi8jzKuvJMqXjeUbPRklO8uClesOqcreqI6nM4wsri7ca 3W19HTnjMsX4xM+H0H4GnX2D5h7bGzI1ZgMQTrjHVZ6schkuxpMRpaW8Dr0gDJ/Zwwl8fHevN7SI 6OEAaG9w9QDz876/jCv29mfYkEMpiQ0kB1llvs84hQLuMn97TUt5qCykePK4lOQr9rOR6W3fOTDh 7A2NjE/2u/X2eL1kvqUhyJ2zGB1eTZubj8f1EiCv5wLHzIyTP1hZB2s+SflJyO2N45K179g7bFO4 gIE3tzdkEzoJmdXpNs1MBpVRbzBDGzvGCq4UBILSeDSPEtJZAM+8dOErxpHl5Y9vw30C7gPKqyXe UfjbjWrsZ5RXHrFR4LKN7r+PS/bG+wHmkt5t4Df8Jt4RSOOD8n4ABiAch0jd2wKx+MQtZHEpy0vN OmIJwxLz1uDF/kUVt09u3CizbUmoR4FpcIp9aKwi/TU8tjci3O7eQx8doMUDz99/IzgPwOhQvjzW YRRD2szFE84G+BwlqAyheyhQClyVAaAxLjkDnA5wIp6AqDSRr6u1fXEdQJy+oQuXkQnTxf99jI3Q N+CavXGOqZkUe0sI01C9321gtXZqfguVs1gTOvOBc5m/cXKgny7TmTlnQqtM1xauVlKXCElBqJDL yxRitKoxxZf1Ljuu09Shw954Gwt+TuTSiDK7SfLXcc3e9plNPIuy9/xMVYCUjiVazNwidL3kPkE5 UJfqbR24oAwPn7mb+RwsJ2/kyCewONWTRS5iHhbeESADQTKDC8DYLlbuJ2N2tsTWEWrElJyLRKF/ wyiTg+xvwzV7Y8vhHkoowJmp9W7RHrqNH9uEYQ0Ld5sR2rCu0MXK3Z0gMEjDaPYGFU0rb/SEXpJs 3psTjwo5aDJfV2/aUFqBpYUZpwH6c/cD7sPwPSsliiv2huztXEw8ymb+/KQ2Z2hFOKAYVq4e08yo ykW+DjjKRzm5B80266IW7W0dxR/0NsE2h7kTe+MjlhKvRh3BydRXVB3iDB06Acui5ojBOjr8sqXn v4+L9samA4pr1BIaq7s9JeOqNLSTqPGBz7qy+hcqEGMVtJ1c/4d9ock0e+NT+PDz3jifXJgxg5LH YwfI60dXC0haX3fBc/FRHfzvBrlpih5XaADKjCHnlyX/GFfsjdj3bhybTWXxfoBBxpOod1l41Iqn TbKhlEczhLSyreRjsNssdwEwmIHiAD6VLs1jJ948end5WBY+H/u8uTWtvZ9XNh8ovtYAn7L5VnO7 bm+0OFR4qbm9X8b03LVWqlQsdwSCjsRSdBYnUiTw8WUhzeu9k92dVn0nDmeMVCauMlNVbGhRYfLU c4C3afi+bGiyrxhEHsSNRFe0o1+U8jVctTfm9j7xlalUVXDxSac02ssr9UXwxdMWEHmIP6bzhauU sCi/2AWkYv9ZcQWb75vwhL0hx/OIgRXGxOrbZ74rzHsvUod6+jB0u67HkPS+cCjOZ1ulpLn2gL3b wnT223Dd3gTozNhByzs27Kt9E6n4JPUdRqOMwP6iIaVEydcAyuuCjc0+2cL6d+IpexNgNLHpC5hQ GhrPBlCrRb3TG+s6Op2QF4iIBDgqpuLLehnEi6ZynMv7Dpz0+NuR34Tn7M2KIM/hW9+S6rOsXPN7 WsYX1JQcFokguI2gp6/SG4HhxzbNMvhBMjig4NBl0e99C563twL2lmesXOeKaJMC1TnVZYREPMPX DesY8Z3vl2KU2xMYBA+cxEmK36y75+ytgfB27gMEJRwqw5T1GCLlRFmBX1eJ+8zX8rdhmAY5L4er Rn8XH7e3rLbNgxNd4d8QnYnmuC3ECHCIbkNwf2Ffoyrq5fEm7i28ss18D3zY3rSD85XqK7eBM3aM JhcqgwS/nr++KtGz9fh7F50RJ/aGbEp//AAXGkrWr9RxVAAc+sucBnN7UkKDeiGTnwSpkrfAmb3t fy60Qdnmi7FS6fD/V9CQAylSvTsX/vqqfBNlOTTsTS8qZnW9cideH/FNteprNIMweDiU8KzHQikq 5vJCTn8TmvbG11RwWOQ5poeoa/gKRQByi5PTMqGW+BfOBd4WDXtDj7UMmG5O6em7M7QbSqtt/TWQ M7xkTo7w7tL3F1rKd0PL3u4j36kY0pdmTgCBxwMTq2Wc9JejIhCB6JnmjiQ4Aunf1kw27W3ZOt4Y PH6gJIfO4GIl8mjV6ZGRGnzDMUeQ2Lngv87gWvY28PWbjoun8mLXwzp5UNcHQCj9JagnUI0VvAdQ 3hfdF3hfNO2N3xLoR96MvnR7sNXBaW3Hn0fhFdRSCkcMTp5r2X/b0KRlb/N43+/dto0bb+s+rBCu kgOxLutKjZXdkmmJAwfkCB8b8DYLUH8JLXvrN742xNtr19Z20hLlo8o+QBasHYdQcSi59CvvX9dO lva276PeEqVG1isNZasyD5DqOfwiktedEjGi9Bv+XQbXsrc/ck+Uv24c5wvXsXZwWp+hVrXC4y+c jlDycn+LG/4DOIyy/PwL0LC3UPz98AuMOTDLs6p7CYVOShVFHDAS+fsfHviLaNobgAFlN9bPxRwg fEIiVOJR5ZOOf/0lnIgXrJpCGOlfZG5NeyP4jN3C1y6vwN87rauVlEZlk5bI6lG/dwN0iMdTItHh 39RSHthbvw5Dh+7tor35Di6ctXJd3TrnZ0Ki1bj/RS1ly974Vqk+YyfPCV64hr3BnQFihWQZ8GJE hjKyf09L2ba3fpBHYaZtmq+1PrECgyOrUXpKgv6cz6Pg6Cl3hSMQHcgrsvqvUF7L3lD0e7fyo+W3 25Z99O4QqeoykFyxjmWV44+HKNjB+69pKdv2FoD2b14f1wWucKk6qb1wjnWZUFPaNMMJKyEX+te0 lC17y8p+7TmmBzO4VLm+mht6qUggBJpzKjKfef4tiju3NypEv+n0CKa4VJXBVVMAONUXj5FCZB6F 8ytXCf6ouHTn6eejZW+K/T7D1Obx2itDzuBiLQaHnFPd+lqu4blZBIrzwMC/xOCO7G3vl2Hk3lAX za14L6dR44pGvSdSxmxItmGCOInr36G4I3vbl23quBXp1Te9tM54OIZjh1puoSlWBjC/0jIO9fbr dXdkb/2wYDI0ceL9+OkgqSmrtVZlwpXVbERkeIc7NRFlj/BvuPd9ZG89t3tD73bn7WyjneJgROlq WJ0Paz0iiqUgJyGFpfx/wyTuyN72gc+8ygYaI7/X9/gSzuvUV6McczSECRfqCJ5Ld/j3gOJ+u8kd 2dufaej7ebrdtq392ZICO/Um9VdWoofnVXIZIUSViI6d0SMc6bdr7dje/nTbuN1Gvqd35aUcoJwJ 5DXbrupEzpgtyXOkEOpijn+18g7tjR/Qktf09v1+6TWB4qkuAh76Pc1IAk8PqGkaQujpoOf4C4jO Xz8ZOLI3tHtW9H7drn35zdXfY+TCjaAgtanXIDn+xco7tDfFvnfTtlx6yKRoKLMapqdd5YkawmSy ie0QJBN8GDv/Yp0RR/YmgNGto98N8xTh5mlRp5nfi0R6GeAAj8Wy2H/3LO7U3vZ5GKf0qcwHEL25 yoXT+QD1eVpy55IOYOhP4R0FS5B8Mov7tbo7sTdunTLMnMhdNTirsQyhIvPqPQKl3H8RqPBGhBA5 fvXY5MTe7qO8SrWUm78dIuqtrPGyTn09J3cpdQCIXZT85Xo7sreeXzhd1mWbddOlh9Vw4emgvNIv 1r/ieuTx/IsHlSf2tq+LbIy/Adc+SRXe0BfE2gu+yGkgF0rCOOpP4R2JFf4VyfWbFypP7E3At7f5 zdXHfRwE6g7OVWIG0APrSOQz8HsHlcf2xhI/WerUUGbKKDTzcUW1Y2il+VvV9sjeuHvk1bJD7kwl 4OnvOVz7+GuExO8S+a2vxR3bG4CZAHenOS85uPLjR7+XCQMZ258oq8NCXTPi5QfNu4GroPw2L878 rLJ81ly+sMzP9fID2dM0yHYf/GD9PA3p4+bzwn2IGREfzjViBVlhtZz+Jpzb27INC1+Be4i9XwcO YG78EOzILzaeArXfLSO0wj2hoSDxU2+yn86MaaNs9sDtdLqO2wzcuX0B92jp1rAzBDcc4A6q3I2Y oOrclRLPv1FrD+yt35Z+7+XzCmeQL53f9PuaMJllhO70u8tadaEiI3TTo2WQfVRkC++g55E7tUNH k1geNzqiALhiXLJ7zrhqhLrpjm3hUsCn+Dun36f21ssGWutN7sAdFR/MZZPdhSP6FWqs9oJAZerP KnveZt2A3VQAQKFUz9htsMNOt+/u5Diu6yB6s62OKKv61M0JKiTV/cqm8tze+JDJnzsm3veVj+NV pRfaPN6GsintF36ZWKstHiKmqLcb5oczTQj2RR1O3DsH2ltHbvWt28JRuNu4PzsMcYQlox+VTpEv DfGRM7tCmAb+ncLs/BsnA6f2tg8TBpQzd2U9nHnzydhyBZO+++A2hChAM7tzYyo4uF2YbPBGA9tk 0z5uboTRiPRvykO/Nwzjij5vhq7iXowrg9NRXhgFmJ9fprtTe9vR908jxhmo2/aAeuceCO0PRaP1 DIqTSnU1y02NOsTN/o3bhc0DRqEYp0CTsDvoRvo4sbduXOYOmkRM60TV2oaA8CII90ECVwkRSMkS C2n+Pos7tTfu64YhnOxDJf9GNtDLcV4k05Fk5HaCVZwh1CjMRAb0M6yFG+pz+yIoQTbNhC2xheW4 BEPMVb5r3ElbqVvVhonAKlGsCMdGk0j6IpzTBpUpaz8fZ/bGd/ODne1raxq3915t8GcXNjo5a8Vq zGIlejA/jMxoSlFnh5mACoNifIVQyc2b40xf0fubdEac21sAxoyr21crYrev5kmtYIQCM/LtKdla c+H/C/Eg+otPpf0UnNkbKn5n13CnbtAVFSUnkTu2Bux37pjjn0XhmCVYx+t4Rd92nbigMo3LC/CT 8cDe+KD5nzuVcbc9Ij32wW28zn2AgHxGEHdjV+RV+Xfxu+bfZ/aGgmJohwZmW9GTDdXzQXt3W8wJ 3EVtud5ggrKz7CN9ZUb5uZplbBqjKu6XaO+BvfUTtTUMe38fqg5un26RtMMj6PKaWW6NSRzmDqPM EQbZDhM+jiDnIYxi+AKXztoHTB3Hce0w4Zbp9cJ2V3xkc25uiy+yn3SH6Ga+t2dDzgK/6W7cmb0B +zL1/X26Tds2Vh99uo9u5bK73TZulVxsRj5vVI0iXvqwYgxhMDyUGZ5O4FjrupcttxaeZfkEmGW+ tjIAlYLJNwU7CSALJrb4IpMBLoVxQicr0ZKWWlrAL7r//cDeMBzhBn0yi6tK3cnypYIfZF64qZ9r OYl9NGV4UBcr9IKpFyqYlUyjmTgTB3TbZ9tJn0sqohBxdNOCdpdmRm1h1gdtUZ+MQMW4/CKaJdGQ lIem8ve0k2f29odPUGK2S51hbFm0gW5zclhf1/fQ22ReA5pP2o279HGe+XrWxPVjbis8cX/oFYqS 9RLTFJSgraZsvd6N66qq5VoKriXZCBw6gpbM3gZuHD3QeIG47X5ATBzZ/RWae2Rv+xwGYntXPJBX 7/Tf0FvRwWn9dRsMrcNpmUZU/IAK58br0yI6tkq3lUe1t1Ek0QNyKt/B+qn2YVjQUJq9DeuyTrA3 WTzxegsqU/yWUeUjexPI9h2o11JvYyLQhTHn7VberMOY06osgf0bTmJovIsz8wbcpBuxgyt9ld6+ ifY2078iABpKNrEg0wgnrlBSLPRvMlRBX8j4C5UpRHE/X3mP7A3gvZLlvm5Tca3ug9ObAPO522ju gNn0xjoM9ahrw7ZYLEMMVDsrXJQElaHRk+cXxEMlSq+mCuUtciiMXZkY1gJCp9bJbpA3WKdkbpqk HC313zGqfGxvPYYlGKpvSzku6TE9MKeB9pbrbcekHWoJCgPo1K2ebbF45mIxt18nTUf/XDMONc+l Z7AZaKUk7wMMaC/l6ROoqeMjMLBYWifFcAgqz5Cy8Cuaygf2hiKuHDXO3CsHHl/krJ0U0N62ohEK 9lbDKfMiYogi6Lm3Cnbt6ev3xkN7Q7+GIspqSb7aT72VJki9UcbJrTftp6TSyhoFGqRPAmI+iPwX WNwDewO6DcXE/Hue1ym/l7Ok5RLDYnoDgqTOAzJ8naoa0MRCkuH84y3uob3x4aAefdGNs+98aXnd io/Uc60LenM07kVAvSVV/RWlIZHzdH68xT22t517IPPNHMy+89Leqw3iYG839B7WoPLQbzJEJHxl zt0qAw+MJ3gOtz4xMMSBz0XSBybP0U8uPfAigMhKQMRV2bSHpZprUspSZP8H4bG9/VnkOdbGFboP oVGkYaEiV/Zv04QxulH5rIJ1bxkwXly4ssEzR39cEAbmkWfQZC0SHMzwOM1b+Egyp9uYnS/Lhjn7 PMwc9HOajQkcIIrXKyPqp3Bn55/+zMlje+PbUQdlhFLiJbtPfFzZEF/fgWrVFFJ9AZiywWK4/kHL wfxN522Yf3FihzH+vPHJkg7MsZuXhQtj4I6iHUz7Zpm5ywLKCjVDbnELJMfIMvGz28oL9gZgWrtU xdzRCDqDs/s4AusH+bSXrGZEaM2JqQC6RCVLH+IfuHyieps7ff5nGag3PtmFWbeQuEKJAFxgQbfb 6XOwfFw2AakkFdHlFeY4yLz+fh4u2NuO2Ru3p2psKbZy+V+pfAWEj9ex24n22QdzE8Qa06Wp8Kj4 vJneZnmgkvfjkJjeFaCC2E5CTWga9XFX6k2Wl+XpSVO53T1oK6hE5PxIlQmu2NuOatzRVLGUvqRi cLEra2BHX8TqYT2FuuL5wN4W9I1cZ0YYNKTB3tC/TbL6v03SjEa9QbOQ6fQ+kUhLGlEpgHNXPIFd YD9Pf4/tDdphu4f5t7aUWRnv3PkIFPklDl3wczsrq6AMHQc6GAqyf8NBniwHeVg6rvNzDUuWHyFg /RvXiTGgZVeY9MaXd3DkC1l8CF2jbgDKqpUWPD/1/bgr9iZ64wNdez8X5oXxYvbknQef5sprM9bc OiwYI+qZ9c6l/ZXL/Gz85MYA+zOOKzEm4biED5hTU1Bp0lsn1sybO24hGQiKaqFi/NDRyWN7gwLG BcYzYwo3VDM2fs+33U3s3bDpvIu1U9RYtyzCg1LYwGHMgcG9uNYZPFky5pifZ522zcolmQF5mMMc cFFHBSbZ0qDQYpbQVv483V2xtz8DZkvTwK8arpWO+gVNZalM/NCuslcCfM3FyvLET0OMHcgTEJ+S cgbQy818zfmPwRV7+9Pdto1PmJQPKgiooGqSsM/DZmp7gIPKfAIPwzYEctIPbCsv2Vsva1ztwrEF pY6k7Pjnj5vHbRyzB0g1pbpq1jSI+ktoygWQGQQKtzo90VzJK4BXKVq4dgHfE5fsLStRXTq2iXxN mMXfMXZZRpgnBjFSJVVlRST6kYSC3HOJJ6GR5VH+NJO7ZG+Py4RBCNdJbKkL4zwEyb5CI7WEg/7s 0EQUKuTosn/9CcJZkDyOTGeTkUMV92O0d83ergB2No0AZsBaejW4w4oSgKsCPJ6LNpAFtdAukkRU eE/GUPyoqdwle3sNB18POkVT8npwxYNIggvnXPInmdyn2RuKqz91y8nqIyDWEh3hn8irLwLkyDHx klTC0bxcS9TguZgRSNYt/++ML7S3YHBytLrxtZQhMtThhJwzIAmoSz1GEni3Q5Ct2IHwY4Ynn2Zv LdTfx6sQarLGAfkAXjq5j2M/YuinNt/f4r7O3lD0fCrgKgrOVrW1aISKV9xanJSaCmTBo6st+iNM 7mvtjRVTVE7mrWuwls4pRijE2ghCUbgZCsT4UxwtMbwTvs7eCNdQSq1o1VgFxXpSpGozd8EHMkqQ 8b+A3Odh5MA9kKLi3lt3X2pv2cjkCGA2+KdBzpAHbEUeCSdpvP1a89faW/4hUedpV1lJpd/+IyvQ iEgMUEKLfCCaIROLk7n31N6X2ttejEwIXzneHV2JUiLjHItFFCLwBkoZk2MlvHU398X21hqZKDJi ISHex6EIEOLPoZJrogpGOIo9v/uO+FJ7A1wt0FlXU04r+C3xFE/JbUqXVHjbck2gtQzt5Xvhi+2t PTIxX0Y8qkzQuS2B/IWD/oeD/PFnwpdQSNLdDMzPgr+j0X21vdWfOK/rJiKwVCP9zr8K7DX1IP/u 4CBhBaYOifok6YhaMPZz76S/r7a3NIULlSeoXaor1rmqJVTTC5UVAzMep9OoxwylvwFq7oV8fCW+ 3N6ORyYG0Rar95OrpoqNBElFNdlUokCJOCZuuFPwNvhyezteXFaFZfi6ujmMWZR4rMMETujE7L4u k0/gi+2NZdRSy1HO0iImjX1TNdTJZmbYVGJ5mX0j/oK9uSqgylA3xnlTIHtBgapDB8s9RVT4u/DF 9iYIZVadxQJ/c8nbKDIlCswGNKmp+Nb8f729icGJzsz/pjjNnrWh1GC4/r4Xf8PeZBZm7h+JmPmo Pp6M9j34C/bG0prr9+DfYG+/Am926f0Ne/svPh1//vP/A533HiQm4KdaAAAAAElFTkSuQmCC ------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Comunidades de aprendizagem profissional: a avaliação como suporte da ação

Michel Franklin de Oliveira; Sandra Lúcia Ferreira; Luiz Dalmacir da Silveira

 

IS= SN 2237-4558    Navus    Florianópolis    SC    v. 13 • p. 01-10 • jan./dez. 2023

2

 

 

 

                  =                                                                            =                                      

 

ISSN 2237-4558    Navus  •  Florianópolis  •  SC    v.9    n.2    p. XX-XX    <= /span>abr./jun. 2019

 

 

------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/image003.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBhjy9jOtoB /v///wAAAAAAAAAAXwAxADcANgA1ADMANQA0ADQANAAxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA40sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb9iXb76z v9mZc/bM7M4/e35z+3zee11Vt+4ru7fqDQ/hLuVUgJYR/kZEEJAQ7u4fIaD8VRrin/whOAgID/78 f3d/f/+X5Pt/y/8pgQMg/zmGf+HXmKMCoAE8AkAHeAyAAYAJgAWA/XsKIOAC4AHgAxAAEAIQARAD kACQAoAAyADIASgAngBQAlABUAPQADwFoAV4BkAHQA/AAMAIwATADMDy53v+W/51ooJgC/ycgLGQ RLAB7g4Ibn/rCv5bIUJ4+J9r/pc/0NqUNQofS2yQtGBVuNjpjv/rsnY+oezGAjOISMBz23/6FEWE dwim/5TNvxZ0hAeIf92ef1SP4M87EmDfCMEKQQZovRnQE/+s4AH2Ef+o57fv+0d0fpX/i199hSCB oAL0vSvQ96Z/jIDjP2Wf6M/2I/8T9n+NE86fz3+97v8t//8J4u/p8L8QpP+3J/gfCHUsCAEiioRw ZEuNkDv2v6np3/I/kVcIJoDPfwV4vl++xxDBEribAimqf8QCUyDl/X+rTwdMn7+eT/+IzYcAMwr/ irf/Lf+s/X+1/F+2rySHhAzEQjQ0hHkFOxnr2fdXmUBoqhD6vYsztrVxMrVxYjcxdDL848LJBlz3 teXfkUkSeLuAcKmKck59cRI8s5kIZfDp5WW08gOmnuXTOoPo5bWr0SObIyNu8a/osUSD0OyXxmkC oq8dEXIcxFZ866jsw6PrcqQDyaioxdoD0QKK6gIuFvZcfVacm6wLg7hseQQruW1b3E42BmY19xXQ ZUkSl2lPjXrEMN5kY0jyQzgHNSLkGFvRHiL0rOiCuKaYokp4pJco1h9/msiLLFFNvGMiT7/55kBc 7v3IA19o0GuvvS6iyhst+dadts+0WkIg8bV5lRpLUo/FK3oEz7feOBJMn+UUVSmoL5dqkQ5P55EO MbqkIDA1FT6fIpy7ts8RfYvLEehH83DXz7ufI7ntCAQbwj3LjJoSWB6kLxQpTTfGm890J1O8xcam FJmrZeSAzeMkd9wP7GSgH8kVw470+kYRc6GF/TfPN0TrjxULAhh7WWZjhD5jl10zLNB4x0fMYKfP FV1ynm0LHC3fdi5/KYNt8m41oRIdf1+Ig8Gt7+brn3gKTGEdmr1cQ4pCWWp2FC6nhDou+d9wPw0l mLa8WhStCdrgq7XVob92kfjksG1jOPi2axHTq1dZq3jojRmdPr3eDKe0e9FjF2puFuW0z2x2E3YX 3xawdaXCtUJdAhrESyYJ+36AXm6gaE7ufoNcun1ZVuUNn6QVme+77chou3mIJk6JYbzXOMQaPGPw 4UwmlkhsaDVAE9fF9N2rdia6bIFiBUJnNwFwhkr7p1pwUUb5TRnYZKf2axuWDcMVF9S4AU15gc3S tUw6hkYylIBRJf/vHtSyMime+ySmwNfPB87aYE/PnVivpvGtzUurynRdCx0fhEYHsbwTf4QeDeFf YLy+V0Eziv4eHcSlJYHw6apfHc/dkGhMneWxoTxiu9sGMhrvuNUDBwtttdR1fWdZzNpwB11Ebeue RdQVDy0sf4jpSmGeZtMGbkEtWJekpCH4ikQu+7vcWzARpZ+kq/wm0tZIgT04czUrvItzww3Dobmp p45xg+2NlCQ/c4/6S5EfJKvs3qez41xG8nY2j3bNl51ZRt7h8demf0+lkZO4luW+eGDFGtGQyx4u 7sPsWiYmOUls+dKiuagWLblL8pj9yHyRpGa/Otw83eMMomKGOVjOA9oFr75gpQq99PpqMpIieMvJ ot85+kBbCgtP3eOI5r10rUyEuc5KXRJTeKXM0/5vpq5irinOsRC+5MqOr3kpMZJO+4VTd0lChmhp oScCeHMI8CfKse8+LzU4G7useb9TrjlFf20URnLfJX2WRCIKs0R5tkKeONZ3ZraoDKUXtpbTgvIk dbDqTTZHbiiBBs79pVnZl73jB7alXU2+6gjue32Yk8l0LmG8N++2KLmozOXbvCl+qyecRdjZvFhZ YzuxqznSdCnE/JEvSuNx3gjhu/ezTLbmku8XJn92OdaG7pOYjjumf3je0awyv14vaTmnrTU7cZJg szk3VZloJ2kiFFHgvDARaQ0d9d2tifDQqqRHW7IRHLgZRaY5Pdb1+7A6dn13wZJrak9feqR40/h0 3KpWdfYMJ3dPH13oow6h4imF2ECfrjOu9rkBuTmFsignHDMP+jS71tctE1c80kiRUxcCjvnxlmzT Hs0jrBybIIiM5t1Q/hmeznD3T1loGBtHRG0YBw07LJp1Ci8/7ElMDx6eUJAZT15mcYa3oXCXBi5k OWDXm+1ohqqZDrQVd03mtJfXFmQy+q62SrvnkHz9SyVYyJRFrlwfo41AuzhZMiQWfCq2Zy59L/YB 5t63I3xWvyUjQkbThN+3tUDbsSvasitQYbw+tRnzgctJp9jf7knHjS37vWXaz4vwZ5nsy9WJbrpr Tj5bPExIUhuD1G/Cu199QyTv5m+/DAAZ6CcPd0dv6MS/z8sXfR+WqIkDu+Csofz8dFpFep1o9hFr h7fwkJ4Lilz34TRvcE5aFl9hRTGZ3LV9iRJoDbSCZgRac4PxllDiuoOg0692waZ6XsJNNB8Zzk48 5hRrOh3xJfvDjmxUhaSi8nxAbc7CeznYxl5CJNytjkIxX2o60AkyXepsSKy+bDKO6+U2NNqFPRU2 tJ6sl5j/TLlMOL9KKjIhM/rQ6wM1rcjxRJwdvAJefkZ/UD54Vz1P2uASj1Uuj+jllT3HODz0Xqg0 a/aSYOLTDsX+VW5aaV6t6EWrUl6Nx2AFUqu9S9GiB+qYKNw1OLJmWDlhRIPuaqvPcWnHFc/LxY1s DRfH3Ysjy20aZE80oGV7UPLiemuSCDu0yNnfITXs+pTyv0a0yBYu8WsgkpE++P0N4r9EtPeGjk6m DkqG5qa/wtrNxf29Dx0KCgrOHarJ/dM2GOooy0uWBx2gl1CkDqKXe4gdIi91sDqonrMnk5KwlXNz CA0bGzCktrdFt47vcITNycOeKb+/DYdciM2QkoilavrhIN8hcTYiIGEttUf3RncDDqtHCZrdHz2o hL5G/6DTPPeFFE6Yo5mR/WCEV6BqmIbUtWIzPhPVh/gBnANyuiJHX6qHtY5YXASc+Q8ostuiH+QT ksj63kpAaKkGEQW4KIuM2FLb6yr437ERBT0Cp2aezaat1Saduczaa7ajhdsJuG7hZNo5oAoirzCQ pAxFY2CU6VCxY28pRa+qvYSIU9Aj/fyMQIj6Ahn5bzYBoaIxyppUwNEQDfHvNwF2QGf93gRkPNKJ /3lxj93OxYKEkbvR5WtmsZHqEW+UG8tsxmZZGuxhVWerLy/PMclD6NhbZvnps6aVldkKaCNV1mY9 VnawnWv146E65KRx8wk4vmi5f/fs+d0du6uXY9amyEX9UMbyVbrjZnrQO4n0kSlSG2xm7OmVzXeo Z4YISyyy9spMoUY4BZ8YcnIDQsRvFLcRS9+gBuux7Vjrv1gyahi2kp8kbVGoLh02XJJArQ+1vRZX PgVfhpU1FZ442jWciDbVWnQk2dZqn1pL5W1Ha5dIFY6tpyt4nsF3xwbwO59tOiU4lpb6MSznVhGZ vlZI0x5UzHS5qohz7muq4DlFug/WlKG0abnR1zO1JkF7ZYhwCsFVwrxuZ1CGsdYMQbnJe8z5uU9I sZpmzmUb1/m0S1NqmgdNneDwofaU0QNbyEnTVhNfuD9DMIQq+wVLazbG1OLDr0P8L4q1OzltXiCV pYwxY16zKjcEcwWjsMqGMoxPxOkRKUeu6WDo9sBYO7P95A4kMPHHuDG+vMq3oMyo5JOIf6SEeB1i SUbTwtzG/E1ERafdzp5QrYyqSxnxSygXWMFF/8rnvvtcPtYjKKSXkvE6u1k5yj3X+Dp0HynTQvRR Ka8IfjnTtsPLsvSY4fhc1xK5R6M1Ky9sBS7S4euFPotzX6d+dp3vPpp9bjnhG8KaOrXbXvb+blB9 r7XhcLEBL+Pj+XStbeoTtEmoAEf644DPck5Yu/DOtV3HjVaswzKlDuMTH+Xw3W8MwpKN0spFzeYK HmPGZZ0Z6ZM/7iQny6U0oqdLE7hn2w2qPCkxiQM3nEwyNfxrW5kXbEdWLj/lwnGUcx21ngfyHvJW 4bEKiqNaoNiGZlmJvNnpu7cOuXfrj1v8iX6pumD7ZBqN80Cak8i9jMDG6b6/QjJUWSIElrMCbV+X 3j/p2yx5ukl30cg03j99cQFzkirTsL3S5l5TbFWPlIrXvgwWyR3wTV/s3IhqTsrcq6wV0jCvyPK+ mQnJQ+ltOYnsFzmgXgleHpa4JWCtibhSjUJasyY9S2LNXXNN7dMDr03zSVcVHrWcJV0kNF2gZVbg vjgxpHQs6daTcd+MincUPh9ZaIJlz70Ig55geeJrte0efnMt2b1bbzz0OcHaYy6z9sVZNjS6ddO3 t3lVpiNawQfTUbxNI5KXiNjMi/L0AQufM72+DfvhNcIJ7wy+O/C8qma8Jb0ijHI/FRx/MSSYfWBc dvxy2rEq3r10enZqUTuvw00qVNhJPyIeFup3fHCSv+K57EjXlkaw7KY4tRcP6UA6UR2JX0I82/1k tD8I5ZU5iL0RcQqCn6SMZ9bRCmBqh8EJFfJ7zyUEMuuUT6Vu9uFkK6uFs/edM6bZVt1u7GCdevK2 59bGl7Nlc/BI028EPOXbTV9rSj68oF7uyVt1GS+7zfrSredBGwdvmmQNJr4xV2+IGXa22paatVYz I00XzDQdVtbtzY+VeRYnS5fwWsSa64WLT3mIiYMWcaIwTa+JWaJeX+7mu40T0xS58waZFFqVG36x 2O/oRqK9NNX0o0cSO1Hnszc+O1zTk+vPC3/0mUwSrVN3aKDeoCQEYfGlk08Ynz6M6+3NHeEBptxf rDClsPRxkTpxTanJzwUGzZ/4h5RZSHs2t0Lkyq6+J16BavQ7WYQD6wX7sGONeG6/xVF6nrBjfjg9 9r+efx5OuoOqAOfxtE2lDMDGPXsGxXbhHluFZ7+m36hdBpmhudh+Wt5R9o6m2gIdoPrrG5338OSl Gdw/Njvd2kbVh/HmUSem1KVejSqIllPwGs/6e9utEnMPCnZ47gZTVoXyGYujVGo2UOrwm3XlrDQM 6prx1r8H35zxTsFQic+geGygCfx32EKDLzTNmli7fJh/hrPyXX0//Wq2h9t9Gml6rXjon2G2IUN2 YvcCU7H40L+GsL51d2gzk777NZrHg1NVEjj5XR0hp/CtZTIu5hs6EnRrMMlOfJCYn8DUXJ1QwIKT w1t95Ze2HjEWtWrxhH2zg1JfEkhzoGimYAbuXIYU3E0fLN6rsEa79BDTpLcONZBPJqtPZ2rx4Trw NngqpPYA9Mx6gUt8VJPuyXh5osGMCyZ9KLx5wrquqzNKM9aSEUZ/gf8ZjiEmcFcZO1fGWehz44Yh rn+PaB/hUo8cSKihT3Gz9PPrIf1O5I7mw9MRWAg4JdeEkVKYElF15UuHeshXvMlc2tKCSJQ0PdwP y/WzERwFzZCOFJgVyVUJbupjyqZlLKLpLeyUeaOIwxs76lBOaL4M+PLU6/t38Ha7ou1AunbituFZ 4ChSMqH+8LAqB5Pm5VJnBIdHFmmrxeBtNd9Jxgj4cqeONEzx+Y9PzGav3cJNFTi+FvOuhviB3wrp X64tQ6ufJ0/Kki2383MvcJHkTDFxs33gEi+wNytetw0oCwpd/UJGbe9LegHh9tnpTxdKuMDWMwog haUdtYGfkt9NhVd2ejbVJ2zTenreCCXg7C+yDtz26LefwcgM88Xai3vBJEyeR8erEYe9wtzgUHuQ TUqFEb2Zg67ZZii4nu7l7Yu37WwfI2h4br/k4DZgjdvp0ZvdUEMxRvSV+DBvFHG7FOogZB1XfYGW DpkLttD856g3dRhRt3fdiYjHbBhCltVCkrOm6f0Q8Vm2MQVUmdl8hzfRt7dtysIlvo+RZHIz6GRT tUgux+Y1p9n6XJRrwr7phibux9azTqkpzAV2N+8yv484Bb0mJtafmsuq/0oztt9AGjVxmrB74+ef PMic4qFw80OulTNMfcKujMprAafJ74YsbawVLnQWdCl+aoDpATXuKjkMVEzjlukPieHlFuEbI2bR GHB9x8Fd8fykE9JSzpt2pTQloY5cVjN8aPL4YGihNUOxlFUIngBhZFtFL5kwPkcRSzkWkBbCo03a pviJ9LhoYijExVTykZpVRhQNU/Ubq5Jxrc/Oyiq7iEff6fAScK291ri8+q50zvmspWf38/cdNOGW Pdrhcq456yXz5C68MK/+wU95DQ7ghCZGN9XjT2v7mnG1dUh74XRJhzEKRvcnC7HGvO5y5vHSgwwx 6SOTbK5ym45inJS9IwMpz+kupX9lWMiLOYBXF9a89+Gz9Tl1UU54ij/N3UO9e0ifxXLL0po7mbFS bnvyMg2+izlgrb9NrXUCh6yFl+LQmleF/NQ+rxX5tQ7uLM3HH3o/ZinWutjqtfJ8LyCYFrkjW5Kg xfxHo641VXcRPd6WwH24pM0dI1mTvMgsYnMiePbi3vsmc2B6fdeGJCran0GSGi0uM1r50vG/kKuk TLOEk84NkvFKcHhMmKm0MhducOXn0NXbp0OkGisThg8JzbpVoAYZfBhZ+cv7r/1v+b3lUCq1GsS8 MUSp/Ka3ghE/RU5Gl/oPKpIPR6asSmw+QhqKQGXfsZqvE/lqb5BERULlaS51lvZQbXdRotE6d+7v BiFD0F/etFP38mId5VKoM3yTmMQAysqtd9eGoG2bXPFTeuPxfkrtLoj/u2x51qGfMfJk1ShHczXi J+xhE4+Vc1KoY27rZQtoQtvM96qZh7ypCwHfiGeOyNz3IrAvEmeTWl2PdICnpaMYZuJ715wSHy3J M8+zOsOEwnDRTPoKldMnvYuH9XkPFd8tFOExVtqIt7Ci64ih4nzB+ceIQKLtZj2WH2NWFWiCX4iZ DWjrCy3WnspyEspkRuEwxbyhKZHQCnFSxtu+hPnLi62w3c45swf7KLSrfbdZ5xGya5czY8QvVB87 zDboLwUJZJzG0rh78TpqMpv1EzcbvOH7dHHyGu+sAVdPRUKQxcD7mvDkOkpPRa1b5/AjnhQ0+byS OABN2XkR9lAqLsD+sDpJx46yJX7anIW7Oo04f4FzNUnXrenc3pbgTJjaKB3mKqPRMkrFvu1eOGTC O9ujUznwmKjqZ/l3XhtbUTbb185TcXLripIjYd8DxJmvayeRvg/l+xOKNKEdFC1U+dp8CLaYfBv/ qW9/UOp5Qi6zpEZoKUEzA6P75YJBXFDdY/27LlU2ug8Kfetf9S3581omn7o0MEx1n+BaClKYFwrn Mu9ZSjonQBIDE9v8yJAKxrT2nbKdtCh+Jqh+pVWSyY59+cxvKBW5i75c1WO0XVUgyFpYuEBV8Hu/ qkC1hIMVPXqsaiPzvH/GdAkUa+S1bkCQk1XI2jhe72d5in3qjLdlutDBVo6kAjfpwhrI8CMHq0lT d+lC3rtEoFzGkIc0fY2DUCW0EFqtKpyvSnbVEkRe5jXnJZmRPhYyJpSv6mHaEuRkxPfecEaBe7F+ jTpDa1cS6JRSBv5qMaWG4VARVw7mGnvl7PB2FzWNGH3Zkd8dcFfMeD24T36VwD+TQSk+Ez09O6vb ZYnPqJAmHaq1TfiBNEnYHrlyU8BsW3/eNJ03ZqWqH00l/Xy8ZC6r2UdQ9Mk622pha5jxws3cX9Ts Z54S1fXX7fXlJVcLcJo3HbCtVoUQFFI8BXLYqzfviDZObUWHRCkKdR/ZpKB/ndAVR6Kezfe/lH5j LHV2dPBQdddiRKGJ/FuzinXBxO9lz9ZnRXGjWh6ytjPo3OzZRBjzhPrJYaXelx32k2RmCOcrwZ31 px3WPJP9UsFBElvAs7DHVoHAYtREvxSEzCj5iT5X9/sRIBOfcdCjiUpYvEklXk9E/Lb92v0KzZ5G WDxdOgona/YNe4nflXGyLbuBjWZhUhSOaLM6OyWFnpHgya1Csw66LRz1pAez2TOAX5f4t0qtPuxC f3c9rznktK58/uMpmj2IXrIugmC1UCo4S6c0KQrjXhhyNUKyESv2pyEhhegn1AuGkXrgYmWfqkhD UUUYrjvJTQEEE7xjOI0lr6eRRskjxBdCKhIhc3IxZoNpX/rEKtRFOGnLcIQvN0vxbNi2ElLNx+F/ zuVzJYNtfG6B9rGW3drV8fFY0sZNPISVb2d5kBMzQ9ScTadz7ugR7AP8LfbqkNXlDgsnNrEruWGr 5WUn/8ZHho1RNncLb7X2MNsT56myzVZ3nmtR8kgNCheCGYdrjauX/BqyqMKvprgc1DR2yfscVBLj vqXHr58WayogORyPpO25+DOJp4TEc06Ym7IRSx25CF40clFamL17AkNhT+db/ZFnw6H2lqEaf57K OIuUb9EujkhBC4VbeYhoKBXPvQjuT/oVZSunyWKyPl1PZMvJU0b49DXXKoOo8FyjZZfSh40VD5vY SdV5gx2KDVl2+dgux5F8HwkQ+/vaSluhqLjSMH/0476zsTDuIiRHIBTWjtCKOjMQt9kjR+7sPyYx P4RYjIPjz5kGqSgl1f7wwNUqu7n5ExoXyGlMIY12RhBmp+vecBmb4po7RBuuJ0sGuma3BhuFFTYO wn5vqfvDnZHTEkfsoCR8DOry7RDbBr9FZlCNBZVaw2fI7pfG73t8yZRORtdSVpcRU4q7lKbanP1O 5pkeSep1BxZ8Kbi19qFk0JTSZWiMzbBrIiTJo773LNGMNUXTNHngfanSO4JKCY+NXhRQl1tjb11Q badzMXvOclGNzbH9trlAxU+xpjTDrsqPJwFnMcMz8t47ynlPTg5PXu9sfjBUrxqtR9QCMrj1r4R6 hPaG0jJDxXAewAhmqLa8Ex+KbvnJoLfkNaALqaH4caHFi2VjfDQfoNr66YeEra1nl4DoKbbyRsEv 6OKh5fdMab8gCXShYq8edXS7EEsovnxy3ANd0yXqGORkIAsptVH2lRGY5eRUy6yXUsd0aRkSV8p1 WO758SuGkKdpIXBNrxpUh0h68kbVWzBwb8lrkLq6vvjYbU15QahciPADoyLrAXbjuUOCHyShkKO7 1Ozu23d1lCdYC237+92EgW3tn5QqhkO9PVMetXBsZ09z4hcTh+4X6VX4huop8KDjFeSqnHqqqTI2 qDgVbMmOhMXmZhGH6onNBQqa1LV55fQ0Em/EPiEk9mBIOlVK7qDUWZO6gHntPzi741g9Tnjtpb8x WdbwUs5W/psX2XLfY4GhsUM9UeIrZU/4UPLnI6iXuY7BHR2mfuPBg6cik4ftPMR17irtUaX1LxMq QS6iezSi4vpw0kovR7PohYcNJSN2jWmP0y16MTBGh7XmHpYKc+RpOBNbIqZjfvBj/GGE5jb5sAHG mef8ovLa26w7je04h88Jbtid4gSHlDf5FO5lHc5o/5j3/WF1u/xkL2EofVCvPq/heCahizlCA1TG c6c5dlmRMWWdBY+pPPW+YbFL1PPwDxwctaaPnVSgLfMapzXfLviAZQii3KK9yByTKcuQ1hOMaTrH nBbYLqAPEJC7vjBwId1naT5fIzHfrpZSsE/Uu+lYBipYnB3TtDodIII6focuZAIJ2MdLRzPdunrj vTc2S+uAxnpBekGSSDniSWMpVCXml8p40OxsFDO6ngcyOWNVLuVXs1ifhHeW9HEYcY5qlOovJX00 eNwV45VlR06U5X8Nza8wwi4bmnn4pnz7mT2xC2lZnE9G+JRhFeRnNyd30HY2DBV0txCRcCNuvOFM aUaRg3V6MSRKSPvYVzoqGPN0tLe8Hq+My6N5gAe8S6XJ4Lrvs22C0NptsrF34cxluNRZlkzBu7u2 +CqrLoQVaaXw3nCm23IzFtis+WCudtT5ewZ0cr5B5RYKSBIVR9U9SD16w55BPtn+BsrGzjkmu23y AzFmFIv14ynD/KBRq6SORusEVJ8mJUFqx0CSGPMi7A4WYFmnlg57WQQZXLm1hXBklWUJsr1aaFVW +Fnus4cd9wFSJ06GOWCLKs3no2rPi07+0xjdguc1UcSnELy8cIhngCYpZp+FEtifCxQaO2KwT/Du C93Bj8fXAr0sIjSmrAeWMNqIjyPgDes30U2paFzWR2uG0ZphSQp+UK05O1KTiZWVRqq8Y96dDNrJ 1g4W3X4ZM1Y8RuuKcCpT1jtXfJMJo4QMqkqikPhq6fzizh16MRDZc+6Ue8YNWlLlaaAseNI+diRw dperm9cpFizl4LPRxkCfUi09KakZJtGnVaVvW5uUYcJLHfONKMREYpgfqNpVHSjAz9ImA+JTnU+p 7nANPosT8z4VA+pH+Rhf7To5C9Sr4mPyenroRN/0QhiTO5f+lKmKlHPNyff1iHUcHtUAspRzwo/C 32dh8RTcoVRS3NlA1cvSQN/Xzk9V0NPZOJII8hWBQ4aBO03B4bPAj6+Xv86DTNAXUyKp4tBnwBV7 QxT95IT9GNoYXIGwKfRoRk/SfrFPhwmaD7gCyzoeRDN6aBinnIE5CzEfpvyQyicQoYkwvy2szz8a dRFkDBzy1r13QtcnGGeu0tKf/qHQvBmCcDUNOD7ZZdW/uHtzhRJBB/TFoorg+NhzMQyaz/sThMGn pF5rtVA9Rij4CVWGNfBqGc6oKT80uPBjVC4Hs8D5BC35GcHxPyZvmSVkl4GGUALpMzDx/E7feamU RXgXeQZEeifN9Vey1qOQbIIW4jFcxkDb0ecSWp51V/iO09/Sr2l/q+rHUhUc/swKk65AS5kFCpVd ygAZYSJB0m9QAXUwGlDkfjU4/tuHY22zcRDd2StGz15VoOCQiL4kQ6AtWh3RDBWaJi6C/wPnw1li xOOhVf4vZQzZNy3SVdpMfejrLZtPG/qolH47eqV4jI9XMOS0207dOmsyCa3n9LE3HiVObPuzIebW Txv0xw770aEez3DjBrmOqLjfN0JyjHzKzkBYRQN7i+H1zz9e4H/2ckWmVLz53Mr9Aj479MrmQrSc VwQvMom5uK6Fmwdh5nLL4BiPSFHqzP4hweSFRKNybrjqSmqUL6O9+h/fI6yV8SZVxHW8gCNOxM60 yuuz1cqC4NLFnvRb31pFwZ6mY03eUWN4UAm0K9hIHDnJbPVlBqSrc7ruqOZQRdTM3atjln1gsGs+ l2JwadVGyl70/ERYq3LDtbqQOh3fwC0nsNKIWw/S8jw4KYfip3poKp7Cs3RZ/gQ7EesfbtXMhUUR LGkRx2Ks699iVMY/PvgWY/QlOD4XGNDqg+t39Sxzl9HyXI4gR11bMpVQUExiYAhBcAvVBF1Sbe1t h+clKjfBL73B6/9g3Duj4Xq/tiNadFGDIBLdDMKoCRKdUaJEG9GZYJSooydEF73XECX6aKP3bvTe Re89+uDx+//fd73r+X16v9zrnLPO2fve17rO3vde69rmr3J+V530yyqqhbobSSmqQaBIppxs+vuk q3aqDTrGuUj18Xnq2TX4/mquaE4yNrCcKee3sqGNlKKCdXNG7TUOubqNPIdVqHpN421NVmTWubg0 td7IoQT1oxglUXaavpKSB4qqaTw0HZ8eCttfqPIIeZ1jiN7FRUX27hs4hHt38im+t++VjAPVKKaF lrnFcp1iWxU2XTpliW1YPZHQp9ertIZ0Jaqk+Pt2Md1DRFAcUJXxxC8LfQqTdo1ei72zciJ+T9A8 OpqoUHPEXusnEbnh2PAYKoDCSyW7GeZ6/WDJMm95XFYwVfxrkiR3rVFxFe1BgXW7oavVpR5C+C4y AGkiiBZXa8/gK7ffKqWdFO9N/Ssw5qVGxWpIOvWqpGKUR+nGuU2LKPCwr22q2jLR6QVBns0UolV3 Y9KJ9cfuyWb/eZnS9U80Xdn9yRytRaqFuo+LenOAXKulDz6vD18dehuA2SEZ85BPp1JwWvtlB+09 dNymJw02EbZfjEDzZKuKT9dJRth1KVA+xqDnaNwwnJsfPBdIHXCQUaNcdWdC5jcjr+NipSfmkuzk kkmk9z6JpE/bvv/mOejlR4e0RnPmy+vP8WFX/z31G6COGVkaYq/1KH5/YkxRAXPENHtr1PU9W74k Oe7lhd188ss58jkK/jbW1p82SqraEkE1HdmnbngHBx1K+lEh5C50TA6GnE0aSW5uyRFmpmx2vfcg wXcVVpbRBiVUni/goDC3lTBsw9tqjLopxMo3ebtn0zMhM4zuUvcGWns+w3QGW3YyvNctUL/imuwU ksQAyHHMoedP10pKsYIrRW6vhCRQNzVrc6tSD0Lefa/SKHX63iRVBsnmTb7/SqQjIuk2VCgbiDTK wFzkXTYlGPSYopu30LO/3V3k9WaP6QKjE9J1HQ1pkwU9/L6Y01Ldt8iV76Bkew8XT2Oyp3Jc6Df6 DdCiI2iadJAKA89V0ZdpVzE+bULl+8AypynXH1/MSpz6uQUz+uP8jWkCGYW0RfX5FByZQcJPDuS2 nk+6Ug7rX+mBZrn7uM1LhEF4sbVZ/ZTmJeyOOexJXG88sFKsgj3KD3dLSFehMibBQsXTFRGFsftr E/3HU0k5YvNGO7xctheufquYxfCydLr+HdvO1mVbI3xzdQkpLO0J5bgOFAcclpECMrSAjYEPijaZ BhJKJsRYrGFH33G0k2zock0u9VSfHFfLp1uZtBovubcVigHhlw1sSgywVu8pscxBDyr09AIBWk7v qNg+1wdweiDKc1mGGXNdWzkCPgenjnFjq376G2tB/cNPmG6BxSYh0Yss8dM579SekcvcBvEAlml1 XXsQQa+ObdkbT29xGg8lJ1ySVuTtvHFnrRlhsH2gqG+pkAMu6Z5WjO7VRyEFxtdD5rPZ8qM1e6d2 8LY2+OjJE5TCOkpo8MjHEg74dmpOUK9yYn76KHFkmqYSixxkXeyo4wr8uWxMfrrFTFvH2d6eWcPV LkXD0Hf0IUBOje/tfD1OinyRIHNtyxRlkfzbbXPKtr3HXW+oAK4t2LJserxO8eRmiypdPiTOvmp5 0ccGdGzTSCGawqaeMAdjb3tMo/1es9RXtneMOtHHlzC60WMWuZnIa+u3wwHjElGDcoCZgZDSzpmj H6+1PM/EHT+ewXrB9BVRhKlrrTPw3GLKG+0vvnw0HDoXufwfxNCZFaCvuZr2GFb3ctq59yqsn0jO 7Jqb3u7in3d49k7nMa1wGX/KlGn45KBbK8rLA3jnnbj827u10ejlXcXnBHb8Ku2XJdL6wTVkX1hW 7g+D4Oi51tzzlXQ0QpvqOgwssxK7nQ/XOZr21dxjgd9XaFb+7W87mdM4BrYqyqm/zpWjctdX7qRf qDiKuMnXUTwKh9J6n6pQxXMlBAxgbUvh+bS6MSlNUVlenmYq9S5tvoY493bUleYsO35LenZhQnsg nPJNOczyclmbRmcmmnNmh/fUALiBX63ZkJb4bcw2908mflLNuTR++k5kMF2TamtcBX+UFlsBPbSr yiOoUnS5wV/3flDq70yML09Cf1shm8Yw/1sC62SNNWce7qEp1VP7n4FEF/68HrLZRn4DuvKFuEPV buwip7DctfXJ/tpNvqOYh+7NzQwn3I0Ju1vvwLTxN0VDzbG4wVJ7qv6rj+XTTBsBXZY6Auvi3BDW DdMPOIuiGQHU5HyIqnrsTVCf9OYLgkWxvuwrl6f6lFH+p7+A8KNRKbR5EnbMEcapeIV0H6Y+UPiy DxPGfrmwjQvfIycQFL18ZI1vsHT96FWC3rDh0S9hgpUNXHnGUU9keK2TyBgVau9t0NUXyg3BIdya l+kKhfRz2JZVwedjO2RVbA9dTqbZqiNJmbQhFwMequ0LsAhOCrvUes11QH2qt0MQuqbypfH8ShDd KQeKIL2B8gMyAlklFibiqnjrhgN0r7DNs5cF2MqKQA3PJya6Rft4NQKS+Ppjjc9hdBbtHqfdolCp w1cyMaQcdcysW00gYQYDhQRC3U6nlMhwRx9w1/v2seOz3d7pBmXRUc6+yUinBlP5qGzvIDFOXea8 BtPWq6ZtHbtybMhhTSDBJl67yYKYkr5Rq+HmQrt6KKDGfloM1jztC5xdaBcBAy4P/3iMkupEe2uX a9y+iY5K7+8UsjWFjgy6bwnaUndX67vSeUkgja7n5y575aj60+F09YOUtw1wOpsYABy3+NnkjytJ BDa/jZbSsUrcnvtbbPAnZNZSLsVeeXRtNi5/eSbloWecr4RW9crsPofwqFEn5EYdsS5F0OTsr3D7 fQZwOXBK1TsmyuXOiFBsX1uyOZQfdZb3M1evYx44VYSy/ugWvw9o0OpdQv8dX1HYKkQEdCOer34j 9AvJggera8R+UGtzOM8YrYgibXzecrhf1z13sD3mErGbQyOBM77z8geO3+UQJVz65vwQt/G4lHvv /l9ihL+AN1H/zI38MyPy7F9iBFlLmLmSpaPTP3IEsAJAATT+sC73KQO4FYD48kqq2I4EXwkR/5Y3 KP0aTBLBfvRoj/G/Kvj/a9HBzu4/lopnDJUgH5/jHo3x5eQHfxOPDFJ6ES3yQJ8N6YRa1pSWFUK6 6PcgsrvYOVj98CyVPWtICg6zhUswTnc7frtubswyI6BdIhZXmozlGAPUJWBhIWWotWnWIUP9NuG8 L9Nz5pDhL2ugh+N1Y3P6kEh1dU7x9Cd1B46UsrR6TsW4SVk7WlNYlB1Vk+u87YrPmE7h1FTRRUrC 9cwoEnoRE8fQZHdcIDJbxu9ddLIBDpVLTAPamdz/ajM1ub9tcHt3r7XoG2xarXq8ddvu+Y4f5vb2 1PPQSWgNJMDOLXbqQGxamtsRIbYoK3PI02O0F94g3by0O3VTdesXAZiab7/ow5gopYd2RtDBHXeu RBcZyE+szSUlLUI3jgq9XUMNJ/grGnJswc9irnmYr73Qz72Agk8cCyeK1lDr+Y4CnAUoNovn/U76 qPGp+oyxa2W8X021u7v3+0NPGcasDP54JNTf/XTZ+9NttWBs5+DFxZ9Gus8p8d75ze7fZIzFkO/J 1hNlpM7u8NBnv09jtyedVU60bPRqDXpp9struM26KiaTIUgT2wHr/mKa/uLks6UNrcLtO8YNrdIx 65/hcWWQyZHJaxXjxeeuq6Jhv8dyimM+bA4piWsbqA4WiMZfxrIO3bPyp98XB99RZVToFpFrHuha qtIOfVw8T9E24PcuWRnIh1q5cSnoDioBxO5bJ0wF+QloHdmxI0RSfbvnucJqacNmOg/HllgGP6Jx NRsN6w2QEEtwTGRUlRKkjMWqM14cMz5FC/YldyxeyD+syFycHiI4jVinMN5WWr+gpkOmNoYi0exm ZsA5vrL1YyXYNhuA7arueV8HFZjbhoOKrzyevHbagZUassgK8Dl1TurrjA/2nOXjefgiDnt6BdAS P/adpWtqPe4x7Fj8HeT6wUcnrJsqhR6yyASYmTepNkU1mcw6SPf06HFTmaIOO6fJ+BDc2ySmqBXi WfUtnWaWPy3xBrhIwmcI6efTfDqKkCxJ2cnyRkJIOnt7PP/3db5qUJwxWEbERoTzwadEgimqygHm loCYvvTqR1JDTgo+g3MeoiXUNkZJUyIb5HRcTpxrNf2BFxPD8ZxMr6xp8lvjS60Q60XfnK9ycCC2 oNF4T/PbeG5siDsFzG2pxdpHszX+G+vsSeODlbfjYcCcgWk+eZ30zaEVq6740OJKlkab23joHGJd /gEtfgR33iyC5eilTfATGl2wyxskBdIURWo8023Is74/PTr1HtJE+QBalgrsi5MJChfH4KYqbXrF Kw35l4Bme8gUA1aG/ZDG2qK7geePkHuHuUD6h3D5pn4ACRamT6K+OffCCSCCuJbgqofdpJKYoDRJ IeKsAOD8iTUpJB1vJN704XUHlu9AIalpPtgfn7UfmNMO189tkp4+OAVKTZdbP4GIv7ZXdSF+wCwR +ZySbzQD2D7tAAwDGmNemM09QYLCRuKFvocVrUe8hikEG6GCvh1yH/wwQl0mVK4XPDjdS+uIn1WA iajqEDuiwDHTDqt0s9ESjd7gKRDyr5Ip6vc3j5MtENJTTApyR/bgNA9atj4MQHpa/UlHzwKQCHYb jn8er6rBtkNNUNDv60K2NBEmqGHz2ZN/WLmX2B5/IgK7SkWEOYR6EEMEuz//E6v3UoQxSpMQ0vQC UG15ePMaVuuQhoTp6zSv+2PDRJBfgabf13HvAH4E06Nl8pC2BxCiW5WGyzlGMmDBz2q6FMk2S65L eCak9fCBKBrcmPtijcJftyXU8uNXuP87zR6VvJ0cfkivhRj/HRY0tYPZOfD8Z+WG28D8I4cIfHkp ug/f37eT+opmr79/MklcjCCOYl922wFrOfrZSN9emAfr4KQxHN6IL10QaLDEsl5S/o6mskX2vixW 0X+00jkajOpnYiXW/lyd2er5FEtjKc20lOAOMbLj/aVnRFk/VjLgtwkVPkhlVAr0Xvu+VGJ8z9aB tYXJ2lytp0b6DvZ3rFob+4m6KqzPDqP7BcGwfnz95pfR6GdYFWh8ngBtI4GhsgtlAbHZCFiS292f yDSm6oDURN6vjaplFjvHXr8LJzU9tBj345JleuyP/lVjyObl6OlwHj0CUf13ItLG3Mn4v4rD/3Px DwQLOmDHFWHSpk3tmoaqj/W4vCSB32KPNR8zSSkbYPdabLAjHu1Px4PjMfdKl+LNwmx6k4pFbIm/ uO5qFE5cM1cdiTNmDbt3A1hADHMLLt1I+4ZcjOBq05sz80na2Unofdsbffos5rbnusNMKqXEpnTY Tv6l76gsus95AJenOohaPSWoCGFlWePq21qH1FvvpcWLuVibtIPPIAdRsbwpa4ysOAbTcOJi4Vvg hTo8ecVpQL6NSRS89VmGXxxps95kT//rSR6e3up5Mt/ztvueJKz+p1HYQb+iIdvusqbpTbnCv2dD je2GJx2svFIDVBaxAtBg8+FDYlH6IQ5IwXTpZU0eQN5riKODcyXKAZA8UT17LgkPylT2KrSZollS 22jmtqNOj+H62MEHuf0x9fw6I/v6bfSrV3Np71LXOS2+LQWnxu+K+Ov7z/+K1fbloLHCiHoUjbfc Y+flL5nEclacs5zYAwhSrTJnwNXtm3mqR1AWArcA9Ux6MlwiVKCdT9yxtK5MgO3bK9cD14Ls7j3x encx2Yq+0ZkhDb3yz95ajODz+2ydi+XBfmOTvWzKBES3pq/p1W3TYtDU0VO3oeJmk6MGLCR/fV/W lK54h0j5LvWrcfaMygTf6Eu6JJqZIyYkHKfQ2CPtQ5bcxIdNcMPAMDKxTaE4K9dJLOMaQ3ZBGVpl Wdu6Ub5O/Gme1oXnBriGk5CmxqtXu1CyyQ6zgZiP8MOVvT7zmBE5RIQjzERYta24HtMvybe4epfO PfVB8PorBHq3OpCfyWYMTs/n+uUxt5XphGgKVxNTOVVkyZ9xCuyIJawxAkTc9jmdjIfLVMOMhG1r zQokE5TPbtNHecmJltBNie9mhrFuDQK9S8esKkZ0fz3+HsY2LLtYtuapMNFaffyG2PJllH9Re24Y K4p+XssDA2Ap+pe1o4y5iIxQikEY9VjAhJu2wShIxj3KlzixxeUnzen6x0xpKc4thgoFebKkIMnX cAJLwCt1X+Ia3JUgl6uJFMNnIcsnZvaHjNhFWXSjCuoqSWsh8pu6hZ8SumTOw3AD8P0cKK69hEni sl8dPBsga9VlecYX9fpFiH0mM30Z6VT6msXtdcyA0Hc5eda3CYSET4wp1Tu/6o+/JxFeGJBnV/jQ k8tCHAGJ64757Zd+YOdcCKtlOyZxbtqIptESDxqAIr6LdH1rqCe03YxkD0ijpK95K8tllZgDS10h CsZL6E4wUlYQcE3s5pA7pgVf6r7+vgAqufAlcSher5ZVOW1k0eWPEBoHNcLiXjSBb5uKMmKL2hks HxnXtYf//vPYtINk62cylhpBDpWRFLuIFJ0JBaWahiRdn56AnpRcLwJ6quRzUJl5amlHw8qmVWBs NRSUCZTqPags+Oi3uExLnBMbc4ZnOOJ8GRbM9r3oY6zZ9JVaWwRUX/f2xWIlGUwqOk6OZeur0JXS o5aUO4PIr73E6NLa31odAvaThH7r6xOlxZ8doWo/B36KyjzHCfDVm2gRMP2Bu7F+Ho9+Rhv42TMp yR2+0i9w+ME5XiyZBzWV2MMJgQ3GwH4SDPw0elnGaes444llTpihwsSUbPsttlC7pO4JvnKg93vP RnJ2lsTPbOrFtrH6oDhGJoEoKcENBcFqqqDIy5jAQ0MxNu3+plRZaNbRa1wMjSevpxabzi77sWwO doHkffeojoHwFPf2nV3QaTofg+Ceea9oazHONdBSfk25GKtdXGpbZWH9gZmhritITeo7BcG4/Ddk uHl8Odk0WWRDfVCA28ceVncyF05K/KupS6hBwD2BZT/WsfQ3Hk4Nrg46ceQyoTPuAdvcCohm7tfy n/KpKuBVRf/0gTOPnNdUVTHleqqsab3AnqvcbXgxfQQflsbgswXSVQWuFOq5CdzAr576uaH1dNbe b2ic5PzeF05RHVrsj7ilO/+SsyOj90HDEFPn5TaNy3ECmUGrLdemV+d/0XlnizfwYYupo/R33Zr3 rdKM7oq1zrhsDRO76Lvjz4w1sRIMNGTpFXUW+gRzmJoBK42OWgUv4FnYiVHwNxEib/9gV9oWNN4v H4dmkrZZJrHspHLfjhckx7q9TruiTtdA3+0aogn+dzXxC6CsoXooo1WP/1VNnMzhTpa2Fnb/VJOc aDVVP17S7qUrCuULQqEjGXnj4GgxoFU/+tEnyFNMoGWh09Ji+VNf2w7pm+G/B9f3CxK1r+imBLc0 PmtwJa0K65kyM2s0xH8MNzyfO6L6pfyUNKEWae2f00OQ3asfzqGNG3V1EYmjj9XDmHVlfa5v220n 3necUvUJZ/jCa3xJWlGbNM8SfxcrmvmvhKRjbHzdh+QJ+ST5HF6lqbSzg2HSMb9rhEgXFP09vpIy 95eStJLlyGW9v0eJsX1Xfg7/Ht4tHE7dL05YcBiXf0xfzM2lUZUfmlag2VHDysvKLWJPKW1U9mZm 5NfwfXmVKNMHNC4EPNBLXtzBk0uKzgYG9RgIQ66j+imh4ArdiHqsVb6rWz9LjNA//wLSoa1b4uoB SAy8/w6A//dMYmZn+sEYZu7kZP4PjlVavbZzvKSN1FsSpG9TTuRfVj1C+mkGMqhjypJgeK5ZaH+L /xod+iJjXHVLQELL6stL7KoYgkw/qs8bAw1uEWs7G/mAYTub5IaSyemLR0uwJm9dsRPJ6mLZbo2S SR02dWxj5p73bE8zX1A+pTCRJIl9vGmZZR6m1glu7Krnjn6VE1Wwnj/+ESIEr4h2VkuxMCVnPLsM MKvomnHxcSUekHw3l5jZSPL14HGAWop28S1eAykadEL9pxPkbzQihk04isUjkUQoLn8eLM1R4eaL cmsBd3sYNbfHzTbRGPReA8eymnkLlL37uQz2cM6bL9bAHHEZiu8/U/BLiowxPw0hx5Z8MijTRmJP s2OQon7PmWvkPVVGjpjb1Hifze00tqPdkm4Avb0tohNnGf2FmUqOSBvZvym7UoksT9U+i5WEYlkE xwn99DL6xCegMMp0rmQwFp88MJOEcGduA9s6tU6YYS3UpGVawH6yeskR0XktiXh7NqSu4VZb+CRa gxy0Tia5Sz+ioLauOakLKMNTOB85QoUbulwDMfpOxePD+nPkj3v33c/7M9xGweuiOXeky830kEk9 9mvPuGG5LAlarhu36lVOuYW/c9T0nV4j74ULRUO+sax6SkmEte/GJHfUaRhbFFaJ0yPdEmfCgLJQ 7kCN7hPPJ7rh3XQeo/8+vpanJSajSB89ynn2+D9UcXRyg5k7/sMVZxtzWyduUzNHx/00m5isLtqA 5k1tHa00u+RoHM8Zu4M9WLRoRVJxmgJSRT2fAj/MjBLQsadS3msnQfQE8y/Bb15R+JBmefhtD2ps /nzsYmJraclJdEH5qKayrlTUZ0xiK+NegXFUAgat7UcrZ+AxTBnba2+fp6f/vatEVx3WvJ/m60EO Q7UD7uHrQDEJWIP7RfP9uXdd/d0wnXRz34s7O8TNtuNdAtqsuj7pJn59sbjYrRJcx6Ic8ctd6lrb lfpK9SS6pJooPtx6XVXWcz7ghpQlB1I+tSVEx1dBFW7d9ONUy7OqrFJctHXF5TxQAHpBwzAwqqPq tXTT3wQ3vqRq7nUY4DJtNE6/b3ecv/nkuk4r/sYCYaTqVrFIHxc9dNb3xHMTPB75V+8uddP5osQS RmXX8ELZCWljOfM+ObAUnWv5LgKOJCoS5jDkb56BL7npBCHPxrW+mILyteD+XmusrutY8T6rwz5t rGJTynPKf6YH5588H/ph2KPf6Dh705Vq+9Lnlu+E4ommS74Q2+gO30BqwbsCFmhLnDVLqyILhHuW bEbRnyu+RLrh5ZUilv77NqIgHW7T/MiLhHL9ftyeWqVhdQWwTFrzZAKoBWiwjaQ2XJuq+JDob5uV MNa18imQbrN0y2oETy3W91oCsnwVWCwFXFrB6hpddh6aFNh2pt+N9Og9TREE1WcAOI2baNMESlvL 9zUh8yCvmuanLJY7b7rUE1+Zg5pSATMBPjawx2q5BnQYXhkUeSFK3GwfwZutpGFV1qLj4pdd7lGM 1qtgxAdjGU4fs/Q8v9h1w5HxxeIftVKOg0Q1mY1MRJdbVxas74wJcuBvQF9OEEnmHk1n6emJbwcR 2xv4xv7qRyiSVMdXe7la4TeYm88DYH9sY/zfxWmcdhcfFhktJ/VnYjuRZgwKLkY3VTnSLQnTud8O /eq6M3vnE/r0ggB611slONLzczu5hPrlRoaZR6IP50InWsOWUSlIBHIX2yP99ICLmmUJyq3p7T3z Qd1yibnazlzJx/8NW06vs52r3eNRAyXf8noGsJB2pnbh3hUHZ/Uuk5j1S0Lg/j7zh9kZyw+2Q3tF HOS6sxMK2ZV5Yz/nw7d12dt6TmybwIvDObepsuauxbISbcP4Yp8sN5MQ84tny0bswcD9PZD67Jyq Wm1aRNevY51nerNLlr8r2zOyym9YV+032z4MNsW8F7h2Fap0ybMrqT+K/wNshfhWY9nl61eylMfh awM+BcNlTuKe1Ph+pyMt0+9SZzrkMa9NJIl0TPqZEx0fUvfFToFl9X3rB7dtlXe3k+oEMeORFeNt ShO2gPXcN7zxRoBWHd8yLFO8LnVWhQRbQGPz3bHtrP+DB7xFsgYWOHg9CxhVrFljsq3YwRVdKt1C yTz/NWidLx7fzYcD1en5NRWFBYyr1Bz/4QE246MhmTPHGT8EVvEqELmBgf0U/1j4f5sOJp/4Wu0k 4EUCzX+VXNCm61uBBcUbJEtlEQZv7gI4Qkp2gBCoenPVeBdAYA1Y9frjkI/c86fCUjeiSkVimIEc Nv7tWIHBdHiBeMQas6/tE1U2eZM+TYMRCUY8rQa+jZr/nz/EArqNxUaYQ+nKsI5muKUt55wlP98f vI+ioOJu1fItxoLgIclgLNOKqb9xYDnV4c14ohcqkVf2douEVDjkhKzPlHgTjXjXwwkebnI9L9KO NBI0P1kmvRpuyeOu4lFQ9tpRv+H7GNEKmuNO0DoSVLEzv2W1pLduX/5tpTfE6XHsplqL7TB/frvQ VjZzLWiL1p18piwlibmL696VWv42vM5Z5k2utvAQbSikfV9WgzWdgNou0dDNDEdfQXZRMeT1iL+8 XK1rwP0fBBsFkY6v4Jt+9S0AfvkaJOXPJDGmoG+QF9Xi2cemito8KdF8s8jyQbwpxo/GERuvjCLa GPzF+gh8xa7xz3+zVzLvdwHSmc/lVV9hytB4E7F1XBv9jDxi2v6x5axUWbrs5P42F8OvDWUH8GsK NmtlEHpRrARw2eJFfru4XXU3rsXZ7IA2mXvW8U2qLd8mmAdIjQTMqFEIfOK2NKKNnOt/OdP6ppvo lS3ggonbjUJNB96fMjXyR59BqMr0UJH0vJEavdLJUiQp23mBswQZw9yk8AqtmScfF87MFbpYpLs+ 2eJcC+u287JztvPq1a53M0VvXDfdpAZccuwffYVSMR5GbZKwaM82vij1BPX/iLNHXdkE1q37/236 3Ix+Pu+QHg9WKawL5lav1BxbL+AeqdKcMbEBjwMnq6WXKUGLX/vWRRM4vXyKURPeXxdRlDwTDZpn A0ukSrFqc+Lwpm90vpDEnFzbJ7bGBVaGlUmFeV+kjrjJJpmLFHRiEKzGyrkKdc+t+Wh0f/mQ++2k LQ8RjZ2+0RI2zMxJGe18PAjmzzvJI7YOmcOxLvgEFpnbkqSMwSDBZ9DUDzss098zF8Y5g3wAKqlL EWsS8J/ph4pKiB74KdzPjUfOVCga2eyKUmZZvVJRv9CZy7d3WeyfVYl9yS6jpx8Sy6PMunfm4tvr L3ChX4GXy+B2xYVyCmsJEWRw6S9NClpyWEZWO2OuKjz33ysiGlOadxNY+rveh+/qbD1X31qtih94 0iNNITqxUHLwOJRrOg560rETaF2kvmlgTOcjGD+35e+ufGiDLqtGOu9JfRxqdnOcKudXuymClmLQ /E875xnV9NnG4RADQgJSZhiykSV7FCFUAyigYYQwFIQEkGVlL6sEQSyrKhIiASwgU1CrhIAilRHZ M2JkgyCyZCQyWpCC0gD1PSGt73lPP7//68P94Tnnd315/s+H+3nOXXaOO8V2COwJ8my8CdIGap+C cbS+D3s4eF5N6BEp2bFcwBUh+eDcoUslvM1tDb7Em1JUMb1LRyRtUhPapZ1N+Y456upFHaR5rp3J Loy0D8sXEgylFi379bgjphLyifWoSw5i6eppiiNEHbTKyxQLKnsSiIHnEFzWWBY2tazGR7Sv9+BD eKryk463CzWOxGRNxRJOXY627fCKiiF2FKkJVdqPSuO2UewStJjEcRmxJdknPl7OHQ/WRUmQ4pR8 5dtxCDVzsSKcVG2kVdh3s1Ze8Mueub3NcvMjl5XxCz9W03v5OHXL1QzGVC3fk7Dl3S3cY6pZgqb6 EJrQW++rJX0A/d62Sk+jVxwNbXSfirFIxWjsfhqIZulsDDOGVeFys3Ozz7fERMRGTCfzVJSHV9jR YiO20fbfXsoOWSdwnlFxL0s8pC3M5SQ7BfYIgFNCjBGHaupKpkhH4QNTVMJPZ1UCu60ZUPDe4IqV VtDTd7WIXu/rSOXZxhm8t/MDe6U4D127vIPou555hPyHMGIcOA7fO/PirnnnkbkFhJvWF6zrrzbF /MU7s6PCDcUpEcftHLs1dyCu/H4H3qBdCuC5oFML4NnHAHYX9DQ2ftzOotw1GTVJReDMXvQnKULJ aDLaJl2HCCVCNfgHIAOHaSJuGm6lI2VskU/YI8flNGD5yoe3V7epVvjBiozOuiA5MN+ZClpw0LMj o80VvhmAFHGewhHSZNOv1ZwJeyL1hwftoPqGRwOgDlBHehSD2SWWwrEJZNBOGZ7/EfMR1Jjs+w78 kX2XFq5kgbfQmTv7Nw3L5dmuOHQJvu3HcYE2TZRjUYVeRa1TZI0D1UP4K1YcDvRNjwZ4HZyRnIvZ hZH8Ccig3XpkPhez9rr/4huFF/0bs7fWKo+h197X1Y3V1NUUnz7rspCa5y8qUFQqdu9Nv3dBcLQ3 4+9XfPqIYpXGreBIv/09G6aal76fZ2Lfz86XMszG7v+Gvi0NKHMVw/B/8/BkcwLFiR3OPdaAO3/f w1or4CRttSfYJB3hqrL6aUodusmWqgGtsV9Fjesnt1fI2IKPbiB8xH8vIAkr3Jex76u3/A6qMjEL zbLse8YrN0F7JmpGMDZJvdEqbTpxd8iRPtxASvDi7ZAkfKcaeUVeNfLMKrAj5zddbeTtcUqWlJI8 1uJy3r7tYxu7fWwH9a4Haww4YGChpaESlw+H3UkKFPhJve36MnWlOBmGeOaf7ls4QeEfJVD6tTQU 9nUYuKe3hBL73oBjYIggnzZIRUewD1cd30VCrqCxckhAkYXBbzL/OXnsntJMKw/KZKV5GZq5nRDn hU33WzYGVgUND/96dUk+2SSiL/68AtKsSz+qilTv+mZoNWCRhq/PM9Lmi7MOr3z4nPwOHDGVaVT2 R150GlA8zn9z8ExAAXROr6ZyqQWNLRWwcKeCUZyo1psgZZCyJYyj8Bv9tclkHhGSqwj/GL2HL22Q nLLL4ue3n9hMQx5fcmvVQfBrevZasplKZpIF3Czi3qvcEpFMkO2VOZsIPJF/sKonpNBWcH38ef/x fvyoPUehOYezvyaJ8igd2GbNOY+WeHFMZzi1oav+R3WIPiSqk9xVf1LLt7wbfdVPOOh7Hk+7bCyi WcBfM2vhitlGzcXllou51rmUQqESgRK8OFcPV09mBDdSEelDH4gxHI4zXHJFS+BOsPVw7RLINyqL VGTs3jkjxu4Nd+wSRM7guPyaJNIfdAnnoTqTbGwpFfb3keAm33smBtVH2/jVTpy+aA8RAis+9Nli x4SvHsoQ+YLiuJvHF4LlEpLGG8xh+esqSJEdBtbFrODumacBcU8yXQFxbAyybYBnr9YvjhcMqpsr h8wWWRT0zDfiIZoamqXFHaKdkM7rUK5p9um0CO4MaMZp+gC52vlF9eLJdIlXWCHG6g5mAjcUNDUo erzT4d4ngSsP7ihrlsoJcE7HoUBFFh2ncB3uaNXKoVuRZegDUGyZuzRGGjPomKKxi7HPNexVBl4z tCc4Deyiu7nuBfZ14A6xb0DPuSavh3Zdw2Y7pcJrH3iDJ+dbQbHYPMbOo5JQkyGt0AQXWlKtwjWV NUYyHANnJOdq7GLssy+KjYGXIj08tzSa51gu9KHOrdqmtTH6Z+5ftKhN2NClJYycS2zTR5eSHIMM o42qRqlbhmJZwbrdh9dnue7CwYmJvn2uF+5O3Qpc2oi/MLOp/AN67vsOibMZQ+4/WQZ6h9+r1Soo lmkXrKaZ1I6iRP2N1vJCoRnZvO+q7zs/X2muXoJY+mcc0JRwMySHxcwCXsvgCzu0JD6u4KvKXKjQ 252Q4SPsqr+gJyyVmq/lCGdqJWS7JFfUzB+2Vzh+OjLKQYrPan6kWy0igFqM98l8hqk9MMsr+m2Z h/VIaUv2xvUcc8mQOR9DXI/F55r1IuH1l1o4P/fHOV6yg4TqpRbz105O9OYllxspM8dMvL/NxqTH voIWBC4bmWFu1IpEvVQL3HylvxwMWVzQbkajjhAURL3mMvah7kUCChvfExB8Zvo3AvbP3Ly0Uhl1 Li1KXLkp3XwsumAOHzxln3P0XM27+/1BWzzFuNAPNx/g89rNQgiBWmtjQXTKScdmK7+ntSmj0XhR O3kn3BsyceviiyDhrZmhqvnPTh952g/8Rc4HKHJ11W7VL5lYIYXYEHca2up6nH+dJ56i8IOL2Vpv s5d0tkl3uybxyhapvS++AlEQMPrk3vMFscGzoTp2yQmPBITE4/NLziHkPr0acPxjaET6U5m76CcD 29kpGOlm2R18oriN/68fGiREJV7PdZNeOV3+eXE8a7Ut/oPp+nCR1+r59F+M+pMOTPeXjFcuhtWt z2ztbX6IboQk6gMAAD3A7gBQv/MBF0K3m2PlZaWtXbZKCDUVSufLcgftHh0kyqILQbFp60RUOoB5 gl8/QaKIlROktrbOjtVORMfp7soJIACJYAOqAb42ZkqeZSTVPw+dAu+MC90enigCmKmsOQaAU9lY K6tn7/APZg+V47+OAmGWiarV7oSzVlbZ3rEZzDJ2zq8N0fg3nr0vYpg9qUpffx/DbJLNIe8ks1ZW 096XMsymSaW/v5v5N4a9l8TMBoT6366MmQXkgMadQNbKKth7EcsssND4yrUss2Z5YjeWtbJq9nbo mTUEva/065k1AtpNO7GslVWzt3/NrBn79p+72cyWMmDbTiprZbXsbX0yW8AG/9wIZbbUK++mslZW y94zhtmy/xTTicMcbfO6cyeKtSIR7DvjVCEMMCAAwOsU4P/f//j9CUWs26MAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DA3A4A.09494A80 Content-Location: file:///C:/AC096676/Navus_v13_1826_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DA3A4A.09494A80--