MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DA3A6F.AC859F30" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo da Web. Se você estiver lendo esta mensagem, o seu navegador ou editor não oferecem suporte a Arquivos da Web. Baixe um navegador que ofereça suporte a Arquivos da Web, como o Windows® Internet Explorer®. ------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Modelo multicritério de apoio à definição do nível alvo da maturi= dade da ouvidoria de uma instituição de ensino pública federal

Multi-criteria model to su= pport the definition of the target level of the maturity of the ombudsman of a federal public education institution

Luciane Fatima Alves

https://orcid.org/0000-0002-9059-5815

Mestra em Tecnologias, Gestão e Sustentabilidade. Instituto Federal de Educação, Ciência e Tecnologia do Paraná (IFPR) – Brasil. lucianefatimaalves@gmail.= com=

Carlos Henrique Zanelato Pantaleão

https://orcid= .org/0000-0002-9620-1223

Doutor em Engenharia Elétrica. Universi= dade Estadual do Oeste do Paraná (UNIOESTE) – Brasil. carlos.pantaleao@unioest= e.br

 

RESUMO

O estudo objetivou propor um modelo multicritér= io para apoiar a gestão do Instituto Federal do Paraná, na definição do seu ní= vel alvo de maturidade em ouvidoria pública. Para isso, foi realizada uma pesqu= isa descritiva, que utilizou a metodologia de análise multicritério de apoio à decisão como instrumento de intervenção para a coleta dos dados, que, por s= ua vez, foram analisados por meio de uma abordagem mista. Dentre os resultados encontrados por meio da aplicação do modelo proposto, destacam-se: a mensur= ação do status quo da maturidade em ouvidoria pública da instituição, cujo diagnóstico totalizou -74 pontos; a evidenciação de que 19 dos 47 critérios avaliados, estavam aquém das expectativas dos gestores; e que o modelo apoi= ou os gestores na definição do nível alvo de maturidade em ouvidoria pública da instituição, projetado para alcançar 45 pontos. Por fim, a metodologia de análise multicritério de apoio à decisão provou ser viável para apoiar os gestores na tomada de decisão, mostrando ser uma metodologia sustentável ca= paz de promover o fortalecimento da gestão pública.

Palavras-chave: Ouvidoria pública. Modelo multicritério. Metodologia MCDA. Apoio à decisão.

 

ABSTRACT

The objective of this study was to propos= e a multicriteria model to support the management of the Federal Institute of Paraná in defining its target level of maturity in public ombudsmen. For th= is, descriptive research was carried out, which used the methodology of multicriteria analysis of decision support as an intervention instrument for data collection, which, in turn, was analyzed through a mixed approach. Amo= ng the results found through the application of the proposed model, the follow= ing stand out: the measurement of the status quo of maturity in the institution= 's public ombudsman, whose diagnosis totaled -74 points; the evidence that 19 = of the 47 criteria evaluated were below the managers expectations; and that the model supported managers in defining the target level of maturity in the institution's public ombudsman, projected to reach 45 points. Finally, the multicriteria analysis methodology for decision support proved to be viable= to support managers in decision-making, proving to be a sustainable methodology capable of promoting the strengthening of public management.

Keywords: Publ= ic Ombudsman's Office. Multicriteria model. MCDA Methodology. Decision support= .

 

Recebido em 15/11/2023.  Aprovado em 27/12/2023. Avaliado pelo s= istema double blind peer review. Publi= cado conforme normas da APA.

https://doi.org/10.22= 279/navus.v13.1815

1 INTRODUÇÃO

 = ;

A ouvidoria públi= ca foi instituída como um instrumento do Estado para promover a participação cidad= ã na administração dos serviços públicos, atuando como um canal de comunicação direta entre a Administração Pública e a sociedade (Santos & Visentini, 2018). Desse modo, a ouvidoria pública se consolida como uma ferramenta de gestão, pois atua como um meio de avaliação dos serviços prestados à população, conduzindo os gestores à uma reflexão em relação às suas estratégias e às políticas das instituições (Silva, Jesus, Ricardi, Sousa= & Mendonça, 2016).

É a partir da Lei= nº 13.460 de 2017, que se evidenciam, no âmbito nacional, as práticas comuns realizadas pelos ouvidores públicos e suas equipes, por meio da consolidação das redes formais e informais de ouvidorias, além das atividades de coorden= ação e integração (Ouvidoria Geral da União, 2= 021). Mais tarde, em março de 2021, por meio da publicação da Portaria nº 581, a Ouvidoria Geral da União (OGU) orienta sob= re as ações e competências das unidades do Sistema de Ouvidoria do Poder Execu= tivo Federal (SisOuv), e institui o Modelo de Maturidade em Ouvidoria Pública (MMOuP), que tem a finalidade de conduzir o processo de melhoria contínua d= as unidades de ouvidorias públicas (Controladoria Geral da Uniã= o, 2021b).

Os modelos de maturidade têm por objetivo diagnosticar qual o estágio que determinado elemento se enquadra dentro de uma escala avaliativa, que por sua vez, é determinada por níveis evolutivos, de modo a oportunizar que os interessados verifiquem as potencialidades e as fraquezas evidenciadas em determinado cenário (Silveira, 2009). De encontro a isso, o MMOuP foi desenvolvido como um instrumento de referência para os gestores de ouvidoria, a fim de mensurar o estágio organizacional em que se encontram as unidades, mapeando suas competências e capacidades, e buscando otimizar os objetivos, a estrutura e os processos dos órgãos, por meio de quatro etapas= , a saber: (i) a do autodiagnóstico da maturidade; (ii) a da definição do nível alvo de maturidade, por parte dos gestores;  (iii) a da elaboração do plano de ação, que contemple ações necessár= ias para o alcance do nível alvo pretendido; e, (iv) a do acompanhamento e avaliação das metas estipuladas no plano de ações (Controladoria Geral da Uniã= o, 2021a).

Em se= u guia de implementação, o MMOuP orienta os gestores em como realizar a autoavalia= ção da maturidade das ouvidorias, porém, não apresenta nenhum modelo de maturid= ade a ser alcançado pelas organizações, deixando a cargo dos gestores a definiç= ão do nível alvo. Além disso, o método do cálculo para se obter a pontuação fi= nal do MMOuP se limita à média aritmética entre as pontuações atribuídas aos elementos de avaliação do modelo. Esses apontamentos evidenciam as lacunas = do modelo proposto pela OGU, constatando-se a necessidade dos gestores de busc= ar outros meios para a definição do seu nível alvo de maturidade em ouvidoria pública e das ações que auxiliarão no alcance do nível pretendido. <= span style=3D'font-family:"Myriad Pro",sans-serif'>

O Ins= tituto Federal de Educação, Ciência e Tecnologia do Paraná (IFPR) é uma instituiçã= o de ensino pública federal multicampi, que possui uma única unidade de ouvidori= a, para atender as demandas dos seus 26 campi, além da Reitoria. Sendo ela uma ouvidoria que integra o SisOuv, a avaliação da sua maturidade torna-se uma demanda obrigatória. Diante disso, e das lacunas relatadas do MMOuP, o pres= ente estudo foi aplicado com vistas a responder o seguinte questionamento: Como definir o nível alvo de maturidad= e em Ouvidoria Pública do Instituto Federal do Paraná, de modo a considerar os critérios a serem priorizados pela gestão da instituição?

As características e estrutura do MMOuP demandam o uso de metodologias capazes= de apoiar a decisão dos gestores envolvidos no processo, o que oportunizou a aplicação de um método multicritério, que acaba por avaliar o cenário de es= tudo sob a perspectiva de um conjunto de critérios (Ensslin, Montibeller Neto = & Noronha, 2001). Dentre os model= os multicritérios, optou-se por aplicar a Metodologia Multicritério de Apoio à Decisão (Multi-Criteria Decision Ai= ding – MCDA), que envolve múltiplos atores e que permite a resolução de problemas complexos por meio da avaliação das alternativas existentes, sob os diversos pontos de vista dos envolvidos, compreendendo melhor a situação decisória e produzindo novas alternativas, identificando as áreas potenciais e apontand= o os cenários que necessitem de melhoria (Aldana, Melón & Beltrán., 2007; Campello & Ghid= ini, 2022; Ensslin , Montibeller Neto & Noronha= , 2001; Macangnin, Bertin & Panizzon 2021; Votteler & Brent, 2017). Nesse contexto, justifica-se a escolha da metodolog= ia para apoiar a definição do nível alvo da maturidade da ouvidoria do IFPR, p= or se mostrar adequada à solução do problema de pesquisa, uma vez que a MCDA considera a visão dos tomadores de decisão, construindo e propondo sugestõe= s, sem impor uma solução ideal, mas subsidiando e justificando as escolhas dos decisores.

Assim, buscando solucionar o problema de pesquisa, este estudo teve como objetivo = elaborar um modelo multicritério para apoiar a gestão do Instituto Federal do Paraná= , na definição do seu nível alvo de maturidade em ouvidoria pública. Para isso, foram definidos os seguintes objetivos específicos: (i) levantar o Estado da Arte sobre a MCDA; (ii) construir um modelo multicrité= rio para avaliar a maturidade da ouvidoria do IFPR; (iii) aplicar o modelo multicritério na ouvidoria do IFPR; (iv) descrever e analisar os resultados obtidos.

 

2 REVISÃO BIBLIOGRÁFICA

 =

2.1 Análise multicritério de = apoio à decisão

 =

Usual= mente, os tomadores de decisão enfrentam o desafio de identificar soluções aplicáv= eis aos problemas detectados, se deparando com uma situação que acaba se tornan= do ainda mais difícil quando ocorrem conflitos entre os envolvidos, por esses possuírem opiniões divergentes entre si, impondo uns aos outros seus própri= os valores e critérios (Gomes, 2005), resultando em um processo longo para que= a decisão aconteça, visto que, dificilmente, ela é tomada por um único indiví= duo (Ensslin, Montib= eller Neto & Noronha, 2001). Para facilitar o processo de tomada de decisão e minimizar o tempo despendido a ele, é preciso que os decisores busquem méto= dos que os apoiem e subsidiem a decisão a ser tomada.

É diante desse ce= nário que os modelos multicritérios ocupam papel de destaque, visto que a MCDA permite a participação e contribuição das partes interessadas, adotando as decisões em grupo, construindo-as por meio da combinação das preferências individuais de cada decisor (Aldana, Melón & Beltrán, 2007; Gomes, 2005= ), facilitando a mediação de conflitos e otimizando a interação entre os envolvidos (Campolina, Soárez, Amaral & Abe, 2017).

Muito= s são os objetivos da MCDA, destacando-se: o entendimento do contexto do problema, a partir da visão e valores dos envolvidos; a produção de conhecimento para subsidiar o processo decisório;= a mensuração das oportunidades de melhoria, por meio da definição de ações aplicáveis dentro do contexto identificado; o entendimento dos impactos causados pelas ações sobre seus valores (Espinosa & Salinas, 2015; Lima, Soares & Herling, 2012; Mazon, Lima & Soares, 2010; Nascimento, Haubert, Filardi & Lima, 2013; Salisbury, Brouckaert, Still & Buckl= ey, 2018).

Quando a MCDA con= sidera que os indivíduos interessados no processo decisório devem atuar como participantes ativos da elaboração dos critérios e valores a serem avaliado= s no modelo multicritério, além de resultar em um melhor entendimento do context= o de decisão, ela também se caracteriza com uma essência construtivista, passand= o a ser denominada de MCDA- Construtivista ou MCDA-C (Carpes, Ensslin, Ensslin, 2006; Gallon, Ensslin, Ensslin, 2011). Dentre as vantagens da MCDA-C destac= a-se a sua abordagem mista, que possibilita a avaliação de valores quantitativos= e qualitativos na mesma estrutura, utilizando escalas de julgamento que consideram as atratividades existentes entre os critérios estabelecidos (Li= ma, Soares & Herling, 2012; Mazon, Lima & Soares, 2010; Sousa & Car= mo, 2015; Sousa Junior, Souza, Cabral & Diniz, 2014).

Um dos pontos a se diferenciar entre a MCDA-C e a MCDA é a fase de estruturação do modelo, visto que o paradigma construtivista propõe que o próprio decisor estruture o conhecimento sobre o contexto decisório, enquanto a MCDA poderá contar com o apoio de um facilitador externo, que atuará como mediador nesta fase, junto com os decisores (Macangnin, Bertin & Panizzon, 2021). O envolvimento de um facilitador externo é considerado uma das vantagens da M= CDA, pois ele assume o papel de manter a dinâmica do grupo de decisores, reunind= o e construindo os resultados das discussões das diferentes perspectivas identificadas (Espinosa & Salinas, 2015). Além disso, cada técnica de M= CDA possui pontos fortes e pontos fracos, sendo comumente aplicável a combinação entre dois ou mais métodos diferentes, para suprir as deficiências de qualq= uer um dos métodos (Mahase, Musingwini & Nhleko, 2016). <= /p>

O modelo multicri= tério de apoio à decisão, que tem como objetivo apoiar a tomada de decisão, está estruturado por três fases básicas e correlacionadas: a estruturação do contexto decisório e do modelo multicritério, a avaliação local e global dos critérios identificados no modelo e a formulação de recomendações (Bortoluz= zi & Da Silva, 1994; Ensslin, Carvalho, Gallon & Ensslin, 2008; Gallon, Ensslin, Ensslin, 2011; Lima, Soares & Herling, 2012; Longaray & Ensslin, 2014; Mazon, Lima & Soares, 2010; Rezende, Alencar & Lyrio, 2011). A Figura 1 ilustra a estruturação das três fases que compõem o proce= sso da MCDA-C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1

Fases da MCDA-C

Fonte: Aut= ores (2023) adaptado de Ensslin (2002).

 

A Figura 1 demonstra que a MCDA-C estimula uma aprend= izagem cíclica sobre o processo decisório (Ensslin, 2002) e se caracteriza pela recursividade entre as fases que estruturam a metodologia (Longaray & Ensslin, 2014). Ensslin, Carvalho, Gallo= n & Ensslin (2008) apontam os possíveis resultados advin= dos das três fases citadas na Figura 1: (i) a fase = de estruturação propõe um modelo que evidencie os critérios acerca do problema= que embasa o processo decisório e a relação entre esses critérios; (ii) a fase = de avaliação, resulta em um modelo de julgamento matemático; e, (iii) a fase de recomendações, aplica uma ação de intervenção por meio da análise do perfil= de desempenho dos critérios avaliados no modelo construído. =

Para um maior aprofundame= nto, as fases ilustradas na Figura 1 são detalhadas nas próximas subseções.

       

2.1.1 Fase de estruturação

 =

A primeira fase da modelagem multicritério busca evidenciar os critérios acerca do problema e = que embasam o processo decisório e sua relação com esses critérios (Ensslin, Carvalho, Gall= on & Ensslin, 2008) e se inicia com a etapa da contextualização do cenário-problema, onde são identificados os stakehol= ders envolvidos (Espinosa & Salinas, 2015; Lima, Soares & Herli= ng, 2012; Rezende, Alencar & Lyrio., 2011) e o rótulo do problema do processo decisório, que tem o objetivo de delimitar a problemática de forma= a orientar o caminho a ser percorrido no processo decisório (Bortoluzzi, Ensslin, Lyrio & Ensslin, 2011; Lima, Soares & Herling, 2012).

A segunda etapa d= a fase de estruturação tem como foco a construção da estrutura hierárquica, que tem como base o rótulo do problema, pois é a partir dele que são identificados = os Elementos Primários de Avaliação (EPA). Os EPA são responsáveis por modelar a hierarq= uia estrutural e representar os valores e fatores essenciais da perspectiva dos decisores (Bortoluzzi, Ensslin, Lyrio = & Ensslin, 2011; Espinosa & Salinas, 2013, 2015), sendo conceituados e organizados em clusters, também chamados de áreas de interesse, que são responsáveis por agrupar os elementos que possuem similaridades entre si, formando os eixos de avaliação do problema (Ensslin, Montibeller N= eto & Noronha, 2001; Espinosa & Salinas, 2013). = Os clusters, por sua vez, são representados graficamente, no mapa cognitivo (representaç= ão mental), que identifica as relações meios-fins entre os EPA, a partir da perspectiva dos decisores (Ensslin, Montibeller N= eto & Noronha, 2001; Espinosa & Salinas, 2013; Lima, Soares & Herl= ing, 2012; Mazon, Serra, Lima & Soares, 2010). Por fi= m, é realizada a transição das ligações de influência do mapa para uma estrutura hierárquica arborescente, denominada árvore de decisão, composta por Pontos= de Vista Fundamentais (PVF), que correspondem aos aspectos fundamentais de avaliação das ações potenciais (Ensslin, Montibeller = Neto & Noronha, 2001).

A construção dos descritores corresponde à última etapa da fase de estruturação, momento em = que se constrói uma escala qualitativa para cada um dos critérios de mensuração= do modelo, que permitem uma melhor compreensão da perspectiva dos decisores em relação aos critérios definidos (Ensslin, Montibeller Ne= to & Noronha, 2001). A partir da elaboração dos descritor= es, deve-se definir os níveis de referência do modelo, momento em que os deciso= res avaliaram os níveis de impacto e seus respectivos descritores, definindo os níveis “neutro” e “bom” dentro de cada escala avaliativa. O nível neutro é aquele que deve ser considerado como o nível mínimo admissível, enquanto o nível bom, é o nível de impacto mais viável a ser alcançado (Ensslin, Montibeller N= eto & Noronha, 2001; Gallon, Ensslin & Ensslin, 2011).

 =

2.1.2 Fase de avaliação<= /o:p>

 =

A segunda fase da metodologia MCDA-C trata do momento em que os decisores constroem, com o auxílio dos facilitadores, as funções de valor e as taxas de substituição d= os atributos de avaliação do modelo, se caracterizando como a fase quantitativ= a da metodologia (Ensslin, Montibeller N= eto & Noronha, 2001; Ensslin, Carvalho, Gallon & Ensslin, 2008)= .

As Funções de Val= or (FV) correspondem aos valores numéricos atribuídos pelos decisores a cada um dos níveis de uma escala de avaliação, evidenciando a diferença de esforço necessário para a passagem de um nível de desempenho para o outro, transformando a escala qualitativa (ordinal) em uma escala quantitativa (cardinal) (Lyrio, Dallagnelo & Lunkes, 2017). A= s FV possibilitam a avaliação local das ações potenciais, porém, quando essa avaliação não é suficiente para apoiar a tomada de decisão, é necessário re= alizar a avaliação global do modelo.  Para= isso, é necessário atribuir taxas de substituição, também conhecidas como “pesos”, que representem a importância relativa de cada critério do modelo proposto = (Lyrio, Dallagnelo & Lunkes, 2017). <= o:p>

Segun= do = Carpes, Ensslin & Ensslin (2006), a = partir da mensuração do valor global é possível ilustrar o perfil de desempenho agregado à avaliação do modelo multicritério. P= ara Ensslin, Carvalho, Gallon & Ensslin (2008), o gráfico do perfil de impacto permite diagnosticar de forma mais completa e detalhada o desempenho das ações potenciais, aprimorando o conhecimento dos decisores em relação ao problema encontrado, de forma a identificar os pont= os fracos e fortes de cada uma das ações, oportunizando estudar as melhorias necessárias para minimizar os pontos fracos e potencializar os pontos forte= s.

Final= izada a fase de avaliação, que resulta um modelo matemático para avaliação multicritério, passa-se à terceira e última fase da metodologia, que é desc= rita na subseção seguinte.

 =

2.1.3 Fase de recomendações

 =

A terceira e últi= ma fase da MCDA-C é a fase de recomendações, que consiste na geração das ações, que ocorre por meio do auxílio do facilitador aos decisores na construção de alternativas que visem aprimorar o desempenho do objeto avaliado, de forma a atender suas expectativas, e também, na avaliação das ações, que consiste em compreender os impactos gerados a partir da implementação das ações, em rel= ação aos objetivos estratégicos da organização (Gallon, Ensslin & Ensslin, 2011; Longaray &= amp; Ensslin, 2014; Macangnin, Bertin & Panizzon, 2021; Mazon, Serra, Lima & Soares, 2010).

A elaboração das recomendações é realizada por meio do estudo do perfil de desempenho obtido= a partir dos dados mensurados na fase de avaliação, visando sugerir as ações potenciais que oportunizem melhorias no desempenho da organização em relaçã= o à situação atual, identificando os pontos de vista com performances abaixo das expectativas dos decisores ou aqueles pontos de vista que possuem o potenci= al de contribuição global superior (Bortoluzzi, Ensslin, Lyrio & Ensslin., 2011).

 

3 METODOLOGIA

 

3.1 Enquadramento metodológico

 

Esta pesquisa, por s= ua natureza, é classificada como aplicada, pois teve como objetivo aplicar uma técnica construída a partir da adoção e de um referencial teórico sólido, p= ara a resolução de um problema na prática (Matias-Pereira, 2019; Teixeira, Zamberlan & Rasia, 2009).

O estudo foi aplicad= o para atender o 1º Ciclo do MMOuP, entre os anos de 2021 e 2022, no Instituto Fed= eral do Paraná, que é uma instituição de ensino pública federal, voltada à educa= ção superior, básica e profissional, especializada na oferta gratuita de educaç= ão profissional e tecnológica nas diferentes modalidades e níveis de ensino, criada em dezembro de 2008, através da Lei 11.892, que instituiu a Rede Fed= eral de Educação Profissional e Tecnológica e os Institutos Federais (Instituto Federal do Paraná, [s.d.]).

Para a construção do modelo multicritério foi utilizado como base o MMOuP. Assim, a fase de estruturação perder a essência construtivista da MCDA-C, pois não houve con= tribuição direta dos decisores na primeira fase (Macangnin, Bertin & Panizzon, 2021)= , sendo ela norteada= pela estrutura do modelo proposto pela OGU. Assim, apesar da pesquisa adotar tod= as as fases da MCDA-C, ela adota, a partir deste ponto, a nomenclatura MCDA.

Telles (2001) afirma= que para enfatizar a qualidade do conhecimento científico a ser adquirido por m= eio de pesquisas, é necessário que o processo da investigação seja estruturado = de forma a validar o enquadramento metodológico dos estudos, tanto para avalia= r as ações realizadas no desenvolvimento das pesquisas, quanto para fortalecer o alcance de resultados que contribuam para a solução dos problemas. O autor apresenta a matriz de amarração metodológica proposta por Mazzon, que compa= ra as decisões e definições metodológicas da pesquisa, por meio da descrição da estrutura elaborada para o desenvolvimento das fases dos estudos, contempla= ndo os objetivos a serem atingidos, questões ou hipóteses formuladas e o levantamento, análise e apresentação dos dados (Telles, 2001). <= /span>

O Quadro 1 apresenta= uma adaptação da Matriz de Mazzon e descreve o enquadramento metodológico deste trabalho.

 

Quadro 1

Matriz de amarração meto= dológica

Objetivos da pesquisa

Pontos de investigação

Pontos de investigação

Técnicas de análise dos dados<= o:p>

Geral

Específicos<= /p>

Objetivos

Técnicas de coleta de dados

Elaborar um modelo multicritério para apoiar a gestão do Instituto Federal do Paraná, na definição do seu nível alvo de maturidade em ouvidoria pública.

Levantar o Estado da Arte sobre a MCDA.=

Aprofundar o conhecimento sobre a metodologia de análise multicrité= rio de apoio à decisão, para embasar o estudo.

(i) Pes-quisa des-critiva.

(ii) Pesqui-sa explo-ratória.

(i) Pesquisa bibliográfica.

(ii) Revisão sistemática de literatura.

(i) Revisão sistemática de literatura.

(ii) Análise quantitativa e qualitativa.

Construir um modelo multicritério para avaliar= a maturidade da ouvidoria do IFPR.

Aplicar a fase de estruturação da MCDA, tendo como base o MMOUP.

Pesquisa descritiva.  =

MCDA

(i) Análise multicritério.

(ii) Análise qualitativa.

Aplicar o modelo multicritério na ouvidoria do IFPR.

Aplicar a fase de avaliação da MCDA e diagnosticar a maturidade da ouvidoria.

(i) Análise multicritério.

(ii) Análise qualitativa e quantitativa

Descrever e analisar os resultados obtidos.

Aplicar a fase de recomendações da MCDA, para apoiar a gestão da instituição na elaboração do plano de ação e na definição no nível alvo de sua ouvidoria.

(i) Análise multicritério.

(ii) Análise qualitativa e quantitativa

Fonte: Aut= ores (2023) adaptado de Mazzon (1984 como citado em Telles, 2001).

 

Assim, ao analisar o Quadro 1, verifica-se que o estudo, para atender o seu primeiro objetivo específico, se caracteriza como exploratório e descritivo, pois aplicou uma pesquisa bibliográfica, por meio da realização de uma Revisão Sistemática da Literatura (RSL), para levantar o Estado da Arte sobre a MCDA. Já pelos seus demais objetivos, a pesquisa se classifica essencialmente como descritiva, utilizando a metodologia MCDA como instrumento de coleta e análise dos dados obtidos.

Para Gil (2002), as pesquisas descritivas se propõem a investigar o nível de atendimento de órg= ãos públicos, e são, junto com as pesquisas exploratórias, as mais solicitadas = por instituições educacionais, sendo frequentemente realizadas pelos pesquisado= res sociais, que se preocupam com a atuação prática. Os estudos exploratórios, buscam maior familiaridade com o fenômeno e as pesquisas descritivas, registram, analisam e apresenta o conhecimento construído sobre o fenômeno estudado (Cervo, Bervian & Silva, 2007; Gil, 2002; Matias-Pereira, 2019= ).

Tanto a RSL, quanto = a MCDA são técnicas de coleta e análise de dados com uma abordagem mista, pois apresentam características quantitativas, com um enfoque de mensuração numérica, e qualitativas, quando interpretam e atribuem significados aos fenômenos estudados, integrando ambas as abordagens para obter um maior aprofundamento sobre o fenômeno estudado (Matias-Pereira, 2009; Marconi &am= p; Lakatos, 2022).

A próxima subseção d= este artigo descreve os procedimentos adorados na aplicação da RSL, que buscou levantar o Estado da Arte sobre o tema MCDA.

 

3.1 Procedimentos adotados na revisão sistemática da literatura

 

A RSL tem como objet= ivo identificar estudos sobre determinado tema, por meio de procedimentos sistematizados de busca, avaliando a qualidade desses estudos, e selecionan= do aqueles que fornecem as evidências científicas mais relevantes sobre o assu= nto pesquisado (De-La-Torre-Ugarte-Guanilo; Takahashi & Bertolozzi, 2001). = Ela é estruturada por três etapas fundamentais: planejamento e formalização da pesquisa, via protocolo de estudo; execução da pesquisa segundo o protocolo= de estudo, e; sumarização dos dados coletados (Munzlinger; Narcizo & Queir= oz, 2012).

A primeira etapa da = RSL foi formalizada por meio da elaboração do protocolo de estudo, que é um instrumento responsável pelo mapeamento dos elementos a serem aplicados pelo método, sendo este o passo preliminar à execução efetiva da RSL (Dermeval, Coelho & Bittencourt, 2020). O Quadro 2 sintetiza o protocolo da RSL re= alizada nesta investigação.

 

Quadro 2

Protocolo da RSL sobre M= CDA

Critérios

Descrição

Base de dados=

Sciello= e Spell

Palavras-chave

“análise multicrit= ério de apoio à decisão” e “MCDA”

Strings= de busca

análise multicrité= rio de apoio à decisão OR MCDA

Critérios de inclu= são

Publicações em for= mato de artigos; publicações com acesso na íntegra; estudos publicados nos idi= omas português, inglês e espanhol.

Critérios de exclu= são

Publicações duplic= adas; artigos fora do escopo do estudo.

 

Na segunda etapa da = RSL foram realizadas as consultas nas bases de dados citadas no Quadro 2, aplicando as palavras-chave e as strings de busca definidas, resultando em 214 publicações, que, após a aplicação dos critérios de inclusão totalizaram 63 artigos. Após isso, foi realizada a leitura seletiva, que precede a seleção final, tendo como base os objetivos da pesquisa, evitando a inclusão de tex= tos que não contribuam para a solução do problema proposto (Gil, 2002). Assim, = foi realizada a leitura dos títulos e resumis dos artigos, e aplicando os crité= rios de exclusão, chegou-se ao quantitativo de 40 artigos para leitura na íntegr= a.

A terceira e última = etapa da RSL consistiu na leitura dos artigos selecionados, sendo os dados levant= ados sumarizados na seção 2 deste artigo.

 = ;

4 RESULTADOS E DISCUSSÕES

 

Esta seção é orga= nizada em três subseções que descrevem a operacionalização de cada uma das fases da metodologia MCDA. Assim, para uma melhor demonstração do processo da metodologia aplicada, optou-se por descrever nesta seção, não somente os resultados obtidos, mas também os procedimentos adotados para a construção = do modelo.

 =

4.1 Fase de estruturação=

 =

Para iniciar a aplicação da primeira fase da MCDA, foi realizada uma reunião remota com o ouvidor geral do IFPR, onde foi apresentada a metodologia e constatada a viabilidade de sua aplicação para o caso da ouvidoria da instituição. Nesse momento, foram definidos os atores do processo decisório: (i) o Reitor e o Ouvidor-Geral do IFPR, como decisores; (= ii) os substitutos legais dos decisores, como representantes; (iii) os autores do presente artigo, como facilitadores; e, (iv) os servido= res e os usuários dos serviços, como agidos. Nesse mesmo encontro, foi definido= o rótulo do problema como “nível alvo de maturidade da ouvidoria do IFPR”, identificado a partir das lacunas encontradas no MMOuP. Em conjunto, essas = duas ações constituem a primeira etapa da fase de estruturação, que consiste na contextualização do problema decisório (Ensslin, 2002).

Para a construção= da estrutura hierárquica, que consiste na segunda etapa dessa fase da MCDA (Ensslin, 2002), essa foi realizada pelos facilitadores, tendo como base a estrutura do MMOuP. Primeiramente, foram identificados, no modelo da OGU, os EPA. Esses EPA, foram agrupados e constituíram o mapa cognitivo, que ilustr= ou três áreas de interesse (clusters): (i) dimensão estruturante; (ii) dimensão essencial; e, (iii) dimensão prospectiva. A partir disso, realizou= -se a transformação do mapa cognitivo na árvore de decisão, momento em que os d= oze conceitos dos EPA foram identificados como os Pontos de Vista Fundamentais (PVF) do modelo, que, por sua vez, apresentaram um caráter complexo, impossibilitando a sua avaliação direta, sendo necessário desdobrá-los em Pontos de Vista Elementares (PVE), totalizando 47 subcritérios de avaliação. Esse desdobramento se fez necessário para se alcançar níveis com detalhamen= to suficiente para a construção dos descritores, que consistem nas escalas ordinais que delimitam, de forma qualitativa, os níveis de julgamento das performances das ações de cada critério, determinando uma relação de ordem entre os níveis que compõem as escalas dos modelos multicritérios (Ensslin, Montib= eller Neto & Noronha, 2001; Longaray & Ensslin, 2014).

A construção dos descritores corresponde à última etapa da fase de estruturação, momento em = que foram definidas as escalas qualitativas dos 47 critérios de avaliação, sendo essas associadas à estrutura do MMOuP, e delimitadas em quatro níveis de maturidade: (i) básico; (ii) limitado; (iii) sustentado; e, (iv) otimizado.=

Finalizada a cons= trução de todos os descritores, partiu-se para a definição dos níveis de referênci= a do modelo, momento em que foi necessária a participação dos decisores, que for= am os responsáveis por avaliar os níveis de impacto e seus respectivos descritores, definindo os níveis “neutro” e “bom” dentro de cada escala avaliativa de cada um dos 47 critérios de avaliação do modelo, encerrando-se assim, a fase de estruturação. Para exemplificar o resultado dessa fase, foi elaborada a Figura 2, que ilustra o descritor do PVE Infraestrutura física, composto por seus níveis de impacto, suas respectivas descrições qualitativ= as e os níveis de referência definidas pelos decisores, que delimitam a zona de expectativa deles.

 =

Figura 2

Descritor do PVE Infraes= trutura física

 


Ao analisar a Fig= ura 2, verifica-se que os decisores definiram como zona competitiva para o indicad= or de avaliação da infraestrutura física da ouvidoria do IFPR, o intervalo ent= re os níveis sustentado e otimizado, que receberam, respectivamente, as pontua= ções zero e cem, e, consequentemente, foram definidos como nível neutro e nível = bom, nessa ordem. Assim, se ao mensurar a maturidade da ouvidoria do IFPR nesse critério, e ele se enquadrar em um desses dois níveis, a ouvidoria atenderá= as expectativas dos decisores sobre tal critério, e em contrapartida, se a ouvidoria for avaliada nos níveis limitado ou básico, ela se enquadrará na = zona comprometedora, segundo a perspectiva dos decisores.

A próxima subseçã= o discorre sobre a operacionalização da fase de avaliação da metodologia MCDA, que contempla a construção de um modelo matemático de avaliação.

 =

4.2 Fase de avaliação

 =

A primeira etapa = da fase de avaliação consiste na transformação das escalas ordinais do modelo = em escalas cardinais, que é operacionalizado por meio da construção dos modelo= s de preferências locais, também conhecidos como funções de valor (Ensslin, 2002= ). Para isso, foi aplicado o método de pontuação direta (direct rating), que é um dos métodos mais importantes e mais utilizados, pois consiste na atribuição, por parte dos decisores, das expressões numéricas de forma rápi= da e simples (Ensslin, Montibeller Nero & Noronha, 2001)= . O primeiro passo para a aplicação da pontuação direta foi atribuir valores âncoras para os níveis mais baixo (limitado) e mais alto (otimizado) da esc= ala, definindo a pontuação zero e cem para cada um deles, respectivamente. Feito isso, os decisores utilizaram o critério de comparação entre os níveis, atribuindo as demais pontuações numéricas, considerando as suas perspectiva= s em relação a diferença de atratividade ou esforço necessário para a mudança en= tre os níveis. Após, foram fixados os valores zero e cem para os níveis de referência “neutro” e “bom”, respectivamente, sendo essa uma ação necessária para a transformação das escalas e que antecedeu a aplicação da função de transformação linear positiva. Esse ajuste se fez necessário para haver uma atratividade equivalente em todos os descritores dos níveis neutro e bom e = para que o modelo possa  ser analisado c= om um padrão único de referência (Carpes, Ensslin & Ensslin, 2006; Ensslin, Montibell= er Nero & Noronha, 2001).

Já para a etapa de determinação das taxas de substituição, foi utilizado o método Swing Wei= ghts, que aplica um sistema de compensação, a partir da definição fictícia de desempenho neutro para todos os critérios, e propõe que os decisores opte p= or um dos critérios que passará para o nível bom, atribuindo a esse salto (= swing) o valor de cem pontos, e repetindo tal questionamento até definir a passage= m de todos os critérios do nível neutro para o bom, porém, medindo os demais sal= tos em relação ao primeiro, de modo que haja uma variação entre 0 e 1 (Ensslin, Montibeller Nero & Noronha, 2001)<= /span>.

Construídas as FV= e atribuídas as taxas de substituição de todos os critérios de avaliação, finalizou-se a fase de construção do modelo matemático de julgamento das alternativas propostas no modelo multicritério elaborado neste estudo. A pa= rtir disso, foi possível avaliar a maturidade da ouvidoria do IFPR, por meio da aplicação do modelo construído, momento em que foi realizada uma consulta a= os decisores do IFPR, sendo os dados obtidos descritos na Tabela 1, que contem= pla a avaliação global do modelo, cuja fórmula aplicada está descrita na parte inferior da Figura 3.

A Tabela 1 sintet= iza o modelo multicritério de avaliação da maturidade da ouvidoria do IFPR, e contempla os 47 critérios de avaliação, que são os PVE do modelo e que estão agrupados nos 12 PVE, que, por sua vez, estão organizados em 3 dimensões, q= ue correspondem às áreas de interesse de avaliação. Assim, a Tabela 1 apresent= a: (i) os critérios de avaliação da maturidade da ouvidoria na primeira coluna; (ii) os níveis de impacto na segunda coluna (denominados de: “L” para o nív= el limitado, “B” para o nível básico, “S” para o nível sustentado e “O” para o nível otimizado), que expressam matematicamente os níveis de preferência dos decisores, sendo as zonas de conforto contempladas pelos níveis que pontuam entre 0 e 100; (iii) o status quo da maturidade da ouvidoria do IFPR= destacado nas células cinza da segunda coluna; (iv) as taxas de substituição global na terceira coluna, demonstrando a participação de cada critério no modelo multicritério, segundo as perspectivas dos decisores; e, (v) o valor da contribuição de cada elemento para a avaliação global da maturidade da ouvidoria do IFPR, na quarta coluna.

 


 <= /p>

Tabela 1

Avaliação global da matu= ridade em ouvidoria do IFPR

Critérios=

Níveis de Impacto

Taxa de substit= uição global

Valor Global

L

B

S

O

DIMENSÃO ESTRUTURANTE

PFV 1 Institucionalidade

PVE Relevância instituciona= l

-25

0

62,5

100

3,67%

2,30

PVE Lócus organizacional

-400

-350

0

100

3,67%

3,67

PVF 2 Capacidades e garanti= as da equipe

PVE Rotatividade da equipe<= o:p>

-400

0

50

100

1,73%

-6,93

PVE Estabilidade da equipe<= o:p>

-900

-850

0

100

1,39%

1,39

PVE Escolaridade da equipe<= o:p>

0

50

90

100

0,76%

0,76

PVE Heterogeneidade da equi= pe

-455,6

0

88,9

100

0,87%

-3,96

PVE Condutas da equipe=

-13,6

0

94,3

100

1,56%

-0,21

PVF 3 Capacidades de garant= ias do titular

PVE Escolaridade do titular=

-400

-100

0

100

1,84%

1,84

PVE Garantias do titular

-11,1

0

77,8

100

2,04%

0,00

PVE Critérios de nomeação do titular

-0,5

0

79,9

100

1,63%

0,00

PVE Acesso ao nível estraté= gico

-25

0

75

100

1,84%

0,00

PVF 4 Planejamento e gestão eficiente

PVE Plan= ejamento operacional

-566,7

-400=

0

100

1,73%

-6,93

PVE Formação de competências

-900

-500

0

100

1,21%

-10,91

PVE Efic= iência de alocação de recursos

-25

0

75

100

1,21%

0,00

PVE Segu= rança da Informação

-400

0

50

100

1,56%

-6,25

PVE Planejamento e execução orçamentária

-150

75

0

100

0,87%

-1,30

PVF 5 Infraestrutura e acessibilidade

PVE Infr= aestrutura tecnológica

-900

-100

0

100

1,32%

1,32

PVE Infr= aestrutura de base de dados

-400

-300

0

100

1,17%

0,00

PVE Infr= aestrutura física

-900

-800

0

100

1,32%

-10,54

PVE Aces= sibilidade tecnológica

-25

-18,8

0

100

1,46%

1,46

PVE Experiência do usuário

-42,9

0

85,7

100

1,32%

-0,57

DIMENSÃO ESSENCIAL

PVF 6 Governança de serviço= s

PVE Mapeamento de serviços<= o:p>

-25

0

75

100

2,72%

0,00

PVE Monitoramento da carta<= o:p>

-67

0

83,3

100

2,42%

-1,62

PVE Qualidade da informação=

-25

0

75

100

3,03%

0,00

PVF 7 Transparência e prest= ação de contas

PVE Controle social

-100

0

70

100

3,24%

2,27

PVE Transparência de desemp= enho

-900

-600

0

100

2,91%

2,91

PVE Contabilização de benef= ícios

-233,3

0

83

100

2,91%

-6,80

Conti= nua

=  

=  

Tabela 1

Avaliação global da matu= ridade em ouvidoria do IFPR (conclusão)

Critérios=

Níveis de Impacto

Taxa de substit= uição global

Valor Global

L

B

S

O

PVF 8 Processos essenciais<= /span>

PVE Processo de tratamento = de manifestações

-900

-300

0

100

0,86%

-7,76

PVE Processo de tratamento = de ouvidoria interna

-900

-200

0

100

0,86%

-7,76

PVE Atendimento<= /span>

-400

-200

0

100

0,98%

-3,92

PVE Proteção ao denunciante=

-25

0

87,5

100

1,22%

0,00

PVE Processo de realização = de resolução de conflitos

-900

-200

0

100

0,98%

-8,82

PVE Análise preliminar=

-42,9

0

93

100

1,11%

1,11

PVE Linguagem e adequação de respostas

-100

0

60

100

1,11%

1,11

PVE Acompanhamento da concl= usão de denúncias

-400

-300

0

100

0,98%

-3,92

PVE Acompanhamento efetivo = das manifestações

-25

0

87,5

100

0,98%

-0,24

PVF 9 Gestão estratégica de informações

PVE Armazenamento das infor= mações

-100

0

90

100

1,92%

0,00

PVE Perfil dos manifestante= s

-25

0

87,5

100

1,68%

0,00

PVE Análise de dados

-25

0

81,3

100

2,17%

0,00

PVE Produção de informações estratégicas

-150

0

75

100

2,40%

0,00

DIMENSÃO PROSPECTIVA=

PVF 10 Busca ativa de infor= mações

PVE Capacidades para pesqui= sa

-233

0

66,7

100

5,23%

-12,20

PVE Mobilização ativa junto= aos usuários

-100

0

80

100

4,72%

-4,72

PVF 11 Conselho de usuários=

PVE Relacionamento com os conselhos de usuários

-11

0

77,8

100

3,55%

0,00

PVE Engajamento de conselhe= iros

-100

-80

0

100

3,95%

3,95

PVE Utilidade da relação

-100

0

40

100

3,55%

1,42

PVF 12 12 Articulação inter= institucional

PVE Articulação interinstitucional ampla

-67

0

83,3

100

4,72%

3,93

PVE Articulação interinstitucional específica

-5

0

37

100

5,23%

1,94

Valor Global do Modelo

-74<= /span>

 

A Tabela 1 demons= tra que 19 dos 47 critérios apresentaram desempenho comprometedor, pois apresentaram pontuação abaixo de zero, ou seja, abaixo do nível neutro. Esse quantitativo corresponde a 40% dos critérios avaliados para diagnosticar a maturidade da ouvidoria do IFPR, que resultou em -74 pontos em sua avaliação global. Essa pontuação demonstra que a maturidade diagnosticada está abaixo= das expectativas dos decisores, ou seja, em uma zona comprometedora.

Para operacionali= zar uma análise mais criteriosa e completa, foi elaborado o perfil de desempenh= o da maturidade da ouvidoria do IFPR, apresentado na Figura 3.=

 =

Figura 3

Perfil de desempenho da maturidade da ouvidoria do IFPR

<= /o:p>

 

Analisando a Figu= ra 3, percebe-se que 58% dos PVE do modelo multicritério são responsáveis pelo desempenho comprometedor da maturidade da ouvidoria do IFPR, sendo eles: 2 Capacidades e garantias da equipe, 4 Planejamento e gestão eficiente e 5 Infraestrutura e acessibilidade, alocados na Dimensão Estruturante; 6 Governança de serviços, 7 Transparência e prestação de contas e 8 Processos essenciais, pertencentes à Dimensão Essencial; e, 10 Busca ativa de informações, contemplado na Dimensão Prospectiva. Assim, esses são os sete eixos de avaliação identificados como aqueles que necessitam de ações para melhoria de seu desempenho.

A pró= xima subseção do estudo narra= a aplicação da fase de recomendações da MCDA, descrevendo o processo de elaboração das ações de melhorias para apoiar a tomada de decisão e os possíveis impactos advindos da aplicação delas.

 =

4.3 Fase de recomendações

 =

Para a operacionalização dessa fase, primeiramente, foram apresentadas a Tabela 1 = e a Figura 3 aos decisores do IFPR, momento em que foram pontuados os PVF que apresentaram um bom desempenho e aqueles que necessitavam de ações de melhorias.

Para a análise e proposição de ações, os facilitadores sugeriram aos decisores que fosse utilizado o critério de impacto no desempenho global do modelo, iniciando p= elo cluster que mais impactou negativamente a maturidade diagnosticada. Os decisores acataram tal sugestão, e assim, com base nas ilustrações apresentadas, a or= dem de análise foi: (i) dimensão estruturante, que pontuou com o valor de -35; = (ii) dimensão essencial, que resultou em uma contribuição global de -33 pontos; = e, (iii) dimensão prospectiva, que teve o menor impacto negativo, resultando e= m -6 pontos.

Em relação à dime= nsão estruturante, a Tabela 1 demonstrou que 9 PVE apresentaram desempenho comprometedor, ou seja, foram diagnosticados com pontuação local abaixo de zero. O PVE com maior contribuição global para o desempenho comprometedor da Dimensão Estruturante, mensurado com -10,91 pontos, é aquele cujo descritor= foi apresentado na Figura 3, o PVE Infraestrutura física, que pela sua avaliação local foi mensurado com – 800 pontos, correspondendo a um nível básico de maturidade. Para alavancar esse PVE, os decisores propuseram realocar a uni= dade de ouvidoria para um espaço de uso exclusivo, propondo como nível alvo o ní= vel sustentado, que corresponde, dentro da escala avaliativa, ao nível mínimo admissível (neutro).

No caso da Dimens= ão Essencial, a Tabela 1 demonstrou que oito PVE foram diagnosticados abaixo da zona de expectativas dos decisores. Ao considerar os recursos disponíveis p= ara a unidade de ouvidoria, os decisores perceberam não ser possível a alavanca= gem do PVE Contabilização de benefícios, que foi avaliado com -233,3 pontos, e contribuiu globalmente com -6,8 pontos. Assim, se fez necessária a estratég= ia proposta por Longaray & Ensslin (2014), que prioriza a elaboração de aç= ões para os critérios com maior grau de contribuição, mensurado por meio das ta= xas de substituição. Com isso, foram propostas ações para estimular o desempenh= o de outros critérios contemplados nessa dimensão, inclusive daqueles diagnostic= ados dentro da zona competitiva, de forma a potencializá-los.<= /p>

A Tabela 1 demons= tra que, para o caso da dimensão prospectiva, apenas dois atributos foram diagnosticados abaixo das expectativas dos decisores, o PVE Capacidades para pesquisa, mensurado com -233 pontos, e o PVE Mobilização ativa junto aos usuários, com -100 pontos, que, em conjunto, formam o PVF 10 Busca ativa de informações. Para essa dimensão, os decisores observaram que duas ações ser= iam necessárias para neutralizar esses dois PVE, de forma a alcançarem a pontua= ção zero: (i) a realização de pesquisas periódicas e proativas, com os usuários= dos serviços; e, (ii) a confecção de relatórios elaborados a partir dos dados coletados em tais pesquisas.

Ao todo, foram definidas 15 ações para comporem o Plano de Ação proposto para o caso da ma= turidade da ouvidoria do IFPR. A Tabela 2 reúne as ações propostas a partir da análi= se multicritério realizada, os elementos impactados por cada uma delas, bem co= mo o diagnóstico avaliado e o nível alvo definido para esses elementos.

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

Tabela 2

Plano de ação e definiçã= o do nível alvo da maturidade em ouvidoria pública do IFPR

 =

Ação<= /p>

PVE impactado

Diagnóstico

Nível Alvo

 

Inserção da ouvidoria nas unidades de integridade do IFPR

Relevância institucional

62,5

100

 

Aumento da força de trabalh= o em 100%, com servidor(a) formado em área distinta à do ouvidor titular<= /span>

Rotatividade da equipe=

-400

0

 

Heterogeneidade da equipe

-455,6

0

 

Elaboração do regulamento i= nterno da ouvidoria

Condutas<= /p>

-13,6

94,3

 

Critérios de nomeação do ti= tular

0

79,9

 

Formação de competências

-900

-500

 

Atendimento

-400

0

 

Agenda periódica entre o ti= tular da ouvidoria e a autoridade máxima

Acesso ao nível estratégico=

0

75

 

Elaboração do Plano de Ação= do MMOuP

Planejamento operacional

-400

100

 

Planejamento anual

Eficiência de alocação de recursos

0

75

 

Planejamento e execução orçamentária

-150

0

 

Emissão da Política de Segu= rança da Informação e Comunicação do IFPR

Segurança da Informação

-400

50

 

Mapeamento dos processos da ouvidoria

Processo de tratamento de m= anifestações

-900

0

 

Processo de tratamento de ouvidoria interna

-900

0

 

Processo de realização de resolução de conflitos

-900

0

 

Acompanhamento da conclusão= de denúncias

-400

0

 

Acompanhamento efetivo de manifestações

-25

0

 

Articulação interinstitucio= nal específica

37

100

 

Produção de informações estratégicas

0

75

Emissão do relatório anual = de gestão da ouvidoria

Perfil dos manifestantes

0

87,5

 

Análise de dados=

0

81,3

 

Relacionamento com os conse= lhos de usuários

0

100

Formalização do relacioname= nto com o conselho de usuários

 

 

Continua

 

Ação<= /p>

PVE impactado

Diagnóstico

Nível Alvo

Espaço físico de uso exclus= ivo da ouvidoria

Infraestrutura física

-800

0<= /p>

Emissão de relatórios de avaliação dos serviços

Experiência do usuário=

-42,9

0

Monitoramento da carta=

-67

83,3

Capacidade para pesquisa

-233

0

Mapeamento dos serviços

Mapeamento dos serviços

0

75

Manutenção e divulgação do = Painel Resolveu

Controle social<= /span>

70

100

Elaborar e aplicar pesquisa= sobre os serviços

Mobilização ativa junto aos usuários

-100

0

 =

A Tabela 2 demons= tra que a aplicação das quinze ações propostas alavancará o desempenho de 29 do= s 47 critérios de avaliação do modelo multicritério, representando 61,7% do tota= l de critérios. Desse modo, o plano de ação contemplará também aqueles critérios= que foram diagnosticados dentro da zona competitiva, segundo a perspectiva dos decisores, o que, segundo a Tabela 2, corresponde a 37,9% dos critérios impactados, totalizando 11 critérios que avançarão já da zona de conforto. Outros 17 critérios citados na Tabela 2, sairão da zona comprometedora para= a zona competitiva, correspondendo a 58,6% dos critérios atendidos pelo plano= de ação, restando um único critério que, apesar de ser impactado por uma das a= ções propostas, permanecerá abaixo das expectativas dos decisores, que é o caso = do PVE Formação de competências.

É possível verifi= car também, pela Tabela 2, que algumas das ações atenderão mais de um PVE, destacando-se o “Mapeamento dos processos da ouvidoria” que impactará 8 dos= 29 critérios descritos no plano de ação, o que equivale a 27,6% dos critérios impactados e 17% de todos os critérios do modelo.

A partir disso do= plano de ação, elaborado a partir da análise multicritério da maturidade da ouvid= oria do IFPR, foi possível definir o nível alvo de maturidade da ouvidoria estud= ada, cuja projeção da avaliação global é descrita na Tabela 3.=

=  

Tabela 3

Valor global da maturidade da ouvidoria do IFPR

Dimensão<= /b>

Diagnóstico

Nível Alvo

Nível Bom=

Estruturante

-35

16

34,5

Essencial=

-33

11

34,5

Prospectiva

-6

18

31

Valor Global

-74

45

100

       =

É possível verifi= car, por meio da Tabela 3, que a avaliação global do nível alvo definido pelos decisores da instituição, foi projetada para o alcance de 45 pontos. Além disso, a Tabela 3 evidencia que todos clusters do modelo, representa= dos pelas dimensões, alcançarão a zona de competitividade, conforme as expectat= ivas dos decisores, tendo como maior contribuição para o valor global os 18 pont= os da dimensão prospectiva, que correspondem a 40% do total, seguido pelos 16 pontos da dimensão estruturante, que representam 36% do valor global, e, po= r último, a dimensão essencial que contribuirá com 11 pontos, ou seja, com 24% do tot= al de 45 pontos.

Finalizada a apli= cação da MCDA e demonstrados os resultados e análises obtidos a partir de sua operacionalização, parte-se para as considerações finais do estudo.

 =

CONSIDERAÇÕES FINAIS

 =

Este estudo teve = como objetivo propor um modelo multicritério para ap= oiar a gestão do Instituto Federal do Paraná, na definição do seu nível alvo de maturidade em ouvidoria pública. Para isso, foram definidos 4 objetivos específicos que foram atendidos das seguintes formas: (i) o levantamento do Estado da Arte sobre a MCDA está contemplado nas seções 2 e 3.2; (ii) a construção do modelo multicritério para a avaliação da maturidade da ouvido= ria do IFPR está descrita na seção 4.1; (iii) a aplicação do modelo multicritér= io construído está contemplada na seção 4.2; (iv) a descrição e análise dos resultados obtidos constam na seção 4.3.

Como principais resultados obtidos a partir da construção do modelo multicritério, podem ser citados: (i) a identificação dos 47 critérios de avaliação; (ii) as funções= de valor construídas para os descritores definiram os valores matemáticos de avaliação do modelo, enquanto as taxas de substituição atribuídas, definira= m as prioridades dos gestores envolvidos; (iii) que dezenove dos 47 critérios de avaliação do modelo foram diagnosticados com desempenho aquém daquele esper= ado pelos gestores envolvidos; (iv) que a maturidade da ouvidoria do IFPR apresentou um desempenho comprometedor, resultando em -74 pontos, estando abaixo das expectativas dos gestores; (v) que as quinze ações propostas pel= os decisores impactarão na melhoria de 29 critérios de avaliação; e, (vi) que = foi possível definir o nível alvo da maturidade da ouvidoria do IFPR, por meio = da projeção de 45 pontos.

Como contribuição teórica-metodológica, este estudo resultou em um processo sistematizado par= a a elaboração do modelo de avaliação da maturidade da ouvidoria do IFPR e para= a definição do seu nível alvo. A aplicação do modelo contribuiu no âmbito gerencial, pois apoiou a tomada de decisão dos gestores da instituição, enquanto os impactos econômicos da pesquisa resultaram da proposição das aç= ões, elaboradas com vistas à adoção de práticas sustentáveis para a resolução de problemas e para o aprimoramento dos procedimentos internos da ouvidoria do IFPR. Juntas, todas essas contribuições promoverão a melhoria dos serviços prestados à sociedade pelo órgão, evidenciando a contribuição social do est= udo.

Por fim, os resul= tados obtidos provaram a viabilidade da aplicação da MCDA para o caso da ouvidori= a do IFPR, evidenciando a robustez da metodologia, uma vez que, por meio de sua aplicação foi possível solucionar o problema de pesquisa, atendendo o objet= ivo proposto pelo estudo. Além disso, a pesquisa estimulou a formação qualifica= da de recursos humanos para a Administração Pública e o fortalecimento da gest= ão pública e contribuiu.

 

REFERÊNCIAS

 

Aldana, F. A. C., Melón, M. G= ., & Beltrán, P. A. (2007). Selección de uma tecnología de banda ancha par= a la Universidad Nacional de Colombia - Sede Bogotá, usando una técnica de decis= ión multicriterio. Revista Ingeniería e Investigación, 27(1), 132–137.

Bortoluzzi, S. C., Ensslin, S= . R., Lyrio, M. V. L., & Ensslin, L. (2011). Avaliação de desempenho econômico-financeiro: uma proposta de integração de indicadores contábeis tradicionais por meio da metodologia multicritério de apoio à decisão construtivista (MCDA-C). Revista Alcance, 18(2), 200–218.

Campello, B. S. C., & Ghi= dini, C. T. L. S. (2022). Métodos de Análise de Decisão Multicritério para Seleçã= o de Padrões de Corte. Trends in Computational and Applied Mathematics, <= i>23(1), 1–16.

Campolina, A. G., Soárez, P. = C. D., Amaral, F. V., & Abe, J. M. (2017). Análise de decisão multicritério pa= ra alocação de recursos e avaliação de tecnologias em saúde: tão longe e tão perto? Cadernos de Saúde Pública, 33(10).

Carpes, M. M. M., Ensslin, L., & Ensslin, S. R. (2006). Avaliação do desempenho das práticas de responsabilidade social na gestão organizacional por meio da metodologia MC= DA Construtivista: uma abordagem aos modelos já existentes. Revista Alcance= , 13(1), 91–112.

Cervo, A. L., Bervian, P. A.,= & Silva, R. (2007). Metodologia científica (6. ed.). Pearson Prentice Hall.

Controladoria Geral da União. (2021a). MMOuP: Guia de Implementação. https://www.gov.br/ouvidorias/pt-br/ouvidorias/modelo-de-maturidade-em-ouvi= doria-publica/GUIADEIMPLEMENTAOMMOUPGUIADEIMPLEMENTAOMMOUP2.pdf<= /span>

Controladoria Geral da União, (2021b). Portaria No 581, de 9 de março de 2021. https://www.in.gov.br/web/dou/-/portaria-n-581-de-9-de-marco-de-2021-307510= 563

De-La-Torre-Ugarte-Guanilo, M= . C., Takahashi, R. F., & Bertolozzi, M. R. (2011). Revisão sistemática: noçõ= es gerais. Revista da Escola de Enfermagem da USP, 45 (5),1260–1266.

Dermeval, D., Coelho, J. A. P= . M. C., & Bittencourt, I. I. (2020). Mapeamento Sistemático e Revisão Sistemática da Literatura em Informática na Educação. In Jaques, P., Piment= el, M., Siqueira, S.& Bitencourt, I. (Eds.). Metodologia de Pesquisa Científica em Informática na Educação: Abordagem Quantitativa - Volume 2. SBC.

Ensslin, L., Montibeller Neto= , G., & Noronha, S. M. (2001). Apoio à Decisão: Metodologia para Estrutura= ção de Problemas e Avaliação Multicritério de Alternativas. Insular.

Ensslin, S. R. (2002). A incorporação da perspectiva sistêmico-sinergética na Metodologia MCDA-Construtivista: uma ilustração de implementação [Tese de Doutorado, Universidade Federal de Santa Catarina] Repositório Institucional da UFSC. https://repositorio.ufsc.br/bitstream/handle/123456789/82357/189449.pdf?seq= uence=3D1&isAllowed=3Dy

Ensslin, S. R., Carvalho, F. = N., Gallon, A. V., & Ensslin, L. (2008). Uma metodologia multicritério (MCD= A-C) para apoiar o gerenciamento do capital intelectual organizacional. Revis= ta de Administração Mackenzie, 9(7), 136–163.

Espinosa, F. F., & Salina= s, G. E. (2013). Selección de Estrategias de Mejoramiento de las Condiciones de Trabajo para la Función Mantenimiento Utilizando la Metodología MCDA Constructivista. Información Tecnológica, 24(3), 57–72. =

Espinosa, F. F., & Salina= s, G. E. (2015). Definición de los Requerimientos de Información y Funciones para= la Gestión de Mantenimiento Mediante un Proceso de Análisis Constructivo. I= nformación Tecnológica, 26(6), 65–76.

Gallon, A. V., Ensslin, S. R., & Ensslin, L. (2011). Avaliação de desempenho organizacional e incubado= ras de empresas por meio da metodologia multicritério de apoio à decisão construtivista (MCDA-C): a experiência do midi tecnológico. Revista de A= dministração e Inovação, 8(1), 37–63.

Gomes, C. F. S. (2005). Using= MCDA methods THOR in an application for outranking the ballast water management options. Pesquisa Operacional, 25 (1), 11.

Gil, A. C. (2002). Como el= aborar projetos de pesquisa (4. ed.). Atlas. Instituto Federal do Paraná. ([s.d.]). Sobre o IFPR.https://reitoria.ifpr.edu.br/institucional/o-= instituto/sobre-o-ifpr/

Lima, M. V., Soares, T., & Herling, L. H. D. (2012). Aplicação de metodologia MCDA-C na gestão do capi= tal de giro em sinocultura. Revista de Administração, Contabilidade e Econom= ia, 11(1), 131–150.

Longaray, A. A., & Enssli= n, L. (2014). Uso da MCDA na identificação e mensuração da performance dos critér= ios para a certificação dos hospitais de ensino no âmbito do SUS. Production= , 24(1), 41–56.

Lyrio, M. V. L., Dallagnelo, = E. H. L., & Lunkes, R. J. (2017). Proposta de um modelo de análise de flexibilização da burocracia em organizações públicas com base nas dimensões sugeridas por Volberda: o caso da Secretaria de Estado da Administração de Santa Catarina. Administração Pública e Gestão Social, 9(4), 254–264.

Macangnin, T., Bertin, R., &a= mp; Panizzon, M. (2021). Indicador multidimensional de gestão de portfólio de produtos para veículos elétricos com modelagem e aplicação da MCDA. Revi= sta Brasileira de Gestão e Inovação, 8(3), 138–167.

Mahase, M. J., Musingwini, C., & Nhleko, A. S. (2016). A survey of applications of multicriteria decis= ion analysis methods in mine planning and related case studies. Journal of t= he Southern African Institute of Mining and Metallurgy, 116 (11), 1051–105= 6.

Marconi, M. A., & Lakatos= , E. M. (2022). Metodologia Científica. (8. ed.). Atualização João Bosco Medeiros. Atlas.         

Matias-Pereira, J. (2019). Manual de metodologia da pesquisa científica: Vol. 3 Reimpr (4. ed.). Atlas.

Mazon, G., Serra, F. R., Lima= , M. V. A., & Soares, T. C. (2010). MCDA para avaliar o desempenho de um cur= so de pós-graduação. Revista Pensamento Contemporâneo Em Administração,= 4(3), 1–11.

Munzlinger, E., Narcizo, F. B= ., & Queiroz, J. E. R. (2012). Sistematização de revisões bibliográficas em pesquisas da área de IHC. Anais do Brazilian Symposium on Human Factors = in Computing Systems IHC’12.

Nascimento, M., Haubert, F. L. C., Filardi, F., & Lim= a, M. V. A. (2013). Avaliação de desempenho de micro e pequenas empresas fundamentada na metodologia MCDA-C na cidade de Lages. 

Ouvidoria Geral da União. (20= 21). Modelo de Maturidade em Ouvidoria Pública. https://www.gov.br/ouvidorias/pt-br= /ouvidorias/modelo-de-maturidade-em-ouvidoria-publica

Rezende, É. S. G., Alencar, R= . C. B., & Lyrio, M. V. L. (2011). Proposta de um modelo multicritério de ap= oio à decisão para cooperativa de crédito a partir de uma perspectiva construti= vista. Revista Reuna, 16(4), 61–78.

Salisbury, F., Brouckaert, C., Still, D., & Buckley, C. (2018). Multiple criteria decision analysis for sanitation selection in South African municipalities. Water SA, 44.

Santos, M., & Visentini, = M. S. (2018). Elaboração de um ranking da transparência e compreensão das prática= s de gestão de municípios integrantes do COREDE Missões-RS. Administração Púb= lica e Gestão Social, 10(4), 226–327.

Silva, R. P., Jesus, E. A., R= icardi, L. M., Sousa, M. F., & Mendonça, A. V. M. (2016). O pensamento dos gest= ores municipais sobre a ouvidoria como um potencial instrumento de gestão participativa do SUS. Saúde Em Debate, 40(110), 81–94. <= /o:p>

Silveira, V. N. S. (2009). Os modelos multiestágios de maturidade: um breve relato de sua história, sua difusão e sua aplicação na gestão de pessoas por meio do People Capability Maturity Model (P-CMM). Revista de Administração Contemporânea, 1= 3(2), 228–246.

Sousa, E. P. M., & Carmo,= B. B. T. (2015). Avaliação de fornecedores de chapa de aço em uma empresa de implementos rodoviários baseada na abordagem multicritério: um estudo de ca= so. Production, 25(3), 611–625.

Sousa Junior, W. T., Souza, M= . J. F., Cabral, I. E., & Diniz, M. E. (2014). Multi-Criteria decision aid methodology applied to highway truck selection at a mining company. Rem: Revista Escola de Minas, 67(3), 285–290.

Teixeira, E. B., Zamberlan, L= ., & Rasia, P. C. (2009). Pesquisa em administração. Unijuí.

Telles, R. (2001). A efetivid= ade da matriz de amarração de Mazzon nas pesquisas em Administração. Revista de Administração, 36 (4), 64–72.

Votteler, R. G., & Brent,= A. C. (2017). A mining perspective on the potential of renewable electricity sour= ces for operations in South Africa: Part I - The research approach and internal evaluation process. Journal of the Southern African Institute of Mining = and Metallurgy, 117(3), 285–297.

 

------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQDN Qak2YQMAADgMAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbLRW7W6bMBT9P2nvYPl/G0hIGqKS qkmD9mPSpLV7AAcMcWsMsr1+PNceYS+2a5sQKGlH1y4/Irg+Ptc+vufi84vHgqN7KhUrRYT9Uw8j KpIyZSKP8I+b+GSOkdJEpISXgkb4iSp8sfz86Zws9I4WFMF8oRYkwjutq8VopBIIE3VaVlTAWFbK gmh4lfkoleQBeAs+GnvebFQQJjASpADaG5iD0hJ9yzKWULzc02845BBamUDC5bUhp/WcjUok079/ SVbaCemdb2BK5ts1l+ie8Ah79odHy/MRWdQArvu42P5qXA1I78Y9Pj8OwrOrhs8CuO7jNpvNeuM3 fBZAkgS20s8dxHN/tedsgdxjn3vtTb2gi2/xT3prDler1TSs1+JILcg9Bj383JsFl+MO3oIcftrD B6vL9XrWwVuQw896+PgsnAVdvAXtOBN3PbQ5wDiu2RtIVvIvR+FzgM+9Gn5Awek35WNSZKXQrxZT QW5LGQPKoDnRTCD9VNGMJFCta1JsJSMmC1lQ0hpxoUQ9C0H6DmHBxGvsnAH929gPhJDrsDu716Le qn1hnF/rJ06/Krs1VXKWxhA0g9a7tDFPtYPHWsoOLpekmZOrmilXqCoVWA6/SGUGQEntvDk1R7un t8aGdNaoufX7nnBigENJJ2fDSH2TfDCrb5fgukgjUrNUULxRAYoSEdM7/Rk0OZMCqYRwmkLEnahm nH6niXZsHSnfIavakZTWupq9DdDVWOUvCrRYw8kw1iHCtmmD12gHKmt3a0rruLLGEc/Knou2CbhA DxEOp+MpRgmpIpyB4+GxqODYlMgxIjyHz2Oipa3DSip9RdTO6W2tUevNhalxxzeewt4+knAyB3E/ ghAE6QpAswwqsi1JK2J25F7B6a5qj47a6R8KhnW2MtV9ZpubdtVea6c3NfZ0h/Ofe5ip3iFeczgj ztH1mYFDYwz23QbQB1uH4bBUbzSg7VIvdou2ASuid8j8gRGYTLi7phln3ZSmoSG4b7mejnSET1x7 QbIJbqEFuqArIkPlNn7cttBV39EQD3K2czbqN83b9G734XqjcKYfvnz0/y5cLWFHNxcbJhtkfm4R CGWHSwC82at7+25dbm/hBK/gfvOTawWJwHmPWhL4Il/bT3NjfTt1+QcAAP//AwBQSwMEFAAGAAgA AAAhAA3RkJ+2AAAAGwEAACcAAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFnZXIueG1sLnJl bHOEj00KwjAUhPeCdwhvb9O6EJEm3YjQrdQDhOQ1DTY/JFHs7Q2uLAguh2G+mWm7l53JE2My3jFo qhoIOumVcZrBbbjsjkBSFk6J2TtksGCCjm837RVnkUsoTSYkUiguMZhyDidKk5zQilT5gK44o49W 5CKjpkHIu9BI93V9oPGbAXzFJL1iEHvVABmWUJr/s/04GolnLx8WXf5RQXPZhQUoosbM4CObqkwE ylu6usTfAAAA//8DAFBLAQItABQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAAAAAAAAAAAAAAAAA AABbQ29udGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhAKXWp+fAAAAANgEAAAsAAAAAAAAA AAAAAAAAMAEAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAGt5lhaDAAAAigAAABwAAAAAAAAA AAAAAAAAGQIAAHRoZW1lL3RoZW1lL3RoZW1lTWFuYWdlci54bWxQSwECLQAUAAYACAAAACEAzUGp NmEDAAA4DAAAFgAAAAAAAAAAAAAAAADWAgAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQA BgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAAAAAAAAAAAAAAGsGAAB0aGVtZS90aGVtZS9fcmVscy90 aGVtZU1hbmFnZXIueG1sLnJlbHNQSwUGAAAAAAUABQBdAQAAZgcAAAAA ------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/plchdr.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"
Clique ou toque aqui para inserir o texto.
Clique ou toque aqui para inserir o texto.
Clique ou toque aqui para inserir o texto.
Clique ou toque aqui para inserir o texto.
Clique ou toque aqui para inserir o texto.
Clique ou toque aqui para inserir o texto.
Clique ou toque aqui para inserir o texto.
Clique ou toque aqui para inserir o texto.
Clique ou toque aqui para inserir o texto.
------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/image001.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEBLAEsAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdC IFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAA AADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlk ZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAA ABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAA AAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAA AABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEA AAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAA ACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAoHBwgHBgoICAgLCgoL DhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoL Cw4NDhwQEBw7KCIoOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7 Ozs7Ozv/wAARCAGgAhYDASIAAhEBAxEB/8QAGwABAAMBAQEBAAAAAAAAAAAAAAQFBgMCBwH/xABR EAABAwMDAQIHCQwJBAEEAwABAgMEAAURBhIhMRNBFBUWIlFWYQcXMnGBkZXS0yM0NUJSVXWTlLGz 0SQzNlRzdJKhskZiwcJTJUNy8ERXgv/EABYBAQEBAAAAAAAAAAAAAAAAAAABAv/EAB0RAQEAAwEB AQEBAAAAAAAAAAABESFBMWHwcVH/2gAMAwEAAhEDEQA/APs1KUoFKUoFKUoFKUoFKUoFKUoFKUoF KUoFKUoFK8LcQ0krWoISOpUcAVFud4ttmY7e5TmIjeCQXVhJVj0DqTyOB6aCbSoUm6R4sZiQpEhx EhQS2GY63FcgkZSkEgYHU4Arxc5lwjWh2VbrWZ8tOOziF5LJXlQB85XAwMnn0YoLClZ613PVFxg3 DwzTrNmltt/0Pt5qZDbrhCvhdmMpSCE57yDx0pYfLTw5flH4i8E7I7PF/bdp2mRjO/jbjd7c4oND SobkJ1y4NSvGEpLbWf6MnYG15BHPm7j1z8LqBVVL0n4VqFN48ob6zh1tzwJmbtjHbjzSjHwTjkZ5 yfTQaAkAZJwKAgjIORUG6WW3XthLFziIlNJOQ25kpz6cdKrbpoTTN5iQoc+1IcjwEqTGbQ6tsNhW MgbSPyR1oNDSquLpy0wdPK0/HibLappxosdos5SvJUNxO7nce/vrjp7SFi0r4R4kg+C+E7e1+6rX u25x8InHwj09NBaCSwpewPtlWcbQsZrPe+NpPx54k8a/0/wnwXsfB3f63dt2524+FxnOPbWnpQUN y1tpu0TnIM+6tMSWsb21JVkZAI6D0EVzuevNM2eFCmT7mGo89KlRnAy4sOBOM/BScfCHWtFSgrYF /tdzsQvkSWF24oW526kKQAlBIUcKAIwUnu7qlRJsWfHEiHJakNK6ONLCkn5RUilApWYtHuc6TsN0 ZudstXYS2N3ZueEOq25SUnhSiOhPdT3udJ+PPHfir+n+E+Fdt4Q7/W7t27G7HwucYx7KDT0rPX7Q um9TzkTbxbfCZDbYaSvt3EYSCSBhKgOqj89XMuKmZHUypx5vP4zLqkKHyigkUqnu2n/G1oj27xxd YfYKSfCYcns3nNqSnzlY5Bzk8dQKWixu2O1Pw2LvPnOuLUtEi5u+EKQopAA/F80Yzj2nnmguKVUW hrULbrhvUu3PtlI7MRI62yD7dyjkUiSr4Lu7Fm21gwypSmprD/ROfNSpB53Y6kZHxdKC3pUNuXJV cHYy7c+hlGNkre2UOcAnjduGDkcp7qhXbVFssstEWZ4X2q0BYDMN10YJI6oSRng8daC5pUCbfLVb EMruVyiwA+CWxLeS0VYxnAUR0yM+jNd4c2LcIqJUKSzKjuZ2OsuBaFYODgjg8gj5KCRSlKBSlKBS lKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlVF31JBsrrbD6Jb8h1O5tiLG W8tQ/wD8jA+Uigt6VSTXL5c7XGcsymrW49y74ewVuNJ7sICsbvjOKmwYcpu1oi3Gcqa+BhySlHYF ftwk8fJQd5kyNb4jsuY8hhhpO5xxZwEj0mq+0alt1+dcTbTIebbTkvmOtDSvYlSgAo/FUmDaIdvD wYS6rt1BThfkOPEkdOVk1OoIDcq4ruIaVbQ3EwcvrkDdnuGwA9fjpFhzmprz0i6uSGVKJbY7FCQg egkDJx6eKn0oMN7olljTnrNIKnESXrixFDmd4bQSokpQrKN2fxsZ4FTXdDKkPsvydTXh56OSWXFC OVN5xnaS0SM4HT0V11t/0/8ApuN/7V11s+4xYU4dUxHclMty3kqKS2wXAFncOQMcE9wJNB58k5fr ff8A9Yx9lTyTl+t9/wD1jH2VcLiLRpFh6Xao7MZ4oaaDLadrDYccCA4pIwByck8FQTjPGRFXqXUS ZjNtDNtW/wCMlQnJJS4lsjse1SpLeScgHkFfVOMjdlKCx8k5frfqD9Yx9lTyTl+t9/8A1jH2VVcG +3y4Xu0NrkRm0bpqJLbTCsOllwIyPP4yDwDnBz14x+Q9V6imWl24mDHZbKW346VoSpbyCohTSUpe JK8YAUQnKjgpFBa+Scv1vv8A+sY+yp5Jy/W+/wD6xj7KqSZf9QsyJsyPcLe63GsiJyWxEWW1qJXn H3TI+B1Pzdc2UzU05ifOjJdhpSmNFdjqMdxagp1aklJSlWXD5uQBt68nAJoJPknL9b7/APrGPsqe Scv1vv8A+sY+yrKXK8T3eyvMmEw5OatdxaejPkhlQaeQk5QFLHIByATnpuxgjSOXm5xpMtaZNsTA hRC4tJjuAtLKcoRuCznjziAjIBSBnOacHfyTl+t+oP1jH2VPJOX633/9Yx9lUGFqS9yf6A6mLGmr nmM2+9FUlG0Mh0EtdoTuIOACsHHJAIKahXiU+q9W2Q9HgSZbCoqJioodOze9sP3TekBAVghBCySM lIA3UF35Jy/W+/8A6xj7KnknL9b7/wDrGPsqjRNT3CVeI+ERlQJE9+D2IQoPsrbCjvUrcQQdh42j AUnk98P3QLhKlQLtZYrjLCWrUuW8XAsqdTkjajapOMbeSdw84Aggmosm8LXyTl+t+oP1jH2VPJOX 633/APWMfZVBc1PcGZi0RURlRYMmLEfYcQrtnO1CfPSoKwAN44KTnarkd2xq4ZyzvknL9b9QfrGP sqeScv1v1B+sY+yrR0orD6ns1zsumbjc4urb2p6JHW6hLqmVJJAzggNj99bKMtTkVpazlSkAn48V S69/sFfP8i7/AMTVzC+8WP8ACT+4UHelKUClKUClKUClKUEG4Wa1Xfs/Gdshzuyz2fhLCXNmcZxu BxnA+YVHl6fivWtq3QXX7Qyyve34tUGNp5yMAYIJUSQRgnmralBVQ7fdYtqfirvZlylE9hKkRk5b GAAClG0Kxyc8da/bML8jtm72YLmzb2L8TcntOudyFZ2np0Jznuq0pQQ25yl3FUNUKU3hBWH1JHZK wQMBQJ556HHQ16YuUGVKfix5jD0iOcPNIcCltn/uA5Hy1KqE5aLc7cWbiuEx4YwSW3wgBYyCDz1I IJ4NBNpUNyLKNxbktz3EMhG1cUtpKFH8rONwPy49lRbxKvsR5t62W6NPjJSe2ZL5beJ/7MjafiJH x0FtSoU67W61qZFwmsRe3UUtF5wICj6ATxmpaVJUkKSQQRkEHg0HqlKUClKUClKUClKUClKUClKU ClKUClKUClKUClclyGWnWmnHm0OPEhtClAKWQMkAd+ACeKjxZUmU+6FQ3IzLTikBbxG53GRkJGcJ PUEkE+jnNB1cmxGZKIzsllD7nKGlOAKV8Q6mq2dK1Eu5CNbbbEbipKSuZLfzuHeENo5+VRFdhpyz i8u3lVvZcuDpSfCHE71J2gAbc/B4HdirSgpLppS3XuYZFycmSGykARfCloYGO/YkgE/HmrhptDLS Gm0hKEJCUpHQAdBXulAqpvupLZptuO7dXyw1IcLYc25CSEKVz8iT07yKtqy+qwFX7SwIBBuSwQf8 BygoLR7slluupnoa1IgWtqOpSZcpW1TrgUkAAdwwVHnk47q0fvh6P9YoP62pkTSligXhy7QrWxHl uNFpamk7QpJIJykcZykc4zVp2LX/AMSP9IoM/wC+Ho/1ig/rae+Ho/1ig/ra0HYtf/Ej/SKdi1/8 SP8ASKD5RG90eDrVqwRlteC3Rm8RlusclKgCQVJPoyRweRnv619XcQh1tTbiAtCwUqSoZBB6gisT e9PWjTsTT8a0wGorZvcbcUDzl/C5Uo8n5TWj1JOft9pLzLxjpLqEOyQkK8HbKgFOYPHA5yQQOpBA IqCRHstqhwnYMW2Q2Ir2e1YaYSlteRg5SBg5HHNeU2GzJajNJtMENxF746BHRhlWc5QMeac85FZG 7365x4EBFt1HDfaeW/i6yFttNuKSRsbKg2tKjgqB2hO7YcFJyKjyNU3NmVc5D2ooqEQLpGYEVDTa U9m5s3JWVZVwCvkbTlKs8eamzZxsmbVp9qSmKxAtyH46vCUtIZbCm1K47QADIJ243d+K9N2yxImO stwbemSpYlOIS0gLKskBwjGc53YUfbWAuOs5UaXeFQ79FbPg0pbaHwxvQ80tKUgNp84ZTkDtFKJx naAMGc7qi5Qnbk2L43cEJhRJCHG2m90dDiyHXAEjzglJChkEAbc55JSDZtWGzM9n2Vpgt9ihTbey OgbEqzuSOOAcnI78mog05pVl3wQWW0NuPtn7iIrQLiAQT5uOQDtPoziuelbhJmx5xcnC5RmZJREm gIHhDe1J6oAScKKk5AA830g1i4t9cfv7F3RNbl3lVrmpMBSW0qYeQpKgxhICzjCuFEk4JGMmnT1u /JHTO0J8nbVgZwPAm+M9e6iLDplE1xtu0WpMos+elMZsOFtWU8jGdpwR6DgisxC1BcVWlhydqGKi G9K2rukZxt3sE9nkJUtTSG0krGOUcAgHkg0OpZqXrjFGp7esM2+K6zKWlDCcqWUrWSQsDcNpCsFI 3JO0jqF3etL2IadmW9iNa7SzMKEOOGKgIzuATwCkFWT5pzwSOvSpsvT+nOwQ/PtNsWiIyEh2RGbw 02kekjCUj5AKy7+pHXbZaFPXh23MSEyFG6PiMs9sjhCNwSWiCCvBAG4J4IORUKdqjUHYXBbt8j22 VEsrM3wQR28pdUFBSVBZJ67eOMFSOvIUX19AZtttTNXc2IUVMp5ACpSGk9o4njgrAyRwO/uFfk+z 2u6qbNxtsSYWs7DIYS5tz1xkHGcVkXtTT3b0lqNcgh5L8VMe37G1JnR3AkreBxuOMrOUq2js+R1r d0wygostqblMSkWyGl+M2GmHUsJCmkAEBKTjKRgkYHpqdSlFftKUoM/r3+wV8/yLv/E1cwvvFj/C T+4VTa9/sFfP8i7/AMTVzC+8WP8ACT+4UHelKUClKUClKUClKUClKUClKUClKUClKUHGTFjzWFMS 47UhlXwm3UBST8YPFcHreRAZiW9828MbQ12SElKUpGAgpIxtxxgYPoIqbSgjPyfAonbSQteweeWG VLPxhIycfPXm33KDdY/hFvltSWgopKmlA7VDqk+gj0HmpdQp1tbmwn4yHnoZfUFKeiL7NwKBHO70 +aBz1HHSgm0qripk2W0PLuM964iMhTnalkdqUAE4wgYUcDuGTXe1Xe33yAidbJbcqOvgLQeh9BHU H2Hmgm0pSgUpSgUpSgUpSgUpSgUpSgVWRbyidc3okSK+6zHJQ7LG0NBY6oBJyojvwCAeM54qPIj3 2ZqJhbUtEG1RPOWhKQtyWrBGDnhKB85Po4q7oKK1aSt1ruj11Ut+dcHVKxKmOdottJ/ER+SkDjir 2lKBSlKBSlKBWY1V+H9K/pJX8BytPWY1V+H9K/pJX8Byg09KUoFKUoMtrvtm4dplNxJMlMW7MPOp jNFxYQN2TtHPGa9eXkD81X36Je+rWnpQZjy8gfmm+/RL31aeXkD80336Je+rWnpQZjy8gfmq+/RL 31aeXkD81X36Je+rWnpQZjy8gfmq+/RL31aeXkD81X36Je+rWnpQZjy8gfmq+/RL31a8H3QLWHUt G3XsOKBUlBtb24gYyQNvQZHzitVWNmXa2ue6RaFt3CKpIgSUFSXkkBRW1gdep9FBL8vIH5qvv0S9 9Wnl5A/NV9+iXvq1p6UGY8u4H5qvv0S99Wnl5A/NV9+iXvq1p6UGXGvYJUR4ovwA7zansH/av3y8 gfmq+/RL31a09KDMeXkD81X36Je+rTy8gfmq+/RL31a09KDBar1WxdtKXO3Q7PfFyJMZbTaTa3gC ojA521t4iVIiMpUMKDaQR6OK7UoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFRHoikwn2 repqI+4lWx0NBQSsjhRTxnFS6UFBpmRqUNSIuposZLkZQS3NYcGyUD37OqT6enJ4FX9cJcSPOiux ZTKHmHklDjaxkKB7iKo7Tbhou2TTLu0uXbkOb2EvJLiorfAKcjKlJHp7gPjNBo6V4bcQ82l1paVo WApKknIUD0INe6BSlKBSlKBSlKBWe1BZ7zeLrb0R7qYNpZV2spLBKX3lAjajd+Qe/wD891rdWpj9 pls29xDctxlaWVuEhKVkYBOATwea8WS2CzWSHbQ6t7wZlLZcWclZA5Pymgn0pSgUpSgUpSgUpSgV mNVfh/Sv6SV/AcrT1mNVfh/Sv6SV/AcoNPSlKBSlKCvvF7t1ghiZc5HYMqcDaVbFLJUegASCSaqP fF0t/f3/ANhf+pTW3/T/AOm43/tWnoMx74ulv7+/+wv/AFKe+Lpb+/v/ALC/9SrKdqO026UuNJkl LjaAt0oaWtLKT0U4pIIbBweVEdDVi06h5pDqDlCwFJOOoNBnPfF0t/f3/wBhf+pT3xdLf39/9hf+ pWnrw44hpBW4tKEDqpRwBQZv3xdLf39/9hf+pT3xdLf39/8AYX/qVp6UGY98XS39/f8A2F/6lfNV RNKN+6szf2ZTgtZzKWjwJ/zZA6ADZnBJ3/IRxxX2GVe7dBntQZMjsn38BsKQrCyTgJCsY3H8nOcA nGATU+gzPvi6W/v7/wCwv/Up74ulv7+/+wv/AFKvLjcYdogPT576Y8ZhO5xxXQD/AMnuwOTUhC0u IStJylQyDQZv3xdLf39/9hf+pT3xdLf39/8AYX/qVp6UGY98XS39/f8A2F/6lPfF0t/f3/2F/wCp WnpQZj3xdLf39/8AYX/qU98XS39/f/YX/qVp6UGWc90jSbSCty5OoQOqlQnwB8uytOlSVpC0nKVD II76ode/2Cvn+Rd/4mrmF94sf4Sf3Cg7UpWI90m9XOxos70C8Lt7UmciNIVsaUkIOSVZWk4Ix1zj 2UG3pWXtd7Yh25y6y9QP3G3SXQ1EW5HQXCsKUkhIZQN4UQCMDNT29XWN62N3FmYp1h14sIDbDinF ODOUdmE79wwTjGcc9KIuaVUuaos7Vujz1yV9lJcLbKQw4XXFgkFIbCd5IIORjjFToM6NcobcyG8H WHBlKgCPYQQeQQeCDyKKkUrCPaxM7Xtgi2a6LdtszwhEhrwfCHC2k4Uhak5I3ZGUkjzfjrTRNTWe dcTAjTO0e3KQk9ksIWpPwkpWRtUR3gEkU4XVW1KUoFKUoFKUoFKUoFKUoFKUoFKUoFfhGa/aUFYF QdPtxoiGm4sFa1JSrdhKHFqylAHcCSrHQDgDqKs6jzIUW4RlRpjCH2VFJU24MpJBChkfGAajwbux OuVwt6UONv29aEuBYGFBaQpKhjuPI+MGgsKUpQKUpQKUpQUrkOerW0ecN3i9FtdaPn8B1TjZHm// AIpPOO6rqoHhrwvogGI8WVRu2TJCPuYUFYKCfyiCCB6Aqp9ApSlApSlApSlApSlArMaq/D+lf0kr +A5WnrH668O8P054t7Dwzw9fY+EZ7Pd2DmN2OcfFQbClfIdO3H3TZGvZUK5OsMPohrWhqW2rwYp3 oGUdmRuPI5JOASK2+zX/APeNOfqH/r0GnpWY2a//ALxpz9Q/9emzX/8AeNOfqH/r0DW3/T/6bjf+ 1aavienJ+tbhb7A9f1By2G8RvBnZAw+4ecHPenGeVcnjBNfbaDKQ3nLHd7yxLgTZBuEoSI7rMdbq HQUJRsKgMNkFOPPIGCDnriDNF5VqFTaG7hHkNyY3gQjlwwzGwntQvA7PI+6fDAV8Hb3VuK4ypLEN hT8h0NtpIBUfSTgfOSBQYK0G6sy7bJdkX991V2kNPeEMvBHg5C9hUjaEhOSghRHGcAgJwI70SfN0 5cmFovErs3oroeV4Y046A4CsdkvkEJ3Z7MlJ4ICSAK+l1xkSmIpaDzoQXlhtsH8ZR7h8x+ahlgHG LivxvMZf1C4Yc+M5FQvwlGY/3PeEowO04CwQQo8Z6qJPpdxeD9yfmG+M2UXAOurUiU0tDJZGCkkB YQHQcpRjHGQE5r6HUa4W+NdITkKYhS2HRhaEuKRuHoJSQcekd/Sgw10kT2Zts8FN/LcdMVQdcaku F9vtcLCkNJCQrZyouZV0AQCc1Mt5vLuqG1OC5NyUTXxKS52ngiouD2RRn7nu/q/g4VndnvrTT7vG tUm3xXW3Sqc92DXZt5Sk7Srzj0AwPj9A4OJinVpkNthhxSFhRLoKdqMYwDk55zxgHoc44pkYnXrU 2WqbDWxdHIrtsWIYgB0pVIycpcDfXI24C/N+F31zZmT1augOttXhmP2yW3EOMSi2ttTHB27Q02kL x1BXkkkpAxW+rgiQpctxjwd5KG0g9soAIUT+KOckjjnGOeucgJou3ev2lKBSuTDq3UqK2HGSlZSA spJUAeFDBPB6jPPpArpQftKUoM/r3+wV8/yLv/E1cwvvFj/CT+4VTa9/sFfP8i7/AMTVzC+8WP8A CT+4UHaslrrTt31Cu0+LBCCYExEtRkvrRuKeiQEoV1z1z8la2qHU2rY+l1RPCrfNkIluhltccNkd oeiTuWk5OOuMe2nQutuvCrVGj2JcWC4ZKXJSCtQSWySpxKFhJIJJ64HyVR2vRE2Jp+TbJzNvnb7g 7LRudcQeQdpSsDc2sHHnDdgZ61qLZd1XGRJju2yZb3owQVIldn5wVnBSULUCPNPfU2TJZiMKfkOp bbSQCpXTk4HzkgUGGn6IvcuDYnl3ISLjanXSoOy3W+0bXxt7ZAC9wSAN2Oe8VprRYWLbY3Lc20mO l7epaG3lu7VLznz1klR56nGfQKuKU5gfPLPoa+26bprtnoDkaxGSgrQ6sLdQ4CArbswCM9M93Wu+ l/c/esshhqb2UpiBIW9DkeGyNyQc8FjPZpPnHkE59HOa27EliTvLDqXA2strKT0UOo+SutMo/aUp RX5Sq6bfrZb5rcOXJ7J53+rBbVtWe5IVjBUe5OcnuFWNB+0pSgUpSgUpSgUpSgUpSgUpSgVWh62N 6jVHSlKbm9FDijsIK2kqwPO6HBV06jNWVVr8e2yb/FdW4k3GE0pbaEuYUG3PNJKe9JKe/vTQWVKU oFKUoFKUoKy8XQ2pUBxaT4O9LDL7mOGkqQvao+gbwgZ/7qs6VRWO7XJ+6T7TdoZbfiK3tSmkEMyG lHzSM5wodCM9RQXtKUoFKUoFKUoFKUoFZjVX4f0r+klfwHK09ZjVX4f0r+klfwHKDTY5zX7SlApS lBmNajHk+B+e43/tWnqg1babjdYcFVqMbwmFPalBMlSkoWEZyMpBPf6Kj+Ea9/Ntg/bXvs6CMrT8 1WvVXV1EtxAWlTD7a2EtoR2e1TayR2vXcdqTtJIJwRmqfySlvWC5RPJ9OFuxnmm5Lcbt3SlwKWFL Qspc83cApQSo7iCTnNaHwjXn5tsH7a99nTwjXn5tsH7a99nUMqBzSTzpu8tvTq0SE3CNKgB5xpSu zT2e9DZ3kN/AUMZSMbR0GB+O6blzLi9Nf0qQz45RNDDhjKUtss7F8byM7wFEE88Hk1oPCNefm2wf tr32dPCNefm2wftr32dUZ9en7jGMOG1pt9bUG5SnUPxnmG/uDocADZ7RKk/DTkcY28ZwKiStIXA6 Rt0BrTREpMJxLy0mOt5EgBISrctzaAdvwxuUE8DZWr8I15+bbB+2vfZ08I15+bbB+2vfZ0i53l+a lt0q7t2NPix99tuah6U32qEltGxSSFeeM8qGQCcgHr352Fpu+tzXG41skW5AYuDEZ7t2uzYS6sLZ 2oSs7ccjhORx3AY0fhGvPzbYP2177OoD1+1qzfI1oVa7J28lhx5JEt3bhBSDk7OvnDuokVkfSD6U WltdlnrjInl2TGkPxghtJaKFHs2ilspJwehJG/I84hUe4aZu7z91LOnX2lS4kqP/AEZxhtCypaVN KK+17RfAOd2ABgBIGc6rwjXn5tsH7a99nTwjXn5tsH7a99nQZvU9jEawz1vaZ7eL4rzHILJMF3Ci 4pQUv4RJSStG4nbznAzJuliuCHbg1D08uU3Iuca4MvNLYSlO3s+04UsELO1fOOd3Xk1aTGtY3CMq NNsem5TC8bmnpLq0KwcjILWOtdGVa2jMIYYtGnmmm0hCG0S3UpSkcAABvgVcikiacmCElq6abkXC GHZYENchpbiC45vQ6FKcxnaSndu3pPTqTUtdnunlvFufiRxKWZACpLK2VBTRYKDucWvtDhRHmhKR gE4USDVn4Rrz822D9te+zp4Rrz822D9te+zqTRdtNX7WY8I17+bbB+2vfZ08I17+bbB+2vfZ0HfX v9gr5/kXf+Jq5hfeLH+En9wrI3uHrq92SZa1wrEymWyppTglvEpBGM47Otiw2Wo7bZOShAST8QoP dfOfdgmRURLHGXNbjveNGnfhpCkIG4FeDxgE9SMV9GpUMsT4wjy9KybVa9TNPymNu+4sqLicrdJS FKb6FQBBKSNuc8cVlr2+m46NYcWuV2ca+tIceFzcks7eMqbezko6cq5SonkV9fpVOPnNsQbl7ot5 tSL7dERIjEV5phM5zIICSR5xKsHgKHfu55xWb0nfLg9fdLwpt6mrcccnMTWnJrhJIB2BQ3fCGeO/ p7K+1UpNF8r4jBcetWhoUuLOnRXmr+ETSJbqUIb7RYIUCraO7Pecgnur0dQTPJ2QtOoZjbiNVdi2 4ZiyoMEcJOTyjAJweOK+2UpNfv4V8x1xKbssd61xbxfFT2IDstlRnLSkDtCckp85xQzgA5ASOema 9ybu/cb5aId5vMu3W6baEOR5UWR4P2ko43ZUOCcdEnjnpX0uoNztibmiOhcqQwll9D2GSkbyk5AJ IJxkd2D7cVJpK+c65v5iXCT4tud1bnW9yIXN76m2kpUe5oABWR8IrGASAOuK9aovV1Zu9+zcJMab HEY2KMy8pKZAUfOIbHDuTnOQceyvqVKs0vXKMp5UZpT6Ql0oBWkHgKxyK60pRI/aUpRSlKUClKUC lKUClKUCq2PaWUXyRei6p199hDCegS22klQAx1ypROTXu6Mi4wpNraneDPvskFSCC4hB4KgPnAPp rvCiMW+ExDithtiO2lttA/FSBgCgkUpSgUpSgUpSgVwltPvRHW40jwd5SfMd2BWw9xweo9ld6UEG 1SZsmH/9QieDSm1FtwJOULI/GQfyTnv5HIPSp1cnmEPhIUVpKFbklCikg/J1+I8VyjqejxUifIaW 5uKe0SnYFZUdvGeuMZ9J6eiglUpSgUpSgUpSgVmNVfh/Sv6SV/AcrT1mNVfh/Sv6SV/AcoNPSlKB SlKBSqXU19fsMOK5GgeHSJctuK0z2waBUvOCVEHA49FQvHWsfU6P9Lp+zoNPSsx461j6nR/pdP2d PHWsfU6P9Lp+zoNPSsx461j6nR/pdP2dPHWsfU6P9Lp+zoNPSsx461j6nR/pdP2dPHWsfU6P9Lp+ zoNPXzF7X9ple6hbmER5yX2G3oK2lMgKDq1t47+nmnJrT+OtY+p0f6XT9nWbcsV/c12zq0aPjpkN sFtTXjROFrxtDmdnUJyPm9HIfS6VmPHWsfU6P9Lp+zp461j6nR/pdP2dBp6VmPHWsfU6P9Lp+zp4 61j6nR/pdP2dBp6VmPHWsfU6P9Lp+zp461j6nR/pdP2dBp6VmPHWsfU6P9Lp+zp461j6nR/pdP2d Bp6VjrnqvVNotki4y9IMhiM2XHCm6pJCR147Ota04HWUOAYC0hQB9tB0pSlApSlApSlApSlApSlA pSlApSlApSlApSlApSlApSlAqKu4RW7i1by5mU6guBtIyQgdVH0DPHPU1DTelv6hNpiwZC0sDdKk uIKG2wUkpCSfhqJx04Azznipke3xYkmRJZZCXpSgp5wkqUsgYAye4DoOgoONstLNtL7oWt+VKXvf kOcrcPcPYkDgAcAfKasKUoFKUoFKUoFKUoFKUoFc3Wm32ltOoS42sFKkKGQoHqCK6UoK64i4RLej xOww84zj7i8sjegdUpV3KPcTx6a9W26IuFtYmuxn4BeOAzLSEOJVnGCM+zj01PqJcbbBu0NUO4xW pUdfVt1O4Z7j8ftoJdKp3WHtPWFMew2xc5TJw1GXK2nBUSfPXnpk4B9g6V6gX1L1rXOukN2zBpzs 3EzlISATjBCgSCklQAPeaC2pXlC0uIC0KCkqGQQcgivVArMaq/D+lf0kr+A5WnrMaq/D+lf0kr+A 5QaelcPC43hngfhDXhOwudjvG/aCBux1xkjn213oFKUoMxrb/p/9Nxv/AGrT1k9WyWJbGnJEZ9t9 ly9RihxtQUlQ87kEda1lBnmtRzpnbSbfZ/Cre08pgOiQA64pKtqlJb24KAQeSoHzThJ4zaputuXc HLemfGMxtO9cYPJ7RKeOSnOQORz7aqLZarzaN9tjKhm3F9bjcgrUHmUKUVlHZ7ClRBJAVuHBGQcY Nf5JXBcrspKYMmIxLky2XFrV2j3apWOyWnYQE/dDlQJyEjzfRBpI96tUtxbUa5w33G2w6tLb6VFK CMhRAPAII56c1Df1fp5hmO/44hONSX+wbcbkIUkrxkjOccZGfjHpFUFv0fc4cO1xlQ7UURLXIhvN pfWEurcxzw2ODt5PB849ccykaevngkMrcYceh3ISmmXpanAG+zUjZ23ZhSiNxIKkk8YKj1Fo0CL7 Z1zkwUXaEqWsqCWBIQXCQSDhOc8FJz8R9FeV6gsqIbc1d4gJjOrLbb5koCFq580Kzgng8eys3C0p dbfboqY0W2Nvw7q7NbZQ+pLS21hY2lQbykgLA+CRhI+SE5AumnWmpM2Na5bkyU/EERUhRQ4mS6F8 Et5OOQpO05SM54xQrUHUGNTCylqMVLG5JTNb7QJCSSVNHzuuMYzkZJ24GZ8a6W+bIfjRJ0aQ/GVt eaadSpTR5GFAHIPB6+is07p29r1JHm4hGKxJ7VJbkKZ2pLJbVhoNkFWTkKUsnCQBtBNdtOaauFum QnZ6opFthrhsusKUVyUqUk7lgpGwgIHAKslROR3kT9Q6oh2BUVlZaelSpDTSI/hCEL2rWEleCckD 2A/IMkWTVwhPTXYTUxhyUwAXWEuArbB6FSc5GfbWXvWm71Jnz1wkwH2JkiLJCpLym1tqZKTs4bVl J28HIwVHg1KsumX7df35ryUOpLjy2nzMeWvDqgoo7I/c0YOPOGc7RwDSfVrUUpSgUpSgUpSgz+vf 7BXz/Iu/8TVzC+8WP8JP7hVNr3+wV8/yLv8AxNXML7xY/wAJP7hQd6UpQKUpQKUpQKUpQKUpQKUp QKUpQKUpQKUpQKVSwtVWu5XMwIJkSlJKkrfajLLKFD8UuY25+WvbcS8P3syZUxpmAwo9hFjg7ncg jc6o+jJwkDGcHJxQfsnU9ki3Fq2uXJgzXnA2mO2re5uJxylOSke04AqU3GleMHZDs1S2DgMx0oCU o4GST1Uc57wMHpkZruiOw2848hltLruN60pAUvHAye+utApSlApSlApSlApSlApSlApSlApSlApS lArlIjsS2FsSWW3mljCm3EhSVD2g8GutKCnh6attojzUWRlNscmIwVsjIQoA7VJQcpGConGMHvr8 tDOpI8tTV2mQJsQIOx5plTTylZGNyclOMZ6ezirmlBQ27WNpuM9u27pEW4uZ/ocqOttxJAJOeNvQ E5BINVuuofjGfpyJ4S/G7aetPbR17HEfcHOUnuNbCsbqW2xWL9pkR0qj9reFPL7JRG5ZacUSR05P X05NBmNO+5PcrRrKU/Ku8xyC9GXsmxJKmXyveghK8HJyMnvBwOnStl5DsesOo/pVyrG7R9QOuJVZ 7jCjpx56JUVTnyghaf3V4u9/cs0tKXrPcJERSAoyojYdCFZOQpAO/gYOQCOfZQQfIdj1h1H9KuU8 h2PWHUf0q5V341gogMzX5KIzD6ErQqQeyOCMgEKwQfYea7R5LEthL8Z9t9pedrjagpJwccEe2g+O WPQFw0jGscu5z3O3k3iMDBbXlpvqcnuK+MZHA5619prMa2/6f/Tcb/2rT0GauGq0tajttpghLwfl LYlOKbcw2Q2pe1K8bCrgZG7I9HORORqe0OMyHUyllMbbv+4OZUFK2pKBty4FKGAU5BPTNVfkhNRc WnGbs14EzcVzkMORSpYKwoLRvDg4O9RHm5BPfivNv0Oi2WqVAjeKsOpS2hS7Uk70BWcPedl044zl PpxmpPDq1k6otMOG3LkOvttuJWoJMR7tEpR8JSkbdyUjvKgAMjnkVFla0sYdVFj3dlMhMhEcq7Bx 1sOKI8zKcDcQTjnuJ52qFc42mbhb2YaoN3QmXHbWypb7C3m1NqVuACS7uG0gAZWcDI54xykaRuD6 bgBeGP6ZNYlhSoRJQWtvBw4Ac9mnkAd/HIxeiZD1hbZcSTJUiU0iPKMYBUV0rcUCRhCduVHg8JBI A5xXtGsLC67EaZnh52YguMtNNLWtSQraSUgEpwcg5AxhWfgnEJWkZSQVR7o2261clz4qlRioIUvd vSsbxvBC1AY2kcV7g6Ueg3ODLTPbWhhuQJDZjnLy3lha1JO/zBuAwMKwM8nrSCejU9ocZkOpkrKY 23f9wcyoKVtSUDblwKUMApyCemanw5bU+MiSwHQ2vOA60ppQwcHKVAEdO8VmrfodFstUqBG8VYdS ltCl2pJ3oCs4e87LpxxnKfTjNXljtrlotTMJySZBbz553YAJJAG5SlYA4AKjwOtBY0pSgUpSgUpS gUpSgz+vf7BXz/Iu/wDE1cwvvFj/AAk/uFU2vf7BXz/Iu/8AE1cwvvFj/CT+4UHelKUClKUClKUC lKUClKUClc1OtoWhCnEpU4cISTgqOM8eniqq76tsNiktxrjc2mpDhG1gZW4c9DtSCce3FBc0qou7 1/LjTNkjQSlady5Ut1W1HsCEjKvnArpeoV1nsNtWu7i2Hd91dEcOrI9CdxwPjwaCbJlR4bCn5T7b DSBlTjqwlI+MnioDOoIdxtUidY1ou/YkoDcZ1PnLH4uScDr1PdXpmxx12lm3XRZvCWyFFc5CFlZB yCRgDju4qeyy1HaS0y0httPAQhIAHyCgqrQ/f5zEk3eBHtm4YYDEntnE5HO7zQnI7sZ/n5s2l49n luTPGFynSnUbFuzJSl5Gc42jCR83FXdKD8AAGAMAV+0pQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUp QKUpQKUpQKUpQKzGqvw/pX9JK/gOVp6zGqvw/pX9JK/gOUGnpSlB4cbQ62ptxCVoUMKSoZBFRlWy KLaq3x2/A2CCAmKexKMnJ2lOMc+iplKCkvWmmrzaWIK7hMYXGeS+xJQsFxC052kkg569/wA9VkTR l3Q1iZri9POZ+EyGmx8xSr99a6lBioOmL864pM7UF8jgEhK2pzDgI7ifuII/3qn7WZ488V+Fe6H9 8+D+F+Cs+D/C279+z4HfnHTmvptflBhpkW2W+UuLN902fFkN43tPXCKhacjIyCjI4IPy1Z+R8z1x 1B+tZ+zqTd7bpEzUPXi32dcuW4hpK5LDanHVnCUjkZJ6D4ql3lUR6E9FlQHbgC3uMdtvcVDOBgnA B+UUFX5HzPXHUH61n7OnkfM9cdQfrWfs683uFD8k2LR5MzrjAfSlKobToStoAhYClFYPCgOij09F cLTp+42XR8iHp23wrJNkuqcS07JckJaJSE7io5yoBI4wU8d9BJ8j5nrjqD9az9nVPJstyZ1fAtKd XX0syYbzylF1rcChSAMfc8Y8491XGlrVq+E+p/UmpWrilTZSIzMRCEpVkYVvABPAIxjHPsrBMw9b se69brZPvTspDTRcTMDCEBcc4KxjBxlSQn0g49NBvfI+Z646g/Ws/Z08j5nrjqD9az9nUmNplcfU a7y5eZ8kqKtkd9zLTQUeiEjAHGBkgnistrb3OZF+1Cu52+1WJ/t2k9u5cJEtLinB5vAaUE7doT3Z zmg0HkfM9cdQfrWfs6eR8z1x1B+tZ+zqm1loWfqfxZNNtsUq5Nxg1MXLflIbBGCA0G1DzdynPhc4 Iq3TA1TE0db4EBmwi4xtrS23e2VFSykEJCeqyoAI6/8Ad7KDnM04bfFXKm66vUWO3je69JYQhOTg ZJbwOSB8tcolmYuERyXB90G7So7ZIW8xLjrQkgZIJDeBgEH5atrTb7jMsr0PVkOzPqW7/Uw2lKYU gbSNyXByrcCfRwKgaSteo7W87HuUDTMO3LQVBuzsuNqLp2jJCgE42g57+BQUvhenf/7Vnft0f7Or BNqirtIuw90O7eLz/wDyjLjhr4W34Rbx8Lj46mxIGp/KFXhkTTfiXtHNvYtu+E7Odmc+bu+Dnu64 rhf7frGW/IhW6HpV+zK27GLi08pRwATuSBt+Hkj5O+gjo0tD1LbH22ddXa5QnMsvdhLYcQeBlJKW /QRx7a2jaA00ltPRACR8lVLNpftsjweyxrTb7aob3G0RCFKcPBOElKegSM8nil6tFwlwm27JdG7N KS4FKkJhIe3JwQU7VdMkg59ntoLmlfP7R7k0Cw2tldsm9hqFjd2d47JStuVHP3FSyj4BKP8AfrXi x+5JCg3eXd7zcFXW4vPiSzIS0Y5Yd3FRWEpWUqyog4IwNvTmg+h0rLHQcRa0yHb1fHJqM9nLVPVv bz1ASPMAPo24qsX7lNrt6okvS0g2S6RV5E0pVJKklCkqGxatvO7OccY4oNpKmxIKEuS5TMdClbQp 1wJBPoGe+od41DbbEGROdWHZGQyy00p1x0jGQlKQSeo+equJpSW0y5NusuFfL4gYizZcBLYaSOUo 2pPHnbjuHPneyp0HynEWYq4otJkhv+iCOpzaVYPCyoZAzt6e2gkXK8C229qZ4vnyg6oDsYrBccTk E5Ke4DGD7SKOzbg9ZjLgW1QlqALcaY4Gs8jO4p3Y4yf5VFsd5u86SuLddOv21baSe27dDrKyCBhJ BzznPI7qsG7glUksOR5DKu1LaCtvKXMAnIIyMYB64/dQcrQ9d3mFqu8ONEd3YQiO+XQR6SSlPzV1 gxZUcLMq4OTFKJI3NoQEj0AJGfnJrwu92pu5G2uXCO3NCQrsFuBKyD0IB6/JU4EHoaCsZ05aGLw5 eBCQu4LJPhDhK1pyMEJ3E7RjjCcVPEdhL6nwy2HljCnAkbiPQT1rrSgUpSgUpSgUpSgUpSgUpSgU pSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgVmNVfh/Sv6SV/AcrT1mNVfh/Sv6SV/AcoNPSq 656gs9mUhNzukSGpzlCX3koKviBqPd7leWJSYtosomKKAtb78gMsp5I25wVFXHQDAyOaC5qNNuEK 2sdvPmMRWc47R9wITnGcZPsB+aq+fAvF0iww3dl2hez+lojNodKlEDhK1jjBzzjnPdUiPZYbdtYg ygu4oYWVpcnEPLKsk7iT38nHoHAoM7qDVBn2eC9pq6FsSrszCVKRHC+FcnaFjCu7kcdeeK8s2jWk hcpB1RNidmkdg4/CiKDqjnuQCQBgdcE5qbrUADT4HAF7jf8AtWilSExYrshQJS0grIHUgDNS0ZmP p3V4bHhOu3Vr7+ztkdIHzg1XM+5zc2bsi6+WdxdmN57Nx9lDvZ5BB2heQngkcDvq3snj2fb4F4du 4xLSh96IplAabbUM7UEDduAIyVKUDzwMjHlzXltZjPyXoc9DKIqpbDgZCxKaSQCpvaonvSfO2kBQ JwMkU9RPIi7eMzdPKpRnFIR4SbXGLm30btmameT2p/XiV9Hx/q10OtIKGJrr8KbH8Daae2vIQguN uKKUKGVYSMg53lO3vxXmRq11mfbWfE8wNTGXn1n7mtTaUY6BCzu6g+buyCMZOcB58ntT+vEr6Pj/ AFaeT2p/XiV9Hx/q17t2tI9zLHY2m4oTKiLlxlOpaT2yU7cgDfkHKgPOAB9OOa9x9XRpjUR2Jbbh IbkNNOrU00lXg6XDhO8bsnvJ2BWAMnAxTA4+T2p/XiV9Hx/q14OmdRl5Lx1o+XEpKQvxbGyAcEjO 3ocD5hXOLqRUXUc+LcZ76I7Ed2UESI7SdqEqAKgUqK9g/F3IBVkncoYAuLTf2rrIfiqhyoUlhCHF MyQnJQvO1QKFKBBwR1yCOQKCu8ntT+vEr6Pj/Vp5Pan9eJX0fG+rXG4amlL1JaokBDyIKpzkaTIU 2js3VJbWShJKtw2qTyduCR8Lggz7Bq+16kkSWLe4VKjgKJ3oUFJJIChtUcfBPCsKHGQM0PEbye1P 68Svo+P9Wnk9qf14lfR8f6tc/fAt3ZLeFuufZpQ6vcphKfNaXtdOCoEbeCcgE5wMnIE+XqqHEuPg qo8lxpLzbDsptKS0y45jYlXnbudyeQkgbhkjmgieT2p/XiV9Hx/q08ntT+vEr6Pj/VrjcNTSl6kt USAh5EFU5yNKkKbQW3VJbWShJKtw2qTyduCR8LggxJeu2LrDUbDLS24xMipdKg272jLjoR5u1R2k 88KAUB+KMghNix8ntT+vEr6PjfVp5Pan9eJX0fH+rUtrVMN27NwRHkht15cdmWUpLLjqASpAwrcC NquqQDtOCa7WO/s39lx+NGfbZScJccU2QvrnGxSikjHKVBKhnkUGd1Bb9W2jT1wubGs5DzkOOt8N qt8cBW0EkfB9ArZxll2M04r4S0BR+UVVay/sPfv0bI/hqqzhfeLH+En9woO9KUoFKUoFKUoFKUoI k612+5pSm4QY0tKDlIfaSvafSMiod403br042/ID7UllJS1JjPracbHsKSPmORVvSghNQn41tbiM TnlONpwH5GHVq9qumf8AauHaXeBbtzrSLtJ7TGI6RH8w+xayMj4+atKUEJ25Nxba5PmsPxm2k7lo UkOLSPibKs/JmuNp1FZ76lRtdyjyijlaG1+ej/8AJPUfKKs65COyHlPJaQl5adqnAkbiPjoOtKor TYbhaZxUNRTZsE7j4NMSlxYUfQ5gKwPRzXtM+/pu/ZPWZjxcpzYl9qXudSO5SkFIGPTgkjPfQXVK gm82wXTxWbhGE7G7wYup7TH/AOPWp1ApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlAp UZc+K3OagrfQJLqSpDWcqKR1OO4e321FES4yLjHmPTlRmWknMJkJUlwnvWsjJxxgADB7zQS0zYrk pcREhtb7YyttKsqQPaB0+WsTrd+ZF1Jp6bPuEWBa49wKgocrOGlklajwAQCnAB+F1zity1HZYKyy 0hvtFla9iQNyj1J9JrN6ubbevWl23W0uIXcVhSVDII7Bzgigzdo17om8a5mKTDgx0mOVrus4pbLy 0lCEpTv6Dbn0E46VtPLHS/rLaP25r61RomgtMQLw5dItoYaecaLa0BOWyCQc7DwDx3Y6mrTxJafz XD/Z0fyoInljpf1ltH7c19anljpf1ltH7c19apfiS0/muH+zo/lTxJafzXD/AGdH8qD5wj3Q7ZrS PYG2x4NcWrzGU9FUc8ecNyT3pyfjFfU1JCklKgCDwQe+sDddJ2TS8fT7VogNsKN6jBbp85xfwuqj z8nSt8SEgk8AUFNA0zHt5Q0ibLdgtElmC6pBaa9GPN3EDJwFKIHGBwMQk6FgC3vQfDpxZVGXFYCl NkxWVkFSEHZyDgDKtxAAwRVSNUyl36Nenw4zZlWqVJaZbkb+1ShSCFqRtGFEHgblYz3HOdDZr/Ku dslSn7RIjOxydrRStPbeaFDYXUNnvxyAMjrjmnMj8GmNsp2W3ebi2+7GajlxPY5AbOQoDs8ZJKs5 4O48dMc2dHQ4rMFEWZKjLhB4IcaSyncHSCsFOzYOQD5qRjHx1WDX0tuzouUiwKSh+3LnRkNykqUs I27wrKQE/DBBBOR3A+bUp7WExi4RoKrI4486lDjyWC672KHFFKCSlopzwSoEpAwcFVKJDejmGIVt jx7rcGV21lbDT6eyK1NqxlKstlJHmp5AB461Cb0rJtMu0xrRMuAipR2M54uMjeygKLaVebndk7QU AHbnJzg1Wwr7cobbt6mtPPS5E56EzEZlvOsr2rVyW0tKKNqWyAUJJVklQGeLNWs5LhlBdmkQ2Y1v RNkOvuBDiEqSrIS3tJKgU4wrb0PTjcz1ccSEaGgCQ8pybMejvpkJcirDQQoPEFeVBAWTkJwSonzR zVlaLE1aVOOmXJmyHEIaL8opKw2jO1PmpSMDKjkjJJ5J4rOW3VU6LEhREWGe47JlqjtmW+4lKctl YO95CXFDqCSkkbVYJ80GfH1ZPnR0Ig2Zt64Dty9HXM2JAac7MhK9nnEq6ZCR6SOMkdvI2KLimW1c ZzTaJhmpipLZaDigQvG5BVhQKsjd+MSMVYWiyos7RZamSnmEjayy8pJSwjuSnCQSB087JwOtUjuq XIyrm43bCh9mcmN2UqccOHsgsFCUhZyRwEISSTyQOcdk6vcWuzqEFtli6MtOB2S+ptIUv/7aSEFK lgc7SpJPGM84Qr9VoaIthxly5XBSXGJLKuWs4fXvcPwOuencPRUg6ShquBlKly1IdW07Ijko7J91 sAJcUNuQrzUk7SkHaMiol9uqrPqmPMkS5AgtWuU87HSRtOwtndjvVgkcn4sZOfSNWy0LfiS7U21P T2BYaRL3tuh4lKcrKAU4KVZ809ON2cUhXU6Nii4pltXGc02iYZqYqS2Wg4oELxlBVhQUrI3fjEjF HNHMrtgtou9yRGbcbWwkKaPYBCtyUpyg5AIHwsnCQM4znhedWXCx2xuTMs7KX8OrcY8N3EpQRy3t QVLyDu5SkJHwimvD2qXIou0hq1u7os1LDhfkrLaU9klXanYlfZoxjonvyrHJAWETSkKHcfC0SJK2 kvrktRFqSWmnlghS0+buydyuCogbjgDjHa0WBq1S5MszJEyTKShLjz6WgohAITkoQnd16qyfbU+D J8MgsSstHtm0ry052iORnzVD4Q9B76708FNrP+w9+/Rsj+GqrOF94sf4Sf3CqzWX9h79+jZH8NVW cL7xY/wk/uFB3pSlApSlApSlApSlApSlApSlApSlApSlBCm2e23FIEyCw/hQWCtsEhQ6EHqCPTVf drZqB2cJlnvyY480KiSYyXGVDvORhYPy1e0oKyffYVpmR49wWthMjhElaMM7/wAgq6JJ7s9fTmrO uT8dmUwuPIZQ8y4nattxIUlQ9BB61FuUWdIS05b5/grzSidq2wtt0fkrHBx7QQR7elBPpVY9fIdv Xb492kMwpc5OENqXlBWAnckLIAJyoYzgnuFWdApSlApSlApSlApSlApSlApSlApSlApSvzNB+1Qx dQTJ+oXbfFssjwKM4puRPeWlCNwHRCeSvnAzxjmv19nUMzUzakSG4FniEEpSAtyaop6H8hAJx6SQ e7FXlBBg2a3W2TJlRIqG5EtwuPvclbhJzyTzgZ4HQd1T6UoFZjVX4f0r+klfwHK09ZjVX4f0r+kl fwHKDT0pSgUpSgymvXRGh2eY4lwsxbuw68W21OFCBuycJBP+1dPfE0x/e5f0dJ+zrT0oPnjFz9zy NJD7Xh4KQ4A2Y85TQS58NIbI2BJ/JxjOOOKlxtXaTtVtdj216YVFB2CRGmLycYSkrUhSgn58dwrb 0qX/AAfLrBN0dE0yi23V2W6+uN4NIKG57iSjPIQVIBQlWASlIA7ucCrhzUehnXYzq3rgXIrYaQrw ablSBghK/N+6DIzhee/01uaVcjAN3jQDUBcFDtz7FT/hHLU8rS5nO5KyNySSTnaRnJ9JrqzqHQjE t2Shc4uPRxGcC4kxaFtjuKSkpPU84zyeeTndUoMAi8aBbETD1zJhuh1lSmp6ilQGByRkgDIAOQAS McmvAu3ufIaSyh65tkOOOpWhuelzKyCvzwN20nBKc4zzjNfQqys2SwfdJtBS+2R4ulDIUOu9qgqF XT3PlOuOhy5tuOOh4rZbntkKCdnmlIG0beMDAwBxwK9s3rQTAipbfugRFQlDTZbnlG1JKkhSSMLw TxuBxwOgFb6lBiJmp9D3Ce3OluTXXW2lsgGHL2FC+FJKNu1QPtB6D0CuLF70BHgOwUGcpl0JCi5G mrWAn4AStSSpO3qnBG08jBre0oPnsi6e5/KYS089dVAIW2pYRcAtxKsbkrWBuWDgcKJ6V6Td9BID oRKvCC86l1a0i4hZWE7Adw5+Dx154z0FfQKUGUja80nEjNx2JEtDTSQlCfF8k4A9pbya6++Jpj+9 y/o6T9nWnpQYPVWubHcNKXWFBelPSZMN1lpvxfIG4qSU4yUAd/fW1iAphsJIIIbSCD3cV3pQKUpQ KUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQQrpaLfe4SoVziNSo6uShwZwfSO8H2jmq+9LvltRD essZqZFj8Soiie2cRgAFtRONw64PX01e0oOTDofYbeShaA4kKCXElKhnuIPIPsrrUCRAfVdWJ7Et aAhBadjr5bcSTnI/JUD3944I6ETqD9pSlApSlApSlApSlApSlApSlAqivtmj6thNRfGS0wUvbpCY qxl4pPwCoHgA9R14HSrS4R3ZlvkRmX/B3HmygO7d2zIxkDI5rlZ7TFsVojWuCgpjxkBCM8k+kn2k 5J9poJiQEpCRnA45Oa9UpQKUpQKzGqvw/pX9JK/gOVp6zGqvw/pX9JK/gOUGnpSlApSlBBut3t9k h+GXOY3FY3BHaOHAyegqm98fRvrDD/1H+VNbf9P/AKbjf+1aJ51qOyt55xDTTaSpa1kBKQOSST0A oM775GjfWGH/AKj/ACr998jRvrDD/wBR/lVnC1FYrnIEaBebfLfIJDTEpC1EDqcA5qyoMz75GjfW GH/qP8qe+Ro31hh/6j/KtNimKDNe+Ro31hh/6j/KnvkaN9YYf+o/yrQvvsRWi7IdbZbyAVuKCRkk ADJ9JIHy10xQZr3yNG+sMP8A1H+VfLDD0az7rLF3ZvcLxOSZik7uEPA8Ix6NxCh3YyO6vvFR5E6H EcbbkymGFu7i2lxwJK9oyrAPXA5PoFBRe+Ro31hh/wCo/wAq/PfH0b6ww/8AUf5VphgivwkAZOAB QZr3yNG+sMP/AFH+VPfI0b6ww/8AUf5VomH2ZTCH47rbzTgCkONqCkqB7wR1FdMUGa98jRvrDD/1 H+VfnvkaN9YYf+o/yrTYpigzXvkaN9YYf+o/yp75GjfWGH/qP8q0uKYoM174+jfWGH/qP8q0iVBS QoEEHkEd9UGvf7BXz/Iu/wDE1dQvvFj/AAk/uFB2pSotybDttkNqU4kKbVy24pChx3KSQR8hqW4m SJVK+Ve5rKN8gW1Mm43xdyG+U5IdmSC0tKHQnZtUdiwQcHGcY55raxNYRZN7atL1vuMJ+Q244wqS yEh5KDhWAFFQ9PnAZHxirdaTLQUrP2nWMK7x3JjcWUzAQ0t4TXezLSkpOFcpUSk9+FAHAPHFe7Pq yFeZLTCI8qMqSx4RFMhKUiQ1nG9OFE45HCgDgg4oq9pWO11qRmPb7nZoonGei3rlF2GrZ4MkfBUp W4EZV3DJxnIxS06tahaescd5uZcri/a25TqGdqnA2EDc4srUB19uSegNOGGxpUeBOj3KCxOiOh1i QgONrHekjIqRQftKUoFKUoFKUoFKUoFKUoFKUoFUtwsDkrUMC8xbi/Dcj5RIab5RKb5wlQPHBPB6 jJ9hF1Sg/AQRkciv2qyFGTbrjKQqeFJnOl5iKrALeEjft5yQVecfQVVZ0ClKUClKUClKUClKUClK UFRMtUiZqW3T1PJTEgNuKS2knct1Y25PdtCd3yn2Vb1nvBLz74vhm57xL4o7Lb233Pwjts57PPwt n42OnGa0NApSlApSlArMaq/D+lf0kr+A5WnrMaq/D+lf0kr+A5QaeleC4gOhouJ7QpKgjPJAxk49 HI+evdApSlBmNbf9P/puN/7Vo3nm47K3nnENNNpK1rWcJSkckknoBWa1k4h1vTrjakrQq9RilSTk EedyDWooPmjVytl20jabZbZLE28JlIcjojrStccpeypxWM7EhGck9Qcd9dpt5v03yiY8YssdhHlB ERpwKkM7P6tQR2WUhSRyStWd427TxX0JtxDqAttaVpPQpORXupjWDL5/48ubUuzRIF5iKiqjNLQ9 IeQPDSVkLQkIaO8pAAAQUEEgndUWNqK7SRDdXq6OlD9wlxXg0wyAhDaXFJUnOcHAT8LcMKR7d30q lWkfMk60uTcBl16/RQ483bpKt7bYwl1wpdQjpgAAEk7iPO6ZGJFs1VPL1vkytRxpKJF1kwlsNNNp QUJCykgDK92QjGFchSRgk7juoV0g3F2U1DkJeVDdLL+3OELABKc9CRkdOnTrUulHza2aymSWpw8e oeaLcV0P7mFuxW1rUl1ZSgbUbQEnCivaCConkV41ZemkWJpCdQRLirs33mpD7UZLUjs1JKUlSkqS sjphpIKlDqjFfR5LJkxXWA6tkuIKe0QBuTkdRkEZ+MEVBtL1siKGn4cntHraw2lbZJUpCSMJ3Hpk gZx/tginRmZeppzt/LUS5JQ4mTGTGt4ShSZ0dwJK3UnG44ys5SrA7PkdasNZXAMOQrfJnC2wJyXk PSlIbKSoJ81o9oCkbsq6jnbgda1NcDMYC0JCyoOJUoLSkqQAnrlYG0de8jPPoNS+YJ6+YW7Vht9n 06xFvjLDbUaGHmXHGUIWlTmxzG4Fa1DByE7QnBJUT5tayyXl+Vq2dAduiZiUhwoajuMqbZCVhO1a QkOoWP8AuKkq5II6DUIUlaApCgpKhkEHIIry2+hx11tIcCmiAoqbUkHIzwSMK69Rn0da1nacdKVA lXu3QZ7UGTI7J97AbCkKwsk4CQrGNx/JznAJxgE1PqK/aUpQZ/Xv9gr5/kXf+Jq5hfeLH+En9wqm 17/YK+f5F3/iauYX3ix/hJ/cKDtXCay9IhPNR3UNOrQUpW4grSknvKQRn5xXelSzIzmjNLPaTsiL W7PamoZKuxdTG7JaAo5UD5ys849HTvqvteg5cC9QLtJvypsmIHkrW5G854OdCVbicjOO8YAAAq2a 1TFe1m9pkNkPNRRI7UnhRzgpAx3Ag5z3n0Ve1fdp8ZVvRDS7jNlTJTa0zYSor6Y0fsC/uAytzCil SuuCEjGe+v3SmiWNM9nkwH1spKGpDVuQy+Un8tYJKjjvG3PfmtTWWOrp7t9vlmhWQSpVqbaW0kSw jwjeAcZUkBGAfSaZ2vrzftEru12mXCLc/BFT7eqBIQtjtAUnopPnDBHtyCPR1qE97mzTqrO+ZUN+ RbYaYaxMt4fZfbT0PZlWUqHpCq2yCVIBUnaojkZzivVPDOUeDDat8JqIwhCG2k7UpbbShI+JKQAP kqRVcq77boIBt0/zvgSAzllXp84Hzcf92M92asqehSlKBSlKBSlKBSlKBSlKBSlKBSlKCkvlmNwu dmnsraZfgTN5cVwpTRQpKkA+0lJx7Ku6otW2yVd7Q1EhIHhBlMrQ+VAGNtWFFwekgA4Hfn0Zq9oF KUoFKUoFKUoFKUoFKUoKXUc6dbW7fLiZUyJzTUpsI3FTTh2ZHfkKUk8eg1dV5VnBwRnuyM1Sacv0 m6OTrfcYhi3G3OBD6Ug9m4FZKFoJ6pUBnHUd9Be0pSgUpSgVj9dRXZs/TkZmW9DcdnrSl9nG9s9g 5yMgithWY1V+H9K/pJX8BygxWnfc11JbtcSn7jfJ5YeiL2XOI8A44d6PMXvCiOMnHs61tfI2R64a j/aGfsq09KDMeRsj1w1H+0M/ZU8jZHrhqP8AaGfsq09KD4pp/Rd90zDsUi73B1CX7xG2W0L3IayV Hce4K9g+XPd9ndbDrS21FQC0lJ2qKTg+gjkH2iqLV9uuNwh29y2MNyH4Vwaldk472YWE5yN2Djr6 K4+ONZeqMP6YH2VS7GQW3c4Wi7fCiM35iY1GeKlpTMVtkDbhO1Ayc9xKg2Mk4V0q6flS2rhcJTLF /eYkR3jGQBISUvBCd2EqSQhJGNmQcKC8A5Aq18cay9UYf0wPsqeONZeqMP6YH2VUZ5ly5KsU5lT9 4TsuCVsbotwO5stA9nv/AK7bvChvHeAduDtrSXJ65jQwdhx5SJfYNFbSVlb6U5T2gSSMqXt3YJAO e7NePHGsvVGH9MD7KnjjWXqjD+mB9lQZkMz22Loi1pu7ER65tOOOvxpi3iyWQnI5S6rDiQCEqyAP RwdVLRMTohDbs2b4SGm0qktxXC8rzgCottq3jI6hJCgCeQRXPxxrL1Rh/TA+yp441l6ow/pgfZU4 dVDDs6P4slSo95RGehyo77bK5j5C96ezUQR2iSRvwpQChwM8A1Vw2bi820/LRqBE12zMNMqaafQp UpKnB90VjjBI/rCEEKycjBGr8cay9UYf0wPsqhuas1Szd2LUrSUXwmQyt5AF2GNqCkHnsv8AuFAC LgrVzbUhU+QHGw29sMphpg9kMqSpP3FYJz+StKjwTgAZqNb7n4gj2tpF9BXZZbbzC0SA2JI2lPnE d+FADdt7gPOOdj441l6ow/pgfZU8cay9UYf0wPsqhNM5M8MhW2e1DRqEol2dvwMITMWpElJXkc+c 2eEdcAj010TcJiROkXN6+JtCZqXHnVNPsOIZLAxtwlK9gcBB2c96sgkm/wDHGsvVGH9MD7Ko1wka pukJyFM0dFcYdGFpTeyjcPQSlsHHpHf0q5FZdJFwZm2zwU38tx0xVB1xqS4X2+1wsKQ0kJCtnKi5 lXQBIJzUy3m8u6obU4Lk3JRNfEpLnaeCKi4PZFGfue7+r+DhWd2e+p4u2sUpCU6QhgDgAXcfZV++ ONZeqMP6YH2VBp6VmPHGsvVGH9MD7KnjjWXqjD+mB9lQd9e/2Cvn+Rd/4mrmF94sf4Sf3Cshfl6y vlhnWryYhseGMKa7XxqFbMjGcdmM/PWxjtlqM02rGUICTj2Cg6VGuE1Nvguy1svvBpOezjtKdcX7 EpSMk/8A6eKk0oPld9iXqFcdPamabenusyFqXHiWl9D3ZOHLgWSo8jOACEdeOmKtp2mkL1u3OiWl Ltvv8NTU8rj47Ighe5QIykqHGDjzgM8it9Sk0PleuLc8/PkotWmJTb8BcQsTWWVrKkg9GccISkcE J5OegxmoGsbXPm3PWpZtE98S2YYiqTCdUHFIKN207eo5/wB6+x0qYM7fJNVw5c8qcg6anpmRBCWi d2DqnFjjPZ//AB7eigOSTyBjNXLkFD3uizvKC2ypbb5Ycs0hKFkNFAypCVDHZnPJyQDjmvoVRJNs iS50WY+2tb0QlTP3RQSlRBBO0HaTgkZIJGTiqmNPm9wiSn9aQrjD03MhKj3sokSuxcWt5rbgrK// AIz0CRlIx1GcV4XaL543c/okk3030PJuHYq2CFjp2uNuzHHZ5z7K+rUpNLdlftKUClKUClKUClKU ClKUClKUClK5vOhhhx4pWoNpKilCSpRwM4AHU+ygrLg/czf7XEhoUmIrtXZj2zI2pThKMnoSpQPp wk1b1X2aS/Ot7c59DjPhQDqGHAAplJAwk47+856EkdMVYUClKUClKUClKUClKUClKUCoN4NyTan1 2jsTOQnc0h4ZQsjnaeRjI4z3ZqdSgg2ee7c7VHmvQnoTryApcd8YW2fQf/35ulTqqr3bp01lD1su C4c6PlTJJJZWT+K4j8YH5x1FSo0ooEaLOkRhcHGt6mmlY3EY3FIPO0E/7igl0pSgVmNVfh/Sv6SV /AcrT1mNVfh/Sv6SV/AcoNPSlKBSlKBSqjUV9Nhhx3W4Tk16TJRGZYbWlBUtWccq4HSq/wAodT+o 8v6QjfXoNPSsx5Q6n9R5f0hG+vTyh1P6jy/pCN9eg09KzHlDqf1Hl/SEb69PKHU/qPL+kI316DT0 rMeUOp/UeX9IRvr08odT+o8v6QjfXoNPXzV7Xlhle6bbG2nn+0ZZfhLbMdYUHlrbATjH/aeegxWj 8odT+o8v6QjfXrKuWO7r90FnVydESkuIZIWz4dGwp3G0L+H+SSPjANB9RpWY8odT+o8v6QjfXp5Q 6n9R5f0hG+vQaelZjyh1P6jy/pCN9enlDqf1Hl/SEb69Bp6VmPKHU/qPL+kI316eUOp/UeX9IRvr 0GnpWY8odT+o8v6QjfXp5Q6n9R5f0hG+vQaelZCfrC+2uA/Pm6LltRo6C46vw6OrakdTgKyfkrWN OB1pDiQcLSFDPtoPdKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKVxkSWIrYcfdS2kqCQV HqScAD0kmg7VQwZV4n6ollyO5CtUFJYbS4BuluK2kuD0JSBgY67jnpgWLDU83GQ5KdZMUbfBUNgh Q484rJ6nPTHGBU2gUpSgUpSgUpSgUpSgUpSgUpSgUpSgVWXewQLx2bj7ZblMcsTGcJeYPpSr/wAH IPeDVnSggSZTtubU44w6/GbQnzmQXHc87iU9SOnwck88VLadS82lxBylaQpORjg9OK6VR6g00i9l uTHmybbcY6SGJkdeCkHnapPRac9x/wBqC8rMaq/D+lf0kr+A5VhNuMmxW+MuTGl3MJATJkRmgVJw OVlsckE9yckeiqvUT7Mq7aQkx3EuMvTyttaTkKSY7hBHxig1dKUoFKUoMxrb/p/9Nxv/AGrT1mNb f9P/AKbjf+1aegr7reYtmbYXKDhS++hkFCc7SpQSFK9CckAn2ip9Za92iZqNVwjv+MoEZtgstJa8 GUJQPJI3biOUpxko7ufRxFtutxhWm7SbQ2xfIBDLiZJbVvQpO1xQUkq453DofNI7+ZBr6rLTfGr0 yh+JFlBlTjraluoCNim1bSFJJ3DJBxx3c4rKXzTclq6wBa7AVx7f4MqO7GDAUNju5xJLiwUApzwh IKiRlWOKhsWS/IlvPjT8ncpm4IAdlthtXau9o2MJdyMjIJGDnAJxyKcfSqgS7r4JOaiqgTXUu4Af ZZ3tpUTjCiDkcZJJG0AdckA4Ru1P2e0S37jYHVWmPNMt6C4iMlLjZZCTtbQsowlYKtqj0wcqUK73 Kxz3pdsdhadeDMJMVUdTbrLrjaUOZU2pxxzKRs7mxycZWQMUxsfQ6hXi6MWS0ybnJQ6tmM2VrSyg rWQPQP58DqSBWWgWC5J1O3MfgdlIZmvuu3RK0YlR1AhDRAO/jKBhQ2js8g9K/Nb2Gfd5EoJs4urD 1uWzF89seCSMnz8OKHwgU+cnJG321FnraNuB1tLic4UARmvdYJu03VWr4N1XYHmeyeTveQqOSWix sO9ZcKyUqI81ICRgnzjg1Z6MtMm1OzQ5azCZc2FKn0Mh9aud29bSiHAM8KUEq55z1rTLV0pSopSl KBSlKDP69/sFfP8AIu/8TVzC+8WP8JP7hVNr3+wV8/yLv/E1cwvvFj/CT+4UHelKUClKUClKUClK UClKUClKUClKUClKUClKUCvwkAZNVsi7qbu7VtYt8uQtWFOvJRtZZSe8rOAT/wBqcn4qgzdLKut8 8Nud1kyIDZSpi2p+5tJUO9e3lznkA9PbQTpF0e8Zpt8KC6+4koL7ywUMtIJ584/CVjOEpzzjOBzU wRk+El9SlLVxtCsEN8YO30Z7670oFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFYf3Q4kV 9/TrUqa7b44nL3PsvdiWgGVncFdBjH763FZPWUaPMu2mY8pht9ly4rSttxIUlQ7Bzgg8Ggz0D3TE qkiyWJQvzsRtTjs6fJREDyQsAJSduCoBQGSBnBPNau2aytsq3LlXFxm0rbc7NbcqU0RnjkKSogp5 xn0g1Eie5hpGFd3Li1aWldo0UGM8kOsgkg7glQODxjjjBPFWnkdpf1atH7C19Wgkov8AZnUhbd3g rSehTJQQf969eO7T+dIf7Qj+dVb+g9MLZkhixW5h19soDqYbauzOCApKVApBGc9Occ5qvtGg48OU pFzg6fuMTYdq/E7TLwXkYzjzSMZ7hzigo168tOtIlgVEX2Mxu8xi9EcPno+FyPyk57x8uK+nV8qR pmzWCPYPAbBLgSTeYwcem7FurHnZG5KiAOnAwOOlfQI2pbHLnu29m6xVS2XC0uOXQlwKBwRtPJ59 FBJ8a24XIW0z43hpTuEbtk9rjGc7c5xj2VwcvsBcSc7BmQ5bkFKu1QmUgBtQzwtXOwcHJPTB44qi nadvUrUyJuYvgiJRcQpMpTSkoUyWlfc0t4UvnO5SieABtBNQoUCde7NMt0du2sv2pbMRuU0SoSlM qSsJVhI2I7ikFWCVejzg0dt1JFlWZV1muRIUVK9nb+GtuMqxgEhwHGN2QM4PHIB4qY9eLZHejsP3 GI27Kx4OhbyUqez02gnzuo6VmpGkrhJjOyfuLcx64icqKzMdaa/q+zKe2QkLBI87cE9eMEc128m7 jGk2zxc3HiNxWmm3VomOE7EqJLZbUhQcSAeFEpUDkgjpQXd3lWVqOWb0/AQwobyiYtASQlQ5wrjh RTz3Eiusm7W2GuOiVcIrCpRwwHXkpLp44Tk+d1HT0isrqRSR7oVnTEj2yRcFwJKQ3Me7MlJKcYIS on8fAxyN/PWvMjRNwbhi3RX40mI/a27c+qSpSVM7CfuiAAoK+EfNJHKU+dSeZGkZ1JZ3ps+Im4Rw 7bhukhTqQGxjJJ54A7z0Brq5frO1FRKcu0JEdxBcQ6qQgIUkEAqBzgjKgM+kiqGfpa4SVXppp1oN Tlx32V+ELQve0EDYraMhJ2fCSrIz04qPG0fKi3mDcGrbbQWI8lK98x11wOOHIw4tBUrndknH9Yrj 8qDUO3i2MuRm3bjEbXMx4Mlb6QXs4xsGfO6jp6a4m/W6OyHLhcLfFC3ltNEy04WUqxjJx53pSM4P GTWfs+mbxaocaO5GtUxKorEeQl5xRDRaJ2qR9z88c7tp24UOvORXv6Lv6rI5bGGrY0y54Wns2pS2 gkOr3I84M7tqe9A2g4GSRwL0bN28Q4nhbk6bBjR47iWy4uUBtJSDheQAg88DJyMHvxU1p5t9pDzL iXG3EhSFoOQoHoQe8Vik6ZvGLkRb4LLkmcmUyWLg4yW1dlsUpK0tfC3DPKSFBSgR6dfbmpDFtjMy 3EuyENJS6tIAClAcngAfMB8Q6URKpSlFKUpQZ/Xv9gr5/kXf+Jq5hfeLH+En9wqm17/YK+f5F3/i auYX3ix/hJ/cKDvSlKBSlKBSlKBSlKBSlKBSvwkAZJwB31Fn3S32pntrhOjxGz0U+6lAPz0EulUz 19ck2Zm46ehi8pfcKUBDyWk4G4FRUruBTjgE80aVqV+zPl1Fth3JSx2IClvNIR5vwvgkq+F0wOnt oLmobV1tz85UFmfGclIQVqYQ6lS0pBAJKQcgZI+eoUCzz/BZjF9uvjVEtHZqb8HSy2hJBCgAMnkH nJPQVLt1ltdnb2W23RYYxg9g0lGfjwOaCHarreLjL3P2By3wSklLkmQntie7LacgD41Z9lGdOJTd zdJN0uMh8OKU2gyChptJzhAbThJAHGVAk4zmrqlApSlApSlApSlApSlApSlApSlApSlApSlApSlA pSlApSlApSlArMaq/D+lf0kr+A5WnrMaq/D+lf0kr+A5QaelKUClcJkxi3wZE2U52ceM2p11eCdq UjJOByeB3VTWjXGm77Glybdc0uswgkyFqaW2G92dvwgM5welBJ1FYjf4cdlM12E9GkoktPNJSopW nOOFAg9appOirpMeaelardfdZWFtrctkVSkKByCCW+CD6K00ic3HjIkdk+8lZASlllS1HPsA4HtO K9IkrXMcj+CvpQhIPbq27FE9w5zn5Me2gykzRF7nOhx7Xl4SpIxhlKGh8yAB8tdpGm9XEoMXXMgY PnhyBHOR7MJ4q1ub2pFIkN2iJb0OBALD0x9ZSpW5OQpCE5A27uQrqBxX7ZRqMwFePl2tMvtTt8BS 4W+zwMZ3kHdnd7MYoKabZNWx46XI+q58tzcAptEWIkgd5BUkA4+Skm1ahh29c1/WN0CW07lNot0Z xwewBKDk/FmtNIamOJZDEltkpcSXSWd29IPKRz5uemeaisQbs3qGTNevXa21xsJZt3gqU9irzfO7 T4SuiuD+V7KDL24Xa5RpEpOtLvFYjDc67NtLMdKRjJOVtjgAZJ6CusBEm6vqYt3unia8lO9TcdqG 4oJyBnASTjJHPtrVNwVKtioU6Qqd2iCh1bzSPugIwQUhO3Hsx09NQWtI2SMhYhwWoLi0lCnoLaYz qknB272wk4yB391BD8nNR+vE39hjfUqpkRNUM6qhWcazlluTFefLngUfKShSAB8Dv3f7VbWf3OdJ 2G5s3K22rsJbG7s3fCHVYykpPBUR0J7q+WDS13j+7I/aVqPZXQuuSX0jHbxXMlzPcCeU8YwendQf U/JzUfrxN/YY31KeTmo/Xib+wxvqV5m6RmR7TBtWlbwmxQ4vabmlREyw5uVuHLhyMEq/1ewVLutk u86xw4kS+txJ7GwPTjAbd7bCSFfc1cJyrCuOmMUEbyc1H68Tf2GN9Snk5qP14m/sMb6lTbHaLjb4 TiLpdGrrMLhU3JMJDGxOAAnag84IJznPPsqVARcPCJJnxoSEHHZrjrUVOdc7gUjHd3nqaCmcsGoG m1OOa7mIQgZUpUKMAB6SdlQZ6JNqfSxcfdPEJ5Sd6W5DUNtRTkjOCkHGQefZU+zQdUSHnI+qYmnH bcWyUtwm3SouZGMhzzcY3e3OKgT7BqS66jD9xtGjplvS/sDkiM45JEbeTjJBG7aTx0yaDy6XmHls ve6khtxtRStC24YKSOCCNvBr9WJDc5EFfuopTLWUpTHU3DDiirBSAnbnnIx6civ2+WDUr14kO2q0 aOciLUFIXPjOF9RIG4qKRgndn5MV11Dp28OXxqfYLNpNexCFGRcoyzIS4k4BSpA6ABGO8Y+Kg/Ze krvd4EiDJ1tMfjPJLTyExI4yOhTkJyDWuabDTSG05whISM+yqh6JdmbEt23R7S3fXm2y8paFCO45 xvyR55GN2M89M15tLGoE2SQi8x7OueFKMduHvSwRtG3duBIO7OSAeMUF5SoERiU80DdGIfaAYCGQ VhPyqA/dVHZ9NalhXdmXctWt3GOjO+P4pZZK/NIHnpORg4PyYoNXSstddL3m53Z9flIlqzytqH7a Le2S41tAcR22QobvO5HI3cdK6ytA6cmafi2ByEsW2I4XWWEvrG1RKjndncfhq6nvoNJUSfc4FqYS /cZ0aE0pWwOSHUtpKsE4ySBnAPHsqsvOi7HfrqzdJ0d7w1hvsm32ZLjSkoyTjzVD8pXt5rojSlnE ZUV+MZkYuFwMzVmShCueUhzdg8np6aD3I1JATZH7rbiu9NMKCFN2rbIWpRIGAAcZAUCRnpzXjT2o /KDwj/6Ld7Z2G38JRex7Tdn4PJzjHPoyKlwLPDtURyLbmW4bbiirEdltsBRAG7CUgZ4HUHoKiyrZ e3XbYYuolMNxnMzEqhtrMxO4HaTxs4BGUj8bPdQR4l41K9qFUKRpTwe2h1xIuPjBteUjO1XZgbvO wOO7PspLs+pXtQpmx9V+D20OtqNu8XtrykY3J7Qnd52Dz3Z9lXKG5SZjjipCFR1JGxrssKQe87s8 g+jHy1FuovYt7xs7kAzeOxEtCw18IZ3FJz8HPTvxQRr1pK06hlofuqH5KG0BKYxkLSzkEncUAgE8 9T6BU961W6QqOqRBjvqighhTrYWWwcZ2k8joPmqttrurmoiPG0S0yJJeIV4E842hDWBg+ekkqzu4 4GMc1ayZK44aIiPvdo4lCuy2ns8nG5WSOB34zQSAABxX7VWxe+31DJs3iu4t+Dthzw1yPiM58HzU LzyrzumPxVeiul0vdvstrfudxeVHiRykOOKaWcZUEjgDJ5I6CgsKVwhzGLhBjzYrnaR5LaXWl4I3 JUMg4PI4PfXegUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpXJ95qMw5IfdS0y0krW4s4 SlIGSSe4AUHWlVrF18ZQI060NolsPuEb3FqaAQNwKhlJJ5HHHOc5xXZEeaLg665NSqIpIDbCWdqk nvJXnn5h8tB1lS40GOqRLkNR2UfCcdWEpT8ZPFRWb9bZUGNNjSDIjynS0y4w2pwLUCoH4IPHmq56 cdaM2WG3Acgvh2cw6crTOdVI3c5A88ngej2VOQhLaAhCQlKRgJSMACg5ds/4f2HgquwDYV4QVjG7 JG0DrngHPTmsxqYzVan06HUsIY8YkMFCipZPYO5KgQAO7AGe/mtfWY1V+H9K/pJX8BygtXLZKehx 2FXiYlbT/aLeQG0qdTknYfNwE8gcAHzRz1qBftC6b1PORNvFt8JkNthpK+3cRhIJIGEqA6qPz1oa UEOJa7fBeeeixGmnZC1OOuJT5y1E5JJ69al1+0oM9rC43GBDt7dskNxn5twai9s412gQFZyduRnp XHxNrH1wjfRCftKa2/6f/Tcb/wBq09BmPE2sfXCN9EJ+0p4m1j64RvohP2lVKbND8s7tJNitCo7U pp16a6Qh5g9mFlSfN/KwSrcDkng1Dj3udp/Tr6LV2TzjMi4PqaebW8tSG3lZJVvSEjBOVKUSegSo 0m1w0XibWPrhG+iE/aU8Tax9cI30Qn7SqiPMuFoumoZkPwdUUXNntGXitbrpcbaG1Cs+bjdwMKz0 ASBU1Gqrq9OQuO1DdivTJEJEdQWh1txpKyFLXkjaSg5G0EBQ696oleJtY+uEb6IT9pTxNrH1wjfR CftKp3tX6hb0zEug8XuSZEJU0xWoriiG0hJOVFwBI5J3E+gBKzzV63d7jJuUhSHrezb4kjwd9p/c l3lAVvC84GSpOE7eRzu7qXQ5eJtY+uEb6IT9pXI6d1UqUiUdVwy+hBbS54nTuCSQSM9p0JSPmqjs 96VZIlzfbhR2ULbiLjupadbZAecUgK2LWSEJVlROGyrk4GQTrrDcp0vxhHuIZU/Aklkux0KSh0bE rBCSSQcKwRk8jrQQvE2sfXCN9EJ+0p4m1j64RvohP2lZ5q9SpN8halekRENO2iWthvDmGAlbeAvz lblZ4O1IORjnAq2a1FqJy1S1CI0ZcaaGSREIUWuyS5vDHbbirCvg792PxcjbTgl+JdY+uEb6IT9p TxNrH1wjfRCftKvbbJ8NtkaT2iXO1aSsrQhSArI6hKuU/EeRUqgzHibWPrhG+iE/aU8Tax9cI30Q n7StPSgzHibWPrhG+iE/aU8Tax9cI30Qn7StPSgxF/a1jY7BOuvlVFf8DYU72XipKd+BnGd5xWyj uF2M04rGVoCjj2iqTXv9gr5/kXf+Jq5hfeLH+En9woO1KVSaylS4GkrlNgS1xZMaOp5txCUK5SM4 IUCMH4ql0Ta7pWE0be5F1hxbg9qpyZ4PFS/c2VtMBpvehRwChAUkpKckE9K0ELWFhuAkmPPx4KyH 3Q80tohojIWAsDKcd4yOnpq2YuElyu6VUxtTWiVGlSBIcZaiIDjypMdxjag5IV90SMg4PIrtar3b 70lwwXlqLe3ehxlbSwFDKTtWAcEdDjBoqwpWF90bWHiizTWbPdFx7rCLS1huP2iUhasBKypJSkkE kDIPHorRzNT2i2yUxJszY/sC1hLS1hpJOApZSCEAnvUQKTcyXS4pX5X7QKUpQKUpQc3GWnQA42lY HTcnNUUrQmmpuoU3+Rbd9yQ426H+3cGFIACTtCtvG0d3dWhpQQUW9xuQ+6m4Syl5G1LSlJUlo/lJ yM5+Mkeyol1b1IzaWW7E/AkTkuAOO3NKkpUjBycN487O3uxjNXNKCPIefadZS1FU8ha9q1JWB2Y/ KIPUfFzXhdxjNvvMrU4lbDfarKmlBO30hWMK+QmpdKCHbLrBvMBqfbpTcmM98BxB4PpHpB9hqZVd NsVsnwXIT0RCWXHO1IZy2QvrvBTghXt61HuNnuD78N6332TB8Hwh1BbS6h9GechXIV/3A/IaC5pU F2VOamqCoTZgpbKy+l4lzI/F7PbyT7D/ACr1bLnFu8JMuIpRbJKSlaChaFDgpUk8gj0GgmUpSgUp SgUpSgUpSgUpSgUpSghzZ4ivRo6EFx+S5tQnnG0cqUSAcYTnGepwO+vTUPap4vvOSO2ylSXMbQnK iEhI46KxnqQBnNRg1cxqdbynQbWqGlCW8jzXgtRJ9PKSkfJVnQflftKUClKUCsprKQzEu+mZEl5D LLdxWpbjiglKR2DnJJ6Vq6jTbfCuLIZnQ2JTYOQh5sLAOCM4PsJHy0GVtHun2C96metMN4BhmOp1 U15YbQtQUkbUg8n4ROeOnf1rSePbR+dYX7Qj+dUMT3MtIwruu4s2lk9o0W1RnUhxnkg7glQODxjj jBPFWvkfpj1ctP7E3/Kgk+PbR+dYX7Qj+dPHto/OsL9oR/Oo3kfpj1ctP7E3/Knkfpj1ctP7E3/K gxKte2nWkSwGIrsJrd5jF6I4fPR8LkflJz3j5cV9Or5zP0TYdJNWAWuGA8q8xkrkuHc6sed1V3Dp wMDjpX0agql6Y08uWZi7FbVSVOdoXjEbKyvOd27Gc55zXleldOONhten7YpAUVhKobZAUcZOMdTg ZPsFZeVf7uF6mdYvDTxtkpDLbDaW0JYbWEblrO1avM8/nGMpVlJA2j149n+AQ0XDU8W3tutvKbuj JbdaeWFAIQVrQlCvNJJ2pTuKTgjBoNa3YrOzNbmtWqEiU0kIbfTHQFoSBtACsZAxxj0V6NntZlvy zbYhkyEFt57sE73EHAKVKxkjgcH0Vk5morl5QqjM3AsyGpMZDNtUykeGMLCSt0BQ38ZX0VhPZ8jr VSvVd4TDfe8pGHHERpz+G2Wgn7g9tbABycKBOck5A4wcqL0w3bmmbA9GZjO2O3OMR89k0qI2Ut5O TtGMDJ64rh5MQ/KWNeAzFQIsQxmWkxkhSckc7/QAMAADG5XODiqGTqK7L1Q8yxdLfFiNthTbT7oU Xmi1u7ZKAjKgFdVBwJASQQOtQbRqy7eDW59V3ausmdZ35IiJQ2kF5vbtCQnzsnzwQSeUnATjAfRs I1i01GkSIsS1Wtl5xna+01HbSpTaieFADJSSD14OKsIcKJb4yYsKKzFYRna0y2EITk5OAOOpr5jE v0KJcrpcWdSJkvTIMJSpSEx0rSouKSodEoTtBSMrztyM54BsoeqJMy1RRL1THt4zKQbk2WXG3HUO bUIKlJCTlBCsBKSocjbzQrTu2rSaLktt232dM51KnFpWy0HVpWdhURjJCidpPfnFdhpXTiY6o6bB bAytQWpoQ29qlDIBIxjIyefaaytzuTsnUyUKcZ8MizIvgsB2K3mU0oDc8ncntAU7nOUqwnZyOtd4 t/vLt3vKX7lAjNxkSAIzrm5cbZ/VuqQGwUoKfOJUtQO4Yx0oNs20hlpDTSEobQAlKUjASB0AHor3 Wf0dc3bnbH1vTVzVtPlsvdqy6hXAPmLaSlKk896QoZwRWgoj9pSlFKUpQZ/Xv9gr5/kXf+Jq5hfe LH+En9wqm17/AGCvn+Rd/wCJq5hfeLH+En9woO1U+q7dMu+mZ9sgJYL8tlTQL7hQlIUME5CVHj0Y 59Iq4qBerqmy2p+4riSJTUdJW4iPs3BIGSfOUkHAHpz7Kl82T1U2CyXO06UTD2QWbu1DEZt9tanG 1bEkIUrKUnqTxg/LVVatIX9i8Srncn7fMdl2oRHQ4pbiVO55JBSAUH0DGM4xxmpyPdCt4atsiZbL lBiXQpTGlPoaLaioZSDsWopz7QK1laubc1OYYR/Qc6ZYL1ZjLTDhS0tiFGTIW+hhSFbsgqAKUnA8 wZA5wat9Laddtbjk2cw0ie60lp1xE6RK7QJ6HLp80cnzccemtJSot2+d6i0Dep/lGxb5EIx72th4 KkOLSppbZGRgJOQQOuePR31IuGg5czUs24LDMmFdWG0S4yp0hjYpCdvHZ4DqcdysezFbylIObDKW I7bKeEtpCRyegGO/mulKE8UQpVRp3UkbUjEtyPGkxzDlLiutyAkKC04z8FRGOfTVvRSlQ7ndoVoj iROdLTROCoNqVt9p2g4SO8ngd5rvGkszI6JEdwONODKFjooekekeg99QdqV+V+1QpSlApSlApSlA rhIjiRHcaC3GSv8A+40rapJ7iD6fj49PFd6UEFl6ci4iI7GK44YCkzN485YIBCkYGM5yMZHB6cZn VHdkNGSiGl9CZCk9qG8+cUJUkKOPRyB8tSKBSlKBSlKBSlKBSlKBSlKDm8y3IZWy6gLbWMKSRwRV Q6i/xLrb48BuG9Z0Nht9Uh1ZkJI/Gzzu4A68k9T31d0oIMO6xZsZyQntWUNOFtXhLSmiCDj8YDIP cRwanVxkxWJsZyNKZbfYdTtW24kKSoegg1GTa0xrazBtshyC2xgN7AF4SPxfPB4/39tBPpUNa7iL o2hDUdUAtkrcK1B1K+4BOMEe3NcGbyFvTUyLfMhswgSqRIQkNrHpSQokjHPTjvoLOlRLdc4V3iJl 2+S3JjqJCXWzlJx1wal0ClKUClKUGS90GUzBh2WZJX2cePeI7jq8EhCRuyTjurt75Gjvz9H+ZX8q 09KDMe+Ro78+x/mV/KnvkaO/P0f5lfyrT0oMx75Gjvz9H+ZX8qe+Ro78+x/mV/KtPSgzHvkaO/P0 f5lfyp75Gjvz9H+ZX8q09KDMe+Ro78/R/mV/KoNz1noq6oYbe1IhtDL6H9reRvKDuAJKScZAPGDx 1raUoMz75Gjvz9H+ZX8qe+Ro78/R/mV/KtPSgzHvkaO/P0f5lfyr8Huk6OUMi+sfKlQ/8VqKUGY9 8jR35+j/ADK/lT3yNHfn6P8AMr+VaelBmPfI0d+fo/zK/lT3yNHfn6P8yv5Vp6UHz7WOvNLz9HXa HEvDLz78VbbbaUqypRGAOlbqGCITAPBDaf3V3pQflUOt5ceJou7qkvtspXDdbSXFBO5RQQEjPUk9 1X1KlmZglxcvicCYmDC0rc7vMF4022httScpxbZQAwVBAG4D/uyQCe/Gbq/Xu7TdXzIsW6MRWlRm nLM8u4OMMu5AKlJCEKD5J42nu6A5r6lSrd1HzxudIm68m2++3aZbXGUx3ba1GfU0h8Yy4Ano7lXB CgTjpiq1V6vgu7n9MkePRfQwm39srZ4Fjr2XwduOe0xn219VpRXxSTqOTGu0gM6ikgN6mSwlBnKU ExyDuGCTlOR35AxxjmpLep7x5GXR2JcHpLMfUCmXZHhClLahk5z2g3KSnu3AEgHivsVKTU/fB8lv VzuMLTcZ9d/Q2w5eGhFeh3N13DCh56VOrCe0A5POcdD0qJD1HcHbSpty8SlW5Gp1R5MpMpW9qLwU gu53JQT+Nn5a+y0pNfv4PkVhucC32K8ofnTkoe1MtpCosjs1r3Y273OqUHByoYPHFfkfUV4b0WhT 8+YYrN+MadI7RReZi7u9fwx6N3X2ivr1cZTBkxXWEvLZLiSntGwkqTnvG4EZ+MEULtgbrJEGTYYv j6YrTT631SLiuaoFStpU2gyBg7eTg7ucYJOKqH9QakRprTjlzccahyJLyJMlyQuKVoBwz2jqElSA fSBzgZIyTX1O3wkW63x4TbjjiI7aW0rdVuWoAYyT3mpFB81nu3ZnTsB2bfY6zHD61IRcHo6JTWQE ESgE+cMgDOQvOeetbuxP+E2GA/tkJ7SOg4knLvwR8M96vTU+lOI/aUpRSlcHpcaMtpD77bSnl7Gk rWAVq9AHefirmi4RnfCRHWX1xSUuIbGSFAZ2+jPsoJdKrm5k2bbmZMWGYzjihuaneYpCe8kJzz7M /HipKmH1TUPeFuJaSjBYSlO1Z9JJGfkBFB1LrYc7MrTv27tuecenHoqpmS7vPixHLGhllDzuHnZz a0qbbGfOS3wSTjjJHUHpUyLaYEKbJmx4qESpasvvdVr9Aye4ejpU2g5paQlalhCd6gApWOVY6Zrp SlApSlApSlApSlApSlApSlApSlApSlApSlB5CEhO0JAT0xjioSbNAblMSW2lNuRmgy1sdWlKUDon aDjHydwqfSgrIlrlRrq/NdvEyS26CExXA2Gm8kEFOEg8YxyT1Ne7oLyLW/4oVBVPyOx8LSsNfCGd 20k/BzjHfirClBWmVdI0S3h+AJcl0tty1RVhLbKiBuWN5BKAc+3GOK7NzXVXB2KuBJbQjG2Sdpbc yAeMK3DHTkDpUylBT3DVVntTEp+e+9HahpSp5bkV0ABSgkEeb53nEDzc16smp7NqK3rn2qal+M26 WlOKQpsBYAOPOAPRQ+eralBEXdLe3cGreudGTMeRvbjKdSHFp55Cc5I808j0H0VKBB76iuWyA7cW 7i5BjLmtJ2NyVNJLiE88BWMgeceM959Ne2IUWM686wwhpchW91SBgrV6T6T7aCRSqS56aRcraIKL xeIKQ/23bRJqku9CNm9WTt5zj0gVWv6B7dmM35Xaob8HaLe5u5YU556lblnbyrzsZ9CUjuoNbSvC kKK0qDikgdUjGD/tmob8W4ONzkM3INF5rbFX2AUYy8EbuuFjJScEDp1OaCfSs8/Z9SuaejQmdV9j cm3Cp64+L21dsnzvN7PO1PVPI/J9tQn9O6zcZjJZ152S22yl5fihlXbK3qO7GfN80pTgfk576DXU rxlztMbU7Mdd3PzY/wDNfgL21WW0bvxRvOD8fHFB0pUaS5NbjpXGjNPO7hubU8UDHfg7Tk+zA+Oq eXeNSs6hTCj6U8ItpdbSbj4wbRhJxuV2ZG7zcnjvx7aDQ0rPWG8aluE5bV40p4ojpbKkv+MG39ys gBO1IyOCTn2e2jF41K5p6TNe0p2NybcCWbd4wbV2yfN87tMbU9VcH8n20GhpVLIud9b8Udjp3tvC 9vh/9NQnwDO3PUfdMZV8Hrt9orsxPuzmoZMJ6y9lbW2wpm4+FJV2yvN83s/hJ6q5P5PtoLSlZFjU Ws3GZKntB9kttsKZR43ZV2yt6RtzjzfNKlZP5OO+u/j3VniPwvyL/p/hPZ+A+NGv6rbntO0xj4Xm 7evfQaeleCXAtISlJT3kqwR8mK/AXNysoTt/FO7k/HxxQdKVy3Pdnns29+fg7zj58f8AiqG92jVF xmIetWqU2ZkNhKo6YDckKVknduVgjIIGPZ7aDR0qrfg3ZzUMaazeuytrbZS9bvBUq7ZXned2nwk9 U8D8n20tkC7xZtwduF68PYkOborPgqGvBU5V5u4cr4KRk/k+2gtKVxDSwgp8IcJJ+FhOR/tiqO+a RN8mNyTqO/W8oaDfZwJnYoVgk7iNvwucZ9AFBoqjzJsW3xVypslmLHbxvdecCEJycDJPA5IHy1DY snYahk3nxpcXPCGw34E5IzGb+D5yEY4V5vXP4yvTUqTb4c2K5FmRm5Ud0grakDtEKwcjhWR1APyU HtEyK4yy8iS0pp8BTS0rBS4CMgpPfkeivS5DLa9i3m0q/JKgDXNECGhMdKIjCUxRtYAbADIxjCfy eOOO6pNBnrDrrTep5y4VnuXhUhtsuqR2DiMJBAJypIHVQ+erZi4NSrf4bGbfdbUnchJaUha/iCwD z7eKl0oIaZUpZiYt7iUvo3ulbiQY5wPNUATk8kebkcHnpUdjx/5QyfCPF3iXsh4P2faeE9p5ud+f N2/D6c/B9tWlKCsVa5biJSHL1Mw+pKkFtLaSwAckIO3oeh3ZPtFdpFrjy4QiSVPuNYwfu60lXxlJ BPxdKm0oOSGGm0NoS2MNAJR37QK60pQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQK UpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQK UpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQf/9k= ------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/image002.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEBLAEsAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdC IFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAA AADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlk ZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAA ABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAA AAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAA AABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEA AAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAA ACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAoHBwgHBgoICAgLCgoL DhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoL Cw4NDhwQEBw7KCIoOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7 Ozs7Ozv/wAARCAFSA8oDASIAAhEBAxEB/8QAGwABAAMBAQEBAAAAAAAAAAAAAAQFBgMCBwH/xABV EAABAwMCAgQJBgoIBAUEAgMBAgMEAAUREiEGMRMUFUEiUVNVYZOU0dIWMlRxgZIHFyM2QnN0kZWz MzQ1UlahscM3YnJ1JEOCsrQlY4PBRaLw4UT/xAAUAQEAAAAAAAAAAAAAAAAAAAAA/8QAFBEBAAAA AAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8A+uXCam3W+RNcQpxLDZWUIxlWO4Z2qL2lcvMMn17P x04l/Nu4fqFf6VaUFX2ncvMMn17Px07TuXmGT69n46tKUFX2ncvMMn17Px07TuXmGT69n46tKUFX 2ncvMMn17Px07TuXmGT69n46tKUFX2ncvMMn17Px07TuXmGT69n46tKUFX2ncvMMn17Px07TuXmG T69n46tKUFX2ncvMMn17Px07TuXmGT69n46tKUFX2ncvMMn17Px07TuXmGT69n46tKUFX2ncvMMn 17Px07TuXmGT69n46tKUFX2ncvMMn17Px07TuXmGT69n46tKUFX2ncvMMn17Px07TuXmGT69n46t KUFX2ncvMMn17Px07TuXmGT69n46tKUFX2ncvMMn17Px07TuXmGT69n46tKUFX2ncvMMn17Px07T uXmGT69n46tKUFX2ncvMMn17Px07TuXmGT69n46tKUFX2ncvMMn17Px07TuXmGT69n46tKUFX2nc vMMn17Px07TuXmGT69n46y934p4rXxxL4d4eh2p0RoiZJMwrClA4BAIOM5I7qgSvwoz2uELhP7Ma jXe2TERZUV4lSAVEjIIIPce/u76Db9p3LzDJ9ez8dO07l5hk+vZ+Osncfwgzrb+Epvh52NG7MU4y 0p/CukStxBKd84xkY5V+zfwgT2/wlx+GokWOuAp1LDz6wrX0mgqITvjYY7qDV9p3LzDJ9ez8dO07 l5hk+vZ+OsXYOOOJb7f3YyTw+zEYuCoy23XVpkrQlW5SnVucf51J4R/CM/e+JZ9lucZmOpDrqITj YUA90ZIUk5J8IDB2oNX2ncvMMn17Px07TuXmGT69n46wLf4VLmrhG0zzBhCfdJbkdCnFKbjtBJA1 KJJPeO/x1pJN0urHAt2mcVMxGlNtL0m3vK0OoKRpwrOQSTiguu07l5hk+vZ+Onady8wyfXs/HWK/ BleGW7deV3GOqDKghDjzRfccShjRrRpC1KIG6tge+vwcfcXP2ZfFMbh6GbEglWhbyusrbBwVj9H/ ACoNt2ncvMMn17Px07TuXmGT69n4689uNSuFFX2AAttUNUloLHPwSQDWM4b4+v8AcLW5erimyLhN xHZCo0N1fWvBzgFBJwM/6ig2vady8wyfXs/HTtO5eYZPr2fjrKcN8T8Z8Swe0Y0OxGK+0sshMhal tOYOlLm/j543rjZ+JuPblxPLszkOwpNuW11tSS78xe/gb7nGeY50Gx7TuXmGT69n46dp3LzDJ9ez 8dfO1fhO4oYhybw5brU5a41wVDUhK1pfVg4yASRyI91bG28TS53HtxsK2WkxYsNp9teD0hKsZB3x 3+Kgs+07l5hk+vZ+Onady8wyfXs/HWQicX8W3e1XOXaolo1W2c+y4JHSJBaQMgjB+dzz3VBTx7xi 1wG/xbKhWbqpbQYyG+l1FRdCDqBPLGeR8VBve07l5hk+vZ+Onady8wyfXs/HVRfuKZlqncMsMssK TeJCWnysHKAQk+Dg89+/NZaf+EjimKu+zWYFpctlmnqirC1rQ8sBWBjfBP8A/mKD6B2ncvMMn17P x07TuXmGT69n46ouLuM5losNrkWiGh+43VSegjPAnCdOpROCOQx++ot14/lNfgzicVW2PHdkvltK mXASgLJ0qGxB2Ocb0Gn7TuXmGT69n46dp3LzDJ9ez8dZSV+Ed1XDljucGOz0065NwZjLwVlhRzrA 3GCCNs9xqPO4m/CDE4ojWEQuHy/MQ46wol7ToTn5xzzx6KDZ9p3LzDJ9ez8dO07l5hk+vZ+OsVcu N+KWOKn7DHHD0dyNFaddXOdW2krUkagk533O23KvokdTio7antHSFAK9BynON8eiggdp3LzDJ9ez 8dO07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5hk+vZ+OrSlB V9p3LzDJ9ez8dO07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5 hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5hk+vZ+OrSlBV9p3LzD J9ez8dO07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5hk+vZ+O rSlBV9p3LzDJ9ez8dO07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO 07l5hk+vZ+OrSlBV9p3LzDJ9ez8dO07l5hk+vZ+OrSlBX2+5LmSJEd6G7FejhKlJcUlWQrOCCkn+ 6asKq4f5yXP9TH/3KtKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKB SlKBSlKCr4l/Nu4fqFf6VaVVcTjVwxcU5IzHWMjmNq/exFed7l64fDQWlKq+xFed7l64fDTsRXne 5euHw0FpSqvsRXne5euHw07EV53uXrh8NBaUqr7EV53uXrh8NOxFed7l64fDQWlKq+xFed7l64fD TsRXne5euHw0FpSqvsRXne5euHw07EV53uXrh8NBaUqr7EV53uXrh8NOxFed7l64fDQWlKq+xFed 7l64fDTsRXne5euHw0FpSqvsRXne5euHw07EV53uXrh8NBaUqr7EV53uXrh8NOxFed7l64fDQWlK q+xFed7l64fDTsRXne5euHw0FpSqvsRXne5euHw07EV53uXrh8NBaUqr7EV53uXrh8NOxFed7l64 fDQWlKq+xFed7l64fDTsRXne5euHw0FpSqvsRXne5euHw1+GykDJu9yH/wCYfDQWtKquxieV4uO/ /wB4e6nYqh//AC9y9cPhoMddGOJbP+EyffbXw45dY8mCiOkpkIaAVkHO+/d4qp7pwJxE/wAG3h9+ Oh+9Xme3JdjMKGlpCScJyTg4yf8AKvpAs2dheLif/wA6fhobNp53i4j630/DQYjiXg263e/cUSGo igH4kdcB3Unw3msHA325Eb+Oo1t4PvrN04VuUqGpcrrkmZdHNSfya3MYzvvsANs19B7EVz7XuXrh 8NfvYivO9y9cPhoPnPDFhulm4kkOzOBetreui3WrkqQ2Cw2pXMDcnAya7wOBLq9w5eQtlUK6tXl2 fbHSoZ5JxuDyVgjBrcyLczEQlcm/TmUqUEguSUpBJ5Dcc67diK873L1w+Gg+d2iw321/g+g2mdwe 3eEqffVJiOPoQtvJBQpKskf3uW9QG+CuL3ODm+HOrqjR59z6VSFPB0Qo4wQk77+Fg4H93019T7EV 53uXrh8NOxFed7l64fDQYNvgviWLxc8q4TBdod6t7kKbKaYQwGRpwglAO+MDcVyZt/HkPhJfBLdi YcToVHRdOtJDYaJO5Rzzg/8A+q+g9iK873L1w+GnYivO9y9cPhoIjNiVa+BFWKLl5xmAphB5a1aC P8yaw/BVpvVhtyYyeAWmbiiK4g3B2Q2Q8d1BCgN8HYc6+h9iK873L1w+GnYivO9y9cPhoMFwtw1e EcetXpjhz5MwUsqTLYTKDiZCiDjCRsN8furR8P2ifD4/4muUiMpEWaGOgdJGF6U4Pfnb01ddiK87 3L1w+GnYivO9y9cPhoPlkb8G91jQpF+YtoF9iXZb7DDy0qRJZyMDGdIO5IOx/wAq0kyLxLaeMFcV WywG4N3KChqRDMhDbkdYx3nII27q1/YivO9y9cPhp2IrzvcvXD4aDO8I8NXO08IXVue2hNwubr8h TDashsrGyc//AOc6hx+D7lP/AALt8NPtiNcOh2bcUMBaXSsAkZG+B++tb2KrzvcvXD4a/exFed7l 64fDQYmPbuKuJb5w6bvY02qNY19K46ZCXC+sAAaQOQ8Hv8dU0n8GtxlyOIrymDourd1XKt3SqSpE hvUVaSnOMH04NfT+xFed7l64fDTsRXne5euHw0GGnWXjDirjCFdEpPDyLfCHROPNNvjplfPATqxy OMnxemqaRwZxVH4IvXDAhqmaLg3IhvoKEB5JOV4GfBxjOPSa+omyqH/8vcvXD4a8ItSXFrQi93Ba mzhaRISSk4zg7bbUGE404EurnFkC42NkuwpM5mTOYSoANuoOOkwT3pJzjvFaa6Wie/8AhNsl1ajq VCjRHm3XsjCVKBwMZzVq7akMNqcevc9tCRlSlyEgAek4r32Ko8rvcvXD4aD5/wAR8P3E/hFuF2c4 MHEEJ+O2hoKfQgJUAnJ3+ojlX0+IpSobKls9AstpKmic9GcfNz6OVVvZSOm6Htu4dLp1aOsJ1aeW cY5V07EV53uXrh8NBaUqnNqSHksm93AOKSVBHWE6iBzOMctx++unYivO9y9cPhoLSlVfYivO9y9c Php2IrzvcvXD4aC0pVX2IrzvcvXD4adiK873L1w+GgtKVV9iK873L1w+GnYivO9y9cPhoLSlVfYi vO9y9cPhp2IrzvcvXD4aC0pVX2IrzvcvXD4adiK873L1w+GgtKVV9iK873L1w+GnYivO9y9cPhoL SlVfYivO9y9cPhp2IrzvcvXD4aC0pVX2IrzvcvXD4adiK873L1w+GgtKVV9iK873L1w+GnYivO9y 9cPhoLSlVfYivO9y9cPhp2IrzvcvXD4aC0pVX2IrzvcvXD4adiK873L1w+GgtKVV9iK873L1w+Gn YivO9y9cPhoLSlVfYivO9y9cPhp2IrzvcvXD4aC0pVX2IrzvcvXD4adiK873L1w+GgQ/zkuf6mP/ ALlWlUdojGJfrm2ZDz/5Jg6nlalfp7chV5QKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQK UpQKUpQKUpQKUpQKUpQKUpQVfEv5t3D9Qr/SrSqridQTwxcVK5COsnb0V+/KO1g46dz2dz4aC0pV X8pLV5dz2dz4afKS1eXc9nc+GgtKVV/KS1eXc9nc+GnyktXl3PZ3PhoLSlVfyktXl3PZ3Php8pLV 5dz2dz4aC0pVX8pLV5dz2dz4afKS1eXc9nc+GgtKVV/KS1eXc9nc+GnyktXl3PZ3PhoLSlVfyktX l3PZ3Php8pLV5dz2dz4aC0pVX8pLV5dz2dz4afKS1eXc9nc+GgtKVV/KS1eXc9nc+GnyktXl3PZ3 PhoLSlVfyktXl3PZ3Php8pLV5dz2dz4aC0pVX8pLV5dz2dz4afKS1eXc9nc+GgtKVV/KS1eXc9nc +GnyktXl3PZ3PhoLSlVfyktXl3PZ3Php8pLV5dz2dz4aC0pVX8pLV5dz2dz4afKS1eXc9nc+GgtK y/4QAwrh5kSY6pLJnxukZSjWXB0icgJ78+KrT5SWry7ns7nw1CuVxst0ZaaelPpDT7b40MLyVIUF Abp5ZFBmnrO6xDuV2tdretsSCtiXDiODQVONai6oI30hSDpxtnHKrG6Pt324zZTK9cS12lxSFDkX XkE5+xsD79X6uIbStJQp5ZSoYIMdzcfdqmtLHDlnsUm0RpcpTMnXrWtlZXhQ04zp7kgAegCg8cBQ YTMKK+zwuq2OqhN5mKDX5fIGfmqJ357gV+8T2xab07e5VijXeCxBShSHFpDjelSlKUlKhg7EbZHK rWFebPAgx4bcl5SI7SWklTDmSEgAZ8H0VAuj1surqwu+XJmM8jQ9GZaUEODv3KCoZGxwRQTeIn2Z PANykR/6F22OLb2x4JbJH+VRRd7v2g1Z7XFiqUi2NSulkrUBkqUnTgD/AJf9a7zLhYplmftRfdaj vR1R8NsLBQkp07eD3CvEeZY41z7QRLkFzqjcXSWF40oUog/N5+EaCmVPm8Q8Q8KThGiJjvxn3Sy+ CooUNAX6CRySfSamwOKrrK4eN5kR7bCYdIRHL76hqVrKSSAOW2wGSfRXuCnh+Au2qamylG2tutta mV+EHCCdXgf8u2MVz6CwJssK2M3Kaz1B3po8hLKukQrffdGk7KIwRQck8fLFrKlx2zN68YaShDpa UdGvXp068ae7HPvxvXr5azhbA6uG0yoS+rrlvIdRGQnRqDhykKAJ8HfYHvxXkQeHw07/APVbiZDk sTEyujV0jboQEZHgYwRkYII3I5VLXJiKiJZHEl0DgWVKe6DJWCMaSC1px9QoOSrnfneLrMw3IgGL IhLedQ2pSkLwpGSk9+x8H6zmvyFxZd37Yzc3oEVqK/LRFbAcUVqJeLZVjGAMct85oyxw9ENrVDnz IxtiVNtlDKj0iFEFSVZQdiQOWK9Frh08OCx9clhlC+kQ6GlhxC+k6QKB0YyFeigcXX+5RYd+i24t Muwbc3JQ8rORqLgOPSNAx9dWNpu09d1atU5DBc7PTKU41qwSVlON/QP31UpiWBfaRmXSfMXdIqYs hbrSgdA1Y06UAA+GeVelNWouRX0365olR2SwqQhnCnWyc6VDo8bHkQARQe2uK7tO7LZgQIypFwRJ US64pKGuicCckgE7j/PFepHF70XiBmErqT0d2WIiksLWtxtR2ClHTpG/NOcjNflsb4etSoBYmy1d Qadab1srOQ4oKOfA3II2qOINgDzRF3uPV2JnXGo3RK6NDmoqP6GSCSdiTjO1BdcTcQ9hMxUobC5E x0tt6krUlOAVFRCAVEADkB393OvfDV6fvUJ9yRG6Fxh4taghaUOjAIUkLAVjfG45g1Du8uyXdtjX NlR34zvSsSGGVhbasEbZSQQQSCCCN67wLxboUbonLnLlrKiouvsL1HP1IAA9AFBl79xHbWuJZN0c ucZt6yvtMNx1PALWk/0+E5ydlj7W61D93uUu7v2+zMRVCIhCn35K1BJKxlKUhI8W5PpHOocM8NxL Qu2qcckNudJ0rj0ZZW4VklRJ0d5JqK1Gs8UsrhXy5xXkMNx3XEMkl9KBhJXqbI1AbZABoE7jp5m5 SW4cMPsQ5HQONhp4uukEBRQUpKBjPed8d1T4vEcyTf5UEtRWkRlrSIzi1CS6lIyHEAjBSTjl3Hn3 VGHZDVxelRLzcYjcl0PPx2mldG4vbJ3QSM4GcEZo52Q/c0TpN5uD/QrW5HbUyQlhSwQSkhsHYE4y TQRHeJ3rjwtcJk2NbZDbaGyqCFr6RpRWPAdSoAgjx7biuzEi8MX/AIlVa4sVwNvtrWZDik6/yKfB TgHB25nbcVzdg2GU3L67d7hKelMpYU+4wQpKEq1ADS2Bz7yCa6So9mfmzpTV8ucU3Ap6yhlshKgE hOBlskbDmN9+fKgg3u8R7xZ7xIZhobL1mjSA9/5ikrWvCD6E4P7zVtIvottwuyY1uaXLMmNHaIVp 6dxxA06z3BIzy7hXGRF4afblNJkyWW5MNqGUNsrwhtsqKdOUc/CPPNe5jfDs1U5bkyWlcxxp3Whp aVMrbACFIOnY7d+f3UHFuZconF02Rc0Qm3WLPqQtLxS0odITuVDKd9jz/wD1SPx06lu4IkMMSXo7 bK2DFK0odLq+jSnwwP0sbjIwfsrw7b+H5SpTk27XGU9LjJjuOLaUCAlWpJASgAEH0Y8dfqoHD8hc tyddrjMdlx0MOOONqBToWVpUnSgBJBOdvFQeZdyuFr4pRPvjEYJiWiS9qiKUQoBTZKcKGc7fbnuq dYOK5l0uqIkiIkNvMqdS4y08kMkY8BZWgAkg7EeI7VGTFsLkpUm4XWfcXFxHIa+sMqwppeMjCUAd 3MeOpdqlW61qAVfblMbQjo225DRIQPsbBJ7skk0GopVX8pLV5dz2dz4afKS1eXc9nc+GgtKVV/KS 1eXc9nc+GnyktXl3PZ3PhoLSlVfyktXl3PZ3Php8pLV5dz2dz4aC0pVX8pLV5dz2dz4afKS1eXc9 nc+GgtKVV/KS1eXc9nc+GnyktXl3PZ3PhoLSlVfyktXl3PZ3Php8pLV5dz2dz4aC0pVX8pLV5dz2 dz4afKS1eXc9nc+GgtKVV/KS1eXc9nc+GnyktXl3PZ3PhoLSlVfyktXl3PZ3Php8pLV5dz2dz4aC 0pVX8pLV5dz2dz4afKS1eXc9nc+GgtKVV/KS1eXc9nc+GnyktXl3PZ3PhoLSlVfyktXl3PZ3Php8 pLV5dz2dz4aC0pVX8pLV5dz2dz4afKS1eXc9nc+GgtKVV/KS1eXc9nc+GnyktXl3PZ3PhoEP85Ln +pj/AO5VpVHaJjE6/XN6OsqQGmE5KCnfw+4gVeUClKUClKUClKUClKUClKUClKUClKUClKUClKUC lKUClKUClKUClKUClKUClKUClKUFXxL+bdw/UK/0q0qr4l/Nu4fqFf6VaUClKUClKUClKUClKUCl KUClKUClKUClKUClKUClKUClKUClKUClKUClKUClKUClKUGDlfhXtcObMaetF2MaDIMeRMQwFNNq zjcg/wD+6vrNxdAvd2uNtYQ625ACFlTmNLqFDKVpIPLGOeOdfN7PwzduKZ/FduZuzcK1u3VQlt9B rccwcjSe7kKlfhBbd4KvEa4WplZauFqXa9KdyFpADZ9Jxj91Bo3PwqW0W2JOYtNykomynI0ZDLaV LdKMbgatwc4Hfsa09juy71bhMXbZtuJWU9BNb0Obd+PEa+Xcc2mNw5Y+CbdJlPwmYjxD8mLkONnC StSSAd8knlX0HgiXbZfDiDa7rOurDbikdZnFRdUc5IJUAds+Kgk8N8SxeJ4kmRFZeaTGkrjKDoGS pOMkYJ23qdc7gxabZJuEokMxmlOLwMnAGdq+KNJeVwehtp11gucXlBW0cKAO2RU24WZEX5d2QSJj 0KNFalMpdeUohzBOc9+/Px0H03hS/wAniWzpub9qctzbpywlx0LLjeMhew2z4qvK+KRbAwG+Abey /LYauKHnZJbeUFEltOoA9wIGNvGah8cThCuFwgw2XYcizNsNxHvy7jy0JAGsKCghCe45BJz46D7v SvhnFk24O8WTk3icuGFsMm2OqZkL0+CCS10RACs89QNTrk87A45ivSZSeIJS1x2lQgp5p+KoJSSt CR4JSTuc+PHjoPrMS6wJ0uVFiym3noagiQhBz0aj3H07VMr4Q3brbZbvxxDPWmbgiM+qCFKXhTRQ So55E8sE1PnW5PD3DPCHEBenPIcfjP3B1S1OaE9GMDHcACRj0Cg+wTZsa2w3Zkx5DEdlOpxxZwEi vUaQ1LitSY6wtl5AW2sfpJIyD+6vi0xscTQ/wgPtty1pQtmRGbUFJVsFb6eeMb4NLZcLZZn+CrtD XMNrbQ83KXocXpkFABTjn847Y+yg+30r4M25In2RtKX5UcyOMNGoEpcbSoH9xH+tWHHYi2mYrh+P HebTDt5ciyXTIeccUVKUdGlQSkgk5UrPL0UH2ZxxLTS3VnCUJKifEBWSsfG1w4it7s+3cNSFR1PB uK45JQkPJyQpatspAx4iTmusBtV//BfHTcnHHVSbakurCiFKOnOcjvyK+Z2O3NwOCOFZsYvJen3t np/yhwQlSwMDuGDQfdFFaWyoI1KAzpB5nxZqJaJk2dbW5E+3Kt0hROqMp1LhRg7eENt+dfLIEgRf wivpQ8m+uSn3z1htx5L0AAEaVoPg6ByH1fVVW1JkjgjhUXN6eiwKekdouxSrXnUdAURvp/8A854o PutK+I8SXK1rjW+125iSYPZ7rsKVKTIW4s61eChKSnBGM6lZwMV9M4BlyJ3Atoky3VuvLjjUtZyV YJG/7qDRUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgq4f5 yXP9TH/3KtKq4f5yXP8AUx/9yrSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSg UpSgUpSgUpSgUpSgq+JfzbuH6hX+lWlVfEv5t3D9Qr/SrSgUpSgUpSgUpSgUpSgUpSgUpSgUpWch l7iG53Fch99qDCkGKywy6pvpFJAK1qUkg8zgDONvTQaOlUZn9nSVWi2x3577LXTuB2QcNpUTpBWr JycHA9HMVxZ4uanPQGbbBekrnRFSk5UEJbSCBhZ3xuSO/lQaKlZqFxk3Matkk295mLcXC0h1xacp WEqUfB70+AfC+3lvXVjipDqoDyoTjcG5PdDFkKWMrUQSklHMJUEnB+rIGaDQUqqu167NlwoTUfp5 U5SwyhTgbT4IycqPf4hzP2GoNx4uagCSRELvUgnreHkjQtQB6NH99eCNhjmN8mg0dKg3K6M2uGmQ 6lay4tLbTSB4bi1HCUgHvPp5VnTeXGuKJcy4Ry11GI1HbYac6RTjry8hI5DUdKfq8eKDYUrP2SUV 8QXOM/EcblhDTzring4AlWoIQMAYxpO3pzk5rpc+JBD6+YsQyhbWuklLLgQlHg6tIO+VY3xjvG+9 BeUqA9dmItkF1lpWy0GUuKQRlQyBhOO85IH11WO8V9SluNXOAuIhuGZZUHAtQTqCQkpH6RJwACeX Og0VKpHr+/CYS5Otq2FvrQ3FaDyVLdWrJ0nuSQASTkgDO9RE8YoWpEdMLVLcmGIhIeHRKWEayQ5j GMbcs52xQaalUrd+devBtbUDL7LbbkkKeSOiCyfm/wB/GDnkPt2rP3S6Jnx4PU2pThuF809Ep4q1 pYJyU74SkloHHpJoN1Ss05xAzOSzCfjyGJLlyENaGX8FK0p6QqChjKdIHiznFV9snNulS3DIUq83 t3oSy8UEIZBAOR+jhncd+qg2tKx15vDl7t8NiJFUINynNMtyC7pU4kL1KUlI30lKFbkjbuxU9fFe eqvsQFuwpctMVl8uBJcUSRqSnvTsdyRsM4oNDX7WO4gvT12sxjwYyuqTpbcJEouYKsuBKilPMpwF b5HLPKp6OLY65cZtiMXIsiSYrTyXBqWoZBUEcygEEFXozjG9Boa/azXGMibottshshw3GWltz8qU ZQkFak5AOxSkgn0+mosO8wYLylQ4a1SJc5cBhC3EobHRA5Sk4wlIIVgYyT46DXV+1nZV+ixbk85N RIZXboSXnkodKkZdUUpRpGylZRsfT6aku3yRFaQqbbFtOvuJbjModStbqlZOnuCcAEnfAHeaC5pV Vabw7cZk+I9E6u7BWhCylzWlRUkK2OByBGfrqFceK+qMS5UaAuVGhvBh13pAjU5qCSlA31EEgHkM 7UGhr9rPzOKkRUzJLcJx6Db3eilSAsDSrbVpT+lpzvy78Zr3xjKXH4RnrZVh15oMNH/ncIQn/NQo L2lZt3iNm1w5PV4bj8G0AMypAWBp0gZCQfnFIIzy+01Nava5kt1u3QzJYjuhp58uBACsAkJB+dgE Z5eLc0FtX7Wd+VetUJ5iAtyFOlCMw+XAFLJz4YR/dwknOQcDOK9cJqMlu6XEqKky7i8WyTkaEENp x6PAz9tBoK/Kx9+vLt5tLTEKMoQrhNaiIlF3SVjpBqUlPMpwlW+R4+VT2+L470yKhmMpcaXIMdl5 LgKlkZyoI56MpI1fbjG9Boq/KgXC6iHIjw2WVSZcnUW2kkDwU/OUonkkZH2kbVQv8V3GUmC1b4Da H5FyciLDj2RhrJWUnTuCEqGcbeKg11Kzq+L2RIbS3FLrCpYh9Kl0ZU7nSdCOakpOQTtyPPFeFcYI DbsgW94xGbh1Fb2sbq6QNhSR+kNR3/8A3QaWlZDiW+PTrDPYt0UqYdd6gJJd06nFKDZ0DmcEkZ23 BxmuyuIIttE2S3GmPluc1bUNB3UHFgAZQk7DGo58emg1NKzD/F7kdN1C7S7rtCQ5Jw6nSEFGsYV3 qx+j6Oe4z7uHGUaGmQ61GVIaiBHTq6QJIUoAhCEnda8KBx6QM52oNJSs3M4vTFF0cbt7rse1OpRI d1hIOUpJ055kauX+dc3OJpMe/XTrLLbdptkdtTrgUSsrUCoYGNzjSNPjPfQailU8O+OO3Ru3TIK4 bz7BfZBcC9SQQCDjkoahtuPTXubeizOXBiRutSGmg89lwIQ0g5xqVvucHAA7u6gtaVj+Gru6izRm WYqpE6U2u4PJW5oSyh1alJ1K3+oAA/NNXttvbM/h1q9OoMVhbJeUFnOhIyc5HoGaCzpVA1xQOlim XBcisTmluRnFrBKglOshSf0SU7jny3wa6M8RoejWV0RHErvG7bZUMtjoyvJ+wf50F3Ss63xhGdg2 +SiM4TMYXJcRqGY7SASpSj6DhPpJrzb75phRo8KI+++qKmY8mTJz1dC8qAW4cnPPAAOye4UGkpWO 4ZvLyLRGYjw1y50lpVweQpwJDSHVqUkFR7zyAx+j3VPi8Wt3J+EzbYTkhcyIZWVLCA0kKCcKO++c jbPL7aDRUrNw+II6kqejMyX358x1lhhTuoK6I6FKGdkIGnJ+vvJr127Fm2e4yLohyEzAkFl4tPqO tScbJUjCjuoDHMnag0VKp+F0z02VBuAdQtbjimm31anG2iolCVnvUE4/0q4oFKUoFKUoFKUoFKUo FKUoFKUoKuH+clz/AFMf/cq0qrh/nJc/1Mf/AHKtKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSl KBSlKBSlKBSlKBSlKBSlKBSlKBSlKCq4mITwzcSSABHUST3bVJ7YtnnGJ69PvqNxMAeGriDuDHV/ pUzs+F9EY9WKDn2xbPOUT16ffTti2econr0++oN+uNg4at3aF1aZZj6wjUI+vc8tgCe6vEy78NwG rc6+I/R3RxLcRSGNQcKhkcht9ZoLHti2econr0++nbFs85RPXp99Roi4E2bKjN2pSExVBBfcjBDa 1d4Tnc48eMek1N7PhfQ2PVig59sWzzlE9en307YtnnKJ69PvqLeHbfZoBmLtK5SQtKejiRQ4vc4z jxDvqaIEIpB6mwM9xaHuoPHbFs85RPXp99O2LZ5yievT766dnwvobHqxVTAutluXEFxsjEACTbQg vKUwkIOoZGDzP7hQWXbFs85RPXp99O2LZ5yievT766dnwvobHqxTs+F9DY9WKDx2xbPOMT16ffX5 2xbPOUT16ffUG1QYZm3cGKycTQB+TG35FqrLs+F9DY9WKDn2xbPOUT16ffVMgMQZ8uRa77b2m5rn SusvkLCXMAFSSFjGQBkHO+9dLPfeGL910W7q7yoCimQkx9JRz7iNxsdx4q8Rb9Ybjboc62W9c9qa 8Wmuhib5Bwoq1ABKR4yR6M0HJ5loT5UuHxHBZXOYbakqVpUQUggLR4WxweRyNhX5Ct9qtq5Kol6i ICoDcKLlxJLIQFbk6vCJUrPdyrRdnwvobHqxTs+F9DY9WKDN9mWcsWeKbzE6tbI62tAcSC4pTfR6 s6tsAq8fzq/YMKGz2Y1Nv8KRHtKQIraClGpQToSpZ1HJCSeWBk5q0tb1vuqZJRaHI3V31MkSYob1 kfpJ8aT3Gp/Z8L6Gx6sUFHxCiHfYxh9sW1uOsDJVpU42oHZaFahpUO442rhGg22DepU+NdbWUy3g 84XkoW6lWkJISvUNiEjmDgk1N4hull4aYivToAUmVJRGR0TCSQpWcZzjbarbs+F9DY9WKCovSrfd ERFs3mGy/CkpkNKW4laSQCMEahsQo99VRs8RZkSXOI4bk1y5Nz23FFOhBQgJCCnVunGe8c61nZ8L 6Gx6sVXXODDE+0ARGRmYoH8mN/yDtBGsyYNunXKbJvsSU/cHUuKIWlIQEoCQkeEdhg/v+2q242iJ MZusRriSGzEukhL7yfBUsHCQpOrV80hHizvzrWdnwvobHqxTs+F9DY9WKCqvirXebUuEm7xGFa0O Nr6VKglSFBQyMjIyOVVUi0wrg7c5E/iKGt+c0whstlKUx+iUVjAKjkFWDg+mtV2fC+hserFOz4X0 Nj1YoM7dI8W8sRFTbzalyYcjp28pSWVeCUlKkFZJ2Ud87HFLmxGudn7McvFmSytBS4A0MIPcpsa/ BI7s533rRdnwvobHqxTs+F9DY9WKDPuxoUi6wZb18gaYCiWVpID6hpKdKl6txvkjG5AqFDtbVvRa er8RWwrtiHkJ6RIKV9IR4Wy9lbH0HJ5Vrez4X0Nj1Yp2fC+hserFBmWbZbY82BLav8VTsd59+Qpx aT063UgFQwfBIAwOYxXKDaIERu0tLv8ABcRbm32iAQnpEufpfO2Vz33G52rV9nwvobHqxTs+F9DY 9WKDKwrXGYXaESeJIT0a0trbaaRpRryjQFKOo+EATy23r8g2qLGXZW3uJITsWzKV0TKdKS4NBQkq Os+EnPMfurV9nwvobHqxTs+F9DY9WKDJwbREips8dziSG5Ds7qlstApBcGlSU6zrOSNXMD7PFK4f h22wYYZutqVGQVaVBCEvKBJICl6t8Z543xWi7PhfQ2PVinZ8L6Gx6sUFBKnQ5PGcB0y4/VoUR5Yd 6ZOkuLKUgZzz0hX76g9lRzw6qxrv1qeYWp0rcdbBXlayoLHh4Cxk7+PFa3s+F9DY9WKdnwvobHqx QZaRabc+u5auIYxTMEdTalLSpbS2QNJJ1YUCU5IwOZ3qVMDc123zF362pmwH1ONkY6IhSCggp155 EnOav+z4X0Nj1Yp2fC+hserFBT2EW+ztTOlvkWU9MlrkrdLiU/OwAMZ7gAKqzaIpbaifKSF1Bq5d e6LwdS/yhc0KVq3AUdjjuFazs+F9DY9WKdnwvobHqxQZg2yApiRblX+H2XIlKkuNBSekVqXrKCvV jSVejONs1YX1Vvu8SO01eYTKmJLUga1pWlehWdJGobfb3Vb9nwvobHqxTs+F9DY9WKDMOW2C41Mg fKCGLZNkqkPNBSelOohSka9WNJPozg4zUqA1Ct7stlq9wDAlvuvqaKh0iVOfOAVqxjJyNvRV72fC +hserFOz4X0Nj1YoMrBtcaO7ZhI4khOx7OlaWW0aU68o0JUo6j4QBPo35VZ2A26zWNm1uXiE8GQp IcS4lGoEk5I1Hfferfs+F9DY9WKdnwvobHqxQZSBaYkXsZp7iSE7FsxV0LSdKS4CgoSVHUfCAPMb c9qlcPxLdYEpjtXW1Kjt6glSUIS8oE5AUvVvjx43xWh7PhfQ2PVinZ8L6Gx6sUFJPER6+MXaHfYT DyI64yw4pKwUKUlWR4QwoFPfkVBt1qg21Fl6PiCG65bS90inVJPTFw5UrZWyue+/M1qez4X0Nj1Y p2fC+hserFBnbNCt1kkOdXutqLCnXHQooR03hqKtJXq3AJ8WcV5ZttsatFqt6r7FWIMsSnl60/l1 AqV/e28JQPfyrSdnwvobHqxTs+F9DY9WKDJs2mK2i3xVcSQlQrfOMpDQ0hTm6lBKlat8KVkEDurr DtsCO9FLt+hOtR7i/O05SC4pwKxk6uaSs747hsK0/Z8L6Gx6sU7PhfQ2PVigzcm3W6TbLvDVfogV dZXTOOBafBR4I0fO38FOM+nlXqLCtsC9SZ0a6Wro5T/TL6RCFOoOACEr1DY47wcZNaLs+F9DY9WK dnwvobHqxQZpdttrtkftrl9hq61PMqQ5qT4YLoXoxq/ugJz6OXdX5JtlulJvLS79DDVzeQ+khSdb TiQgDfVgpygHGBzNabs+F9DY9WKdnwvobHqxQU0Mw03ZV1uF7gvygz0DaWlpQ22gnKsAqJySBk57 hUK5wI0uRdnIfEkOKm7R0tPElKloKUlIKTqHMHcEVpuz4X0Nj1Yp2fC+hserFBlXrXFQmWi28Rwo iJkFuIsnSpSNCVJSpB1DGyuRB5VZuNWR3hjsFVzjJYMQRdSHkghOnTkb1b9nwvobHqxTs+F9DY9W KDMSLdEubWm6cRQ3FNw3YrBjlLYR0idKnDlRyrHLuG9dIMWM1dYE6ZxDBeEGKqO0w1pQgE6Rr+cT nCcfbWj7PhfQ2PVinZ8L6Gx6sUGSj2G0sWW7wBf4ynbklxtLxWn8i0oqKWwNXIald++TXqTbGXE3 ARuJYEY3OI2w+UgEoUhJSCjw9gQeRz9davs+F9DY9WKdnwvobHqxQZtMKLCfcctfEMGMH4rUZ3WU rKQ2CEqR4QwcHkcjYV3s0OzWWW46zdoqmurMxmUF1OW0o1E5OdyoqJNXvZ8L6Gx6sU7PhfQ2PVig ykC1x7c1ayxxHAVItyHWukXgh1DhBJI17KyM5zjntUm2wrfAtMeC5erfKKZipUh1/SS6orUvIGrw VAkb78uVaLs+F9DY9WKdnwvobHqxQc+2LZ5yievT76dsWzzlE9en3107PhfQ2PVinZ8L6Gx6sUHP ti2econr0++nbFs85RPXp99dOz4X0Nj1Yp2fC+hserFBz7YtnnKJ69Pvp2xbPOUT16ffXTs+F9DY 9WKdnwvobHqxQc+2LZ5yievT76dsWzzlE9en3107PhfQ2PVinZ8L6Gx6sUHPti2econr0++nbFs8 5RPXp99dOz4X0Nj1Yp2fC+hserFBz7YtnnKJ69Pvp2xbPOUT16ffXTs+F9DY9WKdnwvobHqxQc+2 LZ5yievT76dsWzzlE9en3107PhfQ2PVinZ8L6Gx6sUFfbZDEniC5uR3m3kdEwNTagoZ8PxVc1UW9 ptniK5oabS2noWDhIwP/ADKt6BSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSl KBSlKBSlKBSlKCr4l/Nu4fqFf6VaVV8S/m3cP1Cv9KtKDBfhhSlfCEdC0hSTcGAUnkRk7VjL2xM4 e4nsPCj6VuQmLw3KtzxOcMqVgt/+lX+v1V9omQYlwZDM2KzJbSoLCHmwsBQ5HB7xXmTboM11h2XD jyHI6tbK3WkqLavGknkfqoPl0673/s3ii4xblLKrLfAsNhw4LA2UjH93Bzj0VyunF99VY79xTbpj /Un5zcKH4XgMtD57oBBAJOBnHfX1VFsgNpkoRBjpTLJVIAaSA8SMEr28LI8dfrNtgR4PUWIMduJg joENJDeDz8HGKD5BI4ivzHDF2dj30OsNvxegW1cUynmSpeFJLiUp2OORG1XNzvlytfHrbl0uUp22 yJTTENFvlt4aUcZQ61jUc95rfo4fsrcRURFogpjLUFKZTGQEKUORKcYyK9JslpTcDcU2yGJh5yQw npD/AOrGaDK/hNvU61xrTFjXFVrjz5gZlT0jdlHoPdnff0Vgot7mWV7je52i6G6PtNRkNzykKKkl Wkr22OB38ts19vlwotwjqjzYzMllXzm3mwtJ+w7VxYtFsiqdVHt0VkvJCHC2ylOtIGADgbgDuoMN +Dq63WdeJDbt3anQDFS50argmU625nnkJTpBGfBPLFfRqhwbTbbZr7Pt8WJ0hyvoGUt6vrwN6mUF Zaf69eP20fyWqs6rLT/Xrx+2j+S1VnQfCrHGlWe0T+MLc2pxUW4yY9wZSf6aOrG/1pJzU3hG4TIv DvA8aNLeZZmXGQ2+ltZT0icnY19eYtsCLHdjxoUdll4qU4220lKVk8yQBg5781ybslpYRHQ1a4ba YiiuOlLCQGVHmU7eCT4xQfMbXe79MukDgx25yzPh3Z0zZAXha4qBqGT4lasfYKh2ji3iO639Dxuz UeULn0K4T85CE9Fqx0Yj6Mk/82rNfX0W2A3PcuCIUdMxxOlchLSQ4obbFWMkbD91eDZrWZ4uBtsQ zB//ANHQJ6T72M0Hy/tbiadYrr1K7qDrN+dbKHJSWXVsJGS20tWyTW14PviLpwSm4wzNkFtLgAmr C3VKTnYqGyt9gat3eH7K+yph6zwXGlul5SFxkFKnDzURj53p51MZYZjMpZYaQ00gYShCQlKR6AKD 4DKvEi9WmyTp3FKps6Vdm1PWwgYjYWQCBzTt9h1eirmTxbxJL4kuYbuzUKVEuPQR40ichpsthWAk slBLhV/e1d9fWDw/ZVLU4bPAK1uB1SjGRkrHJR25jx11ds1rkTUzXrbEclI+a+thJWPqURmgm1W3 T+0LP+2q/kO1ZVW3T+0LP+2q/kO0FlSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSl KBSlKBXlSglJJIAHMnur1UG9/wBhXD9lc/8AaaDqzPhSF9GzLYdX/dQ4FH/KpNfCmuGbKz+BiPxM hJh3dkFxuW26UqUsOkAc/F4vFWke/CTewtuBCgIclxbcw/JC4rzynXVoCigdH8zn85W2aD6jSvnS /wAId0PEESHJjRbJFfaZcQq5Mu5fKgCpCVDCUkZI8LxVNtnFfEnEXEEtNngW8We3zTFfckOK6ZzG NRQBsPHvQbGXLjwIq5Ut9thhoZW64oJSkekmvbTrb7SHmlpcbWkKQpJyFA8iDXzEcacR3ThK8XeV arO5bYfTNFDyVq6ZaVAJygnGnB333Piqx+V/ENwuTFk4Yt1sD0eAzJkqlqUltOpIIQhKd+8UG8XJ YbWUOPNpUE6ilSgDjx/VXWvkfG96hx7w/OetNquSoS2Eyk9WeW42cDwS8DoRgk4Sc576ubjxxxHJ ul3b4dtsBcSyNpXKXMcUFuZSVYQBsNgefioPodKrOHbwniDh+FdkNFoS2gvQTnSe8fvqzoFKUoFK UoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoKuH+clz/Ux/wDcq0qrh/nJc/1Mf/cq 0oFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoKviX827h+o V/pVpVXxNtw1cCfIK/0qf1hjyzf3hQda+ecP8emJAvc7iOWtbEa9rhMKS0n8mn9EHAGw33Nb7rLH l2/vivmbnAVxXZrjD65byuVfxcU5eOOizyPg/O9HL00F6v8ACvwmhmQsyZGqOsJW31ZevH97GPm+ k+jxiptx/CFw9bHIqHpDq+uRRKjlpkr6RB5AY3yfFVPO4Slyb3xfORKg9He4CY0bLp1JUGwk6tth kd2azpt94tPGHDdvtsq3dpQrEpGp8qUwohSgRkYI+ug30fje0zbIzdoCJs5l1ZbDcaKpxxKhuQpI 5Y9NeXeP+HWeHm74uaoRnXC0hHRnpVODmjRzyKxv4vLwzaoDTV2tsh4zXZU+O+tYjuqXgDZOCrTg 7HG5r9i/g9u0KwwerXO2outtuLstgKJLC0qxsdsg7emgtb1+FmBb+ylxIMp5uc9pdLjKkKbQFYVh PerxD6qs7h+E3hm2S+qyJEguJQlb3Rx1KDAUARrI5HflVZf7FxLfLbZ5i51mTerZO61oSpYjkDkM /O7h/nUKZwjxMzIvKLXcrKI3EACpvWNRWyojCtHjG5xmg+kxpDMyM3JjuJdZdSFoWk5CgdwRXWqu xw4tkscK1tykOJiMpaC1KAKsDGan9ZY8u398UEG0/wBevH7aP5LVY78IPEF1tvFNmtkPiJqxxZbL qnpDrLbiUlPLOv8AdzHOtbapDIm3cl5veaP0h5FqqLiXhZriHjCz3GSYL9thsvNyGXlZK9QwMDGN j6Rigi8H8byDwlJuvE0gLbZlmPHlNskGWNgkpQBuSfEP9K4cZ/hJYjcITnbQqVHuaXExy29HKHI6 jg5UlXLKc4PjqDK/B9dJPDT3D6rrCXFgzRJtS3XVE6N8tuDGw32IJo5wFcH+DLvbSiww589bOnqj jgb0oWFHUpeo558hQXVi4wt1q4atrcmZdbpLktreCVxlOSCkKIUpSRySDsCe6p8z8I/DcJEJxUl1 1E5gvxyyyV6wDjGOerO2KoOLeBpN1vMK72961SXWoiYz0ae4sNnH6QKCD31LtfCDsDiHh+f0lsbY tsN1p5thRADiyT4AOdt+85oP258U2td/akJv11jsxVtIcDMcmK0pW+l5WMZOQNz4PoNT7l+E3hq1 S5kWU9IDsJ0NuhLBVjIzq2/R9NZWX+DeUOIpz7CrHMgTpPTqXOU70rOTkhISQk/bVrI4OlOR+Mm0 SYOb4UdUy6fBCQR4W232ZoLy8/hB4esjzDL8h1919oPJbjNKcIbO4UcchXODe4Td9v7ibhcpZjJZ U5ELWpDOpOwaAGST31Qp4V4ist2buvD1xtCn34DMWW3NKilJQgJ1IKd8eDyOK9XTg67y3uKHol1h x3LuI/QLS8pJ8ADWlWBkA7jbNBrrHxRb78/KjR0yGJUQjpo0pktOIB5HSe413un9oWf9tV/IdrJc D8KTOHb/AHC4znbU23LjtoS1CUoJQpPPZW+PSTv6K1F0kMm4Wc9M3tMV+kPIO0FvSuXWWPLt/fFO sseXb++KDrSuXWWPLt/fFOsseXb++KDrSuXWWPLt/fFOsseXb++KDrSuXWWPLt/fFOsseXb++KDr SuXWWPLt/fFOsseXb++KDrSuXWWPLt/fFOsseXb++KDrSuXWWPLt/fFOsseXb++KDrSuXWWPLt/f FOsseXb++KDrSuXWWPLt/fFOsseXb++KDrSuXWWPLt/fFOsseXb++KDrSuXWWPLt/fFOsseXb++K DrSuXWWPLt/fFOsseXb++KDrSuXWWPLt/fFOsseXb++KDrXGSwiVFdju50PIKFYODgjBr96yx5dv 74p1ljy7f3xQY6D+CbhiE6wVibMajq1Nx5MkraSfHpGBVhe+AbJfbmLk/wBajSigNrciSC10iRyC sc60PWWPLt/fFOsseXb++KDPTOA7TPfZVLkT3ozJbUiEqUosAoSAk6fqHj3r8X+D+xHiE3tpMmPI W6HnG2Xylp1YOcqT371ousseXb++KdZY8u398UFG1wVaWeGpnD6DI6nNcWt3Lg15UQTg49FUPGXA UeYi3yrVFkGdH6OOpTL3Rl1gDBStWRjbvAJ2xit11ljy7f3xTrLHl2/vigydx/Bdw3c5Mp95MtBl aS4huQQjUnHhY5Z27/TXW7/g34evM9Ux9Epl11CUP9XfLYfAGBrA57CtP1ljy7f3xTrLHl2/vig8 w4ce3w2ocRpLMdhAQ22nklI5Cu9cusseXb++KdZY8u398UHWlcusseXb++KdZY8u398UHWlcusse Xb++KdZY8u398UHWlcusseXb++KdZY8u398UHWlcusseXb++KdZY8u398UHWlcusseXb++KdZY8u 398UHWlcusseXb++KdZY8u398UHWlcusseXb++KdZY8u398UHWlcusseXb++KdZY8u398UHWlcus seXb++KdZY8u398UHWlcusseXb++KdZY8u398UHWlcusseXb++KdZY8u398UHWlcusseXb++KdZY 8u398UHWlcusseXb++KdZY8u398UECH+clz/AFMf/cq0qpgrSviK5lCgodDH3Bz5SragUpSgUpSg UpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgUpSgquJwFcM3FJAIMdYIPftX XsGz+aYPs6PdXPiX827h+oV/pVpQV/YNn80wfZ0e6nYNn80wfZ0e6rClBX9g2fzTB9nR7qdg2fzT B9nR7qsKUFf2DZ/NMH2dHup2DZ/NMH2dHuqwpQV/YNn80wfZ0e6nYNn80wfZ0e6rClBX9g2fzTB9 nR7qdg2fzTB9nR7qsKUGetdktKpt2CrXDITMASDHTsOhaOBt6asewbP5pg+zo91eLT/Xrx+2j+S1 VnQV/YNn80wfZ0e6nYNn80wfZ0e6rClBX9g2fzTB9nR7qdg2fzTB9nR7qsKUFf2DZ/NMH2dHup2D Z/NMH2dHuqwpQV/YNn80wfZ0e6nYNn80wfZ0e6rClBX9g2fzTB9nR7qr7nZLSmfaAm1wwFTFBQEd O46B077eMCtBVbdP7Qs/7ar+Q7QeuwbP5pg+zo91RIcXhm4PymIsCA65Dc6J9IjJGhWM43G/2enx VMvVyRZ7NLuDgyI7RWE/3ldw+04H21jOH5ci03q0IlWufDE2OqLKelJQEOSCS4kjSonJJdG47xQb LsGz+aYPs6PdTsGz+aYPs6PdX5f5z1s4fuE+O2HHo0dbiEkZBISSM1RNOzbdPsqkXx+5C6FSXm3N BSR0ZX0jekDSAQPGMH7aC+7Bs/mmD7Oj3V+KsdmSkk2mFgb/ANWR7qzUO+ynuHeElrnkybg822+o EanPyayofYQPtFe7XdrlNlQbMuUrrVuceNxcGMuJb8FvP/XqSr7DQXsW12GbFalR7XDU06kKQTES kkH0EAj7a52+Fw/cmXXY9qhlLT7jCtUVA8JCilXdyyDWestwuN9RZoUi7vxddpRMccZ0hyQ4TpO5 BGE8yAP0hUWwy5LrMK1t3VTLU64XBbkxoJC3ih0kJSSCAVZKuXJJxQbXsGz+aYPs6PdXFu2WB2W9 FRa4ZdYCS4OqAABWcb4weR5VmJFwvCX1WiNd3FdDeGoqZqkpUtTa2StSTtpKkn0eLNSn7rItcm8w n7jMdRHahMx1pDZdLjmpORkBOpRxudhQaPsGz+aYPs6PdTsGz+aYPs6PdVLwjPuDl0u9tnOOrENT Smw+6h1xGtJJSpSAB3Zx3ZrtxPKlNXWxQ49wVBbmSXG3VpxlQ6JRAGds5Ax6aC07Bs/mmD7Oj3U7 Bs/mmD7Oj3VlHrtcocmVZkXVxbIuLEVNwdCS4ylxBUpOcaSrIABI21jOakSHb1FmXOy2y5uS3ERW X2nZKka2lKcKVI1YxlSQSnUNj6KDR9g2fzTB9nR7qdg2fzTB9nR7qypmXKRbUJgSrq43FkuJuDK1 tJmIwkEJScaVAE52OSCN+6rGyXtMm8KQLgt6GbRHktKfASVZUsKWdhvsM91BZm2WATUwza4fTqbL oT1RONIIBOcY5kbZzXbsGz+aYPs6PdWb4SvM+4SbKJEtbyJNmXIczjw19KgBX7if31ccX3SVZ+HX pUMAPFxpoLUQAgLWlJVk7DAPft46CZ2DZ/NMH2dHup2DZ/NMH2dHurMtt8XNw5zCHiM9CWQ9Lacf +cekCVBISCU/N1DY5riLq/JfscGLeJ8dMiZJjyjKCOmSpKCejzjTkHkRn7aDWdg2fzTB9nR7qdg2 fzTB9nR7qyyrtMjqn2c3CbKUi4Nxob7XRh5wqa6RTZWQEjTg74zjbnUe3326yG2rS9PXHK7u5CVM KkOOIQloOBGoDTrJOnOO7x0Gx7Bs/mmD7Oj3U7Bs/mmD7Oj3VSykyxe4HDwvMxlhcZ2QqSVI6Z5S VJAbCtOBgKJOBnAHpqdwvNkyWJ8eRIMsQpq47ckgAupASd8bEgkpJHemgmdg2fzTB9nR7qi2+Fw/ cmnXI9qhlLT7jCtUVA8NCilXdyyKjXN6VO4qas6bi9b2EQzJJY0hx5WvTjKgfBSNzgfpCsrb7lck QYltgSFPGdcp6lyGnUMqd0OEgJUQQNWSdhyBxQb3sGz+aYPs6PdTsGz+aYPs6PdXDhs3Tsopuykr fQ6tKFBxK1FAPg6ikAFQ5HAHKuIuDqONn4TsjTGFsQ8ltRAGrpFhSv3ac/ZQTewbP5pg+zo91Owb P5pg+zo91YxF1u0jhy23d+fLNuEZx2U7BU2HkkLOlZCh4SAkHYb+g1Y9alXZy8yBfn4CLaQlhDeg J09ElYccCgdQVq9AwPHQaLsGz+aYPs6PdTsGz+aYPs6PdX7ZJj1wscGbIb6N6RHQ4tOMYJSCayEy 48TXG63Y2xZbNukhlpBktttDCUnLiCkqOrPPI2xig13YNn80wfZ0e6vD1msjDDjy7TC0tpKlYjI5 AZ8VZ9d1np4x7BFwUIq5Ae6x3pOnV1XOMZONXj05Hir3aXJV3sb97lXWQVuIfBhIKUtNAak6CMat QxuSefooLmDbbDcIMeYxaYZakNpcRqjIBwRkd1d+wbP5pg+zo91Z7hW4ONv2+E7ICY4sEZ5DaiAM 5IUr92nNVrV0u8nhu23Z+dMVATHdclOwVNh5JCzpWQoeEgJB2G/oNBrWrZYHpL8du1wy5HKQ4DEA AyMjcjB28VduwbP5pg+zo91ZmXeLiiRd5keW45GtkiI/0YA8NgtAuDl4iVfWK8uXi4TprSmriuLA utxVGYfQE+A022rdBII1OLSQCc7YxvQajsGz+aYPs6PdTsGz+aYPs6PdVfYZEpq93S0OTXJzERLK 23ncFaSsKyhRAAONIPLOFV44nlSmrpYoke4qgtzJS2nVpAyodEogDO2cgY9NBZ9g2fzTB9nR7qdg 2fzTB9nR7qzC7rLhuXK0KuM2VomMx4jzfR9OpS0FamyogJ2CSckZAPjxUBm8X16N1BNwcZeav6IX TKUh1YaU1rIUQAlRBPi7hnlQbbsGz+aYPs6PdTsGz+aYPs6PdWO4juk+2szV2+43F5VmbbS6664y hsrwFeGNOpZUCOQA323rfNq1tJURjUAaCF2DZ/NMH2dHurymyWRedNrgKwcHEdBwfFyrJuX2cq9Q JkSVMVCmXIxPy7jSW1pypJCGwNexTzJztvzqvgvz7FYri5DlyXHZPEDsQqedSA2C6RryU4CjsMnI yobUG+7Bs/mmD7Oj3U7Bs/mmD7Oj3Vk33+JYFtcaelqYUu4xGo63HkPuoStwJWFEJAI8WRnc17uV zulhfusFFzdfToirakSkpUqN0rpbWTgAEDGRkbH0UF3KZ4bhzTEftcRLiYq5RIhpUA2ggK5DJPhD YVMbstkdbS4i1QilYCh/4ZI2P2Vj7oJFn4hnFm8SJTzHDkp1tTxSpxpWtBByANiRkZHdU1bt1uM+ c2i8SYrca1R5CAyEZ6VQWcnIO3g7jvoNL2DZ/NMH2dHup2DZ/NMH2dHurJtXW8QY9ourk52au5QX nnopSkNhaWekToAGRyxzOc0ssviR5ti4uyCuLJhuOuqXKbWknRqSppKUgpwdsEnY+Og1nYNn80wf Z0e6vxFksi05Ra4ChnGRHQf/ANVl7e/dmmOGZci8yZBvCAzJbUEBKdTKlhSMDIUCnxnOar+H1S7f w3bYrV0ksi5XN2O6+4Uq6ABbpwnIwFLKQMnO5oNz2DZ/NMH2dHup2DZ/NMH2dHuqusj8pjiC42dy a7OYjMsvIdewVtqWVAoJAAPzQR3+FXLi+5XCK5bIFv1JVcH1NrWh1LagEoKglKlAgE48Xccb0Ft2 DZ/NMH2dHup2DZ/NMH2dHuqLwz2smA83dlBTiH1Bol1Li+jwMBZSACoHPdyxVXxJcLs7xJHs1v6V DZiKkEsyEMrcOrTgFaVbJG5AHeKC+7Bs/mmD7Oj3V+CyWQqKBa4BUnmBHRkf5VlZkq/xYMOZd5kh uIxGzKdtrjZWhYWcLWCPCTpxnT352qM+9Is154xvMWXIedjR2XW2nFAtq1IUQSMZwnu9A76Dadg2 fzTB9nR7qdg2fzTB9nR7qpeGu303PM55TkJ2Pr/LSm3VFeRhSNCU4SQT4xyqz4kFzVawm1L0vl1G sJWlLim8+EEFWwVjlmg79g2fzTB9nR7qdg2fzTB9nR7qyDt8nyxa7Zan5zgf6wXVvvNsyCttQBb1 FJTkZPIbgDfnWq4cNzNnQLspC5KVrTqSsLJSFHTqIAGrGxwOYoOVrix4d/ubUWO0wgtMHS0gJGfD 3wK8X663u0vokxLOm425CMvhl0iSg53KUEYUAMbZyd6kw/zkuf6mP/uVaUES2XKJeLaxcYDwejSE am1gYyPq7iDtipdZPg9Ag33ii0tDDEe4JfbSOSemaSsgeIZycemtZQKUpQKUpQKUpQKUpQKUpQKU pQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQVfEv5t3D9Qr/SrSqviX827h+oV/pVpQKUpQKUp QKUpQKUpQKUpQVlp/r14/bR/JaqzqstP9evH7aP5LVWdApSlApSlApSlApSlAqtun9oWf9tV/Idq yqtun9oWf9tV/IdoJcqLHms9FJZQ83qCtKxkZByD9hANJMSPMQhEllDqULS4kLGdKknII9INfsmS zDjOSZDiWmWklS1qOyQO+qk8XWhEaU+84/HTEaDziX4621dGTjWAoAkZ7xQXZAIwRkGoEGxWm2Pr kQbbGjOryFLaaCTg74rjF4ltct99lL62lsNdOrp2lNAtf3wVAZT6RXhrim1uw3ppW+zFZSFdM9HW hKwTgaCR4WTyxzyKDu1w9ZmJRlM2uK2+XOl6RLQB17+F9e5qU3Bisyn5TcdtL8gJDzgThS9IwMnv xVajiu1KjzHnFvx+pMGQ82/HW2sNjPhhKgCRt3V5Txba3OnSyZC3Go5koR1dYLzY/SRkeGMkcs8x QSnuH7PJix4z9sjOMxdmEKaBDQ8Q8VenLHaXoRhOW6MqMpwuFotjTrJyVY8eTzqogcdW5+wQLpOb fiGaMIaLC1FS9OrCdsq9BA3qe7xPbWJDbLvWW+kUhPSKjOBtCl40pUvGEk5AwTzOKCWzabdHYYYZ hMNtR19I0hKAAhW/hD07nf01+yLVb5QkiRCZdEtKUv60A9IE/NB8eMnFTKrrle4drcQ090zjy0lY ajsLdWEjmopSCQPTQdYNqt9s1dRhsxtYAV0aAnUBnGf3n99Qr1Y03i4Wx15LLkaI44p5p0Z1hTak AD7SDXl/i6zsloJfdkKejCU2I7C3SprONWEg7Dv8VfsLiyz3CWxHiyFudaBLDvQrDTpAyQlZGCQO 7PcfFQTG7NbGraq2t2+OmGvOpgNjQrPPIrmjh+ztQHICLZGTFdIU40GxpWRyJ8ZGBVlWdZvaYV1v 7lxl6IkNxhLYIzp1NjYAbklR5cyTQTV8M2N2K1FXaYimWVFTaC0MJJ5n7cb+Ousmx2mapgybdGdM YYZ1tA9GPEPENuVcI/E1rfblLW85FMRvpXkSmlMqQj+9hQBxtzFGuJILsNyWGpqW2ykALhupU5q5 aU6cqz6KCZHtkGGppUaIyyplostlCANCCQdI9GQDj0V3eZakMrYfbQ604NK0LTkKHiIrO3DiBMti 2vW191vVdW40hC2yhaeepCkqGR3VpqCqRwzY24TkJFqipjuqClthoYURyP2d3iqJO4VhyZVqQ3Fi ogQlOlyMW9la0FIwMYzk5qZceIbfa3izIU8paEdI4GWFu9Ej+8vSDpGx5+I1+pv9sUzOeEkdHAQF vqwcBJRrCh4wUnYig9GwWhVtTbTbYxhpVrDHRDSFZznHjz314fsFrXapMBu2xuhfGVNaQlKlYAB2 BwdhvjIxUZriGCw1OlyZ61MtPIQG1RylTalISUtgAZWo6geWd8d1Q4XE7D/ENzW5JdZgxITK1tyG lNlpZUvOUqAOSAn69qCbb+GISOH4truUSJKDG+OiGkKydxtz9O2ato0WPCjojxWW2WWxhLbaQlI+ wVVHi20oiSpL7j8dMNKVvIfjrbWlKjgK0qAJBPeK5SeMbc1DuLrKJDj0GOZBYUwtCnEb4UnI3SSP nDYUFnPtFuuobFwhMSuiOpHSoCtJ9FeHbFaX4RhO22MuMXC70RbGnWTkqx48nnUCJxZDftEGc6xK Q7MbCkRkRnFOHwQVEJAyUjPzsY5VbQJ0a5Q25kRzpGXBlKsEd+CCDuCDsQaD1EiRoEZEaIw2wyj5 rbadIHfyrjOs9tubjTk6AxJWySW1OthRTnniuk2azAjKkP6yhOBhttS1EnkAkAkmoCeKLSbe5NU8 42lp7oFtuMrS6HDjCNGNWo5BAxuDQdHeG7I8GA5aoixHGGgWgQgZzgejO9e5lhtFwkokzLbGkPIG ErcaBIHi+quCOKbUuLIkLddZ6qUpdadYWh1JUcJGgjJ1Hlgb1Nt89q5R+nabfbAUUlL7KmlAj/lU AaCVgDYVAk2K0zZqJ0q2xnpKMaXVtAqGOW/ortcbhGtVvenzHOjjsJ1uLwTgVVHjOzhxbOqUX0pC wyIjpccRv4aU6cqTtzG1BZG028oKOpM6S/1nGgf0uc6/+rPfXjsK0ieueLdGEpwELeDY1KyMHJ9I 2rg9xNbGoUeYhT8lmS30rao0dbvgf3jpBwPrrxI4rtDC2m0vOvrejCU0mOyt0uNE41AJBzQSX7Da JSYyH7dGcTEGlgKbB6MeIeIbcq8OcNWN1LCXLTEWmOMNAtAhAznA9Gd6jK4hhuuR5UWct9h6E5Jb YaYKy6kFPhAjfIzjT6fRVbwzxI38nI1wuEifIlTyVhkxlFWcAkNoSnOgAjfcemg04gxQuQsR2wqS AHjp/pABpGfHttXJdpty7Ym2LgsKhISEJjlsFAA5AD0VCc4rtKY7Dzbj0jrCVLQ2xHW44Ak4USkD KcHY579q4scVsvcTybMYklKWGEO9OWV6Tq1HfbAGBz7ztQW0G3Q7Yx0EGK1Gazq0NICQT4/rqDer Gm8T7Y48llyNEdcW806M6wppSAAPrUD9leWuKrU4mSoqkM9WjqkqS9GcbKmhzWkKA1D6vGPHX4xx ZapLpaZXIWvoDIbHV1jpkDGS3t4eMjlnnQSuwLR2b2b2bG6nq1dB0Q06s5zjx+mvTNktcdKUs2+O 2EOh5IS2BhwJ0hX142zVTZuM4ly4bi3eRHfjKk4ShkMrUpajk4QMZXsOYGNjUs8VWoRm3krfWpxx TSWER1l7WkZUkt41AgbnI8VBJl2CzzpSpUu2RX31o0KcW0Cop8RNWAASAAMAbCuUd9EmO2+3qCHE hQ1pKTg+MHcH664XK6RLTHS/LcUkLWEIQhJWtxR5JSkbk/VQckcP2dEtUxFripkKcDpdDQ1ax+ln x16VY7UpctardGKpoxJy2D03/V46iMcW2iR0gS86lbT7UdxDjC0KQ46cISQRkZNTJF5gRJElmRID aorCX3SoHCUKJAOfrSdudB+R7FaYsYR2LdHbZDqXghLYA1pIKVfWCBg+iu7tvhvrdW9FacU+2GnS tAOtAz4J8Y3P76j229w7o86wz0zbzQClNSGVtL0nOFYUASDg71Y0FYxw7Zora22LXFbStpTKwlsD UhWNST4wcDb0VKTAiNrcWiM2lTjaWlkJ+cgZwk+gZP76hxOI7dMnphNqfQ64FKaLsdbaXQn52hSg ArHoq1oIyLfDbEYIjNDqg0x8J/ohjThPi22qPGsFnhPuvxbZFZceBStTbQBUDzH21ElcX2eI/JZc dfUqGvRJLcda0s7A5UQMAYPP6/FXVfE1qRdE20PLckqCFaW2lLASsEhRIGAnbmdht46CaLfDCIyB GaCYhBjp0jDRCSkafFsSPtrh2DaOjlNm2RiiYrXISWhh1XjI7zUaJxXaZspphl50CQopYeWwtLTx HchZGlXI8jvjavaeJrauQ8y0p91LGsOvIjrU0koBKhrxpyMHbPPbnQTYFthWtgsQIrUZsnUUtICQ T4zX7OgQ7lGMadGaksqIJQ6kKGRyNcU3mCpFvUHVYuQzG8A+F4BX9ngjvqDG4vtE2M5JirkvNN6Q VNxXFalEkBKcJ8JW24HLvoLWFBi26MmNCjtx2UkkIbTpGTzrlcLTbrshCLhCZlJbOUdKgK0n0eKo R4ss6YbUpTzqEuSTFCFMLDiXQCdBRjIOByx3jx1x+W9j0qJefT0a9D+qM4OrHOB0m3gZ9P18qCc7 w9Zn3GHHbXFWqOkIaJaHgJG4A9Arsu1W9yf19cNlUro+j6YoGop8WfFvUyvDi0NNqccUEIQCVKUc AAd9BDt9ktdpUtdvt8eKpzZRabCcjxfVXWfbod0j9XnRmpLWoK0OJ1AEcj9dQGOKbU/EemBx5uIy 30hkOx1obWnkClRHhZ7sc81+N8V2pbUla1yGDFYMhxEiOttfRjmoBQBI+qgkvWG0PwG4DttjLitH LbJaGlB8YHcalxYrEKOiNFZQyy2MIbbTpSkegVTDjSzKc6JK5KnVIDjTYiuan0H9JsYysekVa2+f FukBqdDc6Vh4ZQrBHoOx3BB2xQRYf5yXP9TH/wByrSquH+clz/Ux/wDcq0oMrw5+fXGH6+J/8dNa qsrw5+fXGH6+J/8AHTWqoIlyuUO0W92fPfDEZkAuOEEhIJx3b8zWd/GnwR5/Z9U58Ne/wmf8Pbr/ ANLf8xNaqgyX40+CPP7PqnPhp+NPgjz+z6pz4a1tKDJfjT4I8/s+qc+Gn40+CPP7PqnPhrW0oMl+ NPgjz+z6pz4afjT4I8/s+qc+GtbSgyX40+CPP7PqnPhp+NPgjz+z6pz4a1tKDJfjT4I8/s+qc+Gn 40+CPP7PqnPhrW0oMl+NPgjz+z6pz4afjT4I8/s+qc+GtbSgyX40+CPP7PqnPhp+NPgjz+z6pz4a 1tKDJfjT4I8/s+qc+Gn40+CPP7PqnPhrW0oMl+NPgjz+z6pz4afjT4I8/s+qc+GtbSgyX40+CPP7 PqnPhp+NPgjz+z6pz4a1tKDJfjT4I8/s+qc+Gn40+CPP7PqnPhrW0oMl+NPgjz+z6pz4afjT4I8/ s+qc+GtbSgyX40+CPP7PqnPhp+NPgjz+z6pz4a1tVfE35rXf9he/9hoJ0WSzNisyo6w4y+hLjawP nJIyD+6u1VHCf5nWX/t7H8tNW9BV8S/m3cP1Cv8ASrSqviX827h+oV/pVpQU90vT0We1bbdBM6c4 2XS2XA2htsHGpasHGTsAAScGuDPFCY6ZqL5F7MkQmOsLT0ocQtrfwkKwM7jGMA5x4xXGe49ZOKV3 dcSRJgy4iGHVR2i6tlaFKIJSNykhZ3AO4FV1xiP8VLuc1q3vNxk2l6JGElooU+4vCshCtwAUpwSB uTQaSLd2p5ivRFMuQ5DJdLvTAKTjSQNPfsd99vtqUJ8MhZEtghtIUshweCDyJ8QrEQoxcZtKotvf ZQ1ZZLLiTGU3h3S0CCCBuSD9eO+kHhmKhXBoVaQAiIoS8s8z0IIDm2/hjOFd4oNo5MPSxeg6F1h8 nU70wGAEkgpH6X7xgb1+s3KBJc6OPOjurxnSh1Kj+4GsXb4L0O4w09SebiRbvOUlKWVaUNFtWMDH zSScePO1cYT0Z5m63WPYlm5vRnG4sFducaShkfok6QCpXM777JHKg3zEqPJClR323gk4UW1hWD4j iq1y+IVf4NvjLZeakNvKWtC9RSpGnbb/AKqwpt1wdduotceSWn7UgeBA6mlwpdGpCU4B1aNQGd96 sXojUy+R3eG7Q9APZcplL5iqjpS4QnQk5A3B7/8AWg3bcuM88tlqQ0txv56ErBUn6x3V2rBW+LGd dsDVrssiDNhOpVLdXFU1oQEEOJUsgBeokcicnet7QVlp/r14/bR/JaqzqstP9evH7aP5LVWdApSl BlLbxfNlOwXJdnRHhXCQuOw+3K6RWoasakaRgHQeROKk/KK5zVvLs1kE2Iy4psvuygz0qknCujGk 5AORkkAkfbWSsEItPWvqUW7JurM1XWOsNvCO2yXFdJjWNAynlp3zj01f2W5q4Xtwstwt1wW7GcWl hyNFW8iQgqJSQpIwDg4IVjB9G9B2mcdRYrNnkpiuKj3J9TLqlq0qilJwrUMHkrY7+mpvE/EyOG48 RXVjJdlSEtJbC9OEkjUsnB2GR9pAqgb4fkSFWpi4xFpE12c7KbT4QYDqThJI2BAIH11Fdt15n2iX KucV1UqEWIEdISSXEoeQXHgPEvCT9SaD6NSlKBVbdP7Qs/7ar+Q7VlVbdP7Qs/7ar+Q7QeOJbQq/ cOzLYhwNrfQNKlZxkEKGcb4JGD6Kzb3CsmXZLmyiyRYMuRG6BCuure15UCRlQ2Tt9dbmlBmuIuHJ F7nrKFoaactj0UuHcpWpSCnbvHgnNeZsO+3i1JYkQosSVEeZfZIkdI28tCgcEaQUpOPTjPorT0oM fdLJeb+1cZEmLHhuuWt6FHYD/SalOYJUpWAANgAPrNWcqzvv3i1yAEBmNEeZdOdwVhAGPumr2uMq SzCjLkPq0NNjKjgn/Ibmgytn4fujMXhtibHYR2MtSVqS7rC09EpAWNhjJPLuqNfOGr3dJMtKmm5A VLbejyHJiwltpKknQGh4OoYO/fn7K10C5Q7m0p2E+HUJVpUQCMHxb9/o7ql0CsnxBw4/L4iRdmoL dxbVFEdbC5SmFIIUVBQI5jwiCD6K1lKDO2uwOQLw1IbjMR4yLYmMG21lQQvWVEDO5G/Oo8Lh6dHt PDcVSWg5bZHSP4VsBoWNvHuoVqqh2y5MXWKqRHStKEuuNELAByhRSfsyKCZWTuPDdwkzrlLYUyHF TI0uKlxR0uFpIBSrHLO++/ca1lKDHXHh27cROSZktuPb3uqJYjtBzpgVB1LmVnA2JQkYHcTUu5N8 R3S2oSYLcVbUhCnWGp5Bkt4OpIcCQU74PpxjatNSgxMDhW4x8lTLDIVeWpobS+peltKACNStyrP7 621Q2LkzIuku3oSsOxEtqcJA0kLzjH3TUygxt44XkO8QzLgi2sXNqa22koclrYLKkgp7shSSMekb +Ou1z4VefuEJMNLLNvdZbj3BoE46NpQWgJ8feg57jWspQZKZw9czLmTowZW6m6tzo7Ti8JdSloNl JOPBPzsHBwQKjXLhq8X5d1dltxoplx4yWGw6VgKacK9KyANjtuO4+ittSgxDvC0iVZLi01ZY8CXJ bbbSTMU8VgLCiCSNhttVveLFIuV2ddQUIZdtT8MqJ3C1lONvFgGtBSgwi+F7m81aJUm2MSHYMPqT sXrqkagNOHErAG+U8iORrV2WCi3WpmMiI1ExlSmWnCtKSSSfCO5586sK5uvNMNlx5xLaAQCpasAZ 2G9BWcSRLjMtyG7co60vIU60HiyXmx85AWN05239GO+s5E4UusVT81piM28i5Imx4yn1LStIa6Mp UsgnVud8c63VKDJSLNcbg7cLjPtUZxcllphEASiPBQoq1FwDZWVZGOWOdW3DcS5Qratq5vKcWXlK aSt3pVNNnGEFeBqI339PfVvVZbb7FurUdxhuQEyQ4UFTRwNCtJyRkA55Aneg88TW9+68OTYEYJLz 7elIUcDORXns175VouWlHQJt5j899WsK5eLAq3pQYVvhm9swIMNbTcmO3GW2pgTVsobdK1ELOkeG MEDHdj01P4Z4dnWmXAckhrEeztw1lCs/lAsk49GK1dc3HWmQkuuIbClBKdSgMk8gPTQZay8OT4Ei At4NBMeLKaXpXnwnHgtOPsFQnOD5qINhcXFZmu26IqM/FMlTWdWk6krHeCnkeYNbqlBi5vDkxNvi tWyzsw5SEOFEiPcFIVGWpWTk6fyiTsSDsSOXfUt+0X1u8SZUVxlTk22ojqlFWksvI1YVoxuCVD6q 1NRGbg29cJEHo3G3WAlXhjAWlXJST3jII+sfVQYscJ3d9cl5cRthbtokQz0k5chbjq9OFFSuQODy rRLtEk3GwvpCA3AZcQ9vy1ICRjx7ir2lBgGuEboOH7NDfhsPOWRakJZ60pKZTZSU6goAFCuRAOe+ prvDrqbW0mPw+01ILy3fyFyWh1hRASFhzGSSBgjlsOdbKoVuubFzRIUwlaRHkOR16wBlSDg49FB+ 2pmbHtUVm4yEyJaGkh51IwFrxuagX+3zZEi23G3obeftz6nOgdXoS6lSCgjVg4ICsjarulBgTb7p drnf/wAnHantPwJTTJcJRlvwghSsd+nnjvqRcuG7zf13V2Y1Gidbix0MNh0rAU04XMLIA2JxuO41 sksNIecdQ0hLjuNawkArxyye/FdKDPcOWfqUh6U7ZWbe6pARqTLVIUoZyRkjYZq+cC1NKDaglZSd KiM4PjrjcJrVtt0me+FFqM0p1YQMkhIJOPTtXRh5MiO2+gEJcQFgHngjNBjbTw3eW73aZ89lHSQ+ lEmQqat5T5UgjUAdkjPcOX2Vt6UoMMwi8vTOKIluiRXUSppaLzrpQWSWUAkjB1DB5AirO3cLriSL kytY6vIt0eE06D4eEIWlR9Hzga0TbLTSnFNNIQp1WpZSkAqOMZPjOAP3V4jyUSel0JcT0ThbOtsp yR3jPMekbUGYj2e+SItptU2PFZjWt1lxUpp4qLwa+aEowNOcDOTtvjNd7Ta7rBtq+Hn4zK4Wl1CJ yHsKKFaiMt4+d4WDvjvrT1ClXNmJcIMJxKy5OUtLZSBgFKSo5+wUGct9o4gLvD7UyLEZZs+ULW2+ Vl3DRQlQGBgeg77+iv1Fhu8Tg+122MElyM4FSmG5BZ6ZGVEpDgGRuQfTjFa+uT7yY8dx9aVqS2kq IQkqUQPEBuT6BQY628KXGM6ytxlhtKb114oS8pelvoCj5ytyrVUufw7OkWzithtLXSXZRMfKuf5F CPC8W6TWobcDraHEhQCwCAoEHfxjur3QQbbMcmGSlUctIjvllClH+l0gZVjGwzkfZS82/tayzLd0 pa60wtrWP0cjGanUoMvJgX272MwJUOJEkRi04y6l/W0642tKgCnSCEnT9me+o90s16v4kyJUSPCc TbpERhlL/Sa1u6ckq0jAGkY+uthSgpE2mQOILbO0o6GLBcYXvuFKKMY9HgmuvDduftdo6rJCQ507 zngnIwpxSh/kRVtSgq4f5yXP9TH/ANyrSquH+clz/Ux/9yrSgyvDn59cYfr4n/x01qqyvDn59cYf r4n/AMdNaqgyv4TP+Ht1/wClv+YmtVWV/CZ/w9uv/S3/ADE1qqBWeunFTtoTrk8OXUtl5LLa21xl dKpStKQlPTajknxZxzxg1oaw7XEvD104ncnz77bWI1qWtiGw9LbSVO8nHiCfrQn0ajyUDQbYbjJG PRXqvnt1NhW9fBfS0q9lw9n9J/WCjSOg6r3/ADv7n6erO9d+xIt4v14RfIjUp5uzwwpLoCkpcIf1 KA5agRsobjJwdzQbulfLbpcY91sFubuYtoldgsyW5FxZU+6+44g6kx0BSSF5SCVJJVunbvrYuP3J /wDB51iEpxy4uWsLbUndZcLecjP6WeXpoNDSsBIHDA4fdVw0WSR1ftFUH+sdX6RPSdKU+Hr06s6v D+d35rlOFn6O9q4X6p2b2DJEvs/T1fpv/L+Z4OvT0me/GnO2mg+iUrBROG7OOJ7ZFVAaXHk2db0l lY1IkuIW0ErcSdnFDpF+ErJ3qvaXbOpcHi+OIMFDUptapKvyWE6UpDhO2nYDwts49FB9NqNLnRoX Q9Zc0dO6llvwSdS1cht9VfO5KUi1gR3o0fhpy9L6NUhguxEs9EMakhSR0Jf1Y305KT83Ffsm02Vu xQ5UqVablbWryhQdaipREitLCQtCNSlgIKsE4VjUSNsUG+k3NqC1Ifmtuxo7C0IDywFBzUQAUhJJ xlQG4H7t6kJeWZS2TGdShKAoPEp0KJz4I31ZHpAG/M18+v0OBLhcVKcjR3o7EqG6gqQlSW0hprKh 3AaM7juz3VJm26Nc7tcWbJ1YJbssN+3qjgdGlxt99bZTp2xqSOXdmg31K+eu3KPcLNO4lksMKiXV 5iIyqaSGWGUnGp3xp6UryNgoaQSAc1Zfg+WgC9xo70VyKzOHQdTYLLACmW1Ho0FSsJJJOxIOSRsa DYUpSgUpSgUpSgUpSgVV8Tfmtd/2F7/2GrSqvib81rv+wvf+w0HjhP8AM6y/9vY/lpq3qo4T/M6y /wDb2P5aat6Cr4l/Nu4fqFf6VaVV8S/m3cP1Cv8ASrSgUpSgUpSgUpSgUpSgUpSgrLT/AF68fto/ ktVZ1WWn+vXj9tH8lqrOgUpSgUpSgUpSgUpSgVW3T+0LP+2q/kO1ZVW3T+0LP+2q/kO0HLimfJtn DU6ZD2eabylenV0YJAK8d+kEq+yqS5rTarSwYV+lOtzZTDUma5JDpZbVnK052RqOBnGBn0VsCAoE EAg7EGorFotsVp1qPborLb/9KhtlKQ59YA3+2gxV4my7W1e4Vsu8mQy1b0Ppece6VcZ0r0gBfPwh vgnu9NSLxKunDMyX1OdKmqctD8oNyVawl1tSBqSO4YWcpG23Kta1ardHiKiM2+K3HX85lDKQhX1p AxXdTDKn0vqZQXUpKErKRqCTjIz4jgbeigw8JNxLElyRfksQXICnFvJuZkLSoEFLqfATpHPIGxyB iucTiCXIs8uZdH5Uee++xETDZcDXQ5AKVZVsnXkkq5gYA3FbJuyWllDqGrXDbQ8QXUpYSAvByM7b 77711ft0GUXTIhR3umSEO9I0lWtIOQDkbgHuNBgY16uKG5luduS2IyLszGXKEnp1R2lt6iOlIG5V hOSPB1c9q0dkdcj8TTrWxPfnwm4rb2p53pVMuKUoFGvnuADg8vtq6btlvaYcYbgxkNOgBxtLSQlY AwARjfbavcSDEgM9DCisxm850MthCc/UKCRWU4qmlVwatrT8lp1MZchRRNEVATnGorwSSD3Dbx91 auo0m3wpq21y4bEhTJy2p1sKKD4xnlQYizXWTxAm1N3S8PQ0KtLcrLDoZMhwqKVKKvEkAbcvC3qu t9wndm2m3xJWqPMkzlrfMrqpfUl06RrCTgkEqwAM4r6K7aba8yyy7borjTBy0hTKSlv/AKRjb7K/ XbXb34piOwIzkcqKyytlJQVE5JxjGc70GQjvXF2RarRdryWWHUSHOsRZXhPlC0hDZdwCSlJJOACd P11xtt3fakRiu8PSIgv70Xp3XNlo6E6Ek8iNXLxnetq7arc/ERDdgRXIzeNDK2UlCfqTjAqFA4ej x2bhHlNMSY8yWp8MraBQkEJATg7baaDOyr90ku9MomyHUOXNiLG6CQGwkllKlJ1nIQMhWSN88tzU KDeZ7rJtki6OMRu2zDXLRJ6VbbfQhwI6UgblZ06sZHLPfW6Notio64xt0QsOY1tlhOlWAAMjGDgA Y+qvXZdu6s5F6hG6B0guNdCnQvAAGRjB2AH2Cgwwlx7VceIkNXKXJSpUKM26l9PSJUvUAnpFbAb7 qO4z4xVxwZOlu3C9W+Q+XW4brXRhUnrBRqRkp6TAJ3HLuzzrQJtNtTHcjpt8UMuJCFthlOlSRyBG MEDPKukaDEhA9Uisx9QAPRNhOQOXLxUEisjc3es8dOW2TeZEKL2Wh4NNP9FqV0iwVavQAM49HcK1 1U0nh2NNv7txmtR5TDkRuOGHmgsApWtWrfb9L/KgyrV5k3C2W+G7MlKkKRIdS+mYIiXWUOlCHFLA JJxg4SMHOT3V+2OXdOI3bAiRdpLKHbY49IMZekvKQ6lIOcd/eQBn0ZrcP26DKDIkQo7wYOWg40lX Rn/lyNvsr0zBiR1IUzFZaLaShBQ2E6Uk5IGOQJ3xQYQ3yQ5frfNhypAjy7mYpQ/NCtaMqSQGAMJA KdjkHlnnX0OoYtNtTJVJTb4ofWsLU6GU6iociTjOfTUygp+J56LfZVKUt9tTzjbCFMLCFalKAHhK 2SPGe766wVzdlTbFfoEqY+pq3zYa0aZpdLYUpOoKcwMgc9+R79q+oSI7EthbEllt5lYwttxIUlQ9 IOxrgi125thxhuBGQ06kIcbSykJWkbAEY3FBirnIubt6l2yJcC0xBitqjuOXQsqVqBy6o6FdIARj c425b1KbYud0ud1jyr1KZVGgRVjqbuhAeUhZUsejI5cj31qXbLan22WnbZDcRHGGUqYSQ2P+UY2+ ypCYzCXHHEsthboCXFBAysDOAT34yf30GKttyev0iKm53d6AhFpjykhh0M9MterWsnvCdI25DO43 FQuGZ0lu12VpqW4WnLdcXSQdIWpLydKiPHuf31vHLTbXkMIdt8VxMf8AoQplJDX/AE7bfZXtFvhN 6QiGwnQlSUYbA0hRyoD0E7nx0GJgsXFxPDOu/XE9rRj1z8r87DYWNP8AcOdsjcg/bXB66XdtEe0J mrcb7UkxTIeldCtaUDUhBd0kgnJ3xk6edb9MSMnodMdodXGGcIH5MYxhPi222rw7bYL7DjD0KO4y 6vW42tpJStXjIxgn00GNYF5XIs9vlXdaUPy5KSuLJ6VRaS3kIU5gZUDkZxn7d6r7qy7IjIhy7jMW 3beI2mEPqkFKw2pKVDUocyCvAUd6+htQIbCWUsxGG0sZ6IIbADeeenxZ9FfjtugvtPMvQ47jchWp 5C2klLh23UMbnYc/EKDKOOpmXC8NzL/KgJtqUJjJbk6MN9GFdKon+kyc88jbFaPh6XJn8PW+XNTp kvRkLdGnT4RSCTju+quz1ptslTKn7dFdUwAGitlKi2ByCcjb7KmUHkkJSSe7evnsG+SXOILTKjzX xFubrySmTNDmpAQpQPRAYbwUjkc9xr6JUJu0Wxl4vNW6Kh1SysrSwkKKiCCc454J39NBneEpLzdy cgXGVKkXDqweU51oPR3k6sa0AfM3/RwNvHjNa+osO2wLcFiDCjxQs5WGGko1H04G9SqDM3p9cnim JaX7i9AhqiLfBZd6JT7gUBp188JBzgc8+IVlIVwmNQWYUKb0jM28zUrlLk9XLukkpHSBJwVc9gM4 2xmvpEuBDuCEomxGJKUK1JS82FgHxjNeV2y3uRlxXIMZbDita2lNJKFK8ZGME0GPQLyexoMm7qSl +4vIK4snpVFkNKIQpzAyoEHfGdh371HdNyiWm8TRe5612ef0UVKndi2CglLn9/OsjKt8YrdNQITC GUMw2G0xySylLYAbJ2Onxczy8dfqoURbbraorKkPK1OpLYw4dtyO87Dn4qDC3e+SU3dM2DLkIQ3d WoakuzQEr8MIWgMAbjc7kg99fsh25Js94vQu81L0C6upYbDn5MNpdA0KT+kCCRvy7sVtV2m2rkqk rt8VT6yCp0spKlEbjJxnbA/dXQwohZcYMVktOqK3EdGNK1E5JI7znvoMFf5Bn2biuTMvT8V6F0zD MVDoShKA34OUfp688z49sYrnxFeJDNukuQJchh61QWVFRmhltKygKGG8EuZ257dw763r9qt0mQZE i3xXnigoLjjKVK0nYjJGceivx60WyQ6HX7dFdcSjowpbCVEJ/u5I5eigzEydIj8SsSp0yQqG+6w0 wiJKCQwtQHgOtc1BSjnO+Ae7Ga2LbiHUBba0rTkjKTkbbVGNqt5l9cEGMmUE4EgMp6QDGNlYzyr1 boDFrt7EGMCGmEaU6uZ8ZPpJ3NBKrCvTLjJdRHRcZDPScRuRytCtw0G1HQM9232VuqjiFECgoRWc h0ug9GPnkY1f9WO/nQYmTcJ1sfn2jtWQmKi5RmeuPLCnI7TrepQ1n/mGkE8tXoqwkxmYnEHDjUeY 9KT1iSdbz5dUD0CttR/09NaZcKKvptcZlXWAA9lsHpMDA1ePbx14j2y3xEtpjQYzIaUVNhtlKQgk YJGBsSNqDHQL+47w9wkFXJS5kmW23IHSZWvCV6wrv2I3z31xFwmQW7o1MuEp24LgSn2H2ZYcjuJT yKUD+jUnKRy8e5raotFtbkKkIt0VLyl9IpxLKQoq/vZxnPpozaLZHDwYt0RrrAIeCGEp6QHmFYG/ 20GSmXW5W9S4aZTq3r1DZ7PUtRPRvEBDmPqBS596ocmTfpNxubEW4oju215DEdUi4loJAQkha29B 6TWSdyfQMYrfqiRlrZWqO0pUf+hJQMt7Y8HxbbbVzftdvlSUSpECM8+3jQ64ylS0/USMiglDON+d QL7LkwLFPlxGulkMR1rbRjOVBJIqwpQYmVINu4WVcoPEEiW7ISyHZTj4cS0ha0hbqUfNTgE8hgVH u0p+0KnRrZeZUtpdokSFqckdKphadOhYVzTqyrblttyrZMWq3RVurjwIrKn9nS2ylJc/6sDf7aMW m2xY7sePborLLww422ylKV/WAMH7aDLJgTTfrfAXfbiWJsBb8kB7BK0FABQeaAdZyE+IVdcIypMr h1lUt9T7rbrrJdX85YQ4pIJ9OAM1bdXZ6VD3Qt9I2koQvSMpScZAPcNht6K/WmGo7fRstIaRkq0o SEjJOSdvGTmgr4f5yXP9TH/3KtKq4f5yXP8AUx/9yrSgydmWmL+EfiSI6dLkxmLLZB5rSEFtWPqK R++tZWJ/CJ0TZtz9vXJTxIlaha0xUhSnDtrSsHbo8Y1E8q0PD6785bgriJmC1Lz82GpSk4wOerkc 55Ej00FV+Ez/AIe3X/pb/mJrVVlfwmf8Pbr/ANLf8xNaqgUpWXRdnY6LhdiHpbz00wIUQOlKMoUW wPEnKwtSl4zp8eAKDUUrGHiOZbL/AHiTe2urMwrZHc6BmT0rSlFx0aklQQAT4KSVBO6dzgA0R+EJ nqVzcU1b5L8CCZgTb7iJDa0jYpKwkFKgcfokYIwTvgNnSs07xBdkuyoTlrYjSzCVLiAyyoKSlQSo L/J+ApOpJwNQOcZ76i2/iW9dkWBL1tjyp91Y1BQl6EYDaVa1no/Bzk5CUnBxjNBr6VmpPE85tmbN jWhD9vtylJku9a0uqKP6XokaCFhOCPCUkkpIxyJt7jdWLdaXLksLdaQgKSlseE4TgJAzjckgb+Og nVDkW1mTc4lwWpwOw0uJbAI0nWADnb0Cs+zcb05xtAjXGGIiVW6Q70MeWXm3CFsgZylHhpye7GFb Hc4RuOWzIuEeUxEW9ChuSy1bpwlLwg4WhQ0p0rBKcDcHJ32oNZSqux3GXdIYlSGIaGnEhTLkOZ1h twHOfC0J3GPER6aorx+EODaZ8tpSoBZgLCJAdnpbkKOAVdEzgleARzKckEDPeGxpWfPEzovKrKYA 7Q6wAhrptlRiM9Yzp2AwU4x8/wAHO+qoiOMJyoj1yXZkItkaW5GeeMvLmEOlsuJRowU8icqB+dgH AKg1dKx9x/CHBgXGQzmAWIj4YeC7glElSsgKLbOCVBOe9SScKwDtm1TeblMuL7VttjL8OM+GHZD0 otKK9tehAQrUE53JKckEAbZIXdKydkvl8XaLrMuEaCTElvIbPXdCEpS4Qdai2AlCAM6tyQCcZ2qH N4znzuG35lnRA6zFuLEV5bU0PNELca3QsNkKCg4EnIBT4XMpGQ3FKy0jiFdtuUwyIB1x24RlqTNW tttLq1oKkpKQMI05JABUOeMVNkcQOIcuqY0Zhbdt6NK35EoMtayNSwpWk6QlBSSd/nYxtQXlKyLX HbT1nTLaahLeM8wSpM4GIF6dYV04T80pxjwc6iE47608RyQ7GQqWwhh851toc6RIOe5WBkHnyHPk KDvSlKBVXxN+a13/AGF7/wBhq0qr4m/Na7/sL3/sNB44T/M6y/8Ab2P5aat6qOE/zOsv/b2P5aat 6Cr4l/Nu4fqFf6VaVV8S/m3cP1Cv9KtKBSlKBSlKBSlKBSlKBSlKCstP9evH7aP5LVWdVlp/r14/ bR/JaqzoFKUoFKUoFKUoFKUoFVt0/tCz/tqv5DtWVVt0/tCz/tqv5DtBNkPpjRnH3AspbSVEISVK IHiA3J9Aqpa4qtymZjkpMiCYSEuPNymShYQrISoDfIJBG2+dqlX6FLuNklRIEnq0l1OEOZIxuCRk bjIyMjcZrLI4ImuOz3gmDbzIYj9ChhS3Ql1p0uArKgCoE4zy227s0Gh+UsZMJUl+HPj/AJRLbbTs chx5SuQQnmT/AKd+K5/K239X19DL6x0/V+p9Aen6TTqxp/6d85xjvqFebHdeIbfH7Qi21MiFJS+0 yXVuMvDSpKkqJSCMhRxgHBxzrweGXRaDHbsFmQtb/SKZbfcbCcDCVBwI1axvuANqCze4nitKYbEK e7Iea6Yx245LjSM4ysd2/wBtVV/vfVWpLjU+SOrXSK26nQAG0qKCUpwMqBB78nJxXOZwxe37dCY6 WM7PYZKBdDIcQ+yoqJ2wPyiQMbKIzjfnXa48MXOQJ64z8YOyLjGltKdzjDQQDqAHMlB2HjoJUvii G5b54WqdbX4rSXFhyOA6EE4C0hWQRnb0d+KjOXRxi63oSJ8hllqbDba6MBenWEDSAcgBRO+PGTXO 48N3e9JuMqYYbEp+GIkdppxSkJTrC1KUopBySBsBtjvzUi4cNTZUi4uNuMgSpsOQjUo7JZKCrO3M 6Tj/APVBy4r4rZj2S9MwhM6aNHcbMtholtl3TsCsciCRy5Z3xVjL4li2ptvrbEwtpbQp6SlglprO N1K/1xnHfVVP4dvyrXerPBcg9VuKnnG33VqDiC5kqSUgEHcnws7A8jiovEXBt2vCbiyDCfTJZSmO 7JdczGwkApSgDTuQTq578jiguL9xRGhx7lGYRLcdjMKLr0dkqRHUUEp1KHI8jtnHM1+RuJmIVpgJ fRMmSeotPv8AV2i6W0lPz1/WQfScHauMqyXtpV5jW5cIxrqVOdI+pQWwtSAhWwBChsCNxj01Ad4I fblNSRAtdyK4TEd1ExSh0a206dSCEnKTncEDlQa9VyhptnaZkIEPoum6bO2jGc/uqJbeIItylmIG JUV/o+lQiUyWy4jONSc92SM94yNq83SxN3LhZ6yDo46XI4aT0afAQQBjA/u5HLxVD4csK7bKW+/a LTCc6LR0kIqUpZzvzSMDYbb/AF0E6Vf40e6dnJjy5LyQgu9AyVpZCiQkqPpweWeVRPlLBgIcU/Il SOkuK4iB0IJS4AToSEjcbbHnvXG92K43C8NyoTcWItBbxPQ8tLwSFZUhSANKwdwAo4Ga8t8NTEym XS4zpReXJ58I/wBGpCkgcvnZI9HpoJ8fiaHJhyH2483pYzoZdi9XPTJWQCBpHjBBzyx31XT+IBP7 JXBXIjq7YRGlMuJKFp/JrUUKHi+afEdq83Thu5yJtykRnWCiXLYeLCnlth5tDehSFKSMjfB2znG9 RrdwdOiLSoiEyntpFw6Nkq0pbDOgpGRurP7+e3Kgs2uI2olpMwouNxZD0gLdSyjLQQtQIOCAAMEA 94G9dXOK4qLbHn9n3JTT7PTkJiklpv8AvK8W2+OeO6ql7h2+otka2tNwZEXrj8mU25IW30qVOqWh GyDt4QKvHjHKvV44evV5fLklm3rS7E6EMOSHFNxl5V4aQEgLyCOYBGKC4kcTQWnWWo7cme68yl8I iNFZS2rks8gAe7vPiqDdL3Ih3lAVKkR4RW22tSreVNJKiMAuZGCSQM4IGfHVeYtz4NZYnNCLJadj RoktLi1J6JaBpC0kJJKTncYz3+Ovy8cIXa6Spal9Se6WU28zJfdcK2kJUk9GlGNI5HwhzzuKC7l8 W26G/IQpuW6zEVpkyWmCppg8yFK9AO+M476tn5TbERco6ltpTq/JJKyoegDc/ZWbesV7aj3S1wlw jBuTrq+ndUoOMdL88aQCF4JONx6atLrapL3DS7ZbZJYeS2hDa1KKchOMgkbjIBGRuM0HJviy29Xm PSUyYaoSUqeZkMlLgCtkEAZzqIIGO/aq9riRL3Fg6brcGKxbHXnmZaC2BhacLxyO2f8AOoLfBM/p bhIQiBBcfRFXHbaUtxKXWXFL8MkAqByBn/LbeXP4au9/kyV3RcSM1ItjkMNx1qcKFKUk6skDI25b cvTQWjHFdtcL3WEyYIaYVIBlslsLaHNSc+LI257jaubPF8B2U1GcjTo7jzS3mg/HKNaEDJUPs7uf oqpZ4Mcft0yK/bbRb3noxaTJhalKUrIOSCBhOQMpyfrr1Lau0riiyNXdMRoLZlNhMVal5JbGVZUB j6t/roNCm+w1s2x0FzTdSBH8HxoK9/F4KTXJniSI5dG4C48thTxWll15gobeKRkhJPoBO+MgbVTQ uH7+k2FiY5AEezOHw2lLK3gGlNpVgjCTuNsnv32qLD4MufaVukTepqVFddL8oPOLekhSFJz4Qwj5 w8EZHiO2KCTdeLGpnZibd11tp+5sNok9EpLUhGvCglXeCM89j3Zq6VxHEbujcF2PLZ6V0styHGCl pbgz4IV9hweRxsapW+HuIDAtNrdXb+rWuUw4HkKXrfbbO3g6cJOMd5yfFUf5H3Vy6Q5MgwnVxbkJ Spi3XFPOt5UQnSRhGAQMA4OO6g1F2vcSyiN1oOqMt7oWktIKypekqAwPHpNR2OJoj8aS4mNND0Va UOxDHPTAq+b4PiPjzjnvtUHi8Se0OHOp9F04uRKA9nSfyDuQSNxkd/dUWXw1epnWp7jkVMuVIZU7 EQ+4lpbLYUA2XANWSVEk4xsBjFBZr4wtbVu668JLITJEVxpbJ6Rt0jISU+kYxjOciv2VxXEhx25E iDcm2S2HHVqiqAjpP9/xekDOO+qiBwdNjAgphNJN3ZnBpkq0oQlABSMjdWR9vPavzifhO6Xt+5JT 1N9qWwER1ynXMxSE4ICACk5O+rnv34oNRdbrFs9reuUtSursJCllAycEgf8A7qEzxTbnJDrL6ZEM tsqfSqU0W0uNJ+ctJPMDI9O42qHxw2pvgGc2CAtLSE55gHUmuFy4aufEi3k3hcWO2mG9GZ6spSyp TmAVqyBjGkeDvzO9BYNcXW0h4yESoYajqkgyWFI6RpPNSfHjI257javR4pitwusvw57BU6llplyO Q48pQykIHfnB+rG+KrLZwy/FZkFdisLbxjloForKXicZCsp8FJHdvXhnhm5N2yTGeiQZDDryFM29 2W6puMEg5KHSnUCTggAYHdQW73E0VlqNmJOVJkhSkQ0sEvAJOFEp5AA43JxuK9J4khvW5M2MxMk6 nC0WGmCXULHzkqSfmkenFVUOwX62OQ57UmPOmNsOR3m5LqwC2pzWgBzBUSnlkjwh6a5PcLXVTLbi nI0lb0t2TMiKdcaZWVABIBSCTpCRsRg7nagtTxbblRYzzDUuS5KLgRHaYJdBbOF5ScY0nY5/zq0c msMwFTpC+gYQ30q1OjToTjJyO7FY9rg+4xrE1AEW2uuokPutvIfcYMYrUSktqSknYHcZ3wNzWhnW V65cKLs0qYpb7kYNLk6d1LAHh49JGcUHhHFMLqLs1+NNix2wnQt+OUl7UcJCE8yScbYzuK8Hi63t xprslmXEXCY6w6w+zpcLf95I5EbY2NcZltv12tyW5ggR5UR9qRGW04taHHEKz4QKQUpPoyRn0VEu nDt5vrFxemGFHkv29cKO004paBqIJUpRSDzA2A23oJx4zt/WDGTEuCpKkdIyyIp1vt/30f8AKPTj mPGKtoFyiXO2tXGM7mM6jWlShpwO/OeRG+fqqIbW98qI90Cm+hagORinJ1alLQod3LCTXGz2JyJw qqzS3E6lh9K1NE4AcWo7ZHPCv30FXP4qbnS7KiAJrLUm4ICXlMqQ3Jb0qzg945HfGeYzVqOK7eqW lhLcotuOllqV0J6FxwZGhKu85BHiJ2zVY1Y+IXGrJElLt6WLTIbWpbS1lT6UIUkHBThJ3Bxk/XXG ycFqtMxlC7ZaX2mH1OInK1dPjJUnKdONQzjOru5UHKxXt2ZIcmTH7rGW/dTGQ24lPRFIKglsJ307 J8IjfPfWhb4iiy5bsaKzLdQ2pba5bbOWULSDkajzwRjYEZ2qva4bmoZioLjGWby5OV4R3bUpZAG3 zvCHo9NdbRarvaGFWlIhvW4KdLT5cUHQlRUoJKdOCQTjOeXdQRJ13TLsluai3C5uPSGEyNUWOFPr RjZagMBI1YyO/BAqd8rreExG2hInPSovWG0xWCS4kEA7d2D3Hly51SngiS2i2PKh224uxreiG8zK UpKAUnIWhQSfGQQRvtV5brC5BvESWhqKwwzbjGLLAISlZWFHSMfN5+mg9niy2KhQ5McSJSpwUWGG WSp1Wn52U92k7HOMGv1u8tG4SCtcxJbhNvqiKY3QCVDIAGoqOMY9AqqhcN3e0ORp0JcR6U0ZTbjL q1JQtp14ughQSSFDbuIO/wBdd7jYbxOenympDEWRLgMsDo3F7LStSlDUACEkKxkb7nagtbXfI90f fjpZkxpEcJU4xJa0LCVZ0q9IOD+41Z1kbLw7c7RdJ1xZiW5kyWGGkR23lkApWoqKllOScK2OO7Hp rXUClKUClKUClKUFXD/OS5/qY/8AuVaVVw/zkuf6mP8A7lWlBk7ShM38JHEEt0al29iNEYJ/QSpJ cXj6ypP7q1lZXhz8+uMP18T/AOOmtVQZX8Jn/D26/wDS3/MTWqrK/hM/4e3X/pb/AJia1VArMqsU t0TYAUqOlM0T4E1ISoIWpWpSVIyCfC1Z5ApXsQeWmqHdbkzaLc7OkJcU21jIbAKtyB3keOgpFcJS Jki4ybpdumdnxWmP/DsdEGC2tSkqQCpXeoHBJ3BOcEAd5lju11sNxtd0u8dzrkYsIcjwi2EZBBUQ XFajy5EDatBSgq5VmTKvjdyW8QlEJ6IWgnmHFIVqznbGjGMd/oqFbOG5MNFmEm4NSDaG1NNluMW+ kQUBAzlatxjJI2OeQrQ1CZubD93l2xKHA9EaadWogaSHCsDG+c/kznbxUFTJ4ZmOJnQ411SxbLit a5DJjanU6/6QNuawEhW53Sogk4PLFpc7UzcrO7bStbKFoCULb+c2RgpUM94IB38VT64vvOM9HojO v63Ak9GUjQD+kdRGw9GT4gaDPOcLXCfOVLut6S6s29+DpixehSlLmnwxlajr8HffB8HAGDq/IXC9 zjS2pZvMYPRrcuBGQxA6NpoEoKV6NZyRowRkAjGAnBzqKUFNY7Eu1SZ8t99hyRPcSt0RY5YayAfC 0FSjqOTlWd9vFXgWW5RblKett1aYizHQ88w9F6VSV4AUW16wE5AGykqwcnkcVeUoKD5Nv9rdsG4j tAP7O9D4PVuXV9Orl+lnPz98Y8Gqiy8PXSXbn4syYWLc7dJDzkVcUh1aesLUEhzUMIVhJ+aSQo4U ARjUu3Npi7sW11txK5LalsukDQsp+cjOc6gDnBG4zgnBxNoKNqy3KFcH12+6tNQpMjp3WHYvSLSo kawhesABWM7pVgk/UPTNnuEK5POQbk03Bkv9O7Hdja1hRPhhC9YCQrHIpVgk4PLF1Sgy7/CcpbEl hu4xw2q4C4R0uQysIc161BfhjWkknGNJBwcnFDwjJdg3VuRdUuSrjLZl9N1bCWlt9HpGjVunLQ2z nG2SdzqKUFH8nOsP3N24SEP9pwWoj6G2dCRoDmVDKlbHpOXdjmai/JJ9NkhxRckuzo00TlSn4+tD zuVHKm9QOBnbCsjSk52rTUoM1H4bukWLOQi7RXnbjMVIk9ZgdI0tKmkoLegOA6fByPCO2x1bk2tj tSLJZo1ubcLgYSRqxgbkkgDuSM4A3wABvirClApSlAqr4m/Na7/sL3/sNWlVfE35rXf9he/9hoPH Cf5nWX/t7H8tNW9VHCf5nWX/ALex/LTVvQVXE4CuGbik5GY6xscd1e+wYnl7h/EZHx154l/Nu4fq Ff6VaUFb2DE8vcP4jI+OnYMTy9w/iMj46sqUFb2DE8vcP4jI+OnYMTy9w/iMj46sqUFb2DE8vcP4 jI+OnYMTy9w/iMj46sqUFb2DE8vcP4jI+OnYMTy9w/iMj46sqUFb2DE8vcP4jI+OnYMTy9w/iMj4 6sqUGbtdkiqmXYF6f4MwAYuD4/8AJaO/h78++rLsGJ5e4fxGR8dflp/r14/bR/JaqzoK3sGJ5e4f xGR8dOwYnl7h/EZHx1ZUoK3sGJ5e4fxGR8dOwYnl7h/EZHx1ZUoK3sGJ5e4fxGR8dOwYnl7h/EZH x1ZUoK3sGJ5e4fxGR8dOwYnl7h/EZHx1ZUoK3sGJ5e4fxGR8dV1yskVM+0gPT/ClqBzcHz/5Dp28 Pbl3Vo6rbp/aFn/bVfyHaB2DE8vcP4jI+OuaLPb3VLS3LnLLatKwm5vkpPPB8PY1NuE1q226ROfO Go7SnFn0AZrCcH3uC3forTcsOSLzGU7LToUnTJBK+8D9FSk/U2KDZdgxPL3D+IyPjp2DE8vcP4jI +OuV+ukmAmFGhIaVLnyBHaU9nQjwVKKiBucJSdtsnFVEziO72p9+BMER6S25EUh5ptSULaee6M5S VEhQwe8jlQXnYMTy9w/iMj468OWaA0kKclTkAkAFVyfAydgPn1W3ziG4W6fPbjNMuNQYjMtaVJJU pBcUHAN+ehJI9Pjrhdr+665JLMeJIgxpUJhKnW9ep1xxJURvjwUrSR4lfVQW8i026JHckSJc5plp JWta7k+AlI3JJ117TY4SkhSZFwIIyD2jI+OsxxJcrxdOF+I5EbqbdvjtyI3RuJUXXAkFK1as4Tvn Awc4571aN3G9z5MqNaFQmW7clttRktqWXnCgLxsoaU4UBnffPioLXsGJ5e4fxGR8deG7NAeQFtSp y0HkpNzfIP8A/eqaDxLdr3cLc1bmYrEeTb25ryn0qWUZWUqSMEZJxse7nvyrjF4hkfJ63GIqFDkS VPkMNQ3HshLhGUtoIOOWSTjJ9NBouwYnl7h/EZHx07BieXuH8RkfHXjhu6uXvh+JcXWg048k60DO AoEpPPfmO+qBHEl/FkVfnUwOpsyVNuR0oX0i2w6W9QVqwD34wc45jNBouwYnl7h/EZHx07BieXuH 8RkfHVHI4gvS7dcb3ETCFvt7jo6u4hRdeS0SFnXkBJJSrAwe7x12HEE5fEiIbjkaDFcUjq6ZDCyZ aVICiUOZCQoEkacE7emgtuwYnl7h/EZHx15VY4SUlSpFwAAySblI2/8A71nvlXdG4F3kSVw2JcKI 8+m3OR3EuIKM6VairDiTjcpA586tbpeX48uFGDbK25UKQ84FpJyUJSQOfLwjmgloskFxCVokz1JU MpUm5PkEffr32DE8vcP4jI+OvFpnJ+SsO4ONNtJ6kh5TbKdKUjQCQkdw8QqhsvFV7ucmI6batyLM bU5pERxroPBKkZcUdK87DIA3ORQaHsGJ5e4fxGR8dOwYnl7h/EZHx1mPlddW+H7jPcchGfGabWYC o7jTjClKA0q1KypO+yhgbVaOXm6Wq6JjXVyAWZEV59txtKkBgt4JCyScpwr5wxy5UE9zhy3u6elV NXoVqTqnvnSfGPD2NdOwYnl7h/EZHx1mG+N5kNyYmc2iShuAZjK0RXYwUQsI0flCcglSfCHp2q1m XG/Wm3oclqgPypj7UeM202tCG3FnHhKKiVAc9gM49NBZdgxPL3D+IyPjp2DE8vcP4jI+OoluuNza v6rNdFRn1rimSy/HbLYwFBKkqSSd8qGDnx0n3G5vX8Wi1KisqajCQ+9JQpYwpRSlKUhQ/unJzttQ dY9rtktoux5k11AUpGpFyfIykkEfP7iCPsrt2DE8vcP4jI+OsZaOIJ1us0KAwyOuS5c5xxbcdchL YQ+rOEJwVZKh3jArY8PT5tytSX7hEVGkBxaClTakawDgLCVbgEYODyoPXYMTy9w/iMj468Hh6Cpa VlycVJ+aTcH8j6vDqr+Us35LLumhnp03BUYDSdOkSei5Z56f86N8RzG79JjznI8RlhTpbirYX0sh pCSQtDmdKs8ykDIGaC37BieXuH8RkfHTsGJ5e4fxGR8dUrF+vbcS13aYmEYVyeab6u0lXSMh0gIO snCiMjI0jvxVlxPe3LJBYUwyXZEqQmO0A2pYSSCclKdzgJOw50EjsGJ5e4fxGR8dOwYnl7h/EZHx 1Qo4lvTFplz5cMJat7yFuuORlsF9gjwyhCjkKT9ZBxjvr3H4iu1x6gzETDaeugdksLdSVBmMnSBq APhLOpOwIAz6NwtFWe1LmJjKkzFSEJ6VLZuL5UkctQ8PbvGa79gxPL3D+IyPjrN3adOs94nTlqYe mRbD0mQgpbUoOn9HOcfbVxcr1Ni3SLEix23y/AkSA3yUtxGjSkHOwOs/5UElyzQGk6nJU5CSQMqu T4GTsB8+vfYMTy9w/iMj46zieIZMmzF6U5b5jyZcVtcZURbao5W4kEKQsk5GcpVtuM1M+Uc/w7f0 TPagufVEp0nT0X9J0mM5/ot+fzhQWi+HoLqChxyctJ5pVcHyD/8A3r32DD8vcP4jI+OqFfEl67Hc 4jQiH2a26r/wpQrplNJXoKtecBWxONPozV1xNc5Fn4dmXGIhDjzCAUJc+aolQGD++g6dgxPL3D+I yPjp2DE8vcP4jI+Oqty9XS1XVuLd3IBZkxXn23W0qQGC2ASFkk5ThXztuXKqscY3RhFxS4ll9TVs XNju9TdYSSkgacLOVDcbjFBqOwYnl7h/EZHx07BieXuH8RkfHVNIvF6jQ4okSYDM2WVOIZaiPPqS 3gYGlJySCd1bDltVrwzd3L7w9EuTrIaceCgtAzgKSopPPfmO+g6dgxPL3D+IyPjp2DE8vcP4jI+O s+niucb7EjocjyIk6S5GQtqI6EtkJUUnpSdK/mYIAHoO1V9q4hvVt4bS9KfTPkzLk7GY0x3FFvC1 6iQFEqACdkjHcM99BsOwYnl7h/EZHx07BieXuH8RkfHWeHE1+TCQFQUCQu4sxW3X47jCHULG6tBO oFJyOZ5emvbvE13gvTrbIbiPz2347MZxCVIaX02QCoZJGnSrODvtyoLZy3Wlp9TLk+YhxDfSqSq6 PghGcaj4fLPfXcWKGRkP3D+IyPjrJXWRcrfeLu/ckwJjjFiK0AMkNuDpDspBJ7/TvVjNv19TLvKI KYKGLTFakAOtqJdyhSijZQx83n3Z5GgvewYnl7h/EZHx07BieXuH8RkfHVCOKblA6CXdGoyoku3P TW22EqC2ejSlZSVE4VlKuYA3FcYvFd9Uy7IegFTRguyAownWksLSnUlJUo4WDyyMcvTQaTsGJ5e4 fxGR8dOwYnl7h/EZHx1SRL1f1u2tMrqCU3iKtTXRtqzHdDesasq8NPPlj66r+G7zfRw5ZY6pUeTO ujjoaeeQrDSUalKKvCys7bAY5+ig1fYMTy9w/iMj46dgxPL3D+IyPjrhZrlOeuE+13IMKkQujUHm ElKXELBx4JJIIKSOZ7q/eJrnMtNrbfgttOPuSWWUpezp8NYSeXoNB27BieXuH8RkfHTsGJ5e4fxG R8dUD144oRJusNKrYXLaymR0xaWA8lQUQjTq8E+CfCye7avF44wmMQUzbethRRCRLci9VdeX4SdW FKSQlsY5E58eKDRdgxPL3D+IyPjp2DE8vcP4jI+Oqc8RTl8QMxlrjwIj3RFgyGVq62FJBUEuAhKV AnASck49NWPE97XYra28yyXn5EhEdlIQVgKUeZCdzgAnA58qDv2DE8vcP4jI+OnYMTy9w/iMj46z 44k4gTb5K1W9ZLT7aRKVAdQOjUDqX0OSo6SO494NcZFxvE28cMLhXqE4zKL+tTLK+jdKUE7jX4ts HkoZ9FBpuwYnl7h/EZHx07BieXuH8RkfHWcjcX3adPS7Dt7jsMzDH6MQnSdAWUKc6XOnbBOMchjO a0HEU+dbbX08CP0znSJStXRqc6JBPhL0J3VgdwoPfYMTy9w/iMj46dgxPL3D+IyPjrPSOLZaWbdH hvsTZEtDrqpUWG46hKEKA/owrVqyQDlW2D9VaDh+fNuNpRIuERUWRrUlSVIKNQBICgk7gEYODuM0 Ee1RW4d/ubbSnlJLTBy88t0/p96iT9lXdVcP85Ln+pj/AO5VpQZXhz8+uMP18T/46a1VZXhz8+uM P18T/wCOmtVQZX8Jn/D26/8AS3/MTWqrK/hM/wCHt1/6W/5ia1VAr5ZeTZVWW6GeG1cSpuCgrVvJ Sjpxox+kGui0f8uD4ya+p0oMFdOwDPvieJeiNw6T/wCnh/HS9F0adHVu/Vr1fM8LVz7qjT1MR59t kXY2+6XQRojb1slEdaaczu5HO++TkgAZ0/OGMV9GpQZ7jItpt0TrZItpmNied9PQ4V8//k1aNWds ZztmskrqYc4t+SuluP1SDpVCQS3p1u9KWggjI06vmEeFq31ZNfTqUHzVmKwzarpIsV3t0lhTTCZM ewxSylDfSjpF+C4v8p0fSDbCth4hVjJTwwI0A8Mi39H2rDDpgadGdZxnTtq5+nlnurc0oPnMdbDN 4uLVnNvutyealuNT2COuRnPCw2+N8pBKUpJI5Aads1Itg4fVcbGrhvoTcg6e0Czjp+i6NXSdZ/Sz r0/P3149Nb6lB8zTbmY/AbMtlDLPWJyhcZTrJdyx0zmQvCkqLYOnI1Aac52znp1G1osMwt8TWIQX pjRQhqNotwcSgktqT0pThQAJAUBkA4JOD9IpQYiJIjSoPC/U7c1bx2o6WWI6tTYSEPhS0EAZbUCS DgAhQ25Vt6iqgRl3JFxU2VSW2i0hZUSEJJBIAzgEkDJAycDxCpVApSlApSlApSlApSlApSlAqr4m /Na7/sL3/sNWlVfE35rXf9he/wDYaDxwn+Z1l/7ex/LTVvVRwn+Z1l/7ex/LTVvQVfEv5t3D9Qr/ AEqzOcbVWcS/m3cP1Cv9Kszy2oMZw64t27obu91uTF7QVqdhuuaWHk7j8mnGlSQCDkbjG9XLHE8Z +z265Jjuhu4PoYQk4ykqUQCfRtUcWK8TbhCdu9xhvMwH+na6vFLbi1YIGolRAG++AM1Ej8JXJhmB B7UZNvt01MllAYIcUkKJCFK1Y2zzAHIUExnih6dHmSLfan3mGA6G3i42AtbZIKSnVlO4PMd31VBt 3Gznybtky5Q9E64NhTTQebQlwBIUV6irCU78ic+ipcfhmSb8u5y34qNTTjShDYLRkBXIu+EQopA2 25mojfBs1u32xsy4Lsm0pUywXYpU04yQBpWkqzq8EHII5cqCW1xrFkNQjFhSJD0x51hLLakEocbG VAqzpx6QcYqHcuM5qYkJ232p3p13MQZTDq0BTauZSDnGSMEHlirRiwvJlWqS67GSuCp5TiY7HRoX rGBgZOMbc85xUWXwrIdRKXHmNIkLuqLiwVtkpSUpSnSoAgn5p5eOg73PikWd5vrtueajlTaXHy63 hJXgbJ1alAEgEgeOoHE/Eji7LfGYNvlvMxWXWXZjRSEtuaNwASFHTkZIG32VyufBEy4rnapsL/xr rbynlxdTyCnTlCVk7I8HYcxmpU3ha5uRrtb4V0ZZg3NTjigtgqcaWseEEqzjSTvuMjJoJCeIXGgm HBtkq5OxY7apJZUhIb1JyBlRGpRG+B4x46uLdPj3S3sToqipiQgLQSMHB8Y7jVN2DdIMx+RaLhHZ 6422mQmQwVgLQgIC0YUN9IGxyNhVraLY1Z7TGtzClKbjoCQpXNR7yfrOTQcrT/Xrx+2j+S1VnVZa f69eP20fyWqs6DJ8ZO3dNyszdmkrbf1vO9FqwiRoRq6NXoO49BOa59vKuV+tr8KQ6mLItEp0taiM OJW0PCH95JKh6N6vptsVLvFtnh0JTBLpKMZK9adP2YqrTwh0PFb94jytEd+M62qLo2S64U6lg+nQ Mjx799BmrVPYXwXLnRrxe3bmizuOrMlb/RpXo3UkrATkHlg1qb/Lkx+G4LzL7jbi5UNKlpVgkKdQ FA/WCQfrrlabDeWLUiy3SZb5NtTEMZSWY60OKTp0jcrI5eijPDl3dTCh3O7MSLfBcQ4hLcYodeKN 0a1aiNiATgDJFBAk2dZ47ZgC83hMd6E7JU2me4AFhxIGN9hhR2qol3NZud2ajXm6C+JuBagRUuOF hWAkhJBGjGNRO+cZrcuWhS+KGbz0wCWoa4/RadyVLSrOf/TUJ7hYSLbdIjknSuZMVLYeQnCo7mE6 CPSCnPpoOKmZPEd9uTC7jLhwrctDKG4jvRKccKAtSlKG+BqAAHiJ3qRYH5ce6XKyypTktMPonGH3 cdIW1g+CojmQUnfvBFeF2S7x5q7jbLjGalSm0Ca28wpbLq0jAWkBQKTjbmdgPFU2zWhy2qkyZUrr c6YsLfeCNCdhhKUp3wkDluTufHQWtVt0/tCz/tqv5DtWVVt0/tCz/tqv5DtB2udtj3eCqFL1llak qWEqxq0qCsH0bb0uFsj3IRxICgYz6H2lIOClaeX+RIPoNSiQASTgDmaiNXi1vsOvs3KI40xs64h9 JS39Zzt9tAudqi3eKGJQWAhYcbcbWULbWOSkqG4IqD8k7auDLjSDIkqmaemkPPEunScowru0ncYx g1ZRrhCmOOtxZjD62ThxLTgUUHxHHL7a8MXa2yS8GLhFd6vu90byVdH/ANWDt9tBEgcNwoEp+V0k iS/JZSy85JdKytIzgH955V4jcK2yLZGrO0l0RmnkPjK8qK0rCwSe/cD7BU1i72yTGdkx7jEeYZGX XW3kqSgc9yDgfbXlV7tSW5K+0YqhETqf0vJPRj/m32+2gr53BtsnmalxyWhifkyI7b5S0tZGCvT/ AHuXoyM4rrL4XgypKpCXpkVbraW3+rSFNh9KRgasd4G2Rg476927iizXK0s3Nq4R247ydQLrqUlO BqIVvsQNyO6pXa9s6y1G7Ri9O8Apprpk6lgjIIGcnI8VB4i2aFDmIkxmi0puMmKhCT4KW0nIAFQR whbkNxUsOy46oocShxl8oUpC1alJURzBP2irp11thpTrziG20DKlrVgJHjJqO3dra7FEpu4RVsKX oDqXklBV4s5xn0UH5arZGs1uat8NKksM50BRyRkk8/trPWHg5tEJs3LrKVJlOvqidPllSulUpCik bHbSccs8xmr4X2zlpt4XaF0bqy22vrCMLV/dBzufRXLia5v2fhybcYyUKejt6kBwEpJyOeMUHCRw lbZEh9alykMyV9JIiofUll5XeVJ9ON8YB7811e4diSLimY+/LdSh1LqIynyWUrSMBQT6PFyz3VMl XW3QXUNTJ8aM458xDzyUFX1Anev2ZcoNuQlc6bHipWcJU86lAUfRk0Fe1wtbw665JclTi4ytgCW+ XAhtfzkj68DfntzrlF4Pt0Z9t8vzX3GWFx21PyCvQ2oAFIz9Q9P11aLutualNxHJ8ZEh3HRsqeSF rzywnOTUWz3N+4S7s08lATCmlhvSCCU9GhW/pyo0EyJCZhW9mC0klllpLSQrfKQMb/ZVdA4Yh206 Y0mcGEoUhuMZKi20D3JHdju8Xdipq7vbG30sLuMVLqnOjS2p5IUV7eDjPPcbemoU6/KiXlq3paiL LpSEhc1CHST3hs7kAeLf0d9BV33hALsFxbiqlT50ppDIXKf1K6MLCtIJwAOZ8ZqyTwnbD1nrJkzO sMqjnrLxX0bR5oT4gcDfnsN6sJF1t0WUiLInxmX3PmNOPJStX1AnJqUSACScAczQUbPCFsQ849JX KnLdiqiOGW8XNTSiCU/5VEtvDi3WLlb7oqY/C6ZIiKkSMrSlO4KcEkaTjCs5PeBV2zebXIQVsXOI 6lLgbKkPpICycBPPmTyHfSdPTHWhlp+Il8rRqbfe0HQpWnIHPJ3A8Z2oOVtsca2vuSQ9IkyXEBCn 5TpcXoG4SO4DO+3Ovy42GLcZrU4vSY0ltBb6WM8W1LQTnSrHMZ39HdXDiTiKPZ7ZNUzLidoMR1Ot x3HBqVgZHg5BIqe5dIMZbDUqbGYefA6Ntx1KVL+oE5NBWjg+1tQY0WOZMYxHHHI7zLxS42XFFSwF d4OeRz3VbQoiYUVEdDjroR+m84VrUeeSTXKRd7ZEcLcm4xWVhQQUuPJSQojIGCeZFRvlLahxEbCZ bYmhkO6CtO+SQEjfOrbOMcsGgivcGWt951Slyw07IEkx0vkNB0KCtQT4yR9VSRw7EN0E95+XIUha nGmnniptpSgQSlP1EjflnaprFygSpLkaPOjvPtf0jTbqVKR9YByKTLlBtyErnTY8VKjhKn3UoBPo yaCticJW2G+ypC5S2Yy9ceK4+pTLCu4pT6M7ZzjuxU+6WqLeIfVpaVaUrS4haFlK21jcKSobgivc u5wILKHpk6PHaX8xbzqUJV9RJ3r8kXS3xIyJUmfGZYcxodceSlCs+Ik4NBDHDkVUdpmRJmSktyEy D1h8r1qT80K7tIODgYGQK5L4TtxaShpcmOpt9bzDjLxSpgr+clB7kn+6cjerdUhhuMZK3m0sBGsu lQCAnGc55Yx31FN8tCUPOG6wglggOq6wjDZPLVvt9tBwPDsB0uGT00ouwzDdLzmouNkknPp3O9R4 vCMCK+iQJU915uOuMh12SpSkNqxsD3Y0jB5/XVk/drbEjtyJNwissvf0bjjyUpX9RJwaSLrboadU m4RmE6Oky48lI08tW55emgr2+E7eEOdM7KkvOuNLW++9qcV0StSE58QOdvSal9hwe3+2+jPXOh6H OfBxnnjx92fFX6/c2mXmXOtQkw1srdU4t8BRAx4SRyKd9znbbx1WcOcTN3OxqvM+4W9uOtfghCwk MDuQtRVgqxg93PlQdjwjbC+o6pIjLd6ZUIPnoCvOrOj/AKt8cs91e+Lre/deF50CO10zr6AkN5A1 eEM7n0Zqa7d7ZHiNy3rjFbjOfMeW8kIV9Ss4NRU8T2hV/FkE1oyywl5I6ROFAnASN8lXfjxYNByR wnbcyOsqkzOsMKjkyX1L6No80p8Wdt+ew3rmng22kPdM/NkLeiLiLcefKldErGw8WMVaMXa2ylPJ j3CK8pgZdDbyVFseNWDt9tfjd4tbq3ENXKItTTfSLSl9JKUc9R32HpoI87h+JOfjSC7JjvRmy0ly O8UKUg4yk45g4B+ypFptUWy21q3QkqEdnVoClZIyoqO/1k1FtXFFnu9qVc405kR0EhxTjiR0e5Hh b7ZxkZ7qlm7W1METjcIoiHlILyejP/qzigrI3B1siyYryHJZTCeL0ZlT5LbJIIISnxeEfqr0rhG2 qYkMa5QbekdZQkPkdXdyVamzzSck/v8AFVyy+zJZQ+w6h1pYyhxtQUlQ8YI51FavFrkSDHYuUR14 L0dGh9KlatzjAOc7Hb0UEdHD8bq7LT0iXJLMlMlLj7xWorTy+z0DFJvDdunuTXJCHCqaGgspWUlJ bJKFJI3SQTnNTkzoimWn0ymS08oJaWHBpcJ5AHvJ9Fee0oHXuoddj9bxnoOlT0mP+nOaCq+R9tUJ RedlyHZkXqrzrzxUtTec8+77KmmxQiq4Kw5m4spZf8L9FKSkY8WxNS5UyLBYL8yS1HaGxcdWEJH2 mvTD7MplD8d1DzTgyhxtQUlQ8YI50EFdggOGF0jalphMLjtpUrIKFJCVBXj2SKjxeFocWM9FEqc5 GcYVHSy7JUpDSFDGEg+jYE5xU5N4ta5CI6blEU86SENh9OpRBIIAzk4II+yvYuUAyeqibHL+VDou lTr8EAq2znYEZ8WaDiLNEC7csBebakpY8LuKNG/j2qAjg+2NwhEQ5LSht4vR1B8hUZRznozzA8I7 b86tId0t9wWtEKfGlKb+eGXkrKfrwdq8C82ouPNi5wytgZeT06ct748Lfbfx0EJvh7qha6nKfSpc pL8x910qdkBKSAknxZ07bDAPjqwuFuYubDbMjVpbeQ8nSceEhQUP8xXR2ZGYWpL0lptSW1OkLWAQ gc1fUMjJ5VHXe7S0yt5d0hoabX0a1mQkBKsZ0k52OCDj00BVnirkzpBC9c5lLL3hbaUhQGPF841W P8E2p9tTRXLbZcjJjPNNyClLyUp0pKh3kDv/AH5q2eutujtIefnxmm3EFaFreSkKSMZIJO43G/po i7W1yQ1HbuEVTzydbTaXklTifGBnJHpFBCc4YhvSmXXZEtxphTa0RlvktBSMaVafGMA+LO+Km3O2 RbvCVEloUUFQUlSFFKkKByFJI3BB76mUoKgcPoEMx+07nrLgcL/Wj0mwxjPLHoxXM8KW0R4bLSpL Kobynm3m3iHCtWdZJ79WTn66u6UFOxw1Di3BUuM/MZQt0vKjNyCGVOHcq0+k7kcie6ptwgC4xwyZ MmMQoKDkZzQoEenvHoNS6UFErhG29WjttLlMOx1rcRKafIe1L3WSrv1d4O3LxVaw4qIUVEdDjrgR nw3lla1ZOSSTz51IpQVcP85Ln+pj/wC5VpVXD/OS5/qY/wDuVaUGV4c/PrjD9fE/+OmtVWU4SUmZ xFxVc2lBTL09DCCORLTSEqI+3I+ytXQZn8IkaRM4EubESO7IeWhGlplBWtWFpOwG52rh+MBv/CvF P8KX761tKDJfjAb/AMK8U/wpfvp+MBv/AArxT/Cl++tbSgyX4wG/8K8U/wAKX76fjAb/AMK8U/wp fvrW0oMl+MBv/CvFP8KX76fjAb/wrxT/AApfvrW0oMl+MBv/AArxT/Cl++n4wG/8K8U/wpfvrW0o Ml+MBv8AwrxT/Cl++n4wG/8ACvFP8KX761tKDJfjAb/wrxT/AApfvp+MBv8AwrxT/Cl++tbSgyX4 wG/8K8U/wpfvp+MBv/CvFP8ACl++tbSgyX4wG/8ACvFP8KX76fjAb/wrxT/Cl++tbSgyX4wG/wDC vFP8KX76fjAb/wAK8U/wpfvrW0oMl+MBv/CvFP8ACl++n4wG/wDCvFP8KX761tKDJfjAb/wrxT/C l++n4wG/8K8U/wAKX761tKDJfjAb/wAK8U/wpfvp+MBv/CvFP8KX761tKDJfjAb/AMK8U/wpfvqF eeNev2SfDZ4W4n6SRGcaRqtSwMqSQM/vrdUoKrhhl2PwraGXm1tOtwWUrQtOlSSEAEEHkRVrSlBV 8S/m3cP1Cv8ASrSqricauGbknJGY6xkHBG1fvYTXnC5e2L99BaUqr7Ba84XL2xfvp2C15wuXti/f QWlKq+wWvOFy9sX76dgtecLl7Yv30FpSqvsFrzhcvbF++nYLXnC5e2L99BaUqr7Ba84XL2xfvp2C 15wuXti/fQWlKq+wWvOFy9sX76dgtecLl7Yv30H7af69eP20fyWqs6zVrsjapl2BnXAaZgG0tYz+ RaO+9WPYLXnC5e2L99BaUqr7Ba84XL2xfvp2C15wuXti/fQWlKq+wWvOFy9sX76dgtecLl7Yv30F pSqvsFrzhcvbF++nYLXnC5e2L99BaUqr7Ba84XL2xfvp2C15wuXti/fQWlVt0/tCz/tqv5DteewW vOFy9sX76rrlZG0zrSBOuB1S1DeWs4/IOnbf0UEzi2DMuXC0+HAJ6w61hICgCoZBKcnbcZG/jrIz LIZ1iu7kaLeXJLsARg3LjNtZGoHSlKEp1EYO+432NbPsFrzhcvbF++vIsjKiQLjcSUnBxNXt/nQU fENgku3J1Nnihgu2Z+OFtjQkq1IKUEjlkaseLJr8nNdp8OJiwOH5MbqrjC3objAaDzaFgqbSeSth 48H7av8AsFrzhcvbF++nYLXnC5e2L99BlrvCkXhu7y7dZ5MVpdleilDjPRLkOK3SkI5nSAd/+bAq zesgbvdpMWCG2k29+O8tKMJGQjSlX2g8/TVt2C15wuXti/fX4bGykEm43EAcyZi/fQZS1Wd2Xa+E 4cy0vITbnFJltvs4SFJZUAT3KTqxg8icVy4hh3WZImMIt8tKm5zK2ERojYaU0laCFlzBUVAA7Agj HLG9bDsJrGe0bjj9sX768M2iLJZS8xdZ7rSxlK0TlKSoegg0EXjaBLn2dlMRDzgZltPPNsBJWttJ 30hQIJGxweeKolWFMqOl5uNc5HWbpFXIE5hDepKDurQkDAwcEkb4rV9gtecLl7Yv315FjZVnFxuJ wcHExe3+dBQzOHkOSeLli1pV1uIhLBDX9IeiIIT6dWOXfip9/iS5X4PH4iGXHZa4aE9GBlZVgZGP HVj2C15wuXti/fTsFrzhcvbF++goZLCoN2vnXbFIuXaJSY7rTIcSpHRhPRqP6GFA88DfNcLfAl2G bFdu9sfuQ7MYjNusNdOWFozrSRzwrI8LvxvWl7Ba84XL2xfvp2C15wuXti/fQY3iiNd7gq5Mt26Y lfTsqjJjRUaHG0lBC1OYKtQwRpBBGB3b1quH4r8effVvNLbS/cS42VDGtPRNjI9GQR9lSOwWvOFy 9sX76dgtecLl7Yv30GZl2Bx2wcWk20rlSZjjkclvK14SjQU/aDjHfUTiWLeJ7lxYECZ0geZVHEeK 3odQnQdanSCoqBCtgQRgfXWvFjZJIFxuJI2P/jF7f5167Ba84XL2xfvoMzLhusN8QW+TYZE+Tcnn Fx30NBaHEqSAgKWfmaeW+MYyKub5a7jJ4EetjDhcndUS2SFYLigBqGT/AHsEb+OpvYLXnC5e2L99 OwWvOFy9sX76DLxeHGruxPUkXZqQuEGG1zo7bKUKCgtGAhKclKkg53G+x3r9TAulyt4u8yA81Ol3 GIVRynwmmWlp5juGdavqVWn7Ba84XL2xfvp2C15wuXti/fQY66W+SLDf7U5YJEu4SX3Xm5CWQpDo UrKFa+4pTgaefg16udkkOXm7Nz27s4xcej6IwmGnEKQEJToUpSSUEKBPMDfI3rX9gtecLl7Yv307 Ba84XL2xfvoKJVg6WVxUX4BeEiO20wt1GougMYwD3+F/nUVm23Fq8RnlRZCXZdgbiJkBvPQvp1El Z/R+cNz4q0/YLXnC5e2L99OwWvOFy9sX76DL8J2ctSrYJTN3alW5lSSHmGkMoUU6VALSkFYJ3G58 Z3qz4nE5d2jtoiSFRFR1gPRYrbzhcJHgErBCEkd+MHvO1WvYLXnC5e2L99OwWvOFy9sX76DI2GFM s7Nnl3WzypSEWpEYJQz0q4zgUSoFPPwgUjIH6Nfi7VKhW2NITCmsTEvSnYbLMZMhtltxeQ04nkMj HIjG4zWv7Ba84XL2xfvp2C15wuXti/fQRL1HmTOAJ0YwwiY9bFoMZncBZbI0px6dhUNNgZTxVZ30 2xAYYtrral9ENKVZb0g+nGvH21b9gtecLl7Yv307Ba84XL2xfvoMdHh3SJChQV26U3GSJSUqjxEO uAl9WlB1ghCCjBBxg7b1L4VschMuzLuVvX/4azFkl5GejX0g8HxZ0/5VonrRFjt9I/dZ7SMgalzl JGScAZJ7ycV6FjZUTi43E4ODiYvb/OgzvD1omRZVoQ7CcbZjt3BshSNkJU8OjH1FI29FQuxbgxY+ GnVx5rTcNLgktRWULdbWoYSvQoHONxsMjVWx7Ba84XL2xfvp2C15wuXti/fQZN+0JhW6JJgx7x1s OSHWelhIdGVkakrbGAgKwCMacZO4qYGLnF4nYuS7R+Xk2VDAS0jU01ISpSihSh81O4APorQdgtec Ll7Yv307Ba84XL2xfvoMTEgXSROiPmDORi2SmXkriIYbbWUpwhISMkZBwSSD3d9XMOxmIeDyzb+j MZtSJJDeCgGOQQv614599XvYLXnC5e2L99OwWvOFy9sX76DEt2m4o4etkbqM9nsu4OKlpZYSVrSS 5pWgKBS4BqB5Hn4xU1doYZtaJTTd8D6p6pLbi4aFrQ5o0EqZAA0kegHO+3OtT2C15wuXti/fTsFr zhcvbF++gitsXSbwQ5HWy3BuT8NxAQ2NKW3CkgHAJx3HntWdQWTdOE2m7C9b1xX1NLU8yEaT0C8p Sf0xkZyNtq1nYLXnC5e2L99cXuF4ch1l16VcFrjr1tKMxfgKwRkb+IkfbQZmEzckWmw2Vdnmpdt1 wb6w6pv8mEJUrC0q/SByOXLvrxaLDIRNah3RN4VJZuCpHSIZa6BZ1lSXOl06sEYBGrPdjFa/sFrz hcvbF++uTtpisFsPXWc2XFhCNc5Q1KPIDfc7Hagj8VqmjqHV4zrkfpiX3WIyX3WvBOkpSoHmdicH Fc+BocuFZpLUth9lRnvrQl8AK0KWSDhPg757tqsewWvOFy9sX76dgt+cLl7Yv30GGgxlT+GJFqiW Z/rsm5vLRNDQ6NOJKj0hc7ikDGOe23OrV/huRJt3FSmYWmdNlK6Fa/BU63pR4IV3JVhQ+01fReF4 cJnoY0q4NN6lL0pmLxlRKiefeST9tduwWvOFy9sX76DPPxH7zPjOWi1SLQqLEkNLefZDOCtGlCAB 84BWFZGw08965qiuS+CJFmh2GRDnMQ0pLa2QhC1pIJSlzkrJHP7TWl7Ba84XL2xfvp2C15wuXti/ fQZi7GdfJ02THtE5ppXD8phBfa0KU6pSCEBPPO3291SJsF+2xLLFh25xqIlo9O5EiIdeQ7pSAMKB xq8LKsdwzir/ALBa84XL2xfvp2E15wuXti/fQZThqxS0PcP9ft7oTDRP1B5APRFTo0ZxtunOMbeK vcfh5cbh9pLNsLchF96dIS3hSUdYPhDxDR/lWo7Ba84XL2xfvp2C15wuXti/fQTYsnrTSl9C81ha kaXkaScEjOPEcZB7xXeqcWiKX1MC6zy8lIWW+vK1BJ2Bxnlsf3V07Ba84XL2xfvoLSlU4tMVUhUc XWeXkJC1NicrUEnIBIznBwf3GunYLXnC5e2L99BaUqr7Ba84XL2xfvp2C15wuXti/fQWlKq+wWvO Fy9sX76dgtecLl7Yv30CH+clz/Ux/wDcqLf4PEdxeTEtdxi26A4gB+QEqVJBychH6I2xudxvXu0x RDv1zbS886C0wdTzhWr9PvNdb3eJVnSy4xZZtzbVq6UxNBU1jGPBJBVnJ5eKgkWi0xLHamLbAbKI 7CcJBOScnJJPeSSSfrqdVdZr3Av0Iy7e6VoSsocQtJQttY5pUk7gj01Y0ClK+bcH8DcPX6wm43OG 6/KdlSAtzrbyMgPLA2SsDkB3UH0mlZL8V3B/mx726R8dPxXcH+bHvbpHx0GtpWS/Fdwf5se9ukfH T8V3B/mx726R8dBraVkvxXcH+bHvbpHx0/Fdwf5se9ukfHQa2lZL8V3B/mx726R8dPxXcH+bHvbp Hx0GtpWS/Fdwf5se9ukfHT8V3B/mx726R8dBraVkvxXcH+bHvbpHx0/Fdwf5se9ukfHQa2lZL8V3 B/mx726R8dPxXcH+bHvbpHx0GtpWS/Fdwf5se9ukfHT8V3B/mx726R8dBraVkvxXcH+bHvbpHx0/ Fdwf5se9ukfHQa2lZL8V3B/mx726R8dPxXcH+bHvbpHx0GtpWS/Fdwf5se9ukfHT8V3B/mx726R8 dBraVkvxXcH+bHvbpHx0/Fdwf5se9ukfHQa2lZL8V3B/mx726R8dPxXcH+bHvbpHx0GtpWO/B3DZ t7PEEKMlSWI96dbaSpal6UhtrAyok1saCr4l/Nu4fqFf6VaVV8S/m3cP1Cv9KtKBSlKBSlKBSlKB SlKBSlKCstP9evH7aP5LVWdVlp/r14/bR/JaqzoFKUoFKUoFKUoFKUoFVt0/tCz/ALar+Q7VlVbd P7Qs/wC2q/kO0EqdMZt8GRNfVpajtqcWfEAMmsJwde4Av7DTVwYkP3uOqRKQ2vJRIBKsH/0K0/8A 4xW2utsZvFvXBkrcSy4UlYbOCoBQOPqOMH0V5uFojXHqpc1tqiSEvtLaIBCk525ciCQR4jQeL7dD Z7U5LQz07upDbTerSFLWoJSCe4ZIzVNN4gvNlMhq5MwnXDAflR1x9YTqbAJQoE57xuD3HYVoLjbo 11gOwZaCtl0YIBIIIOQQRyIIBB9FQGOGIiVuuTJMu4uOMKja5bgUUtK+ckaQAM4GTzOOdBxuN7ns u22PCYZW/PivupDmcBaGwpI2PIk4NV87irr1q1xojD7C7Q7NlIfSVADGEtkelQUD6EmrKBwlFgTo Uwzp8lyA2tqP1h0KCEKABTskeIb8/GTXtjhS2x4t1jNdMEXUrLx1DKAoEaUbbAZUQN9yaCGi73Wb Jdh2iNCQ3CjtKeL5UNSlp1BCAOQCcbnPMbVWcMXW5Lstns9rbjJkC3pkvOydSkISVFISAnBJJB7x jHpq/e4XiuS+sMy5sVS2UsvBh0JD6EjCdWx3AJ3GDXJvhCDHjQm4cuZDcgs9XbfZcAWpvOdKsghQ zvuNqCtPFd4kuwoEKFEE956TGf6Vai0240AdQI3KTnOOe+PTXVN8XEhXJxtFvhvJuamCpaV6XVaE kq0p8Jaj4h3D0VaxOGoEJ+C8yXtcIuqSpS9RcU5jWpZO5JxXN/hWG6pTjcmXHfMxUxD7SwFtrUnQ oDIIwU7YIPOg/eFr47fbc+6+0lD0aSuO4UJUlKynB1BKvCAII2NcZd0vLvEci0WxqGlLMVt/ppOo jKlLGnCTv83n3b86sLPZY1kZkNxnH3OsyFSHFPL1KK1AA7/ZVTKsEidxhLm9YmQm1QWWkSIzgSVE KWVJ3BHeO76jQcoXFNxvXVIttjRmZjjLjslUgqU21ocLZCQMFWVA45bCuUni64MwkdJHixXWpbkW XJcC3I7JQAQrwcHCsjGSMd9WquE4CWoYhPSYDsNstNPx3BrKCcqCtQIVk77jnvX6OGWWoSIsW4T4 uFrW6406krfUv5xWVJOSfsx3UEB/iS4N3eJCU5bo7brTSkvvay3KUrOpLSxsCMbZyTkbV0d4mlN8 O3W5hhouQZrkdCd8KSl0IBO/PFdl8HwFR2IQkzE29hLaRBDo6JWggpztq5gE4IzivMzguBNVLSqZ ObjzHg+7GbeAbLgIOoDGdyASM49FBKs0lL90vTaYzLJYlpQVtpwXfySDqV4zvj6gKg8Q8Tv267N2 qGhPTGP1hx1yO88lKdRSBpaBOSQdzgDHfV1DtrEGVNkNKWVzXQ65qOQCEpTt6MJFRrlYWbhNanIl SoUtpBbD8VYSpSCc6SFAgjO/Lagol8XXJXZ2uNGtYlMhanLglwIU5qKS2CMaTtkFXjG1SHb5f35V 5TAjQeitT2kF4ry8OjSspGOR8I78txtzqfP4ZZuLCY0i43AxuiDTrPTApfA/vEjOT3kEVWMcLLmX O+rkyJ0NiXKSNDDoSmQ0GW04OxIGQoZGDQcrxxu9EgN3CF1RTfUkzFxlodW8UkaseAMI25FW32VZ N3i6XW5PsWluI3HidGHnJOpSlqUkL0pCcYwlQ3OdzypO4Mt00SkJkTIrExhLD8eO4EocSlOlPcSM J22IBA3BrhdbG9FuESXaHZrTjzjTUtDKgEutpGNSiQQkgd4GSBjxYDnI4kvCoVwvEOLDVbLe46lT bildM8lokOKBGydwrAIOcd2a1DTqXmEPI+atIUM+IjNUkjhCDIdkDrU1uLLWXJEJt0Bl1R+dkYyM 94BANXoSEo0pAAAwAO6gx8Him9uWe23uXEhJhTHW2nGm1K6VOtegLB5YyQdPPHf3V0d4vkMcQR4m YkiK/N6phhDpW2d8EuY0ZyMFPMZ5nFeeF+Eegslq7RdmhUUB3qK3QWkOgkhWMZ2O4GcA91TkcGQG 3o6hLnFmLL60xGLo6NpeSTgYyRlR5k4ztighw+JrvItEq6SUW2JFQ64wwXVrytaXijJAzsQNkjcn xZqfwvf37yZzElDfTQnUo6RttbaXEqSFAhK/CHPFdV8LwVWdFtS9JbQ1IVJaeQsBxtwrK8g4xsVH mDtXe02Ni0PS32pEh92YpK3lvrCiSkac8hjbu5fVQQOJr9KtTiGobsMOFpTpbdQ66teO4JbGQP8A mP7qrId8u9z4qtkhh9lm3S7QmYqOtKiQCU55HGrfY45d1Xtx4cjXGeqYZUuM44z0DwjuhIeQCSAr YnbJ3GDua8R+FocRdrXHkSmlWyMIrelafyrQ0+Cvbf5o5YoKez8aTrrNhLRB1QpqiEpTGfC2U4JS tThToUDgZA5Z5mvVu4ovL0WzXGZEhphXN8RyhtSukQpWrSvfbBKeXMZ591XFt4bYtLqeqzpwitlR bhl0FlvPcBjVgZ2BJAr03w3CbttugBb3RW55DzJKhqKk5xq23G/ooMxerrd7zw0i4hiIi2SJjAaT qV0wQH0gLJ+bvj5uNgedTnb/ACoa30W+3xA89fepHIKQrLeouKI/S2H2Cpq+Cbetox+uTkxA+JDc UPDo2lhevwRjOM9xJG+2KlnhqEXulK3s9odf+cMdJp045fNx3f50FG/xNxHGZu6nIlvJsZCpKgpY EhBQHPAH6JCT353pc+Npbc+YzbYYeTB0haFRn3FPqKQvSlSElKNlDdWd+4Der9/h6HJau7a1vYvC dMjCh4I6MN+DttsO/O9cXeGI5mrlRp8+Gp5KUvpjuhKXtIwCcg4OABlODigrJfEl8Lt7VBhxOhtK UOESCoLdBZS4U7bBW53O3Lbvri1e7oeL5UhUloWlu1NTCwUKKkoOonG+NW3PxYrQqscVRupKnf8A 6qAH/CG35MN+DttsO/O9cU8NQ0T48tD0hKmoqYi2wpJQ80M4CwRvzPLHOgr2OILy23bZ8+NDTBub rbaG2VKLrHSfMJJ2V3A4AxnvrU1QRuE4sNTBRKmSGoZ1xIsh7U0yoAhONsnGdtROO6rS1x5EW2R2 JkgyJCEDpXSfnK7/ALM8vRQVkS6XW6XOSILcRu3w5XV3FPalOOlONZTjATjOBnOcd1Vy+Kbr2U7x C3Gh9kNuK/JEq6dTaV6SvPzQdidOOXfVwnh5lq6OT4s2ZF6Z0Ovx2lp6J1YxuQQSCQBnBGajng+A VrR1mYIS3umVADo6Ar1ajtjOCrfTnHooK6XxPe2mbxNZiQlRLRLU24FqUFutpSlRx3AgKPPOfEK4 dtXuNxDxQ8ZEd2Hb4bT7TCkK2y24pON9iSPC8e2MVoF8OwnIF0hKW90d0cW4+QoZBUkJOnbbZI55 ovhuG5cn5pdfAlRxHksBQ6N5IBA1DGcgKPIigjTeIlwnrSXW0dDMjvPvnfKdDYX4P+fOqWdMvU9X DUycxDaiyrky6220pRcay2spCidlHB3xjB8dXMTg6DGkxH3Jk6WYTS2WESHQpKW1J0lOAkZ2A3O/ pNGODYTK4WZ091u3vB2I048ClrAICRtkjBxuSdudBBPFF2FpHEXVYnZHSY6LUrpy1r0a8/Nz36cc u/NaW4zm7ZbZM54EtxmlOqA5kJGaqhwfACuj6zM6j03TdQLo6DVq1csZxq305xnuq6fYalR3I7yA 406goWg8lAjBFBkIHGF2kKUTajJC4jj7bbMZ9strSnUltSnEgK1cgR391RLrxFeZfB8mbDuNvS+3 IYSrq6HEra1LSChQUcpO4+sZ2FaWFw2mCwphu7XNTXQllpC3wehT3aTjORjYqzXM8IwXIc9iTJly XbgEB6S4tPSeAcoxgADSdxt9eaCrufFlzhTnbcy0w5KhsoXIUIr7iHVqBIQnQDo2HNRPPlWqgyVS 4EeUtlbCnmkrLS/nIJGdJ9Iqqd4XacfElu6XFiSWgy8806lKpCRnGvwcZGTuADvV0hOhCU5J0jGS ck0GRY4pvSojNzdiQxBNxVDWhKldLp6YtBY7ueMjv33HKoku5x4/GDLwaiyA5PTGWWVPlaFHwQVq /ozg48A8u45rSjhuEm0ptut7oUyutA6hq19L0vi5av8AKovyOgh9CxMndC1M641H6UdG25q1HAxn BJOxJ57YoITnE937Ldv6IsTslpxQ6IqV0620r0FYPzQdiQnHLvzWmmy24MB+a7ktsNKdVjngDJqo VwfAUtaOszBCce6ZcAOjoCvVqO2M4Kt9Oceirt5pt9lbLqAttxJStJ5EHYigx/Dd/kzb0harcEou iOlccbjvpLJSkaQtbgCVDG3g4Ge7fNX9+ur1sjR0xGUPS5khMdhLisICjk6lY3wACdvFXm02BFoU gM3Ge8w0jQzHeeCkNp7gNgTjkNROKk3a0x7zETHkKcbKHEutOtK0raWnkpJ8fvoMg7eJ9i4gvc+5 ssPPs2+KlsRtQS6VOuJTsckbnfny28VXXDt+n3K4SIkyN4LbSXESW4zzKCSSCgh0A5GxyOYPdXsc HW5ZnKlvy5i57KGX1vO7kIJKSNIGkgq7vEKsbbbFW7XruM2aVgDMpwK0geIAAfbzNBzlXN1jiKBb UoQW5TLzilHOQUaMY+8ao5XFs9qI66liO0hFyeiLlOIWpphCM4WsJ33wBnIAzV5dbIzdXosgyJMW TEKi0/HWEqAUMKG4IIOBzHdURjhViHCMWFc7jFCpDj6ltupKlqWcqzqScjP2+mg4JvV3nzEwLZ2c p5qK3IkSVlSmVayQkIAIJzpJyTttzqzsN0Xd7WmU6yGHkuLaebCtQStCilWD3jI2qEng+BHTGFvk TLcuOwI4cjOjUtsEkBWoEHck5xkZNWlut8a1QW4URBS03nGpRUSSckknmSSST6aCND/OS5/qY/8A uVaVVw/zkuf6mP8A7lWlBk4aExfwq3FphIQiXaWZDwA+c4HVoCvr07VrKyrf/FqR/wBha/nuVqqB WV/Bv+Z7f7XK/nrrVVlfwb/me3+1yv566DVVWzuIbJa5HV7heIEN4p1dHIkobVjx4JBxVlVFxHNl KDFltjpbuFwyA6nnGZGOkd+sAgJ/5lJ9NBaw5sS4xkyoMpmUwvOl1lwLQrBwcEbc6kVmlR3Y9wg8 M2mUq1Q4sLpSthCFOqAUEJSNaVJA5lRIJJI3G+a7ta9PuWy2puYbeVdJEF+UhlBLqG2nFBWCCkL2 HIY1DljwaDbUrHIvE1uBNtz9yluTGboYUd6PHaVIkfk0vAAEBsEJUQVFISAknY71ZcI3KbcbfKTP 6YvxJjkfL4bDhAwRr6MlGoBWDp22oL+lZu1vXK6B+8KujrTDUp5tuC002UFttakYWSkr1EpJ2UAM gY2OYMe5XdFos3EDl1Lybk/GDsHom+hQh9QSAghOvUnWDkqIOlWwyMBsqVgnrnxF0DlwavAAF9Nv RHVGQW+iU/0QKttRUnUCCFAeCMg7k97hdrxbLdf46Lmp+RAejdWlSGm9QS5oyFBKUpODq5AHB553 oNtSsddbhd7E9Pj9qOTdVmkzWnHWmgqO61pAxpSAUnWNlAnweZya6tu3hcm12pd7eS7PjuzH5SWW gpAR0Y6JoFJSBlzOVBRwCM75AaylYp67XpKezW7kOnZvaIKpnQoKnGlMhzcY06wF4yABlIONyKjv XG/xIl7fVe3HRY5iG0Ax2h1lBDbhDuE89K9I0aOWTmg3tKxN0u3Eku73Zmzx5x7NWhphDCYvROuF tLn5bpVhek6wPAxgZOSTgcnH5lovvFN6MqS4qHbWZJhq6LQo6XiEEhGrCSNiDnc5zQbuuS5DLbrb S3UIceJDaFKAK8DJwO/A3rGJvHE9piTLlLizpEVi3PSHDN6qlKXkJCkhvoFFWg+FkKyQAnwueekh i4QeJuHnZt4VcStMhakKabQAoMnPR6ADpOeStR5b88htKVjY9yu6LRZuIHLqXk3J+MHYPRN9ChD6 gkBBCdepOsHJUQdKthkY/Y1yn9Ru9yn3t9ttuc/CjMsxUL0fltCMDSVKcyQkZOnllJ3JDY0rNcK3 K4yJ90t9w62VRFNKbM0MB4JWknCuhOg7pJHI4O9aWgUpSgUpSgyvBH9Z4o/789/LarVVleCP6zxR /wB+e/ltVqqCr4l/Nu4fqFf6VaVV8S/m3cP1Cv8ASrSgUpSgybPF1wU+26/aGk2524GCl5uUVOat ZQFFGgbZHco4q7duCxe48BpcYJLalu63R0n/ACpSnOfSSRjA9NYGNb1JlKMOBdk3tF1ccaW628Iq UF45UdX5PBbJ3G+TtXe6MT5d46VNueZks3lpQSxbti0HEgOqfwSrKOek7ciMA0G+dnxwt1huRHVK bQVdCXQCNu/vA9OK8puDLUBiVOfjRulQkkl4FGojOAo4yPEe+sbGiuR7nOjwID0hh5EpbjsmAW3Y 61AnCXSPygUTgAZOMb4r9gRhAetb96tEiVHFnjsMYiqe6u4B+USpABKSfB3x3YoNq9Ohx1NoflsN Kd/owtwJK/qzzqRWGkR4zFwvIulikTlTgnqa0RC6C10aQGwcfkyFZ2OBvmtRYI8qHw/b405WqS1G bQ6SrV4QSAd+/wCugsaUpQVlp/r14/bR/JaqzqstP9evH7aP5LVWdApSlApSlApSlApSlAqtun9o Wf8AbVfyHasqrbp/aFn/AG1X8h2gseVRkXGC42pxuZHWhKghSkupICicAE5557qr+Los6dwrcI1u 1dZcawkIIClDI1JGdslOR9tZaNbIXUrjJEW6zOkhiN1VdtTFCiVeCAEoT4ST+luEjfNBvjIZStaC 82FNpClgqGUg8ifENj+6quRfkdrWmNDcYkR5y3krdQvVp0I1bEHHOsom13Jq2KYukF+fJYuLT10W hsq68zpOkp/vBPg5R/ynbfe4W21MvVhkW23vMRm3JPSZiqZCSWsAkEDGTtk86DTCSwpDbiX2yh0g NqCxhefF464P3JhLclEd+M7JjtlRZU+E4IH6R30j04rFW0y+zOFbSq1zkP22UhMpSo6ghvQ2tOdW MKBOMEbb1yZhPMwLtb7fbn34y7fJ0vyICmZDbitw3qI/K6snkO4bmg+gNSWnGisutZQB0oSsKCDj O5ryu4Qm1tIXMYQp4AtJU4AV58Xj+ysdcbVPTKRCixnur3+MyzMWhJwwUYC1K8WpslO/ekV4lwo8 ZV9iT7DImyZi1dTcbil1K29AS2gLxhvSR3kY50G9qM5cITKwh2YwhRXoCVOAHVjOn68EbemvFqZk R7RDYlr1yW2EJdVnOpYSATnv3rDPJgquXFrMmyPz35EgNMqRGLoJLDeE5wQjcg5OO7fag3z0yLHc bafktNOOnCErWElZ9APOipcZDwZVIaS4VBIQVjOSMgY8eK+ccQwbo5a5VvkwnnJTNqbbZdYgdOuS 4G98ukEJwru2PeMkirmHanRer3dnbX1mY3Ej9T6dGylho5CSeRJwCRvQa5iZFlKWiPJZeU2cLDaw opPpxyrtnArAcMRZKeKoMpMWQ00be4h49ndUbQvKCEYxk435k+g860vGESbO4VnRreFl9aBhLeNS 0hQKkjO2SnI38dBZszokhpbrEpl1tvIWtDgITjxkcq89pQOqdb69H6uDjpulToz4tWcVhmrLAkwb i8pd4CHGGmlgWpLOML1Jw2lA1lJG+xGDiv11hyTao70qE5GdizHFRXGLStTcgaANbsfmnOSO7dOQ RQbly4QmUNrdlsNpe/o1KdAC/q8dSa+c3Vu4TojLEuxdTUu1gIRGt4kEuHVqa1EFLYHgnfx89q2n DqX08NWxMlK0viG0HA4CFBWgZznfOaCskcSvL4gm26C5blJgMBxxL8jStxZ1bAj5oTjckHn3VeOT 4jGz8thpWQCFOgYJ5Dfx1j75aHFvcWusW5SlvwWksrQzkuK0r1BJA3PLOPRXVVgam3biV2bbemD0 RhtlTrWQrDSshOe/OOW/Kg1r8yLGW2iRJZZU4cIS4sJKj4hnnVSq9yu1rrDQzHIgojKbLjvRhXSF WrKt+Wnbbesbdo9xl2URJNukdN2M0hpSLd0zr7mg6kqcUCGylWNtj35zU2Xb7g7GvBVEkLW9Gtmn 8molakqJXjxkd/ioNjebsza4ElzpmRJbjuOtMuLAKylJPLOTy7q9RrpHVChOSpDDD0ppC0oUsJ1E gHABOTzrG3aGnouJ40+xyJ8+YXFRHkRi4Ft9GA2kOYwjSQdsjfcZzUPiCLPlW+RDXbHw4m1tJjFm 3dKt9WjJBcIIRpV3bHvG9B9Dmz48Jsh19lt1SSW0OLAKyByA7/sqHar01K4ettznusRVTI7bhClh KdSkg4GT6azK4yUTbqLvZZM96bGaERzqxdBSGgC3qxhsheonOOearG7VMaYsyri1ObjCyMMJDVvT KLbgHhoUhSFFJO2+BnGDyoPpwIIyK8rWltBWtQQhIypSjgAVVcPqjRITNlZckuOQYzRUZCcKCVA6 Qo8tXgnbuqFxxDmTLRGEZLy2mpjbklDLaXFqaGc4QoELwdJ04OcUGgjyGJTIejvNvNq5LbUFA/aK /Xn2YzSnX3UNNp+ctagkD7TWf4Qt7MRE6Sy5MWJTqVK6zEEYZCcZSgJTjO2Tjcio/G0OVIftT6es GEw8syOrx0yFJJThCujIOoA55AkZzQaQzYgaQ6ZTIbWCpC+kGFAbkg99eky4yo3WkyGixjV0oWNG PHnlWIhcPMmVY0iPLlRDNkyFiVFDYQS3gZQAAlJUMgEDc1zctTsSQ+FWt12zxr2t5yI2yVBTamE4 WlH6SQ4SSBnfu2oNubjBEQSzNjiOdg90qdB/9WcV7MuMG0OGQ0EOboVrGFbZ2PftvWTmpiKu1uua 7O+9Z0MOoSymColl4qThwtYzuAoZxtn01Dj2RyQ9b+ktbjducvTshqMtrAZa6FQGpP6IKwTg/wB4 fVQau4cRWm2QWZsia10D7qWm1oWCFKUcbHPId/iqWmfDWUBMthRcxoAcHhZGRjx5G4rC3exrQi9I Yta1RWbvElNtNxyoKSEtF0oTjfkrOPTVhGtiF3++Xhu0dK4mJHNvS+yUDIbV4KcjwTyB7xy2oNYx MiyVLRHksvKbOFhtwKKT6ccq9vPtRmlPPuoabTupa1BIH1k1gOHIcw8SwpDTEiMhdudadWLaIrbS 8oISARk4Ocasjxd9W9+tbgtTSbjc501bcpLrLqYCXghQBGFtoT4Sdz9uNxQaNc+G3FTKXLYSwv5r qnAEH6jyrulQUkKSQUkZBHfXzqVEuMhdomXCE/BiiK62WocBL6WnS5sotKSoo1oGeWRnBNbLhqC3 buH4sVpUhTaEkp6wgIWASTgpHLGdh3DFBOflxopQJEhpkuHSjpFhOo+IZ51+PTokZWl+Uy0cgELc CTvy5+PBrEcR2x57iae5P68YkmM23GVGt6JQwAdaN0qKDk5zsDnntUpHDrTlyuaZUFyUhFnYjsuS W9RWQHAfRq5ZxvvQa9EuO7IXHbkNLeb3W2lYKk/WOYqFxFcnbNw7PuTCELcisKdSlecEgd+Kzlos pgucIvtQFsvJjrTLc6MhQ1NZIcPP5w/S76u+MmHpPBt3YYaW865EWlCEJKlKOOQA50Fk9OixujEm Uyyp3ZAccCdR9GedepMuNDb6SVIaYQTjU6sJGfrNZKWxHi367OXiyyLgiW22Ii0RS+NAQAW9gdB1 ZO+AdWc1FgwXrVItznEVtfnNotjbDSkMKk9XcBJWkgAnJBSNWN9OM0G2XOiNvNsrlMpdd3bQXAFL +od9Q7Vc3Z9wu0ZxCEpgyksoKc5UC2heT6cqNYnixiZOVc22bW+24gNGII9t1KdSAkhRdI8HScjS MEY9Na2wMPs3fiBx1paEvTkKbUpJAWOgaGR4xkEfZQXDr7LABeeQ3nONagM4GT/lUWZc0M2tU6L0 UpAxpIfShBGcE6ztgVWcSW4XG8WBLkUyGGpa1ugo1JSOiXgq7sZxz78VRSYci3qucdm1lMBy8JXq EIvhlBYSStDWN8uZGQCASTig2MK5Jk24Tn0JitnJyt5Chp8epJKcfbUliQxKaD0d5t5tXJbagoH7 RXzm322YzBC5ltmSLdHvjrzkVUYJUtotDSsNAYKQs50genGRWm4bjjtm7TosJyFb5IaDTbjRa6Rx IVrWEEAjIKRkgZ00GheeajtKdecQ22kZUtagAPrJrw3LjO9H0UhpfSpKm9KwdYHMjxjcVnON4cqT 2W631hURiQVSUx46X1DKSEq6Mg6gD6CRnPdVYi1qtVmavdtZnynoc5UnoXIoaccbWAhxKG0gYBHh AY3IzQbEzdVwbjslhxBCw4emGtChjYJxvz33GNvHUK435uNOgRorsd9UiYI76QvKmwUKVyB2OU99 Z5Fjucdy3paQoTnoE5x58JOlEl3QoZPdvsPQmo0WJGW7wwiFw9KiyIUhIlOriFBa/JqCtSseHlX6 QJHfneg3gmRlSVRUyWi+kZU0FjWB48c68onQ3HksolsKcWCUoDgKlAbEgejBrA8OWR1M2A3clXJN xiyVOukQEBCleFlRfCcqSoH+8TuB3V2iWDoeFba+m2LRcW7sHSvoT0qQZKgTyyE6D9WKDXWziG13 dyW3DltuKhuqadGobEAEkf8ALvz5c6mx5UeW10saQ0+jONTawoZ+sV88lWeWiFxHBiwH233LoJRL Ub+miktlSUKI0qOyvA78ct60HCNvYYlTZjLs5XTJbQoSISYqTpzghASnJ3wTjxUGlefZjNKdfdQ0 2nmtagkD7TXnrcbqvWusNdXxq6XWNGPHnlVHxcp8R4SEROmYVI/LOiIZJYAScKDfec4GcHGeVZi3 22UxBjOTbbLkW6NeJDrsZUbCihSfya+iSMFIUc4A2znG1B9BTNiKi9bTKZMcDPShwaMfXyroy+1J aS8w6h1tW6VoUFA/URWCkW1iSLjLRDmwbe7KYcjIRAK8uoSrU4pjGdB2ByBkjPprVcMKkrsTKpUF uE5qX+Sba6MEajhWg7p1DfB3GaD3D/OS5/qY/wDuVaVVw/zkuf6mP/uVaUGVb/4tSP8AsLX89ytV WPuspqxfhEi3a4LDMCfb+oiQs4Q28lwrSFHu1BRwT3itclQUkKSQQRkEd9B6rK/g3/M9v9rlfz11 qqyv4N/zPb/a5X89dBqqqJnDNsnXJdxd64iUttLSnGJ77OUAkgYQsDAJJ+smreqyROkm+xrbFS2E hovyVrSThGdKUpwRgqOTk5GEHbfYPD3DdtkR47LolqMUqLL/AF14Pp1fOHS69eDtkFWNhtsMdmbH bY6IKGowSLetS4+FK8FSkqSpR38IkLVkqySSSd96iJ4nt8pmUITq1SGYy5DaXo7jQcSB85JUBrTn G6SRuN9xXixcVwLuzAbLxTLlRw6B0DiGnFaQVhtahpXjPJKiRg+I0EmRw3apQd6SOtKnZPWlONvu NrDugI1JUlQKfBAGxAxnxmpFstMGzsuMwGOhQ64XVjWpRUsgZUSSTk438Z3rhG4gtsu4GAy66JBC 9HSRnEIc0nCtC1JCV4z+iTtvyrjA4jt7sRgv3Fpxa4ZmdMGFstraBwpY1ZxjbI1EjIJ5ig7p4ftq Lkbghp1t5TnSqSiQ4lpa8Y1KbCtBVy3IzsPFXiPwzaIstElmMsKbcLjbRfcUy0s5ypDRVoSfCVuA DufGa8SeKrRFQ0px2QousCRoahvOLQ2eSlpSgqQD/wAwHI+I1asvNSWG32HUOsupC0OIUFJWkjII I2II76CGbHbSwWDG/JmWJmNav6YL6TVz/vDOOXoxUK/8ONXS23BmO00JE9TPTKeUShYQpJwRv+iC Nhv31Gf4yhvXG1RbY50wmzSypbjDiULbDbiippZASsakJGUlQwfSDVmzxDbZFyFuQ86H1FaUa47i EOFHzghZSErI32STyPiNB4Y4ZtLDEpkMOuJmM9A8p+S66tTeCNAWtRUE+EdgQBk12m2WBcGGGX2l 4jHLC2nltONbafBWkhQyNjg7jnXm33633SQpmG484UgqCzHcQ24AcEoWpISsZI3SSNxX5c7/AG60 OBuW670hQXChmO48pKBzUoISSlPpOBzoP1qw2xmPHYRGOiO/1hBLiiou7+GpROVE5OSonOa/XbHb X2ZzTkbUi4rDkka1DpFBKUg89tkJ5Y5V4c4itLQlKXMGIrSHnCEKIKF50KRgeGCQQNOcnbntXCVx dZIcmTHelOByIU9ZCIzq+gBSFBSylJCE6VA6lYGx32OA7TeHLXPmLmPMupecSEOqZkush5IzgOBC gFgZI8IHYkcq7OWaA9clXFbKjIWyGXMOrCHUDVgLRnSvGtWNQOM1xuHEdqtbiUSZCyotdMehYceC G/76yhJ0J5+ErAODvscLhxHa7YtCH33FrW10wTGjuSCG/wC+Q2lWE+k4BwfFQIHDlrtoKY7LxbLX Qhp6S682hvbwEoWohKdhsABgDxVzhcK2a3yo8mPGd6aICmOp2S670KSNJSnUo4Tj9Ebctq5ROK4k m7XSA4zIYTbd1vuR3UoICdSiVFAAx3b+ENxkV+S+L7cxaLjOZRKdct7PSrjORHmnNwSnKVI1BJII 1YwMHxGgkx+GbRFloksxlhTbhcbaL7imWlnOVIaKtCT4StwAdz4zXRyw2x2A/BXGzHkPKfcSHFA9 IV6yoKByk6txgjB5YqCeK4KGo81+UYsZcNyStl6E8HdKCkKXkgYSnUOad85BwDVnKu8GE+GZEgJW WFyMBJV+TRjUrYbfOH152zQeLbY7faHX3YbK0uydPTOOPLcW5pyAVKUSScHmd+XiFWFVLXE1pdiy pJfdaTD09Oh+O404nV838mtIUdXIYB1HYZO1S4Fxj3JhT0cPBKVaFJeYcZWDgHdKwDyI7u+gl0pS gUpSgyvBH9Z4o/789/LarVVleCP6zxR/357+W1WqoKviX827h+oV/pVpVXxL+bdw/UK/0q0oFKUo FKUoFKUoFKUoFKUoKy0/168fto/ktVZ1WWn+vXj9tH8lqrOgUpSgUpSgUpSgUpSgVW3T+0LP+2q/ kO1ZVW3T+0LP+2q/kO0FlSqviS4v2jhy4XCMlC3ozCnG0r+aSBtmqftDig3pFp6a2pVIiGUl/oFk M4ISUFOvwtyN8jv2oNZSsaeKp8qz292O7HYnPsrW4wiI7JUShWkkJSRpTqB3Jr9g8R3q+PW9qAmJ E63bBLcW82pfRr1acABQyKDWl1tLqWlOJDigSlBVuQOZA+2uMO4w56nkxJTb5YX0bvRqzpV4jWYg X2bdnbZ+QiMS5ESWFPFor6NxtxKDp3B0k5OM77VU2O93K1cNWK2s6Xn5jDjyXGYS3eiaSU5BQlWV KKlc8gb8qD6PSsW/xNfW7dDelR0WxKi6JEt+G4tCCkgIJQCChKhvlRwMYr2xMuY46mrcusY29q2N SCjQejCSV5IOrA3GdWOWB3ZoNjUSJbo8J+Y8yFBcx7pncnOVaUp28WyRWSZ4vuaHZCHS1IQq2vTI 7ohOsJCkAHA1nw0nUNxj/OpsW8X7rlramKghN3jLU10bSsx3AgLGcq8NOM+LcUGrpXzuz8Q3m38K Wrpn+vS7k+4hpYjLcU2lJWVEgKys7bDbH2VYL4k4gRbEOvwlRgmWpp2a5BcIS0EBSXOhB1AEnSd8 DBNBtKVVLu6YnC67w681LSzEVIU5G2Q6AknKdzsceOqpF14hi3CypnLt62bo4pK0MtqSpn8mpYAJ UdXLngfVvQaqlZaLxJNe4csFwUhnprlJaaeAScAKznSM7Hb01Ct/Ft4ucyPIjW91yC/KLXRiE4NL YUU9J0udORjJGPRnNBtqVT8Q3J23sMJjyWmX33NKAqOt9SgASdLaMEn7cAV54VvMi92hUiU0G32Z DsdzCCgKKFFOdJ3TnxHlQXVKxKOJb+mwr4gd6j1RiUtpcdLatbjaXi3qCtWArHdg8vTt1e4mvLAv c5TUQwbZIVHbb0qDjyyEacqzhIBXucHPoxuGxpWWk3u68PymhelxZTD8d50KitKbU2ptGsjBUdQI zvtuPTXmRdeIIPDT17kuwDqZQ43HbZUQ2VKTsV6vC2PiG9Bq6Vm+IOIJlrnSmGEslLNnkTU60knp EFIGd+W599R3bxembfEMiXCZmTiXG2WYbr6kt6UnASlWVEE7q2G42oNZSsXA4nvV4FnaiIixnZzM kvrdaUro1NLCMhOoHc52J2z6KROJL+qLEuMtMERzcOoPstoVqUekLfSJUTt4W+kg7d9BsEMtNuOO obSlx0grUBurAwM+PaulKUClKUClKUClKUClKUClKUClKUClKUClKUClKUClKUClKUClKUClKUCl KUClKUClKUClKUClKUFXD/OS5/qY/wDuVaVVw/zkuf6mP/uVaUGR4oVJv17Y4PjupjsPxTKnv6Er UGdWgISFAgFSs7nkE1Y8NcIWbhJl1q0MON9Np6QuPKXqxnGxOBzPIDnUJv8A4tSP+wtfz3K1VArK /g3/ADPb/a5X89daqsr+Df8AM9v9rlfz10GqrPTluQ+KFrQtDS7lAEeK44fA6dtS1BJ9JDhOO8IV 4q0NKDAQ7Je37kzMkW+4NrNsksyVzZ6XSt9zoz4KErKEJJScaQkbbpACcz7ZAu8pjh2DNtKoKbPo ceeU62tDiksqbCW9Kid9ZJKgMAY3zWwpQYS1Wm/uX2yzbjDm9PFW6Z8l+eFNLUptSQWmkrKQjJA+ alXLIPhGuR4Yu8zh2y2tyElhy1Rw+VrdSUvPDYRzpJPRqGdZ5Y04zvj6BSgzCF3a3XSXcG7DIlpu TbTnRtvMpcjuJRpKF6lgY5EFJVvq25ZnW2yuxOEW7M66gO9VLS1tA6UqUDnT6ATt6BVzSgxjcW+S nOG4z1jMVu0yQZLxfbKCAy42C2Aokpyf0gkjKdjviNEtF+fv1nmToc4vRJjq5kl2eksqSW3EJLTK V6QncD5qVbjOrKiN5Sgy3C8O5w5ykJgTLZaRHGIUt9p4NvZGzKkKUQgAKyFEDdOkDeuV5ssj5Sv3 A265T40uM23i3XFUZbSkFWyh0rYUkhexySCDtvWupQYmXw9NMu3vwrSGWbAy0mPG6cK6580qRqJ5 ICRpK8ZWM7AZPluRc+3OLY0KzrlmS+0hLgdbSlpZitD8pqUDpGQcpCj87blncVybjstOuuNMtoce UFOrSkArIAAJPecADfuAoMS7ww/bZhSq33O6xnITLCTAuSoxSptGghaS6gEKGCDufnAjlmzZhzeH Lk6qBZVzosiKy02mO+gKjlpJSEKLikkowQQRk51ZHLOopQZWZFvkW4cQOWyKsuzmW3IskLa0pWlA SUEKOQo42JSU77mq6Pw7cn3b4UwpsVmdaOqs9oTusOKdy5nV4awkeENgcb9xJA3dKDLR7bMn3S1S JtscYjN2uRFktPLbUQpSmgB4KjkKCFcvtwdqhQLNxFDs1xewRdGmW4MJQcQpTjDX6YJykLXlR8Lv 05x3balBg4tilpk3h+RYLi/DlR4iGoz9zDkhakOrKjrU6dCk6goYXjYYIJIGj4ZaurVtWm6KfJ6Y 9XTJUhT6WgAAHCjKSrIUcgnYjJzmrmlApSlApSlBleCP6zxR/wB+e/ltVqqyvBH9Z4o/789/LarV UFVxOoJ4YuKicAR1kn7K/flJaBzmD7ivdTiX827h+oV/pVpQVfyls/0wfcV7qfKWz/TB9xXuq0qD bbozdGX3GUOJDEhyOoLAyVIUUkjflkbUHH5S2f6YPuK91PlLZ/pg+4r3VNiPrkxW3lx3Y6lpyWnc akeg4JH7jXegq/lLZ/pg+4r3U+Utn+mD7ivdXZF0ZAYEpC4jsl5TLLT2NS1DUdsEjdKSoeip1BV/ KWz/AEwfcV7qfKWz/TB9xXurre7mLNZ5FxU0XQwkK0A41bgc/tqcNxQVnyls/wBMH3Fe6nyls/0w fcV7qtKUGatnENqRMuxVLAC5gKfAVuOhaHi9FWPyls/0wfcV7q/bT/Xrx+2j+S1VnQVfyls/0wfc V7qfKWz/AEwfcV7qtKUFX8pbP9MH3Fe6nyls/wBMH3Fe6rSlBV/KWz/TB9xXup8pbP8ATB9xXuq0 pQVfyls/0wfcV7qfKWz/AEwfcV7qtKUFX8pbP9MH3Fe6q65cQ2pU60qTLBCJairwFbDoHR4vGRWl qtun9oWf9tV/IdoIlxuthulvfgSZZLMhBQsJSoHB9OK89pcP9pt3DrZ6dtgsJOlWNBIPLHjAq/qr td+iXaZNix0uJXDc0KKwAHBkjUnfdOpKh9aTQUPU+FEhgNTpLJZQtvLTjiC4hSiopVgbjJNSravh i0rjriSVJMeL1VvUFkBvVqxy55rUUoMtDXwxBdjusSlhUdLwRkLOzq9a+7x1yWzwsqBCitzX2DAB EZ9lS0Otg8xqA3B7wdq11cJD62FMhEd17pHAglvH5MYPhKyRtt3ZO/KgzMkcPyYrUZd5uAbQhSFh Mh0F4KOTrON+Zr9fRwo/Jbe6wtATF6mppBWlDjO+EKGNwMnH11eXu6iy2pyepovBtbadAVjOpaU8 /RqzVhQYxqFwo2Spdxlvr6s5FC3nXFkNLABSMj0bVYdc4dL1vd62rVbklLGy9gU6TnbfatAtWlCl BJUQM4HM14jPKkRWnlsOMKcQFFpzGpGe44JGR6DQZMQ+FBEMVM+SltL5kMEOOBUZZzktnGUjwjt6 a7rXYlxG44vtxQUKUoupkO61555ONx6O7urV0oKCPceG4trTa2nECGlrog0ULIKMYIORvVAtizw7 tZX4U+S+1CkKJ6w64sMNlpSQEg92Skd55d1a6FdkTZCmEw5rKkgnU/HUhJAONlHbfxc/QKsKDGMw eEmH2HETpOiNI6xHZU44W2V5JOlONgcnb013jDhqHOMqNcpTSC6XerIdcDOs7k6MY3O+OWe6tZSg zV0l8PXZUdx24PMvRlFTT0crbWnIwRkDkRzFerTN4cskVcaFKUltbq3jrC1HUo5O5GedaOlB8+sM KxtQkG5S3wsS3n1RekWWVKLqlIUUjYnGk45Z5jNXgkcMGNPiuPB1m4OKckNuJWQoqAB7ttgK0tcO nX1wR+ru6ej19NtoznGnnnPfyx6aDNQxwzEf6ZyfImOBtTSDMW470aFc0pyO/AyeZxzrwyxwszCf gKuEl6C+0WeqvOuLbbR4kgjbHd4q19KDGIhcKgvqeuMuQ4/DXCcdfccWotKIJGSNuVSprnDc1cRw 3B9h2GgttOsKWhWg4ykkDcHSP3CtTSgytuHC1rVEMWSpPU0upaB1nAcUFK7t9xXoOcMCEmH1pfRJ ldbAwvPSdJ0ni5au6tRSgpIt7s8Roti4uugrUvU7rWRkk4yRyGcAdwrv8pbP9MH3Fe6u14ujVmtM i4vIUtDCNWhHNRzgAfWSK8Rp852RHYkWxTK1tKcfUHNSGt8JSFYGon0ch9mQ8fKWz/TB9xXup8pb P9MH3Fe6prz62nmW0x3XA6ohS0Y0t4Gcqyc4PLbPOu9BV/KWz/TB9xXup8pbP9MH3Fe6rSlBV/KW z/TB9xXup8pbP9MH3Fe6rSlBV/KWz/TB9xXup8pbP9MH3Fe6rSlBV/KWz/TB9xXup8pbP9MH3Fe6 psuZHgs9PKeS03qSnUrxk4A+0kV3oKv5S2f6YPuK91PlLZ/pg+4r3VaUoKv5S2f6YPuK91PlLZ/p g+4r3V+Wa9G7xIslMJ1tuS2tevIKUFKtOknnk8+XdVrQVfyls/0wfcV7qfKWz/TB9xXuq0pQVfyl s/0wfcV7qfKWz/TB9xXuqbJmR4fRdYdS30zgab1fpLPICu9BV/KWz/TB9xXup8pbP9MH3Fe6rSlB V/KWz/TB9xXup8pbP9MH3Fe6rSlBV/KWz/TB9xXup8pbP9MH3Fe6rSlBV/KWz/TB9xXup8pbP9MH 3Fe6rSlBV/KWz/TB9xXup8pbP9MH3Fe6rSlBV/KWz/TB9xXup8pbP9MH3Fe6rSlBV/KWz/TB9xXu p8pbP9MH3Fe6rSlBV/KWz/TB9xXup8pbP9MH3Fe6rSlBV/KWz/TB9xXup8pbP9MH3Fe6rSlBR2ib HnX65vRnOkQGmEk4I38Px/XV5VXD/OS5/qY/+5VpQZVv/i1I/wCwtfz3K1VZVvf8LUj0WJrPr3K1 VArK/g3/ADPb/a5X89daqsr+Df8AM9v9rlfz10Gqqjlz7rJvj1stSojAix0PPPSmlOaysqCUJSlS cfMUSok8xsd6vKqZ1hbl3IXBifMgyC0GXVRlI/LNg5CVakq5EqwU4I1HegzvDFwuSrJZ7VbxGYkv MPSHnpCVOoaSl3TpCUlJUSVc8gAAnxCpUjie6R7eoPIjsOxpyok2b0DjrDCQ3rDpbSoKCVApByrC NRyogbzmeEIcODAjwJkyG7b0LbYktKQXNCjlSFaklKgSAd080g867o4d6CGhmHdp8RzpVOuyGy2p x9avnFetCk+LkBjAAwNqDt2n1bhtV1kvMSksxVSFuxP6N0BJVlG52IG25+s1nX13t3iLhV+5qglt +U6sNx21pUwerOkJKiohzY/OAT83kc7aeHaIcKzotLbWqIlotFCznUDnOfryf31WxeEmI823SnLn cZRthV1Rt9xBS2lSCgpOEAq2VzUSrYb7nIVdq4wuVzmwnm4bjkKa9oDKbZJSpls50uF8jo1chkAA DVso43mRLjd7rZF3lwW42yTGW63DWwpThaKCUFS9ek52JTpGASMnGTPt/DybZISYtznJhoWpaIJU gsoJzsDo14ySQCrA8WABXmNwy1EQ5GZuU5MBSVpRC1I6JoKBB0nRrwMnAKiB4thgKhriGa32THQb daY0iHHW0t+MssvuLByy2oKSlsgJGAdROoYHgnMiVe72uJc7rBTBEK2uOo6s82ouyeiJDhDgUA3k hQGUq5AnngTHuFGX4zMJdzn9QaaaaVDy2W3QjGNRKNQJwM6VDlX7K4UjSXZSRPmsw5qiqVCaUjon ifnZykrTqHMJUAd/GchFVxBPXdriUdWbtltitSllTSlPOhSFKKR4QAPg89/FjvqJa+Kr1KkNa7c5 JRIjuOhtu2yY/QKCdSUF10aXNW6dQCd8HGDtom7NEbmTpOFL682ht1tWNGlIIAAx4lHNRYXDqoLC o6L1dHI4ZUyy0txv8gDsClQQFEpGwKir7TQUL86TfuErnKenQXJcBkSmENRnGHoUhAUoBxK1FQ3S BnCdSSrbBrZx3Q/GaeAx0iArHiyM1np3Cr7sSY23cHZUm5IRGlS5ZQlaIwJ1JQG0JTnClAZA3Vkk 4ArSJSlCAhIwlIwBQeqUpQKUpQKUpQKUpQKUpQKUpQZXgj+s8Uf9+e/ltVqqyvBH9Z4o/wC/Pfy2 q1VBV8S/m3cP1Cv9KtKh3aEu42qVDQ4G1PtKQlahkAkc8VH08QeWtvqnPioLSsdwvfrTHXcbY9cY zc1d1lBMdTgCzlxRG3Per3RxD5a2+qc+KvPRX7OektmfH0K/ioMhYIaLv8mo85bzrKrK4txvpVAO HW2Bqwd+dflth9XtVjuqZMpc03URi84+pRUz0i0aCM4I0gfaM1sQ3fxydtvqnPip0d/8rbfVOfFQ YV+LBkQOHpt1AUw1epjbzzqyAlBW+EgnOw1aR+6v25XJty/plxltRZTN3ajlsvOrkFvpEoJKc6UN qScgYIOR3mtyW7+Rgu2zH6lz4qdHf856W2Z/UufFQYC9Ltr9gu7lxkPfKBMpaVNdKrWlAdwgBGcd Ho0nOMczzq1uTlrXcL38oZTzM1tf/wBPSHVoUGtCdBZCTurVnOMnOxrVdHfyc9LbM/qXPioW7+SC XbYSOX5Fz4qDvZjMVZIKrgCJhjo6cHnr0jOftqdVXo4h8tbfVOfFTRxD5a2+qc+Kg/bT/Xrx+2j+ S1VnVFGg36K9KdTJtyjJeDqgWV+CdCU4+d/yf51J0cQ+WtvqnPioLSlVejiHy1t9U58VNHEPlrb6 pz4qC0pVXo4h8tbfVOfFTRxD5a2+qc+KgtKVV6OIfLW31TnxU0cQ+WtvqnPioLSlVejiHy1t9U58 VNHEPlrb6pz4qC0qtun9oWf9tV/Idrzo4h8tbfVOfFUeTCv0l+I6qTbkmK6XUgMr8IlCkY+d4lk/ ZQSOI7mbRYZcxA1PJRpZT/ecUdKB9qiKykBm8cOXSxOXCDFjxej7OedYkqdK1L8JClAoTjwwd8nd ZrVFHEB/862+qc+KhRfzzdtvqnPioKzi5xtMy1IuTq2rMtxzrawsoRq0jowtQ5JJ1ejIGaoDKRDW JUR935Pxbywpt4rUpCEFpSXME/8Alhak+gEmtkUX8jBdtpH6pz4qdHf8Y6W248XROfFQZSTLNxnX 66Wx5b/Zj8WSzpUdLgSg9IB4wUlQ25mvYdcmLtl86VzTdb22pkZI/wDDpacS2MekDV/6q1Abv45O 231TnxU6O/7flbbty/IufFQfP7iu2v8ADzzsyQ8riHryBIbLqtaP/EJwko5BsJxjbHI86sbk7blL vqrxKfbvTbznZ6A6tKwjSOh6FIO+TzwDvnNa7o7/AJz0tsz+pc+Kv0t38kEu2zI5HoV/FQZuHBdn 8QXGTdFvGRDgRXA0lwpQh4tr1KwDgnu32qokzGZFgssKUWkOJsjTzb0l538oopxhtCCNSxjOc5GR W70cQeWtvqnPip0d/wBvyts25fkXPioK5qU/J/BkJbzilPrtJWpZO5V0XP66qW2E2KZw/Ni9aedl QnetJ6VS1SdLOsbE41ZG2PHitPo4gxjprbj9U58VNF/8rbdv/tOfFQfP7dOki4IcsTrBfl2qUvoY 7zrx6VKUlAcUs4KwT4gfHsatrY5a+0LGrh6U89Occ/8AqALy1KLWhWsvAnZQVpxnBzsK1Ibv45O2 wf8A4XPir9Dd/BJDtsBPP8i58VBS8YORE8Q2BFxkLZhL6yHsLKEkaE4CiP0apkuoTFUlEiQOFlXb SXUuLwGei5BXPoul2znHPurSyrRfJd2g3Bcq3hUIOhKAyvCtYAOfC7sVO6O/4x0ttx4uic+KgyDv U1MXhm2XZMSyZjFp5x1Rjl3UouNhechCgEA6TgZPpFcJEiA/YIbuqJDYYffHUJExwMTMY8JtzmR/ d2I3O3fW26O/Y09JbMeLoXPir8LV+IA6W2YHL8i58VBnYd7iwLw+7NU7BZmWiMqKzIJKiU9JqQPG sZTkczkU4Oedcm2bWtwhXD6VEKJ3PSDc+mtGW7+cZdtpxy/JOfFTo7/5W2+qc+KgynFqnHuKHI9x nRIcIREKimZ0oQpeVaykoWnwx4PPJxjHfXG5qagy7c7PntXl5uLHb6qXlsvlWf6VpIPhFWQSD/d5 91bEt39XN22H62XPip0d/Jz0tsyO/oXPioMPLdtSvlP12Y+Lm3OdFvQl5aVhfRo09EAdzqxnn6dq 48XXF3opzjq2ot1t0ZpSFLedLy16AoqaQkhITkkE7jY52rYW2z3u2uTVok29wzJSpJ1Mr8AqCRge F/y1OLd/JyXbYf8A8LnxUFChy1vcUz08QyCiY3JR2e068pCOi0p0qbGQCSrVnmc7VTSXoxts512S 8OLkyXAw10qg4F9IejShGcFsp092CCSa1NwtN+nyoT5l25sw3elSUsOalbYxnXsD3jBzU7o7/nPS 2zPj6Fz4qCs/CHEZl8FzA+2F9GUKTudjrA/0JqquLDTMriKCi4JtkdtiCltbi1BtIyslJIOQFY0k g8jWoKOIDzetvqnPioW7+c5dtu/P8i58VBlbXLQ65YxCiiMhNwkt6Wn1OMvEMqOpCjzQT/mDXm2P RlWCTIivqc4u6o6XW3XVF5L2DqGgnYA/N2xjFazo7+Mflbbty/IufFTo7/nV0tsz4+hc+Kgy9sXa Rd7KeG5Tr8hxR7QBeWslro1ZLwUdla9PPBySKn8YOREX6wIuMhxmEtUgPFKyhJGgYCyOSc1chu/g nDtsGef5Fz4qhSrTfJV0gz1SreFQg4EoDK8K1pAOfC9FBmVTY7FtlMNEOWOTc0tQnpMhxDDaeiBW SsblvpAQBnBJ51wtqF3GNb7c5LcMUXx5kFhbiAWugUrQkk6gk5ON+R27q3XR38jSXbZjxdC58VOj v/lbb6pz4qDBcUzGYz8zqRbhyrW6y1HS4+8qQUjR4SE50hBBIyc5wc1teL5iIVhUXW9bbrrbS1Kd U0hsFQ8Jak7hI78fV31I6O/k56W2Z/UufFQo4gIwXraf/wATnxUHzh9lmXYb2w6pqRBgXGI60Wiv omkK0aykqJOnnvnHMip156F+7yY6rrChQURmuy1vF3Ggp3W0pKwCoK+s7Durc9Hf8Y6W2epc+KnR X7b8pbNuX5FfxUGZ7HTcrhfkXGTIkLjQ4+haHVNgOdEolwAHZWRn0VFhzIVwkRF8Uy3EpXaorsLU 6pCXFqSS6pOkjLmrHpAxjnWw0cQeVtvqnPip0d/OPyts25fkXPioMRYnHE2m1JSt0DsOcrCiQchx OCfTUqHZI3TcLIU7KUm4QlddBkLxJ0tJUNW/cfFjxctq1vR3/wArbfVOfFTo7/5W27f/AGXPioML KdksxItvXLQzaWblMjrcmFxTaQkjokLUlQOndWMnGwz3VNh28SJHD8N26GdDdemKBjrWlBb0jDeS oqKQfSf3VrS3fyMF22YP/wBlz4qdHf8Ab8rbduX5Fz4qDCXCDC6iludlUG18SdClTziiGWFJSSkq z83Ku/lU+Y5ZlzruL7Lcaeax2YkPLThno06VMgHwlas5xk5wOWK1hbv5BHS2zfn+Rc+Khbv5x+Vt m3L8i58VAsE1x62xY051JubcRpcponw0lQ5kekg/uNWtVWjiDP8ATW31TnxV+6OIfLW31TnxUFpS qvRxD5a2+qc+KmjiHy1t9U58VBaUqr0cQ+WtvqnPipo4h8tbfVOfFQWlKq9HEPlrb6pz4qaOIfLW 31TnxUFpSqvRxD5a2+qc+KmjiHy1t9U58VBaUqr0cQ+WtvqnPipo4h8tbfVOfFQWlKq9HEPlrb6p z4qaOIfLW31TnxUFpSqvRxD5a2+qc+KmjiHy1t9U58VBaUqr0cQ+WtvqnPipo4h8tbfVOfFQIf5y XP8AUx/9yvN7mXuKGUWa0NT1uagtbsoMpZ5YJ2JVnfl4q6W2FMZmypc11hbkhKEhLKCkJCdXjJ/v VZUFBw7YZdvkzLrdpTcq6zynpltJKWmkJzpbQDvgZO53JO9X9KUCvnPBXGvDVn4d6jcbxGjSW5ck raWTkZeWR/kRX0auBhxScmM0SfGgUGf/ABkcG/4hifePup+Mjg3/ABDE+8fdWg6lF+jM+rFOpRfo zPqxQZ/8ZHBv+IYn3j7qfjI4N/xDE+8fdWg6lF+jM+rFOpRfozPqxQZ/8ZHBv+IYn3j7qfjI4N/x DE+8fdWg6lF+jM+rFOpRfozPqxQZ/wDGRwb/AIhifePup+Mjg3/EMT7x91aDqUX6Mz6sU6lF+jM+ rFBn/wAZHBv+IYn3j7qfjI4N/wAQxPvH3VoOpRfozPqxTqUX6Mz6sUGf/GRwb/iGJ94+6n4yODf8 QxPvH3VoOpRfozPqxTqUX6Mz6sUGf/GRwb/iGJ94+6n4yODf8QxPvH3VoOpRfozPqxTqUX6Mz6sU Gf8AxkcG/wCIYn3j7qfjI4N/xDE+8fdWg6lF+jM+rFOpRfozPqxQZ/8AGRwb/iGJ94+6n4yODf8A EMT7x91aDqUX6Mz6sU6lF+jM+rFBn/xkcG/4hifePup+Mjg3/EMT7x91aDqUX6Mz6sU6lF+jM+rF Bn/xkcG/4hifePup+Mjg3/EMT7x91aDqUX6Mz6sU6lF+jM+rFBn/AMZHBv8AiGJ94+6n4yODf8Qx PvH3VoOpRfozPqxTqUX6Mz6sUGf/ABkcG/4hifePup+Mjg3/ABDE+8fdWg6lF+jM+rFOpRfozPqx QZX8HcyPcEcRTIjyXmHr28ptxPJQ6NretjXhtptpOltCUAnOEjFe6BSlKBSlKBSlKBSlKBSlKBSl KBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSl KBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSl KBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKBSlKD//2T== ------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/image003.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEBLAEsAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdC IFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAA AADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlk ZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAA ABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAA AAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAA AABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEA AAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAA ACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAoHBwgHBgoICAgLCgoL DhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoL Cw4NDhwQEBw7KCIoOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7 Ozs7Ozv/wAARCAQbA7ADASIAAhEBAxEB/8QAGwABAQADAQEBAAAAAAAAAAAAAAUDBAYBAgf/xABZ EAABBAIAAgUHBQwGCAUDAQkBAAIDBAUREiEGEzFBURQVYXFygbEiNDWRwRYjMjNSU1RVkpOh0QdC YnPS4SQ2Q3SClLKzJWSio9MmdfDxRDdWYxcnZYPC/8QAFQEBAQAAAAAAAAAAAAAAAAAAAAH/xAAV EQEBAAAAAAAAAAAAAAAAAAAAEf/aAAwDAQACEQMRAD8A/XEREBERAREQEREBERAREQEREBERAREQ EREBERAREQEREBERAXmx4oexYggzbHimx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFy Tkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4r FyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx 4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Hi mx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7 Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkgy7Himx4rFyTkg y7Himx4rFyTkgy7Him9rEvth+Sg+kREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAR EQEREBERAREQEREBERAREQEREBERAKwrMVhQEREBERAREQEREEzPdIcf0cpstZGRzI3vDG8LeIk+ pb8E8dmCOeJwdHI0Oa4d4PYvy/p1ncRb6ZxY7KvkNChA8OEbOImVzeX1AheYrJ28z/RjMyjalZdw sgcCxxa58bTsbG+zh2NehB+qptfnkPSKfNZq1l6c0hq4nF8fVtceB8zml3Mdh19il3cfkh/R8/pO ek2Q8rnjEkjBNqLRdrhaO0H0goP0WznqlXNw4iRsnlE0Dp2kD5PC3e+fjyTA52r0hx5vU2yCISOj +WNHY7VyQe9/Tjo+9ziXnDPJcTzJ4Tz2o1bM5R3Q7GVIsjNFJkcm+CS055L2M4uwEoP1jaL86kx9 vo708wFKPOZC5WnErnRWZuI7DHdutbHZ2+CxYqtkel8WTzE/SK3j5a1h8cEcUgZFCG97x3/X3IO8 y2Zp4SoLN17mtc8Ma1jS5znHuAHM9/1L4w2eoZ+GWbHPfJFG/gL3RloJ1sgb8FxuSsX85l8FgH5s NimrummuUHgdeW7HyHe74r4pPu9HOlWcrjJWchFTxnXQtnfxEHYPMDlv06QfoyL8u8lyo6Ffdl90 t03+Dr+q6wdRri1wcHj3dq7S/mrEXQeTMsj4bHkQmDddji0Hs9ZQbmfzUPR/EyZGxFJLHGWgtZri 5kDv9a34pBLEyQDQe0OHvC/J83hLTegEebm6Q3LMtoRSTRSyh0LuJwOmjXIj19yuWWXOkfTHzI7K 28fTp0Y5eGrJwPlcQOe9dgQd8i4roL5ZFnekNK1kZrwrTsYySV++Wj3dgPjpa+Tgt5X+k1+MGUuV Kxx/G4V5eEn5Q7N7APMc9dyDvUX5ZRp5W7g84Z+kORBw0sjK3BIG8XDs7edbd9azyZnK56p0WxT8 hLU85xOfZsQnhe/h5aB7iftQfpm1o4vMUsuyZ9KUyCCUxSbBGnDtC4ari7Nb+kB+BkzuRsVJMc4t L5/ls2R3jlv0671rdCMKyKhmsgy7dElWexG1gnPA7TSOJw1zd6UH6gm1+aw5G3//AEWktm7N5Twn UxlPHvrPHe19WG3cp0qwWPGUuVoZ8W18xhlIc7lzPrPig7Q9Iag6SDA8MnlRh67evk8PrWbM5WLC 4ixkpo3yR12cTms1s+pcdZs2cJ05NaGzZngqYZz2sllLuNzd8z4nl2qJaxl3I/0eWeklnpBcksWI y+SAyDqC3i1wcOuR96D9Sx91mRx1e7G0tZYjbIGu7QCN6K2Nr81EtzL2+jnRtmQsY+o/GMnlfXfw SSHWuEH0a/iviC3kOjef6RxDJ2cg2hjushE8nFo62Njs2PHSDu8/m4ej2HlydiKSWOIgFseuI7IH f61vQTCevHM0ECRgcAfSNr8mzeGtu/o88/T5+7YntBj5oZJAYXAuHIN1yI9fcquUy8tnpBVw8pyg o16EcjmYyNxkkeQOZLRsNCD9ITfJcr0FuZSaC9VyMN4RV5tVZrsLo5HxnsB2OZGlKZBd6W9MMvXm zN2hXxjmshhqSBhJI/CPI7HJB1WB6QQZ9tx1eGSPySy6u7rNcyADsa7uaqr8fx2Tv4ToZmRVt/6R LmDAbQ7thu3f/niquWxNzo7lOj/U9IchZjtXGCWOefYceWyNa+T6DtB+louY6f5m5h+j7XUZOpms zsg64j8UD2lQrsF7oVlMPPXzd3IR37DYbEFqQPDt6+U3ly1tB+ibRcN0Pu2JpOlPX2pH9TbkDOOQ ngAB7NnkFCo38hV6IYHpC67YkZWvPZa4pXEOjdIRt3PnpB+lZbJw4bF2MjZDjDXbxPDRs63rkstG 5HfoQXIQRHPGHtDu3RG1+ePv3clhelvSCO3O2Agw0w2QhrQ3QLm8+0+KzWZr+ayPR7AedLNKvPjx YmlhfwySkN7A7x70HYwZ2CfpJZwbYpBNWhbM6Q64SHdw572qa/MITZ6L9J+kkjLkuQkqYtropJiH P1saDiO3SWamUxnRCHpezpLdmuljJnxPkBgeHEfIDdelB+n7UyvnqtnpBZwjGyeUVohI8kfJ0da0 feuRsMuZ/p2ymclcpVZcYyaWOvKWnZI5DuB2e3XcvqfJW8T0n6QiGxNK2lio3RMkeXDiAA4tdm/S g79F+T5PG5Kv/R990Y6T5B1uzGySRnXfeyHEfJaBzBHoPcV+gZXITY7ojNfh+VNFU42k8+fD2oM2 fzcPR7DzZOxE+WOHW2x64js671Qik62JkjQQHtDgD6QvyXN4W2f6OvPs/SG7YmtsZJNDJIDC4OIP C0a5Ecu/uV22+70h6XRdHfOVnH0q9FkzvJnBkkpIHYfAbQd+ppz9EZ84Tif5YIeu1w/J4fWoPQ65 dr57MdHrNyS9FQLHQzynbwHf1XHx/wA1qn/98jv/ALafsQbD/wClbovHI6N01nbSQfvB7Qtm/wD0 jdHscyq6xLOBahE8fDET8kkgb9PJch0Hl6XNx87cLUxstPyx/E6yXce989aI7lvdKLd2j/SnjZ6G PN+w2keGu2QR8XN++ZHcg6uh02wWTx1q9UtF7KcZkmYWkPa3x0p1f+lPorYmbF5XLFxHXFJCQ0es qJaxOXnZ0i6SZSizG9djnwsqskDyeX4TiOXd/FRZcxmj/RnFRf0f4caYw033Sh4DeL8IM1sH3oP2 Rj2yMa9jg5rgCCDyIXq0cHHDFgqMdeYzRNrsDJD2uHCNFbyAiIgIiICIiAsjOxY1kZ2IPpERAREQ EREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQCsKzHs WEICL3SaQeIvdJpB4i90mkHiFe6TSCRhujtPCWLtiCWeWa9L1sr5nAnfgNAcl81+jNGrmr2VifOJ MgwNnhLh1Z5a3rW9+/vVnSaQRMB0UxvRyjYp0xJJFZeXydcQ4nY1rkBy0o839F+Cmilh8pyLIJDt sDbHyIjve2gjW/XtdnpNIIw6MUhk6eQ62fradU1YxxDhLCNbPLe/etVnQbDjo/5kkE81frXTNe94 6xryd7BAGvqXR6TSDlqH9H+Lx+VqZNtzIT2qhdwvsTh/ECCNHl2AE9mlF6T9FKoz9d9OhkZIrr93 IasjmRybI5uIaQO8kEja/QtJpBByvQ3EZapVrujlq+RjVeSq/gfGPAFfGG6FYvCX57sEtqaSxD1M osSCQPG+ZPLez6/cui16E0g5If0bYEWOLju+TcfH5EbB6je974db/iunlrQzVXVZI2mFzOAs7uHW tLNpNIOMf/Rdg3wuhNnJCEu4o4vKdsiO9/JBGvr2qWZ6F4zNTwWZZLdazAwMbPVl6t5b4E6XQ6TS CJ0f6KY/o1JafQfOfK3Nc8SvDtEDuOt8975krMMBVHSU5/rJvKjX8n4Njg4dg71re+Xiquk0gi1u i1GrUylZktgsyj3vmLnDbS4aPDy+O1rT9BsRZwdPEyGxw0fm9hsgbMw+IcBr+C6PSaQc3h+g+Nwu YGVgs3ZrPVGJzp5g/jB7zy3vl46WWt0Qx9LNS5StNbiM7nOlrNl+8yFw0SW67efir+k0g42T+jDA vinhbNfjgmOxC2x8iM+LQRrfr2rEXRelDl6eTbLP11Ot5NG0ubwlvieW9+oq1pNIJL+jtOTpF58e +U2PJ/JzGSOrLdk9mt75+KiTf0Y4KZs0QsZCKvLsiuyx97jJ72tI7fXtdjpNIOdyHQrFZKhSrSPs xPoRiOCzDJwStAGu3Wv4LzEdB8Vh7lm1C+1O63D1UzbEgeHDvJ5b2fWuj0vEHGzf0XYKWGSDyrJN gcdshFnbIjvfyQRr69qrlOh+OyhgkdLaq2K8Yjjs1peCThHcTrRHuV0c17pBMwuAo4Cs+Gk15Mru OWWVxc+R3i4qfluhGKy2TORdLcqWHgCV1WYx9aB3O5fBdHpNIOco9BcLRwtzEBk01S5KZXtleCWn QHySANa0FqQf0b4iC1Usm7kppKkokiM1gP1rsbot/B9S67SaQamTxlPMUJKN6ETQSD5TT49xHpUX FdBMTir8d3rrlyWH8T5XN1gh9kaXS6TSDmLvQDDXcpNkC+5C6x+PihnLGSnxcNfbpbVbojjavRZ/ RwOnkpvDwXPcC8cTi7kda5E8uSu6TSCJF0Vx8PRV3RyN0zaboywvBHWHZ2TvWt79Cw5LoXi8pSpV 5n2Y5KLAyCzDJwStAGu3Wv4LodJpBzuI6EYnD3LNqF9mZ1uHqZm2JA8PHeTy3s+takP9G+CistkL 7skEb+NlN9gmBp3vk3X2rrdJpBLZgarOkLs218osGv5PwbHBwg77Nb3718jo7R883co8ySSXoBBL G4gx8I8Brf8AFVtJpBxkv9F2ClgkgNnJNgcdshFnbIjve2gjX17XWGpC+l5HIzrITH1Za7nsa1zW fSaQcZL/AEXYKWCSubOSbA47ZCLO2RHfa0Ea+vaqZnodjM0YJZX2a9mBnBHZrS8Egb4b1r+Cv6TS CVguj1Do9XfFRbIXSu4pZZX8T5D4kr5PRymekp6QdbP5UYOo4OIcHD461vfvVfSaQSsB0eqdHKUl SnJNIySV0pMxBOz29gHJfM/RunY6TV+kD5JxarxGJrA4dWQd9o1vfPxVfSaQauSoRZPHWKEzntjs RmN5YQHAEa5bHap46LUfuW+50yTmp1fV8ZcOPW973rW/crWk0g1cdRjxmOr0YXvfHXjEbHSEFxAG hvS2V7pNIPEXuk0g8Re6TSDxF7pNIPFkZ2LGsjOxB9IiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC IiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgaTSIgaTSIgaTSIgaTSIgaTSIgaTSIg aTSIgaTSIgaTSIgaTSIgaTSIgaTSIgaTSIgaTSIgaTSIgaTSIgaREQTOjxJw0ZJ2esl7f7xyp6Uz o79DRf3kv/ccqaBpNIiBpNIiBpNIiBpNIiBpNIiBpNIiBpNIiBpNIiBpNIiBpNIiBpNIiBpNIiBp NIiBpNIiBpNIiBpNIiAmkRAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQ EREBERAREQEREBERAREQEREHjiANkgAdpK0I8o+dokrY61NC4bZICxocPEBzgde5ZsqdYi4f/wCQ /wD6SslQaqQgfm2/BBr+X2f1Tb/bi/xp5fZ/VNv9uL/Gt5EGj5fZ/VNv9uL/ABp5fZ/VNv8Abi/x reRBo+X2f1Tb/bi/xp5fZ/VNv9uL/Gt5EGj5fZ/VNv8Abi/xp5fZ/VNv9uL/ABreRBo+X2f1Tb/b i/xp5fZ/VNv9uL/Gt5EGj5fZ/VNv9uL/ABp5fZ/VNv8Abi/xreRBo+X2f1Tb/bi/xp5fZ/VNv9uL /Gt5EGj5fZ/VNv8Abi/xp5fZ/VNv9uL/ABreRBo+X2f1Tb/bi/xp5fZ/VNv9uL/Gt5EGj5fZ/VNv 9uL/ABp5fZ/VNv8Abi/xreRBo+X2f1Tb/bi/xp5fZ/VNv9uL/Gt5EGj5fZ/VNv8Abi/xp5fZ/VNv 9uL/ABreRBo+X2f1Tb/bi/xp5fZ/VNv9uL/Gt5EGj5fZ/VNv9uL/ABp5fZ/VNv8Abi/xreRBo+X2 f1Tb/bi/xp5fZ/VNv9uL/Gt5EGj5fZ/VNv8Abi/xp5fZ/VNv9uL/ABreRBo+X2f1Tb/bi/xp5baI +TirO+7ifEB/1reRBz+PfmMVV8kkxLrXC5zhLXmYGkOcXa04g7G9LZGVyn/8O2/38P8AjVdEEnzt k/8A+Hbf7+H/ABr4lzd+GN0s3R+4yNo25wlidoeOmuJ+oKyvmUfeneooNJl63IwPZjnFrhsETM5j 619eV3v1Y/8Aes/mvcT9E1P7pvwW4g0vK736sf8AvWfzTyu9+rH/AL1n81uog0vK736sf+9Z/NPK 736sf+9Z/NbqINLyu9+rH/vWfzTyu9+rH/vWfzW6iDS8rvfqx/71n808rvfqx/71n81uog0vK736 sf8AvWfzTyu9+rH/AL1n81uog0vK736sf+9Z/NPK736sf+9Z/NbqINLyu9+rH/vWfzTyu9+rH/vW fzW6iDS8rvfqx/71n808rvfqx/71n81uog0vK736sf8AvWfzTyu9+rH/AL1n81uog0vK736sf+9Z /NPK736sf+9Z/NbqINLyu9+rH/vWfzTyu9+rH/vWfzW6iDS8rvfqx/71n808rvfqx/71n81uog0v K736sf8AvWfzTyu9+rH/AL1n81uog0vK736sf+9Z/NPK736sf+9Z/NbqINE3LoH0Y/8AfM/ms1O2 y0JBwOjkidwSRv7WnQPq5gg7HithT6Q1mMkfTF/0oKCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiA iIgIiICIiAiIgIiICIiAiLlcp0ts0MlPVZXjeI3aBJOzy39qDqkXFfdzc/Q4frKfdzb/AEOH6yg7 VFxX3c3P0OH6yn3c2/0OH6yg7VFxX3c3P0OH6yn3c3P0OH6yg7VFxX3c3P0OH6yn3c3P0OH6yg7V FxX3c3P0OH6yn3c2/wBEh+soO1RcV93Nz9Dh+sp93Nz9Dh+soOqyv0Rd/uH/APSVmq/NIf7tvwXF 2OmVmzWlgfUiDZWFhIcd6I0vqPprbjjawVItNAHMnuQdui4r7ubn6HD9ZT7ubn6HD9ZQdqi4r7ub n6HD9ZT7ubn6HD9ZQdqi4r7ubn6HD9ZT7ubn6HD9ZQdqi4r7ubn6HD9ZT7ubn6HD9ZQdqi4r7ubn 6HD9ZT7ubn6HD9ZQdqi4r7ubn6HD9ZT7ubn6HD9ZQdqi5fD9KrOSykNR9eNjZOLbmk75NJ+xdQgI iICIiAiIgIiICIiAi5nNdKLGMyT6sdeN7WgEFxO+YWh93Fv9Eh/aKDtUXFfdzc/Q4frKfdzc/Q4f rKDtUXFfdzb/AESH6yn3c2/0SH6yg7VFxX3c3P0OH6yn3c3P0OH6yg7VFxX3c3P0OH6yn3c3P0OH 6yg7VFxX3c3P0OH6yn3c3P0OH6yg7VfMn4t3qK4z7ubf6JD9ZXjum9tzS3ySLmNdpQdVifoqr/dN +C3FwtbplZrV44GVYi2NoaCSd8ll+7m5+hw/WUHaouK+7m5+hw/WU+7m5+hw/WUHaouK+7m5+hw/ WU+7m5+hw/WUHaouK+7m5+hw/WU+7m5+hw/WUHaouK+7m3+iQ/WU+7m3+hw/WUHaouK+7m5+hw/W U+7m5+hw/WUHaouK+7m5+hw/WVs47pfZu5GCs+tG1srw0kE7CDrEREBEUbpNk7OKoxTVi3idKGni G+WifsQWUXA/dllvyof3f+afdllvyof3f+aDvkXA/dllvyof3f8Amn3ZZb8qH93/AJoO+RcD92WW /Kh/d/5p92WW/Kh/d/5oO+RcD92WW/Kh/d/5p92WW/Kh/d/5oO+RcD92WW/Kh/d/5p92WW8Yf3f+ aDvkXA/dllvyof3f+afdllvyof3f+aDvlPpfS+R9cX/SuR+7LLeMP7v/ADWJnSrJRzyzN6oPl1xn g7dDQ70H6Gi4H7sst+VD+7/zT7sst+VD+7/zQd8i4H7sst+VD+7/AM0+7LLflQ/u/wDNB3yLgfuy y35UP7v/ADT7sst+VD+7/wA0HfIuB+7LLflQ/u/80+7LLflQ/u/80HfIuB+7LLflQ/u/80+7LLfl Q/u/80HfIuB+7LLflQ/u/wDNPuyy35UP7v8AzQd8i4D7sst4w/u/812uNnfaxlaxJrjkia52hrmQ g2kREBERAREQEREBERAREQEREBERAREQF+bdJP8AWC57Y+AX6SvzbpJ/rBc9sfAII89qCqwOsTMi aToF7gOaQ2q9kF0E0coHexwKkdJmhzaLXAEGwBor4yEMeOzOPlqMbE6Z/BI1g0HD1ILENyCeeWGN xL4Tp40RpZ1AfkLTBmHNlANcjqjwt+Ty9XP3rHJey0BoyOsxPFsBoYY9BpIHPfag6NNqLWv3K1y5 WuytsdRF1rXNaG8vBTo8/cIjsGy1/G8A1mwHk0n8rXb70HVooBtZSzkL8MFtkTINFvFGCRy3r/8A VeHL3X4KC0xoa97+CWRrOLgH5WkF9zmtaXOOgBskrUhytGxI2OGfie8nTeE79fZ2elalC3NNBYLr 9axG1vyZS3hLfaboclpV8rKzJVo/LI7bJjwnUHAG+o65hB0iKE63k70tt9OeOCKq4tDXMDi8jt2e 5UcVdOQx0VlzQ1zh8oDxQfT8nQieY5LkDHNOi0yAELPFNFPGJIZGyMPY5p2Fy8L+DK5H/wAKN7c3 aADw/Wt+/cnqVqggi8iil2ZHCLi6r0a0gtlwaCSQAO0lA4OGwQQe8KBPLZtdH7bjdhma0HUkQ5ub rsI7j6ljbYvUsLjuosNc+aRrRxMGtEcmnl/FB0i8JAGyeQUY2chWydCrPZa/rQ8ycLAAddncsU9m 3Zmy1byjhjhjBaOAHQ0djs70F5rmuALSCD3gr1ctDZuUOjVWWOzzfI0AcDfkt7x2fxVWe5OzPVqr ZNQvic5zdDmR/FBURQcVaylqJ9mW1E2GMvbpzRzI7CddwWKLMTx5CvH5cy2yeTgc0Qlgb6Qdc/rQ dGvHPa3XE4N2dcyudbbytmbIiG4yNtZ54dxgnQ3y7PQsOTmsX8ZjbRl4DJI0FoaNcW/wv8kHUooG Sys9a5HQbbEJbGHSTmEvJPgAAtzB5CW9Xk6/m+J/DxhpaHjuOkHVdFP9Y6v/AB/9BX6Kvzrop/rH V/4/+gr9FQEREBERAREQEREBERB+e9Lfp+X2W/BRVa6W/T8vst+CioC1pMjSilMUluFkg5FrngFb JUCrVgs9Ick2eFkoAboOaCgszWYYKzrD3/e2jiLhz5L7hlZPCyWM7Y8Ag61yXOVppKVLLwQP+RWf 962OLh33c1mdeyD5cZDDYaw2IOJ5cwEb12//AKIOgRc5FazEzbkIuRh9MncnVDb+W9a7O5fU+dmG MpSBzYpbJIdIWFwaB2kDvQdCi5uHM2zXux9f1zooTJHP1XBz8CCPsXrchlIYKNyWzHJFO9rHRiMD t79+KDo1gs3K9NrXTycAcdDkTz9yjX8nbjyMsJtNpRsA6ovi4myH0nXJbN21MypXe+9XrveObmx9 ZxH+yP8AJBRrW4bbC+CQPa08JcBy36Csy56pnJGYy7K/hldWdwscGcHHvs2O5fXluTouqT2545ob Lg0sawNLN9mj3oLksscMZkle1jB2ucdALXblce9wa27AXE6AEg2StfpD9BWfZHxC0sU5snkzHYPg Gh9/LW67O3sQdAi52fKXfLZ43W46ZY/UUcsfyZB4l2lnyeQtQTwRmcVYnx8Tp2x9YOLw7Oz3ILaK FZy9mph2TOkgmlkfwMkj2W68SPsXxQy1l9s132fKmujc4SCEs4XAdnMIOg2i5ZuSy4xDMkbUZYyT hcwxjbhxa5n+SoT271zImnSmZX6uIPc8sDiSe5BRtXYKYjMzy3rHhjdAnmthQbd3JQVKflDWxTOs hj9Brg5vj36X1lr81ed4jyTISxuxC2Evd2f1jo62grWLleqYxNJwmV3AzkTs+HJZlzd2269SxFl7 Q1z5xsDs2ukQFQwP05T/AL0KeqGB+nKf96EH6YiIgLmunH0VB/fj/pK6Vc104+ioP78f9JQcQtCz m8dUndBPY4JG9o4HHXvA0t9Q6jGv6UXw5oI6tvaEFR12HyN1qI9dG1pd975k+pZK8wsQMmDXMDxv hcNEetc7C91YZyOu4sjj+VGWnXC7R3pfTp7kzsPGy3JGZ4ncbgd75DmfEoOkTa5mBl+ae9S85zht XTmv/rnYPInwSXL2/MVJwe/rrDyxz2N27Q8B4oOmRcvFbvxQXWcVwwiu5zJLDeF7XAdx/wA14Jb9 elQvnISyGR7WOjd+CQT8fSg6la9u2yoxrnRyyFx0GxM4nfUouVntx5CTrprUFYNHVPgbtu+8u7/c s1q1vH1Q7Iyl8g5GrH8uX1eCCpUuMuNc+JkjWtPCC9pbv1A81sLmamXtQUsjxmV5ra6szgB434r6 c+9jRTuPvSWBYe1skb/wefh4IOgnnirQPmmdwxsG3HROgtKHP4ueQRstjidyHE1zR9ZC9zv0Jb/u yop8ryOIhpRYpzdtbqdxAAA70HVbRc/Yjuvy8VCG7JC0VgXFvPZB7R6fSjfLclbtsbekrsqEMaGf 1jrtKDoNoucOQyNvBQzQ8ZeJSyZ0Q+Vwg9oXte27zfe6q/LL1cZLWzNLZYzrvPeg6JFzBlv0q1G+ b8k3XOa18T/wdEd3p9K8vZC1ZydiGN9yNkBAaKzAdnxdzQdQvlz2sYXvcGtA2STyAXPOv5GxXoVH ufWmsPc2STh07Q8B3bWeelcix1yCe86WIM4o3cX3zs5g+hBSsZCKCvHYYHTxyODWmIcXb3+pbQPJ csDNT6N0pIrMwMsrP655DwHo9C27V6XHZC62SZ5ZJB1kIcSQCORAQXkXPSPlgx1OGe/bE8reIshH FI/fPt7gFs9Hrc9htmKZ8juok4WmUafrwPpQWF+nYX6Epf3DPgF+Yr9Owv0JS/uGfAIN5ERAREQE REBERAREQEREBERAREQEREBfm3ST/WC57Y+AX6SvzbpJ/rBc9sfAIOby+NkyMcIimETopOMEt2vi tiZfLGXL9o2ZYxqMBga1vp0qmkQSX4ZzhkR1wHlvZ8n8FfU+JdMyg3rgPIyCfk/haAH2KoiDQ82h 2TntPeHMniEZZr7VrV8NbqlsMWScKrXbDOrHFrt1vwVhNIJ8GNdDdu2OtBFoDTdfg6Glggw00GNh rRXXRyxOLg9o+S7Z7CO8KuiCQzB8QtOszh0tloaTG3haAPALGzCW+spumvCRtRw4WiMAa/mra8e5 rGFznBoaNknwQSZ8NY6+d1O8a8dk7lZwB3PvI8FQpVI6NSOtFvhYNbPafSsEGZx1mcQw2mueeQGi N+o60Vsz2IqsDppnhkbBsuKCWMTkYblmerfjibO/jLTFxLPJQvSRxPOQPXx72eH5DwfFq3oJ4rUD ZoXcUbxtp0Rta1vL0KU3U2J+CTXFwhjjy9wQYK+FEdS3FLNxPt743Nbwgcu4LG3DT+S1YJbYf5NK HtPBr5I7v81ujJ0zUFvrvvJOg7hOyfDWtrLFagmjbJHI0tedNPZs+HrQauSxslyaCxXsdRPATwuL eIaPoWKph5IZbj57PXG00NJ4dEcj/NVUQRRgZXYo0ZbfEGODoXBmuHXxWSDE2m5GK5Zuid0bC3XV hvb4KtpEE2tiBDipqMkvEJS4lzRrW1qtwdvdXrLzXtqvDmN6oDkPtVxEE2tinQPvu60O8rJI5fg7 BH2rDJg3PxFemLHDJXcHNkDeWwfBWEQSrGKsSyxW4bnVW2M4HycALXj0hblGvNXhLZ7BneTxFxAG vQAtnSIK/RT/AFjq/wDH/wBBX6Kvzrop/rHV/wCP/oK/RUBERAREQEREBERAREQfnvS36fl9lvwU VWulv0/L7LfgoqAo8mJujI2LVW+2Dr9Bw6sOOgrCIJbcKyPFT02Skvn2XyuGySe9esxLmWaE3XAi pFwEa/C5dqpogmwYt0M9+TrQfK+wa/B5FYfMX/htaAWCyeseKOZo7/UrCIJYxluWpZis3utfPHwD UYa1vp0F5Lh3SY+nV64A1ntcXcP4WlVRBLt4u1NJN1V3UUw06OVnHw+z4L4fg3MFR1SyYpKrS0Oc 3iBB7eSrEho2eQC0Y81jZZxAy2wvJ0Bo6J8AdaQa9fBlsV2OzP1wtnZIbog+PgvIsJO6WDyy8Z4a 5Do2cAHMdmz3qrLKyCJ0srg1jASSe4L4rWYbcDZ67+ON3Y7RHxQY8lTN6hLWa8MMg1xEb1zWlXoZ eARs85RuiZocPUjmB3bW3cylKg9rLM3A5w2AGOPL3BGZSlJUNps/3kHhLi0jn4aI2g07OHsz9dEL xNeY7LZGcTm+gEnks02NsNMRqWzGGRiMskHGwjx14rahu1p4RLHM0sJ4dnY5+Gj3rYQSB0fi82Go 6V3GZOtEgGtO9A8FmrUbrC42r/XDgLQ0Rho5959KoogjDBvGCON68cXHxcfDy/C32LLZxU5si1Tt +TzdWI3ksDg4D0KoiCRJhHvrVovKnOdDMJXPfzLvR6Emw05t2Ja1zqmWR98aYw49muRVdEEcYN4p Ua5nbupLxk8P4Q2eSsIiAqGB+nKf96FPVDA/TlP+9CD9MREQFzXTj6Kg/vx/0ldKua6cfRUH9+P+ koOIUmzg3TXpbUV6au6UAOEfLkPSqyINBmIghx0tKIuAlB43nm4k95XyzEMbJRf1rv8AQ2lrRr8L fiqKaQaMOMZDct2RISbIAI12LEMFXOLjove9wjPEyQcnA77VTRBLZhtQTsmvWJ3TRmPie7YAPgF9 SYdj6Fep1zgK7g4O1zOlS0iCbZxHXWJJobc0BmGpGtIIcPf2L5lwUJhrMgmkgfW31cjTz59u1URB LrYSGA2hJLJO2yAHiTt+tfMGAiimifLannjhO4opHba1VlNt5ypUnMJbLK9n4YiZxcHrQbd2sLtO Ws5xaJG8JI7l9VoRWrRwh3EI2hoJ9C+GXqr6gt9c0QkbD3HQXzSyFa+ySSu/iZG7hLtaG9dyDw0W nJi9xniEfBw65dvata3hGT2Xzw2ZqzpRqURnk9Z6+Vr2ZjG1srdgua57NNeB2kFbUUrJoxJG4Oa4 bBHeg0X4auacNaJ8kPUHijew/KB8fStefF+S0bsxlksWJYiC9wG9AcgAFZ0iCDjsIySCnNPYne2N oe2Fx+S0rbt4Zk9p1qCzNVleNPMR1xBU9JpBOnw0M1SGHrpWvgO45uLbwfWvauIjgimEk0k75xwy SPPMjSoIgkDANFJtQ25XMZKHs4uetdyzZLEQ5J8D5HlphO+Q7R4FUUQaF7FMuSxTsnkgmi5Nezw8 F7jsY3HPnc2aSXrnBx4+Z361vIgL9Owv0JS/uGfAL8xX6dhfoSl/cM+AQbyIiAiIgIiICIiAiIgI iICIiAiIgIiIC/Nukn+sFz2x8Av0lfm3ST/WC57Y+AQTEREBERAREQEREBY52RSQuZMAYyNODuzS yLHYgjswPhlHEx40QggZBj47lJkteOGlHMOqki0STrkD4BfOduw255qj52RxV4y4tJ0ZJNcgPUt6 Ho/FHJEZbVieOE7jikdtrSOxbtnG1bUcjXwR8UgIMnVji9e9INbo9LHJhYAx4cWN4XAHsPgsE9K8 cvPbqyVSTGGhsmyRru0sr6EtSlVqUS5upW9ZI3Q+SO0n19i+7eGjs2XWIrM9eR44XmJ2uIelBhqy SZnHRTNLYJ4ZSfweJvEOXZ4LVgnjq2eOYyThjnuYIo97JPy368B2fWrNWhDUp+SxbDNEE75nfadr BPiI3iLqZZK5jjMe2aO2nuO/ig3YpGTRNljdtjwCD6F9rHBCyvCyFn4LGho34BZEBERAREQEREBE RBX6Kf6x1f8Aj/6Cv0VfnXRT/WOr/wAf/QV+ioCIiAiIgIiICIiAiIg/Pelv0/L7LfgoqtdLfp+X 2W/BRUBERAREQEREBERB8StY6JzZdcBBDtnlpc7mIzE2CN1eOLHMlaRLFouHu9a6OWNk0Tont214 IIPgpLOjkILGPtWJK7DxNgc/5IQYMxdrWLIx8s7Y4Y28cpc7XEdcm/as/RiaN+GiYx4LmbDgD2cz 2qhNRqzcRfXic5w1xGMEqfJjJKOKbUx5cJXPAMrdNdreyT7kHtyncly/lNWSsOGHgDZNkg732L4q yPzNB7H8ME9ecbLRtvE3mDrwWzcxDLU7bDLE1ecN4S+J2tj0rPRx8NCt1EOyCSXOcducT3lBGiey vec6brLOpS/UUf4cmgCQN9jR/FX4JmWIWTRHbHjYK1ZcWxzIhBK+B0QIa5uidHt3tbNaBlWuyCPf CwaG+1BlREQEREBERAREQFQwP05T/vQp6oYH6cp/3oQfpiIiAua6cfRUH9+P+krpVzXTj6Kg/vx/ 0lBxCIiAiIgIiICIiAiIg8U66ZJWStxstZsw313ENns+PrVJTreCo3JzO9r2Pd+GY3FvF60GHCRV bOEhYYQ5jSdtk075QJ2Vj6NNHU3m60PKXDQ9QVaCvFVgbDCwMjYNABY6dCGiJRDxffXl7uI75lBH vVW0iIxYlexjHHh5fe4z2geJPZzVPH3Ov4oH1nV3xAHgJB+SewghbEtSCYSh8YPXN4XnxCx1MfDS 4jG6R7n626R5c7Q7BvwQbSIiAiIgIiICIiAiIgL9Owv0JS/uGfAL8xX6dhfoSl/cM+AQbyIiAiIg IiICIiAiIgIiICIiAiIgIiIC/POkNK1Lnbb2VpXNLxotYSDyC/Q0Qflfm+7+iT/uynm+7+iT/uyv 1REH5X5vu/ok/wC7Keb7v6JP+7K/VEQflfm+7+iT/uynm+7+iT/uyv1REH5X5vu/ok/7sp5vu/ok /wC7K/VEQflfm+7+iT/uynm+7+iT/uyv1REH5X5vu/ok/wC7Keb7v6JP+7K/VEQflL6VuNjpH1pW taC5znMIAA7SV6yjbewPZWlc1w2CGEgjxX6B0p/1TzH+4T/9tyy9H/8AV3G/7pF/0BB+d+b7v6JP +7Keb7v6JP8Auyv1REH5X5vu/ok/7sp5vu/ok/7sr9URB+V+b7v6JP8Auynm+7+iT/uyv1REH5X5 vu/ok/7sp5vu/ok/7sr9URB+V+b7v6JP+7Keb7v6JP8Auyv1REH5X5vu/ok/7sp5vu/ok/7sr9UR BwHRmnai6QVnyV5WNHHtzmED8Erv0RAREQEREBERAREQEREHBdKalmbOyvjryvbwt5tYSOxSPN93 9Em/dlfqmkQflfm+7+iT/uynm+7+iT/uyv1REH5X5vu/ok/7sp5vu/ok/wC7K/VEQflfm+7+iT/u ynm+7+iT/uyv1REH5X5vu/ok/wC7Keb7v6JP+7K/VEQflfm+7+iT/uynm+7+iT/uyv1REH5X5vu/ ok/7soaFwDnUn1/dlfqix2Pm0vsH4IPy2OnaljEkdeV7HDbXNYSCPEFfXm+7+iT/ALsruuh3+p2J /wB0Z8FaQflfm+7+iT/uynm+7+iT/uyv1REH5X5vu/ok/wC7Keb7v6JP+7K/VEQflfm+7+iT/uyn m+7+iT/uyv1REH5X5vu/ok/7sp5vu/ok/wC7K/VEQflfm+7+iT/uynm+7+iT/uyv1REH5X5vu/ok /wC7K3sJStx5qo99aVrRKCSWEAL9GRAREQFB6XU7N3HQx1oXSuEwcQ0d3CeavIg/NPMGW/QJvqTz Blv0Cb6l+log/NPMGW/QJvqTzBlv0Cb6l+log/NPMGW/QJvqTzBlv0Cb6l+log/NPMGW/QJvqTzB lv0Cb6l+log/NPMGW/QJvqTzBlv0Cb6l+log/NPMGW/QJvqTzBlv0Cb6l+log/NPMGW/QJvqWGPF X5rM1eOtI6WDh61gHNmxsb9YX6iufw3+t/SP2q3/AGkHKeYMt+gTfUnmDLfoE31L9LRB+aeYMt+g TfUnmDLfoE31L9LRB+aeYMt+gTfUnmDLfoE31L9LRB+aeYMt+gTfUnmDLfoE31L9LRB+aeYMt+gT fUnmDLfoE31L9LRB+aeYMt+gTfUnmDLfoE31L9LRB+ZnAZb9Am+pfoOJifDiakUjS17IWhzT2g6W 2iAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgldKf9U8x/uE//bcsvR// AFdxv+6Rf9AWLpT/AKp5j/cJ/wDtuWXAf6u43/dIv+gIKCIiAiIgIiICIiAiIgIiICIiAiIgIiIC IiAiIgIiICIiAiIgIiICIiAiIgIiICx2Pm0vsH4LIsdj5tL7B+CCV0O/1OxP+6M+CsqL0OO+h2J/ 3RnwVpAREQERNoCIiAiIgIiICIm0BE2iAiIgIiICIiAiLzaD1ERAREQEREBc/hv9cOkftVv+0ug2 uewx/wDrDpIPB1b/ALSDoUQFEBERAREQERNoCICiAiIgIiICIiAiIgIiICIiAiIgIiICIiDXvWxS r9YWOkcXBjGN7XOcdAfWVqibOEb8hoD0eWP/APiX3l/wKn+9xfFb6Cd12c/Qsf8A84//AOJOuzn6 Fj/+cf8A/EqKIJ3XZz9Cx/8Azj//AIk67OfoWP8A+cf/APEqKIJ3XZz9Cx//ADj/AP4k67OfoWP/ AOcf/wDEqKIJ3XZz9Cx//OP/APiTrs5+hY//AJx//wAaooghx5HpBZkkFbG44sieWFz7zwCR261E ew8lk6/pP+rcT/z8n/wrYw3zax/vc/8A3HKggj9f0n/VuJ/5+T/4U6/pP+rcT/z8n/wqwiCP1/Sf 9W4n/n5P/hTr+k/6txP/AD8n/wAKsIgj9f0n/VuJ/wCfk/8AhTyjpP8Aq3E/8/J/8KsIg5vKx9Is hiLlSevjasM0D2SSR2ZJXBpaQdNMbRvXftMZD0krYypDWlxktdldjY3TNka/QbyB1y2BrmFdu/ML H9074FfON+i6v9yz/pCCdvpV4Yj65U30q8MR9cqtIgi76VeGI+uVN9KvDEfXKrSIIu+lXhiPrlTf SrwxH1yq0iCL/wDVXhiPrlXkVrPttNrWm45rntLmOj43A61sc9EHmFbWjZ+l6fsSfAIPNZj8uj+y /wDmn/jP5dH9l/8ANb47EQaH/jP5dH9l/wDNP/Gfy6P7L/5rfRBof+M/l0f2X/zT/wAZ/Lo/sv8A 5rfRBof+M/l0f2X/AM01mPy6X7L/AOa30QadK3NLJLXsxsjsQ6J6txc1zTvThsA9x5ehbi0YPpm3 /dRfF63kBERAREQEREBaDpbdq5NDXmbBHBoOcY+JznEb8dAAa+tb60qfz+//AHjf+gIPPJsh+sv/ AGG/zTybIfrL/wBhv81vIg0fJsh+sv8A2G/zTybIfrL/ANhv81vIg0fJsh+sv/Yb/NPJsh+sv/Yb /NbyINHybIfrL/2G/wA08myH6y/9hv8ANbyIIkUWYtTT8OWZFHHIY2gVmuc7QGyefjy16Fm8gy/6 8P8AyrFnxf4Nv/epPit7SCUaGX/Xh/5Vi+X4rJzsMU2cl6t4Id1cDGO16D3KvpEESDo35FEyvQyt 2rWjHCyFjmua0eA4mk69G1k8zXP19kPqj/wquiCR5mufr7IfVH/hTzNc/X2Q+qP/AAquiCQcLc19 P3x6dR/4V842vZs13ddkbXWRSvieWloB4XEA/g940VZK0MR+Bb/3uX/qQe+bpf1jb/ab/hTzdL+s bf7Tf8K3kQaPm6X9Y2/2m/4U83S/rG3+03/Ct5EGj5ul/WNv9pv+FPN0v6xt/tN/wreRBo+bpf1j b/ab/hQ46TX0lb/ab/hW8iDSx8sxks1ppDKYJABIRokEAjfd36W6tGn9IX/bZ/0BbyAiIgIiICIi AToEqVRrS3qMFua7Ya6eNshbG8Na3Y3oDXdtVHfgn1LSwn0Fj/8Ado/+gIHmz/z1z97/AJJ5s/8A PXP3v+S3kQaPmz/z1z97/knmz/z1z97/AJLeRBo+bP8Az1z97/knmz/z1z97/kt5EGicZv8A/brn 73/JaFfD1o85b6p88T3QRPfIyU8TyXSAknv5AfUrq0Yvp61/usP/AFSoHmz/AM9c/e/5L3zZ/wCe ufvf8luog0vNn/nrn73/ACTzZ/565+9/yW6iDS82f+eufvf8k82f+eufvf8AJbqINLzZ/wCeufvf 8ljnx74oXyxX7YexpLeKTibvXeNKisdj5vL7B+CD5qTGxThnI0ZI2uIHpAKzLVxn0VT/ALhn/SFt ICIiAiIgIiICIiAiIgIiICIiAiIgIiINDL/gVP8Ae4vit9aGX/Aqf73F8VvoCIiAiIgIiICIiCfh vm1j/e5/+45UFOwvzex/vc//AHHKigIiICJtNoCIiDBd+YWP7p3wXzjfour/AHLP+kL6vHVCx/dO +C+cb9GVf7ln/SEGyiIgIibQETabQFo2fpen7En2Le2tKx9L0/Yk+AQbo7EQHkm0BERARN802gIm 02g0oPpm3/dRfFy3VowH/wAZt/3UXxet7aAibTaAibWJ9qCN5a+ZjXDtBKDKiweW1f0iP9oJ5bV/ SI/2ggzrSpfSF/8AvG/9AWby2r+kR/tBalSzCy7de6Vga+RpaS4c/kgIKSLB5bV/SI/2gnltX9Ij /aCDOiweW1f0iP8AaC+45o5RuN7X6/JO0GRFgderMeWumaHDkQV55wqfpDEGwh7Fr+cKn6QxeHIV Pz7PrQYsX+Da/wB6k+K3lLx9uvELHWStbxzvcNntBPIrc84VP0hiDYRa/nCp+kMXnnCp+fZ9aDZR fEU0czeKNwc3etha78nUjeWOeQWnRGig20Wl52p/nD9Sedqf5w/Ug3VoYj8C3/vcvxX0ctT/ADh+ orUx96vXbOJH66yw940O4nYQWEWl52p/nD9Sedqf5w/Ug3UWl52p/nD9S2YLEdmMviO271vSDIi0 rGUgrTOieH7breh6NrH57rfkyfUgoop3nut+TJ9See635Mn1IPun9I3/AO8Z/wBAW8o0GTgitWZS HETOBAA58m65rY891vyZPqQUUU7z3W/Jk+pPPdb8mT6kFFFr1bkdxrnRggNOjtYbGXrVp3QycfE3 t0EG8im+f6X9v9lPP9L+3+ygou/BPqWlhPoLH/7tH/0BYjnqZBHy+z8la+Oy1WpjataQuL4YWMcQ OWw0AoLaKb5/pf2/2U8/0v7f7KCkinw5mrPM2JnHxPOhsLZtW2VIw+QEgnXyUGdFN891vyJPqH80 891vyJPqH80FJaMX09a/3WH/AKpV8ee635En1BazMnA3IzWuF/DJCyMDQ2C0vJ7/AO0EFpFN891v yJPqH80891vyJPqH80FJFN891vyJPqH81vQTNnhbK0EBw3ooMiLQdmKzHFpD9tOjyXnnqr4P+pBQ WOx83l9g/Bafnqr4P+pfEuXrPiewcey0gbHoQbOM+iqf9wz/AKQtpSaeUr16UEL+IujjawkDlsAL N56q+D/qQUEU/wA9VfB/1J56qnuf9SCgiA7RAREQEREBERAREQEREEzMWJoOq6p5Zve9e5TPOFv8 +5b+e/2H/F9ikINjzhb/AD7k84W/z7lrogyyW55Q3rJS7gcHDfcR2FffnC3+fctdEGx5wt/n3J5w t/n3LXRBsDIW9/j3rpGHcbfUFyfeusj/ABbfUEEO/csxXZWMmcGgjQHqC1/OFv8APuX1k/pGX1j4 LVQbHnC3+fcvfOFv9IetZEGaO3YiDhHKWhzi4gd5J2T9a+vOFv8APuWstO3l8fRsxVrNqOOaUgMj J247OhyQVfOFv8+5POFv8+5abJ4pXyMjka50Z4XgHm063orIg6ai90tOJ7zxOLeZKk5KzPHee1kr 2tGuQPoVXHfMIfZUbK/SEnu+CDD5ZZ/PyftFPLLP5+T9orCiDK63Yc0tdM8gjRBKNtTsaGtme1oG gAdABYl4eQQZ/LLP5+T9op5ZZ/PyftFasE8VmETQvbJG7sc08isiDfx1meS9G18r3NO+RPoVbIuc yhK5pLXADRHrCi4v6Qj9/wAFYyf0fN6h8Qgg+V2Pz8n7RTyqx+fk/aKxIgy+VWPz8n7RXhsTF4eZ Xlw3ok8wsaIMvlVn8/J+0U8qsfn5P2isSIMvldj8/J+0VYw0r5YJDI9ziHdrjvuUFXMF83k9v7EG LNyPZLFwPc3bTvR0pvlE356T9oqhnfxsXslS0GTyib89J+0U8om/PSftFY0QfYml3vrX7PfxFe+U TfnpP2isaIMnlE356T9op5RN+ek/aKxogvYd7n1XF7i48faTvuUzK/SMnu+AVHCfNHe39inZX6Rl 93wCDUREQEREBERAVnBfipfaCjKzgvxUvtBBNvfPpvaKwLPe+eze2VgQEREHmlryX6sVryV87BN1 ZkLd9jR3n0LYKg5LF5Ca7ZbVbEa99jGTSOcQ+IDkdDXPYKClj8tRygf5HOJOrI4hogjfYefcfFbq mU6lgZWe1JEyKJsTYIWtdsuaCTxHw7exU0F3CfMj/eH4BSLnzyX2yq+E+Yu/vD8ApFz55N7ZQYUR EBERAREQFewvzI+2fgFBV7C/MT7Z+AQTMqP/ABGX3fALUW5lfpKX3fALSKD1FOyeXZjnNY2tPZlL C/ghA5NHaSSQNLBSzz7d+Ko/GWaxljMjXylmi0eGid9o+tBX0vURAREQWcF+Jl9ofBSsx9Jy+74K rg/xEvtj4KVmPpOX3fBBpIiICIiAiIg2sYP/ABKD21bzfzRvtqHjPpGD2wrub+aN9tBCREQEREBE RAXSY35hD6vtXNrpMb8wh9n7UHPTfj5PaPxXwvuf8fJ7R+K+EBERB4vURAQdoRB2oOtHYvV4OwL1 AREQEREBERAREQEREEjPf7D/AIvsUhV89/sP+L7FIQEReFBjmswVw0zzRxBx0C9wbs+HNZA4EkAg 67ddy5HpMxkFqxYuV5JOPqvJphGXNjAcC4cuw9p9Kq4mYXsnZv14JIq0kbGB0jC3rXAn5QB561ob QWkREDvXWR/i2+oLk+9dZH+Lb6gg53J/SMvrHwWqtrJ/SMvrHwWqgIiIPFzeXgtQWbD46EtoWJIn iSIAuaGkbaR292/eukXPWYa1/MWosjkJImRBvVQtsGIaI5u5EE80G7im2Zrdq9NWdVbMGNZG8ji0 3fyjr1qqoWJs1qly3VbkhNWj4TGZZg4tJB23e+fd9auA7CDpsd8wh9lRsr9ISe74KzjvmEPsqNlf pCT3fBBpoiIC8PML1eHmEHIbp41z6o6YdTwOJMemfJJOyOzkuhw8zJ8cySO8bzST9/IA4uakw0bW PgrSebevdXMkcjGFu5Q4gh436uwqphIJq2MYyeMQnic4Rb31YJJDfcEFzF/SEfv+CsZP6Pm9Q+IU fF/SEfv+CsZP6Pm9Q+IQc4iLxB6i82iD1Fq38hBjoBNOXfKcGtaxpc5xPcAOZKx18vWsQV5h1kYs uLIxIwg8Q3yPgeRQbquYL5vJ7f2KGrmC+bye39iDBnfxsXslS1Uzv42L2SpaAi8RB6iIgIiILmE+ aO9v7FOyv0jL7vgFRwnzR3t/Yp2V+kZfd8Ag1EReE6QeovN7XqAiIgKzgvxUvtBRlZwX4qX2ggm3 vns3tlYFnvfPZvbKwIC82oGZyuRhnsNo9THHUDHSukaXOfxHkGjfLl3qlFckOYlpPDC0Qtljc3tA JIIPvCDdK5bNwusX7gmNguiiZJXZG9zWlgPy9a7T/kupJ0PH0Ln4cpnnXbTDh2vawtDWmwBw8vHh 57QY+jxx78zbfi5Hz1zEzb3Oc4Nfs7aCfRo6XSqZjn5OWzI+3VjqQcIDImyB5Lt83b0PQqaC7hPm Lv7w/AKRc+eTe2VXwnzF394fgFIufPJvbKDCiIgIiICIiAr2F+Yn2z8AoKvYX5ifbPwCCblfpKX3 fALSW7lfpKX3fALSQS8nDC27XsyXGV+MGB7H6+/Nd/VHp3zWrj6NpuWjbcyME/kMZbDFGzhfp3IO fz8Brks+TZLXydfICm+5FHG5hbGA58ZJB4gO/s1yXxXklyeYgusoz1YoI3hz52cDpN603XbodvNB aXqKNeydivfsFr2Nr04OsdGRt0rjvQB7gNfxQWF6ouKnyUd808jZjsOkgE4LI+Dquei3t5jn2+gq 0gs4P8RL7Y+ClZj6Tl93wVXB/iJfbHwUrMfScvu+CDSReFarsnRZebSNmPyl3ZEDt3+XvQbaL4im jmZxxPa9uyNtOxscivtAREQbOM+kYPbCu5v5o321Cxn0jB7YV3N/NG+2ghIiICIiAiIgLpMb8wh9 n7Vza6TG/MIfZ+1Bz0/4+T2j8V8L7n/Hye0fivhAREQaOSzFDEMY+/YELZCQ0lpOz7gtD7tejv6x b+7d/JXCdLmhls/csQmkzHRQ2C/qhOHudpp1z0QOfgguUMjUydYWacoliJIDgCOY9a2h2qbg7dy5 Rc+/1QsMlcx7YgQ0EHWuZVIdqDrR2BerwdgXqAiIgIiICIiAiIgIiIJGe/2H/F9ikKvnv9h/xfYp CAsFyOeaq+OtY8nmI+TKWB3D7j2rOvCg5iGDpDPkLNUdImjycN4nGkzZJG+zfZ6VvYo5KDKWKeQy LbnDE17OGFrNAkjnr1LUz8+JivAzMvG01oDn0Q7iAJ00OI5cz2bWfo7Pj3y2IqlS7FK3RmfbY4PJ 7gS7n2dyC8iIgd66yP8AFt9QXJ966yP8W31BBzuT+kZfWPgtRbeT+kZfWPgtRBMu5yGna8nFeaYt LRI5jfkx8R0Nn7FuRW45bU1cBwkh1sOHaCORH/53KTlsZkXyzPodQ9lh0b5GSktIcwjRBHcQByW5 jKlxk01zIPi8omAaGRb4WNG9DZ5k8zzQbtl8scDnwRCWQD5LC7h371EyNSWW6946OVbe9ffpJmhz uXhwq+VByUOCdekNzMeTznXFH5f1euX5O+SD6oYitMX+WdH6lXh1w8Ja/f8ADkrgGhpQej3krb15 lK5JbrjgLZHTGQA6O2g71/8Aqr6Dpcd8wh9lRsr9ISe74KzjvmEPsqNlfpCT3fBBpKWc405FtVlW Z0ZlMJscgwPAJI7dns7VUK5+3icqy2H4+aq6ETmdrJ2u21xBBGweY57QWattlrrQ1rmuikLHNd27 H+WliyOOF8M3btV+DfzeTh36+S8xdKWnBIbMzZrEzy+VzRpu+zQHgAAFulBxrp8Y0neVz/L+y7/A ujwksE2MjkrWJ54iTwyWPwzz9QWsb+cP4OGhI7j5WP8ACtrD1pqtAMscHWOe57mxnbWkknQPo2gt Yv6Qj9/wVjJ/R83qHxCj4v6Qj9/wVjJ/R83qHxCDnFMz8r4sYXNkfDGZGiaSP8JjCRxEe7vVNeEA ggjYPaEHIQ360GOmrUr5ln8uAqtbN1j3jbfSSW62uvHYtaCjQgmMletAyTvcxgBWygn5WvPKa89Q xmeu8uZHIdB4III33HR7VLpUspI2rXuwQ1a8E5mLhLxOkdxEho5cuZ/gsmdxrHW48hYzdmjCw6IE rWtby18nY7StSmcNLer8XSW1ee2QGOGWYFpf3cg0IOrVzBfN5Pb+xQ1cwXzeT2/sQYM7+Ni9kqUq ud/GxeyVLQQekL2meGCxbkrVnxvPE2Tg43gcml31nW18Y++JrWKhr2uuf5MTZYH8QaOEaJ9O/tV2 eCGzEYp4mSMPa14BCx1aVSkC2rXihDu0MaBtBsKdk8o+i5sVeq61M5jn8IcGhrR2kkqgXNa0ucQA OZJ7Auey13F3CJanSGhWsNY5m3TMc17T2tI3/EIKcOUbJJTY+Is8si42HexvQJb9R/gt9c1hBBJc rmxnKN2avF1deCs9umjWi7WySdBdIEF3CfNHe39inZX6Rl93wCo4T5o72/sU7K/SMvu+AQai5rpQ YRK3y9720zXfwEEhnW93Fr0dm10cnH1bur1x6PDxdm+7a5yWfpO662g44d5fGXu3FJoNBA5/K9KB ib0N2/j20ZjKIKnDacwksHIcIPdxb3/FdKoNKbL1MrBTvNxzYJ2vc3yWJ7Tsa5cz6VeQEREBWcF+ Kl9oKMrOC/FS+0EE2989m9srAs9757N7ZWBBLyuBqZUl0kk8EhAa58D+FzgDsA8iDz9CzY7FQY0v cx8s00musmmdxPdrsG/D0BTstk8myzYZRdWiiqtYZHTMLi4uPcARoALLjZ8o3MzU8jYgkAhEkYhi 4QQTok7JOxpBZK566Bazs9e3l5qUccbHQxxStZxdvESSOZ3rkuhKgZOOO3k3wVsPWuWGNa6WWchr W77BvRJPJBuYqrWryvMOUnuEjm2ScSBvp5BVFFwohhszVn4uGhba0OIi0WvaTyIOh39ytILuE+Yu /vD8ApFz55N7ZVfCfMXf3h+AUi588m9soMKIiAiIgIiICvYX5ifbPwCgq9hfmJ9s/AIJuV+kpfd8 AtJw2CN633hbuV+kpfd8AtJBzeZfRx4rQXekOQqPDTosOzJz7Tph5rVoZrB1rjZD0pu2O7q7G+Dn 3n5A+KsZNtqvkYL8NR1yJkbmOjYQHNJIPEAeR7NLA028lkI7TsY+vDBE9pbMQHTEjk3W+zl3oLjX texr2ODmuGwQdgjxUDPTVBbD3YoXZajA98jnBojBPLn3nlvWu5U8PVko4mvXm0HsbzAOw3nvXu7F M6SVmMY+cZSGiZ2CORs4BbIBzGu/Y9CChXNaLMTxNgLJ5oxKZCd9YOzXu8PSqKi4KIWHyZKTJQ35 ntEYdANMjaOfCBvt3z5q0gs4P8RL7Y+ClZj6Tl93wVXB/iJfbHwUrMfScvu+CDRK5mdtnH3Wbxs8 +rTpjNCzi4gQdA94I33q7fpuuwiNtuxVIO+OBwa4+jmDyUOhjJbYnLs/kmmOZ0fCJm7AHLn8nt70 FbERTtimmnh6h1iUyCIkEtBA7fTy2qClYHjbBZifbmt9VO5gllcHEjQ8B3Kod65IBIA3sJva5SBs U8QqXIJxFAXzX3Ssdwvd3c+8d+h4K3g2vbio+Jr2t2TG1++IM2eEHfo0gtYz6Rg9sK7m/mjfbULG fSMHthXc380b7aCEiKJnn8VitXmtPq15A8ucx/BxOA5N4u7v+pBbRc7jr3HJiIYrRlkdCeuYH8Xy eHk53p3r6yuiQEREBdJjfmEPs/aubXSY35hD7P2oOen/AB8ntH4r4X3P+Pk9o/FfCAilWc4IrUla rRs3Xxa60wtHCwnnoknt9C2sfkIclAZYQ9pa4sfHI3hcxw7iEG0uUsWsQ4SQ1q+VeGzOeJqUL3Bj +Ydwu1rx5di6srnaZz2OiNaPHU3RNe4x8VsghpJOj8n0oKOCbXbjWtrQ2YmcRJFppbITvmTvnzKp DtWtSkty1w67BHBLs/Jjk4xr16C2R2oOuHYEXg7AvUBERAREQEREBERAREQSM9/sP+L7FIVfPf7D /i+xSEBeEgDZOgvVis1obld1exGJI3jTmnsKCVbxr5rFx0NiIMssY75Xa2RhHCfVyCyYyC66/Pdv eTse+NsbY4HFw0CTsn1lRpcd0foZueLJVoq8TmMNdz9hjhz4ufZvfj6Fu9H48cMpckxMQ8kLGNMg B4S/Z2Gk9o1rs5IOiREQO9dZH+Lb6guT711kf4tvqCDncn9Iy+sfBaq2sn9Iy+sfBahQT58vFBPa Y6KQsqxh8kg1rZ5ho9JC9x2SfdfJFPUkqzRgO4HkO209h2OSl5iOlFl2CxlzXZZewy1Gx8XWkEBv MDbRyAVOhAGX7kz7bZ5nODS1oA6po5tb9R7UFBQLjrM+UsR18HRtiLhDpppQ0kkb1+CVbs2I6td8 8pIZGNkgdylW6VlmS6/H5NlaS0NuhljD2vIHaOewdINerezDJ5KkODpQ9Voua2zoaPePkev6l0I2 QN9ql4qua1yy2zbdauvDXSP4A1obz4QB4dqqoOlx3zCH2VGyv0hJ7vgrOO+YQ+yo2V+kJPd8EGmp Euae2Ow+OoXBkwgh28DrX70R6AD3+tVlzWsczpIIm27b3GUuEDWbhjlIPMnXbrZ1tBZxt2S5FIJ4 OonheWSMDuIA6B5HvGiF7kmtmgFby51OSY6Y9jgHEjnob9CxYaKKKvLwWX2ZTK7rpHt4XF/YeXd3 L6ydtlSWmZOqDJJuEuk/qjhJ2D3Hkg5upFSr1IoX9NHROYOEtZZi4R6uS6TDx1YscxtO15VGST13 GHl5J5nY5dqxk4Enmcf/AOhbtbyfqR5L1XVd3Va4f4ckFHF/SEfv+CsZP6Pm9Q+IUfF/SEfv+CsZ P6Pm9Q+IQc4pXSF7o8UTxvjiMjBM+PfE2Mn5RHu71VUfNX8jUkrsp0DOySRrXO42jeydt0fHxQS7 cGDqRQzYaSFt58jOp8nl4nSHY2CN8xre9rqx2LnWtyQd/ofR6GlM8jc5kjPCN8zoczyXRBBIzzJt 054aD7phm4jE3XYRrfPw2vmC/NJYjYej1iEFwBkd1em+nkdr7z8gbHWZLYfXqyS8M8rHcOho6Bd3 AnQ2plG7G2rjK9W2ZLHlLh1Yk4yY+J2y7n2Ad59CDqVcwXzeT2/sUPuVzBfN5Pb+xBgzv42L2Spa qZ38bF7JUpBDzsTbN6rXnfM2GRjwwRuc0Ol7gSPRtTcQ3H+eaHkTpZJxE8WWPke7qiBrZ2eR3se9 WMpLkq2QrTU6UtyEMc2WNsjWjfLR+Ue1fVK9dmths2DlqtfvimdLGR6N6O0FMgOBBAIPaCoGVp1K N+vcfiRPVaxzXCGAOLHEjTi0DmNbG10CjZma86zHUpXBUPUvlMnVh7na1poB5d6DWomtdzUFnG49 1eGFjxLM+v1QdscmgEbJ3z2uiC5uhJkY8njzYzL7cNqJzhGImN07h3z0OzmukCC7hPmjvb+xTsr9 Iy+74BUcJ80d7f2KdlfpGX3fAINRT8jiWX3xzMsTVbEQIZNCQHaPaCDsEehUFHy+Qvw2PJse2APb A6d75wSNDloAEcygy0cMK1ryuzcnu2A0ta+YgBgPboAa5qmoFK7l/OdOK7NUMFmIvb1ETgSQAdHb j47V9ARTrOWFe3NF1JMNaHrZ5iQA3kdADvJ0V8Y3K2LVg17lPyWQxCaMdZxcTCdc+XIjwQVFZwX4 qX2goys4L8VL7QQTb3z2b2ytOxN5PXkm6t8nA0u4Ixtx13AeK3L3z2b2ytdBAyNyk22XTYXI2HyQ BjnRVnOaWnnwnXLY/gvejwpCxOa+PyNeRzRxSXY3jYHY0Fx7vBbAnkm6SSwyWzDFWia5kA0Ot4t7 cfEDWtBfVOxIM7bqCybEPVtl0dExOJI4d+B1vSCoVGsQWJL81vC36om0GWIpRxs2OwnhOwdKndbK 6jO2D8aY3Bnr1yUzBW8THi4mV5YIXBoErHODXh2ufEO3e/FBkw9eR8kuQsXobk8oDOKAajY0H8Ec /EntVZQ8U6rLnLsmNDTV6tokdH+LdLs713E61sj0K4gu4T5i7+8PwCkXPnk3tlV8J8xd/eH4BSLn zyb2ygwqDl8kKOVD57RhjjrF8MW9CaQkjXpI5ch4q8pOSnsy3WU6NatJM1nWmSyCWxjehoDns6Qa uJEtfKtruuy2Hvr9ZZY9/EI37GteG9nl6FfUrHz24776uQgrNnkZ1gmr74ZANA7B57HLvVGwJjA8 V3MbKR8gvBLQfSEHO5O8+DK24TLMLU0bIqUbQeEh34TvDYO+Z8Ft4OOKvkLlapNLLXiDQ4ySF4Ev PiAJ9yy3RmxY3Ws4yOLQ0Jo3l29c+Yd4rLijkA6QXZ6Mne0VWOb6ydkoKSvYX5ifbPwCgq9hfmJ9 s/AIJuV+kpfd8AtCQOdG5rHcLiCA7XYfFb+V+kpfd8AtNBzGbfJqCLK2TBF5O87ikLGSSjsBPb2c 9bWXG32Wb2NiqWTM5tT/AEoNfxNaNDW/B2/tX1cymQdk5KJwMlqAMJAMkfy+euLmez0LNjZLxtsj ZhG46qATKXOYS49wAafigo5CN8uPsRxMEj3RkNaTrZ1yUOWSDF3Y7eTrTSwmsxkc7ojJ1RH4QcBv RPI79C6RS3SyzdIeodbMMVeIPELdDridjZJ56GuwINfEPiuZea/SrvhqGIMLnRlglfvtAPgO/wBK uBRZbt6DMz1aoF0PjEgY5waITvWie3R8FYhe6SFj3sMbnNBLD2tPgguYP8RL7Y+ClZj6Tl93wVXB /iJfbHwUrMfScvu+CDRK0LOExtyczzVWukdyLxtpPr12rfK5edk1u0ZZcxbrNNp0L44ZGsbGNHh7 u06HM+KDpK9eGrC2GCNscbexrRoLIexSej3EK9mN1uW31dhzRNI/i2NDvVGW1FDNFE/YdMSGnR1s Deie5BEx1q7Nfrzz3i6KzHI7qWtAbFwkaHjvn3qnibMlqg2SR4kcHObxgaDgCRv36UOepXyNh1yv gJLEQcfvjbPVdZz5kN3o7139q6DHTQT0In1o+ri1oRka4NciNehBTxn0jB7YV3N/NG+2oWM+kYPb Cu5v5o320EFxIHIbOuxc9bv5SV7KVjBV5uu2Qx1kEaHefkroVPyeOntSRWKdryazBvhcW8TXA9oI 8OxBoYx01DIRVXYStRZY398ilB2QN6/BXQKTVxt996K3krscxhB6qKGPgYCRok7JJOlWQF4oucuR 1L1N9ueSGq3if8nYD3jXC069/JamOa+LKUnmxM63bjfLaic8lrWEbby7G6Oh9aDpl0mN+YQ+z9q5 tdJjfmEPs/ag56f8fJ7R+KxrJP8Aj5PaPxUzM9YKbDEJOITM+VHvbRxDZIHaNdyDUDMni7NgVaTL kE8plBEoY5pPaDvtG+9beKrWYzYs3BG2ey8OMcZ21gAAA33nQ7Vz92CGW3YsZB1gmC4Ot1I9rWwE ENIAOtb0SfWqXRhtZou+QufJV6/73K4uPFyGwCe0A7G0F0+hcpUgwduOaXMyQuvMkf1osS8Lo+Z0 AN8hrWiF0s5sB8XUMjc0v++8ZIIbrtHp3pRLMWTsTufLjMRK6PnxPlJcB3b+Sg3ej0jpMYDxySQi R4gfJvidGD8k/wCaqjtWrQdadWBtxwxydzYXFzdd3PS2h2oOtHYF6vB2BeoCIiAiIgIiICIiAiIg kZ7/AGH/ABfYpCr57/Yf8X2KQgLDaMja0hikjjk4TwukG2g921mWKxXhtwOgsRMlifycxw2CgkXX ZKaXUFzEmHQ+TPG5x3rn/W12raxRv7e23YoSsAHA2qxzdevZKi5GvhqdiSGv0agtdTwCVwaxrWlx 00c+08wt7AiGK9agZhIsZIxrS7hLSXg9h5dyC8iIgd66yP8AFt9QXJ966yP8W31BBzuT+kZfWPgt Qrbyf0jL6x8FNu1vLKr6/XzQcf8AtIXcLxz7jpBDzNa7DPZfBQfbZZfE7jjI4mcJGwQT2cu7xVDF stzW7F+zWNXrWtYyJzgXaG+Z138+xR4cRx5O1Uk6Q5VnUcPA02gHOBGyfwezu9y38JF5NkbtZuQs 3mMawh00vHwk723s1v8AmgoZeGWxibMULOslfGQ1oIGz4c1FmtZmS/Tsjo9OBWa8EeURc9gD8pdM Vp28tjqMgit3IYXkb4XPAOvUg1MWbs+StW7dB9Nr42Ma18jXk63v8EnxVhadLKUci6RtOyycx64+ A7A36VuIOlx3zCH2VGyv0hJ7vgrOO+YQ+yo2V+kJPd8EGkuctU8rVtM8lpR2oW2nWA4ShjuYOwd+ k9qtX6EORgEM5kDQ7i+9yFh36wVzdHF4h8tuO1cnjlimc3q33HtLWjsP4XPfbv0oL+KrWYY5prfA J7EhkcyM7a3kABvv5DtTJ48ZB9Rr445I4puORrxsEcJHZ6ytTo22Fle0ytI+WBthwjlfIX8Q0Owk 9gPLl4KyUGiMJiv1dW/dBbcFeGtEIoImxMHY1o0FJGVylrc2PxkctYEhrpZ+B0mj2ga7PWVRoXW3 6jbDWOjJ2HMd+Ewg6IPvQVMX9IR+/wCCsZP6Pm9Q+IUfF/SEfv8AgrGT+j5vUPiEHOKbnZp4MduC fycukYx0xAPVtJ0Xc+SpKdmzW83ltmoLge9rWQuA055OgOfxQaDMO8PB+6e+7nvXWs0f/Sr47Fyc FTFxUpLdnAU431rIjkEejwjY+UDrnra6wdiCdcfkzWeGU6cpMhHDLKQ0s7ifknn6Fp0IclWtN1h8 ZXY8jjdDMeLh8QOHn9ay9IhGIa0lmKSWkyXdhrGl3LR0SBzIB1yWtLkaOTyFBuLeZZ4pAS9jHBrI v6wJ1rn4eKDoVcwXzeT2/sUNXMF83k9v7EGDO/jYvZKlqpnfxsXslSkEzLVall8Zs5OamQDoR2BH xfX2qZUhr1c/TZVzFm6JGv44nWRIG6HJx19S+sjlY35byWfAWLbY2HTvJw4nmObefYs+MsF99jKm BkowkHrpJogw9nIDR580FxxLWEtbxEDkPH0LnbOWtvt145ujMz5gS+Lc0ZI1yJ7eQ59p8V0fYFJy UUrrMF6jdrxzMaWcMx2yRpI5cjvYI7Qg0sW6OHNBh6POoTTsc7rXSscNDmQAD49wXRhRakVq3k4r V+3UJgDuqhrEnmRokk8+xWggu4T5o72/sU7K/SMvu+AVHCfNHe39inZX6Rl93wCDUUvIvpjJU431 5JrZJ6vq/wCozscXc9cPZ2qopOUhnitxZGpPBHIxhjcywdMkaSD29oIIQa9arisTmHNcJYpBEXRP mkJjazlxBhJ0NclbZIyWNskbw9jhsOadgjxBUOvA/K3opsnNSd1LT1VaCTjGzrbie/s7NK3DDHBE I4mBjASQ0dnPmgg9II8ZDZZNcyE8HWgNkrwgu69oOxtoBOh4jxW1iH0r1uxka9x1h7gIwx7SzqWj nw8JAPbz2V8XZJsXlpb5x89yGaNrOKu3jfGRvlw9ujvu8F9Y3rruUlybqctOIwiNrJhwvk574iO7 XZz8UFlWcF+Kl9oKMrOC/FS+0EE2989m9srAs9757N7ZWBBz+XLL991NmFZffXaHOkkkDAzi7AD2 93ctrCwzVg+E4mKhF+EDHKHcR9OlPzTzRyvlTc8yi6w1rBEK4kLgDyJ957VRxjbjLc0dvLMuFgG4 2wtYWb5gnXigqrRtYrGWJOts06z3n+s9g2t1ch0mMLLdh98uB4YjTc7fANO+Xru4vX3IOsiijgYI 4WNjY3sa0AALIouLtR3szbs03PfV6pjHSc+B8gJ5t9Q1zHoVpBdwnzF394fgFIufPJvbKr4T5i7+ 8PwCkXPnk3tlBhUbKwh2RrurZLyK89ha0cAeJGDmQR4DxVlRcrSyD7jpqLIX9fB1DnSP4THzPyhy 59vZ6EGHAy17d6xM/LecLcY4OUXVtjbv+qNcxvv5q+pVSjNHkmO6tsderB1MZDtuk3rZ13AaVGyy WWu9kMxhkcNNkDQ7hPjo8kHOZjGst3rrrVF1lzWxyQEs4hwNI42j0nny79rN0cjo+cLs2LqGCo9r Bt0Rj28b2ACN67Fluw5CTJCCDpH5K+Rm21xWjedAczzG1sYZtkOn6/M+ceF3AW9SyMxuHaDwj4oK qvYX5ifbPwCgq9hfmJ9s/AIJuV+kpfd8AtIrdyv0lL7vgFpIIuanvOtsqUrYpnqHzF4ja5zyNANG +XftamPkyDMpj/KMy+5Dahc8R9WxuiADz4R2c1s5nLU8dl6YvsYYeBz2vELnvjf2b5DsI2F8Yi70 blyRGMaBakB5+TyN5dp0XN0PUg6Bc9n56skxhkxDr7oGB73h4Z1QJ0Bxb3s+AXQqPk61RtqSWxkW VWWIerkY9zW8RH4LgT3jZQYsHIIbs1BuHGP4WCRxMrXF+zoHY7e/mrqh4djJMhJZlzEGQnEQjYIe EcLN7JIB7SdK4gs4P8RL7Y+ClZj6Tl93wVXB/iJfbHwUrMfScvu+CDRKi3HWoOvNvHVbVWQ/Kcx4 a4gdnEHcidelVrE/UBh6qSTieG6Y3et959C5uaWjHflfYw2YuyB5098DpGdv9Ub1r3ILOGt0LlAP xzOrhYS3g4OHhPePD6lnsVevsV5uPQhcSWkbB2NfWvjG223K3GynPUa08Ijni6s+sDwW2eYQQohl aET6tWShNBDvUksha6IdoDgPD3KpjavklJkRlEriS5zwNBxJ2SPRzUSnkqWLrOo3as7bJJ6xoruf 15J7QQNHfpK28Rj7kbIZpLEsMY3w1TrTWkk6Pp5j1aQdHjPpGD2wrub+aN9tQsZ9Iwe2FdzfzRvt oISn5G7ZglhrUoWS2JtkdY7ha0DtJ7+8cgqCkZ1sLGQ2nZJmPniJEcr9EHfa0g9oKD6rXclDdiq5 KGvqbYjlgJ1sDeiD6N81VXN4uzBcycUtnO17s7ARDDC0NaDrm7XMk69K6MnQQTsnZtdfDSoxwGaU F5fOCWMaNc9DmTzCw1p8jVyMUGR8llFgFsc0DC07A3ogk8u3mtfM3sXNDXs+c5KUvyuonjjcT26I I4eY33FYMLao2Mmx02clyVvhIiDoOra0a56AaBvXeUHTrpMb8wh9n7Vza6TG/MIfZ+1Bz0/4+T2j 8V8L7n/Hye0fivhBMoWLF67ce97G14nmFsQb8rY1txP2LWq5S1BYloyVjZNeTTpoW8LQwgEEjx59 g8FPzNnEDJvDa+VdOXBkj8eHcLna3wnR0Trw5qr0csUpqcjKNOxWZFIWuFhpDy7vJ2SSfWgrb2uX pZTHYZk1TJxzR3JJHGUmB7+v2ToggEEaPYuoKivx2eLnFuea0b5A1GHSDPgInxY35UT4WOkc6KJ/ 4TGE7AI7vUqg7VLwM9qei/yywJ54pnxue1oaOR1y0qg7UHXDsCLwdgXqAiIgIiICIiAiIgIiIJGe /wBh/wAX2KQq+e/2H/F9ikIC8K9XhQRMrDjobFh1rKRUxbjAcyR7W/Kb+C8b7x9iYMwz257LszXy M5Y1n3kt0xo3rkD3k9q1Lc7KPSC3JLhLt5srGaljrcYbodgO+z7dqliLsNt8gixNqjwgbdPAI+L1 eKCqiIgd66yP8W31Bcn3rrI/xbfUEHO5P6Rl9Y+C1CtvJ/SMvrHwWhZsw1IHT2ZWRRM/Ce86A96C Dm5q89t8bsLHe8nLGOlkcG8JcRpo7+8LawUrmyWKXmuLHiDR4GPB4t9/IfxWnZvYGxLaeM9XjFlj QWtlboPaRp49I0FtYE15prFhuXjyU7w1rnR8IDGjehoe9BaUO3jrLrN58dZkvWGOWJ5cNktI+R/D fvVW7V8sqvg6+aDj198hfwvHPuK5uDEMfkrdWXpBlY+p4eFpt6cQRvfZ2d3uQVcPHYdbuW5aJpMm 4Q2JxaXEgHbjrl4fUq6hYGJte/drsyFm7Gzg0+aXj4Sd7bvx/mrqDpcd8wh9lRsr9ISe74KzjvmE PsqNlfpCT3fBBpLmMhPNeuDqsLQsR9cYGSWX6cXNB3y4Ty5FX72Qq42ETW5erjJ4QeEu5+4LnJcl gJBOIcvPC58olaWROPVP7yBw9/gUFnCWbFivKyzWhrSQSmPqoSSBoeoLdntVqwHlE8cXF2cbg3an 9HjTfSkfUuyXS+UmWd7S0ud6tD0LfsVK1oDyivHLw74eNodpBAjsWKLTWoZjFurAnqzMdujBO9cj z0rGJhigoMZHZbZ2S58wI05xOyeXLtXPVLGGx0HkmSxhbcY53EPIy/rDs82kAjRVzAQvgxMbHwGu C5zmREaLGkkgH06QXsX9IR+/4Kxk/o+b1D4hR8X9IR+/4Kxk/o+b1D4hBzi0srBBPQe2xP5O1pDh NxBvVkHYds8u1bqj9JnRsxPWyM6wRzMcItb60hw0zXpQRa5oPl6u10pqTwSTda+FhY0yu5aBO+zk OQXYjs5LnmZVjnN/+mLrdkczXZy/iuhHYgiuydq7Xj8jmrV5nzPYGzMc8ENJ8CNHlvmvutFnWTs6 65jTFxfLbHA5riPQeLtWnYxWFvy2cjPULPJJXibhcR1mm8zoFZH4rC47yS5FSdxPmY2MiV/IuPI8 ygvq5gvm8nt/YoauYL5vJ7f2IMGd/GxeyVKVXO/jYvZKloJ+QqX7EjHUr4qaBDtwteT9a0YvO1LM 1IbmVbZhnDxwiBrTsDfcvnPjFSZGpDldMjex/BIbLo9Ea5ciO30r7xNbo5Wubx08MlhwIH+kmV2u /Wyde5BaeSGHTeI65N8fQuZminnYyOXoUyRkewwOmgIaCd8ua6gjY14rnczWo04K0M1vKOkAIiiq yudJJz2SdduvEoPrE1Oqvsf9ykWP0D9/bJES3l2fJO+a6ALmcEKbsiAJsxDYa0uEF95AcOwkDsOl 0wQXcJ80d7f2KdlfpGX3fAKjhPmjvb+xTsr9Iy+74BBqLm886nHmqsl+nLch6lzQ1sJkaw7Hyta1 3aXSKNl719lnyag6GMtrvne6RhdsDlwgbQYcVZwkl5raOLfXm0dSOqGPl69K93KBSt5QZSiy3dhl r2oXPaIouEkgA6J32c+7wVyYyiB5ha10gaeFrjoE9wJQSZZo/ul4bdt0DYomugiL+FkhO+InxI5c lhFm0/M2YsTPHOxzGvkMji5kT9nkNeIHZtZMlHkbhEHm7GW2BgL2zynYd38uE8lnxEV+AmKxQo1I QPkirITz9XCEFKF0joWOlaGSFo4mg70e9XMF+Kl9oKKOxWsF+Kl9oIJt757N7ZWherut05YGSGN0 jdBw/wDzsW/e+eze2VgQctmKN2Lyk1qQteURRMIhIDoi09mj/VKpY1lyzkpclZqmo0xCKOJzgXkA k8Ttch29iwXauRrZiW9UtUoWTxta5tgO5lu+fb6Vt4ya/JM9tyzRlAbsCtvi7e/ZPJBu2hYNd/kp jE2vkGQEt36dKE2fpBZuzU//AAx/UBpeXRvI2d6Gt+C6NS72F8pt+WVbs9KwWhr3xaIeB2bBGuSD 4xlnItyM1K+KjeCMPj8naQCCSO8+hV1Px2JbQfLM+xLasy6D5piN6HYAByA9AVBBdwnzF394fgFI ufPJvbKr4T5i7+8PwCkXPnk3tlBhXPZq4KOVZNN151XIqtja5zXSkkaOu/Wu1dCoWbuX2yyw0rLa 3UVjO55jDnO5nkN8tcu1Bjw9ZlPL9RA6VzxXBuFznFpkOiDz5b7exdAp0NyXznFXc5jmy1usIA04 OGhs+vf8FRCCJZlsYrK2bfm6e5FYDdPrtDnsIGuEje9d/LxWfFtsT3bGQlqOqNla1jY3kcbtb+U4 Ds7de5aV2M3szZgs5mxRjiawxRwTCPiBHMk658+S3sRSiqOk6vK2r3EBsTziTh9XLkgqK9hfmJ9s /AKCr2F+Yn2z8Agm5X6Sl93wC0lu5X6Sl93wC0kEKe5n25d8UNCB8AjJYHTaB+VyO+Ht9C2Krs3N ejdagr1a7AeNscnG55I5d3LS183bbUydWW1LLHWjje9jWA8Mko1pp16N8lrYuGStl6n3+aS1YhdL eY55LW70W8uwEE6ACDp1zOTs06nSF7rGPlyD5IG6bDD1rogCe0dgB9fcul7lEsjJx5uaTGtoyB0T BKyaZzXggnR0AdDtQZMRdqWbD218PaouDNl81URgjfZtWFPovy7pXDIQVI49fJMErnHfp20clQQW cH+Il9sfBSsx9Jy+74Krg/xEvtj4KVmPpOX3fBBNsicwP8mLBLr5BkBLd+nSjU29JBE7jfS31jvx jHk62fT2Knkp7Vak+WnW8pmb2R8Wtrlr119+lKbeXkgmbr/QmRmA9o2Dvm73FB02MZYbFKbVmOeV 0hJEX4LOQ+SOf/5tbp5BYKdOtRgEVWFsUfbpvefE+KzlBzMcmYvS15GZryZtlr3CNtdjhGWkabsj e+f8FWwUs82MY6zOZ5g5zXyaA2Q4jlrlpSprNS9A6OLo9bsVnSFwezTA53YXD5QPPxVvGcIoRtZT dTaBoQu1tv1IKmM+kYPbCu5v5o321Cxn0jB7YV3N/NG+2ggOOgTrfLsC5q1etz5CvZd0duSNhDml rgw8jrmOfby/iumI2CN62O0LmcjQZjYxJZ6RZVvGdNYxwc5x8AA1Bv0bz5rbIzgrFUHf317GADl6 Cq6g4utGyzVm89ZCfr2F8cU7hwuGu/l2je9bV52+E8Ot65bQR8vfsY69VdFStW67muEjK8HHo8tH f2L6o5pty22AYjI197++TVuBg5d52sN+fIyuq1fKBQlkje95jDXFzm9jW75c+1auOfabkMa+XMzW 2WI3F0J4BpwbvZ0Oz7dIOnXSY35hD7P2rm10mN+YQ+z9qDnp/wAfJ7R+KwvkZENveGjxcdLNP+Pk 9o/FatulWvxdTbgjnj3vhkaHDfigjy0ywzGtdq7FkWYA93Y4/hNdz7Ds/WtzDQztNmxZlgdNYkDn NgO2N0AAN955KPYx0MViSOLoTDNG0kNkD4Whw8dHmqXR18JhsMixDcY6OThfEC3mddvJBSt24KVZ 9iy/gjZ2u0T8FyEMvQ6zEJ5X2I3vJLmmawdHfoOl19nry6IQsjc0u++8ZI03R7PTvSkRNzkMYjq0 MX1IJ4P9If2b9lBuYKSpJjh5DXMNZr3NjBBHEAfwufPn6VSHatWg+1JX3cZAyYOILYHlzR7yBzW0 O1B1o7AvV4OwL1AREQEREBERAREQEREEjPf7D/i+xSFXz3+w/wCL7FIQF4V6sVmV0FaSVsT5nMaS I2fhO9AQSLUdjLZWxS8vnpw1ms+TXcGvkJG971vQ7OXpWXGGxVvz46a4+4yONsjJJNcbdkjhcR29 m9rRzZhtWWibBZKaRjRwz1jwkAjethwPJbXR7qY2SwwYi3RH4Tn2eZkPr2ST60FtERA711kf4tvq C5PvXWR/i2+oIOdyf0jL6x8FpvY17eF7Q5p7QRsLcyf0jL6x8FoWYnzQPjjmdC5w0JG621BCsOZi srYknxMtiCcNMcleEP4dDRaR3c+fvWzhg+a3auik+nBKGtZHI0Nc4je3Ed3cPcsduKafLeSw521D KWBxijia5rAB2kkct+tZ8MHB9hj8pPcdG7hc2aMNMZHqA5HxQVlqXMXQvlpuU4ZnN7HPYCR71trm MjO9mUuQ8U4t2AyGqGh3CGHXE4dwO98yg6GrVrU4RDVgjhjH9VjQAsyh4GCCrbu16TpDUjLQON7n ASc+LRPuVxB0uO+YQ+yo2V+kJPd8FZx3zCH2VGyv0hJ7vgg0iAe0bUBti5iLFiJ+IsW2Syukjmrh rtgnsIJ2NditWYPKGNb1skXC8P3G7ROu4+gqC7Gw38naZFl8010ZJf1dgtjaT/UHLtHggpYaGyyK eazCK7rEpkEIIPVjQGiRy3y371RKmYFsLaJ6m3csbeeLyt5c9hHa077FTPMINWXJ0YYZJpLcTY4n cD3Fw013gfT6FnhminibLDI2SN421zTsELnKlC/E+KKxj2+T0OOQObI1xtPO9HXceZ7VXw1aWtjw 2aMRPe9zzGDsM2SeH3ILeL+kI/f8FYyf0fN6h8Qo+L+kI/f8FYyf0fN6h8Qg5xT8xUsW6QZUfEyZ kjXsdJvhBB3vkqCldIY3SYwjgkfEJGGZsW+J0exxAa9CDCJs6CC+fF63z0XK0FxNuljYHPrR48+W my19UCFxa9hIPM61oDewfBdsOxBztihnGsv1q0dB0Ft73B0krw4Bw12Bul9GnnrIqQWYaDIYJY3u dHM8u009wLVWyGQhx0HWyh7y4hrI428T3uPcB4rUqZ3rrTK9rH2qLpeUbpmjhcfDYJ5+goKquYL5 vJ7f2KGVcwXzeT2/sQYM7+Ni9kqWqmd/GxeyVLQc7eysxy3kz+j81pjGOLXcLCXcwNjZ7FloSzzZ GLq8B5DE0OMksrWA9nIN0fFZ8ndfXyVaM2WVoeB0kjnAbeG6+QCezxWpjreQN+m+zb61t9r3+TcA HUgDbSD2+A5+KC84uDHFg4na5DxKgSO6QOyMVxuKrgsY6NwNkcwSDy5duwuhI2NHvUHIYzFNfSoy styOO2xiKV+2t3sucQewE9pQfcLMtbzFaxdoRQQwNfosmDjsjXh2aVsLmMKzDtyw8lhvseA7qZZp Xujm1ydw7dz94XThBdwnzR3t/Yp2V+kZfd8AqOE+aO9v7FOyv0jL7vgEGoo+YuU69yqH0J7tsBz4 mwM25rewk8wNc+wqwouSiuOzMEmPsVI5mwuDmTbJczY7h3A65oNTCxVI8nxxYK/Ue5pAkn5sjHbw gcR0D6F0inVBmhYHlrqRh0d9SHcW+7tVHuQc/m20JbgYzH3J74A0+ruNzR3bfsD69rawkGZh4/OU 7Hxa+9scQ6RvtOAAP1LFc871cxLZqVopq8kbWkSz8GnDfMDXpW5QsZOaVzbtGKuwDYcybj2fDWkF BWcF+Kl9oKMrOC/FS+0EE2989m9srAs9757N7ZWBBy+axvleRuGegbTjCx9Zzm8TRwnbmDwJ/jtZ MBFTOZt2MbQNWq6FjXF0HV7kBOwBrfZrfctq0cjfy81Ove8hhgjY4uZG1z5C7fiDoDS+8bJegyUu Pt2hca2ISMmLA1w2SOF2uXdyQV1Is2cjbyM1OhLFXbXa0ySyM43EnmABvw71TnmjrwummeGRsG3O PYAufzs+Nr3G2fO01C26MAugjMvE3fLiaGkeolBRx9q627LQvuikkZGJGSxNLQ5pJHMdx2FTUDo7 PjZbFjya5Yu2yAZpp43NOu4DYAA9AV9BdwnzF394fgFIufPJvbKr4T5i7+8PwCkXPnk3tlBhUXM1 6eRuwUJqcs0haXOkik4OqYeWyd89nlpWlFzRNGwzIxZCvUeWdW5tkbbIN7HfvY2gYqrTxmRnpxVp WSuYHieWQvMrfQSSRo8tKyouGcb9l2QlyNa29jTG1tYabGDzO+e98lbQcvmm15b80gxFCcQOjbPN YjDnuLiAAOXcCO1U8dBTpZKzVrUK9bTGPDoWBvE077dDt2CtTM0aly5KxmTkpWOrEkwYA5pa07Bc CNbH1rN0eNGRs81a7Ldne4ddNM0td6AAQND1BBaV7C/MT7Z+AUFXsL8xPtn4BBNyv0lL7vgFpHkC t3K/SUvu+AWkRyQR4MnM7AQXZWsklfIGnY0Ob+Hf1LZt2JIcrRhZoNsF4k5DZ03Y5+tTndD4HM6s ZXKNi4uIRts6aDvfIa8Vs0+jsdS7HbdkchafEDwNsz8bRsaJ1pBX7lz2biFTIC/5+OOdJGGcDYWv LwPQQSfq5Loe5RLs3m3MuvWKUs8EsTWNmij4zEQTsEdujvtHgg+8E+WwXzHPHJRa4eHqWMLT6dAH foKsKLjHOvZebIRVZa1fqRHuVnA6Y73xa9A5bPirSC1g/wARL7Y+ClZj6Tl93wVXB/iJfbHwUrMf Scvu+CDSWC1Sq3Y+rtV45mnue0FZiubklu2bPWHLSVmG06ExxtZqMAHWyRvZ0PrQW6NCHHQuhrmT qy4uDXvLuH0DfPS2T2FS8C6Uw2WTW323RzlnWuI0RodmlUPYUHPYtubdRY6s+nHXJJiZK1znNbvk CQVbqiyIGi26N03eYwQ3+K52hiqdmoJmZvJV+IkmLy3XCd8x2LoKEDa1RsTLMtkDf3yWTjcfWUFL GfSMHthXc380b7ahYz6Rg9sK7m/mjfbQQlLy1a2ZYrlOJk0sTHMMTncPEHa7D2A8u9VFEz00de3S ntdeasZc7UQcfvg1w7Deeu30IMGHrZSV1IXqjKcdFpAaZQ98jiNb5cgOZXQrmcbV6nK0pdS+W2GP lt8RcRwkHQPcNHQAHgunQTco+218JrYpl0sPEHOkazqz3EbU7HufBm2Nm6Pw0ZLIcTO2VridDZHJ UsqbLXwiDJRU+N3ABJGHcbj2AbK0aLPKMw3ynNxXJ6gdqCNjWcJI0SdcygvrpMb8wh9n7Vza6TG/ MIfZ+1Bz0/4+T2j8V8L7n/Hye0fivhBDmfmH5CavWyePBZ8sROgc57W929OWxhIdRTWX3WXJbEm3 yRjhaCBrQHo13rSFmfCW7YfirdttiYyMmqsDyQdfJdzBGuxb2GinHlNqat5L5TIHtgJG2gADZ1y2 dbQbd2sbdV8DZ5YC7/aRHThz7iuXgx8FLHuMvSa8xtZ3BJ1Mm2h2+wDh2T6AuvK56richDNDHLFC 6tSfJLEWv+VO874dgjlrZQUsJDUixzDSsPsxSOLzNI7ic8k8yfSqA7VPw9WerUd5S1jJZpXSuYw7 aziO9A+hUB2oOuHYEXg7AvUBERAREQEREBERAREQSM9/sP8Ai+xSFXz3+w/4vsUhARF4UEY2WDpJ N5ZcMLYY2+TxOk4WPBHNx8Tvl6F942dr8vcjrWnWa2g8ku4hG8k7aD4a0dL4y1fIW5zGMVjrlca4 TZdz338uEr3Cz22WZqFmhVpCFrXsbXdycDvmOQGuWkFlERA711kf4tvqC5PvXWR/i2+oIOdyf0jL 6x8FqFbeT+kZfWPgtQoI1oZLH37FqlQbejs8JcwSiN7SBrv5ELPjIbjrM169CyCSZrWiFr+LhA32 nsJ59ykZmBtm9ddZnstNcRvjjjlexvVbHG75Pae1bHR1lJmRveb55LFchmpHSueAee2gk+/3oOhU O/ksi21M2m2s2KCRkZdMCXFzteHcNqxZnFau+YxyS8A3wxjbj6goWSnpNu2WSY3JyGaMMkdBGSx3 eCOfaPFBu4qxfddt1r5r8UXCWCFpAIO+fM//AJpVVD6Otgb5QY4ciJXEF8t8fKd4AHfYFcQdLjvm EPsqNlfpCT3fBWcd8wh9lRsr9ISe74INIqKWZfGzTMp1a9uCWR0jS6XgcwuOyDy5j1K0uQt4+jLZ mtZGGWR8dwiZzi/QiIPDrR7OzsQdBiq00DJpLL4zPPIXyCI7a06AAHf2DtW+ezkonReKtFUsimxw qmdxic7e3DQ58+eu0KtMbAki6lsZZxHrS8kEDXd70HJNibZfXs3szehE5lbNw2XRsjkGtNA7By2r vRr6GZqaScB7wJZHlxkHEdO2fFazx0gssc3yLDSxPO9OleQfSfk6VXHmwabRZZXZKCQW13EsGu4b CCri/pCP3/BWMn9HzeofEKPi/pCP3/BWMn9HzeofEIOcU+42zFFYmOSZXj2HNc6NuowBz3vt36VQ U/M1ZbVECGNsr45GyCJx0JOE74fegnQTWrUAnh6RxOjMnVh3kzQC7w5qljm5GN88V+RkzWkdVM1o bxDXMEA9xXPxOyF+Ozj24izWFi11jppw1rI27b2aPM8u5db3INHKVbM3UWKZjNis8ua2XYa4EEEb 7vWtINyuUngF6lHRgglEh+/CRzyOwDXIDa1bUTpa4huOstqPvPbKwOfsNI+SNjnwk6PLxU6tjsTW yFKOvFJ5xitakiMkh+QCflEE60Bo7QdwreC+bye39ihq5gvm8nt/YgwZ38bF7JUtVM7+Ni9kqWgi 56TjMdRmPrXJC10v+k64GBvaewnfPuX1WsxG1QmdUjbLdg11je1pA4uH1dv1Jn2UxHHNPkfN8o2x kuxzBHNpB5ELQwjsb5fAzz2MhPHGWV4wABG3XMgAduh2lB0ylZalPLPFPVux1Zi0wkyM4g5p56HM c+SqjsUTNtmhv17rMfJeEcbmMZGATHIdadon1jfcg+6tKIZCvHHbhfHj4uBkLSOMOI0S73d3pVgL nsfjH1slRYyqWPghc+1Z0AJXOH4O+875+5dCEF3CfNHe39inZX6Rl93wCo4T5o72/sU7K/SMvu+A QaZXPdJBFDar3DlJ6c0bHBjYIBI5w7+Wjy9fJdCo2bqW3zGxQZFPMa74XQPeGktPeD478UHzjRYb cg67OT2RND1rIZK7GBzeXPYHaNjl6Vb7lBxNTJzTVJshWZUZSiMccYkD3PJABcSOWtDs9Ktzytgr yTO/BjaXHXoG0HK9KPJmWZ5MgXtDYW+SFxPVh2/leji7O1U8bbiv5uexReZKnUNa+Qb4HP2da8dD vHoWN1++3CssztgfYuPY2vEG/JZxdgPjoc1sY2a9XyD8delinJiEsckUfBy3ogj6kFZWsF+Kl9oK KrWC/FS+0EE2989m9srAs9757N7ZWBBzmVpYW1mJXW47Jlig45po5XtZGwdgOiOZ0eS08XhsJkZZ GeRZCpMGh/DNYeC9h7HDTuxb+ZpQm290uViqQWw1tiKQDcgb4HfLY5LZxxr2MrPaZfgsu4AyOOIj 72wHfPxO+9BuW6jpcXLTgk6suiLGuOzrlpTJ8RZ6yw2IwNbYhZw7J2yRnYPS06V1QLNmrQ6Ry2so 4xt6poqyv31bRz4h4A78e5BsYuK/Lkp792vHV4o2xCOOQPLiCTxEj1quudrCW/k7U2GsmCrI1pkl LNtfJz3wgjXZrZXQR8Yjb1hBfocRHZtB0GE+Yu/vD8ApFz55N7ZVfCfMXf3h+AUi588m9soMKh5K WKjmY7tyvJLWMPA2RsZk6p29nYHPmNcwO5XFDyM2Xq5ls1DHuuwOh4Xs8pawB2zzAJ7fSgY6WG/m XXaVeSOu2EsdK6IxiU7BGgQCdc+eu9W1Nx17K2Zyy7hzTjDdiQ2GP2fDQVJBCv4q9NdsMgMHk10s 65z3EPaG6BAGuewPHvW5QgnOQs25WRxsIEUTWO4ttaTzPpO+xSso6VmVtsEdh1mzGyGq9ocWNYfw zvsBB2efoW3g60FXI3I6MT46rA1h4t8JkG+Ijfo1zQXFewvzE+2fgFBV7C/MT7Z+AQTcr9JS+74B aS3cr9JS+74BaLiGtLnHQHMlBOyNq6bkVDHmJkr2GR8soLg1oOuQ7ySVjrWMjUyMVPIyQ2G2GuMc sbCwgt5kEbPd3rFmZca+OvcfkzTlG+onhOyR3jWiHD1hYMRPj5co1z8tNkbpjIjL4i0Mb36AaAN6 7UFu9WNylLXDzGZGkBw7j4qNBB0lZcn3NSc3hYA5zX8J0D2DfL0roFzGZfipc66DM5B0MQha6GMW DG3ezsnR7eztQWaLcsJXeXvqOj1yEIcDv39y3lCwUWAZakOJuCeXg+U3yl0mhsc9Eq8gs4P8RL7Y +ClZj6Tl93wVXB/iJfbHwUrMfScvu+CDRKmQCPJSXGvoQeTF3AXuALpXN5bI12DxVMqBORVluSU8 yK8TH8U0b4RIGOd4ek+CChh3Rio6FlVlUwPLHxR/gg9ux69grfPZzU/CiuaPWV7LrPWPLpJXjTnO 79jXLu5LcfYiZPHA92nyAlrdHmBrfxQcyKUVrino9GqctfZ4XSODXy+kDXxV7EurOx0ZqQeTx8/v WtcB3zH1rQr1srFA2PHXKj6h5xOljcXNB7uXIqnQqeRVGw8ZkcCXOeRriJOyfrQUsZ9Iwe2Fdzfz RvtqFjPpGD2wrub+aN9tBCUvJzXjbr1KUkUJlDnOlkZxdmuQG+3n/BVFD6SQY+VsDrjLcsoJ6mKq 9we49+tEfWUGzUrZiOy19rIQTRf1mNr8JPhz2qa5jCQ0G5JgNfKVLIBLI7krnNeNc9fKIOtrpkEn MRXW2692lTbcfG1zOrMgaWk604E8uWlhpY2eC5Qi6gNbWjc+WcEfLe4EFo7+0736l9ydGK0srpDf yQLiSQ224D3BY4KjsNlqsMN2zPDa4w6KxKZOEgbDgTzH+aC8ukxvzCH2ftXNrpMb8wh9n7UHPT/j 5PaPxWpdibLXIdYfXa0hxex3DyB3onwK25/x8ntH4rC+NkrHMkYHscNFrhsEekIOa1QvTTTM6SXI B1rm8Asta0aPcPBUsGYALMUOQsXereAZJpA8b1vQKm0fuchnuVrNehFJFYd8mUMJIPMEcuz0d2le oSUHwluPdAYmnmINcIPuQbJ7FxVY9HbTZJMtlibnWvEm7jmgacdAAHWtaXXzmyHxdQIi3i++8ZIP Do9np3pRWee7IMtethJYiSGu6x53o+x2oKOGZj2UAMZP11fiOndaZOffzJVAdq1ce20ysBcjrxy7 O21ySzXvAO1tDtQdaOwL1eDsC9QEREBERAREQEREBERBIz3+w/4vsUhV89/sP+L7FIQF4Todq9WK 1I6KtJI2F0zmtJEbdbd6Agj2ZHXLs3kvSQ1RGQDEI4yAdb5Fw5rLioYYr8/Hk35C46Npc9waA1mz oANGu3alT47HVLk3D0VmtNk4XbbEwtbyHIbKq4PqGmVkGDkxg0CS6NreP6igsIiIHeusj/Ft9QXJ 966yP8W31BBzuT+kZfWPgtRbeT+kZfWPgtQoI9mbK3MjPWoSV60dcND5JYy8uJG9AbHLXesuKmts nno3GQdZCGuEkDS1rwd93ceRU/LChBlJJZc3aqTSNbxRwnlrsGxo/wAVixtKtfsTupZ7IvkBHWk8 u7kNlv8ABB0z+Pgdwa4tcuLs36VBrjpSJ7PF5BrrBrjMnDrQ/B5dn+avgaAGydd65XJSYSXOW4s1 kCx0fD1UZncxrWkc+QI57+xBcx0GSZLNNkZ4nOeAGRw8XA3W+fPvP2KgouAZhG9d5nsCbs6zUzn6 7ddvZ3q0g6XHfMIfZUbK/SEnu+Cs475hD7KjZX6Qk93wQaRURpy+SmsPr3IakEcro2MMPG53CdEk k/wVtcjeZiIsjOPOuYZLJKeNtV8nBxa7PkjW9dyC/ibNmaKaK2I+uryGMujGmu5Aggd3b2LYu1n2 qxhZYkrk/wBeM6coOExdGzu1SyWX4I5Ttss72te4Hntp7V0h7Cg4+FtHHQsqWelskMsQ4XMZM3QP gOS6LDNpsxrBRsmzCST1pfxFxJ5kn1qLjcg7H1BVf0cyL+rc7T2wMPENnmfldq6GjP5TVbL5LLV2 T96maGuHuBQVMX9IR+/4Kxk/o+b1D4hR8X9IR+/4Kxk/o+b1D4hBzimZ6xLXx3FFZ8mDpGNfNy2x pOiRvvVNTs1JXjx58opNu8T2tZA5oIe8nQHPl70E1lCnxtI6T23cxyN1vP0Loh2Liy6OJnXO6HY+ NjJhE6TjjPA7YGz8nxPau0HYgiZS9moMlDFTxrZ4CT8ozBvH8nsPLlopFPn7NqEPx0FKMPBkl64S EtHa0DXesuesdQysJLTqld8uppmHRAAJA33bOhtTYrFiS5VyDb05fbslsVXj+QYASOLh8dDe0HUd yuYL5vJ7f2KH3K5gvm8nt/YgwZ38bF7JUtVM7+Ni9kqS9wYxz3dgGygl5Gs+XK1nsjZKHRvicC4B 0YOvlgd/Zrl4rToQ335OmJcearacbmSTFwIlGtADXPXLfNZrsM2Ru07eMyEMEgic5vHCX8bDr0jl 2LZp181HZDrmQrTQje2R1ixx8OfEUFJQukEr3Tx1n3paULonvD4n8BkeNabxd3edK6OxS8o42rUO NFWCdsgMkpsDbQwEDkO880GrSvukt4uGG0Zi+ruwzi4tDhBDj6d8verwUmvHXxOVjqV6VeCC008D omhruNo2QfRpVkF3CfNHe39inZX6Rl93wCo4T5o72/sU7K/SMvu+AQaih55uOkkiZYp2bFrW4vJW uEg5/lAgD3lXFIyTrFnKQ42K26ox8TpHvj1xv0QOEE9nbtBiwsGbZPxW5eGnr5MM7xJMPDbgAPir T2Nkjcx7eJrhog94Uas2xjMvBSN+W5DYje7hmIc+Mt1z34HeuatoI1Po/wCS2oZJL09iGtvyaGTX DF3dutnQ5c1t1Me6C5YuTTmaaX5IJGgxgJIaB7+1byICs4L8VL7QUZWcF+Kl9oIJt757N7ZWBZ73 z2b2ysCDmbskFXpFYlsYixdbJEwNkZXEgZrewN+O1RxVurYme2vip6ZDebpK4jB59mwVoZm5fNu2 yDIGmypHG7hbG1znhx5uPEDyA8FnxTrcOcsVLGUfeYIGyRktY3h2SDvhHoQXFz+XyGR8osx031oo qoj4zNGXlxefDY0AF0BOhs9y5mTN9G7d+ybEkYIj6kvJOpWkbII13FBvYybJMys9LIWIJQ2JskfU xcAIJIO+Z58uxWNKB0fOLF2wzGmaxtjS+zJI5/edM27wXQILuE+Yu/vD8ApFz55N7ZVfCfMXf3h+ AUi588m9soNaZxZC9w7Q0kLlDh6JwZyvWSecer8o8o653Fxa3rW9a7taXWOaHtLSNgjRCjnojgT2 42P9p380FWCUSwsdxAktBIB9Cw5SWSvi7M0TuF7InOafAgLFRwWMxsxmp1GwyEcJcHE8vDmVt2IG Wq0leUExyNLXAHXIoNSS5LHbx0I0W2A7rCRz5N3yX1HPKc3NXLvvTYGvDdd5J2f4LQPRDFkgl1vb ew+VP5ermt3HYapi5JJK/Wl0gAcZZXP5D1lBQV7C/MT7Z+AUFXsL8xPtn4BBNyv0lL7vgFovBLCG nRI5Fb2V+kpfd8AtIoIEeHswGq3gik+8PgmIdzbxHfGNjvPaPSvKEGTkylV1unHWZTidGZWyh3X7 AA0O0DlvmvLmOuszInOffWbMCyJvVx73vfCAW8xrvX3jYYZctuXPOyE9QEdSQxvATyJIaBtBcfx9 W7q9cejw8XZv0qK5nSZ7tvq4Zx8TJIf/APlXO5S8pnI8dIYm1Z7L2tD5OrA4Y2k6BJJQfWNZlWTO N+DHxs4eRqlxdvffto5KmtZlyN919QhzZGxiQbHJwPLY9RWygs4P8RL7Y+ClZj6Tl93wVXB/iJfb HwUrMfScvu+CDRJURmNui4InshNNlh1gPDjxvJ2Q0jXcT2+gK2Vy9uLombcvlN1rZuM9YPKnjR3z 5bQWsVBYiimlssbHLPKZDG08QbyAA348l95HGVcnE1lljiWHbHNeWuafQQtLoyyBlOcVHPfX69xi e5xPENDmCe7u9ysHmD3oOPZW6OVmCB9+7I6P5JdHJMW7HhrkukxIqjHs8jfI+HZ4XSlxd2/2uakU rOco1W1m9HeNsZIa7ytg2N8t8u1XKUtiaq2SzV8llO9xcYfr3hBRxn0jB7YV3N/NG+2oWM+kYPbC u5v5o320EJTMnBcFiG9RjjmlhDmmF7uHjaddh7jyVIqNhIYp7FjISSPlt9Y+JwLzqJodyaG9g5Af WgVBlMjfgs3qLKMVYuLY+uEjnuI12jkArJUaSGOl0jrvrvcH3OLr4uMkOAbydru1oDl4q0giydGY pZXyedcs3jJOm3HAD0AeC2Mfg6uOndYbJYsTkcPW2ZTI4DwBPYqSIC6TG/MIfZ+1c2ukxvzCH2ft Qc9P+Pk9o/FYJpo4InSzSNjjaNlzjoBZ5/x8ntH4rWtVYLtZ9azEJYpBpzXdhQQL+Yx3VyzUcR5x cAXOlEIawekvcOfu2quIgsxV3PsxVInSEODKzdNA13nvK0LXR60ynJWx2UlZE9pb1Nn760DwB7R9 ao4yS+6FzL9VkEkZDQ6OTia8a7Ry2PUUG6VytWJ0F1+Np9JC2Qve/qW1muDTvZG9a9y6orkxFksX dqsZiZbTKzpS2WBzdSB/ZvZ2D4oOgxbnupNc+95bsn77whvfrWh4LdHap+Gqz1qbjZDWzTSulexp 2GFx3w79CoDtQdcOwIvB2BeoCIiAiIgIiICIiAiIgkZ7/Yf8X2KQq+e/2H/F9ikIC8cCQdcj3Fer woOdhpdI2XrXFlqzA9wLOKtxBwDRsgcfLS38VBa66WzaycdwkBgELOBjdHw2efNTcpFablbfV1Jp ZrcbIq87BtsTTyfs75d5W1hqcNXJ2hSqGtWZGyM/I4WySDe3AerQ33oLiIiB3rrI/wAW31Bcn3rr I/xbfUEHO5P6Rl9Y+C1CtvJ/SMvrHwUvJTSV8bYmi/GMjc5vLv0gn28dcdYvOhZG4TCOWNznaPGw j5J9B12r7xMd1921duVBT60Na2ISB5Ot/KJHLv8A4LPiqUMFAFk0k/lAD3yySFxeSO31egLBimeS ZC3j455JYIgxzBI8uMZO9t2e7lv3oKygZHIZAW5m0q1MxQPZG99gu4i52uzQ7BsK+VDkONsZPIQW ZfJ3lrGv3OGh/LYeB3Edm/QgzYme+65brZCOrG+LhLRADogg8+arqbialWs6Z8N11yWQjrJHyBzt DsHLsCpIOlx3zCH2VGyv0hJ7vgrOO+YQ+yo2V+kJPd8EGkoj8fdhbK+uYHmOyZ4Q5xHFvfE1x7u3 tW1n5XRYqQiR0TS5rZJGnRawkAnfqWWDG0GYzyGKIGo5pBbxEgg9vPaDHh61uCKaW42Nk1iUyGOM 7azkBrff2KgexSsBwtgsQQymWvBMWQuLuL5OhyB7wDsKqexBykMtu0+tLNm54G2OsD2s4Gtie0jT OY8N9vgq/R6R8uJaZLD7Lg97eucd8enEbHoUqHL46xQdXyuOmkeZCZAKDyx53yd+D4K/jpq01KM1 InQwgcLWOiMegP7JHJBWxf0hH7/grGT+j5vUPiFHxf0hH7/grGT+j5vUPiEHOKHl8rhZGvpWcrFW mjeHAh3yo3A7BVxRLcuQuZSWnjnV67a7Gulmmj4y5zt6aBsd3f6UEue3hbc5jb0jjFeeRr5YBr74 4a7D3A6HJdcOzkp+Jnfbqv8AKYYmzwyOik4B8kkd49BBCoIJ+WsTsbBWqtiM1l5YHSjbWgAkkjv5 DsWnWvzsqY+zO2CSSSc15HNZwnRcQC3w5gclt3vN+QnGNllPlDR1rercQ+PXY4EdhUfENwzMnFE2 5dnlje4Qiw1wjDuey06AJ7eaDqVcwXzeT2/sUMq5gvm8nt/YgwZ38bF7JUojY0eYKq538bF7JUtB y2RwmAxtlk0809dsgIbDFK/ZO9kgA716AsmIbgxkYzSluum0eESmXh7Oe+LktvLjIw5Ktbx+OFwt jcx4dMI9A67N9/JZKN/MT2mx28GKsJB3KLTX68OQCCqp+VowztZZfbfSlg3w2GODeEHtB3yI9BVD tC5a1g70V427EMedj4iWxzSFjox4NafkH+CDNiJ6k2Ua5l63lZg1zRYLAIoh3jYAGzruXRhc/wBH MhA181KWOSpYksSSMglj4Twk75d31FdAEF3CfNHe39inZX6Rl93wCo4T5o72/sU7K/SMvu+AQaii 3X4rMxWGSxSStpbcZWAt04b2GO328lZPMLnKt6PEU3YvJVLIDS9okihdIyVpJO9tGwdHvQOjs2MF ktgo3a9iePjbLdG3SsGux3EeQ2OS6RQaTnZHJ1Zq9WWvSpROYx0zC1zyQAAAeegB3q8gIiICs4L8 VL7QUZWcF+Kl9oIJt757N7ZWuti989m9sqblXvjxNt7HFrmwvIc06IOjzCCVcytStnpochDxMEIE Uja7nnR3xNJA7Dy5LPgn4Rr5YsTB1RPypPvLm797h/BYqnSWt5JDx1r73dW3bvJXnZ1271zW/Qys OQkcyKCzGWje5oXMHu2g3iok95lLIZCRlWPqq8IknkLjxPfr5LWjs7B/FW1zmdOJjybJLEVyWVnA ZWVyeDXF8kyDYBG0G9irt59p9XIwQRy9W2ZhhJI4SSNHfeFWU2nHVjytzT5XWnBrnmQn8DnoN9G9 qkgu4T5i7+8PwCkXPnk3tlV8J8xd/eH4BSLnzyb2ygwoiICIiAiIgK9hfmJ9s/AKCr2F+Yn2z8Ag m5X6Sl93wC01uZX6Sl93wC00EXMQXmX4btKm224ROiDTIGmMkghw36ljpYuatfoRtgDY6ULusn2N yvcBsDv7dnZWLpM6MyMjuWJIahheW8Lyxr5R2BxHo3yXmMvMs3cbHTsGbgqasta7bWjQ4d93Fv7U HRPexjC57g1o7SToBc9moDa65+OyVJr7EYZIyeT5J0eRBHMH3K/NDHYhdFMwSRvGnNcNghcvaxuB xuXe69jII6r4miJ4g3HvZ4gdDt7O1BTxMU0l19y7cqzWer4Gx1nbbG3ez28zs65qwFzuEioHMzWM TUZFUMIa6RsXCHP32N5dmu33LokFrB/iJfbHwUrMfScvu+Cq4P8AES+2PgpWY+k5fd8EEfJXH0qZ lji62QkMjYToFxOhs+ClC3mJbPkBpUo7Yb1jpSS6Pg7Brlve1UydOW9VEUM4hka9r2vLOIAg77Nh TRiM0LhteeoOtMfVk+R8tb3+WgoYq1NZgkZZjZHPBIY5BGdt2NHY9YIWS9SN2JsYsz19HfFA/hJ9 CxYujPSZMbNltiWaTjc5sfAOwDWtnwW+gkfc+79b5P8A5gqhUreSV2w9dLNr+vK7icfWVnRBs4z6 Rg9sK7m/mjfbULGfSMHthXc380b7aCCpl3o9QvWTZc2SGcjTpIJXRucPTo81URBoY7C0cY98leNx lk/DlkeXvI8Nlb6IgIiIC6TG/MIfZ+1c2ukxvzCH2ftQc9P+Pk9o/FfC+5/x8ntH4r4QEREGC3FN PWfHBYMEh7JGtDiPceS5urFYoVmVp+lMdeWMEGLhjPDz9PNdUexcjj346rDJDawM80oleTMaYcZA XEg7PNBfw0UMVI9Tc8s45HPfNsHicTz7OSoDtWnjH15KgdWqOqR8R+9ui6s78dLcHag60dgXq8HY F6gIiICIiAiIgIiICIiCRnv9h/xfYpCr57/Yf8X2KQgLwr1fEzzFE+RrHSFoJDW9rvQPSgj2Bkb2 XsVor5pRQsYWBkbXOk2ObtnuB5LdoU7dVzzZyUlsEcg+NrdfUufvQY/JWnWrnRLJSzOABcQ0dnZ/ XVDo9To1pZjUwlnGkgbdNr5XoHyigvIiIHeusj/Ft9QXJ966yP8AFt9QQc7k/pGX1j4LUcARogEH tBW3k/pGX1j4LVQRT0XpNc7yezeqxk76qvaexm/QFv4/HVcZAYasfA0nicSSXOJ7yTzJW2iDwrls 0arr8joujUGRkY5jJZpXNZ8p2tDmCT2hdSotuLHviu3POQjgk02RzSC1kjSNO348gNIPjo6Q2e3D 5kgxb4+HibFIHce96J0ByV5R8E2KUT3GZNuRklIa6RrQ1rQOwAA+lWEHS475hD7KjZX6Qk93wVnH fMIfZUbK/SEnu+CDRexkjHMe0Oa4aLSNghRj0Rwx20V3tjJ2YmzPDPq3pW0QYq9aGpAyCvE2KNg0 1rRoBZCdBerWvXoMfXM85PDsNAaNucT2ADxQQoLWavS13syMFdltsjmM8nDuDhI00nfM6P8ABVcH PYsY0OtzCWdr3Me4NAGwSOXoU3JtxsUEEBxVyV1pzp2x1gGvY7Q4j+ENHn3KrhzUOLh8hiMUABAY 4ac075g+naCzi/pCP3/BWMn9HzeofEKPi/pCP3/BWMn9HzeofEIOcUaxi8mMjYtUMnFXbOG8TH1u PmBrt4grKIIFXEZyq+Rzc1XIlkMjwaXaTrf9f0K93L1EHPRZGpg8jfbkv9H8om6yOdzTwyNLQAN+ I1rSxR2qORfTpYh5nZDZE0kwB4WAEkjeu0k616V0pGx6EA0gdyuYL5vJ7f2KGrmC+bye39iDBnfx sXslSiqud/GxeyVLQRn9G4ZJHPORyjeIk6bdeB8Vlp4OKlZbO27flLQfkzWnPb4cwVURB4vURB4W tJBIGx2FeoiC5hPmjvb+xTsr9Iy+74BUcJ80d7f2KdlfpGX3fAINReaXqIPNL1EQEREBWcF+Kl9o KMrOC/FS+0Pggm3vns3tlaVqu21UmruJaJWFhI7QCFu3vns3tlYEGOCIQQRxAkiNoaCfRyWREQeF c5mKVuzauR4uSvK+UR+UQyuLS0g7aQdd4HYujJ0NnsXKSz0b+bdNUzVypJOBEHRwgRv1vQDnN0T2 96CxjKl7yuW/kjE2d7BGyKEktY0EntPaSSqi0KFCzTe90+TsXA4aDZWtAHpGgFvoLuE+Yu/vD8Ap Fz55N7ZVfCfMXf3h+AUi588m9soMKIiAiIgIiICvYX5ifbPwCgq9hfmJ9s/AIJuV+kpfd8AtJbuV +kpfd8AtI8wgkx5F2QrXJTTaacbXCN0hB64t3v5PhsLWwt21HNXr2sfUqxW4zJCapOtgAkEaHPR/ gkYzOGDqlfHR5CpxOMbhOI3tBJPCQRz7e1Z6NfI3L8d7JV46jYGlsNdknGdnkXE612DWggsrzS9R B5rS9REFnB/iJfbHwUrMfScvu+Cq4P8AES+2PgpWY+k5fd8EGkiIgIiICIiDZxn0jB7YV3N/NG+2 oWM+kYPbCu5v5o320EJERAREQEREBdJjfmEPs/aubXSY35hD7P2oOen/AB8ntH4r4X3P+Pk9o/Ff CAiIg1r0NqeEMqWhWk3svMYfy8NbWh5uzf6+b/yjf8SsIg16UVmGDgtWRZk2fliMM5eGtrYHaiDt QdcOwIvB2BeoCIiAiIgIiICIiAiIgkZ7/Yf8X2KQq+e/2H/F9ikICIiAiIgIiIHeusj/ABbfUFyf eusj/Ft9QQc7k/pGX1j4LVW1k/pGX1j4LVQEREGnlmyvxNpsO+sMTuEN7ezuUyGfA2MPHWguVq8L C1xZxNaWlpB0Qe/Y71fWjPhsXamM1jHVpZD2ufE0k+vkg1MRLBayV61T0azuBge0fJe4A7I8e4bV lfLI2RMDI2BjGjQa0aAHqX0g6XHfMIfZUbK/SEnu+Cs475hD7KjZX6Qk93wQaaIiApuZinMdezXh M7q0wkMQPNw0QdenntUl4ghPz1OSdkrcbkZLMYIY01XgjfaNnl3DvW/h681fHtFlobNI90j2tOw0 uJOvct5EG5i/pCP3/BWMn9HzeofEKPi/pCP3/BWMn9HzeofEIOcREQEREBERB4rmC+bye39ihq5g vm8nt/YgwZ38bF7JUtVM7+Ni9kqWgIiICIiAiIguYT5o72/sU7K/SMvu+AVHCfNHe39inZX6Rl93 wQaiLxEHqLxEHqLxEHqs4L8VL7QUVWsF+Kl9ofBBNvfPZvbKwLbuVp3XJXNhkILjohpWHyWx+Yk/ ZKDEiy+S2PzEn7JTyWx+Yk/ZKCflQ84m2IwS8wv4Q0bJPCexc3dy9WXAMpw0r3WRiPhb5HIAC0g+ HoK7Q1LB/wBhJ+wU8ks/mJP2Sgl4/LwZF7mQxWWFg2eugdGPdsLfWXySx+Yk/YKeS2PzEn7BQWMJ 8xd/eH4BSLnzyb2yrOHY+KmWvYWnjPJw13Bak+Jsy2JJAWac4kbKCWioeZbXiz9pPMtrxZ+0gnoq HmW14s/aTzLa8WftIJ6Kh5lteLP2k8y2vFn7SCer2F+Yn2z8AtHzLa8WftKnjqz6tYxya4uInkgk ZX6Sl93wC01YvYuezbfKxzAHa0CT4ALB5ls/lR/Wf5IJyKj5ls/lR/Wf5J5ls/lR/Wf5IJyKj5ls /lR/Wf5J5ls/lR/Wf5IJyKj5ls/lR/Wf5J5ls/lR/Wf5INjB/iJfbHwUrMfScvu+CuY2pJUje2Qt JcQeSm5LGW570kkcfE060djwQSEW95mvfmf/AFBPM178z/6gg0UW95mvfmf/AFBPM178z/6gg0UW 95mvfmf/AFBPM178z/6ggxYz6Rg9sK7m/mjfbU6ji7kN2KV8WmtcCTsKploZJ6zWxMLjxb0EHPot jzfb/MOTzfb/ADDkGui2PN9v8w5PN9v8w5Brotjzfb/MOTzfb/MOQa66TG/MIfZ+1Q/N9v8AMOV6 ix8VKJjxpwHMH1oOcn/Hye0fivhUpMPZfK5wMeiSeZ/yXz5ltflR/Wf5IJ6Kh5ltflR/Wf5J5ltf lR/Wf5IJ6Kh5ltflR/Wf5J5ltflR/Wf5IJ6DtVDzLa/Kj+s/yQYW0D+FH9Z/kgujsC9QdiICIiAi IgIiICIiAiIgn5SlLb6rq9fJ3vZ9S0PM1v8AsfWr6IIHma3/AGPrTzNb/sfWtnPdIaXR6vHJaEsk k7+rhhhZxSSO8AFr4LpbSzlmxTbXs0rlcB0le1HwPAPf6kHnma3/AGPrTzNb/sfWlTpnhL+dZhqN rymy4OJMY2xvCNnn/JXJZWQwvlkcGsY0uc49wA2Sgh+Zrf8AY+tPM1v+x9ans/pHxTpI3vpZCKjL J1cd58GoXHeu3fYqWU6VVMVbfXdVs2GxRtlsSwtBbCwkgF2zvu7kHz5mtb/qfWrrAQwA9wWvBkat m3LVhk45ImNe8Adgd2c/HXctpBDvULM12SRke2kjR2PALB5rufmf4hdESACSdAd6gVOmuEyGdZh6 Nnymw4OJdGNsbobPP+SD4813PzP8Qnmu5+Z/iFkzfS2phb0dBtW3euSM6zyepFxuDPyj4Bb2EzdL P49t2i9xZxFrmvHC5jh2tI8UE3zXc/M/xCea7n5n+IWznulmG6NsHnK2I5HDbYmjie4egLPazlap hI8q9kjopWsMcbQC9xfrhaPSSQgn+a7n5n+ITzXc/NfxC2qnSanYrPkninqSxztrvgmaOMPOtDkS DsHfJWUGvSY+KnEx405o0Qp1/HWbFt8kbQWnWtn0Kyvl72xsc97g1rQSSe4IIHmi7+Q39oJ5ou/k N/aC0B/SRiTI1/kd8UXydU2+YPvBdvXb/kq+d6VYbo5E1+SuNjc8cTI2/Ke4eIAQa/mi7+Q39oJ5 ou/kN/aCr469Hk8bXvwhwisxtkYHDnojY2pOa6X08RkWY1lS5fuuZx9RUi43Nb4nmg880XfyG/tB PNF38hv7QX1X6Y4y1gZMvGJyyOTqnQlmpBISAGa8dkLLU6T0560ss8U9OSGdteSCZo4w92uEaBIO 99xQe0cdZgtsle0Bo3sg+hUrcLrFWSJpALh2n1rMF6giDBT/AJ6P+KeY5/z0f8Vkz3SjD9HIg/J2 2xOeCWRgcT3eoLI7PUI+j7c5M8w1DEJduHPR7BrxQa/mOf8APR/xTzHP+ej/AIrWxHTajlb8NJ1K 9SkstLqxtQ8DZwO9p34K9ZswU60lmzKyGGNvE97zoNHpKCV5jn/PR/xTzHP+ej/ivMH0sxXSK3Zr 4yR83kwBfJw6ad+Hf3L5Z0tpvygpCtZETrBrNtFo6oyjtZ277u3WkH0cFP8AnY/4qhjqb6cT2PcH bdvYX3SvV78b5Kzy9jJHRl2jriadHXjz71soNS7QZde1z3ubwjQ0tbzFD+ef/BVFJznSbEdHIWyZ O22IvBLIwNvf6gg+vMUP55/8E8xQ/nn/AMF9NztHzAM3K8xUzCJi545hp9HipeK6c0MnkIKb6d2i 60CazrUPA2ca38k78EFLzFD+ef8AwTzFD+ef/BUJ54atd89iVscUYLnvcdADxKkYTpbiekN2zWxk zpvJgC+Th0078PFBn8xQ/nn/AME8xQ/nn/wWoeltNuV8i8ms9ULHkptcA6rrfyO3e+7etKtSv1r4 ldWk6xsMpic4DlxDtAPfo8kHtSo2pEY2uLgTvZWUwxOO3RMcT3loX2iDH5PD+Zj/AGQnk8P5mP8A ZCyFcdk+k/SF+Quw4LEQS18d+Pmtuc3rDrZDOzw7UHW+Tw/mY/2Qnk8P5mP9kLmY+lt7I9FqeUw+ Hks2rbuAQk/IiIOiXO8AQvMD0mys3SCTo/nqMEF4Q9fG+q8mNzd61onYPvQdP5PD+Zj/AGQnk8P5 mP8AZCl5+XpHE2H7n69GZxJ63ysuAA5a1oj0qBhOk3SefpRPicrUxwjq1+undVDyW7/BGy4jZ8NI Oz8nh/Mx/shfTY2MHyGNbvwGlxuN6b2XPinysFWGncqPt13QSOc9jWkfJeCObjvuXWUbElqlDYlr urvkaHGJ52Wb7j6UGwiKL0mzdnDVoG0KJuXLcvVQs2Q0H8px7gEFpFyeA6T5WfpBN0fz1GCvcjhE 7H1nksc3fZo9h969pdKMpnMwYsLjY3YuCfqrF2eTXFo/K4B6PFB1aL4e7gY53CXcIJ0O0+pcNe6Z dJ8ZAcvewEEGJEgYY3ykWACdcXh7tIO8RcnnelV+nakZja1V8VWmLtg2XuaXMJIDWa/rcu0+IVjG ZuPK25Yq8L+rgjYZJSeQe4b4PSQCD70FTSIviV7Yo3SO7Ggk69CD7Rfn9rp10irUjnXYKBmEbKGa kkInI4uHi12Dn3aV7PdKvNkdKGjTfev5EbrVw7h5a2XOPcAg6JFoYaTJy42N+YhghuEnjZASWAb5 cyfDSm5/KdIYb0VHA4mOw97C99mySImf2eXafeg6FFx1DpvNY6O5S5ZoNivYuQwyxNk2wv3oEHw2 Vmq9K7kBs1MrWryX4pImRMpvJbMZBsAcXMEDZPqQdWi8HZ2a9C9QE0vl7xHG57uxoJOlwNnpz0ij py5xmChZhYZOFwmeWzlu9cQHYPVpB+gaTS5rL5vOl9SHo9iG2XWYhKbFklsUYI2AdcyfesnRTpFY zjbta/UZWvY+bqp2xu4mE+IKDodJpc7m5+mEd7hwdXGS1eAbdac7i4u/scOSj4jpnmpcPmL+SqUi MfIIYjWLg2R+9HZJPIEj+KDutJpctU6UXYPKquUrV5L0E0UUbabzwSmQbAHFzBABJ9S6kdiBpEXh Ohvw8EHqLhcj0v6UUIJ8s/o/BDia7+FzZpC2dzd64h3D1aVHLdKMi6WjT6P40WbV2ETiSxtsUTCN jiI7/RtB1KLnOinSS1m3XqeRqMrX8fKI5mxuLmHfYR/JZ+kvST7nqwkZjbV6Qsc/hhb8loaOZc7+ qEFxFzkfSh/3DfdHJWbx9QZRCH6G96A34elalTpdcgdbp5SrXkvwGIRMpPJbMZN8LRxcwRo7Qdci 8B2BsaOuxeoCLxx0CdE6HYFwuQ6YdKMfBNl5uj8EOJhk4XMmlLZy3euLw7+zSDu0XKdI+k2RqNw8 eDr15bGVdqMWg7hA4eLnohUej8vSWUz/AHQV6EOtdV5IXHfbveyfQgtIoGem6WxXGDA1cbLX4PlO tFwdxbPIacOWtKJhumWblqZ2zlKlIx4kFoNXiAfIBsjZJ7PFB3SLkqvS25WNmvl69Z1uNsToW0nO IlMmw1nyue+Xb711bCS0EjRI5jwQfWk0ig9IcpnKtiCng8S21NMCXTzkthiA7jrvPrQXtJpcjium diWhlvOmP6u9iDqaKsS9shI5cPr8Fpx9M+kNK5jZM3h60FHKSCOHqpCZYyRscQPby9AQd1pNLDZn bWrSTva4tjYXENG3HXcB4rnMB0wmznSOzjHYqajHBXEo8p5SO2QAeHuGkHU6Rcnd6U5Gvl5xHWqH HVbUdWbje4TOc/WnN7tDfYfBXcXlGZVs8sMbhBHKY45T2S65Ej0b2Pcg30REBERAREQEREBERARE QEREEfpDbw+Lqty2Vjjcah3C5zdv4z3N9JUnonir1nJ3Ok+Xi6mxfaGQ1++KIdgPpKsZ7oxiuksc MeUhfK2FxcwNkczRPqK18N0LwmBu+WUIZmzcJbt873jR9BKCNaq1qX9KeFiqwRwR+QTHhjaGjezz 5LsrEsUNaSWwQ2JjS6QkbHCBz37lrS4alPmYMvJGTbrxujjfxHQae0a7FpDD2JOls+UnczyXyQV4 4wdl23EuJH8EHH9N3y2MbXyzL9e30a8oiIpwgRudz1ydrnz2dK90nxWNfSdlJJbcbp4mQmvBIGi1 z+RG4aJ7T3aWzF/R90YhvC4zGt42u4w0vcWA+IbvSvy1YJ3ROlia8wu44y4b4TrWx9ZQcV0czTsa 9lWTGvdHYumvNe60Eusd44Nb4RrhB33Bd0pDei+IblvOYrHyjrOsA6x3AH61x8G9cWu/SroPHAOa QeYPIhcNYqVqX9K2Ihq144I/IZTwxtDR38+S7paEuFozZqHMPiJuQRmON/EdBp7RrsQc9ncNmKfS R3SXDWqMZfW6my28HcAaDvi2D9q1P6LGzyYzJ3ZXNe21fke17Rpr+fMgeG11GZ6O4vpA2FmTrmdk Di5reMgbPjo81q5/BvudHPM+MZFXjc5jND5IjYHAnQHfy/ig0v6QqdV3Q/KW3V4zO2vwiUtHEBsc ge1b1bGQZfohRqWC9rTXicHRnhc1wAIIPiCFQvYyrk8XJjbjDJXlYGPaHEEj1hZ69aKtVjrRDUUT AxoJ3yA0Ag/PK7m0ukDJaMFjMOM0ja5sWA3rpWt1JKXa18kfJGh4rusLlI8zioL8cbohKDtju1pB 0R9YWG70bxV+pBWlrdXHXJMJheY3R77dFpBG1u0qVbHVI6lSIRQxN4WNHcEGdfEsbJonRytDmPBa 5p7CD3L7XxLEyeF8T9lr2lp0dciEHBZCOLpXZZ0YwleOLC0pQ67YYAGEg76tndve9qz06o1D0TyV h1aJ00dUsZIWAuaPAHuCwM/ou6KxjhZUsNHg21IPtXQ2cTTt4h2KmjLqroxGW8RB4QNdvag0+iP+ p+H/ANzi/wCkLDl7PldmXG4bJVaeaDQ8mSEPdwerXqTO9H32+ifmHGuELOFkTXOedsYCNnfaToL7 yvQ7CZvqTfqdZJCwMbK15Y/Q7tgoOc6FY+plsDlcZba/ymO+7yqzFLvrJQQQ9p1y1octLDCDRz7Z KUM+VJsPbCbE4aZ52t+XI53DrTW6aNDt2u4xWIoYWk2nj6zYIQd8Le8+JPisN3o9jL1SKrJXMccL i6IwvMbmE9pBaQRvaDJhco3MYyK6yJ0PHsOjcdlrgSCN+sLfWvRo1sdUjqVIhFDGNNaFsIOa6e06 0nRLK2n143Tx1HtbI5gLmjwB7lqswf3R/wBGVTGCXqXS1Iyx5GwHAAjfo2umyFCvlKE9G2wvgnaW SNBIJB9IXtWjXp0I6MDSIIoxG1pJOmga1tB+bTjPS9MOjWMydjHyz05S/gph3E1gbrieT467Bpfp livDagdBYibLE8acx42CPAhTcP0Ww2Ac9+OpNikk/DkJLnn3nmsfR7D2cdaylu3I10l60ZGsYSQx gGgPX3oIPRKOOH+kHpRHExrGNMQDWgAAa7gvekmErUrDHUp7PlNmZ08dcyDqoXa+XNrW9gb5b1sh dTUwlCjk7mSrxltm7rrnFxIdrs5dg9y2X1K8k3XPhY6TgLOMjnwntHqQc70WzXGKmM81upwSVutq P64P6xgIBLgAOEne9c+1dQpWM6NYvEWXWKcL2yFvCC+Vzwxu98LQT8kb7gqqAoHTKpWl6NZKzJXj fNHUkDJHMBc0a7j3K+sF2lBkKU1Oy0uhnYWPaCRsHt5oOZqYYZ/+jGpjOt6oz04w1+t6I0QfVsLl shH0hf0n6M4jJT0JJq04e1lNruMMaBtzyTy2B4Bfp1ShXpUIqNdpbBFGI2tJJIAGu1aGH6LYbAyS S46m2OWT8ORxLnnn4nmgpTQxWYXQzxtkjeNOY4bBHpXH9G4o4P6ROkcULGxsbHAA1gAAHCOwKzgc RZoZHL3rb2l9+zxsY1xIawDQ957VvVsNRqZS1k4Yy2zcDRM4uJB4RocuwIOW6T4WnUsNfVsW/Krk 5miqtkHVMkA26YjW/kjZ7db0tvopnGOFLFtxbqcE9YzVJDKHmVgI2XDXyXHe+/tXTPq15JxO+Fjp QwsDiOfCe0erktDGdGcViLTrNOBzJC0tbxSOcGNJ2WtBOmjfcEFUIiIBX550z6YV58kei8GQjoMP K9ckJ+9t72N/tEL9DWjNhMTYldNPjKcsjztz312OcfWSEHPu6QdHcH0YqNpPlfiXHybymsNiI67X Ht9/iofRCWnF0+tR4S3Jk6MlQPntT7e+NwPJoeRvR8P5L9CioU4axrRVYI4D2xNjAYfdrS8ZRr1q r4KcMdUOB11MYaAT36A0g1LHSHHR4KxmI52zVYGuJc3sJHLXr3yUnoBRnbhpcveH+mZaQ2JNjsaf wW+oD4qriOj1LGYKLEOYLULBt5mYHdY4nZJHZ2qo1rWNDWABoGgANABB+fdJKFXH2LlnFYqCCOk0 T2ZTFylkJHAPS1v4R14BXeiOYtZGW/WsZCtk2VXM4LlZga1/ECS3QJGx6D3rpHNDmlrgHNI0Qewr HXq16kXVVoI4Ywd8MbQ0b9QQZVE6V9J6vRXEOu2Gl73HghiHIvdrs34K2sFqjTvMay5VhsNadtbN GHgHxGwg4boXaxdy1ZuT5ivdz+RYeJsZOomAcmN5dgXFiDC0eiksU9q1D0nqTuZFEJHhwfxcuFvZ ohftFfD4upKJq2OqQSgaD44Wtd9YCyuo1HWRadVhM7RoSmMF49+toNClk2w1KlS6/iybqgmfXA+W 4gfK13dq/OuludwebqtyVO9b86xzMbHi59uYXB2tGPWtr9IGEjPSM5uSZ75BXEEUZA4Yxskn075f UtsY6kLXlYpweUfnurbx/XraCD0ip1LOJrWrWHhuZLTY67Hx74ZHdx/sg8zvwXPYvMXcPlWY2O/T IjvtrSUDF9+l4gC6be99pJ7NaC/R9LCalY2RaNeIzgcIl4Bx68N9qDKF49wYC5x0GjZPoX0vC0OB BGwe4oPy/JdK8N0tzgq38nFSwlGQOLHkh9t4PL1NC2Ol8eLl6W4bI5OaSPCzVHRCeJzmt2dkAkc9 EFdwej2EJ35no/8ALM/ktuSnWlreTSV4nwAa6pzAW68NdiDgugNytRkz8ta1J9z1aQGvLKSWtAG3 aJ56VbpL0jwjnR4rJW7dGvbiE0V6F5Y1wB3oOHPfo0reWwsOSwk2JY7ySCZvAeqYBpu+YA7OY5e9 bBxtOSnFUmqxTQRNDWslYHAADQ5FBxn9GzIbOMy9IRC1ixZc2GeSPnYae3i5fK9a0bbY8TdhuYyK rhqbrZqQWJodsiOjxykEjmSOEbPZvxX6RHFHFG2ONjWMaNBrRoAepeTV4bMRhniZLG7tY9oc0+4o JPRLK2MzgmWrRjfIJZI+tiGmyhriA8DwIG1aXyyNkTGsjYGMaNBrRoAeAC+kHjiGtLnHQA2Svy/K 9LMT0rzYpW8rFSwdN4dI12w+48dg13NBX6gQCNHmD2hTz0ewhOzh6H/LM/kgh5/pNgmx18XetWad S9CJIb0BLG6GiAHDmD2d3epv9Ht2rRp5t7JuPEVrJfFekbp0gI24uOvla8V28tCnNWbWlqwSQNAD YnRgtAHZoa0tbK4aHJYabFMd5LBK0MPVNA03fMAekckE3pfnxjei7rNN/WT3AIqgb2uc8ciPdzWz 0f6P18T0Yr4iZjJm9XqcOGxI483E+9URjqZirxvrRSNrACHjYHFmhoEb7CtnSD82uQRYq3HdxrK2 HqC2akE8sXyIjp3HKQSNkloaCT4rr+iuTsZbCixZkime2V8YmhbwsmDXEB4G+w62q01eGzE6GeJk sbu1j2hzT7ivqOJkTBHGwMY0aDWjQA8AEH0vHHTSQN67h3r1EH5R0wzuBzuPntC/drZOu4RsxsxP C9zXdjo+w72uh6RdNXYDAUIXsjgy92Buo3jhZASAC53oB7l1zsfSfZFp1OAzjslMbS8e/W182sXj 7zw+3RrWHNGg6aJryB7wg5fobc6PY7E23QZmK7YaPKchZ58ye0nl2BWc/Yit9DshYgkEkUtJ7mOH YQWHRXt/o1j7WKtUKsENAW2dXJJXha1xbvmOz/8ANqhBSrwUY6TYgYGRiMMcNjhA1o+5BC6EwxWO geNhmjbJHJX4XMcNgg75ELnLsDMVcZcxkdXDUW2vJYZpYttjcQeOZwJG+zhGz4r9FhgirxNihiZF GwaaxjQ1oHoC8mghsxOiniZLG7k5j2hwPrBQSeimTsZbDdfZkjmeyZ8QnibwsmDXaDwN9h9BKtL4 jijhjbHExrGNGmtaNADwAX2g+Xu4Wl3CTob0O9flHTHO4DPUJbkd+5BlK72sjxk2yx72u7HR9h3v tX6yRta5x9I2RaNOA2B2SmNvH9fag47pJLg3Q4OTpTUnh44+UsZc2OF5aNtdo7Wp0Ct1quUz5oWJ HdHaxa6F73OLGEN27h33dv8ABfoE0ENmIxTxMljPa17Q4H3FaeQxEVvCWMXXIpxTRmPcLAOEHt0O zs2gn9KOkkOL6KyZKs8SunYGVeH+u93JpH179yydFsFHiujEFCwwSPkYXWeIb43u5u39elQixVFl OvUdWjliqhoiEjA7h0ORG+/0rcQfmuRhhxNsXMVWrYmnFcFWOxLF8hjzvjmIJG9fgjZ1zK63ojlr OXxL5rMsVh0Vh8IsQt4WTtadB4G9c/QVamginidFNGyWNw05j28QPrBSKKOCNsULGxsaNNa0AAD0 BB9rmulXSDF0ZGYnLTW6UN1h1chJY1pB7OIcwfd3rpVisVa9uIxWYI5oz2skaHN+ooPz/oJkKeMZ 0hminM+Hqy9Yy9I35cnLbtnW3aWpjekuH6S9I48vmslBWgrScOPoOJLuLs6x/LtPcF+k+RVfJTV8 mi8nI4TDwDgI8Ndi1hgMKwhzcRRBB2CKzO36kGeK/VnuTU4pmungDTIwdrQ7mN+tcrjv/wB7WW/+ 3xfELocfhoqOTyGQ610s157SeIABjWjQaFutq122HWWwRid7Q10oaOIjwJ7dIOa6UYmlau1+ox0b 8pbPALXV7MUYHynb8QOQ9JCk9EukNt2So45tunLXmbKw0YYuGSkIzocR3s79IHav0DSwx1K0U8k8 deJksn4cjWAOd6z2lBmCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg IiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIi AiIgIiICIiAmkRAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAR EQEReE6QeohOl8hwcORB9SD6RfPG3etjfgvpAREQEREBERAREQEREBERAREQEREBERAREQEREBER AREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQER EBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBch04 OSZHVmjsCKq23AA1h+U8l4BDvR6l16hdLcdZyWMghqx9Y9luKQjevkteCSg96U2jBSrQ8+G1ZZA/ Xg46K1KcEGD6URYqk1zILFR85aXE82kDv9ap56g+7SjMTOOSvK2ZjN/hFvYFpY6vdyOYblb9F1N8 MLoGMc4OJBIJPL1IIRMP3MHpZwvF7iLuMOPc/h1rel3cLuOFjj3tB/guSOMvmgejnm53kRd864hr XFxdnb2rro28EbWeAAQfSIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiI gIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICI iAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICaREDSIiApucyRxlSN 7Glz5pWxMOthpcdAn0KkovSlsr8W2ONnE18rWyu7CxhPNwPcQO9B5RvX6+TbjclLHPJJG6Vj4oy0 AA9h9K16PSKe90r82iuYqpqGZjnjTnEP4d67h2rVwFSrRzgjxdmW7VfCTJNLMZixwPJoJ7PUtmQf /wByYT//AIp3/dQdE9xDHFo4iByHiVztvI5jFOZeuuidUkkbH1DGfLaXHQ+V39qsOe1uSdu2wcMX E6HvA3+F6lI+6LCZO8InZCtwRScIjfINvfvly9aDzP5K+zIwU8fkqdIlpdK6y0O8NAcwrGMbcZRY L9iKxPzJkibwtI7tDal3osAzLzS5FkfXvYwB1gDgOuzh33+pbXRplpmJ4bZ2/rXlvscR4f4aQVkR EBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAR EQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREB ERAREQEREBERAREQEREBERAREQEREBeOa17S1wDgeRBC9RBigq16wLYIY4geZDGgL6MUfW9dwN6w Dh4tc9eG19ogm5CDqDNkImNdKIuEhw7Wg7K+aFHE3a0N6LH1vvgDw7qm79fYqUjGyRuY7scCCo/R 50kPlNGbTTBKeraO6PuQVJqlazw9fBHLw8xxtB0soAaAANAdgC9RAREQEREBERAREQEREBERAREQ EREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBER AREQEREBERAREQEREBERAREQEREBERAREQERNoCIm0BERAREQF8ukYw6c9o9ZXpc0HRIXC5llTK9 JJvK8NcvR1h1JdC/hbH37PMeKDuuJvDxbGvHaBwI2CD6ly+QMDYMNQpN/wDC7DiyQhx0GBpI59va tjBXarc1cw9Ig16sTHDRJ0T280HQoiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiB3KJZApdJoJ2 sOrjDHI/ubwjY/iVbUvpDVNjFuc15YYXCXib26adke/SCmF6sFKwLdKGw3slYHDfpCzoCIiAiIgI iICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiA iIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC+XuDGF7joAbJX0tHM1LV7FzVqdgV5 3gcMjhsDn4IOfwOZv5Dprkq80h8jZWY+uwdhBcfles6/gvia9Zn8rvSZKWpNVle2Ok17Q2UNPySR 281rYHF5yl07nNueB8DaUbXOjhLWuGzoD0gry5SqNltx5CmZstLK81ZxEXcI38j5XYNIOwo2jYow SygMlkiDnM3zBI5rjRYGXztj/wCp8jTDpNRQQgBgA5HmW67fSukptir2KcNvidffX5nWxyA3z9am X54beOs4KtUkp3JQQ3hjPC0k73xdiCpJ0hpQTvpsdJNYh01zQw8zrx1pYPPuVfNwR9HrPAeyQyM1 8VagiDIWNcAXBoBOu/Sy6QQ5D0km06uaULe9szXE/wACvZcRlLkep8vLXd41eXxCt6RBIp4DyaRj 579m45h2DMR2+4LHft5OCy+tHi3WoZ9gSxODerBGvlbPP3K2mkHNzYqfHdGquOhpsyEUDeGWF34U g7eR8drJ0dxPk1ubIGn5EZomxiuTstDexdBpEBERAREQEREBERAREQEREBERAREQEREBERAREQF8 yMbIxzHDYcNEehfS8KCP0fe+EWcfO8GaCUuDR3Mcfk/wCsqLYHkXSSGcNAjtxlkzz4tHyR/Eq0gI iICIiAiIgIiICIiAiIgIpmSgytmTgpWmVIwN9ZwhxcfAg93pU7z7O3o7csTOEU9eR0AkIGi4cg7X rQdIi5joxJftltmbpG3IMDPlwtga3Tj6Rz5Lp0BERAREQEREBERAREQEREBERAREQEREBERAREQE REBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQeHtUqhd sXMvd05rqcQa2Mgc+Mb4h8Fv3Z/Jqc03exhIHidcgtHo7XEOIjk4S11kmd7T3OdzIQUTCx07ZiPl sBAPoK+9DwXqICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCX0hrCfGGT nus8TgN7Tw89LdqT+U1Ip9a6xgcR4bHYsr2h7S0jYI0QpOAe6EWMfLIXy15CST4OJIH1ILCIiAiI gIiICIiAiIgIiIIWf6S0MQ+OrYnEUk4/CLSQ0eJ0F8eUYe50eEsTTeqMkHEWAjmDzcfUt/N2YqWN lsPaC7XCwkbPETofxKnW25Cj0ar8UxFlrmGZzRrY38r3IPinLXyOeq2sS9nkkUT2zBjeEcR1ru9a 6VYq5jfC2SNoDXgEaCyoCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiI gIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIUEXpGTYZVxzJCySzKC0jwaQ4j6 lZY0MYGtGgBoBRoeK70llkOnQVowIz4POw4fVpWkBERAREQEREBERAREQEREBERAREQEREBERARE QEREBeE6G16vHDbSEHLuzeTbD5562A4vi11fB8vW9b3vXaunY7jY13iAVwkor/ca7o4J2+X8Rb1O /lfh8XZ6l3ULSyCNp7Q0D+CD7REQEREBERAUewfIs/FL8lkNlpa8+L/6oVhS8/B1mPM4YXvquErG jvIQVEWGrL19aOX8poJ9elmQEREBERAREQEREBEWC5ZZUqSTvcGhg7T49yCRb3lOkMNMb6mmOtk/ JeTsAH1Hmt/NxulwtxrPwjC7h9euS1+jteRlE27DS2e24yyNP9Unu9SqvaHsLT2EaKDQwLi7B0w4 7c2JrXH065qionRaSR2OmZLyLLMjQPQHclbQEREBERAREQEREBERAREQEREBERAREQEREBERAREQ EREBERAREQEREBERAREQEREBERAREQEREBERARF4exBEyt7JS5HzdinxRzMjEsjpW8Q4SdAaW1hM i/I1HulAE0Mhik4eziHapdu1VxHS+W/embBDPUbExzzoEhxOlm6JRFlS5ONllm3JNGT3tJ5FB0CI iAiIgIiICIiAiIgIiICxzyCKB8h/qNJ/gsij9InvfSZTik4JrLw2M+rmf4IPro5CBj3WtEG3IZiD 3E938FWXxCwRQtY0aAAHJfaAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAh5oiDB5DU8p8 p8mi6785wDi+tZ0RAREQEREBERAXy9vGxzT3jS+kQR+j7hDHPj+JznVJC0ud375/arCjznyHpDFK 5wbFaZ1evGTe/gFYBQEREBERAREQEREBQs0/y6/WxDDsPPWTt/sDsP1q3I8Rsc9x0ANqNgWeVyz5 WQc53ai32tYO76wgtNbwgAdgXpRCgh4h/Bn8pUAIZGWOHrIJKuKHI9tXpbDEO25E5x/4dfzVxARE QEREBERAREQEREBERAREQEREBERAREQFo5XMUsLU8puy8DNhoHeSTrQWHK5ibHTRxx4q3cEna6Bo Ib6+akdO6VeXozauvjPXBjAOI9g4293ig6aezFXrmeR3Cxo3tauPy8N9xa2GeBwPITs4S70hYc5S fkMG6ux3C75Dhz8CDr+Cgy5K9b6Y4bjpyVIdSgtfycTwj+CDrLlyGjAZpieHegB2uPcB6VrY7NV8 g8xCGevLokR2GcDiB3gb7FO6TTdZjIi6NzJRbYK4dyDpNnh36FpY5193SqI5qOCO+Kr+obXcSws2 Nk7796QdcihSz9J+I9RWo63y43u7PqWuJumpk51cVwePWv38EHS7TaiQHpK6RvlEdJrN/K4HuJ19 S+6b+kRyj23IaTaOzwOje4yejY1pBii6TwWek8eHrxl7XQvkM3dtpA0PHtX3m7XSGtMzzPj6VmHg JkdZsmMg+gAFT7DBH/SNjQGtb/oEx00a/rtW3mTPUxbaRuvfYtydXHK4AEE89fUg2ejuQyWRouny VWCu/i0wQSl7XDx2QFjyOYuNyDsfiq0Ni1ExskrZpCwBhPIggHnyKqQsZWrMZyY1oA8AuZydaa70 nnir3X4xzK7HGywA9aCT8nn4fag6DF5FmSqGZo05jzHIAeQcORC3FE6Kn/wqRpYQ5liRrnEc5CD+ H7+1W0BERAREQEREBERAREQEREEK8Rf6Qw498UUscMfWyNkYHcjsDt9K+6Ez6eZnx0hAhLQ+Dlrt 7QPUvjFFtvpDkrg7YT5Kf+E7+1fXSGB0ZrZSIffar/dwn8In3ILaL4ilbNEyVjtteAQfQvtAREQE REBERAREQEREBRn8VzpKxhaHQ1o+NrvB+9a+pV3u4GFx7htSujzBJBNeG/8AS5C/R7u77EFdERAR EQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBLz0DpKHXxM456xEkQ 9PZ8CVv1pWzwMlaQ4OaDsL7kb1kbmHvGlJ6PPEUE+P0QKUhiaXf1h27/AIoLCIiAiIgIiICIvCgj 9IZnSQRY+EnrLbwwlva1ve5VK8LYIGRMGgwAclIxgbkszPk+2OEGGBw7CP638Qrg7EBERBFzQbXy NC8dbEnUg+0f8laUjpJC1+PZM8bFaVs37KpwSCaCOQdj2g/WgyIiICIiAiIgIiICIiAiIgIiICIi AiIgIiIGlpZfGQ5jGy0J3ObHLrZb28iD9i3Vp5O+zH0nznm7WmNHaT6Ag1bs9e3YGH4HSFzA6RzT +LHcT7wvcfg20peumtT3JW74HzEEtHgF9YWhJVruntc7dg8cx7gT3D0KmglRYySehJXuzSSOMznx vdrbOfydepfWPwrKU/lE1mW3OAWtlm0XNB7QPQqaIAREQEREGu+jWffjvOiBsRsLGSd4aTsj+C1s zV6+n1zI2vnrnrIS7+q7xVFfMreOJ7PEEIJb44+kOCZsgtl07fqO/sWxfxFHJsYy5XEoYdjexzWn 0XcyKjLQZ/8AsUpiPx+1WkHxDDHXhbFE0NY0aAC+0RAREQEREBERAREQEREBfE7+rgkf+S0n+C+1 N6Q2jTwdmZo2QAND0kD7UGv0W4ZsUL47bzjMfWeX2KrZgZarSQSfgSNLT6isePrMp0IazBpsbAAt lBH6OyvbWlozaElV5YG+DP6v8FYUK4DjekMFxumwWh1cx8X8gwfFXdoCIiAiIgIiICIiAiIgmZ6V 7Ma6GF4bPOeCLf5RW7VibBWjia3XC0cgplsC50hq1nR8Uddpn4vyXg6A+oqyEBERAREQEREBERAR EQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAKjTvFHpHDI52mXGdS1o/LG3b+oK ypefge/H9dA0GeAh8ZPdz5/w2gqBFiqzss1o5o3cTXtBBCyoCIiAiIgKZn7b62Mc2F3DPORFEfBz uwqn3KAAcp0mLtnyeg3hI/qve7mD6xooKmMpMoUIq7Ghuht2vyjzP8VtoiAiIg0M5WNzCXK43uWF zRr0he4aUS4qvw/1GBn1clukb5FRuiwdFi3QSO4nxzP3v0uJCC0iIgIiICIiAiIgIiICIiAiIgIi ICIiAiJ3IPHENBcewc1Bqjz3lfLHc6lU6hHc535W/wCCzZq1JNLHiax1NPze4f1Gd5VOpWiqVmQR NDWsGgAgyjsXqIgIiICIiAiIgIiIIVAsqdJblFg11zBZJ9JOvsV1RMiRV6QY+drTxWSYnnwABPxV sICIiAiIgIiICIiAiIgIiICidIZHOs42oBxMsWOGQegNJ+IVtRX8U/SxrCAYoa/ED4P4tfBBZA0F 6gRBPzdJ17GSxxgGZny4ie547CvrD3W38bFM13EQOB5/tN5H+IW7pRMeW43PWMfvUdgddC0dgA/C +slBcRAiAiIgIiICIiAvCdL1Ts7PJBiphAdTyN4YvS49iDXwLBNJcyPEXNtS7YD/AFQBw6+sKyta hAK9KGLh4SGjYHie3+K2UBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAR EQEREBERAXxKwSxOjd2PBB96+0KCP0ekcyCak5hYKshjjB7SwdhVhRZnCj0mieSSLrOrA7gW89q0 gIiICIiDTydzyHHyzjXGBpgPe7uCw4Gl5HjW8QPWTEyP32gu5ke7a08iXZPOQY9unQQffZx6e1v8 VdHJB6iIgIiIPFEw/HHncxG/QYZGGIejh5/xVxQ5XOh6Z12Naermqvc539oOACC4iIgIiICIiAiI gIiICIiAiIgIiICIiAta/djoVH2JNkNHJo7XHwHpWyTpQW7zmW4/wqNR3IHskkHf7iCEGzhKUsbJ LtrTrNk8RPgO4fUqqAaRAREQEREBERAREQEREEbpPxxYvymJu5YZGlvvIB/gq8Tg+Jrgd7Cw34+u ozM1s8B0PTrktXo/I+TCVeuO5QwB/rQUkREBERAREQEREBERAREQCdBRcJ1kuSyc79Fpm1E7+zof aqlqRsNaV7joBp2VodG4ZIcLCJvxp2XHx5lBVREQFF6RRGKGHJM+S6q8PeQOZZ3j4K0sc0TZoXxv ALXDRBQewyCWJkjex7QQvtRujr3xQzY+V5dJUkLS494PNWUBERAREQEREBRcmRbzdGkWEsZucuHY C08gfrVoqLhh5VeuZAP4o5HBkYP9Xh5HXvQWkREBERAREQEREBERAREQEREBERAREQEREBERAREQ EREBERAREQEREBERAREQEREBERAREQSukED5Mf10JDZYHB/Ee4A8/wCC36s7LNWKeM7bI0OB9BX3 NEyeF8TxtrwWkegqT0dkkbXmpzNDHV5XNY0dzN/J/ggsoiICxWZ21q0kz/wY2lxWVRM691qeti4y fv7+KRzTzaBz5+g60g++j0Tn1n5CXm+27jBI0Qw9gPqVjsXyxjWNDWgAAaAC+kBERAREQFGzTxWv 42wAeKSw2DY8Ds/YrKk9JHMgxL7jv/2Q9cD6QgrbRY4H9ZBG/wDKYD/BZEBERAREQEREBERAREQE REBERARFguWo6dZ88pAawb5ntPggn5u7J97xtUnymzy5f1W959B0t+jTjo1WQRDQaOZ8T3kqfhK0 khkydsff7HNoI1wM7hrxVhAREQEREBERAREQEREBERAI2NKNgOOGW9WlO3Cw57R4MPYrJURsRrdL ZZnO+Tagaxjd97dk/FBbREQEREBERAREQEREBERBK6RuLsPLXa7hkn+Qwjx2qFZnV142eDAD9Sk5 pgt5LH1WuIfHKJyAe0Dl9qtgaQEREBERBCvtNDP1rzSeCwOoe0dgPbxH6tK4DsLSzFIXsbLDstJG wR2gjmvMNddfxkMzm8MhGnt7wfBBvoiICIiAiIg08tYdWx0z4yBJwkR773dyYmv5PjoWcHC4jieP 7R5laOa4bd6ljzxfLk60ub3cOjoq0EBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERARE QEREBERAREQEREBERAREQEREBRJD5D0qYQ06vxkPd3NLBy+vatqR0khLsb5Q1/Aa0jZi4dvC07I9 6CuixVpm2a0U7OyVgePURtZUHy9wYxz3cg0bJUbCNN25ZyzwC2U8ELgeRjHMH+JWTpDaeytHThdw 2Lj+rjP8T/AFUalWOnVirwt4Y42hrQPBBmREQEREBERAWnlajb2MsVXDYlYWkLcXjhtpHiEGlhrL bWMhlZ+DrhHu5fYt5R+jbG1qDqTe2vIWn3kn7VYQEREBERAREQEREBERAREQEREAqBMTnMv5OD/o lN333XY9/wCT7uRW1m7760UdWuOK1aPBEO4d5J9wK2sbQZjqTK7DxED5Tz2uPiUG2BoaREQEREBE RAREQEREBERAREQFFz3BWt4/IvdpteQs7e9+mhWlM6Q1WW8RKH9kRE37B4vsQUx2ItbH2m3cfXtN 7JYw8e8LZQEREBERAREQEREBEXhOgT4BBGiY210pknaedWLqiN/laKtKL0fdHaNvIxnflMpB/wCH 5P2K0gIiICIiAVDpbx+fs1DsRWfvzCfyj2tHuCuKP0hgeIIb8LS6apJxMA8DyO/cSgsBFjgmjsQs micHMeNtcO8LIgIiICFFr35zWozSt/Caw8PpOuQ+tBNxodbzd27x8cDdRRj8lw3xfYrSnYKExYqJ zmcEkw6yRv8AaPMqigIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAi IgIiICIiAiIgL4libNE6J4214IIPgvtEEbo5LM2tNTsuBnryuBaO5hJ4B9WlYJ0FFeTR6UtLWaju x7kefym6DR/FbeaumljnuYA6V/yI2/lE931INOkPOOfsXCSYqw6qNp7C7t4h7jpXFpYii3H42GuC SQNknt2ea3UBERAREQEREBERBFxMfk2YyTHE7nlEjQe4aAVpRHskj6Xxyk6ifVLdeLuJW0BERARE QEREBERAREQEWrfyVXGwtltzNja54YN95J0Ask9mKrA6aZ/Cxo2SgzLFYsR1oHzSkNYwbJK08bnK OVLhVkfxMPNsjCw/UVMzV+nZyVfHS2nMYHgyMEZLXegu7NINrCwSWrEuXssIfMOGJru1jN9n1q0v lga1gDdaA5aWpZy1OrfrUJpgLFokRM126Gyg3UREBERAREQEREBERAREQEREBY54hNBJE7m17S0+ ojSyIgk9HJxLjXRtGm15Xwgehp0qyi4x5hz2QpBnDE0NkafEu2SrSAiIgIiICIiAiIgLVyVkU8dY snsjjLltKT0isdTSiiI2LE7ISNdzigz4Ssyri4Wx/gvHWftc/tW+viJgiiYwdjWgD3BfaAiIgIiI C+JomzRPid+C8Fp94X2iCN0fd5MybFu001Hlsbf/AOX2NKsqHkR5vzNfIN02KX73O7x/JH1lXAgI iICjZ9wnfTxvE5rrMvECO7g04qyotXjudI7M+2vrwMDI/wCzICeL+GkFkDQAC9QIgIiICIiAiIgI iICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiLXvyW46cj6MLJrAHyI3 v4Wn1lB9WbMVSB08zwxjRzJ+Cn9Hs7F0hoyW4Y3RsZM+LTuR+SdbWWh5bdpkZijBFJxfi2v6xuh2 HelH6BDWNyAHZ5yn/wCsoPctkJLEjJpMdIKFWUPdZMnA4Fp/J1shOk2UqUWV8lZd1sUQEkUDR8ou PY4+A0V99KTNbxjrFO6x1aEHrq4aHddo8277l8dLIoX9B7E/UNa/yZgBI5tGxy2g6WF/WwskA/Da Ha9YU/J5Kes8QUqwt2SN9WZAzQ8drdqEClDs/wCzb8AuYu4s3+mlryieWGs6nGBwPLCSHE8iEHRY 6467WEr4XwvBLXMcOwjt14j0rbUfo3YmnpTMm3qCd8UZcdktB5HferCAiIgIiICIiCNmi+O/jJGD l5RqQ/2dFWR2KP0pe6DCS2GN4nxEOaB47AVWF3FCx3i0fBB9oiICIiAiIgIiICkZXpJTxFyKpYr3 ZHygEOgrPkaNnXMgaCrrzSDj+n1CGTFMvkvMgsQBoJ+S35Y5geK6t8Mc8TWyxteBpwDhvmOwrTz2 IGbxwpulMX31knEBv8FwOv4LJlalm5jn1qlvyWV40JQ3i0PUg0zUZYzwyETuFtaF0Z4ex5P8tLm8 TZyTejsmVtuhdUjkeZYnR8TpAHkDn3dyvYTHZWha6m5nI7kTGaMDa7WHZ7CSFkl6PSOlMTLYZj3n b63Vg7577fWgrtlY2sJuxgZxeoa2vzmfKUb/AE2wuTN6ueOeRjQJW/JZwHWxvkdrvmx2Rk3MLwaX k4aIy3+tvt36u5TLnQ3FWMrQvRVK0Pkb3PLGwtHWbGufq7UF8di9Xg5BeoCIiAiIgIiICIiAiIgI iICIiCPbL4OklNzG6jmY8SO9IHJWFH6RNl8mglh5OjnYXH+zvmqzHh7A5p2CNgoPpERAREQEREBE RAUbIPM2fo0yzcZY+UnwLdaVlR6bnz9JL5c35EDIxE71jn8EFhERAREQEREBERBpZWp5bjpYQ0F+ uJm/yhzH8V8YS263jY3PdxSx/e5T/aHIqgodU+bukMtVxAitjjiaB2EfhH+KC4iIgw2puorSy/kN JHr0p/RyLhxYsOYWSWnGaRp7nO7V8dI3GWvBQY8sktyhrXD0cz/BV42hjGtaNADWkH0iIgIiICIi AiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgaWrQxtXGxyR1 I+rbLI6Vw3vbnHZK2kQTX9H8c++LpiPWjuDyG/V2Lau0a+QpSU7LOOGQac3s5LYRBpZGg27jXUgS 1pDQNOIIAIPb7kv4mpk4mx2mOIbzBa4tP1hbqIMdevHVhbDE3hY0aAWREQEREBERAREQa2RhbPQl Y8bHCT9XNYMDaN3C1rH5bPtW89vGxzfEaUzASM8mnrM7Kspi+r/9UFVERAREQEREBERAREQF4V6t TKTurYyxMzm9kbiweJ1yCCbgCy7dv5RjiWzydWAe4s20q6p+Ertr4qABnA6RvWOb/adzP8SqCAiI gIiICIiAiIgIiICIiAiIgIiICIiDTy0L7GKtRRnT3RkNPp0vnDv48XXHFxOYwMcfSORW6RsFSOj+ q7LFEv4nwylx3/aOwgsIiICIiAiIgIiIPHuDWlxOgBsqP0YEzqM01gDrX2ZOfi0OPD/BbeZe5mIs 8LtPdG5rT6SNBfeLidFi6rHjTxE3i9ehtBtoiICIiAiIgIiICj9IonNqMvRnT6jhIXAc+AcyPerC +ZI2SRuY9oc1w0QfBB8Vp22a0c7eyRocPeFlUXo890BtY2V5c+tJyce8O2QB6hyVeaQRRPef6oJQ R28d3pQ48nV60Y4T4Sb5/wAFb0ovRlgfRkvFpa+5IZXNPcez7FaQEREBERAREQEREBERAREQEREB ERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAUbG COrl71Rv4UjuvI9fL7FZ7lFdAIOlflRPziARAekElBaREQEREBERAREQEREBRekRdZ8koRScMssz ZNeLWkFw+pWlEbw3OljiWndCIcLu75Y5/BBaADWgDsHYvURAREQEREBERAREQEREBERAREQEREBE RAUWsxlLpPYH9e6wP/ZGlaUXMOZUydC6W7c6TycH2v8A9EFpECICIiAiIgIiII3SIOngr1Y3ESPn Y4a7w1wJVgDQ0o1qPynpTTLXH/RI3l7e75Q5K0EBERAREQEREBERAQ9ibWKw+Vld74Y+ska3bWE6 2fDaCRk43083SyMYcWvPk8jG9nyj+EfVpZekRlkxZrQFwlskMY5o7O/am9GLeQs5rOwZJ4eYJIuF g7GAs3oLRylShlnzXa2UybJ3SdW2Bs5jbx+AHuQdlXiEMEcbRoNaBoLKuZvslpUsVhTbn4rbzG6c vPHyG+3xWTBSvpZ23gjYlsNrwMnD5ncTvlEjRPuQdEiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgI iICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICjZphbkcXZ4uFk Mri/07boKyo3Spkr8I7qfxgkYQfRxDf8EFlF8xuD42uB2CF9ICIiAiIgIiICIiD5e5rGOe7k1o2S pPR6OR0NizPovlmcWu8Wb+T/AAWfPWWVcTKXnQk1Fsf2jr7VsY6t5Jj4K+99XGG79QQbKIiAiIgI iICIiAiIgIiICIiAiIgIiICIiApPSNrW4eW0W8Tqv31oA57CrLFZhbPWkieNte0ghB5Uk66pFL3v YD/BZlK6OTvsYaJ0o09pc0g92nED+CqoCIiAiIgIix2JRDWklPYxpcfcEEnFBlnM377HbDtQnnyB bsK0pPR2uyLHGZn4NmQz/tc1WQEREBERAREQEREGOeFtiB8Ly4Ne0tJadHR8Cp+G6P1MGJfJZrUn W635RO6XWvDZ5KoiDnsHWni6T9IJpIntjmkhMbiOTgGaOl92Kpf0orxCrquyMzmQN0OsB0OfjpXk QROkULmvpZFsMk3kEpeWRt4nHY1yCwYKN17O3M95PLXbYhZAGTNLX/JJOyPeuiRAREQEREBERARE QEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBE RAREQEREBa2RbxY+ca2RG4gekBbK+XtD2Fp7xpBodHpHy4Ck+X8YYhxevSoqP0cmMlW0wggQWpI2 g+A1pWEBERAREQEREBERBGy5dYydGlw8cT3l0vo0Ng/WrA5BR6BFvP27bH7jjaIeHwcDz+KsoCIi AiIgIiICIiAiIgIiICIiAiIgIiICIiAh5hEQRMKZIsrlK79BgmBhA/J4Rv8AirQUeZr4elUEuw2G SuWEeL+Ll/BWQgIiICIiApuetNqYmV7/AMF5DD/xHX2qkoude2W3QoPG22ZDvl+SN/YgpUYBVpQw N7I2BoWwvANDS9QEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQE REBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREEXHTNi6Q38e3+r G2c+txP8laUaUMqdKIpOQfdj4PXwDf2qygIiICIiAiIgLFYl6mvJJ+Q0n+CyqV0ikk82mCB3DNM4 NZ6eYJ/htB50cha3G+UhnC624zOB8SqyxwRiKFjGjQaANLIgIiICIiAiIgIiICIiAiIgIiICIiAi IgIiICIiCPn2Fpo2+ItZWsCSQ/2dEfaq7TxNDh3ja0M7T8vwtqqCQZGa2PXtZsZO2zjoJmHbS3kf Vy+xBtIiICIiAoxd5T0pMLm7bXhD2n0k6Ksk6CjYNz57eQnlboicsYfFo1pBYXqIgIiICIiAiIgI iICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiA iIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiII+aayK7j7z/9hI5o9bgArCkdJaxtYsN3rq5WSH1N cD9ipwSiaFkrex4BCDIiIgIiICIiAot5rLvSSnXJIdUb5RyPbvbVZJ0NqLhS+zksjbkA0Jerhd4s 0D8UFpeoiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIPl44mEeI0pHRyWNtaegw78ilMR9fb9 qslRqfBU6RWqrBznZ5QT6ez7EFkdiIiAiIgw238FSV3eGnXr0tLo82QYWu+ZobK9vFIPSvnpE6Xz RLHAQJpCAzfrG/4KlC3giY0DWgOSD7REQEREBERAREQEREBERAREQEREBERAREQEREBERAREQERE BERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERARE QEREGplI3S4u0xvJzonAevRWLAkjCVGOdxOZGGuPpA5rfcAQWnvUboy54p2I5T8ptmTQ9G+SC0iI gIiICIiDVydplLHT2ZDpsbNk/wAFgwNR9LDVoZHcTw3bnHtOzta3SN3XMq48s42XJhHIPBuid/WF YY0MYGjsAAQfSIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICj5J/k2bx8rGbM7jE93gNEqw pHSXjZizPCzilic0s+sA/wAEFcdiL4idxxMdvtAX2gIiII2XZJYy2MjjdyjmMkjfFvCR8VZA0o8D fKOk89hryWwwdSW9wdxb+1WEBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBE RAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQF Cxb3s6TZOvw6ja2NzfSTvauqLO7ybpVWa0H/AEmJ5cfZ1pBaREQEREBeFer5eeFpPgEEfRt9J+IH cVaEtI8H72D9StKL0dYyVlrJN3u5LxEHu18n7FaQEREBERAREQEREBERAREQEREBERAREQEREBER AREQFgux9bTmZrZLDr165LOvCNoJ+Be9+HriU7lY3hf61RUbCNfXsXq8r9uM5kYPBp7FZQF8uPCC 7wX0tTKWmUsbPYkOmxt2T/BBo9HoQTdvNcXNuz9Y3fcNAfYrK0MLUbRxNeu3mGN7/Sd/at9AREQE REBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERA REQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBRc7IyrZo3D+EJhED7R0rSk9Iomvxv XO1qu8S8/RzQVgixVZRPWilHPjYHD3hZUBERAWhm53wYqd0OutLdRg95W+o2Zb5Xfo0g8teJBOQO 8N7QgoY6EQUIYw3RDQSB4nt/itlByCICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCM WeTdKzK5/KzCGMb6W7JVlRc9wVrFLIyHQrycP7XyVZB2Ag9UfpHLGasNKXsuyiHX8fsVhRrz2Wek VOk9u+rYbAPpB19qCvGwMja0f1QAvpEQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREB ERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQ EREBERAWnla/leKtV9b62Mt+sLcXhGwUGjhXtfioA3sjbwfVyW+o/Rtnk9KSq5xLo5Xk7PiSVYQE REA9ij1CbXSG1I+PlVaGRv8AEEbKqTyNhgfI86DASVoYGGWPH8cz+N8kjn8XiCeX8EFMIiICIiAi IgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCbn6kdvEytkG2xkS/sni+xbOOsC3j69kdksYd9 YWaaMTQyRH8F7S0+8KV0as9fjpIw0tFad8ABHc06CCwVFx0vlfSDIPcwg1SImuPeCAVYkPCxx8Ap PRkvmxrrUrOGWaR3F7iQP4ILCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICI iAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgI iICIiCJi2SQ9IMoHu+TI5jox6A3mraizmSPpXWAAEUlZ/Ef7WxpWggIiIJmfsthx3VuaXCxI2E6/ tHW1vVoRXrRwt7I2ho9wU67x2M5UgADoWBzpQe0HQ4VWCAiIgIiICIiAiIgIiICIiAiIgIiICIiA iIgIiICIiAiIgIiICi415h6Q5Ck1nDE1jJGnxLtkq0ot0yQdJqD2ACKVkgld6QBwoNvOSvhw1p8X 43qzwDxKy42Pq8dA3XCeAEj0kc1O6RmZ4pQwH5TrLC8f2N81aaABruCD1ERAREQEREBERAREQERE BERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERARE QEREBERAREQEREBERAREQEREBERAREQEREBERBFz0jq9rGysbtz7TY3EdzTvatBSOk7xBhJ7hGzV HWjXiFSrP62rFJ+UwH+CDKiLXvzGvQnlb+EyNxaPE65BBNw4bbyl/IseSx7hCGnsBYSCrQU7Aw9X iYXlnA+Yda9v9p3MqigIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIsNt8zKz3V4+t l18lu9c0GbaidKWTHHwS1+T47MTifBnEOL+CxVsjlKmXr0cm+Gbyvi6sxN4eDQ3zXzlp81HHYskV 46UQPFC9vE6Ro8Dvv8EGZ7jb6UVHxv4oYoHF49J0QrgUHguS14J8RFHA+1E1zpZRsNGuQ12rYwmS sXH2qlwDyim8Mkc0aa4kb5IK20UbJX7j8m3F458cdjquuc+VvEOHeuz1raxWQF6OVpIMteQxSlo5 cQ7UG+iIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiA iIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiDWyNYXcdPWcNtkYWk LBgrTbuHgmYdggtHuJH2LfcNghR+jXBBVnx7NbpylhHr+V9qCyovSPjnrwUYZeCaaZrh6Q0guH1K 0ojnNudLGxlp/wBBi42u7iXAgj+CCy1oaA0cgBrS+kRAREQEREBERAREQEREBERAREQEREBERARE QEREBERAREQYL0dmWnKynO2Cw4ajkcziDT4kd60aRyGMoSy5i6264O2HQ1+DQ9QKqrwgEaI2D3FB ycENY9LYLmNsuttn4/KeKXrBFy5aH9XmvvpG/HZas5htSw3KxcYYOsLDI4dm2/1gSF0kFOtWJNev FEXdvAwN2vH0qsk4nfWidKOx7mAuHvQTJc3WxGIpvyMsdeaWNreFxDRxaH1Day4y7jPJJrUN2tKA dzzMkBAPpK3rNGndAFqrDPrs6xgdr61hdiKIpy1YasMMUo+W1kYAPrCCTnHQR3454r7KFl0XD18k fExzN/gg71va+ehlCSlBkHPe6Rs9t0kb3f1mkDmr8tOtPE2OeCOVrOwPaCAsrGNY0NY0NA7ABoIP UREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBER AREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQCoWKhFPpBlGE/KtyCYD0Bo arpUOxG6LpjXsF2o31DEB3F3FtBac4NaXO5ADZUjo+2SQ27c2i6SdwjcO9nctnOXGUcTNK/k0jg5 f2uX2rJiavkWLr1t76tgGz3oNxERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREB ERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQ EREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQERYLduGlA6ad2mj6 z6B6UGdQ+kIe27iZWHTWWx1h/s8JW1jc7TyjnMhEscjefBNGWOI8QD3KXm8tUvRSUITKJeXBOYz1 QO/yuxBt5wmzcoUOHjink3KPAAbB+tWgNABc5k7dbCZODJW3WJhLEIY4YITIdjmXclXxWUiy1Xym GKeJvEW8M8RY7Y9B7kG6i1cjkK2LpSXLcgjhiHE4rLVsR26sVmIkxytD2kjuI2EGVERAREQEREBE RAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQE REBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERA REQEREBERAREQEREBERBqZK+MbTdZdXnnDSBwQM4nnfgF8ULkWXotsOqSxNLuUdmPhcCO/S3iFrX qTb1fqnPcwghzXtPNpHYUHO1H2X9M/8AxOBkEwrvFYQv4g+PY2T6dqOZLv3PPrCvD5h4iDcMx67X Fsnh148u1dhQw7q03lFu2+5OAWtke0Ahp7uS13dGg5xh8sf5Ae2nwDh7d9vb2oMd3G5K3fgkp3GV oY4RwPLA92/UfQtvB5F2QrziTm+tM6Fz9a4i3v0vq/iJLL2y1LslOVrQwuYA7bfDR5L4sUJ4McIq M5jmdK10kgaNu5ji2PSEHNdPcrjpYbeJtW44uqrOkdG52i5xbtmveul6MWYbfRrHyV5WyM6hjeJp 3zAAIWbJ4enlak8E8MfFPGWGQxguAI1sFZsdRixtCCnCBwQsDRoAb0O1BsoiICIiAiIgIiICIiAi IgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC IiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIm0BERAREQEREBERAREQEREBERAREQEREBER AREQEREBERAREQEREBERATSIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgI iICIiAiIgIiICIiAiIgIm0QEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQERE BERAREQEREGjmspFhsNbyM3NteMu14nuHvOgo3QvpY/pHh57N6FlWzVeWzRtB00a2Do8+Y+Cj/0n W57Qx3R6lXdanty9bJAx3CXRs5633bPf6FPwt+/jv6RBJkcO7EwZmIQiJ0okBewcjsAerXpQd67p Fh24oZU34hSceETbPCTvWvrXxe6T4PGSsiu5SvBI8Ahr389HsOu73r84gpyP6Rs6EPYfJoMobhOu XU64gPr+K3OkWWgm6RZmjI7FYgQQgGWei2Wa3tvYDseodqDqek3SCzj58H5vlidDftsje7QcHMPg ftWzjsjM7P5eKzlaktetwlsLAWvgGtnjJGv4rgaruLor0I+VvWQA/wDUVRZbFHpB06suptuiKJjj Xe3ia/5PYR4IO3odJsJlLTqtHJ17E47Y2P5+7x9y9vdJcJjbjad3J1oLDtaje8A8/Hw96/LoLsVn pH0WsMyOOke+cE16VQQ+Tgj8EkHn4a0t2jN0cqWOk8HSxkflclpxAkj3K6MgcPAdb+pB2nSfLy47 yZ8Wax2OjcC4utNLzL4AAHs8TtbuCvSTYQXr2Rp2d8T3TVjqJo32Anny8SuNy+SqVshiMdC2nja5 occd/JVRNI1vdGNnt9/eueotsT/0bZ5lR5niZkw6TqWcIdF8kuIb3Dv0g/V8d0iw+XmfDj8jBZkj /Cax2ymezVbo/h58naBdHEBpre1xJ0Gj1lcC+bC3ulnRn7lWQdbCSbJrR8PDHobD9AentXSf0k0L F/ohN5LGZHwSsmLGjmWtPPXu5oNNvS3pVUFe9k+jcbcdO5o/0eUvliDuwkd/1BU5s5cb0+pYdjme Rz0nTOBb8riB5c1ynSbpnHPiqlzo/wBJHw2SI4/N8cYJcSeZOxvYCqWzM/8ApMxxG+tOIk7fyjv7 UHUSdJsHBkfN0uVrNtb11RkG9+Hr9Cj5TpU7FdOIMfbswwY00nTSOkAB4gdDn9i4KGXAxdAMjQvx RfdAZ5Bwvj3OZOP5JB1vsVe3JRqdNcEekvUljMSBIbDQ5ok13779oP0WvmcbaxxyEF6B9RoJMweO Ees9yw43pFh8zK+LHZGCzIzm5rH8wPHS/Ocffr0MH0syNDHw3MWbbfJoZY+KE89F3DrsHI/UvnF2 I5P6RsC+LJ0rhfC8PFKsIWx7YTwHR+V70HbdDc3dzceTddcwmtekgj4W8PyQeW1atZbG0ZBHbyFa u8jYbLM1h146JXK/0bfic5/90m+Kq5vGZG7cbJTpYOZnCAXX4XPfv1juQWq9utchE1WeKeInQfE8 Obv1hSchkbJ6UUMPXkEUckMlmZ4AJLWloDR6y7t9C3MNWsVKDYrUNKGQOJLaTCyPXqPepEYkh/pF LbUgsOmoudVIbw9SwPbxNPjskHfoQeWM9m5TduY2jTloUZHMcJZXCWbg/CLdDQ1zHNXq1+G3i4sh DxOilhErABtxBG+zxXLUMnRxGCzNO5aiisQ2LJMTnAPdxuLm6Had7HYqvR97cT0axmPsn/TI6LXd QPw3cLRsAegkBBp/dBnoIK+TvY2rDj55GM6nrH+URBx0CRrW+Y2FazOTGJxzrAjM0xPBDCO2R57G rlMtdxeQip5rHZCSa86eMw0ZJ+IcWwC0xb01wG+YHLS38rF0g8/yXI8RBdqwRFtUOuiPgJHyn64T sns9XrQbLOkVk9BDnnwR+UisZREN8PF3Dt3rfpWXFP6WSWozlY8O2qW7d5M+Uyb1y5OGlEwk7ZP6 N2tzdB8dEMDeKCbic5hd+GeQ4dH4L7qV8Pj+lGNb0bsNd5Txm3HDYMjXM4dh7uZ571z9KDPg7/mz o1dzNuzbtSGaUBks7njYkc1rWAnTd8hyVC1kspQp0KrWQ2MrecQBIS2OPQ4nb0N6aOXpUGIgdDqz n/ihmAZN+HlB+3St9IJY6efwl6w8RV43yxvkcdNaXNHDs92yEGfDZe7PkbWKysEEV2sxsnFXcXRy MdsAjY2DsEaXuTyGWOSGOw9OB0jYhLLYt8QiaCSA0cI+U7l7lo0rta10zyOQhmjfTq0Y45J2uBZx cTnEb9A19a2c50jiqMgqUbFfy243ihdNIGsjZ+cd6B4d6DJjM3at4uzLJjybtSV0EteF4Ic8a5tJ 1yIIPNOj2auZaXIRXqUdOSnOIurZL1na0O5nQG+fctjBQ0atDyelbjtODi+aVrw4ve7mXHR7Sp/R r6b6Sf7+3/tMQfFvNdIQy3dqYyo2hULttsyvZNMG9rm6Gmjkdb7VYq5WpZFRokDJbcPXRRO5Et0N /Vtc10gt4LNY+4+xkpqk9MPjNV9jg25p2OKLengnXaOe0z8lq5gcTHBEY89KGvrBnyeqPD8snlyb oka9IQWMt0lrUsXNap8NyRlhtVrA7hb1rnBoBdrkASNlfGOymWZl24zM16jZJojLFJUe4t0CAWkO G98xzUS3YqfcDVhrsEdV0zILrngOdB8v744/2ge/u3tbGKjo0elteLFXn5Bs9Z3lD5LBsOiDdcOn kkgE75bQUTnsgOkdTHS4ryerZMgZNJKC93C3ew0dgPpKtW7Aq1JbBY+QRMLuFg246G9AeKiZf/W/ Af8A+/8A6FZlu1YZXRSzsY9sZlLXHmGDtd6kHPHP56ialzKY+nHRtzMi4IZXGaEvOml2xo89AgLY y2SzxzbcbhIce4tr9dI64Xgc3aAHCFp1snR6Q5KO9Zu14sfVfxVIXzNDpnj/AGjhvsHcD6195qp0 XyObkizbQ2ZkDS0zzGON7dk7b8obIKDbtWs5j8NHkb3kpmrPLrUNbiLHxb0SC4bBA5/WrEtyCCi+ 49/3lkfWFwG/k63v6ly+FmdJ0GyJmmkmqs8oZXlkO3PhGw077xrsKXsVeu9CoHR5O5WdHjgHQwhh Ep4Ow7aT6OSDqG3IH0W3Q77wYxKHEa+Tre/qUMZ23BgHZixEHPtyNFSrvWg46YCddp2CfDa0W4q7 R6EWny5S5bMmNAEMwYBF8jmBpoPo5lZ8+AeimNss/E1pq07yO5gI2fcDtBt0ctlocxDjM3XqMfaj c+CWq9xbtuttIcO3R3seCo5S5bp12upY912Vx0G9YGNby3txPYPUCotq3WyvS/DtoWI7IrMlmldE 4ODQWho2R4k/wXQRWoLdV8taVsrPlN4mnY2ORHuPJBOxOeNvos3N3IxD97fJIxhLg0NJ5A+5T4ek GbibUv5HH1Isbce1rRFM50sId+AXctEHY7Ozay9Ea8VzoNWrTN4o5o5GPHiC5wKjXq0u6eBh6Q+c CyxHw1o428cbGOBJlcCeQA12DuQXukWeyGIbx1sV10LSwSWJJg1o4nAch2uPP0KxYu1qjoWWJmxm d/BHxf1na7PXyUfpp/qzN/exf9xq++lroBgJI5WufLI5razWHTjNv5Gj4g8/cUFWK7WmtTVYpmum gAMjB2s32bWvlrtynXDqOPddldv5PWCNrQB2ucd8vUConRmK0/EXKflIrZpkxNyZzBJt558QHLbS NaV6tDagx7mXLYtzAHcrYhHserZQamJzUl7ozFmJq5D3xGQww7ceW+Q8TyU9mcz1Z9Ozk8fTip3J WRiOOVxmhLvweLY0fSAvvopYFToJUsmOSURQF5ZGNudok6A7ypd+zi7V7GZfGZJ9q3NZZwVX2Osa Gu5O1Hs8BA3zHYgsdIc/kcQ5prYrrYBJGx9iSUNaONwHyWjmTz9C6ALn+mv0AP8AeoP+61WprMNc xiaRrDK4MYHHXE49gHpQSH5fJ3spJUw9SB1etIGWbVmQhu+RLWADZIHedBZ8nenxuRpzOeHU7DxX kaR+LcT8lwPpPLXqXINo9H44Mwc1aMN+vZmkYX2Cx8YJ210Y338uYCqZiS3P/R1VddDvLZBX2CPl dYXt179oOnyGRrYur5TbeWR8bWbDSebiAOXrIXzlsjHisZPdlBcIm7DR2vPYGj0k6HvXM9OcPetY 91iHKXeEzQjyWNrCwfLb8ofJ3y7e3uWTP0J8dgom2slZyDPOFdz3zhm2t6xvL5LQNb0g3rOSytGr QqMjhsZW8SQJSWRxgDidvQ3obA9KzYbLXbF+1i8rXhiu1mtfuBxdHIx29OGxscwRpa+dmipdI8Ne svbFXb1sTpHHTWuc0cOz3b0Vio3a1rpfk8jDOx9OtSjikna4FnEC5xG+zkNfWg3cnkMsci3H4epA 54j6ySxbLhE0E6DRwjm7l7l843PWrmMtSSY9zr1KYwS14Xghzxrm1x1yIIPPsXznekUVJkNSnPXN 243cTpZA1jGd8jj4Dw71tYGGjVo+T0rkdpwcXzSteHOe93MuOj2lBg6O5q5l5MjFdpx1JaVjqTGy TrP6jXczoc+fcFp2s30hEdu/WxlVlCoXbZZke2aZre1w5aA7db7V9dFz/wCM9Jf/ALiP+0xaHSC7 g81jrcs2Smq2KfEzyV9jg29pOg6LenAnXaOYKDqK2VqWHV2CUNmswiaOJ3Jxby39W1qX89HHQkmx kRyEwnFdsce+HrCdHiOuQHefQofSN9m3hsTFWiLM9I1r64YeHqvk/fCeXJuiRr0hUcVlsRi+iEVs OEFau3gka4/KEgOnNP8AaLt/Wg+6GWy8Oaixmar1A+zE6SGWo5xb8nW2uDhvsPatR2V6VX8pkIsP DiPJac/Uh1t8oe48LSfwQR2nSzYOeG7fOTvXqpuztLIK0czXdRHvfD283HWyVFyNTolPFlL0j31M lDLI7ctgslZL3FjeLsPLWhz2g6SbIWsdl6MdxzDBeHVfIHKKYDege3TgD2+AVC7ka2OZC6y8tE8z YWaBO3OOgFzmafYl6NYN1jflklqqSD28ewXfw2sPTHCX7EtSeLL3+CS/DqBjWFsI3+EPk75dvMoO ly+QGLxktvg43N02Nn5TydNHvJCmXMnlKPkGLrNht5S21z3PmJZHG0c3Eho3oEgALVztKejjMdHY vWLzRk4XSSThvFri5D5IA0DruWbLTxY/pni71uRsNaStNB1rzpoeS1wBPYNgFBvYTKW7c9ujkoIo btQt4+oeXRva4bDhsb8eR8Fg6S53IYau+apivKIo2h0k0kwYxoJ1oDtcfRy9awYy9Vl6QZrJssRm nHHFGZw4Fm2gl3Ps5bCzdM3B3RG84HYMbSD/AMQQbeayz8XjmTRwiaxPIyKGMu4Q57uzZ7h3+5au Oy+SjzDcTmq9aOeaIy15Kr3Fjw0gOaQ4bBGwtvL42HJYpsctg1jEWzRzjX3pzeYdz5LncWyfJdM6 1vzqzKR0K0jJZ4YgyJrnlumt0Ts6BJ5+CCpL0gyMXSOnjpMUIKtqSRjZ5JgXu4Wk7DB2A+JKs+XV Re8hMzRZMfWCI9pbvW/rUXO/619HP72f/tlafTcPsGpVxgccz8p0BjdwubFrUhJ12EaHr0g6erdr XonSVZmysa4sLm9mwdEfWpV+9nJclJTxFKsGQNDpJ7rnta4nsawNHP0lYcdE670fofc7fbjq8bOE sfXErtjkWnZGiDvaZO5i7ssuHyWRnozQMa8yNseTdaCDstIPMdvJB5908rujjMg2kPK3zeTCAyfI 63j4fwtfg7570smOy+VZm24jM16jZZoTNDLUkcWkNIDmkOGweY596gGYHoJDXkLBj3XOoNngA1X4 yBJ2aB5D5Xp2tzFR0aXS+KHFXnZAT1neUuknM7og0jg+WSSASTy2g2Tkuld+9dGIhw/ktacwg2ny h5IA2fkgjvXTRdZ1TOu4es0OLg7N9+vQuDytToo+rk7/AFr6mUgkkcC6wWzRy93C3i7zrWhz2ukb fvuwEcMXVOzbqTZBDI7h+UQASfRtBgtdJns6U08RWriSGRzmWJ3djX8PEGN9Ohs+sLbr37EGfmxl tweyWPr6smtcgdOYfSDo78CuRk8/465goHYCDrWTyvBOQBM7yw8RJ4OXeV02VLndKcDwjTx15cAe xvAN/wAdIK01+tBdr0pHkTWQ4xt0efCATz961M1fmqxwVqYabdyURRF3MN73PI79AE69S53J9Hsi 7pRjC3P5Mh4nPWBsf3nkOQ+Rrn2c/BUrMD63SPAxTTyWOGOdvWya4nO4RzOgBvW+wIMlzKZU5TzP h46s1ivC2SxPbc5rRvYAAaO06J9C3sFlXZagZpYRDYikdDNGHcQa9p0dHvHepMVqvi+nWTfenjrs t1YXQvlcGtdwcQcATy2Nj619dGLUEVK7dllbHDeyMhgc48pASGt16yEGXKdIMhRy1Oq3FaqWLTa5 syygbJ2dtYOeuXaSFs5rK26tirQxsEU122XFnXvLWMa0bc46G/DkPFavSv8AH4P/AO5x/By2c/QZ L1GRbkm42xTJLLEgBZpw0WuBIBB5d4QeYjMXLE9uhkqscV+mA4iBxcyVjgdObvR7iNHwWPGZzI28 9LjruMbSYK4mj3MHvcC7XPQ0PVsrR6Kslt53JZTyx12F8ccDLJYGNkLSS7gA/qjeu/vW43/X9/8A 9tb/ANwoKzclSdJZjFhnHUG5wTrqxrez6Nd6y17MNuvHYgeHxSNDmOHePFcV0xAnzH+iRySMrxNO WETtcUHECGdnM9p14b8V0roLtt9axjMrHXo8DT1QrB/GO3k7fLY0g08l0hyFLM0qgxXDVs2hX8pl lGydE7awc9cjzJC28xkMjBYr0sVTZNZn4ndZMXNiiaO0uIG98+QC0elnK/0e/wDubf8AtvW9n89X wlZnG5jrNg8FeJzw3jd6SewDtJQYsRmbcs92lloIYLVENc98Dy6N7HAkOGxsdh5FeYnKZXL2G22U oK+JeD1bpXkzyjucGgaaD6TvS04KkUmCybIchDeylyFzppI5A4l3DoNAB5NHYFAiZhIMTi7mKtk5 svhi0LDnSvOwHse3f4IG+RHLSD9GXPY3pM/K9J7ONghApx1y+Ox3yODuF2u7QPL3LP0glvW8bYp4 URz2w5rJmmYRmNpGzz0dEj0d65/GS5ev01gr+Ya9ZjMe2IxsuhwjjD/wh8gbPo/igv1Jp7sOQxF+ aQWKx110LjG57HDbXAjmD3HXeCo2Myd+p0Vw2QNuSfinEEzZjxmQOkLQeI89jkqkYJ6b3y38AY+M P9ridr+G1DhIP9GVJgH32SdjYXfkPMvyXe489IO1u3YMdSlt2XFsMTeJ7gCdD1LM14e0Ob2OGwuU 6WYbI2Ojs7/PNt0kdYNfDBGwMmcO064SRvwBVrCY2zj6/wDpGUtXuNrdCwGDq9DsHC0fx8EFNERA REQEUbpTdsUcI51WQxTSyxwtkA5s43hpI9IBWrcsZE5aDAYq4IDFW66a1Mzrn63wtABI2SQTs+CD o0UjAZC1bZbq33RvtUZzDI+NvC140CHa3y2D2LXunpBZuWnQXK+Lp1tdW+WESmblsuJ4hwtHZ4oK 5oU3XRddVgNoN4BOYx1gHhxa3r0L2xRqW3xPs1oZ3Qu443SRhxY7xGxyPpCn4rNCz0aiy9/grt6o ySnsaAN/KHoOtrR6L5rI5bJZRl6MRRxOjdXj1pzWOaSOL0ntQXhRqC4bgqw+UlvCZurHHw+HFrev QvmahTnsMnmqQSzRjTJHxhzmj0EjYXKVLuaytyYRdK6VEmxIyGm6oyR/C1xG/wAME9ngtqOlWn/p KsWJ4mSTVsdCY3kc2kueCQgvNxGMZHFG3HVWsgfxxNELdRu7eJo1yPpCyx0akM8s8VWFk0+utkbG A5/tHWz71z7c1NFicn0jmeXQRh7asAOmlrToE+lzu/w0vGXc7irWOkyd2vagvyiJ8cdfqzA5w23R 2djY1zQW24XFMDeDGU28EnWN1A0af+UOXb6VL6R9G5czkcZarvrwupzcb5Xx8Ty38kDs5+lb+Zny UVWNmKgbJYmlEfHJzZC09ryN89DuWhRtZejnm4vIW4r7Zq7po5Y4eqcwggFpGyNHfagtWaFO7weV VILHVniZ1sYdwnxGxyKV6FOoZDWqwQ9a7ik6uMN4z4nQ5n1rmL+Q6SY/HOzVm1Vha2QaxroNktLt BvHxb4yOfIKxepZi1MJqWaFGIsH3p1RshB7zsn/80g3auOo0S81KdeuZDt5iia3iPiddq2dLlsNm blfHXsll7ptU4p+rhmZXDCWg8LnkDu4t8/AbV1mUqyZEUI3l8xi648I20NJ0CT6UHsWJxsNo2osf WjsO7ZmwtDz79bWU06rrbbZrRGwxpY2YsHGAe0B3br0LFkX32VT5thhksEgATvLWAd5Ohs+oKZ0Z y1y/iLdnJGMzV7M0TupaWt0xxHIdvcgqvxtF9ttx9Ou6y0aExiaXj/i1tJ8bRsyulsUq80jmdWXS RNcSzt4SSOz0Llm5nPjDM6SvsVTSdqQ0RCdiEnW+s3vi1z7NLp8hcdUxVi7HGZTFC6RrB2u0N6QZ Y6laGsK0VeJkAHD1TWAN14a7Fgiw2LgdE6LG1IzASYi2BoMZPaW8uW/Quer5bNVZcTZs5Gnehykg Ya8MPAY9tJ2x3ES4DXPaqVrctTpHNi55XSR2YzYrFx2Ro6ez1DYI9aCnWpVageKtaKDrHl7+rjDe Jx7SdDmfSs+lozZWGDM1cW5khlsxPkY4AcIDNb3z3vn4LVzlyZslPGVXmOxfkLesb2xxtG3uHp1o e9BYU+7iWWcnUyUczobFYOYHAbDmO1xNI9w5+hTJ7GXyGXs47F3oqUVCNnWSyQ9c6R7hsDtGgB3+ lb3R7JT5TGdZbY1lmGV8MwZ+DxNcQSPQe1BuS46jYssszU68s8f4Er4ml7fUdbC+DjYHZduTdxOn jhMMYJ5NaSCdDxOh9SiXp+kxgvZKOzXow1S8xVZoOLrWN/rOfxct67gs17pHMzDY6etDHHbyTWmN th2mRDh4nOcfBo+xBYZjqMdt1tlKu2y7k6ZsTQ8+t2trYIBBBG9qTStXG4KWyy5BmrAa50bqwaxj z3NGiR79qd5Zn8Zbxzsheq2RelEb6sdfgdFsE7a7iJIGuewg6SKvDBCIYYWRRtGgxjQGgeGljq4+ lR4/JKcFfrDt3VRhvEfE6HNasmex8Pl/XTGM49ofOHgghpGwR4g+jwW5WnbarR2GNe1sjQ4B7eE6 PiO5BEo9F5IcVexd2+LNSy57o2sh6t0XE4u7eI7IJHPl2KnUqyzYxtbKxxTuA4JNjibIByBIPj26 Uu5ks5Wz9GGRlOKhZndE0NLnyuAaTsnkB2dgVDJUsrZlY6hl20WBunNNVsvEfHZKDJPiKkuKmxkM Qq15WFhbXaGaB7dADS8mwOHtCLynF07BiYGMdNA15DR2DZHYpvRybLT38i25kG3asDxDE8QNjLnj m/sPYNge4rzJXspZ6RDD0LkWPDKwsGaSHrDLtxHC0Egctcz6QgsUsZQxrXChRr1A87cIImsBPp0F mjrQQvkfFDGx0ruKRzWgF51rZ8ToLm4clk8h0YfkYntF2jK/8XsR2QwkHl4OAPqKuwZCGxi2ZFmz E+HrQB261tB9S46jPZZamp15J4/wJXRNL2+o62FlNaA2BZMMZmDeAScI4uHe9b7dehYKGRiyGLhy DA5kU0QlAfrYBG+ag+erNXo7a6QyuMj7JAq13HTGgu4Yx6ySCT6UHRsp1ouu6uvEzrzxS8LAOsOt bd4nXivmpj6VBpbTqQVmuOyIYwwE+nQUOG1msVlaEGVvQXIcgXR/Ig6oxSBpcAOZ2DojmqOZlyjY 4IMVGzrZ5OF88g4mwN1suI2NnuA9KDffXhfNHM+JjpY99W8tBczfI6PdtazsXWkyMlyVvWvlhEBY /m3g2SRr07U3G3cnVzk2JydmK40VhYjsMi6sgb0WuGyPSCtfF5q5mMnHMMjSp1HOJhpkB09hg2OM 7PyQSNjQKCmOjHR9pBGCxoIOwRUj/kty1j6V5jWW6cFhrDtrZYw8A+I2FOyIzlnIGvQsRUKscYe6 y+ISmRxP4IGxoAd/pWti+ku8Eb2U0BFZdXdPCw9W/TuEP9DSg38vQmyFaPHw8EdWQgWHb0eAc+Fo 9PZvuG1Sa1rGhrRoAaAHgtSPJ1pslJj43l80UYkk0PktB7AT4nwWDMyZUNrwYqNgknk4ZLEg4mwM 0SXcO+Z7telBRexskbmPbxNcCCD3hTsPQnx9N+Pmc2atEeGBx5kx9zXD0dm+8ALSxmQyUWTvYy5P HkX1oWysmiiEZJO/kOGyN8t+9ac97pHjYKuRvXKh8omYx2ObBotDna01/FsuAO+zuKDo62Pp0mPZ SqwVQ87d1MbWbPjyHavjGY2viqDKVcExt2SXcy4kkkn0kk/WtC8M9dyT69CePHVYo2u8okhErpXH uA2AAPtX30bydnKY177jY/KIJ5IHui/AeWOI4h69diCpDXhrRCKCJkUbexjGhoHuC+YKdaq6R1ev FCZDxPMbA0uPiddpXOPvZ7Iy5CzjbdavBQldFHBJDxmctHyuJ2xwgnkNBZJs1JJicb0krveytIGe UQOO28DyAT62kjn4bQdDNBDZjMU8TJWEglr2hw5HY5FeSVoJpI5JYY3viPFG5zQSw61sHu5LBlcl FicbLemY98cQGwzWzsgePpTJ32YzFz3ntLmwxlwaO0nuHvKDYbWgZYdYbDG2Z7Q10gaOJwHYCe3S yEAjRXN2LeUx2JpQ9ex2UyU4YXyDiZESC52hvsaByG1kxt7JVM+cLlLMdwyV/KIJ2RdWSA4BzSNk ctjmEFyGCGtC2GCJkUbBprGNDWj1ALFFjqMFl9mGnXjnk/DlZE1r3es62VoZV+amvwUsYWVYnRl8 1ySPrOHRADA3Y5nmdnwWnRy2Y8jytd8Md6/j5OrjdGOBsxLQRsb5Eb56KDoJq8NmPq54WSs2HcL2 hw2DsHR8CsFvHw3J6ssxcfJZOsY0HkXaIBPq2VEjtZvGZbH17+QrXRecWuhjg6t0Wm74geI7aOzn 4rJlYMzTitX3dJWV6sQc/hNFjuFo563xc0FqXH0rE8dienBLNF+LkfGHOb6iRsLUvUJshkqvWBgp 1nCbW9mSQb4RrwHb9S18TlJ4MfjIszIfLbwOnCPhbvWw065A6+BXxk+k0UGJu2qDeulrzCsziBDH SkhoG+8Akb0gvaWtkaEOToTUrAJimYWnXaPSPSosNnNYvK0q+TvQXYb5cwFkHVGJ4bxaHM7B0e3m vuo7r7eS6O5MeUxhgkjdJz62F+xo+kEEerSClUqyy4xtXKxw2HAcD9gObIByBII7xo6SxiakuKlx kUYq15WFhbA0M0D26AGlx9KaXE9CsfcpyOi8nvdX1YPyHMdMWlpHqPIrtMnfjxeMs35mudHWjMjm s1xEAb5elBhnwWJtiPyvF07BiYGMM0DXlrR2AEhZqWMx+NDm0aNaqH83CCJrOL16C+xOH0xZaDox 8YB7da2uWr5XIQ9HKE8U3XZHMWA1jpiXMi4tnkPBrR2eKDrIq0EL5XwwxxuldxyOa0AvOtbPidAD Z8Fikx1Ga0y3LTryWGfgSuiaXt9R7VKx9rKUs4MVk7UV1s0BmhnZD1RBBALSNkd4O1s5Y5iazBVx j460bw50tuSPrODXY0N2OZ8T4IKJrQGx5R1MfXhvCJOEcXDvet+HoWCXE42eKWKbH1pI5n8crXwt Ie78ojXM+kqXg8nkbPnOpO6C5PQk4I54x1bJiWg6PbognR0vMNkcxNnrtDK+StMMMcrG1g7TeIu5 EnmezwCDfr9H8LUnbYrYehBMw7bJHWY1zfUQNrYmx1GeyyzNTryTx/gSviaXt9R1sLmsNBTr9J+k 2Vlib10EzR1veGdUwkerksrstfp9HG5R7g+5kpWMrxP/ABcXG7TBr0A7PiUFWxjpLubr2bHD5PSB fA0HZdIQQXH1AkD1lU9LnqlvK43O1sblLkV2O7G90UrIOqLHt0S0jZBBB/gt7MPyxdXrYpscbpnk S2ZG8TYWgb3w7GyToINnJ0I8nj5qcji0SDk4drSDsEeogFfMFZ9vGsr5avBM8jhlYQHsdrlvRHf2 69KlUMnlIZ8nSsPjyU1KJr45IY+rLyQfkEbIB5fxWtNc6R4kUb1+5VnjszxxS02V+Ax8Z0OF/ESS D4juKC7ZxNSxjHY1sYgrOABZCA0a3vQAGtFbMleGaAwSwskiI0WPaHNI9RUHpPks5jYTYpMpsqRu jD3ylzpHcTgCA3sHb2klV72Sr45sDrJc1s8oiDg3bQ49mz3AoNmSGOaJ0MsbXxvHC5jgC0jwI8F5 BXhrRNirxMijb2MjaGtHuCwV8lXtXrNOFxdJV0JSGnhBI2Bvx13LHlZMoyuPNcdZ0pPyn2XENYNd ugNn1bCDbfXhlljlkhjfJESY3OaCWEjR0e7kvBWgFl1kQRidzQwy8A4y0dg3269Ck4G7fzXRWvaf OyG5PGfvjY9tadkbDdqbkW9I8dJUjb0iZPNanbGyLyFjdjtcd77AASg6mGtBX4+phjj6xxe/gaG8 Tj2k+J9Kx2qFK8Gi5UgsBh20TRh+j4jYUWe1mcrmLlPF3YKMNANa574OtdLI4b12jQA19a13Zm7N 0bjzjvvc9CRwtwsJ4HhruF/L1DYQdQYmGPqiwFmtcJHLXhpYamPp0GFlOpBWa47LYYwwE+OgFju5 KGliJsm4OkhihMxDNbLQN8vcvtt6E40X3bZF1XWni7Q3W+fuQJMdRmtMtS068liPkyZ0QL2+o9oX wzGwMy0uT2508kTYuZ5NaCToeslQvO2Qg6PMyYIdcycrG1opSeCIPOmDXoHM+K2KtrL43N1cfk7k N2K7G8xSsg6p0b26JbrZBBB/gguyQQySRySRMe+Mkxuc0EtJGtg93JT62OlfmZspcLS8N6mtG07D I97JJ8XH4Be5d2Vc6tWxfVxda49bZkZxiFoHc3Y2StPBZK/JksjjL00Vs0gwi1FHwB3ECeEjZAcN d3iEF7Sn5nHPv14n13iO3WkEsD3fg8Q7j6CCR71zmFuZrLvim+6ulGZHl5oiox0gYHHlvj3zA7dK zkKWbMs1mHpCypXaC4Rmk1/AAOfyi7mgozUq2RrxtyNKCbWncErBI1rvRsL5t4ytc8lbICGVZRKy NvJuwOWx6O1ScNmZq+EqWs3Z6x1ybgilEIYAHHTOIDkN8vrVWtk6tq/ZpQOc+WpoSkD5LSRvW+ze u70oNmWvDOWGaFkhjcHsL2g8Lh2EeB9K8s1K1yLqbUEc8ZIJZKwObsHYOj6VzkfSK5b6Y1qdZrRi 3NlYZCOcsjACSP7I3rfedryzkcvezGSrU79bGxY1rTqaHrHTbbxcR24ab3bHgUHTtY1jQxjQ1oGg ANABfPUQ9f5R1TOuLeDrOEcXDvet9ut9y08HkJMphKl6WMRSTxhzmjs36PQe1c35xzGRzV+GHpRS xccVowV68tZkj5AGtJI28E8ye5B1zKlaJ0ro68THTnilLWAGQ61t3jy8V9wQQ1oWwwRMiiYNNYxo a0D0AKNdtWcTlMfLPYdLXtkVpuWmtk18l4Hds8tekLeyuVhxMUEkzJHiewyBoZrk550CdnsQbUte Cd0bpoY5DE7jjL2gljuzY8DzPNYbuLx+S4PLqFa3wfg9fC1/D6thYM7kXYrFS2WAOlJDImnve4hr R9ZU25Pk6suOwdK2PK7LHyTW529ZwNbouIbsdpIAHcEFenh8Xjnuko46pUe8cLnQQtYSPAkDsWRl ClFbdbjqQMsPGnTNjAeR6Tram4W7fOQu4rJSxzzVQx7Z44+ASMcDrbdnRBBHJMiM5ZyDoKNiLH1Y ow42HwiUyOJ/BAJAAA7/AEoN+njoac9qZjnuktSdZI5x9AAA9AAWYwRCc2BCwz8PBx8I4teG+3W1 z1LN5e/0cM9atFNe8pdWEjQeqIDy3rdb3w6G9bX3UuZeh0jgxWRtxZCO1A+VkjIOqdEWkbBAJBB3 2oNmrirra12w6xFDkrx4nSBnWNiAGmtA2OIAermSsFPot1GMx2OsXjNDSf1jmtiDBK8OLgTzOgCe z1LFayudrdJ8dVnjpxUbk0kbWsLnyENY4gk8gN6HID3qzJk6sOTjx0ryyeWMyR7GmuA7QD2bG+xB uAL1c9lOkPWdGLGRxM3C4SCKKZ8fyd8YaXAHtHpTCnImSSzY6UVMvWjaQ+OvVYzTu3m5rz4Hkg6F CuNjzedfhWdJ/KK/kL9SeQ9T8oQk63x73xa59mlXtW58fnajzKX0ch96LXf7KQDbSPQQCNeOkFra 9XIUsZXgznSSvT4qfHHFJxwnhIeQ4l31q10ZyE2V6NY+9Y1108LXPI7Ce8oNDphEWQ0bxleWV7cX FAddXJxPA24dux2jmsWRtQYHpictfeYaVmkIDOQS1j2vJ04js2HfwXQX6FfJUpKlpnFFINEA6PoI PiFlghMMDIjI+TgAHG8guPpPpQc3hb1eszK5ywXx1LtxvUucwgubwtYDrW9ErHnr/R+1Zlx/Sel1 XUO/0Z0jXOEwIHNhA7e7XaultUoLrI2WGcbY5GyAE8uIHY/is+kHGsxfSDJ9GsXE2Sux0Ty+WK8x x6xoP3sODSDyGiQfALzo2M6OmGY8sfj3NAi6/qWPBJ4Dw8OzyHjtdlpe69KD87y7+j1nE26cGIZW z7y7qoGQkziXi+S8P1vW9HfYrdFsv3bXWSHcvmmAOP8Aa4n7/iuo0pjsFEekPnplyzHKYmwvhYW9 W9oJI2OHfa49hQQYqU2R/ovkpV2bsdS9nAO0va47HrJCWMvU6SWMRSxz3STQWmTWW8Dh1AYCSHbH I70NLoqWNNC/ZfBIBVsu6wwkfgSHtIPge3XiqGkELLdLMbisZauveXCtN5OW6I3JoaG/DmOandGc zhrNtz/PFe/mbg29rCdAAEhjOXJo/wA101SjXoxujrs4A+R0jueyXE7JK2NIOAzV3D5Vjp2UpK/S lgDYIgxxmY8HQ560W9++zRXR9Ib9iph4q0R/0++W14QPynfhO9QGz7lc16V5pBIuuo9HujRilYHQ RRCFsXfKTyDQO8kn+Kh9FKc2KktYbIPMN23GJop4z8os0BwAnfNnZ/Fdnpe6QaeOoSUIXRvvWbnE d8dgtLh6BoBRuhQDsdkQRsHJ2tg/3hXSppBwGUxlGRs/R/EXcjPI6QNdTa4mCrtwcS465ADsBPhy XT5a69tK5j8e4uyMVTrGNA565gEenkVY0sDKUEdyW21n36ZrWudvuHYP4oODqMwTLeOPRmF4ywmY LPDG4ODD+M63Y5fz0uhyTTL04w7GA7irzvkI7mnhA+s/BdDpaNLHOhyFm/YkEk8+mtLRoMjB5NHx J8UHMXehjH9KqMjJsoaxhm62Xy6TbHEt4QDxbAPPkPBb1mq2h0vwLeJ7oRVngY6V5e4u00jbjzJI B7fBdRpaOVxvnGs1rH9XPE8SwS63wPHYfV3EelBDfk6nRzpLk5cpIYIbwjfBK5hLXFreEt2B29nL 0rN0estoYo2rrXwecb73RMe08Xy3EtBHdsBdEwO4G8euLXytdm1hsUoLUsEkzON1d/WR7PIO0RvX vKDjsv0pw2QzMuKvZSCpQqP4bDHkh1h4P4HZyYO/xWxnzjL8+Fzj2MuYiAyCRzWFzGggAPI12Ahd hpe6Qcbh52MyOYyuApddjjXYY4om9W2eYb2WcvDQ3rmtcz4W9m6VzAQlmXfYabYbG4ObGfwxJsa+ vvXdaTSDhOkzTk875XTqCxBhwDe1vdgbDuqA7y0Di5+gLpWV25aWtlamXttrva17IYnt6t47eY4d 8/Wq2k0gg576ZwP+9u/7blt9Icm/F4iWaBvWWZNRVo/ypHHTR9fwVLSEIJdSOv0a6OjymXUVWIvn l1sk9rnfXsrns47FTdIjJ0njBxZrMNF0rHdXxknj2R/W/B7V112jXyNV9W0zrIX64m70CAd6PoWc DQ0OWuzSDm+jj3Q9Grb5GvZSjdKaolBDuoA5bB567db7tLBSwLMn0Mx7JpbkckdQljYLD4t7GwCG kb7u1Xctj35OsKhl6uu9w8oAHyns/JB7t/BbrGNYwMaAGtGgB4IOVwPRo43owD1l1tuSiWPimsvc xji3sDSdDn4LFZqy5H+jSoyrGZJIooJBG3mSY3NcQPT8krsNLQxuNfjZbEccoNSR/HFERziJO3AH wJ567tlBCkytPpLmsOzGSmYU5nT2HBhAi0wgNOxyJJ7Fu5nphjcViJL4k4/v7q0YcC0GUHRBPgO8 +hXyOSwU6cFCuIKzOCMEu14kkkk+skoOa6OZHCW/KIa+Ygv5e4wunewnZ0OxvLk0dwUBsOHh6MDC sx/B0hjIDGNgPXdaHcpA7X4PfvetL9L2mkHM52/iAW47pPUaKnVtfHPKC6N7+YLeQ5EevntaVG22 h0OtNtwySVZp3w4+vMCHyRuOmN0eevX3Ls9Ig47otSloQXOj96d8OReBN5VE75UrDoAgu3zb+D7g qV+VuBoRw3vK8lSne5lmxMQ4wtI7SGt5t3y96vgbTSDkOjnkcOTvS9HIOLE+TBwazbY3z7PJpI8O 3S0b9zD5SxDbxtV8PSUyR7jEbhJHzAcH8tcIaCNld9peFByfSnpTUo3IsKchHRlmaHz2ZDrqo/7P i4/wW/isz0ehxMLcZajkqRyNrtMYJ+W7sB9JJ7VdWC1Rr3HQunZx9RIJGAnkHAEA69G0HLZ6HHUr tqOtcvtu3Wl7qFQnhmcRriPyfk9nMghZMhj3Yj+jYY2Q8UsdZkPL8skDl711gWhexz792s6aUeSV 3dZ1IHN8g/BJPgO3XjpBE6X9GjlMRLLE+6+2I2NbFFZe1jtEb+QDontXzncLFiuiV5tea1K0lkkn lNh8pAa4E6LidDS6xfE0Uc8L4ZWB8cgLXNPYQe0IIXSc9WMXlOF74KVoSyljS4hhY5vFodw2CtWn dr5rpa3L0XmWhSovjdOGnhc9zgdA656De7xV3FUZMdSbTfP10cRLYXEfKDO4E95HZtbU8DLNeSCT ZZI0tcAdHR7eaDmc/wBNKFLH0zWuRQy5JnFBPMCGRs73kejwX1icziK+GsjAzeeJ6w62Zsbvvkri ebiddp58vQujggiq144IGBkcTQxjW9gAGgFl0g4evJhrXSOna6NR6tvmJvujY5oEZBJEmxoHevSr Gcc3J5ajgm/KYT5TbA7BG0/JB9p2vqKv6TSDnel58rpwYitry+5IPJ3d8PCQTL/wqS6N8/Qh+Pr1 /wDTcVPGbFdnNznMeHlwHaeIbI9a7he6Qco7L0+kebxbcXI6dtSV01h4Y4CL5BAadjtJPYtonren 56s/iMbqTX9qQ8PwK6AjSmVcO6KC46W08XLriZbEIDXN5aaG73oAdm/Sg5V8gZ/Rm5nA15mtGIF3 PhLpyA4ekb36wqnSbosbvR2djbOQs24qjo4w2y5olOjriaCA4k+IVGt0XpV6NSk+axPDUlMrRK4f LfxcQc7QG9HmrPag5qHowyt0fnghyGRhlmgAc51l0hYQOwcRIHhyU973Hox0cyrK5MVGVkkzIWl3 CzhLS4Dt5b2u0I2OfNamOxsOLhdBXdJ1JeXNjcdiPfaG+jfd6UESpkaud6UQ38dIZ6dOq9j52tIb xuI+SCRzIA7lkyucxM9KDzhX63D3YyXWXNJYCDya4AbG9dp8F0EkYlidG7fC8Fp0dcivmtWiqVo6 8DAyKJoa1o7gEHOdDmMZLkRjmPZhuNvkYcCG718ss3z4d/atily6d5T/AHOD4vV/S90g4xsb5j00 jjBL3P0APHqGrYzEb7XRDGW60bpG1ZK1ksYNksaQTod5A5+5V6mCip5i7kY7dl3lpDpa7i0x7DQ3 YHDvsHismKxrsWyWsyXiqB5dAwjnEDzLd94B7EESPI1OkXSnG2MZL19ehHK6aUNIa1zgGhuyO3t5 ehbeR6QUH4+GWas+xirRfFPPwnhiA2PlDW9EgjavOYHsLTvThrkViqVIKNWOrWYI4ohwtaO5By/R yXH0rWSs4kdVgWQteHNa4R9YNl5Zvu1rs71pUOluAy+TZk8lla8YjdqlUc4kx75cbuX4R/gCu80m kEDpmd9GJiO+WL/uNX30qswswrqbohNPdIgrwntc89h9Q7d+hXNJpByfRms+LHW+j9izJBkoHl01 iE6fMHHYlBIPb2ejS6CtUfSouhfbntkAnrJyC4/UAtvS9PNBA6D/AOp+P9l3/UV5jQMt0lt5Vx4o aW6lbw3/ALRw9+h7iug0mkHKNytPo30gyxyshrx3XslryFhLZNMDS0EDtBHZ6V8QNfU6AZOxbhdF 17bE3VvGnAPLi0EeOiOS67Sn5LHOyZghfIBVa/jmZrZk1otbvw3zPqQc/lujT8j0MYHPuG5FjurZ FDYexr3cHYWg6PPlzX27o35D0MvR15brrM+PLCyey+QNdwdgBJ1z8F1mkI2NHmg5bIk2OiWJvVo3 yx1n17BbGOJxY3W9Dv0Nn3IzJ1OkfSbGy4uQ2IKLZXzTBhDWlwDQ3ZHb28lbxeOdjGS1myNdW4y6 BmucYPMt9W+xbzm8TS0947kEDJ53Gy4+J9muZ8TbL4p5i0lsejr5Q1vRII2tDos2Jl/JHCRE4QxM NdvNrHTc+PgJHZrh59i6inTgoVI6tZnVxRjTWrOg/OrpwNulXqYfFsp51s0bmwxwlssDg8cRc7X4 Ot8zyK6XpK593yTBRPLXX3/fi08xC3m/6+Q96v6XukEHpTLBDgjjhXE8twCvWr+LiOR9Ab279Ck4 eC/Fgb3RytNFWzUB3JYkBIlDz+NHeSRseghdppeaQcCaXSSj0gwVXjw7eqjlbEI4pQ3hAHFvbt70 vck3DPzuS+6+Lb+MNx5exxaYuEcma/rcXF6exd9pNIIWBvSV8PjK+SMjLVkObG17flEDZG/A8ICg ZSXoy+HJVr2Gjr5aVzwyPqC+WZ39V7Ha2d8jy7F2slKCW3DbezilgDhGSfwd9vJZtIOSzkVn7mMJ UsHd19uq07PPia4Od9QBXz0u6KjIPgs15MhJLJdhdIxlp4YxgI4nBu9N0OewugkxxsZiK7PIHR12 nyeMD8Fx5OcT465D3qhpByeexceKw1JsMlmaGHJQSyGxM6V2uMDe3E8gSCtjOzsxfSLG5iyHNpMh lgllDS4RF3CQTru5a36Vdu04b9OWpYbxRSt4XBfNCGxBSjhtTCaVg4esDdcQB5Ejx1pBAxmRrz5T LdIGud5ubDHGyYsIEnDsuI5bIG9bXueyWDmf5F0iqNFFzWywTzBxZI4jRHIcnDfZvvXQW6cN6q+t YbxxSaDm71sb7FmDQAAOQHIIORxeYb0d6IWL98TNpxTvbTbKCHmIu1GOfMejfcvOjWdw1q/102Zr Wsvd+TwRE6jb2iNnLsHj3ldfpe6Qc7nml3Sjo5runmP/ALZWv0zrSZhsGGoNb5eSZhMSR1DANE7H P5W+H3ldUF8SzMhA43a32ckHOtsUbXRSJj8S2avA5kNmnrfU8J0eWueu3XeFp46DGWOltW30egiZ VZXkZcfBHwRu2RwNI1ouB2usZahkcGtfsns5L1szQ2R8j2hrXEbCDiMrhaj4p8Hirt+Vz5ADTa49 TX2dkk8OwNHetq70khL24iCMjj8viLfHTQSf4Ky+1CwNJf8AhDY5d3itdtHr8m2/LKJGxs4a7AOT d/hOPiT2IJdB3B0rzziN6igOv+Fy+eg0R+5mC11jyLe5mw/1IQSTwNHgPWtpnRuFkuRkdfuPfkdC RzntBa0b01pDRoaJCp1asNKrFVrxiOGFoYxo7AB2BBmREQEREBERAREQNIiICIiAiIgIiICIiAiI gJrSIgIiIGkREBERAREQEREBERAREQeELlOnnSDI4elVrYbRyNyUiMFod8lo246K6w9i/Mrc2ez3 9Idu7goaczMRH5O3yvi4OJ2+IjRHPt+pB1dTpdTHQ2t0hucfVOY3rerZxFrt8J5etbs3SHHwX6FJ z3umvsL4Q1uxwgbJJ7hpcP0SqWg3P9C8xHGySRrpo2x7LAHjnw77gdH60/o/beyeWnvW4j1mHqCj EHd7wTs/BB0w/pC6OuuCt5VKA6TqxOYXCIu32cWtLFZydtv9IfkHlUjaZxjpSxutB2z8r16X55n8 tbymCm853cm7IxWx11PqQ2vC3j0Cfk736drs5jxf0jMcOYODOj7yg38P0mxmM6JV79zL2Lsckr2M mmiIkkdxEcIaN9mtKrhelOKzombTle2SvzlimYWPYPEg9y/PsdlMniv6NsXJSfLBA+7I23Yhj43x R9Y7ZA+1ZcAw3+lOejq2b05tYvUM15vDJJsaB7By32ckHXVv6QujdrJtoR3Txvf1bJDGRG53gHdi kdJOkNavmbUbOk96q6INY6OtTEsUHLmXnXafHY0p+EzOP8zYvovZ6P2bmSqSBsld0XCIiCfvhdrs 79rB0ky9+xkc3jsnbydXgYRRqU4RwTM4fwnHhOx48wg7m70lxGCw1W3cvmSKVjRC8DifNy7QB277 VmwXSXF9I4Hy42cv6s8MjHNLXsPpBX57AX0Md0O6QS1pbGPpV3MnMbOIxEggOI9av9Enuy/TPLdI ataWHHWIY4o3SM4OucNbcB9qCl0v6R3MTJRxmKijkyWRk4IjLvgjA7XEd6w4ybplj8zBVzDa+SpW Ad2a0fAYD6R3j3LW6c1LlbL4bpFWqyWosbIeviiG38BHaB36UOHINzvTrHXOj0uXlrmYvvCQvELB rkNdg7+SDoejOcmdf6TPyd0+TULhawyHlEwA8gt3E9O+j+avto1LTxM/fViWMsEnsk9q43zdbyeO 6cVacZkmdfDgwdrwDsgesBZ58lF0tynR2ph6FmOXGTNfZe+EsEDQAC0n7EG7U6d18R0iz9fNXpnR xWw2vG1hd1bNc+wchvS6e70twtDG1shLb44bfzcRNL3S+oDmuIhz9PB5vpe27WsSC1Z4I3MhLmud wn5JPidr4jmznRnoVgq8ps0Kssrzdnij4pIGE7aNEfJJ34IOstdK6eV6K5W3iLEjJ6kLuJrmlj4n a2Ngrf6I2rF7onjLVmUyzS12ue93a4+K/O8Y9r5OmZZNcmElBjo5LreGWQad8ojQ5cx3eC7/AKDj XQnEePkrPgg2pukuArTPhmzmOilYS17H242uaR3EE8iqEM0ViFk0MrJYpAHMewhzXA9hB7wuAynR jPWMpamh6PdGpopJXOZJPHIXuBPIu07tXb4qCWtiasE0UMMscTWvjgB6tpA5hu+ekE2nNNd6XZBs k0ghoRxsjhadNLngkuPiewLdzD8p1EcWKbG2aWQNdNI3ibC3tLuHY34aUfB1HMyfSDGGzOT1kbxa Lh12nN8da5a0OS27hHR/Ghlk3cnUmkLbEs7usdEwjW9Nbzb/ADQfGHvZKPPWcPeuRZARQNmFiOIR uYSSOB4BI3y2PepMN3NZTI2GQ9MKePcbMkcFN1SOSQtadbG3An6ln6NNpHpDNJ0djLMMaw60tY5s bpuLlw779b3r0KbmpsFZxV6gzDtrZ6Qv6mBkBMvW7+S9r+Hs3o72g6MTWKnTOKoJ3yQXKjpXMcdh r2OA23w2D2ehUruSjo2acD2Pc63L1TC3WgeEnZ+pQ7sMtnpNgqcsr4poKz55JoyA9xHCCzf5JJ5+ pYc50Pgt5ajYj8vcH2i6wW3JAGNLTzA4vk89diCp0ru2KeGHkspilsWIoBI3tYHvDSR6dFV4IhBA yJrnODAAC4kk+srlukONixNTFTQzWHw1LsTepmlMjX8bwOJxdzJG9g7V1+Kc/Ji95yvNAIPk7ZB1 R5d44d/xQMzJlBWjixLI+vlkDDLIOJsLe9xGxvXgpuLu5Svn5cReuxZICv14mjhETozvXC4Akc+0 dioZvI+bajZZaclis9/BYLAXGNhHNxAGyFz/AEeGOPSGSXozDw4s1j5QWMc2J8uxw63363vXoQfW RyHSXG0DmbN2rEBIAMYYAS4F2g0P4tl5B7hr0KlJPNW6XVImySdVfrvdJE522tczh0R4HR0Vz2av YrKxufHQkg6Ut02GNsTutjeDoHi1ot799mlZzMMlzpBgqb5XwSBskz5oSA/5LRtoPPkSefqQWMhl YsdNSikje43JxAwt1yJBOz6OS0+ll+fHdH5pazzHLJJHC147W8bw3Y9I2pHSLohFdydCzCL0nHdD rBbbkAYzhOyBxabz12L3pPiosThqU1eaxJFTuROME8rpWycUjQS4uJPLexz5aQdXXhFatHCHPcGN DeJ54nH0krmpM9ZyGZdBWytLGVIJ+pBmDXS23t/CawFw0B2b0T2qzPinWMgy4MleiDNfeI5AIjrx Gt8/WuMZFhcRBl8bmKHHfs2JXwE1y91gPO2cB12jeuXYQg6fI2JqfSjF9VK8xXeOKWIn5PyWlwcB 3Hl/FbtvO4fHz9Rdy1KtMAD1c1hjHaPoJ2udyFWzLW6L4yzI+Gy6QGSdh++RlkZJDT3E9hPrWPpP 0fzF/MGelhsFci6tretvNeZCQOYOnAaQdfTvVMhB19K1DahJIEkMge3Y7tjks5UbotRt47DNgu06 VSYPcerogiPR7+ZJ2vi50Vgu5luUdksnFI0tIhislsXLu4ddhQSM7D0ypi7kIukVGvRi4pGMdVDn NYOwb1zK3uimVyL+h8eW6Qzt43sdMXcAZwx92wPRz960Om80uWyON6KVif8ATZBLbI7oW8yPeR/B bnTPDZjJ4mtj8KKwhbIDNHMSGvY3sby7t/BBodDOlWVz/SXJw3GdTUZEyWrCWAODHHkSe3mNFduv zTot90bf6Scg23Bj2O6iMWxCHcLWAfJ4Nnt7N72v0sICIiAiIgJpEQEREBERAREQEREBERAREQER EDSIiAmkRAREQEREALHLEXyxOHYwkn6lkB0vdoNVtZ7WsHL5MpefVzXprvLXDlzl4+3u2tnabVo1 5I5WzmWNrXcTeEhx1pZK0RhgbGTsjt0sm036FKPEREBERAREQEREBERAREQEREBERAREQEREBERA REQEREBERAREQEREBERAREQEREBeaXqIGk0iIPNJpeog80ml6iCR5gB6U+fDaeCIOpEDWhrT6XHt d6B3Ktpeog80vdIiAV5rmvUQeaTS9RB5pNL1EHmk0vUQEREGkcZXGV85ML45yzgk4XabIB2cQ9Hi t0oiDzSaXqINKLF14snLkflvsSMDA57thjO3haO4b5rdREGtkKFfJ0pKlpnHFJ2jeiCOYIPcQee1 mgi6mFkfG+TgAHE87cfSfSvtEHhCaXqIPNLUbjIBlHZFzpHzlnA3idtsbe8NHds81uIgLXu0q+Rp y1LTOOGUac3ev/wrYRBjrw+TwRw9Y+TgaG8Tztx9ZX3peog03YyCTKMyMnG+aNhZGHH5MYPaQPE+ K3ERAREQeL0oiDzS9REBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQ EREH/9k= ------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Modelo multicritério de apoio à definição do nível alvo= da maturidade da ouvidoria de uma instituição de ensino

pública federal= Luciane Fatima Al= ves; Carlos Henrique Zanelato Pantaleão

 

IS= SN 2237-4558    Navus    Florianópolis    SC    v. 13 • p. 01-23 • jan./dez. 2023

1

 

------=_NextPart_01DA3A6F.AC859F30 Content-Location: file:///C:/AC096655/Navus_v13_1815_arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DA3A6F.AC859F30--