MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DB40B5.42E406A0" Este documento é uma Página da Web de Arquivo Único, também conhecido como Arquivo Web. Se você estiver lendo essa mensagem, o seu navegador ou editor não oferece suporte ao Arquivo Web. Baixe um navegador que ofereça suporte ao Arquivo Web. ------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963_.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Intellectual Capital: design science research supporting a novel IC framework

Capital Intelectual: a proposta de um framework de CI baseado em design science research=

Intellectual Capital: design science rese= arch supporting a novel IC framework

&nbs= p;

Vinícius Figueiredo de Faria https://orcid.org/000= 0-0002-3924-7647

Doutor. Fundação Mineira de Educação e Cultura (FUMEC) – Brasil.

vffconsultoria@gmail.= com

Dárlinton Barbosa Feres Carvalho

https://orcid.org/000= 0-0003-3844-0178

Doutor. Universidade Federal de São João del-Rei (UFSJ) – Brasil. <= span style=3D'mso-bookmark:_Hlk4746433'>darlinton@acm.org

Fábio Corrêa https://orcid.org/0000-0002-2346-0187

Doutor. Fundação Mineira de Educação e Cultura (FUMEC) – Brasil.

fabiocontact@gmail.co= m

Leandro Cearenço Lima https://orcid.org/000= 0-0003-4347-8007

Doutor. Fundação Mineira de Educação e Cultura (FUMEC) – Brasil.

le= androlima.panamericano@gmail.com

Renata de Souza França https://orcid.org/000= 0-0002-3809-0975

Doutora. Fundação Mineira de Educação e Cultura (FUMEC) – Brasil.

profrenatafranca@gmai= l.com

 

 <= /span>

ABSTRACT

Intellectual Capital provide= s an alternative to conventional accounting, tackling the hurdle of dealing with intangible assets. Over the past few decades, various measurement methods h= ave been developed. However, these methods are primarily tailored to specific t= ypes of companies and are often unsuitable for micro and small businesses. Based= on this context, the objective of this study is to propose a novel framework to assist readers, academics, and managers identifying the most suitable method for measuring Intellectual Capital by articulating the following traits: purpose, economic sector, and business size. This study adopts an exploratory-descriptive approach with a qualitative methodology, employing = a Systematic Literature Review, Content Analysis, and Design Science to achieve its objectives. To determine the goals and methods of measuring Intellectual Capital, this study employed content analysis in the mixed category, with descriptors defined and adjusted as the research progressed. As a result, s= even purposes, fifty-eight methods for measuring Intellectual Capital, four econ= omic sectors, and five business sizes were identified, categorized, and incorpor= ated into the proposed framework. Thus, the novel framework proposed by this stu= dy is primarily intended to guide stakeholders through the various possibiliti= es for measuring and disseminating Intellectual Capital across corporations, cities, and even nations. As a final recommendation for future research, applying the framework to real-world situations in both the public and priv= ate sectors is encouraged.

Keywords: intellectual capital. purpose. measurement. business size. economic sector.

 

RESUMO

O Capi= tal Intelectual proporciona uma alternativa à contabilidade tradicional ao lidar com ativos intangíveis. Nos últimos anos, foram desenvolvidos diversos méto= dos de mensuração, porém, a maioria é adequada apenas para tipos específicos de empresas, sendo geralmente inadequados para micro e pequenas empresas. Com = base no exposto, este estudo tem como objetivo propor um novo modelo que ajude leitores, acadêmicos e gestores a encontrar o método mais apropriado para m= edir o Capital Intelectual, considerando os seguintes aspectos: propósito, setor econômico e porte empresarial. Este estudo é caracterizado por sua natureza exploratória-descritiva, abordagem qualitativa e pela utilização da Revisão Sistemática da Literatura, Análise de Conteúdo e Design Science para alcançar o objetivo proposto. A análise de conteúdo na categoria mista foi empregada para determinar os objetivos e métodos de mensuração do Capital Intelectual, com os descritores sendo definidos e ajustados ao longo da pesquisa. Foram identificados e categorizados sete propósitos, cinquenta e = oito métodos de mensuração do Capital Intelectual, quatro setores econômicos e c= inco portes empresariais, que foram articulados no framework proposto por este estudo. Dessa forma, o novo modelo visa orientar as partes interessadas sobre as diversas possibilidades de mensuração e disseminação do Capital Intelectual em empresas, cidades e até mesmo países. Como recomendação para futuras pesquisas, sugere-se a aplicação do framework em situações r= eais nos setores público e privado.

Palavras-chave: capital intelectu= al. propósito. mensuração. porte empresarial. setor econômico.

 

 

 <= /o:p>

Recebido em 04/07/2024.  Aprovado em 13/08/2= 024. Avaliado pelo sistema double blind = peer review. Publicado conforme normas da APA.

https://doi.org/10.22279/navus.v14.196= 3

1 I= NTRODUCTION

 

Intellectual Capital (IC) emerges as an approach oriented toward intangible assets, such as knowledge, patents, trademarks, customers, and distribution channels. It represents an alternat= ive to traditional accounting, which historically focuses on tangible assets su= ch as machinery and physical facilities (Stewart, 1997; Edvinsson & Malone, 1997; Roos et al., 1997; Bontis, 1998; Guthrie, 2001; Cikrikci & Dastan, 2002; Bozzolan et al., 2003; Ricceri, 2008; Curado, 2008; Denicolai et al., 2015; Morris, 2015).

In line with the above, the relevance of = the field of Intellectual Capital (IC) is reinforced by the prominence of the knowledge economy, in which companies increasingly exhibit a growing volume= of intangible assets relative to tangible ones. Over the years, various measurement methods have been developed in response to the pervasiveness and growing importance of intangible assets. However, not all methods are suita= ble for companies of different sizes. For instance, the Skandia Navigator™ (Edvinsson & Malone, 1997) appears impractical when applied to micro, small, and even medium-sized enterprises, as its model comprises 164 metric= s, with 91 focused on intellectual aspects and 73 on traditional ones. Nonetheless, it is important to note that many organizations still lack standardized administrative procedures to effectively address accounting ne= eds, particularly in relation to IC.

Furthermore, according to Marr et al. (20= 03), an organization must first determine its purpose regarding IC before selecting= a specific method or report. For instance, a public report may be more appropriate if the organization intends to showcase its IC to stakeholders.= In contrast, dynamic measurement methods might be better if the goal is to dri= ve sales, purchases, or mergers.

Besides the orientation between the organization's purposes and measurement methods, some approaches may still = be unattainable due to other features, such as the economic sector in which the company operates or its size, as exemplified earlier. Thus, a multidimensio= nal relationship delineates the entanglement of method, purpose, economic secto= r, and business size. Based on these constructs, this research seeks to deline= ate a framework that allows organizations to decide the most relevant method for their IC accounting needs.

As Eccles et al. (2002, p. 127) aptly sta= te, "What is easy to measure is not important, and what is important is not easily measured." This statement underscores the challenge of measurin= g IC and the crucial task of selecting the proper method. Accordingly, this rese= arch aims to provide a novel framework for determining the most suitable method = and equip readers, managers, and academics with practical knowledge and a tool = that can be applied in real-world scenarios considering variables like purpose, sector, and size of organizations.

Based on the preceding, this research is structured as follows: Section 1 introduces the study, followed by Section = 2, which outlines the theoretical foundations that support it. Section 3 detai= ls the methodological procedures adopted, while Section 4 presents the analysi= s of the results obtained from data collection. Finally, Section 5 provides the conclusion, summarizing the key findings, offering suggestions for future research, and discussing the limitations encountered during the study.=

 

 

2 THEORETICAL BACKGROUND

 

Capital, in the corporate context, refers= to any asset that has the ability to generate future cash flows. As a result, = tangible assets are an integral part of the common categories of assets, which inclu= de physical and financial items. Companies periodically disclose the value of these assets, which are readily accessible in their balance sheet and finan= cial records (Sherif & Elsayed, 2016). From another perspective, intangible assets such as information, knowledge, workforce skills, and organizational= structure are the cornerstone of the knowledge economy and are increasingly important= in determining corporate value and profits (Werlang et al., 2019; Smith et al., 2020; Santos & Silva, 2020).

Thus, the existence of intangible assets,= such as IC, has been recognized for years within organizations. Still, these ass= ets were not considered significant in the past, as the resources deemed releva= nt for profit generation were primarily tangible. However, over the last three decades, global economies have witnessed a significant shift in focus. The knowledge economy has driven this change from traditional tangible resource= s to technology-intensive sectors (Guthrie, 2001; Gamerschlag & Möller, 2009= ). Several recent studies have emphasized the importance of raising awareness among individuals and organizations regarding the significance of IC in value creation (Marr and Chatzkel, 2004; Petty and Guthrie, 2000; Tan et al., 200= 5).

In reality, the Knowledge Economy has gra= dually shifted intellectual resources to the center of the debate, revealing the limitations of the traditional ones (i.e., physical and financial resources= ) as essential contributors to corporate wealth development (Chen et al., 2005). Currently, IC is considered a critical factor that influences performance, competitiveness, success, value creation, and the long-term survival of organizations. Although numerous studies over the past decades have emphasi= zed the importance of IC and proposed approaches to address it, measuring IC remains a significant challenge for many organizations and their managers (= Kogut & Zander, 1992; Bierly & Chakrabarti, 1996; Brennan & Connell, 2000; Bontis & Fitz-enz, 2002; Cronje & Moolman, 2013; Bontis et al= ., 2015; Xu & Wang, 2018).

The literature on intangible assets featu= res significant contributions from scholars across various fields. Remarkably, = Karl Erik Sveiby has emerged as a prominent figure in this research area, provid= ing relevant contributions to IC research. According to Sveiby (2010), this fie= ld of study has produced a plethora of methods and theories over the years. However, it has also brought with it the dilemma of measuring social phenom= ena with scientific precision. As a result, the degree of uncertainty inherent = in measuring and determining the lifecycle of intangible assets makes it diffi= cult to define a single consistent proposal that serves to accomplish such inten= t.

Moreover, empirical studies have sought to identify not only methods but also the underlying purposes for measuring IC= . Findings indicate a lack of a clear definition of the goals for measuring this intangible asset, leading to a limited understanding of organizational structures. Accordingly, decision-making around IC management is often characterized by confusion and uncertainty among administrators. This sugge= sts that, despite numerous models and tools for IC management available in the literature, identifying their purpose and operationalizing them in practice remains uneasy (Carlucci & Kujansivu, 2014). To improve the understandi= ng of IC measuring, Marr et al. (2003) regarded purpose as a crucial criterion= for evaluating IC, thereby establishing foundational elements for its determina= tion (Table 1).

 

 

 

 

 

 

 

 

 

 

 

 

Table 1

Purposes for Measuring Intellectual Capita= l.

Purpose

Author(s)

Description

Di Vaio et al., 2020; Salvi et al., 2020ª ; Marr et al., 2003

Corporate strategy is determined by analyzing the decision-making process, which provides a clear understanding of the organization's objectives and purposes. It defines what the firm intends to give to its shareholders, employees, consumers, and other stakeholders. Recent studie= s on the measurement of IC have shown that gaining a clear grasp of business strategy helps to identify and manage risks more effectively, leading to improved allocation of corporate resources.

Alfiero et al., 2021; Marr et al., 2003; Kaplan and Norton,1996

 

Successful strategy implementation requires continuous evaluation = and the integration of learning into its cycle. Additionally, investors close= ly relate the process of operationalizing strategy to the quality and adequa= cy of information about intellectual assets.

Assisting in diversification and expansion decisions

Vitolla et al., 2020 ; Marr et al., 2003

Strategic partnerships, joint ventures, mergers, and acquisitions = are practical ways through which organizations achieve inorganic growth. In t= his context, ensuring that non-financial information is consistent, relevant, reliable, and comparable over time and across companies is mandatory.

Support compensations

Kelchevskaya et al., 2021; Marr et al., 2003=

Creativity, personnel training, expertise, research and developmen= t, and customer satisfaction are quickly becoming inputs for corporate value creation. These factors support financial compensations for talents and personal skills and sustain financial returns for investors in business v= alue generation.

Recognizing stakeholders' significant influence over company resou= rce management fosters better interaction with them, decreasing information asymmetries and positively impacting corporate reputation.

 

Also relevant to IC accounting is the fac= t that the modern economy comprises a complex intertwining of economic activities.= It consists of the relationship in the production of all goods and services intended for society's needs (Tomiato et al., 2010). However, due to its magnitude and inherent complexity, individually accounting for each operati= on becomes unfeasible. Therefore, to achieve accounting objectives, the economy must be divided into interconnected sectors based on the similarities and c= ore nature of activities (Tomiato et al., 2010).

Following the approach of other authors, = this research classifies economic sectors as the product trading sector (industr= y), where there is the sale of self-produced products; the merchandise trading sector, which refers to the sale of products acquired from third parties; t= he service trading sector, which trades services performed by contract or task (Rodrik, 2016; Silva et al., 2016; De Almeida et al., 2013; Oreiro & Fe= ijó, 2010; Kupfer, 2009); and the public sector (Pereira, 1989), whose primary function is to protect public assets.

In accordance with the above, selecting t= he purpose and measurement method for IC appears to first require an understan= ding of the economic sector and the company's size. Still, regarding the company= 's size, in contrast to other countries where the number of employees and operational revenue primarily moderate its definition (Meyer et al., 2020; = Kweh et al., 2021), understanding and defining a company's size remains somewhat confusing, at least in Brazil.  

 = In the literature, there is a diversity of criteria adopted to classify companies, including number of employees, revenue, sector of activity, profit, net wor= th, and fixed assets. Depending on the purpose, other criteria or even multiple criteria may be applied (Martins et al., 2016). It is noted that quantitati= ve criteria tend to be more commonly used due to their ease of definition, collection, manipulation, measurement, and parameter definition (Leone & Leone, 2012). In Brazil, there is a lack of standardization in classificati= ons regarding company size, as the Federal Government, companies, agencies, institutes, scholars, and funding agencies use different classification mod= els to meet their research objectives.

The Brazilian Micro and Small Business Su= pport Service (SEBRAE, 2010) adopts the number of workers and economic activity sector as criteria for classifying the size of firms. The Brazilian Develop= ment Bank (BNDES, 2013) defines the company's annual revenue and economic segmen= t to which the company belongs as a criterion. Additionally, the Brazilian Insti= tute of Geography and Statistics (IBGE) and the Ministry of Labor and Employment (MTE) also use the data of employed people and the sector of activity as cr= iteria to characterize the size of the company (Dias, 2012). The company's gross annual revenue establishes its size for the National Health Surveillance Ag= ency (ANVISA) (Secretaria da Receita Federal, 2005). Finally, for the Ministry of Development, Industry, and Foreign Trade (MDIC), the number of employees, exported value, and sector of activity in the defined period determine the company's size.

In 1996, Nick Bontis, when discussing the importance of selecting methods to measure IC, pointed highlighted the chal= lenges posed by the vast array of options, diverse benefits, and multiple purposes= in finding the ideal method for measuring intangible assets. Supporting this perspective, Tóth and Kövesi (2008) stated the following:  

 

In reality, there is no method that can be applied broadly and universally, but there are a series of methods and tools that are effective= in specific situations and for specific types of corporations. Furthermore, mo= st experts disagree with the identification of a single common denominator (p.= 3).

 

Recognizing that not only the purpose, bu= t also the company size and economic sector, influence the choice of method for measuring IC (Užienė & Stankutė, 2015), this research has made every effort to understand the current dynamics and propose a framework that articulates these variables (purpose, economic sector, company size, and methods), either simultaneously or individually. <= /p>

The intent to develop a novel IC framewor= k is based on the perceived shortcomings of academic theory in establishing a sh= ared language for conceptualizing IC, the lack of clarity among companies in defining objectives for measuring this asset, and, most importantly, the absence of integration between monetary and non-monetary models for measuri= ng IC. The formation of this understanding has been the subject of scholarly debate for several decades (Sveiby, 2010; Guthrie et al., 2012; Smith et al= ., 2020).

 =

3 METHODS

 

In this work, research is comprehended as a methodical investigation, primarily aimed at generating or refining ideas and, occasionally, solving problems (Gough et = al., 2012). Accordingly, this study employs the Design Science (DS) methodology using the Design Science Research (DSR) framework to effectively align with these objectives. To apply DS principles in practice and guarantee the execution of thorough investigations that incorporate these concepts, it is essential first to evaluate a suitable research methodology for this implementation (Hevner et al., 2004; Manson, 2006).

Research adopt= ing DS is not limited to exploring, describing, or explaining problems, but also w= ith unfolding frameworks that contribute to better human performance, whether in society or organizations. In this sense, prescribing the solution or design= ing a system generates knowledge with relevance and rigor (Dresch et al., 2015; Hevner et al., 2004). Therefore, due to the limitations of traditional scientific methods in constructing software, frameworks, and technological systems, the approach used in this study follows the precepts of DSR (Figure 1). This methodology aims to structure the development of artifacts as a me= ans to produce epistemological scientific knowledge. <= /p>

 =

Figure 1 <= /b>

Design Science Research framework consider= ed in this work.

Note: Adapted from Hevner et al., 2004, p.80.

The success of= the DSR approach to crafting meaningful artifacts (e.g., IC frameworks) hinges firstly on the researchers' meticulous understanding of the environment and= the selection of relevant problems or opportunities (the relevance cycle). Simultaneously, the method rigor (the rigor cycle) is ensured through the efficient use of theoretical foundations of knowledge and research. The artifact’s engineering (the design cycle), aligned with the other cycles, is responsible for building and validating the solution, as well as moderating= the relationship between the other cycles, ensuring that the process is repeate= d as many times as required (Hevner et al., 2004). 

This research = is exploratory, motivated by the indispensability of an initial understanding = of the problem under study. At the same time, its descriptive characteristic s= eeks to deepen the detailed presentation of the investigated phenomenon (Perovan= o, 2016). A qualitative methodological approach is adopted to identify causal relationships, predictions, and generalizations of results (Hoepfl, 1997). = It also allows an interpretive exploration of the subject of interest, promoti= ng a more in-depth analysis (Mascarenhas, 2012).

  For the definition of population and sa= mple, the former is determined by the extent of research related to IC, while the latter consists of studies aligned with the objectives of this research, encompassing articles that address the purposes for measuring IC, covering = the diversity of economic sectors in question. The chosen data collection metho= d, the Systematic Literature Review (SLR), is a comprehensive tool that identi= fies the need for review, evaluates study quality, and presents findings. This c= hoice is based on the SLR's suitability for a comprehensive evaluation and interpretation of all relevant and available research related to a specific research question, topic area, or phenomenon of interest (Kitchenham, 2004)= .

 As a result, data collection stems from = an SLR planned to be conducted on the Scopus and Web of Science (WoS) databases. T= he selection of these databases is aligned with Falagas et al. (2008), who sta= te that the SCOPUS database covers research from 1966 onwards and indexes 12,8= 50 journals, and Guz and Rushchitsky (2009), who indicate that the WoS database comprises about 10,000 journals and consists of seven distinct citation databases. These are considered relevant compared to other databases, as reported by the same authors.

 For data analysis, Bardin's Content Anal= ysis method (1977) was used, which involves the "[...] analysis of communications aiming to obtain, by systematic and objective procedures of messages content description, indicators (quantitative or not) that allow t= he inference of knowledge" (Bardin, 1977, p. 42). Applying this method requires defining categories, which relies on the investigation of content segments from the original text for subsequent ordering, categorization, and frequency counting. This study will employ a mixed category, recognizing th= at the current understanding based on existing evidence may face adjustments throughout the research's evolutionary process.

 

4 RESULTS AND DISCUSSIONS

 

Firstly, it is= worth noting that this research primarily focuses on the impact of intangible ass= ets on business value, as well as the inherent difficulties in capturing, quantifying, and disclosing the performance and value of IC in companies. Observations suggest that evaluating intangible assets is a complicated tas= k, mainly due to constraints in data availability, uncertainties, and the abse= nce of impartiality and verifiability of information (Bandeira & Andrade, 2018). Consequently, professionals and scholars have raised doubts about the accuracy and effectiveness of the measurement frameworks used in recent yea= rs due to the limits observed in many existing approaches.

However, given= that accounting IC is crucial for the growth of businesses and scientific advancements, its complexity should not deter firms and scientists from studying it. Hence, this study endeavors to elucidate the objectives behind= the measurement of IC by micro, small, medium, and big firms across different economic sectors. Here, it is believed that by identifying the purpose of I= C, one can obtain a more effective experience in selecting measurement methods that are more suitable for different economic sectors and organizational si= zes.

When discussin= g the importance of measuring IC, Marr (2008, p. 4) stated: "To positively impact their future value, organizations need a better understanding of Intellectual Capital and its latest tools available to identify, measure, a= nd report this important driver of corporate value." Corroborating this v= iew, Sveiby (2010, p. 1), one of the leading researchers on IC theory, was categorical: "Rarely is the question: why measure intangibles? asked. = The answer is not self-explanatory. Intangibles are difficult and expensive to measure, and the results are uncertain, so the reason better be good." Therefore, in response to Bernard Marr and Karl-Erik Sveiby's call, this research aims to support the construction of a framework that articulates t= he variables of purpose, economic sector, business size, and measuring methods= in order to better guide readers, academics, and managers through the still challenging accounting of IC.

The research protocols, as detailed in Table 2, were meticulously implemented to investi= gate the purposes and methods of IC measurement. In order to ascertain the purpo= ses of measuring IC, a comprehensive collection of 1,231 scientific studies, spanning the years 1998 to 2022, was gathered. Similarly, a thorough investigation of the methods used for measurement was conducted, resulting = in the identification of 677 scientific studies published between 1995 and 202= 2. Together, these studies amount to a total of 1,889 scientific articles. Both systemat= ic literature reviews (SLRs) included an extraction stage, during which publications were reviewed in their entirety and followed specific criteria= to ensure the quality of data extraction, thereby providing a thorough apprais= al of the available literature on the topics of interest.

 

Table 2

Result of protocol application.

Stage

Procedure

Quantity Purposes

Quantity. Methods

Criterion 1 - Not containing descriptors in keywords

Criterion 2 - Not discussing purposes of measuring IC

Criterion 3 - Not being a scientific article

Criterion 4 - Duplicates

Criterion 5 - Unavailable for download

Partial Result

Extraction

(quality assessment)

Extraction of objective results from studies: Introduction, theoretical framework, methodological procedures, analysis and discussion= of results, and conclusion.

Final Result

Guidelines

(Hevner et al., 2004)

Description of the guideline

(Hevner et al= ., 2004; Dresch et al., 2015)

Approach in t= his research

(The Author)<= o:p>

Research using DSR should produce a viable artifact in the form of= a construct, model, method, or instantiation.

The artifact will be the framework aimed at articulating the varia= bles economic sector, company size, purposes for measuring IC, and methods of measuring IC.

The objective of DSR is to develop solutions that solve important (relevant) problems for organizations.

The IC theory lacks models to guide users in choosing IC measureme= nt methods. Therefore, the proposed solution aims not only to aggregate meth= ods for measuring IC but also to articulate variables (methods, purpose, comp= any size, and economic sector) that influence the choice of the best option f= or organizations.

Methods of evaluation should be employed to demonstrate the utilit= y, quality, and effectiveness of the artifact. According to Hevner et al. (2004), one of these five types of evaluation methods can be used: analytical, experimental, test, descriptive, and observational.

In this research, the descriptive evaluation method was chosen, wh= ich can be articulated in two ways:

·          &nb= sp;    Informed argument: Using information from knowledge bases (e.g., relevant research= ) to construct a compelling argument about the utility of the artifact.

·          &nb= sp;    Scenarios: Building detailed scenarios around the artifact to demonstrate its utilit= y.

The design principles should be clear and verifiable, either by ad= ding to the current knowledge base or by applying knowledge in new ways to existing ones. Research conducted through DSR should provide contribution= s in the specific areas of the developed artifacts.

The present research adds knowledge in several aspects:=

·          &nb= sp;    Updating the list of IC measurement methods proposed by Sveiby (2010);<= /span>

·          &nb= sp;    Including two new purposes for IC measurement, added to Marr et al.'s 2003 list;

·          &nb= sp;    Classifying the economic sector and company size, essential for the development of the artifact;

·          &nb= sp;    Generalizing the solution to the class of problems;

·          &nb= sp;    Introducing new knowledge that can be applied in similar situations;

·          &nb= sp;    Immersing the researcher in the construction of the artifact evaluation method;

·          &nb= sp;    Designing the original construction of the artifact in spreadsheets, among others.<= o:p>

Rigorous methods must be applied in research utilizing DSR, both in the construction and evaluation of artifacts.

In constructing the framework for measuring IC, the rigor of the protocol (Kitchenham, 2004) applied in Systematic Literature Reviews (SLR= s) was used, resulting in the consolidation of the articulated variables (methods, purpose, company size, and economic sector).<= /span>

6- Project as a research process

One should seek to design an effective artifact that utilizes available means to achieve the desired results, while respecting the rule= s of the problem environment.

This article aims to deliver a framework that addresses the challe= nge faced by readers, academics, and managers in the search for IC measurement methods that best suit each organizational reality.

Research using DSR should be presented to audiences in both the technology and management fields.

Given that this article is based on a doctoral thesis, =

the simulations conducted by the researcher and the subsequent evaluation by the professors present on the thesis defense committee aime= d to validate the artifact. However, there is a recognized need for validation with managers and expansion within the academic community.

Note: Adapted from Hevner et al., 2004, p. 83.

 

Regarding the above, it= is observed that the framework developed is both applicable and capable of generalization; premises of DS that involve the efficient use of theoretical foundations, knowledge base, and research procedures. However, the success = of this research depends concomitantly on the researcher's ability to select releva= nt procedures to construct the framework and on the selection of acceptable methods to justify this proposal. The proposal for developing the framework= is based not only on the academic community's failure to define a common langu= age for conceptualizing IC and on companies' lack of understanding in determini= ng their purposes, but, primarily, on the lack of consolidation of IC measurem= ent models.

Thus, this research presents a novel framework for measuring IC in both public and private organizations. Developed through a systematic review of 80 scientific artic= les focused on IC measurement methods, the framework aids in selecting appropri= ate methodologies based on specific needs. So, the proposed framework addresses= the problem of selecting suitable IC measurement methods by integrating various variables (IC measurement purpose, business size, economic sector, IC measurement category, IC method and IC measurement class) (Figure 2) and offering a user-friendly solution for readers, managers, and academics alik= e.

As a result, this final delivery addresses and rectifies one of the major deficiencies observed in the IC literature: the lack of a framework that assists users in choosing IC measurement methods for specific purposes, economic sectors, and business sizes. This outcome acknowledges that “[...] there is no method that can be applied broadly and universally, but there a= re a series of methods and tools that are effective in specific situations and f= or specific types of corporations”` (Tóth & Kövesi, 2008, p. 3). Thus, the framework is available at the link https://zenodo.org/records/11061996/files/FRAMEWORK%20FOR%20CI%20MEA= SURING.xlsx?download=3D1. For optimal use, it is recommended to download the file.

 

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

Figure 2 <= /b>

Proposed Framework for IC Measuring.

Note:= Research data (2023).

The proposed framework records a total of 35 studies addressing business size, containing various methods, purposes, and economic sectors. In proposing an integrated model f= or measuring IC in small and medium enterprises, Montequín et al. (2006) clari= fy that transitioning to a company that efficiently manages all aspects of knowledge is not simple, particularly for businesses of this size. In line = with this, observing the evolution of studies in small and medium firms, especia= lly over the past decade, is noteworthy. This academic growth can be attributed= to the development of the knowledge economy and the recognition that these companies play a crucial role in national economic development by providing substantial employment, social infrastructure, and an increasing contributi= on to Gross Domestic Product (GDP) (Hina et al., 2020; Matos et al., 2020; Khalique et al., 2018; Montequín et al., 2006).     

Regarding medium-large = and large companies, most of the research is monetary in nature and directed towards the industry and service trade. These studies highlight sustainable growth (Zhang & Wang, 2022; Xu et al., 2020), the generation of additio= nal value (Xu et al., 2022; Mohammad & Bujang, 2019; Yao et al., 2019; Silvestri & Veltri, 2014), and the improvement of financial performance= of companies (Obeidat et al., 2021; Yousaf, 2021; Zhu et al., 2020; Phusavat et al., 2011) as the major differentiators for measuring IC.=

An important aspect identified by this research is the growing use of IC measurement methods in= the public sector. Secundo et al. (2017) propose a method focused on public universities, which presents a strategic approach segmented into maturity stages. Zeng et al. (2021) analyze the contribution of IC to the economic growth of cities, associating IC with individuals, families, groups, and communities. The performance of health organizations within the Italian pub= lic healthcare system is the focus of the study by Alfiero et al. (2021). The proposal by Fazlagic and Szczepankiewicz (2018) introduces the concept of a "knowledge city" and uses four dimensions of IC (human capital, structural capital, relational capital, and renewal and development capital= ) to measure IC in counties.

Furthermore, Marr et al. (2003) considered purpose a fundamental basis for measuring IC. Thus, when analyzing the articulation of purposes for IC measurement, 38 studies were identified as formulating and executing strategy. The strategic aspect is c= ross-cutting in research, permeating various sectors, sizes, methods, and categories of = IC measurement. However, studies by Wudhikarn and Pongpatcharatorntep (2022), Garafiev and Garafieva (2021), Mohd Ariff et al. (2016), and Gogan (2014) consolidate the Balanced Scorecard (BSC) (Kaplan & Norton, 1992) as a strategic management method for IC. However, the development and improvemen= t of methods in the "scorecard methods" category demonstrate that the = BSC, despite being consolidated, does not suit all business sizes.

Regarding the aspect related to influence on behavior, 39 studies are concerned with aiding dive= rsification and expansion decisions. At the same time, 33 studies address the basis for compensations, whether in the form of returns to investors or employees. Am= ong the studies focusing on strategic decision-making, notable works include the article by Wang et al. (2021), which investigates the impact of investment decisions in information technology on Industry 4.0. Similarly, the study by Matos et al. (2020) addresses a wide range of variables aimed at assisting decision-making by strategic managers, while Garcia et al. (2018) analyze t= he determining factors for decision-making related to Knowledge Management and Intellectual Capital.  <= /span>

Furthermore, when addressing the relationship with stakeholders, Nupap et al.'s (2016) resear= ch points out communication as an important pillar for adequately developing t= he organizational environment. However, the asymmetry of published information= and the lack of standardization and regulation in IC reports make their correspondence among varying publics a chimera. In an attempt to reduce this gap, the research by Matos et al. (2020), Heryana et al. (2020), and Bogdan= et al. (2017) strive to find consensus in this regard, as evidence shows that = the degree of disclosure of annual IC reports directly relates to organizational performance.

Lastly, the purposes "innovate" and "measure the wealth of the public sector" were added by this research to the other purposes found by Marr et al. (200= 3). However, it is known that they still require acceptance and consolidation by the academic community. Despite this, their use in specific IC measurement methods highlights their contemporary importance. Thus, innovation emerges = not as a trend but as a necessity for the sustainable development of organizati= ons. Furthermore, in the studies by Amran et al. (2021), Zhu et al. (2020), Burt= on et al. (2013), and González-Loureiro and Dorrego (2012), innovation is trea= ted as a variable in IC measurement, given its relevance.

In regard to the public sector, Fazlagic and Szczepankiewicz's (2018) research proposes an original concept for measuring IC in counties and introduces the dimension "ren= ewal and development capital" as a measurement variable. Additionally, Neva= do Peña et al. (2017) present a model that incorporates knowledge sources in various domains (human resources, infrastructure efficiency, mobility, accessibility, business, image, quality of life, tourism, innovation, and environmental sustainability), enabling the smart and sustainable growth of cities.

Finally, it is importan= t to highlight that this analysis was designed to provide the reader with a comprehensive overview of the variety and development of IC measurement, aligning with the primary goal of this research. Nearly all the studies examined establish a correlation between IC, value creation, competitive advantages, and wealth generation. These studies cover various business siz= es and sectors of the economy, including the public sector. This approach underscores the strategic significance of IC.

 

5 CONCLUSION

 

One of the most importa= nt issues observed during the development of this work concerns the fact that users of IC measurement methods themselves often struggle to understand the motivation for their application (i.e., what problem they want to solve). T= he debate among researchers about the role of intangible assets in fostering sustainable competitive advantages in organizations is ongoing. An addition= al concern in the IC research field is the desire among academics to standardi= ze techniques for measuring intangible assets, which could potentially prevent organizations from revealing their unique competitive advantages. 

Furthermore, setting standards for intangibles is problematic, mainly due to the absence of spec= ific laws or recognized criteria for evaluating these assets. Thus, disregarding= the dependence of IC measurement on the uniqueness of organizational strategy, = as well as the diversity of forms of these intangible assets, seems unreasonab= le.

Notably, the existing conceptual challenge in the field of IC research has spurred this study, wh= ich aims to identify the methods and purposes of IC measurement. This research = has also sought to understand the theoretical foundations that support scientif= ic exploration in this context. Moreover, it has sparked interest in examining= the relationship between methods and purposes and their application in different economic sectors and business sizes. 

To meet the requirements established for this research, a total of 1,889 scientific articles were collected and analyzed. Each document was subjected to rigorous content analysis following the appropriate systematic literature review (SLR) proto= col To distinguish the purposes for measuring IC, 73 s= tudies were selected for inclusion in the final scope. Meanwhile, 80 documents remained in the final selection of studies for identifying IC measurement methods, all of which adhered to the same rigorous protocol.  

The full reading of the= se articles not only brought the foundation of purposes for measuring IC propo= sed by Bernard Marr and collaborators but also added two new purposes to the previous scope. As a result, 7 purposes (1: aiding in strategy formulation;= 2: facilitating strategy execution; 3: assisting in diversification and expans= ion of decision-making; 4: supporting compensation; 5: guiding communication to stakeholders; 6: innovating; 7: measuring public sector wealth) began to gu= ide the efforts of individuals embarking on an IC measurement initiative. Concerning the search for IC measurement methods, 58 IC measurement methods were identified, with 50 representing new findings that should be added to Sveiby’s 2010 list (Sveby, 2010). Thus, a scope of 92 IC measurement methods is now available to readers, academics, = and managers.

In developing the framework, identifying a relevant theoretical foundation proved essential. = This research employs Design Science (DS) methodology within the Design Science Research (DSR) process from the outset. However, in the studies analyzed, no models in the IC literature were found to have been developed using DS and = DSR. Nevertheless, the framework’s design, aimed at bridging theory and practice, successfully captured the reality structure and transformed it into a useful representation as a meaningful tool, thereby reinforcing the initial methodological choice.  =

Throughout this researc= h, as conceptual understanding deepened, it became increasingly clear that the debate surrounding the use of intangible assets remains a major issue for academics and managers. Even today, the absence of a universal definition f= or IC not only reflects the magnitude of the challenges established by this wo= rk but also makes IC measurement susceptible to manipulation and direction according to the interests of researchers and managers. The amount of 58 mo= dels and 7 purposes for measuring IC, in addition to the 4 economic sectors and = the 5 company sizes, underscores the importance of this research within the fie= ld of IC.  

Considering the breadth= of this research, the challenge of integrating numerous variables into a single framework becomes evident. This framework aims to provide readers, academic= s, and managers with a new perspective on available IC measurement methods, as well as guide them toward relevant studies on the subject. However, the fin= al delivery of this research is not complete without users of the framework understanding its application and recognizing its importance.

Nevertheless, one of the limitations observed in the development of the framework is related to its evaluation and validation. The final version of the artifact was informally reviewed by the author, a few researchers, and potential users. In this sen= se, assessing the framework´s use by a more significant number of readers, academics, and public and private managers could reveal opportunities for improvement.  

Finally, as a suggestion for future research, it is recommended to apply the framework in real-life situations in both the public and private sectors. Evaluating the model acr= oss various company sizes will also benefit the artifact's development. Furthermore, maintaining rigor in the use of RSLs in future research is suggested, facilitating the identification of new purposes and new methods = for measuring IC and promoting the updating and maturation of this research fie= ld.

 

REFERENCES

Alfaro, J., Lopez, V., & Nevado, D. (2011). The relationships between economic growth and intellectual capital: A study in = the European Union. Acta Oeconomica, 61(3), 293–312.

Alfie= ro, S., Brescia, V., & Bert, F. (2021). Intellectual capital-based performa= nce improvement: a study in healthcare sector. BMC Health Services Research,= 21(1), 20.

Amran= , A., Yon, L. C., Kiumarsi, S., & Jaafar, A. H. (2021). Intellectual human capital, corporate social innovation and sustainable development: A conceptual framework. International Journal of Innovation and Sustainable Developme= nt, 15(1). https://doi.org/10.1504/IJISD.2021.111550

Banco Nacional do Desenvolvimento (BNDES). Porte de empresas. Disponível em: <http://www.bndes.gov.br/SiteBNDES/bndes/bndes_pt/Institucional/Apoio_Fi= nanceiro/porte.html.>

Bandeira, M. L., & Andrade, B. H. S. (2018). Capital intelectual: uma revisão conceitual e reflexões sob a ótica da mensuração contábil. Revista Negócios em Projeç= ão, 9(1), 88.

Bardin, L. (1977). Análise de conteúdo. Edi= ções 70.

Bogda= n, V., Sabău Popa, C. D., Beleneşi, M., Burja, V., & Popa, D. N. (20= 17). Empirical analysis of intellectual capital disclosure and financial perform= ance – Romanian evidence. Economic Computation and Economic Cybernetics Studi= es and Research, 51(2), 125–143.

Bontis, N. (1998). Intellectual capital: An exploratory study that develops measures and models. Management Decision, 36(2), 63-76. https://doi.org/10.1108/00251749810204142

Bontis, N., & Fitz-enz, J. (2002). Intellectual capital ROI: A causal map of human capital antecedents a= nd consequents. Journal of Intellectual Capital, 3(3), 223-247. = https://doi.org/10.1108/14691930210437804

Bontis, N., Janosevic, S., & Dzenopoljac, V. (2015). Intellectual capital in Serbia's hotel industry. International Journal of Contemporary Hospitality Management, 27(6), 1365-1384. https://doi.org/10.1108/IJCHM-03-2014-0115

Bozzo= lan, S., Favotto, F., & Ricceri, F. (2003). Italian annual intellectual capi= tal disclosure: An empirical analysis. Journal of Intellectual Capital, 4(4), 543-558. https://doi.org/10.1108/14691930310504575

Brennan, N., & Connell, B. (2000). Intellectual capital: Current issues and policy implications. Journal of Intellectual Capital, 1, 206–240. https://doi.org/10.1108/14691930010350878=

Burto= n, F., Yoshikawa, T., & Buck, T. (2013). Intellectual capital, innovation and technology transfer: Implications for sustainable development. Journal of Intellectual Capital, 14(2), 292-306. https://doi.org/10.1108/14691931311323759

Carlucci, D., & Kujansivu, P. (2014). Using an AHP Rating Model to Select a Suitable Approach to Intellectual Capital Management. Internati= onal Journal of Information Systems in the Service Sector, 6(3), 22–42. https://doi.org/10.4018/ijisss.2014070102

Chen, M., Cheng, S., & Hwang, Y. (2005). An empirical investigati= on of the relationship between intellectual capital and firms’ market value and financial performance. Journal of Intellectual Capital, 6(2), 159-17= 6. https://doi.org/10.1108/14691930510592771

Cronje, C., & Moolman, S. (2013). Intellectual capital: Measureme= nt, recognition and reporting. South African Journal of Economic and Managem= ent Sciences, 16, 1-12. https://doi.org/10.4102/sajems.v16i1.175

Curad= o, C. (2008). Perceptions of knowledge management and intellectual capital in the banking industry. https://doi.org/10.1108/13673270810869582

De Almeida, A. N., Da Silva, J. C. G. L., & Angelo, H. (2013). Importância dos setores primário, secundário e terciário para o desenvolvimento sustentável. Revista Brasileira de Gestão e Desenvolvimento Regional, 9(1).

<= span lang=3DEN-US style=3D'font-family:"Myriad Pro",sans-serif;mso-ansi-language= :EN-US'>Denicolai, S., Ramusino, E. C., & Sotti, F. (2015). The impact of intangibles on firm growth. Technology Analysis & Strategic Management, 27(2), 219-236. https= ://doi.org/10.1080/09537325.2014.967665

Di Vaio, A., Hassan, R., & Palladino, R. (2020). Digital Innovati= on and Disruptive Technologies in the Intellectual Capital (IC) and Knowledge Management Systems (KMS) Disclosure: a Bibliometric Analysis. In 2020 IE= EE International Conference on Technology Management, Operations and Decisions (ICTMOD).

Dresch, A., Lacerda, D. = P., & Antunes Júnior, J. A. V. (2015). Design science research: método de pesquisa para avanço da ciência e tecnologia. Bookman Editora.

Eccles, R. G., Herz, R. H., Keegan, E. M., & Phillips, D. M. (200= 2). The ValueReporting revolution: M= oving beyond the earnings game. John Wiley & Sons.

Edvinsson, L., & Malone, M. Intellectual capital: realizing yo= ur company’s true value by finding its hidden roots. New York: Harper Coll= ins, 1997.

Falag= as, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison = of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesse= s. The FASEB Journal, 22(2), 338–342 https://doi.org/10.10= 96/fj.07-9492LSF

Fazla= gic, A., & Szczepankiewicz, E. (2018). The role of intellectual capital in achieving public organizational goals in the Western Balkans: The case of Bosnia and Herzegovina. Journal of Intellectual Capital, 19(5), 981–1000. https://doi.org/10.11= 08/JIC-05-2018-0072

Gamerschlag, R., & Möller, K. (2009). Internal benefits of human capital reporting: A theoretical appraisal.

Garaf= iev, R., & Garafieva, V. (2021). Theoretical and methodological foundations = of intellectual capital management. Bulletin of Science and Practice, 7= , 1. https://doi.org/10.32748/2712-7615-2021-7-1

Garci= a, J. M., & Rodriguez, O. L. (2018). Intellectual capital and financial performance in the Colombian banking sector: A panel data analysis. Jour= nal of Intellectual Capital, 19(1), 186-201. https= ://doi.org/10.1108/JIC-06-2017-0076

Gogan= , M. L. (2014). An innovative model for measuring intellectual capital. Procedia= - Social and Behavioral Sciences, 124, 194–199. https= ://doi.org/10.1016/j.sbspro.2014.02.494

González= -Loureiro, M., & Dorrego, P. (2012). Intellectual capital and value creation in Spanish firms. Journal of Intellectual Capital, 13(3), 365-386. https://doi.org/10.1108/14691931211248673

Gough, D., Oliver, S., & Thomas, J. (2012). An introduction to systematic reviews. London: Sage Publications Ltd.

Guthrie, J., Ricceri, F., & Dumay, J. (2012). Reflections and projecti= ons: A decade of Intellectual Capital Accounting Research. The British Accoun= ting Review, 44(2), 68–82. https://doi.org/10.1016/j.bar.2012.05.001

Guz, = A. N., & Rushchitsky, J. J. (2009). Scopus: A system for the evaluation of scientific journals. International Applied Mechanics, 45, 351-362. <= /span>https= ://doi.org/10.1007/s10778-009-0209-9

Herya= na, T., Wahyudi, S., & Mawardi, W. (2020). The Mediating Effect of Intellec= tual Capital Disclosure Between Firm Characteristics and Firm Value: Empirical Evidence From Indonesian Company With Non-recursive Model Analysis. Inte= rnational Journal of Financial Research, 11(2), 14.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in information systems research. MIS Quarterly, 28(1), 75–105. https://doi.org/10.2307/25148625

Hina,= K., Ahmad, N. H., Khalique, M., & Khan, I. (2020). Intellectual capital in = SMEs of Azad Jammu and Kashmir, Pakistan. International Journal of Learning a= nd Intellectual Capital, 17(3), 267.

Hoepf= l, M. C. (1997). Choosing qualitative research: A primer for technology education researchers. Journal of Technology Education, 9(1), 47–63.

Kapla= n, R. S., & Norton, D. P. (1992). The balanced scorecard – measures that driv= es performance. Harvard Business Review, 70(1), 71-9.=

Kelch= evskaya, N., Pelymskaya, R., Deghles, S., Goncharova, N., & Chernenko, I. (2021)= . The Impact of Intellectual Capital on the Performance and Investment Attractive= ness of Russian Companies. IOP Conference Series: Earth and Environmental Science, 666(6), 062076.

Khali= que, M., & Pablos, P. O. DE. (2015). Intellectual capital and performance of electrical and electronics SMEs in Malaysia. International Journal of Learning and Intellectual Capital, 12(3), 251. https= ://doi.org/10.1504/IJLIC.2015.072222

Kitch= enham, B. (2004). Procedures for performing systematic reviews. Keele, UK: Keele University, 33(TR/SE-0401), 28.

Kogut, B., & Zander, U. (1992). Knowledge of the firm, combinative capabilities and the replication of technology. Org= anization Science, 3, 383–397. https://doi.org/10.1287/orsc.3.3.383<= span style=3D'font-family:"Myriad Pro",sans-serif;mso-bidi-font-weight:bold'>

Kupfer, D. (2009). Em busca do setor ausente. In: Sicsú, J., & Pinheiro, A. C. (Orgs.). Sociedade e economia: estratég= ias de crescimento e desenvolvimento (pp. 211-222). Brasí= lia: Ipea.

Kweh,= Q. L., Wong, K. F., Chung, K. Y., & Teh, P. L. (2022). The cubic S-curve relationship between board independence and intellectual capital efficiency: Does firm size matter? Journal of Intellectual Capital, 23(5), 1025-1051. htt= ps://doi.org/10.1108/JIC-09-2020-0229

Leone, R. J. G., & Leone, N. M. de C. P. G. (2012). Pequenas e médias empresas: Contribuições = para a discussão sobre por que e como medir o seu tamanho. Revista Eletrônica= do Mestrado em Administração (RAUnP), 4(1), 67-83. https://doi.org/10.21469/raunp.v4i1.78

Luthy, D. H. (1998). Intellectual capital and its measurement. In&nbs= p;Proceedings of the Asian Pacific Interdisciplinary Research in Accounting Conference (APIRA), Osaka, Japan 16-17.

Manson, N. J. (2006). Is operations research rea= lly research? ORION, 22(2), 155–180.

Marr, B. (2008). Impacti= ng future value: How to manage your intellectual capital. Mississauga, ON: CMA= .

Marr, B., & Chatzkel, J. (2004). Measuring and managing intellectual capital and knowledge assets in new economy organizations. Journal of Intellectual Capital, 5(1), 101–114.  https://doi.org/<= /span>10.1108/14691930410512939

Marr, B., Gray, D., & Neely, A. (2003). Why do firms measure their intellectual capital? Journ= al of Intellectual Capital, 4(4), 441–464.

Martins, J. G. F., Leone, R. J. G., & Leone, N. C. P. G. (2016). = Proposta de método para classificação do porte das empresas. Connexio, 6(1), 139-155. = https://doi.org/10.21529= /connexio.2016v6n1.139-155

Mascarenhas, C. A. (2012). Research Methodology= : A Step-by-Step Guide for Beginners (2nd ed.). Partridge Publishing.

Matos, F= ., Vairinhos, V., & Godina, R. (2020). Reporting of intellectual capital management using a scoring model. Sustainability= , 12(19), 8086. https://doi.org/10.3390/su12198086

Meyer, T., Von der Gracht, H. A., & Hartmann, = E. (2020). How organizations prepare for the future: A comparative study of fi= rm size and industry. IEEE Transactions on Engineering Management, 69(2= ), 511-523. https://doi.org/<= /span>10.1109/TEM.2019.2909639

Mohammad, H. S., & Bujang, I. (2019). Performa= nce of Malaysian Financial Firms: An Intellectual Capital Perspective Using MVA= IC Model. Asian Economic and Financial Review, 9(7), 752–765.

Mohd Ariff, A. H., Van Zijl, T., & Islam, A. (2016). A critical review of the intellectual capital measurement approache= s.

Montequín, V. R., Fernández, F. O., Cabal, V. A., &am= p; Gutierrez, N. R. (2006). An integrated framework for intellectual capital measurement and knowledge management implementation in small and medium-sized enterprises. Journal= of Information Science, 32(6), 525–538.

Morris, C. (2015). An industry analysis of the pow= er of human capital for corporate performance: Evidence from South Africa. = South African Journal of Economic and Management Sciences, 18(4), 486-499. https://doi.org/10.4102/sajems.v18i4.1195

Nevado Peña, D., Larrán Jorge, M., & Escribano Sotos, F. (2017). Intellectual capital and urban growth: A study of the most populous Spanish cities. Journal of Intellectual Capital, 18(2), 298-314. https://doi.org/10.1108/JIC-06-2016-0065

Nupap, S., Chakpitak, N., Neubert, G., & Tra-ngarn, Y. (2016). Stakeholder involvement in intellectual capital system implementation for long-term competitiveness development of SMEs in Thailan= d. International Journal of Innovation and Learning, 20(3), 328. https://doi.org/10.1504/IJIL.2016.078285

Obeidat, S., Al-Tamimi, K., & Hajjat, E. (2021). = The effects of intellectual capital and financial leverage on evaluating market performance. The Journal of Asian Finance, Economics and Business, 8(3), 201-208.

Oreiro, J. L., & Feijó, C. A. (2010). <= /span>Pereira,= L. (1998). Gestão do setor público: estratégia e estrutura para um novo Estado= . Reforma do Estado e administração pública gerencial, 1, 21-38.

Perovano, D. G. (2016). Manual de metodologia da pesquisa cientifi= ca. Curitiba: InterSaberes. [Livro eletrônico].<= /p>

Petty, R., & Guthrie, J. (2000). Intellectual capital literature review: Measurement, reporting and management. Journal of Intellectual Capital, 1, 155–176. https://doi.org/<= /span>10.1108/14691930010350818

Phusavat, K., Comepa, N., Sitko-Lutek, A., & K= eng-Boon, O. (2011). Interrelationships between intellectual capital and performance.= Industrial Management and Data Systems, 111(6), 810–829. https://doi.org/10.1108/0= 2635571111144928

 Pucar, M. (2013). Intellectual capital and economic growth in Western Balkan countrie= s: The case of Croatia, Serbia and Montenegro. Journal of Intellectual Capi= tal, 14(2), 335-356. https://doi.org/10.1108/14691931311323768

Rodrik, D. (2016). Premature deindustrialization. = Journal of Economic Growth, 21(1), 1–33.

Roos, G., Pike, S., & Fernstrom, L. (2005). Valuation and reporting of intangibles? State of the art in 2004. International Journal of Learning and Intellectual Capital, 2(1), 21. https://doi.org/10.1504/IJLIC.2005.007391

Salvi, A., Vitolla, F., Raimo, N., Rubino, M., &am= p; Petruzzella, F. (2020a). Does intellectual capital disclosure affect the co= st of equity capital? An empirical analysis in the integrated reporting contex= t. Journal of Intellectual Capital, ahead-of-print(ahead-of-print).

Santos, T. R., & Silva, N. P. O. (2020). Análise das pesquisas so= bre capital intelectual na última década. Revista Conhecimento Contábil, 10<= /i>(2).

SEBRAE. (2010). Critérios e conceitos para classificação de empresas 2010. Recuperado de www.sebrae.com.br=

Secretaria da Receita Federal<= span style=3D'mso-bookmark:_Hlk132531299'>

Secundo,= G., Del Vecchio, P., & Mazza, C. (2017). Intellectual capital assessment: A systemic approa= ch. Journal of Intellectual Capital, 18(1), 22–43. https://doi.org/10.1108/JIC-03-2= 016-0039

Sherif, M., & Elsaye= d, M. (2016). The impact of intellectual capital on corporate performance: Evidence from the Egyptian insurance market. International Journal of Innovation Management, 20(3), 1-47. https://doi.org/10.1142/= S1363919616500201

Silva, F. F., Vale, C. A., Ribeiro, E. P., & N= eto, F. J. (2016). O setor econômico de serviços= como estratégia de crescimento econômico: Um estudo aplicado na região metropoli= tana de Natal. Revista de Administração, Contabilidade e Economia, 15(3), 799–824.

Silvestri, A., & Veltri, S. (2014). Overcoming= the additive property of value added intellectual capital (VAICTM) methodology.= International Journal of Learning and Intellectual Capital, 11(3), 222.

Smith, M. S. J., Ferreir= a, B., & Inácio, C. S. S. (2020). Indústria 4.0: Desafios contábeis face à geração de ativos intangívei= s. Diálogos em Contabilidade: Teoria e Prática, 7(1).

Ståhle, P., & Ståhle, S. (2012). Intellectual capital and the competitiveness of cities: Evidence from Estonia and Finlan= d. Journal of Intellectual Capital, 13(1), 82-98. https://doi.org/10.1108/14691931211195508

Stewart, T. Intellect= ual capital: the wealth of new organizations. London: Nicholas Brealey Publishing, 1997.=

Sun, C. (2014). Intellectual capital and city performance: Evidence from China. Journal of Intellectual Capital, 15(2), 316-327. https= ://doi.org/10.1108/JIC-08-2013-0085

Sveiby, K. E. (2001). A knowledge-based theory of the firm to guide in strategy formulation. Jou= rnal of Intellectual Capital, 2(4), 344–358. https://doi.org/10.1108/= 14691930110410588

Sveiby, K. E. (2010). Methods for measuring intang= ible assets. Journal of Intellectual Capital, 11(4), 563–574. https://doi.org/<= /span>10.1108/14691931011073468

Tan, H. P., Plowman, D., &a= mp; Hancock, P. (2007). Intellectual capital and financial returns of companies. Journal of Intellectual Capital, 8(1), 76-95. https://doi.org/10.1108/= 14691930710718241

Tomiato, M. P., Lopes, J. L., & Pontili, R. M. (2010). Renda, escolaridade e gênero = dos trabalhadores formais inseridos no setor de serviços de Campo Mourão, Paran= á. Saúde e Sociedade, 19(3), 569-581.<= /p>

Tóth, J., & Kövesi, D. (2008). Intellectual capital and business performance: Empirical study in the Hungarian wine sec= tor. Journal of Intellectual Capital, 9(2), 187-207. https= ://doi.org/10.1108/14691930810864951

Užienė, L., & Stankutė, E. (2015). Factors influencing intellectual capital measurement practices. Procedia= - Social and Behavioral Sciences, 213, 351–357. https://doi.org/<= /span>10.1016/j.sbspro.2015.11.438

Wang, X., Sadiq, R., Khan, T. M., & Wang, R. (2021). Industry 4.0 and intellectual capital in the age of FinTech. Tec= hnological Forecasting and Social Change, 166, 1–22. https://doi.org/10.1016/j.techfore.2021.120774

Werlang, N. B., Souza Jr, A. V., & Fiates, G. S. (2019). Cap= ital Intelectual: Estudo bibliométrico e mapeamento nacional. Revista de Administração, Contabilidade e Economia da Fundace, 10(1).

Williams, S. M. (2001). Is intellectual capital performance and disclosu= re practices related?. Journal of Intellectual Capital2(3), 192-203.

Wudhikarn, R., & Pongpatcharatorntep, N. (2022= ). Intellectual capital and corporate performance: A meta-analysis. Journal= of Intellectual Capital, 23(1), 187-206. https= ://doi.org/10.1108/JIC-06-2021-0159

Xu, J., & Wang, B. (2018). Intellectual capital, financial performance and companies’ sustaina= ble growth: Evidence from the Korean manufacturing industry. Sustainability,= 10, 4651. https://doi.org/10.3390/= su10124651

Xu, X. L., Chen, H. H., & Zhang, R. R. (2020).= The Impact of Intellectual Capital Efficiency on Corporate Sustainable Growth-Evidence from Smart Agriculture in China. Agriculture, 10(6), 199.

Yao, H., Haris, M., Tariq, G., Javaid, H. M., & Khan, M. A. S. (2019). Intellectual Capital, Profitability, and Productivit= y: Evidence from Pakistani Financial Institutions. Sustainability, 11(14), 3842. https://doi.org/10.3390/su11143842

Yousaf, M. (2021). Intellectual capital and firm performance: Evidence from certified firms from the EFQM excellence model. = Total Quality Management and Business Excellence, 1–17. https://doi.org/10.1080/14783363.2021.1962490

Zeng, Q., Tan, Z., & Liu, C. (2021). Analysis = of the Contribution of Intellectual Capital to Economic Growth Based on an Empirical Analysis of Prefecture-Level Cities in Guangxi. Mathematical Problems in Engineering, 2021, 1–12. https://doi.org/10.1155/2021/5541565

Zhang, L., & Wang, Q. (2022). Intellectual cap= ital and corporate competitiveness: A literature review. Journal of Knowledge Management, 26(1), 34= -52. https://doi.org/10.1108/JKM-07-2021-0564

Zhu, H., Wei, Y., & Chen, J. (2020). Intellect= ual capital and innovation performance: The role of corporate governance. Jo= urnal of Intellectual Capital, 21<= /span>(3), 494-513. https= ://doi.org/10.1108/JIC-06-2019-0108

Zhu, = W., Dai, X., Tian, Y., Hu, X., & Chao, Z. (2020). How Intellectual Capital Combination Method Can Improve Corporate Performance in China’s Information Technology Industry. IEEE Access, 8.

 

 

&nbs= p;

------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC7 sS6DoQYAAGEbAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZTW8bRRi+I/EfRntvbSd2Gkd1 qtixG2jTRrFb1ON4d7w7zezOamac1DfUHpGQEAVxoBI3Dgio1EpcyomfEiiCIvUv8M7M7non3jRJ G0EF9SHxzj7v98e8M7585V7M0D4RkvKk4zUu1j1EEp8HNAk73q3R4MKqh6TCSYAZT0jHmxHpXVl/ /73LeE1FJCYI6BO5hjtepFS6VqtJH5axvMhTksC7CRcxVvAowlog8AHwjVltqV5fqcWYJh5KcAxs R0CDAo5uTibUJ956zr7PQEaipF7wmRhq5iSj6UtfUPXLE0G5IQj2GhomZ7LHBNrHrOOBuIAfjMg9 5SGGpYIXHa9uPl5t/XINr2VETB1DW6IbmE9GlxEEe0tGpgjHhdDGoNm+tFnwNwCmFnH9fr/XbxT8 DAD7PphrdSnzbA5WG92cZwlkvy7y7tVb9aaLL/FfXtC53e12W+1MF8vUgOzX5gJ+tb7S3Fhy8AZk 8a0FfLO70eutOHgDsviVBfzgUnul6eINKGI02VtA64AOBhn3AjLhbKsSvgrw1XoGn6MgG4oU0yIm PFGvTLgY3+ViACiNZljRBKlZSibYh4zu4XgsKNZS8BrBpTd2yZcLS1og0kmdqo73YYqhOub8Xj77 /uWzJ+jw/tPD+z8dPnhweP9Hy8ih2sJJWKZ68e1nfz36GP355JsXD7+oxssy/rcfPvn158+rgVBD c3Wef/n496ePn3/16R/fPayAbwg8LsNHNCYS3SAHaJfHYJjxiqs5GYuzUYwiTMsUG0kocYK1lAr+ fRU56BszzLLoOHp0ievB2wJ6SBXw6vSuo/AwElNFKyRfi2IHuM0563JR6YVrWlbJzaNpElYLF9My bhfj/SrZPZw48e1PU+igeVo6hvci4qi5w3CicEgSopB+x/cIqbDuDqWOX7epL7jkE4XuUNTFtNIl Izp2smlOtEVjiMusymaIt+Ob7duoy1mV1Ztk30VCVWBWofyIMMeNV/FU4biK5QjHrOzw61hFVUoO Z8Iv4/pSQaRDwjjqB0TKKpqbAuwtBf0ahrZVGfZtNotdpFB0r4rndcx5GbnJ93oRjtMq7JAmURn7 gdyDFMVoh6sq+DZ3K0Q/Qxxwcmy4b1PihPvkbnCLho5K8wTRb6ZCxxL6tdOBY5q8qh0zCv3Y5sD5 tWNogM+/flSRWW9rI96APamqEraOtN/jcEebbo+LgL79PXcTT5MdAmm+uPG8a7nvWq73n2+5x9Xz aRvtvLdC29Vzg52MzZwcv3pMnlDGhmrGyHVpJmUJm0UwgEVNbI6LpDg7pRF8zZq7gwsFNjRIcPUR VdEwwilM2Q1PMwllxjqUKOUSjnhmuZK3xsOkruwBsaWPDrYpSKy2eWCXl/VyfkIo2JgtJzRn0VzQ smZwWmHLlzKmYPbrCGtopU4trWFUM/3OkVaYDIFcNA0WC2/CFIJgdgEvr8CBXYuG0wlmJNB+txtw HhYThfMMkYxwQLIYabsXY9QwQcpzxVwMQO5UxEgf907wWklaW7N9A2mnCVJZXPMYcXn03iRKeQbP o6SL90g5sqRcnCxBBx2v3VpqecjHacebwMEWvsYpRF3qwQ+zEG6KfCVs2p9YzKbK59Fs54a5RdCA Cwvr9wWDnT6QCqk2sYxsaphXWQqwREuy+i+1wK3nZYDN9NfQYnkVkuFf0wL86IaWTCbEV+Vgl1a0 7+xj1kr5VBExjIIDNGZTsYsh/DpVwZ6ASrifMB1BP8CNmva2eeU256zoyvdYBmfXMUsjnLVbXaJ5 JVu4qeNCB/NUUg9sq9TdGHd2U0zJn5Mp5TT+n5mi9xO4LlgOdAR8uNcVGOl67XhcqIhDF0oj6g8E TA+md0C2wK0svIakgttl81+Qff3f1pzlYcoaTn1ql4ZIUNiPVCQI2YG2ZLLvBGaNbO+yLFnGyGRU SV2ZWrXHZJ+wke6BK3pv91AEqW66SdYGDO5o/rnPWQWNQz3klOvN6SHF3mtr4J+efGwxg1FuHzYD Te7/QsWKXdXSG/J87y0bol/Mx6xmXhUgrLQVtLOyf00VzrjV2o61YPFSK1cOorhoMSwWA1EKlz5I /4H9jwqf2R8q9IY64rvQWxH85KCZQdpAVl+wgwfSDdIujmFwsos2mTQr69psdNJeyzfrc550C7lH nK01O028z+jsYjhzxTm1eJ7Ozjzs+NquHetqiOzREoWlSX6aMYExv3GVf4Ti47sQ6E245J8yJU0y wa9LAsPoOTR1AMVvJRrS9b8BAAD//wMAUEsDBBQABgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAdGhl bWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzhI9NCsIwFIT3gncIb2/TuhCRJt2I 0K3UA4TkNQ02PyRR7O0NriwILodhvplpu5edyRNjMt4xaKoaCDrplXGawW247I5AUhZOidk7ZLBg go5vN+0VZ5FLKE0mJFIoLjGYcg4nSpOc0IpU+YCuOKOPVuQio6ZByLvQSPd1faDxmwF8xSS9YhB7 1QAZllCa/7P9OBqJZy8fFl3+UUFz2YUFKKLGzOAjm6pMBMpburrE3wAAAP//AwBQSwECLQAUAAYA CAAAACEA6d4Pv/8AAAAcAgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnhtbFBL AQItABQABgAIAAAAIQCl1qfnwAAAADYBAAALAAAAAAAAAAAAAAAAADABAABfcmVscy8ucmVsc1BL AQItABQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAAAAAAAAAAAAAABkCAAB0aGVtZS90aGVtZS90 aGVtZU1hbmFnZXIueG1sUEsBAi0AFAAGAAgAAAAhALuxLoOhBgAAYRsAABYAAAAAAAAAAAAAAAAA 1gIAAHRoZW1lL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEADdGQn7YAAAAbAQAAJwAA AAAAAAAAAAAAAACrCQAAdGhlbWUvdGhlbWUvX3JlbHMvdGhlbWVNYW5hZ2VyLnhtbC5yZWxzUEsF BgAAAAAFAAUAXQEAAKYKAAAAAA== ------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/image001.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAFbAjEDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDzCiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKK6zwwtqdLRJkieSa6eNUeNSJT5Y2oWPKgnuO5oA5Oiuyitxs8PqLdjBI0Hm/wCip5ZJcg5k 656cGq9hY3Fto+oA2c6XInXAW0WR9pV+ob7q5HUUAcrRXXRWNteW0F4ixI2oJHa4AXETqf3r47fK oOf9up9unG+TVYYbO4txbTo8KoQmUHy8EDkoV59QTQBxVFdnJp9vbRILBIbm4Ni01nuVWMgMx5K9 3CZ4PofSq0sNyPDkjvaslyZpRMIbRGAGxPvn+DqTx6mgDlaKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKK6nwlcWtvaP8AaJAnmXkKdFIYFX4fP8BOM4qa0VEt IkhWBdRW3YRrlMg/aH3hc8b9uMZ5xnFAHIUV2dzHNGLn+zZkl1MvC0hYRiVYymSOOOG4bHPTNW4Z 9PSSWGNrfM9wybE2eTJJ5C5DeiF84I4oA4GilIwcUlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRU9lZXV/crb2kDzSt0VBn2yfQe9egab8OLdY1bUrx3k4JSHAUeoJPX9KAPOK K9d/4QXw/wD8+r/9/W/xo/4QXw9/z6yf9/W/xoA8ior13/hBfD3/AD6yf9/W/wAaP+EF8Pf8+sn/ AH9b/GgDyKivXf8AhBfD3/PrJ/39b/Gj/hBfD3/PrJ/39b/GgDyKivXf+EF8Pf8APrJ/39b/ABo/ 4QXw9/z6yf8Af1v8aAPIqK9d/wCEF8Pf8+r/APf1v8aoX3w602YO1ndTW7nG1W+dB/X9aAPMaK0d a0W+0O7FvexgFhlHU5Vx7Gs6gAooooAKKKKAFyfWjJ9TSUUAFFFFABS5PrSUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXS aD4M1PWI1nbba2rciWQZLD2Xv29OvegDm6K9Mi+G2nCMCa/uWfHJQKAT9CKf/wAK30n/AJ/bz81/ woA8wor0/wD4VvpP/P7efmv+FH/Ct9J/5/bz81/woA8wor0//hW+k/8AP7efmv8AhR/wrfSf+f28 /Nf8KAPMKK9P/wCFb6T/AM/t5+a/4Uf8K30n/n9vPzX/AAoA8wor0/8A4VvpP/P7efmv+FH/AArf Sf8An9vPzX/CgDzCiu/1D4bMFZ9OvwxA4jnHX/gQ/wAK4i+sbrTrpra8gaGZeqt/nmgCvRRRQB63 4F0OPStHS6kT/TLpQzk/wr2X29/eumpqACNAOm0fyp1ABRRRQAUUUUAFFFFABRRRQAUUUUAUNc0q DWdLls5lGSCY3IyUfsRXiE0UlvPJDKu2SNijD0IODXvw614z4yjSLxXfrGoVd4OAO5UEn8zQBiUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFaOi6TLrFy8EMiRsqb8vnHWs6uo8Bf8heb/rif5ig B3/CDX3/AD9Qfr/hR/wg19/z9Qfr/hXeUUAcH/wg19/z9Qfr/hR/wg19/wA/UH6/4V3lFAHB/wDC DX3/AD9Qfr/hR/wg19/z9Qfr/hXeUUAcH/wg19/z9Qfr/hR/wg19/wA/UH6/4V3lFAHB/wDCDX3/ AD9Qfr/hR/wg19/z9Qfr/hXeUUAcH/wg19/z9Qfr/hTX8E3scbObqDCgk9e1d9UVz/x6zf7jfyoA 8eooooAKKKKACiiigAooooAKKKKACiiigAooooA6rwJoEer6i9zdx7rS2wSp6O/Ye49R9K9X6AAD AHQCuZ+HsKR+E4ZFABlkdm9yGI/kBXTUAFFFFABRRRQAUUUUAFFFFABRRRQAVi+KdCh13S3jKqLq MFoZD2PoT6GtqgcEUAeE/wBmaj/z4XP/AH6b/CivcPsi+35UUASr9xf90fyqteX9vYmITl90pIRU jZy2Bk8AHtVhfuL/ALo/lWVq8dzJqukm1k8p1eUmQx7wvydxxQBpWtxDeW6XFtIJYn6MtSgE9BXK ahYfYpra3kl3WXlSM0k0bsrTs+SSIyMHB47dadNHGkkaas9zcwiyQW8ipIN8nO44HIf7uM0AdSAT 0FQJdRyXs1ou7zYkR244w2cY/I1ykxXz/K1kXMlwNMiwse8/vvn/ALv8foT71PcR6mLe9O2T7UbO zErKCScFvMxjqcZ6c0AdXg+lJXPWEdslnds1y72jSx7Y7WKVBG2f4c5PJxnHFdEepoASiiigAooo oAWvG/G3/I23/wDvL/6CK9jrxzxr/wAjbf8A+8v/AKCKAMKiiigAoq1p9hc6jcCC2j3N3PZR6k12 +leGLGxCvOouZ/Vx8oPsP8aAOKs9Kv77m2tZHX+9jA/M1rQ+DdSf/WPBEPdsn9K7scAAcAdAKXNA HF/8ITc4/wCP2HP+6arzeDdST/VvBKPZsH9a7zNGaAPLbzSr+x5ubWRB/exkfmKp166eQQeQeoNY eq+GLG+DPAotp/VR8p+o/wAKAPPqKtX9hc6dcGC5j2t2PZh6g1VoAKKKKACuo8Bf8heb/rif5iuX rqPAX/IXm/64n+YoA76mGaJZBEZUEh6IWGT+FPrCvTbfatUini8yWWOMQqIyWY7Djaccc457UAbt FYcct99tWCe6EUimNQpJw67RuIG3BJO7nPBFMNzqRtZvmkD2qrDI2Pvtv+Zxx2QA8epoA3WdFdUZ gGfO0HqcdcU6sJXuTJBJHKtyVM5iIJbH7sYUkgZ5qKS9nS0kkgvLiRRCjSu68xyF1BAGOuC3y+1A HQsyojOxAVQSSewqNLiCQqqTIWYBgu4ZIIz061kGVrmOWzSaSaC4nWOOR+pTaGk5wMgYI/GoLoY1 WfaELi7hdYREd7gKo4fsB/SgDoiQASTgDkk01JY3YqkisQAxAOeD0P41j/bZyyW/mSGZZbgSDafu gMUzxjHTFR+ZPGry7pI98VoJZFXlVIO4jj/9VAG6ro5YIwbadrYPQ+lMuf8Aj1m/3G/lVPRf9Xdk PJIpuWKvIMFhhef/AK9XLn/j1m/3G/lQB49RRRQAUUUUAFKASQAMk9q1tE0C51VvMz5VsDgyEdfY etdxp2kWOmoBBCC/eR+WP+FAHCWnh7VbsBktGRT/ABSfKP1rSi8F37D97cQR+wJNdxmjNAHFt4Ju gPlvYSf90iqc/hLVogSiRzAf3H5/I16BmjNAHk9zaXNo+y4geJv9pcVDXrc0UU8ZjmjWRD1VhkVy +seEo3VptN+V+phY8H6GgDjKKfJG8UjRyIUdTgqRgimUAev+Af8AkT7P/ek/9DNdDXPeAf8AkT7P /ek/9DNdDQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lFAElFJRQBGv3F/3R/KjcAQCwBPQZ60i/cX/ AHR/KoJrK2nu7e7liDT2+7ynyflzwaALIJHQ4pGkEaM7NtVQSx9AKKr31u13aPbrIYxJgMw67c8g e5HFACW72cjLqELruuI1UOWxvUZIGD9TUkN1BcBTDKrqyhlZTwQfQ/hVCDSpILwS+bFNHlsLNHll DNuO3HAOc9umPSoRokq2oRLiKOaNESKREPy7S3JHuGIoA1GvrdX2tMA/zYHdsAE49eo6VJ5sYzmR RgbjkgYHqfSsp9F+UrC8QUiRRuTJVXRVGPcbf1praHukuHLRuZCSrMXBGSDjg4428fhQBsgggEEE HuKKZAjx28cbuHdVAZgMZPrjtT6ACiiigBa8c8a/8jbf/wC8v/oIr2KvHfGv/I23/wDvL/6CKAMK pba3kurmO3hXdJIdoFRV1Hgi0DXE94wz5YCL9T1/SgDqNK06HS7NbeIAnq792NXM03NKnMig9CQK AFzRmte5063eYiL5FQyZ2Z52kDbznnnNM/s2F0QCQgIGyyry/wA+AcewoAy80ZrQGmo0cbpKziQ7 VAwCSM7uvpj9aWTS40Lr5z7vm25Axwobn86AM7NGa0hpcZklVpZFEbBclfvZz8w/2eKy80AVNV06 HVLNreUAN1R+6mvNbm3ktbmS3mXbJGdrCvVc1xvje0CXMF2ox5gKN9R0/SgDl6KKKACuo8Bf8heb /rif5iuXrqPAX/IXm/64n+YoA7syxiYQmRRKwLBM8kDvin5PrTfLQuJCilwMBscgemadQAyaZYIW kcMUXk7Rmo0vIWLgvsaM4ZW4I6f4inzokkDpIcIwwxzjAqGWxglO9y2S5cHIxuOD/wCyigCU3VuM 5nTgZ+92/wAkfnUcs1rPEUnddp52s3909fzH6UxLO1dvkckIQ4VSMKeOePXApf7Pt/Mc4O5wcggH PJ55H+0aALJVHkWYgM4BCt3APX+Qp2T0zTY0EUSxgkhRgFjk06gAyfWjJoooAOtRXP8Ax6zf7jfy qWorn/j1m/3G/lQB49RRRQAVreHtJOq32JMi3j+aRh39vxrJr0Pwvara6JCQPmm/eMfr0/SgDXjR Io1jjUIijCqBwBTs03NAyc4BOPagB2aM00gr1BGRnkUZoAdmjNNGT0BNGaAHZozTTlTggg+9GaAM LxToy31q13Ao+0xDJx/Gvp9a4KvWs15tr9oLLWbiJRhCd6j2PNAHpvgL/kT7P/ek/wDQzXRVzvgL /kT7P/ek/wDQzWzqFz9i065u9m/yImk25xnAzigCzRWVZ6rI880N5FDEYoFuDJFJvTac8HgEHjpV iPVbCS3mnFyojgx5hcFSmemQRnnt60AXaKy21iFrq0EUiG2lExlkcFSmxQe+Mde9ST61ptuiPLdB VdA4+Rj8p6E4HGe2aANCiqTatp63D27XSCWNSzgg/IMZyxxgcetJHq+nyQyzLdLshwZNylSoPAOC M4PrQBeoqrcX9pbGYTzpH5Kq0m7+EMcAn6kUxNV0+S2muFuk8qDiRiCNuenBGee3rQBdorJtdatp 578tLGlrbGICQ5XlhyCD0OcCtXpQAtFJRQBJRSUUARr9xf8AdH8qrzPeLeW6wwxvbNu892bDJxxg d6sL9xf90fypjzRJLHE8qLJJnYhYAtjrgd6AJKq6k0i2MhinSB+MO7bQORxnnGeme1WajuJo7eB5 ZjhF68ZJzwAB3JNAGCurzYn2+b5ZhDo0rc7gOVBHGT1z3A4qV9QubeS4feHVN/Eh4AExGRyMkAcD IrSTUbdrhbeQNBKwBVJgFJ5IwBnk8dqkN5Z7SxuYNobYTvGN3p9aAJY3EkSOOjKGHGOo9KfVc3to IzIbqHYG2Ft4wG9PrTU1CzdWIuYwFkMRy2PmHagC1RVc3tt5hQTIcbtxDDCY6554pg1G0abyUmV5 PkO1T2Y4BoAt0VXW9tGxtuYWy+wYcH5vT61PQAteO+Nf+Rtv/wDeX/0EV7FXjvjX/kbb/wD3l/8A QRQBhV2ngkj+zrkd/NH8q4uuh8H3ghvpLVzgTD5f94UAdtmjdTM0ZoAk3kHIY5+tTCCfy0lHG7JR d3zMO+B1qrmra3wAtiUIlt8BJA3GM55H4mgBkcU0jKER+cYODgZOM0SxzRl96thWKFucZHHWrdxq kbzOEiPkrIrxANtwAMAEelR3OqNcW7ReXs3ZBIIwRuLeme/rQBU3t/ePTHXtSZpmaM0APzXN+NiP 7Pth380/yroc1xnjC8E1/HbIciAfN/vGgDnqKKKACuo8Bf8AIXm/64n+Yrl66jwF/wAheb/rif5i gDuTAhuluCz71UoBuO3B9vWpaKKAIbuE3EBiDBQxG7Izlc8j8aqJpzhU8yRZGjdCpOfuqCPwPP6V o0UAZo06dFUJMgberM+Dk4Cj+h/OlOnOVHzJvEZjLAnJOQd36cj3rRooAagZY1DEFgACQMAmnUUU AFFFFABUVz/x6zf7jfyqWorn/j1m/wBxv5UAePUUUUAFen6c6tptqU+6Ylx+VeYV3fhW9FzpKwk/ vIDsI9u1AG5mtPSryG2iZZXKlpVPGeBgjJ9RyOKyc0ZoA3o0tZbN5FETusYXLdAQnPXpz09ahefT l3siROQrGMFDjHG0N6nrWPkUZoA0IZ1GnmJJxDKJC7Zz8644HH48e9Wrg2EfyokSO8QlUuuVUsR8 px6DOPrWLmjNAGzNc2EkcjEK8m0DJyOiADHHY5rJzTM0ZoAfmuG8YkHW+P8Ankuf1rtiwAJJwByT 6V5vq139u1Oe4H3Wb5foOBQB6l4C/wCRPs/96T/0M1rapbveaTeWsRAkmheNS3TJGBmsnwF/yJ9n /vSf+hmtu6n+zWsk5ikl8td2yJdzN9B3oAxINJvonmntIbXTZTamFVhbcJJOMO3AHGDjgnmmf2Nf yNdTttWRjbyRrLcNLuaJiSGbHQ57dK6JTuVWwRkA4PUUtAGHqml3mstavcCO2MXmH5ZN+0kDZngB uRyOmKy9TmuBqN094qAmGHzbVJSv2grk4T5Tu5+npW4+o3ULt5sMciLOYiIQdxAQuTycVKNYgZyk ccz4IVSF4ZjgYBPQ/MOvvQBVuNKnubbWE3JG19IkseefuqvDfipFMvdNv9T+2TzrDbzSWwgiRZC4 yH35Y4HGRj86tjV4WXescgQbN7sBhckjHXrwfan2+qQzmECKZBKcKzrtHQEc++f50AZ11puo3zah LNFbxNcpAiIshbGxyxyce9T6lplzc3l7cQmPLtbSRBzwzRMSQ3oDkc1sUUAZVvBqKXOo3j29t5ty YtkRlJACjB3NjrjnpWtSUUALRSUtAD6KSigCMfdX/dH8qjktoJbiKeSFHmhz5bkZKZ64NSD7q/7o /lS0AFQXluLq2aEuUOQyuOSrAgg/mKnooAoPpzTO0k9wHkZUXKxhQNr7+Bn8Kjt9IMVyJ5LppnDq +WX0VgO5/vfp0rTooAyYdHkhl88XzPOGB3vHuGNpU5BPofbHpTp9GWaTc8qsu92CPHkYfG4HkZ5H /wCutSigDPbSo2hWPeCFMpwyZB3nPIz2pq6W2U33byYEe4suSxRiQc598d+1aVFAGamlyLDbR/a8 fZiNjrFtYKMcZB7gYPY+laVFFABXj3jX/kbb/wD3l/8AQRXsNePeNf8Akbb/AP3l/wDQRQBhU6N2 jkV0YqynII7Gm0UAd/ourx6lbjJC3Cj509fcVpZrzGGWSCVZYnKOpyGB6V1GneKEcCO+XY3/AD0U cH6igDps0ZqvBcQ3Cb4JUkX1U5qTNAEmaM1HmjNAEmaM1XnuIbdN88qRr6scVg6j4oRQY7Fdzf8A PRhwPoKANTWtXj023O0hrhh8i+nua4J3aSRndizMcknuaWaWSeVpZXLuxyWJ5NMoAKKKKACtrwxq tvpN9JPcK7K0e0BBk5yKxaKAPQf+E20z/nlcf98j/Gj/AITbTP8Anlcf98j/ABrz6tvQNHtNTika 4uJ0ZWwEihLkjGc5xjA6n2HvQB03/CbaZ/zyuP8Avkf409PGOmukjiK4xGAT8o9QPX3rzurNt/x6 3f8AuL/6EKAO4/4TbTP+eVx/3yP8aP8AhNtM/wCeVx/3yP8AGvPqKAPQf+E20z/nlcf98j/Gj/hN tM/55XH/AHyP8a8+qS3jWW4jjeVYkZgGkbooz1NAHe/8Jtpn/PK4/wC+R/jR/wAJtpn/ADyuP++R /jXM+LLPSbPVgujXSz2rRqcDOVbHOc+vX8aXQvDzazazzrPJH5J5C2zyZ6dCvfnp14zQB0v/AAm2 mf8APK4/75H+NMm8Z6ZJDIgiuAWUj7o7j61xN/amyv7i0LhzDI0ZYdDg4zVegAooooAKu6TqMmm3 qzp8ynh1/vCqVFAHpltdQ3cCzwOHjbv6exqXNec6fqNzp02+B+D95D0aursPEVldALK32eT0b7p+ hoA280ZqNXDLuUhh6g5FGaAJM0ZqPNLkmgB+aM1Su9RtLNczzqp/ug5Y/hXNap4kmuVaG0BhiPBb +I/4UAXfE2tKI2sLZwWbiVh2HoK5OiigD13wH/yJ9n/vSf8AoZroCwUFiQAOpJxiuf8AAf8AyJ9n /vSf+hmt24giuoHgnjWSKQYZG6EUASZopFUKoVRhVGAB2FLQBTS5sJiMGP53YKWXG9gCCQT14BGa k8izkVv3UDBwFOACGA6fy/Sqj6Oru7mfDOxJAjAHKlTx6nPX2FLLo8chwJmji2hdiIByEKZB7cHp QBZiNizGKIwEqFO1ccDnb/XFCxWUZUqluvl/MOg257+1VjpZ3b1uAkny8rCoGVzg4+jEY/GmnRID biLeSQyncVHO1NmDjGRjn60AaYZSSAwJXqAelLVW0sltZJmR8rJg7AuAMd/r/hVqgAooooAKKKKA H0UUUARj7q/7o/lVS/vjavBDFA1xczkiOIMFzgZJJPQCrQ+6v+6P5VnalBci+s7+1iEzW4dHhLBS yuB0J4yCB1oAdb6qha4ivYxZTW+0yB5AV2t91g3cE8fWnPrOloiO+oW6rIMqS/UZx/Osy70291Bb y4mt0jefyI0ty4bEaSbmLHpk5PHtVTWJlTWdSLnNqogMsKyIjybfmAUEZPb7uPTrQB0iX9nJd/ZE uomuP+eYb5qSDUbG4n8iC8hklwTsRwTgdayja6nPrFtNOjeVDeGYESKIxHggYXG7dzzmnWOmXEEG jKYkV7WeSSbBHAYPz75yKALy6tZpbwSXVzBA0y7lHmhgeccHvUo1Cya5e2F3D5yZLJu5GOv5d6xo 7PUIbPSrOSxM9vbrvmRJVG6QN8oOTyo6+5xUiWmqS6zaz3KsY7e6eTcJF8vYVYLtUDOeRnNAF211 m1vreGa0dHWSYREM4Ur1/M8cDvVlb+ze8Not1E1wOPKDjdn0x61lWljepaWFtJbhfsl8JS+8EOmX O4f99Dg021069SOzsZLdFS2vPtBuw4O8Bi3A67jnBz70Aa0Oo2M9wLeG8hkmOSEVwTx1qeOWOVd8 UiuuSMqcjI4IrFtNMuIbfS1MSK8F5JNKQRwrb+ff7y1rWm4QndbLbne3yKQR1PPHr1/GgCavH/Gv /I2X/wDvL/6CK9grx/xr/wAjZf8A+8v/AKCKAMKiiigAooooAckjxtujdkb1U4q9HrWpRABbtyB2 bn+dZ9FAGt/wkWp/89l/74FQya1qUgIa7cA9l4/lWfRQA55HkbdI7O3qxyabRRQAUUUUAFFFFABR RRQAV1vg8q2n3kf2+e3fzEkCoDhgvzEgBTk4B446Dr25Kux8GLOLG42rfiMyK5MKqseB/EXbpjrj vgCgDjqs23/Hrd/7i/8AoQquetWLb/j1u/8AcX/0IUAVqKKKACiiigCzqH/H43+6n/oIrpvCURud LngXTmuWZn2SB1BV9q7dpLDb/FkgHt6VzOof8fjf7qf+giug8MeUNJu2kMcYUsfNYwEr8nHDqX5P Hy0Ac3cwTW1xJBcI0c0bFXVuoNRVJPM9xO80hBd2LHAwPy7VHQAUUUUAFFFFABRRRQBLDcz25zDM 8f8AusRV1Ne1NP8Al6Lf7wBrNooA1W8Q6mRjzwPcIKrTapfzjEl3KR6A4/lVOigBSSTk8mkoooAK KKKAPXfAf/IoWf8AvSf+hmty5jkmtpI4p2gkYYWVQCVPrg1h+A/+RQs/96T/ANDNbd080dtI9vCJ plGUjLbQx9M9qAJFBCqC24gAE+vvTgeaapJVSw2sQMjOcGlHWgDKittRiZNsrKit9wMCCC7knnvg rimLbamXRmllVjGEZhKOMSZJx0yV9M4pU1N0haSSaMymQo0L/IsHJwWIGe3fqSKcNWmYFvsgVSuV 3vg7tgbByMAc4oAc0epvMY97RxBseYrrll35yOOPl4qIwayIVUXLEnaWbKlgdpzjoMZxT4dTnluh GkcTLIY9gJZSFKFiTx6ggUR6yJWjCpGoYqrM7kKpIJKk468YoASW21FixaaR13h9quF6SZAHp8nr V2wW5WJxdElt52sxBJX8OBVXT9SluJIYZ1j3ujElCeCCQQR26d606ACiiigAooooAkooooAiH3V/ 3R/KoJr22gu7e1llCz3GfKTB+bAyanH3V/3R/KkIBIJAJHQ46UAR3U4trWWcoziNS21RyapDVLQs HniCssQlEijzFALbRhgOea0JELoUDuhP8SHBH0qkuk26ch5eeX+YfOd+/J4659MUAOn1W2gDblmL rtOzymDEEhcjI5wSM0p1Wy814hNmRDjaqkknOMAY5OeOKjbSLZpp5t8webqQw+X5g3HHqB1zUd1o scsDpDIV3yCQhwCM5ye2eT9aAJf7YshGZWl2x4UqcHLZG7pjPQVZt7uC5L+Q5cIcFgDtz7HvVRdJ iaOPzpC0y7f3iAAZC7eFIIxirMFnFBcy3Cs5eQBTkjGB06D+dAFiiiigAooooAK8f8a/8jZf/wC8 v/oIr2CvH/Gv/I2X/wDvL/6CKAMOiiigAorqksNOlVYpUgjs2WLybiNx5jscb85P+9nI4wKiXQbR rK0uMSj7Qd3MwGFw52n5eD8ox65PFAHNUV0w0fSorzyhdFmWTO9pEKFRKqYIxycEnr26UW+hWUrw rK7Rb4A7nz0IBPQjjoBjI7ZxmgDmaK6UaZp04ARfLVo4nVPOUtK3lMSAxHy5YY+v4U19H0pSUFzK XyW4lQ4AZAV92+ZucgfLQBzlFbL2lr/bMOmSbEgSQ7pkcFipAOCxAGR9OMmrS6NpT2zT/a5EDKjY 3KxhyoPzcDPJI7YxQBzlFdbDoulQXrEO0wj6pJIgUDD4c/3hwvA9fpWFq1nDZyQeQxKSRB/mcFge +QOn68UAZ9FFFABRRWx4b0mHWL6SCaR4wse8FMeo9aAMetex8Q3tpaLZukN1aorIsU6Z2Bs7tpGC M5PQ10v/AAg1j/z+XH5L/hR/wg1j/wA/lx+S/wCFAHB10Gg3eiQ6JqqalZiW88sG2O9huJIGDg9j hvzrc/4Qax/5/Lj8l/wo/wCEGsf+fy4/Jf8ACgDg6K7z/hBrH/n8uPyX/Cj/AIQax/5/Lj8l/wAK AODorvP+EGsf+fy4/Jf8KP8AhBrH/n8uPyX/AAoA4zUP+Pxv91P/AEEVo6R4iuNKsJ7OOJXjmDhg WIBLADJA64x0Pqa6afwXZTSmRrqcEgDAA7DH9Kj/AOEGsf8An8uPyX/CgDg6K7z/AIQax/5/Lj8l /wAKbL4JsY4XcXdwdqk4wOw+lAHC0UUUAFFFFABWnoOnR6jess5YW8abpCrBTyQByeOpH4A1mVZh t7mW0lki3GMMquqnkkhiOO+NpoA1o/DEzMkb3KpMT86GNsKN5TOe5yvQdjUkfhxZLdVjk3yyEGN2 yo2t5eMjsfmNUlvNcWa3X/Si8C740KseMn5sd+p5qsv9o3MwXfcM8rAZZm5JAPJ+gB+gFAGhZaCl wzSrOzwJIo+aMoZF3KGxnoRuFTt4bjZZBFPkF9yOwK7UHmbgVPf5OKzJTrHmvG0l3IZJCpIZmEjL /PGP0p11HrEF1I0r3TSROqtKGY4bsN3r8360AU723FrdyQCVJQhwHQ8NUFSXAmE7/aBJ52ct5md2 ffNR0AFFFFAHrngT/kULP/ek/wDQzW3dXMNpbSXM77IoxuZsE4H0FYngT/kULP8A3pP/AEM10HWg BFYOqspyrAEH2pw5pKKAM1daiZV/cuHa48jZkcDON/06VJLq9olvJKrO5VSwTY2WGCQRx0wDz0pF t9MBEw8rlhEG39WD7tvXruzxRLpunxwsJUKJgkkyMCFAIIznO3BPHSgBW1a2yEV90gZQ6/3ckA89 8Zq3BOlxCs0ZJRxkEjGRUK2FsCWWMjcQ/DHGRyD7U+3iht828IwR85XJJ5J5P1INAE+aSiigAooo oAKWkooAkooooAiH3V/3R/Kq88NxJeW0sd2YoY93mw7ARLkcc9sVYH3V/wB0fyqvNewwXltauH8y 43bNqEjgZOT2oAW+jE1jPEfNw6FT5X3/AMKx4oNQXmOOaAtGEQRKFUASckryFYqc4+tbN3cLaWkt wylhGucDqfQVE16bZWF6io6oZMREsNoIB6gc5NAFO5bVFkkit1nbazlZDtIZdg289znP40kiXaTm eD7cwMKhRJjPEmWBHqV6etTJqyiRlmgdQoZi68jiQoB69hUsmq20ckit5mIg7SNs+VQpwST9elAF T/ibSJcSKZkYRuYY22gFi7Yz7hcYGfSr+nCcWv8ApEju+44MibWA7AinWd5FewmWHdtDFSGGCCKn oAKKKKACiiigBa8f8a/8jZf/AO8v/oIr1+vIPGv/ACNl/wD7y/8AoIoAw6KKKACpXubh4FgeeRol +6hYkD8KiooAKKKKACiiigAooooAKKKKACiiigArqPAX/IXm/wCuJ/mK5euo8Bf8heb/AK4n+YoA 76iioZ7q3ttvnzpFu+7uOM0ATUUYzTIZY54VlibcjdGHegB9FISAQCQCeg9aWgAopCQMZIGTgZ7m kR1k3bGDbW2tjsfSgB1FJkbtuRnGcd6U8DJ4A55oAKiuf+PWb/cb+VLBKk8CTRklHAZSRjIpLn/j 1m/3G/lQB49RRRQAUUUUAFaOnaq1ja3Vt5IkjuQA/wA2DgA9D25I/LHes6igDfXxPIXdpbcvukaX IlKkEuHAz6Ajp39qB4pn+yCFraMtjJcEg7t3X/vj5PpWBRQB0DeJ3dAjW2FKsjhZNuQQwGOMgjd1 yfpzVtvE9ubVZlhdbtZvM2Zyp+bOCT2x365rlKKALWo3hvrozEMo2hVDEEgAYAyAP5VVoooAKKKK APXPAn/IoWf+9J/6Ga27mBLq2kt5C4SQbSUYq34EdKxPAn/IoWf+9J/6Ga27kTtbSC1dEnI+RpBl QfcUAPUBVVRnCgAZOTTgcGmru2ruILY5I6Zpw60AY6aM6yA+euwSCYLt6PvyW/75wPrmmf2JJ5Kq 0yvIN4LuWP3k25Hoe9TRPqaMg2koG+YMmScu/Oc9gF/Oo/P1QASNHMSYsbBEMb9/Le3GD64oAe2k ygqI5wsauSoJbMfKnK89eCOeOaYukXCl2E8e9mQ7vm52ljlgepO7p04pwuNX8vzPs4yYx+62dG2Z znP97jFKZ9TMjhF/diPKs8BBY46kDoc9qANYmkqO3Z3t43kRkcqCyt1B/CpKACiiigApaSigCSii igCIfdX/AHR/KlyaQfdX/dH8qgmtmlvLecXU0aw7sxIflkyP4vpQBLMkUkDxzBTEykOG6Y75qmdN sriJctJKuCN/ns24HHBOeRwOPaptRhe4025hjALyRsqg+pFU/wCzbiF28idgSkj5B2J5p2hflHGA BQBafTbWQEMjYKspw5GQzbj+vI9KE020RJEEZYSKyvvYsWBOTkn3qhFb34kjLpcm23ZMX2n5wdo+ Ytnlc54z+HamG01Ty5maWd5S+QocBG+YkfxAgYwDjH0NAG1DEIYwis7D1dyx/M0+sWe21N2mCGQR tKGJEnzlcHKr8wGAdv8AdJq1YQ3cV3J57SSRmNcPI4zuAHAAOPU9Bz60AaFFFFABRRRQAV5B40/5 Gy//AN5f/QRXr9eQeNP+Rsv/APeX/wBBFAGHRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV1H gL/kLzf9cT/MVy9dR4C/5C83/XE/zFAHfVl6tujkSe384XixsseyIukgJ+43pkgc8VqUUAZHm3Qu vJZJw5vY3yoJQR4Gfm6YzkYqnZxTpbxxxm9gYRSidirELk/IVHTP07Zro6rx31tLctbxy7pVJBAU 4BHUZxigDKijL3GnTzQTKI3lTKtIQem1sHkA89ahDXzx3ZjjuYt1uTty5Kybx3b+LHpxXR4J6Zpg mQ3DQAnzFQORjsSQP5GgDFvbRleRGFzJbxXMMi/M7EAj5iCOTz+VOuWuNkqNHOytcybGy/yrtG3h eTk9O2a2wD2zSbhv2bhvxnbnnHTNAGCkV0H8/ZN9tk09QjHOPNAOQewPTr3pU802slus0pN0UhVX VwUJzvOX5+6DnHGa3jkdaQqCwYgEr0JHSgACqqhVGFAwB6Co7n/j1m/3G/lUtRXP/HrN/uN/KgDx 6iiigAooooAKKKKACiiigAooooAKKKKACiiigD1vwJ/yKNn/AL0n/oZroK5/wJ/yKNn/AL0n/oZr dmljgheaZwkaAszHoAO9AD6KryXtrFardSXEa2742yE/Kc9MfWrGD6UAFFRC4haWKJXDNMpePbyG Axk5/EVLg+lABRUcs0cJiEjbTK/lpx1bBOP0NFxNHa27zzNsiQZZsdBQBJRRg+lNldYYmlkJVFGS cE0AOoowetGCO1ABRRRQA+iiigCMfdX/AHR/KigfdX/dH8qKACiqA1rTTP5Auh5vTZsbPXHp61fI IoAKKinuI7cxCUkGaQRJxnLHOP5VLigAooxUUtxFDNBFISHnYqgx1IBJ/QUAS0UUuD6UAJRRRQAV 5D40/wCRsv8A/eX/ANAFevV5D40/5Gy//wB5f/QBQBh0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFdR4C/5C83/XE/zFcvXUeAv+QvN/1xP8xQB31FFFABWLFbzOL62ZruNpZZWj+XEQycq2fw9a 2qKAMJku57YT3NnIXuJfnjILeSoXA+UEZyc/TNNFvffZN7RymYWkAPPzMyuSw+uK0n1GONJCVJZS 2FH8QB25/PNSPfW8ahnZgDu6qe2cj68GgDMnFxM07NZzGKW4yu9SSq+WADtBHU/lTIrS5DQzNDJ9 saw8tZTzslGfvHPHFajajaqxVnYMudw2nK4zwfyNSwziWSRQMbQpB9QRkf1oApaPC8XmMfOUFVBS SMqAwzk8k5Pqa06KKACorn/j1m/3G/lUtRXP/HrN/uN/KgDx6iiigAooooAKKKKACiiigAooooAK KKKACiiigD1vwL/yKNn/AL0n/oZrS1qOSbRbyKJC8jRMFUDJJrN8C/8AIo2f+9J/6Ga2rq5is7aS 4mLCOMZYqpY/kKAOcvdOvHt7myFu7W1qGktsc7y5GAP9wFx+Iq0ttdS61KZ3mUGdsFY3KvCVwF3B toH4ZzW8DkAjoeaKAOZ0/Sw8GmQSW1xEkMEyzAsy/P8ALjnPQ44xxxSNFqD2w8+K8e7NtELV0JAS THzbsHAOcZz1FbSaihBMkTou1mUgg5CttP07fnSrqUDIzkOsYkEYcjg5AIP0+YUAZLW1y+pRu0Fy 10l6zmU58ny9rBO+Mcjtkc1Xe1vJNPdI7e8EptGW6EuSJJcrjbk8n73I4xW9LqMEN1LBIGHlpuLD nJ4+UD15B/GibUoIotwDFiGKqRjJHUex4P5UAZ00dydSkfy7n7SLtWjmBPlCDjIPOMY3ZHXNZdmZ 5rSeRTOLyazLRAFyZfnBLg5xnkDjHFdN/aVqSFVySenykc4Jwffik08WTeY9pBHG3HmFEC8kZ/rQ BnGC8OuSySSTpifdGyRswaLb93dnaB16jOafpaSRwCKaG6KpOmyUB1aU4+86k8Ad+xraooAKKKKA JKKKKAIh91f90fyooH3V/wB0fyoyMgZGT0FAGTcNOviC5eAEyjTT5fu284H51k2k159gnmtL1ZLk WTF4VkeSQycfMQw+VhzwK6qWRIYmlkbaijJPpTZ7mKBC7uOGCkLyck4AxQBz0y2Nxb2Udhd3EqNe w+Y/muxU7W7noT3x+lKVmLiyE9ysK6r5QIkbd5Zj3bd3XGTXRiRCcB1JPYMKZ9og8zy/Oj3bd2Nw 6Zxn86AOdMrxKLe4nnTT49QlikkLtkIFyiluu3ccZ+gp1q0r3VgUaSWBb2cWzyEktH5RxyeSM5AJ 7V0e9QCS6gY5OeMU1J4pd2yVG2na2G6EdqAOa0+4YtYPFc3El+2838bsxCAKc5U8LhsY6VBpCPqU T7LySK6ey+UG4cs8uc+Zg4AHQYHrXWSeVKjQuyMrgoy568cj8qrWum29rIkivNI0SGOIyyl/LU44 XPToPyoAzLG8/tC2uNSup57WBmihQISCrKRu493JX6CugPWobS2is7WO3gBEcYwMnJ9SSe5zUtAC 15D40/5Gy/8A95f/AEAV69XkPjT/AJGy/wD95f8A0AUAYdFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABXUeAv+QvN/wBcT/MVy9dR4C/5C83/AFxP8xQB31FFFABRRR7d6AK/2KBs713gsWAJ4Geu KbNp9tMHzHtZwQWB55zn+Z/OrORnGefSloAhW1hQkqhUngkMcn6889TSwW8cBbyxgNgY7AAYA/z6 1LRQAUUUUAFRXP8Ax6zf7jfyqWorn/j1m/3G/lQB49RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQB614F/5FGz/wB6T/0M10HSuf8AAv8AyKNn/vSf+hmt+gBaKSigCisOnTB12AgNtO/cuGznAz7n OBQ1vppmSErHv6qu49RtHr14Xj2p0unRTSbmfOJGkKkZHzAAj9BTRpabUUykhFKqdoyBuDde5+Xr QA+SCwkfc0cTszFy4PfHOT9KDZ2EjmTy42Jzzu65znv7mof7IhCKPNZQqgDgdu9Rro6yQlZJzhyx bywADnfgg9uHoAtx2VqUc4EiySmYnPBY/T6VNFbxQsWjTaSApOSeB0H0ot4Ft4RGuMZJOBjJPJqS gAooooAKWkpaAH0UUUARj7q/QfyqGS2gkuYrl4laaEERueq564qUfdX6D+VRSJcNdQvHOqQKG8yM pkv6YPbFAC3UIubaSAsVDrtyO1VRpUKzmXPJfew2Dk+Zv5/lVq6MotZfs67piuEHueM/h1rKj/tK 3kgsk3tszhuHDruXBZm5xgkeuRQBY/sdP9FCTFVgO7aEHznOcn88U0aNHtRWlDKq7SDGMEBwwA9u Md6rKdSvLcSFXYAll3BV52uOMdR93rzmppZNWWM+XE7S+Z0wmwLnjHcgj170ASyaT5kjv9owpYsi GMELlg2D/eGR0pJNI3BwtxsDli22IdG25H5qPpUe3UY3bb5zKGYF8KW2lyRtzweMdfenKdXxudgp KYKqikA7M59zu4x0oAkGkQi4jmDDKMWI29SXLZ4PXJxnmtGorYyNbRmZSshX5gSCQfwqWgAooooA K8i8af8AI133+8v/AKAK9dryLxp/yNd9/vL/AOgCgDDooooAKKKKACiiigAooooAKKKKACiiigAo oooAK6jwF/yF5v8Arif5iuXrqPAX/IXm/wCuJ/mKAO5MRN0s3nSAKpXywflOe596LpJJLZ44iFdh tBPYHr+lB8/7Uu3y/s+07s537u2O2KS6aVbZzCDv46DJxnnHvjNAFSK1vIgAsq7Y8KihyAVy3UfQ qPwqJra/RfMEn70kIMEnClj1+gOfwqea5nSTZbo7rtJ3yIevbn9OlPt57mVpd8QjULlQwOc4GM/r 0oAi+x3Ebny2+TexP7w5YFgcZ7cZq1bJMjS+a2VLZTLZIHpVVLm7B8x422kL8vlnj7wJH4gfnUcl 5eR/v3iISNCzx7CMj5e/rycD2oA1aKbHv8pPMxvwN2OmadQAUUUUAFRXP/HrN/uN/Kpaiuf+PWb/ AHG/lQB49RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB614G/5FGz/AN6T/wBDNbV1C1xbSQrP JAXGBJEcMv0rF8Df8ijZ/wC9J/6Ga2rr7R9mk+yeV5+Pk83O3PvjmgCUcADOaB1pBnAz170o6igD M+xXUduqRSAMWkLbTt5JO05A5xnoacLO8JQtcv1y2JCM/Pn/ANB4/wA5qsk+q5VCkjbZTIWKgb0J ICe2PX0xUwvb7bDmAF3PzYjbaox37gg0AJ9k1GQxrLIhRVXd85O4hlOcfgaFs78IEM5C7VyRIQch SMDHbODQb6/8ri1PmFcjMZx91v6gfnUhuNQ854xGmBIEDbCeP73pg/XigB0Fvex3EbPMXjBO4M5P BUfruz7YNX6y0u9RLxq1uo3YJYqwHIU7e/q3PtSLcaixiZlCfKSR5R2klMgHqRg0AatFRW0jS20c joUdlyVYYINS0AFFFFAElFFFAEQ+6v0H8qhkllS6hiW3d43DbpQRiPHTI6nPtUw+6v0H8qKAIL6d raymnRQzIuQD0+p9h1qq2pCCSOFpI7ksRmSMhc5baMLk7sd8dBWgzKilmOFAyaqi909QpEsQCrvG F6AnGenHPHrQBVXWiUMj2jKuzeD5gOfkLgfkDT11XDss1t5QB258wEcMqn6D5gfzqVNRtHMqgruj bbtIxkcDP/jwpY9RsJkQ+aiiRSQsi4JHOc5+h/KgCv8A2wGXckB2Eff3g4J3447/AHD+dNk1yOK2 aZowQpxt8wbjgZPy446cetW4r6zll8qNhnCkZQgHOcAZHsaRr7TsMzSwkAKSdueoyvb0oAr/ANrM kzo8aZEjxqA4A4ZQCxP3fvU+z1UXUyILdkR8qHLg/MF3dPTHer4EbruCoyuM5wCGH9aXCjoAPwoA WiiigAryPxp/yNd9/vL/AOgCvXK8j8af8jXff7y/+gCgDDooooAKKKKACiiigAooooAKKKKACiii gAooooAK6jwF/wAheb/rif5iuXrqPAX/ACF5v+uJ/mKAO5MpFysPkyFWUt5gHyjHY+9JdzG3tZJl UMVxgH6gf1pxniFwsBkUTMpYJnkgd6S5eOO3d5V3RgcjGc0AV31BY5zbtGxlG3PRR8xwOvv/AJ5F ImppIMpDKwyFz0G444z+NK7WL4jlWNMMpAOOvB7fh+lOiubWSSIKih3XP3R8oAB5/SgCP+0wAcws 2M5IIA/iPr6KaDqUbj5YJHUttBOAGxknr9KlW4tHkCLtO5QwOzg5JA5/P86T7TZCZEBjLSfxBeOg xk/iPzoAYupJt3OmFMgRfm5IOOcf8CFWbaQzWsUrAAuoJA6UIkEirIiRsDyG2j6f0qQAAAAAAdhQ AtFFFABUVz/x6zf7jfyqWorn/j1m/wBxv5UAePUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAe teBv+RRs/wDek/8AQzWzdTNb2zzLBJOVGRHEMs30rG8Df8ijZ/70n/oZreoAByAcYooooAzf7WCL K0sajyARKA3IfJ+UevyjP4ikOrEeYPL3N82wDjON3Uk+i1oNDE4IaJGDHJyoOT6mgwwsCGijIPYq KAKK6qHkiiSMPIxTdh+Buzn8QR0pF1ePyUcxO27CjGBlsKcYzx94c1f8iHk+THk4z8o5x0o8mIHP lJnAGdo6CgCsdRQR7hGxxG0jDI+UKcH68ioX1UxyNvhOxVLNg8rwhA9/v1fMUTY3RocZxlRxnrSm KNvvRofqo9MfyoApHUhuw0LRBWUOZMDGQx/9l61ZtLlLuDzUBADMpB9QcGn+VEF2+WmPTaKciJGu 1FVV9FGBQAtFFFAEtFFFAEI+6v0H8qWkH3V+g/lUUlskl1DcF5A8IYKquQpz6jvQAtykcltIkzbY yvzHdtwPrVSGzsBbskMp2AIdyycr8xZSD9Sat3MQntpIiqNvGMOSAfy5rNTTLsSNI94GZkCnOeCD nOe5xxk0AWo7WzuMlHaUq24nfk5O05P/AHwKb/ZlkJAhDFnQjaWzlef0G79ahh0yaGWNxMnyuGPX GAMHjv8A0ps2l3ElxNKJ1XfkA5bcQWU7T2AwuOKALjadExBaW4L4UbzId3BJB+oyR+NMGnWbRm2X d+7KMRuyVIXaDz7VXfS7goUW7ZU2DALEnfwDk+hUY/E019JnK4S4XlQMMzcHBAbIwSRnigDXVdqh QOAMClwfSsiPTbiSaVppcI0hyN7ZkXeDzzgcAgY9aQ6ROIRGt0dvylhvb5iAQTnn1H5UAbB4GTwP eismXSXfzD5ocu24h2YgkOGXP0AI49a1aAFryPxp/wAjXff7y/8AoAr1yvI/Gn/I133+8v8A6AKA MOiiigAooooAKKKKACiiigAooooAKKKKACiiigArqPAX/IXm/wCuJ/mK5euo8Bf8heb/AK4n+YoA 73aM7toyOM45pk6xvAyzECM/eycUht42uluSD5qqUB3HGD7dKWeMTQtGVVgezZx+nNAEX2a2mn89 RlwQcjp0H+AoS0gtsSgsqoCeW4HGCfyAqu2mvIP3twZGx1Yd8Dn9KG05yGVZwEbPG08fewBz0+b9 KAJhZW0ajDMueh3Y5zuGP1pp023e3KRlwGQhcsSBlQN2PXAH5Uz+znMxkeVG+YEDZwMbh+eG/SkG mn5Q8wYKQTxywBXg+3y8fWgC+iCONY14VQFH4U6o7eMw26RFt20YzUlABRRRQAVFc/8AHrN/uN/K paiuf+PWb/cb+VAHj1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHrPgb/AJFKz/3pP/QzW/WB 4G/5FKz/AN6T/wBDNb9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAElFFFAEQ+6v0H8qKyPC+qpq2 iQy7y00YEc2Rg7gOv49a16ACiiigAooooAKKKKACiiigAooooAK8k8ZkHxVfEf3l/wDQBXqt5dwW FpLd3EgjijGSx/SvFLy4N3ez3JXaZpGkIznGTmgCGiiigAooooAKKKKACiiigAooooAKKKKACiii gArqPAX/ACF5v+uJ/mK5et7wjqFrpuoyzXcmxDGVBwTzkelAHpFFYn/CV6L/AM/Tf9+2o/4SvRf+ fpv+/bUAbdFZ9nrFrfqxst823gkqVUfialKtJ/rXLD+6vC//AF/xoAneeGM4eVAfTPNN+1Q9mY/R G/wpiqqDCKFHsMUuaAHfaoO8gX/eBH86lVlYZVgw9Qc1DmozFGW3Bdrf3l4P6UAW6KrCWWP7wMq+ w+b/AANZ7+KdHjdke4dWU4IMTAg/lQBs1Fc/8es3+438qyf+Er0X/n6b/v21Mm8U6M8EiLdHLKQP 3ben0oA83ooooAKKKKACiiigAooooAKKKKACiiigAooooA9Y8DH/AIpK0/3pP/QzW/XD/DjU1MNx pcjHeD5seTnI6ED055/Gu4oAKKKKACiiigAooooAKKKKACiiigAooqG7u4LG0kuriQRxRDJY/pQB Y3r6iivOv+E/l/6B4/7/AH/1qKAOb0bWLvRbz7RasORh0b7rj3r0PTfGukXqKJ5DaTHgpIPlzj+9 0x9cV5ZRQB7N/bujf9BW0/7/AC0f27o3/QVtP+/y14zRQB7N/bujf9BW0/7/AC0f27o3/QVtP+/y 14zRQB7Kdf0YMF/tS1yf+mgx+dL/AG7o3/QVtP8Av8teM0UAezf27o3/AEFbT/v8tH9u6N/0FbT/ AL/LXjNFAHs39u6N/wBBW0/7/LVS98W6HZgg3gmcLuCwjfn2yOM/U15JRQBueJPElzrs+0jyrRDm OL3/ALxPrz/nrWHRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWx4e0VtVuS0mVt Yz87Duf7orJjRpJFjQZZiAB7mvT9Ns00+witU/gHzH1buaALEMUcEKwwoI40GFVRwKfmkzSZoAdm jNaX2CKU+VGrI4SJg7NkEtjj9f0qNtPA37Jw5VdwUDk9c9+2P1oAo5ozWnJpQ8w/vQgaXy0AXI+9 juc+9UrqAW5jw+9XXcDjHcj+lAEOaxvEGhx6rCZYgEvFHyt/f9j/AI1sZozQB5NIjxSNHIpV1OCD 1BptdR4108R3Ed/GMCX5ZP8AeHf8R/KuXoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAJba4 mtLhLi3kMcsZyrDsa9F0TxxZXcYj1Ii1uMhd3JR/f/Z/H8681ooA9whvLSeMSQ3UUqHoyMCKf50P /PVfzrwyigD3Pzof+eq/nR50P/PVfzrwyigD3Pzof+eq/nTUurd92yeNtpKnDZwfQ+9eHUUAe5+d D/z1X86POh/56r+deGUUAe5+dD/z1X86POh/56r+deGUUAex6h4h0jTgftF7HvBx5aHc+cZ6Dp9T XnniTxRc62xhVfJs1bKRjq3oWP8AT+eK5+igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA1fDMPna9bAgEKS5z7CvRM1574WlEev QZ/jDL+Yrv8ANAD80ZpmaM0AWkF1crtVndI8dXwF9OpxTWmuCWDSSknhssefaiG4jFrLbzK5R2V8 pjIIz6/Wrx1ONYYFAYs0ZErKcMDjapz6gfzoAge6vY4EjZiA67g38W3Oev1FVGdmxuYnHTJ6Vox6 skahRG5IVRvOCTgnr7HNZWaAH5ozTM0ZoAzfE8Qm0G49Uw4/A153XoniKUR6FdE/xKFH1JrzugAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigCW2na2uY50+9GwYfhXpcE6XEEc8ZykihhXl9dF4Y1hbZvsVw2ImOY2P8J9PoaAOyXBYAnA J5NbE9vabyrBYz5rhiGAKgfd6nv9KxM0FixyxJPqaANuPT7VYluC7PGW7kbQMd/x4+tRpZaez4N2 QADn5lyT8vI/M/lWT5jbNm9tmc7c8flTc0AarWtikCyfaWdvLLEAgZPHHtUxsbKa4KRTckk4VhjG W4H4AH8axM0quVYMrFSOhBwaANHUIEt4kVUZSJHUburKMYJ/M1QzSM7N95i31OaqajqEOn2rTzH2 Ve7H0oAxfGV6BFDZKfmY+Y/07VyVTXdzLeXMlxM2Xc5NQ0AFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAG7pHiKW0CwXQMsI4 DfxL/jXU2l7bXib7eZXHoOo/CvOacjsjBkYqw7g4NAHpeaM1x2latftL5bXLMoHRgD/OulhnkdAW bJ+goAuZoJwMk4A71j6hfXMMbGOTacf3RXJ3OoXl1/r7iRx6E8flQB1uo+IbS0BSIieb0U/KPqa5 G9vbi/n824fc3YdgPYVXooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKAP//Z ------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/image002.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAA0JCgsKCA0LCwsPDg0QFCEVFBISFCgdHhghMCoyMS8q Li00O0tANDhHOS0uQllCR05QVFVUMz9dY1xSYktTVFH/2wBDAQ4PDxQRFCcVFSdRNi42UVFRUVFR UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVH/wAARCAHLA1UDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDuLq9v hfzQW/kBIwvMgOTke1R/a9V9bT/vlqJP+QvefSP+Rp9ADPteq+tp/wB8tR9r1X1tP++Wp9FAEU1/ qkULyn7IQiliAG7VEuq6myhsWvIz0an3v/Hjcf8AXNv5VYsILT+ykuLhVAVSWdjgADuaAKv9qan6 Wv5NR/amp+lr+TVpW0OnXcCz2wjlibo6NkGpfsFr/wA8R+ZoAyP7U1P0tfyaj+1NT9LX8mrX+wWv /PEfmabHaWMm7ZGjbWKnBPBHUUAZX9qan6Wv5NR/amp+lr+TVo28WmXW/wCzmKXy2KNsbO0+hqU2 VmGCmNdx5AzyaAMn+1NT9LX8mo/tTU/S1/Jq1/sFr/zxH5msPxg6aVoy3FsojkNxEm7rwWGR+WaA Jf7U1P0tfyaj+1NT9LX8mrW+x2W8J5abiM7c84oSzspF3JGjL6g5FAGT/amp+lr+TUf2pqfpa/k1 a/2C1/54j8zR9gtf+eI/M0AZH9qan6Wv5NR/amp+lr+TVr/YLX/niPzNH2C1/wCeI/M0AZH9qan6 Wv5NR/amp+lr+TVr/YLX/niPzNH2C1/54j8zQBkf2pqfpa/k1H9qan6Wv5NWv9gtf+eI/M0fYLX/ AJ4j8zQBkf2pqfpa/k1H9qan6Wv5NWv9gtf+eI/M0fYLX/niPzNAGR/amp+lr+TUf2pqfpa/k1X5 ksIZhEYCXI3HAPC9zmn28On3IYwxhgvXIYfzoAzf7U1P0tfyaj+1NT9LX8mrRmt7WORUFruLAn72 P60RW9rJKYza7SF3fez/AFoAoQ6rf/aoElW3KSSBDtBzzVjU7+9h1CK1tFhJePf+8BPOccYqDUYo 4dVsVjXapkQ4/E1Je/8AIy2n/XL/ANmoAb9o1/8A54W3/fLf40faNf8A+eFt/wB8t/jSa/rs2k31 nClqJo5smVySPLUMozwCB97qcCnf8JPp5aNVExMhUA7OBuLAZOePumgBPtGv/wDPC2/75b/Gj7Rr /wDzwtv++W/xqCLxhp4t/MuFljKxhmYJ8hbCnapPf516461K3izTRH5gW4K+WknEfZjgd+3c9Peg B32jX/8Anhbf98t/jR9o1/8A54W3/fLf40mqa9LYagIDboIGh3pK7EeY390YB5A59eeKV/FOnxXE UEyzxySTNCoZByQQCevIyQOP6UAH2jXv+eFt/wB8t/jR9o1//nhbf98t/jWhqenw6lZm3mBxncpD EYYdDxXnMMGrSa02gEyC8W1RHbzjsXBBM4bOSSP4cd6AO1+068ekFt/3y3+NL9o1/wD54W3/AHy3 +NaWn2Nvp1ottbKViUkgMxY8nPU1ZoAxPtGv/wDPC2/75b/Gj7Rr/wDzwtv++W/xrbooAxPtGv8A /PC2/wC+W/xo+0a//wA8Lb/vlv8AGtuigDE+0a//AM8Lb/vlv8aPtGv/APPC2/75b/GtuigDE+0a /wD88Lb/AL5b/Gj7Rr//ADwtv++W/wAa26KAMT7Rr/8Azwtv++W/xo+0a/8A88Lb/vlv8a26KAMT 7Rr/APzwtv8Avlv8aPtGv/8APC2/75b/ABqVr6YSzN5yhY22DMTbRz37lvpxj61o2shmtkkZlYnu oIH5HmgDJ+0a/wD88Lb/AL5b/Gj7Rr//ADwtv++W/wAa0JxILjmWRUfAXbjAPpUlqJArGRmOTwGI yBQBlC6145xDbHHH3W/xpftGv/8APC2/75b/ABrSMy29tczuCVjLOcdcAZrJTxH5EFq1/bqkt4N9 ukD78rjIBzjntxkUASfaNf8A+eFt/wB8t/jR9o1//nhbf98t/jUSeLtOO1Jkmim8gTtGVBKgjIHX rj8Kc3i3TkjMkkV0ihdxzF0OMhevUgZoAf8AaNf/AOeFt/3y3+NH2jX/APnhbf8AfLf41bsNXtr6 5kto0lSaIEyJIuCnOAD9eo9q5nV3vLrWLqK7tmxFJGIVF00Q8ncMuMdSScE9qANv7Rr/APzwtv8A vlv8aPtGv/8APC2/75b/ABrAP2yw1JTYWbC5NyESP7a0gdcDeCD/AAjOd3Y/lXdUAYn2jX/+eFt/ 3y3+NH2jX/8Anhbf98t/jW3RQBifaNf/AOeFt/3y3+NH2jX/APnhbf8AfLf41t0UAYn2jX/+eFt/ 3y3+NH2jX/8Anhbf98t/jW3RQBifaNf/AOeFt/3y3+NH2jX/APnhbf8AfLf41t0UAYn2jX/+eFt/ 3y3+NH2jX/8Anhbf98t/jW3RQBifaNf/AOeFt/3y3+NH2jX/APnhbf8AfLf41K19MJZm85AsZ2DM bbRz3HUt9OMfWtC0kM1skjMrE91BA/I80AZX2jX/APnhbf8AfLf40faNf/54W3/fLf41flEizkPL Iqtym3GOnTpU1qJBGfMYkk5AJyQPQ0AZC3WutnbDbHBwflbg/nTvtGv/APPC2/75b/GtO3O0XDYJ xIx4+grmx4pnhgt727+zG2mikmEcJy6gbdqkk/e5oA0ftGv/APPC2/75b/Gj7Rr/APzwtv8Avlv8 agPjCxwT5E2MRNk7R8rjg9eg7mq/jy6mtLXT5reV42W4Y5U4ziNzQBf+0a//AM8Lb/vlv8aPtGv/ APPC2/75b/GuEk8bak+kzW75G2zWcSpIVkyXUY3fjXoXhm5e88N6fcyFi8kKsS7bifqe9AEH2jX/ APnhbf8AfLf40faNf/54W3/fLf41t0UAYn2jX/8Anhbf98t/jR9o1/8A54W3/fLf41t0UAYn2jX/ APnhbf8AfLf40faNf/54W3/fLf41t0UAYn2jX/8Anhbf98t/jR9o1/8A54W3/fLf41t0UAYn2jX/ APnhbf8AfLf40faNf/54W3/fLf41t1Xv5HitWeNmVgRyse/9BQBmfaNf/wCeFt/3y3+NH2jX/wDn hbf98t/jVm2mmEsUZeXbgZBiL9u7jitCRS8bKrFSRgEdqAMb7Rr/APzwtv8Avlv8aa11rqKWaG2C jkkq3+NW/LZlKB5EkB2sTKcL79eat3v/AB4y/wC7QBif2pq3/Tp+TUf2pq3/AE6fk1RUUAS/2pq3 /Tp+TUf2pq3/AE6fk1RUUAS/2pq3/Tp+TUf2pq3/AE6fk1RUUAS/2pq3/Tp+TUf2pq3/AE6fk1RU UAaWk391dS3EdyIsxhSDGD3z6/Siq+if8f17/ux/+zUUAPk/5C959I/5Gn0yT/kL3n0j/kafQAUU UUAQXv8Ax43H/XNv5VYgtmvPDL2qsFaaF0BPQZyKr3v/AB43H/XNv5VbsZRBocchBOB0Bx3oAxv+ EYv2iUNcW+RAItpaVgMNnbktna3fPPpSnwpdeUSL/bMYvL3gtwu0jb16Zx74Faf9pf8ATKT/AL+f /Wo/tL/plJ/38/8ArUAZP/CHyyInn3SkqMBVZwqD58qvPTLL1/u1e0/Qru11C3uZrmOcRhs7t2VJ 7rzjnvmrH9p/9MpP+/n/ANaj+0/+mUn/AH8/+tQBkT+FNQkCCO/jhjS685YI9wRR7HJIOcnHQZNP PhO4JLm4gM/75fPIfeQ+ME89eMHHGDWp/af/AEyk/wC/n/1qP7T/AOmUn/fz/wCtQBHomhPp9x9o nlSRxF5aKhbbH8zEhcnpyBzzxVL4h2z3egQQoZFBu497xxmQovOW2jk4rR/tP/plJ/38/wDrUf2n /wBMpP8Av5/9agDy9bTU5L15pNZ1JZLl3hnl+xy5EQ5U9OhIHA6Zr0vwRFJB4Q06KVGR1RgQ6kH7 x7Gpf7T/AOmUn/fz/wCtR/af/TKT/v5/9agDYorH/tP/AKZSf9/P/rUf2n/0yk/7+f8A1qANiisf +0/+mUn/AH8/+tR/af8A0yk/7+f/AFqANiisf+0/+mUn/fz/AOtR/af/AEyk/wC/n/1qANiisf8A tP8A6ZSf9/P/AK1H9p/9MpP+/n/1qANiisf+0/8AplJ/38/+tR/af/TKT/v5/wDWoAs3dvNLeo6I xRVzkycZ56L/AHvfpUtikqK/miUEnjzJA9Uf7T/6ZSf9/P8A61H9p/8ATKT/AL+f/WoA07pN8DYG XHK+oNJArK75XAJzn1+tZv8Aaf8A0yk/7+f/AFqfDqIaZFMbgFgM789fwoAi1b/kMWP/AF0T+Zpb 3/kZbT/rl/7NSat/yGLH/ron8zS3v/Iy2n/XL/2agC5fWOn3U8Mt5bJLJDzGWUnb/nAqsNI0QOXF hCGaQSn92eWGef1NO1S4mjnRI5Cg254+tZ6ajK65W7YjcV6gcjgigDQOl6MYjGbKIoQQV8s9CAD+ ij8qa2kaI67XsYmGwR8oT8o5A+lUv7Qm6faz/wB9CmSanLG0atcykyfd2ruz+Q6e9AGrNZaXPcef LaxvLs8vcYzwvpUS6ToqMjLZRgpIZVOw8OeSRVE6jKGVTefM2Qo3DnHWl/tCbGftZxjOdw6UAbk0 4MLiNiHKnadp69u1cn/wjESaNHPGuPEAVXa78x9xkyN2W7jqMYxV86jMrBTdtk9OR9acL64JwLpi cZ4I6UAbv2iP1P8A3yaX7RH6n/vk1hfbLr/n4f8ASj7Zdf8APw/6UAbv2iP1P/fJo+0R+p/75NYX 2y6/5+H/AEp0d5ciRP3zEbhwcUAbf2iP1P8A3yaPtEfqf++TWJfahNBJcSPcMkcZbOB0Aquuqszq gvTuaPzRyPu+ucUAdH9oj9T/AN8mj7RH6n/vk1zsmqSRyrG12+9uQBz6D+oqQ30463RH1YUAb32i P1P/AHyaPtEfqf8Avk1gNqEy7M3TfvDhehyev9KPt8//AD9n0+8KAN/7RH6n/vk0faI/U/8AfJrB W+nbG26LZ5GGBzUcOqSTruS6kxnALDbn6ZHP4UAa/kW+53E84dz97Jyo/ujjpViKSOOMJ5jvjuwJ J/SsJNRkkUMl5uU5wQw5x1pft83/AD9npn7w6UAbkkkUgXLMNpz900sBjGUQk9+QaxPtlz/z8P8A pVvTLmeS62SSs6lSeaANCLG2XdyN5zWfHpGhxSRSR2EKvExZCIz8pPpV1naO2uXX7yliKwrjVJLZ VMt1IAxwMLntnsKALdxoWiz27xLbLCWi8nfGhDBfTpS2+iaNBCiNbiZlj8rzJVLMV9Ccf5HFVV1K VgSLs4HfIFDajIhAa82liAMsOSelAGtBDaW97dXabvNuSu87T/CMDtUOs2Nrq1mYXd4pVyYpkU7o 2x1Ht6jvWeNRmLMv2ttynaQSBzjNN/tV/J84XpZMZBUg5HtQBb0DTI9KgL3Fw13fy/664ZTzznAH YZrX+0R+p/75Nc+mpSyJuW6bHJ5IHAOKE1GVywS8LbThsMODQB0H2iP1P/fJo+0R+p/75Nc//aM3 mLGLpyzZxjB6dabFqkk2dl25AOMkYB+mRz+FAHRfaI/U/wDfJo+0R+p/75Nc9JqjxjL3pUc8kjAx 6ntStqMyuifanLO20AEHnGf5CgDoPtEfqf8Avk0faI/U/wDfJrmhrO5QwvWIMvkj/f8ATpT5NVaI Ze9PTOAwJxnGfzNAHRfaI/U/98mj7RH6n/vk1g/bp8gfajyMj5hyPWmRalLMD5d0x+Yr1HOODQB0 P2iP1P8A3yaPtEfqf++TXMDXAW2/bJB3yV4798Y7GnjWGLbRdyHkDIXjJ98Y70AbPkW+53E84dz9 7Jyo/ujjpViKSOOMJ5kj47sCSf0rF+13X/Pw/wClH2y6/wCfh/0oA2ZXik25ZhtOfun0I/rT4DGF 2ISQOeQaw/tl1/z8P+lW9NuZ5LrZJKzqVJwaAL1rwZ/+up/pUH2PTiH/AOJdF85Jb/RxyT1zxUsT FYrph1DsR+VYFxftbojzXEoDuEBDHqelAG2bTTz10+PnH/LAdunbtVHxJpn9s2sMSx/NG5Yb9yjl SvYe9UE1IO8iC7kBjfy23OQN3oPWni+znF6Tg7T+97+nWgDJi8GTQ5MaQqxhEGd0h+UEHuvXiuw0 xDZabb2rK5aJApIU4/lWJHqAkUMl6xBJH+sPbrT0u2fBS7ds9MSE/wBaAOi84f3JP++DR5w/uSf9 8Guf8+b/AJ7y/wDfZo8+b/nvL/32aAOg84f3JP8Avg0ecP7kn/fBrn/Pm/57y/8AfZo8+b/nvL/3 2aAOg84f3JP++DR5w/uSf98Guf8APm/57y/99mjz5v8AnvL/AN9mgDoPOH9yT/vg0ecP7kn/AHwa 5/z5v+e8v/fZo8+b/nvL/wB9mgDoPOH9yT/vg1FcCO4iMbrMAe6gqfzFYnnzf895f++zR583/PeX /vs0Aa6wW6SrIqTrtxhVLBRj/Z6VZ84f3JP++DXP+fN/z3l/77NHnzf895f++zQBtlYy7OUlyxDf dPUDFLeHdYSnBHynqMVh+fN/z3l/77NaiO0miszsWbawyfrQBkUUUUAFFFFABRRRQAUUUUAWtE/4 /r3/AHY//ZqKNE/4/r3/AHY//ZqKAHyf8he8+kf8jT6ZJ/yF7z6R/wAjVa91SysJFjuZtsjDcFVG Y49cAHigC5RXLy6k+oC/1Gz1RYo7E4hi3gLKQMsXB55+6PStO18RaVd+T5dzgzAbdyMBk9t2MZoA vXv/AB43H/XNv5VNF/yLifh/6FUN7/x43H/XNv5VZtPK/sBPOzsxzt69eKAOc1FLsXcM9qruY0Yb AflbJA5+nX8KrwLqdvGsC7yERsMw3Fjlup/LFdB/oX/Tz+a0f6F/08/mtAGLKl5IfKLTZWRCGCDG 3jJz69eKjSbVXlVGieMFAGbaMA/LyP8Ax78q3v8AQv8Ap5/NaP8AQv8Ap5/NaAOenXUJigkikYqD gbRtPBHPvntUqy6mZEXawXzCC5TryMcdhjP+Nbn+hf8ATz+a0f6F/wBPP5rQBkML0X8oVpTEZARw CNuzoD/vVTdtUnh2SQyhSwxhRnqp59B978q6P/Qv+nn81o/0L/p5/NaAOeM2o2tmHKFQBt2YAC/d 7/UnrUwnvmtrV4d0rMjbvlAG7sSfT+dbeLL/AKef/HaP9C/6ef8Ax2gDCR9RePa/mruRtpVACG9G z09jSGTU9mI1l3bON8Yxjb1P+1u7elb3+hf9PP5rR/oX/Tz+a0AV1BVQCxYjue9LU/8AoX/Tz+a0 f6F/08/mtAEFFT/6F/08/mtH+hf9PP5rQBBRU/8AoX/Tz+a0f6F/08/mtAEFFT/6F/08/mtH+hf9 PP5rQBBRU/8AoX/Tz+a0f6F/08/mtAEFPh/4+Iv99f5ipP8AQv8Ap5/Nakt/sX2iP/X53DG7GM9u lADtW/5DFj/10T+Zpb3/AJGW0/65f+zUmrf8hix/66J/M0t7/wAjLaf9cv8A2agA1g4ukJ4+T+tc 9Jp0j7U+1oI1lMgATnlt2M5rp9UuZIpkRAmNufmXNZ/9pHGfMgxu2Z2r970+tAGBLpLtMirIqxLE EDDAwQDk465/pmrjWIKWgWSMG3z1BIOfT5s/nmtV76RF3P5SjgZMY70q3srAFfKIPQiMUAYf9koE CrOq/LtyF/2dpI5696U6bshAjeIyZTJZcrwxJ4J9+ma3Ptc3pH/37FIL2UswHlEr1HljigDGGmII DGJlJ7kjr8u3safZWP2WdpXuBKxXGSMHPGe+Mcelar30iAF/KUEgDMY6npSLqDPI0aNCzr95QgyK AIdy/wB4fnRuX+8PzqwLyY5wIjjr+7FL9rn9I/8Av2KAK25f7w/OnRkGRACCdw6fWpReykkDyiVO CNg4qSK9mWVDiM/MP4AKAKuoxiV7qIsF3swz6c1lNpCbW23OCTxnoBkELwegx+tdBeXzpPMW8pUQ kEso4A7kmoDqJDBS8GWGQNq8j1oAxhpKCTcLhQucgBeeqkjOeny8fWnLpgK4mnSQ4wPk4AG0Dv8A 7P61t/a5/wC7H/37FH2uf0j/AO/YoAyTZlVi8qdVaOQuN2SuOeMZ461WOlOsUx+0LJKysF4xgkAe p9K3vtkxJGI8j/pmKX7XP6R/9+xQBh6fpxt50nkkXIBGzPTrzwcc55460iaUojVGmj+XdtIU55IO eSeeO2K3Beylio8rI6jYOKPtk3pH/wB+xQBhf2Qu7mddu1lA24xknB69fm5p/wDZoe4kd3jWPflV CjJHy9T6fL0ra+2Tekf/AH7FH2yb0j/79igCkvmhwWmjK56Bccc+/wBPyrS0kg3vBz8h/pUX2yb0 j/79irem3UklyY2CYK54UCgC1LzZ3WP9r+Vc1dwtP5ZjmSNkJOWG7ggj1HrXTmQxW9xIACVLHmsd r91KhjCCxwuUHJ9BQBjNpUeyRVnxlQqnHTBB9falj00RgBZYiFkWQZTJBHUZz09PSthb6R92wxNt ODhAcH0oF9Izsg8osuNw8scZ6UAZU2npLctMZRkkEDGccqf/AGX9agTSFUr/AKQpCpsAAxjrg9cd DzW6b2UAk+UAOvyDikjv3lQPGYnU9wgIoAwzpKmVpBcAk8jcMgHPpnp6ipH04tv2zxpvYscR+qgH v7cVsfbpN23MW702DNIdQdZBGWhDkZClBk0AZNnp5t7p53uhKWJOMY7Y9aZLp0skMMH2xVjhYbQE 5IBGMnPXj/61bZvJhyRGPrGKBeysMr5RGccRigDBj0om3KyzRhmXGFX5Rxxnnk1NDYFL83T3IY7t wULgdD7/AO1+la737xgGRoUBIA3IByegoW+kZmVTEWXhgEGR9aAMb+yozLv+0HrnAHQ5yT9cYFJH pSIiqZkJ2lWJXORlT3P+zW0L6QsVBiJAyQEHSh76SMZfylGQOYx1PSgDEk0lX3D7Qqq3PC8g84AO fu88jvUtrYfZ7lZvPj/iLBE2g5OeOeAM1rPfyRjLmJRnHKCm/wBpcKfMgwyllO1eR6j2oAxU0x2i Mck6BCFBUDJJUnac59wanFo6Q+QsyNFvVsEYI5BPOfb9a0l1QPkrLbnC7jhV4Hr9Ket7Kyhl8oqR kEIOaAINy+o/Ojcv94fnVj7ZN6R/9+xR9sm9I/8Av2KAK+5f7w/OruknN7xz8pqL7ZN6R/8AfsVb 026kkuTGwTBXPCgUAWowTDdgDJLt/KucubeO6hEUudoOSPwx/WukiYpHdMOodj+lY8mpzRhTJcBN 7BRkAZJ6CgDKGlxBAomfptYkAlhgZ/E460xtHtmMZLMdnYgYPXr+dbKajcSKGScMp6EAUkmpzRKp kuQgZgoJA5J6CgDIk0mKVkLTvtTdhcDjdn/Gp4LRYr6WfPDIqKvpjqfxwPyrQTU5nd0S5DNGdrgA fKfSn/brr/nt+goArZFGRVhdQuHGVnDDpwBS/brr/nt/46KAK2RRkVZ+3XX/AD1/8dFH266/56/+ OigCtkUZFWft11/z1/8AHRR9uuv+ev8A46KAK2RRkVZ+3XX/AD1/8dFH266/56/+OigCtkUZFWft 11/z1/8AHRR9uuv+ev8A46KAK2RRkVZ+3XX/AD1/8dFH266/56/+OigCtkVrRAjQzkY+Vj+pql9u uv8Anr/46K0BK82jNI5yxUgn6HFAGPRRRQAUUUUAFFFFABRRRQBa0T/j+vf92P8A9moo0T/j+vf9 2P8A9mooAfJ/yF7z6R/yNYuuXb6RfwajBH58kyGB4BncwGWDDHZec+xrak/5C959I/5Gs+9t79NV jv7KO3mIhMJSZyu35s5BAPXv9KAOQs7K3u30xriymvJdQeRvtcTYW2+c/d49efmq5ol9Lfw2Ohy7 BbxSEmfnEoQ5EY4xuzgnHYVCml3MNnrTS6kbNoXZ5bWAExyZ+Zc5OSGzt4x0rW0/TdWGmadYTW9n DDbtHL5qSMXXBzgLjr1B5oA377mxuP8Arm38qmi/5FxPw/8AQqhvv+PG4/65t/KrNoqPoCLI+xcf e9OaAOb1WW7hcSW5cokLsyKM7ugH4jqKglvr77OwjQLIoGcxklQCvJ7HOT0roPKtv+fz/wAhGjyr b/n8/wDIRoAxb+7uYbxWiid4IlzKQBtJbOPfjg8etQx6pdOUHlRncARhW+fO3IHpjceT6V0BhtSC Dd5B4x5RpBBaAgi6AIG0fujwPSgDCtLu5QqkiMBjJZ1YlzgcD0PJpqahdu6SGMDqu0K2H5XH0PJ/ Kug8q2/5/P8AyEaPKtv+fz/yGaAMXTbq7kkSGaMBFTlmzvPA59PatOp/Ktv+fz/yEaPKtv8An8/8 hGgCCip/Ktv+fz/yEaPKtv8An8/8hGgCCip/Ktv+fz/yEaPKtv8An8/8hGgCCip/Ktv+fz/yEaPK tv8An8/8hGgCCip/Ktv+fz/yEaPKtv8An8/8hGgCCip/Ktv+fz/yEaPKtv8An8/8hGgCCip/Ktv+ fz/yEaPKtv8An8/8hGgCCip/Ktv+fz/yEaPKtv8An8/8hGgCCnw/8fEX++v8xUnlW3/P5/5CNSW8 NsbiP/S8/MCBsIyfrQA7Vv8AkMWP/XRP5mlvf+RltP8Arl/7NSat/wAhix/66J/M0t7/AMjLaf8A XL/2agBdY/4+0/3P6muaOlS+c7CVBG0nmhcdH3df++f1rqtVmRJURoEkO3OWNUfPj/59IfzNAGCm l3ASMPN5hVgxLyE4OQSw+uDx71IbC6IEZmHljGSGOT93I/Q/nW158f8Az5w/maPPj/59IfzNAGRB p8sUUiee+GXGA55PPc5xwR09KjXT7oGLdIny4+YMQVIUgfX1/Ctv7REDj7JDk/7RoNxEBk2kIH1N AGFHpdwrQFpdwjZWO6QnBBySPXP6VM9hK7TKXxHJN5nDkcY6YFa/2iLOPskOeuNxo8+P/nzh/M0A YK6VcLIG87AMnmOVcgsdqjP4EH65obTroyqqSFAsa5k3ty3zZwPfIre8+P8A584fzNHnx/8APnD+ ZoAzoIJbcuE2MjEEbmORwB/Q1bi3bo9wAbIzjp1qbz4/+fOH8zT4bmNZkP2SIfMOQTmgCrqURn+1 xDGXZl56day49LmR9wnGVGxD/dQEFR/OuguriM3Uv+ixnDEEknJxUXnx/wDPpD+ZoAxl0+by+SuQ qjb5jYbBy3PbdTItMuAT51w0mQo++QNoIyuPwPOa3DPGOtpCPxNHnx/8+cP5mgDBOlTZJEv3ihcq 5BbaCOv5H8KV9PufOjCOeAWaUu3B356dzt4rca5hVSzWsCgdSWIpfPj/AOfSH8zQBinTrhfLMc2C oTksTyAckjv1q1p1tJa23lyOztnJJbd/n1xWgLiIjItISPUMaPPj/wCfOH8zQBDRU3nx/wDPnD+Z o8+P/nzh/M0AQ1c0n/j9/wCAn+lQ+fH/AM+cP5mrmmTI1wUFukZK9VJoAtTf8eV3/wAC/lXMahaP dRx+W4R423qx7Njg/nXVbxHBcOy7gpYketY32iIf8ukI/E0AYJ0u5XYIplUBy7EEgkkDP1zzStpd wC/lzYVo0Ujcc5GMnPvzW758f/PnF+Zo8+P/AJ84fzNAGQmnMsF1GGAM6qNxYscgAc/lUd7a300v noVTEZXy43POc/1x+Vbfnx/8+cP5mjz4/wDnzh/M0AYo02bdG5ZCY33KpYkL97v3xuH5VHBpl3Hh mlRmGcAsSO/GfTJre8+P/n0h/M0efH/z5w/maAMB9KuHUIXXyxFs2mQnJ4PP4g8+9TPYXLOSsoXr tIY/Jknj3zkflWz58f8Az6Q/maPPj/59IfzNAGQ+nM9n9nLjaJQ4yScDHv781Cml3IlWSScFmYPL sYrubHX/AOtW79ojzj7JDn0yaDcRAZNpCB6ljQBiRaXJEq+W6xuo2qysfVv8R+VNOmXDMhMihFYE J5jYQggkj1zjv0rdNxEBk2kIHqWNH2iLGfskOP8AeNAGObOdbOCEncUkbvngggEnvjNQDRpfLVDK hEY2x8dF4O0/jn8MVvm4iHW0hH/AjR58f/PnD+ZoAxrjT57i4aYtHH5ihJFGTlOcj+X61ftozDbR REglECnHsKtefH/z5w/maPPj/wCfOH8zQBDRU3nx/wDPnD+Zo8+P/nzh/M0AQ1c0r/j+H+6ah8+P /nzh/M1c0yZGuSgt0jJXqpNAFpP9Td/7zfyrmru1W7hSNzhQwY/l2rqbXrP/ANdT/SlNpbE5NvH/ AN8igDh00iUQrHJOjEJtL7SCeMEfTvU8umCS3EPmFVDlgB0UZJGB7Z/Suw+x2v8Az7xf98ij7Ha/ 8+8X/fIoA4k6TIR806OzD5yVP3iOXHvnp9aU6OflAlGMgsORuPPJ9+R+Vdr9jtf+feL/AL5FH2O1 /wCfeL/vkUAcRJo7tsWOWONFLn5Vwfmz/j+lWbWy+z3zuABCEUIo6BiPmP6Cuu+x2v8Az7xf98ij 7Ha/8+8X/fIoA5+iug+x2v8Az7xf98ij7Ha/8+8X/fIoA5+iug+x2v8Az7xf98ij7Ha/8+8X/fIo A5+iug+x2v8Az7xf98ij7Ha/8+8X/fIoA5+iug+x2v8Az7xf98ij7Ha/8+8X/fIoA5+iug+x2v8A z7xf98ij7Ha/8+8X/fIoA5+tWH/kBt/ut/M1b+x2v/PvF/3yKS8ULYSqoAATgCgDAooooAKKKKAC iiigAooooAtaJ/x/Xv8Aux/+zUUaJ/x/Xv8Aux/+zUUAPk/5C959I/5Gn0yT/kL3n0j/AJGn0AU7 nS7G7u4rqe3V5osbWJPbkZHQ4PTNXKKKAIL3/jxuP+ubfyqaL/kXE/D/ANCqG9/48bj/AK5t/KrN pGJdARC4TjOT0GDmgDm9UvZ7NwybTEsLvJkZIxgA/gTzUMmryLAWSKMuBg7m6EFckjsOeK3jaqet zbHt94/4Un2OPn9/a/MMHnqPfigDJvb6S0uzuKtF5eVVSMlhycnqB6HpUZ1jDEfZy2wEsUbIOM8r 6jj9a2HsYZFIee1II2nnt6dKcLOMEET2oKjA56fTigDEnvZ2dVjdRkqWKOCMYY8HH+zSpq5Ix5PA 2rvdgBk45PoOetbQs41GBPagDsD/APWoNnEc5ntDkYPPX9KAKVhK89hBK5y7oCTVipvsyjgXVuP+ BH/Cl+zD/n6t/wDvo/4UAQUVP9mH/P1b/wDfR/wo+zD/AJ+rf/vo/wCFAEFFT/Zh/wA/Vv8A99H/ AAo+zD/n6t/++j/hQBBRU/2Yf8/Vv/30f8KPsw/5+rf/AL6P+FAEFFT/AGYf8/Vv/wB9H/Cj7MP+ fq3/AO+j/hQBBRU/2Yf8/Vv/AN9H/Cj7MP8An6t/++j/AIUAQUVP9mH/AD9W/wD30f8ACj7MP+fq 3/76P+FAEFFT/Zh/z9W//fR/wo+zD/n6t/8Avo/4UAQU+H/j4i/31/mKk+zD/n6t/wDvo/4VJb2o NxH/AKTAcMDhWyTjmgB2rf8AIYsf+uifzNLe/wDIy2n/AFy/9mpNW/5DFj/10T+Zpb3/AJGW0/65 f+zUALrH/H2n+5/U1y4sr2G5eSIZjZncgOAwJYZA+qj8DXW6o9uJkEkTO+3qG28VS32n/PvJ/wB/ aAMe3ivYhcyMGeV4h5YZxgMM8fXpk1WSDULZo7WMkquWVkbCjlTznn+9xXQ77T/n3k/7+0b7X/n2 k/7+0Ac9DBfzxxyyBugK+YwJB4yfpx0p0sWpyRpGFflGEhaQEMSCPXpnGP6Vv77T/n3k/wC/tG+0 /wCfeT/v7QBzxttTBDpuX5QnLAuFz0zkDrz16VsjO0ZOTjmrG+0/595P+/tG+0/595P+/tAEFFT7 7T/n3k/7+0b7T/n3k/7+0AQUqf6xP94fzqbfaf8APvJ/39p8MloJkzbv94dZM/pQBT1WIzrewgZL l1xnGcmsiG11GB5FUkqZBscOOgCgFvUYBGK7WTTraSRnKsCxycMRTf7LtfR/++zQByL2k506KIo7 zRyEjeysDycE5PI5+oqFV1WUbkaRULkNlgSeW5UZGB0612n9l2vo/wD32aP7LtfR/wDvs0AcdLaX c7J5gbKt8zbxgjep+X0GB0oWDU04DMEUKAqEDIyMgHPB69vxrsf7LtfR/wDvs0f2Xa+j/wDfZoA5 2wieCwhikGHVcEZz+tWK2v7LtfR/++zR/Zdr6P8A99mgDFora/su19H/AO+zR/Zdr6P/AN9mgDFq 5pP/AB+/8BP9Kvf2Xa+j/wDfZqW3soLdy8YO7GMk5oAZN/x53f8AwL+Vcpq1pJeRxLHtyjFjuAP8 Jx1/n2rrsosFwZBlAWyPUVj77T/n2k/7+0AYK2+pNIHld/lkJCq4AAwwB68jlc/SnLHqckbl2eNt mEG8fewoz/6FW5vtP+feT/v7RvtP+feT/v7QBkyx3otVRC7OHcZDgNjnaSfyzREl/GJmZt7sjbQW GA2TjHoMYrW32n/PvJ/39o32n/PtJ/39oAwIrXUbZFgQ5Rd2GRhjBGc89wc+30pHg1SaJ1kZ1/dj AVxyfQnPX/Oa6Dfaf8+8n/f2jfaf8+8n/f2gDHkt7m5tryCZWKSMAm5hnbnnp0xVb7JqSlpt375g qMVIztUnGORz3/Guh32n/PvJ/wB/aN9p/wA+8n/f2gDCFnerKzq771dyrFxg5K8Y9ODxUctvqcsT I+9lYYK+YuS3rn+77da6Hfa/8+0n/f2jfaf8+8n/AH9oAx2S5+zSCdWYCdSMnJZNw7CqkGnTwIFl t1nTq0YKgEkEdOnB7+/tXR77T/n3k/7+0b7T/n3k/wC/tAHONZ30cUjybZGaHyTg5bgDaf8AvrP5 1uc4561PvtP+feT/AL+0b7T/AJ95P+/tAEFFT77T/n3k/wC/tG+0/wCfeT/v7QBBRU++0/595P8A v7RvtP8An3k/7+0AQVc0r/j+H+6ai32n/PvJ/wB/at6Y9ubkiOFkfbwS26gC9a9Z/wDrqf6VPUFr 1n/66n+lT0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBff8AHlN/ump6gvv+PKb/ AHTQBz9FFFABRRRQAUUUUAFFFFAFrRP+P69/3Y//AGaijRP+P69/3Y//AGaigB8n/IXvPpH/ACNP pkn/ACF7z6R/yNPoAKKKKAIL3/jxuP8Arm38qmj/AORcT8P/AEKob3/jxuP+ubfyqzaxNNoCRpjc RkZ9jmgDBu7qSC4iijjD7xkjByeQO3Trnn0po1SLaHMUqoQCSQPlznGee+K1f7Pn3bvKXdjGdw6V H/ZDFlb7NHlRgHI4FAGZHqiEy+bG6BTkDAzt+Xrz/tVLDfGaeFFgcJKhcOSOgxg4z3zVwaIAFAtI vlORyOD/AJApyaS0bKyW0alSSCGHGevegDMj1RWj3PBIh2ljyCMbto79SajfWFcRNAjBGzuZl6fK TjGeta/9jkqy/ZY8N1G4c859fXmmjRACCLOIYGByvAoAzZtZghXLRS5JwqgDLdenPsaludRitpTF Ikm/AwAPvE9h61ZudBNyF3RbCucFGUcHP+JqZ9IZzl7ZGOAMlgTj86AM46lmHzIraVgGVTuwuCSO OT1GaX+0Yy6qsUpLkBMY+YZIz19R3rQOjk5zbR8gA/MOcdO9C6SyMWW2jDE7iQw60AZ01/5Nw6sC UU7QFHJOAfX3FRS6witGVifYGIlJA+XgnHXrx9K1jpDmV5GhVmbBOWHUf5H5U06KGbcbSInBGcr3 z/iaAM251aOFZNsLuyZwDgBiGwQDmpTqMYfY0cikuY0yB8zAgEDn3/nV0aKAu37JFjBGMjv170ra O7PE3kqDExdcMvDEYz+tAFe0mM9rHKwAZhyB0yDg/wAqmqWHTJoIUiSMbUGBlxT/ALDc/wBwf99i gCvRVj7Dc/3B/wB9ij7Dc/3B/wB9igCvRVj7Dc/3B/32KPsNz/cH/fYoAr0VY+w3P9wf99ij7Dc/ 3B/32KAK9Ph/4+Iv99f5ipfsNz/cH/fYp8FjcefGSqgBgSdw7GgB2rf8hix/66J/M0t7/wAjLaf9 cv8A2ak1b/kMWP8A10T+Zpb3/kZbT/rl/wCzUALrH/H2n+5/U1zJN/HJMkG8jczCR0JzwSFwfwGR 2rtLuxS6dXLspAxxVf8AshP+e7/kKAOTuZdRI8kIzAh1ZgmNwwcHjp2p2ycQWocSYE7l/vH5ecZx z6V1X9kJ/wA93/IUf2Qn/Pd/yFAHJmTVC0bHdgNu2iMDPDYU+2QvPvR9p1FLXzZmC4A6Q9ywGMH0 FdZ/ZCf893/IUf2Qh6zMfwFAHLK+ouiu4KkMMDZ7H5jj8OKfYzX8tyBcJsi2dCnLH1z257V039kJ /wA93/IUf2Qn/Pd/yFAGVRWr/ZCf892/IUf2Qn/PdvyFAGVSp/rE/wB4fzrU/shP+e7fkKVNJjV1 YyswBzjA5oA0aKKKACiiigAooooAKKKKACiiigAooooAqTf8ed3/AMC/lXL6iJPLjaLezK+di5w/ sSOn1rrEQSRzRt91mINVP7IT/nu/5CgDlhcagVQ7W3kncvlcZyPlz6Yyc00z6qu35Qf3QYjy+ST1 /L0711f9kJ/z3f8AIUf2Qn/Pd/yFAHLefqDXgiQN5J2jzGiweoyfyJ49qbGL2aO9MvmK7RhV2rt2 nLcL68Y5rq/7IT/nu/5Cj+yE/wCe7/kKAOQ3aorGTawKr5QyMjhhl8dyakI1DzC/mOWViwHl/Lja vA/HP0rq/wCyE/57v+Qo/shP+e7/AJCgDkbibU3hkTY6hgwJWLJQ4bCj1B4596leW5+w3Im3AIVA YDb8uRn34Heup/shP+e7/kKP7IT/AJ7N+QoA5RFmWfZIJ3txISXG4MxPTI9vbjpV2xJML8kgSuFJ 9M1vf2Qn/Pd/yFH9joP+WzfkKAMqitX+yE/57t+Qo/shP+e7fkKAMqitX+yE/wCe7fkKP7IT/nu3 5CgDKorV/shP+e7fkKP7IT/nu35CgDKorV/shP8Anu35Cj+yE/57t+QoAyquaV/x/D/dNWf7IT/n u35CprSwS2lMgdmOMDPagCW16z/9dT/Sp6gtes//AF1P9KnoAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAqC+/48pv901PUF9/x5Tf7poA5+iiigAooooAKKKKACiiigC1on/H9e/7sf8A 7NRRon/H9e/7sf8A7NRQA+T/AJC959I/5Gn0yT/kL3n0j/kafQAUUUUAQXv/AB43H/XNv5VNEceH Fx6D/wBCqG9/48bj/rm38qsW8by+HkRF3NjOB/vUAYV3drazRoYg2/kncARyBwO/WmvqNsssa8sj KWLBT8owCD9Oa0DYymVZTayF1BUHb0BqqNCQY/0W4/76bp6fTA6UAQWt/HOo3IAzHAVAWP1PFSy3 trCZA7YMbBT8vcjOPyqVNG8sqY7WdCpzlSR+H09qJdH86VpXtpy7Y+YZ+XHp6UAQG/tvkKK8is4Q MqcZPvSrfWruqKWLOQFGw8g5IP04PNT/ANkHJxbTjLB8AnAYdwPfv60Q6R5Lq6Ws25fuk5O0YIwP bk8UAP2j0FG0egqb7Ncf8+8n/fNH2a4/595P++aAIdo9BRtHoKm+zXH/AD7yf980fZrj/n3k/wC+ aAIdo9BRtHoKm+zXH/PvJ/3zR9muP+feT/vmgCHaPQUbR6Cpvs1x/wA+8n/fNH2a4/595P8AvmgC HaPQUbR6Cpvs1x/z7yf980fZrj/n3k/75oAh2j0FG0egqb7Ncf8APvJ/3zR9muP+feT/AL5oAh2j 0FG0egqb7Ncf8+8n/fNH2a4/595P++aAIdo9BRtHoKm+zXH/AD7yf980fZrj/n3k/wC+aAIdo9BT 4Bi4iI4O9en1p/2a4/595P8AvmnwWtwbiPMDgBgSSMDrQBLq3/IYsf8Aron8zS3v/Iy2n/XL/wBm pNW/5DFj/wBdE/maW9/5GW0/65f+zUAbNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUARQf8tP8AfNS1FB/y0/3zUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQBBa9Z/8Arqf6VPUFr1n/AOup/pU9ABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFQX3/HlN/ump6gvv+PKb/dNAHP0UUUAFFFFABRRRQAUUUUAWtE/4/r3/AHY/ /ZqKNE/4/r3/AHY//ZqKAHyf8he8+kf8jT6ZJ/yF7z6R/wAjT6ACisDXm1EXDpbyXqI6KYmtVB+Y bsqc9Mkrz6CtyIOIYxIQZNo3EeuOaAI73/jxuP8Arm38qngZk8OqVJBxjI/3qgvf+PG4/wCubfyq eFS3h1QoJOAeP96gDLku/LuI4Czl3BYfNwAO/Wm/2jbnH+mJ8xwP3nX/ADkfnTbuzS8CrLu2A52g dfx6j8Kij0uCNCoDcxmPIUDg49B14FAFgX0ZdlNwBhtg/edT6Uj6hAkLzG6zGhCsQ5OCahj02OJl aNpFIG0+4xg/niiLTYobRrZNyq2OQoBGOnbn8aAJxfQkgC7UktsHz/xen1qJdUhaWRRP8sf3n8zj pn1qObSoptgZpMKxbHqS2709aE0qJGBLysRgDPYDGB09hQBaW9heRI1ugXcZVQ/JFIL6E7MXa/Oc L+861Sg0t4NSNyjZQjoQSenT069/wpy6Pbh9xDN1BBUEYznA44/CgCyNSty4QXYJ2l87zjAODzUk d3HIwWO5DMw3AB85HrVdtPDKoaWUlV2A4HQEEdu2BUlvaLbu7rvZn+8SOpyTn8zQBY3v/fb/AL6N G9/77f8AfRpMH0P5UYPofyoAXe/99v8Avo0b3/vt/wB9GkwfQ/lRg+h/KgBd7/32/wC+jRvf++3/ AH0aTB9D+VGD6H8qAF3v/fb/AL6NG9/77f8AfRpMH0P5UYPofyoAXe/99v8Avo0b3/vt/wB9Gkwf Q/lRg+h/KgBd7/32/wC+jRvf++3/AH0aTB9D+VGD6H8qAF3v/fb/AL6NSW8ki3ERDt98Dr71Fg+h /KpLdWa4iAUk7x296ALOrf8AIYsf+uifzNWNS0v7ZdR3Au3gdU2fKByM571X1b/kMWP/AF0T+Zp/ iS7ax083CBSy4A3/AHQSQMn2Gc0AM/saX/oMXH5LR/Y0v/QYuPyWsW48QxWLPDcR/aHiX55ICNrN jIABOenfpmoZfFUcInklsZFiiQEgyLvLbypXHflaAOg/saX/AKDFx+S0f2NL/wBBi4/JawZvFlrF HLL9iuHjQqoZcfOzDOB+GakPiWEXHl/YbjZuA8zKgDlQTjOeC60AbX9jS/8AQYuPyWj+xpf+gxcf ktYmo+IksdRkiaFjDbq/mEYJdhtwAOo+91NTT6lcy2unXNmI4kupAjLPGSy5BPYj0oA1f7Gl/wCg xcfktH9jS/8AQYuPyWudHiV1Almt9kEY3OVILOPL3cDPHNbWmXqajYR3aRPEr5+RxgjBxQBY/saX /oMXH5LSf2NKcj+2J+Ov3ajup7dGjtpphG9zuSMA4Y8c49MDvWLZ3WnpffvNRnjeNju88hBcFFC7 v90fkTQBv/2NL/0GLj8lo/saX/oMXH5LTuKWgBn9jS/9Bi4/JaP7Gl/6DFx+S0+igBn9jS/9Bi4/ JaP7Gl/6DFx+S0+igBn9jS/9Bi4/JaP7Gl/6DFx+S0+igBn9jS/9Bi4/JaP7Gl/6DFx+S0+igBn9 jS/9Bi4/JaP7Gl/6DFx+S0+igBn9jS/9Bi4/JaP7Gl/6DFx+S0+igCMaLKOmrz/ktL/Y0v8A0GLj 8lp9FADP7Gl/6DFx+S0f2NL/ANBi4/JafRQAz+xpf+gxcfktH9jS/wDQYuPyWn0UAM/saX/oMXH5 LR/Y0v8A0GLj8lp9FADP7Gl/6DFx+S0f2NL/ANBi4/JafRQAz+xpf+gxcfktH9jS/wDQYuPyWn0U AM/saX/oMXH5LR/Y0v8A0GLj8lp9FADP7Gl/6DFx+S0f2NL/ANBi4/JafRQAz+xpf+gxcfktH9jS /wDQYuPyWn0UAM/saX/oMXH5LR/Y0v8A0GLj8lp9FADP7Gl/6DFx+S0f2NL/ANBi4/JafRQBGNFl HTV5x+C0v9jS/wDQYuPyWn0UAM/saX/oMXH5LR/Y0v8A0GLj8lp9FADP7Gl/6DFx+S0f2NL/ANBi 4/JafRQAz+xpf+gxcfktH9jS/wDQYuPyWn0UAM/saX/oMXH5LR/Y0v8A0GLj8lp9FADP7Gl/6DFx +S0f2NL/ANBi4/JafRQAz+xpf+gxcfktH9jS/wDQYuPyWn0UAM/saX/oMXH5LR/Y0v8A0GLj8lp9 FADP7Gl/6DFx+S0f2NL/ANBi4/JafRQAz+xpf+gxcfktIdFlIwdXnI+i1JRQBF/Ybf8AQUl/75Wj +w2/6Ckv/fK1LRQBF/Ybf9BSX/vlaP7Db/oKS/8AfK1LRQBF/Ybf9BSX/vlaP7Db/oKS/wDfK1LR QBF/Ybf9BSX/AL5Wj+w2/wCgpL/3ytS0UAT6Zposnmc3LztJtBLADGM+n1oqaw+4/wBaKAM+T/kL 3n0j/kafTJP+QvefSP8AkafQByPitoDqSxzx2pTywTuZlkbk8bgpwPpzXVw48iPaAF2jABzgYrlv E11cQawiLfeTEY1BT7QYsrzn+E4zxz2xXUxDESD/AGR3z29e/wBaFsDI73/jxuP+ubfyq3pd3BFp 0KSSBWA6Yqpe/wDHjcf9c2/lU+mW9q2miadFO0ZLHsAKAL32+1/57D8jR9vtf+ew/I1VsTpGoQed aGKaMHBK9j/kirIsrInAijJoAX7fa/8APYfkaPt9r/z2H5GkFlZHGIY+abLa2EUDzSRIsaKWZuwA 5zQA/wC32v8Az2H5Gj7fa/8APYfka5VtWzKZhY28dqpG5WR2cZ5ALDgMQR8vOMjNbWhoL/TEuL2w it5yzBokfdtwcYJ9fagDQ+32v/PYfkaPt9r/AM9h+Ro/s+0/54LR/Z9p/wA8FoAPt9r/AM9h+Ro+ 32v/AD2H5Gj+z7T/AJ4LR/Z9p/zwWgA+32v/AD2H5Gj7fa/89h+Ro/s+0/54LR/Z9p/zwWgA+32v /PYfkaPt9r/z2H5Gj+z7T/ngtH9n2n/PBaAD7fa/89h+Ro+32v8Az2H5Gj+z7T/ngtH9n2n/ADwW gA+32v8Az2H5Gj7fa/8APYfkaP7PtP8AngtH9n2n/PBaAD7fa/8APYfkaPt9r/z2H5Gj+z7T/ngt H9n2n/PBaAD7fa/89h+Ro+32v/PYfkarTx2UMyxfZCzHkkKcAeuf6dakgt7G4BKWxGP76Mv86AJf t9r/AM9h+Ro+32v/AD2H5GoZra1jkVFtEYsCRk4pIre2kmMbWaLgZyDmgClqMsc2q2LRtuUSIM/i at61NbQW/mXkkccGCGMpG3n1zVPUIY4NVsViQKpkQ4H1NWfENubzT5rUMFaaJ0DMMgEjGaAMxZNG +zG4T7IYUTaXVQcLxxx25H51beztX/1lrC3+8gPfP8+awbzw5JcXLzCaHcwKjcG+UFUHH4qfzq7o emXGmzXrXF39oE8m5TznqeoPfnt6UwJ4dF06G4uJ1twzXH31c7l9eAeBVv7Nb/8APCP/AL5Ht/gP yqTI9aMj1pARPa2zyNI9vEzuNrMUBLD0JpywxKiIsSBE+6oUYX6elPyPWjI9aAIvsttnP2eLONud g6dMU+KKOGMRxRrGg6KowBTsj1oyPWgDzXxxqEkd/ceYCxd/sybT9yJQrMPqxYZ9hXPNfSX8hnlc tJxnIzgDoMeg6Be5612fjnwtcX3lXWlruw58y3UYyzHlx+mfpUvhPwSuk3P23UnjmuF/1aJyqH19 zQB11oWazgL79xjXO8ANnHcDoampNw9aMj1oAWikyPWjI9aAFopMj1oyPWgBaKTI9aMj1oAWikyP WjI9aAFopMj1oyPWgBaKTI9aMj1oAWikyPWjI9aAFopMj1oyPWgBaKTI9aMj1oAWikyPWjI9aAFo pMj1oyPWgBaKTI9aMj1oAWikyPWjI9aAFopMj1oyPWgBaKTI9aMj1oAWikyPWjI9aAFopMj1oyPW gBaKTI9aMj1oAWikyPWjI9aAFopMj1oyPWgBaKTI9aMj1oAWikyPWjI9aAFopMj1oyPWgBaKTI9a Mj1oAWikyPWjI9aAFopMj1oyPWgBaKTI9aMj1oAWikyPWjI9aAFopMj1oyPWgBaKTI9aMj1oAWpY raSVA4dAD2INQ5HrTibaWBI51c7G3DAPXPtQBdtEaMyIxBIwciiltZBK8rrnHA5GKKAM2T/kL3n0 j/kafTJP+QvefSP+Rp9AHOeIbyRbl7SO6nUtEMwRxod6kMWILdMAHP4Vv2+z7ND5efL2Ltz1xjis LxGdU8z/AESQC3VV8xYdvnYJ+b73baDjHpW9EVMKFMlSoIz1xjvQBHe/8eNx/wBc2/lVrTYvP0R4 c7fMVlzjOMjFVb3/AI8bj/rm38qt6U4j0jeQSFBOB9KAM7/hFvKS1S1uhGECicupdpSCpzknj7gH fiqq+D3F0ipLHBDHbrGJUT94z4cMQc8A7gT61qjUmP8Ayx/8iGj+0m/54/8AkQ0AZf8Awhsm3Avk hJhkjIhiKhd3ZRu4X269ea1bbRWg8Lvo/nAsYnjDgEAE57EnjnpSf2k3/PH/AMiGj+0m/wCeP/kQ 0Achd2okvUa5R4rmPzFCEtlDJndhAp8w5J2kHB4zjFdtoFrLbaaPOQxySu0pjJyUyeAffGM++ag/ tJv+eP8A5ENJ/aTf88f/ACIaANqisb+0m/54/wDkQ0f2k3/PH/yIaANmisX+0ySR5QyOo808Uv8A aTf88f8AyIaANmisb+0m/wCeP/kQ0f2k3/PH/wAiGgDZorF/tIjrD/5ENL/aTf8APH/yIaANmisb +0m/54/+RDR/aTf88f8AyIaANmisb+0m/wCeP/kQ0f2k3/PH/wAiGgDZorG/tJv+eP8A5ENH9pN/ zx/8iGgC3dW0st6sioNqrncXPXngDsf9rtUtlHJGreYrLk8ZmMn8+lZ/9pN/zx/8iGj+0m/54/8A kQ0Aalyhkt2UDLdV+tJCjI7ZUAE547/WobeRZ7dZdrAkkEbzUq43Dhv++jQBmat/yGLH/ron8zWj qNybWxlmXO8DC4GfmJwOB15NZ2rf8hix/wCuifzNbErpHG0khARBuJPYCgDKXUZZbOyJkELSsUll ZcbSoOeD0yR3pk2r3C7GjjjwZCnzNwQJFQtnt1NaqyQTW6yAo0UgDAnoc9KV3hETOxUoASe/FAGR /b3l28zvGGMXGCwVnOew9Md6ZJql0+nG4hzua4KqAoJC7d2Oa1EubKfBV4nyvtwODz6dR1p8tzaw AeZLGg65JAH+eaAMtNfOGJtGZEIUyKwwWI4wOuCcAfWlOuPHI8bWjv5YZ5GDABQCenrgKa1S0CKz HYAPvHj8KVDDJ867G469wDzQBnQa0s1nNcC3KiNlQhmwNxOOT2GCDn3qsurXbx6lcpGm23hVo0LZ BPzZOccjjr6Vtb4SjfMhXHPIxioxdWnnCASRlzldo9Rjg/mOKAMltcmtzMJbfzsyERbHGOCowfbn rVm61SaCeILAG8yIMELYwTk8nnsKvyyW8cLvIUEaA7unHtQ9xbqYwzDLsEUYzyRkfTigDIj16UyB DabzJLtTY4BC7VOTnv8AN074pkWuzRFElge4ZgGJTAwNq5+pyelbe63O05j+blTxzj0ptxNb26q8 pUDJwcZwQCT+gNAGemsP548xIRA0aNuWXOCzY64xgcVCNeFxdw28KFSxRi2cjBK5X8mHNaH23Tgi fvYtskRlXjqnHP5kU6O8snuFiV1ErAYBQg+w6e3SgClPqrWq3c8rqfKkMaW/AJ6YOff8qYmumdlW KHaWIx8wJ/h4Yds7v0NaQubKW1N2HjaHGC+PQ4/nTIZrGNZpEKxgfvJGYbcZ7nP0oAzDr0jxwxBF WeSNHZkbcqklcjn2NGo6td21xewoU3EYtsrnBChnz68HNbaCEt8gQnA6Y6UoMbDIKkHvQBiyeIhF DJK1o4VX2DLAFuueO2Md6nXXIzkPFsYOU2lx1DKAPfIbPFaWIGxxGdxyOnJFNd7WOPzHaJUUk7iQ AD3oAym191AP2FjmHzjiQYAOcD9PwzRJr0kWVexJk3FVVZAQcMVPJAx939a0prm0hIMjxhtoIHBO CQM/TJqbET/L8jZGccHI9aAMqTV5hIipbIoMqpl3/h3bSenBzTbvWmtdRnTYXt4oyD8pA8wDdjd0 6HpWvuiOQShxyenamSpbzxNFJsZHXJGeo9aAMlvESqxU2wbbwdsoOT83K8cj5evvT5td8iRkktwG HGBJk7sA88dOcZ9a0hHarMZQIw7IBnI+6M/pyaefJJ58slgBzjkdqAMca3JcRxSW8KrllyjuAxBT ce3A9/alPiDAd/sbiJGUF2cDGepx1/Stf9yDn5Ac7e35U1XtpEMqtEyA4LDBGRx19qAJqKgiu4JX nVHB8htkhPABxnGfxqXzE5+deOvPSgB1FN8xP769dvXv6UjTRICWkQAAk5PTHWgB9FMWaJk3LIrL t3ZBzx6003MCxiRpkVDjljjr0/OgCWioJ7yCAgSSYyccDPp/iKkaaJFLPIiqM5JPp1oAfRTFljaM SLIpQjIYHjHrSLPE3mYcfuzhieAOAf5EUASUU0yIM5deDg89KjW6t2dkEyb15ZScEDOM4+ooAmop kUqS79hzsYo3HcU+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKAMWT/AJC959I/5Gn0yT/kL3n0j/kafQByniePGpiRorpI 2jXM63AiizyMElTg4Y9fWunt1CW0SLwqooHOeMeveuf8Qw2MuoIbzW0tcIMW0qhk/wB7aeD+PpXR RY8pMMGG0YIGM8daAIr3/jxuP+ubfyqxp/8AyAn/AN0/yqve/wDHjcf9c2/lVvSyg0cmQZTBz9MU Ac9qcNzcQpDbYUk7ixOMYGR098flVctqTMT5cnLg7cgDB6j6D171tZtf+eU//fYoza/88p/+/goA wxFf5iU+cERoydrAcYwR71HIdTtrXdlsABduRhR8vftzu5roM2v/ADyn/wC/go3Wv/PKf/v4KAMf bdzJaSRvIMxgSPwG6jP6ZouY72WG2QhydqmQLj7wIPPtjPStjda/88p/+/goza/88p/++xQBhiPV Eg2KSAoXGMZ5xkD6YP50901EIOZHZnIK8AbcD8u9bObX/nlP/wB/BRm1/wCeU/8A38FAGFHa3kBa RVky7fOVI3bfl+7+RpdmoyTEuJljVwQAw5GGH4j7tbmbX/nlP/32KM2v/PKf/v4KAMVU1LKpmRBw GIK4C/L933xuzT5TqIitAisXwPNIIx+P4Vr5tf8AnlP/AN9ijNr/AM8p/wDvsUAYM0OpPGsTmSRD tJwVzn5Sc+33qmvBqZuJzbMQOPKGBt7dc/j+lbGbX/nlP/32KM2v/PKf/vsUAYLPqbRTGFZyclRu Kgg54x/WpCNUUFiXYk52jb69B6DFbW61/wCeU/8A38FGbX/nlP8A9/BQBhhNTUFUDKecYK7cHd/4 9nGKmuY702JjUyOxd1JUjcVwdvXjrjNa2bX/AJ5T/wDfwUZtf+eU/wD38FAGJAupIwEvmeWGAKx4 yBzjB/LNNWLUgioEJK7Su4japGfzrdza/wDPKf8A7+CjNr/zyn/7+CgDGjXUi24tKEBBUPt3HkZ3 f+PY/Crlj5/2YfaA3mAnlupHr7Vdza/88p/+/goza/8APKf/AL+CgDR0/wD48F/3jViN1dhtZWwe xzUdqYjYp5Ssq88Nyc1jeEvu3P8AvrQBc1b/AJDFj/10T+ZrTvbc3dq0HmGMMRll64zkgVmat/yG LH/ron8zWjqM729jJJGGMnCptGTuJwOPxoAqSaMstjHaSS+YkZcqXXJwwYD8t36VFJoZL4inWOMn ldnQA5AHPHNI+rSwaXbSuF85maN/N+X5lB7DucfrQ+s3CKjG2UF2bamTubDBdo/2u9IA/sLA+WWM YO7/AFf3zheG9R8v60suhLLDIpeMF2Zz+7+XJ2449BtqI69PiMparLujaQhWxjGfl55LDvgU221q VN4l2Sl5D5ZUnDDOMLx0A5phsTpoKCd5WkVizs+SCSchsZ57buPpTrbRXh+1BrkOJoPJ+7jHGMnn 3p1lqdxPfi1kt1QeUHLBvUA8DqRzjp1FRWWrXEjWsUyRtJJgPtyD1YEge2OfrQA2fw7E6kROkYLF ioTAYZBwcduD+dPOgRksNyAZJU7OQSFGc+23r71Vm1y6jvJSsIZR+7Ee7Gw7mGWJwASAMfUVJPrk 0cj/ALrmNmQooLDtjoOTz0FCAfLoBkDZliOcjBjyCDu+Zhnlvm6+1K2gF2JNzt5OGVPmbOfvHPJG cD2qax1Oe4mRZIUCMp5Qk8hVY/hzj8Kij1x30ue8EKjypdnJ6rwc/Xnp1/lQBVk0KY3yExxSQMCW UAKqE5HyjOR/iTmrqaZONPtYXfdMN3nOe7OpDN+ZqNdWulWcmOOTy/NYgAghVIwCPXBzTJtbmkhu GtxChjBKF8neAxG4e2B+tAEi6AEZnW4OQcx5XhBkEL9Mgn8aln0u4uJJHe5Rd+GOxDkMAQMc9Of0 pP7Wd7kW8UaM/mbGOT8oyefyGfxqLT9Xkvbt2KMkUaScAcNjaQfryRigCddHEdtJClzIRvDx7jna Rg8jvyv60s2ny3a3iXBQefAIcqOP4ucH61Ug124mjEi2gZQfmAPLfNgbeoqSy1G5mtpph5cjNOiI ATtUFV9s8EmgNie30oxXUkzOh3Kwwq4PzY4JzyBjgVUk0KcWpjjnQ/IRt2Y6BtoBz0+bqfSnHWrp fIVrRS0pXkNgAEA45xz1/Ko4vEMkilltwRudV9WIUMOOvf8ADHOKQBHoE3nLukiRcBi0aYKNkHCe nTn1yamXQUMUiyNES8bIAI/lXIUZA9fl5+tNfXZTFNNDAskUY+8D1+YDPpgZJP0pw1a8IV/s0YXG WG4k8KpOMcfxUxFi60pbmWN38obYxGw2dgwbj24xim2Wji1vRP5gfCbV4I2+w5xiqy65dPvYWaqq s+Qzc4XqMDOD9anj1C7/ALPEhWJ5zO8RAyAoBbGffAH50DIU8PJEg8mVEk2gFhGOflKnP1zn8KVN AKW4VZ1EoXaH2ZwMEY57c/pS/wBs3C7A9ugckcAn5shTtX3+b9Krprl19oGIFkErKAA2Fj45Uk/x c/pQCIYvD1ysxiZ1aLy9ol9OQcDnOO2PSrv/AAjsPUMgbBAOzJX5VAwSc8bcinnUpoLWyBUPJLGC S+QXPAwPfnP4U+2uLoaDFO7lrhmUscZ6vg8H2oERJoCBGVpFYksQxXJyehOT1HtUzaT/AKGLdGiA WdpgrR5Vsk8MO/3v0FV31e8Xy3MMYXlioySw2FlUe+RVZ9YvPMjufLYps3GJCCG4fnP4Dv2pDL0O iCCyeBJVYtMsuXThsADDDv0pqaEBcpLJIjBJN+AmN/JPzc84zgegqNtZumjBCwQuDGTvO7KlgCwx xjHfNJN4hMatiAF1YKV567mBH1woP40wI4PD0v2ZRLLEjlNjKqcDjG4c/f8AerEmghmgAmURxhtw 2csW3ZOf+Bd/Sle6mEVoJbloI5Hk3y4Gcg/KvIwM/wBKh/4SFyzqsSDbIVUsSN+BnAH949MUAWrP SPs80kpdCXi8sbQRt4AwBnGOM/jUK+H1VQfMRnBBO6PIbBQjP/fH61WbXbq1juJJkDhVUxoVwxJL 5yen8OP8c1pWt8wtZppjkIHk2n72AxwPyGKPMPIrxaCI0ZfP5LElsHLZOeeetNt/D4hXaZI5AVZG 3oWzkAbuTw3FJa6pepCqTRFpUYmQyLtO0lcYA/3v/Hafea3Pb3N1GlkZBBjA3fM+cdB17nt2NAA2 iTGMItxGihANoj4J2qp79ML+tPh0ZotMFr54kYMjZdcq20AYIzyDiq39tzzS4RFYRuS3lEnOMjB4 74yKm/tmbypJPLjMcaFvMUkq3IAx7c8/SgCKbQZ2mZhLC4kfLBo+FG1hnGevzDH0p8nh9isgS4XM ibGZ48kjcWxn8f0qOPXLkxvLJHEisEZFbI2goTye+SMCrEerXDSQK1qF+0StGgycqVPO78Ax/CgC 7ptmbG18kyGQ5B3EY7Af0q3WNPqtwL7yEWNQk6o2cnKlTjkdCSAMVWudcmmjVLdVQsV+ck8n5MqO OvzH8jQGx0VFU9NvWvoZJDF5exzHg9dw4b9cj8KuUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGLJ/yF7z6R/yNPpkn/IXvPpH/ ACNPoAyNTt9TNzK1nbwXEc8IjzJJsMLc/MOOev14rUiUpCiM25lUAt6nHWuU8UmRNXQ/bERDGu6M ySrhcnO7YMBSccn0rq4hiFBxwo6HI6dqAI73/jxuP+ubfyqxp/8AyAn/AN0/yqve/wDHjcf9c2/l VvSwh0ciQ4TByfbFAGBe7t0GfMEO4+Z5ec9OOnOM/wBKr/ab9mKpHgerRn5evHXnIA5962tlp/z3 l/790bLT/nvL/wB+6AMbztROAFUHjJ8s852+/bJ/KmteagBtEBL44PlnHQ8/n2rb2Wn/AD3l/wC/ dGy0/wCe8v8A37oAxlnvFl+dGC52lhGTnBbGB2zgfnUK3GoTfM6Oi/OAoQjP3SOe3f8AKt/Zaf8A PeX/AL90bLT/AJ7y/wDfugDEa61E7tkQHU8xnggN8vXnoOfepbq5vYp0WG33oygk7c4zxj88fhmt bZaf895f+/dGy0/57y/9+6AOeB1Evgs4wysoKEgffzz37cfSrF3PfeUghQqzwEnamSj4zWzstP8A nvL/AN+6Nlp/z3l/790Ac/Pdai0+2OBmSNlYNsIz6/X1xTpJtRkkLKgURuxUBDyArYz654/Ot7Za f895f+/dGy0/57y/9+6AMN7i/dgRA3yndt2kYIzgZ7g1GlzqSyHbHuViz7njYZ46AdvxroNlp/z3 l/790bLT/nvL/wB+6AM22luTdPFMMqEVgwTAz3FW6n2Wn/PeX/v3RstP+e8v/fugCCip9lp/z3l/ 790bLT/nvL/37oAgoqfZaf8APeX/AL90bLT/AJ7y/wDfugCCip9lp/z3l/790bLT/nvL/wB+6AL9 h/yDx/vNWV4T+7c/761s2wiWxURMWXJ5Iwc1jeE/u3P++tAFzVv+QxY/9dE/ma15ZEhieWQ4RAWJ 9qyNW/5DFj/10T+ZrTvLYXds0DOyKxGSpwcA5xntQAn2i1khhundAh+aNnO3qPfvT/tNuGCmePcW 2Abhnd6fWs6fRy1tBbRzfu43ckyDcQrBhgZ6/e60p0OLYiLKQoLbsqCWBYN17HI60AXxdWxAIuIi C2wHePven19qGu7dVJ85DjIwGBJI6j61kQeHsW6iacCRoxG+xBt247e/+1T38Po8iN9pYIshcRhf lHPb0/8Ar0Aahu7dY0keVEEi7lDEAkYz0+lRw6jbTW8U4kCRyR+YrOQBt+vTvVe40hJzHmUhVjWM jaDkKcjB7e9OOkxFbVS5It0VACow2CDz/wB80AWVvbRndBcxFkIVhvHBIyPzqBbuyv0aJyNu4Lh/ lye2Pfiqx0GE7AZNyoVO1kyDhdvP4AfSk/4R+AzLI0hfac7WGR/+v3oAvQ3dgjraRTwhlXiNWHAB x/Ony3lvEpJlUkY+VSCcE4zj61Q/sQbVH2jlIxGp8sdAwZT9cjn1psegKsySNdOxVcfdA/iBP4ZF AGm9zBGzK88asuMgsBjPSmS3trEGLzphDh8HO3gnn06GqV5oq3S3CfaCiTvvYbATnGOvp7VDDoAy zTzZO5woVR90luvqeaANP7dbFUZJkcOVxsIP3jgH6U83VuJfKM8QkzjbvGc/Ss+PRVW7W4a4LMoU ABQOhU/l8v60suiQSTPLvId2LbgoyCWU9f8AgP60AXft1p5iR/aYt77to3jnHX8s0sl3bxEB5UBP bPPpWbFoKRq4+0Es+7LFB/EFH/soNTR6Qi7mklLuzBmbaBnDFv8A2agC7Bc29xGkkMySI/KlWBz3 pFu7ZyQtxExAJIDg4x1qjZ6Uba+WXzA0aQLGoAxluhbH+6AKjHh+3EYVZCpAUbgo5wpX+uaANBr6 1VoR5yMZjhNrA59/px1pDf22JSH3LFGJCy8gg56Hv0NZ7aBG27dOf3mS+FA5O7p6D5jxUqaOsNpc RRMoaWMJgLtXIJOfzNAFk6lbAkZc7QWfCE7AM9fTofyqKTWrCKFJWmOx4fPBCk/Jxz+tINMIMxSc p56kSjaDnJJ49MbjUSaDAiuvmuVYkgEAgDj5R7ZB/M0AW21G1W5NvvJkGzOBwN33ef8APUVY86Le U81N69V3DI71mR6MIFRYpmf51LGTrtDbh+WAPoKV9ChaS4kEhV5n37wvzDPUZ9CMj8aALzXlusip 5qksxXgg4OM8+nFE95a26M81xGiopZssOAOp/Cs0aBH588puHJlzxtHH3sflu/QUk/h9bht010zH a4PyActuyR/31+goA00u7dyAJkyxKrkgbsDPHrUkUscy7opFdc4ypyM1lyaFHLI7NOf3hDOAo7EE Y9ORV6ys0s42SM8MQemOihf6UAWaKKKACmlEZ1cqCy52n0zTqKACiiigAooooAakaRghFCgkscep 5NOoooAKa0aM6uygsmdp9M06igAooooAbHGkSbY1CrknA9ScmnUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGLJ/yF7z6R/yN Ppkn/IXvPpH/ACNPoA5rW7q2h1WSBtTNg1xGkU25FYOhDcjPTHIz7iuihVEgjWM5RVAU+2OKw9c1 ebT7wQx2S3HmINr+UzeWfVsA5HsOa3YiTEhJySoJ4x29O1AEV7/x43H/AFzb+VWNP/5AT/7p/lVe 9/48bj/rm38qt6WofRyrNtBBBPpxQBz+oXMtt5LRqGyWyp78cfrUB1GdMloFITIbaTkn5unt8v61 r+VH/wA/cP8A3y1L5Uf/AD9w/wDfLUAYw1OUMQYkYckSISVYL1I/T9ajGrTlDJ5ce0qMLnvuKk5z 04H51ueTF/z9w/8AfLUeTF/z9Q/98tQBDGxeJHIwWAJGc4p1S+VH/wA/cX/fLUeVH/z9xf8AfLUA RUVL5Uf/AD9xf98tR5Uf/P3F/wB8tQBFRUvlR/8AP3F/3y1HlR/8/cX/AHy1AEVFS+VH/wA/cX/f LUeVH/z9xf8AfLUARUVL5Uf/AD9xf98tR5Uf/P3F/wB8tQBFRUvlR/8AP3F/3y1HlR/8/cX/AHy1 AEVFS+VH/wA/cX/fLUeVH/z9xf8AfLUARUVL5Uf/AD9xf98tR5Uf/P3F/wB8tQBFRUvlR/8AP3F/ 3y1HlR/8/cX/AHy1AGjYf8g8f7zVleE/u3P++tbFqix2KBZA4OTuHSsfwn925/31oAuat/yGLH/r on8zWjqUksVjIYVZpWwqBeuScZ/XNZ2rf8hix/66J/M1rzyrBC8r52oCTjrQBmxXd6LG2AiZpgWS UOuSdoPpxk4HPTmqg1m/ESubZXLRswVFOcj19MfjWxDfW03lBZVV5VDrGxw2Pp+f5UPf2ce7fdRL tO1suODQBkLq9+1wkCwKS0YJfY20EkYPuMH9KdJfXzSCSP70LSB4vLbGBjAPqSOQfetT7faYXFxG xbO0BhlselNGpWhwfOUDGWO4fJwDg89eaAKd9qN5DePDDCHwOFKMeNud+emM8Yp1xc3gtrc7gjGZ 45CIz8wAYDHpkgfnVx7+3WSONZA7O4XCnOMgkE+3FK99aR7vMuYl2ttOWAwfSgDKg1DUY5rS2khV g2A0rKRnhSR9eT+VPk1O/W4uAtqrJE+wLg7jnhT9CcH6ZrRe/tkmWMyqSW2nkfKcZ5pWvbZWKiVG YEBgrD5cnHNAGS1/qMs/lpH80bHICsACNwCk9weDSnV9QaXCWiqjR+Ym9WyQc4/EYGR71rm8tlgW YzxiJuFcsMGq6ataMhcvtT7R9nVjzufpQBRn1HUoEO6GNzu2hwjBVG5hk898D86R9Q1IyR7lWJDM oYiInC7ypB+vBzWlb6nZzwRyidFDkKAzDIPp9aHv4hcm2VJJJQeVUdBgc/T5hQBUur3UI7qQRRIY UJwCjEkAKeue+4j8Kq3OqXxhmRU2Zyu8RMTG2G+X3PA5960zqtqt5JasXEiOqHK8fMCQQfTipGv7 UQmVZkdR/dYEn/OD+VAGbZXl9c30SSxGKOORlI5z91sbu3OAfxpq3d7d3tvGQUiWf94FRhjAb5Se /QHPTmtUX9mzEC5iJDbDhhwfSmRanZTRJIlzHtkBZcnGQOvX6GgDON7qQ85I04DOqlkJOSXwfTA2 j86j/tC+uFaMDhQh3opVmzjnHocn8q2jdW4WNjPGFk+4d3DfSmrf2bbNt1Ed52rhxyf8kfnQBj2u qX4XZNEI0TYjSOrMy8feI75/rTodVvYkVJ4zLIXZflhYHiQjGB6Lg1rLfWjMoW5iJbOMMOcdajm1 Ozih8zz0cYzhWBOM4zQBn2Wo3txFPdGB2ZIW2R4IDkHjj1NRz63cRMAgV08sMZTEyryQM4645P5V sPe2yCNjKvlyAsJNw24Hv+NEl1aeVG0k0XlyEbCzDDfSgDGTUr8TLM4YQ85HlE78KSuB1GcZqeyv r2e2nuvKO9YwVQghWwzZwPUgD9K0xe2hIH2mLkkD5h1HX8qjXU7N5TGkyuw2k4PABzg5/A0AZcup Xs0qwCFk3oJMqpBUbgRz9Dg++aUaxfPNEiWoAZlV2ZWADd1/nz7VsRXdtM6pHPG7MNwAbkj1pLu7 is0R5icO4QYGeT/SgDPury+hvJVhi3xqQcMpOR8gwD2+8fyqI6pfG2Myxq22Pcw8thtbcAV5/u8k +uK15LmCJ9kkyK23dgnnHrTDfWgUsbmLaoBJ3DAz0oAxn1q+WRkNuAFiDs2xsZ+Xp65B46dKlF/f XNnqBaEwtGp8sAHeDk9R9ADx61p3WoWlnGzzzqoVQx5ycE4zilmvrWGJpHuIwFBP3h9P50AY76ze h40SENuVz5jRsqkDOG9hx+tKdYvmY4gEceEyzxtkA4+fA7cnj2rYt7yC4gSVJFwyb8EjIHfP0qAa taNdCCORZP3TSllIICg4oApR315BYaeCjNJJGC29GJdsj5fY4JPPpSXN5ftpF07AxyKI2Vo1KkAn kd+g71oWep213brMHCAgMAzDocYP6ipTe2og883EXlZ279wxn0oEYMN7qTeSW89YhGYmk2ZG45w+ OpAwvOO/NTafdXLXlmHaV1ZShXcT0z8+SBuU8dcEcdc1rrfWjKrLcxEMdqkMME+lLHe2sib0uYmX 1DD2/wAR+dAzNF/qQJcwIydQixsG/jxzn/ZH51Xm1O+kEaxpuG8MrJGw87DDIH933zWpbapaXFus 3nJGrAsAzDO0HGaki1C0mMgS4QmM4bnGOAf5EUAUdIu7u8nEtwmxTFwozjOffv2/CteqrajaKzBp 0Cr1fcMA5xj60smoWiLMfPRjDGZHVWBIX1oAs0VTg1O1lhWR5Ui3DOHYdOOf1qRL+zkAKXUTAkLw 4PJ6CgCxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAYsn/IXvPpH/I0+mSf8he8+kf8AI0+gDkvFDSpq6EXqxoY1zH5sq4XJ zu2AgAnHJ9K6qIYhQDHCjocjp2rm/Ekz2d40guJLeG4iEUxjCSMw56ISGBwTyM/SujgCLbxLHnYE AXPXGOKEAy9/48bj/rm38qsaf/yAn/3T/Kq97/x43H/XNv5Vb0tDJo5QEAsCMn6UAc/qF41n9nYB fLZ8SE9lAJJFVoNXLSFJYWOWJBQcKnGCfzrbaxZxhmt2Hu4NIdOBIJFsSOh3DigDIj1mJwCYnUYb k8cjsP506TVUQOVhdwpC/Kc5JJAH6GtMaWi8BLUcEcFelL/Zo2bNtrs6bdwxQBnT6ikDRhon+ZFc 8gEZOAMfWo21QCZdqZj2/NyMg/Lj6/e6VqHTAZxMfs5cLtBLjge1A0xBjCWo2nIwV4NAGXYai1w6 xOoZ8AkjAAGB+fJofVkSUx+RKzhypVRkgD+L6Vrf2cAQcW2V5B3Dik/s0Zzi1znd94dfWgDL/tMl kPkfu3j3g7xnkgAfr+FPjvmnDtHEwEQ3Pkg7uvyj8utaP9mLjG21xzxuHfrThYEKVBtwpGMBxjFA GVJqkMdrDcFWKy5xg9COo/n+RqMazEyyMIJdqDIbHDHjAH1BBrY/s75Qn+jbV6DcMCkOmK2cranI AOWHIHQUAYZ1aZxIYo1K43IxODjKjGP+BVqW8wnhWUKVzkYPYg4P8qsf2aOOLbjp8w4p4snUYDwA egkFAEFFWPscn/PSH/v4KPscn/PSH/v4KAK9FWPscn/PSH/v4KPscn/PSH/v4KAK9FWPscn/AD0h /wC/go+xyf8APSH/AL+CgCvRVj7HJ/z0h/7+Cj7HJ/z0h/7+CgC9Yf8AIPH+81ZXhP7tz/vrWzbR GGyVWKkkk/Kcisbwn925/wB9aALmrf8AIYsf+uifzNal3bR3luYJS3lsQWCnGcHOM1l6t/yGLH/r on8zWjqLTCxkFurNK2FXacEZOM57Y60AQ2+k29uV8syYVgygtnGCxx/48ajTQ7OPzNoI8wuTgDPz A55xk/ePWorKXUw8CSowSPEbhl3FvvDdu/BfzqI3OtOZ8IIyHfaPKLYADYHYHOF/OgC1Jo6SXRcy uImGWQY5Oc+nSlOi2xjRA8ilH3qwIyG456f7IqpJd6ktwttlmcAnAixvG7Gc/wAPH8qaZtWWJHKS cEqfkJ2Lhfmx/EfvH8KALsejQJfG8Msrylg2Tjtn296QaJbCaaUvIzS5zkjuGHp/tH9KqrPqE+pR xtFL9nSRW3FCvYg/geDUhk1UOwiyAGYKHTOcl8HPoML+dADv7BgT7Q8cshllUgFyODhgO3bd+gp8 WiQR7CZHyqKhxjDEdzxyfr6mq32vV3kJ8sRI0RdQ0bEjOcA4HUcfn0qvNe6nBFJcsJuCrKjoAFBj x24PzevegDVGkRCzjtxNKBGWw2RnDZBHTAGD+FPGmwrAkKM6hJvOU55BznH0rGN/q1xbqIGkIMO4 yrD/ABBh04x6jHtViW61aOR1iidsMxQNGSHGW5J7YwuB3z+QBaOhWZmhlO4tEABuAYYGPUew5qw2 np9sN1HLJHKx+YjHI445H+yKrPPqCWPz7vMEpQyLFk7cZB2/XAqvGmorZ3E7NJHcSXMbHCAkJ8uQ B6YzQBcu9GtrufzmeVJN5fcjY6rtx9O/1pkOhWkUYQNJjay9h1JOcAdRkj8aorLrNsiRRqWVnzve MnZy3y8cnoOfermoT6lHJIbcfJuRV/d5wCCSeMk84H40AV7Tw9sTZcTZVZBIoQ5yc5ycjjoMAdOf WrbaLAyeW0spTGCuRzjOO3bcazpZ9XQyQQxyruErb9mcH5iCM/QDB9as/aNSSTCLIwLkrujP7wZ5 yf4cDmjcC1f6RDe+SWkcGAfIOMZ4wT+XaoItDCtHvuHYbAJenzkbcDpwPkHvUE0+reUInV33owJW LByUBH0AJI9aLi61G2CB3cZYReYIt2eTyF9aALz6PA6qvmyqoULgEDOM4OcdRk0y10O3tUZI5ZNr kF14wxDbgenHXtUFxNqSXVtNHE5keBd8ezKFs/MCf4cCo47jVwFnfe+ImbyliwGIYHHI64yBQBpP pcDrCCz4iYsvPq27+YqOfSlkWCJZWSKPeGxjLBuo6VRju9cLxiSBF6g/IcORjP0B5IPtT7W51h2g aRRtyu8eURnLYI5xjAz+VAE9xoFpcCJXeXZFuwoI7kn09zUsukxThvPmlk3qA3QZwCM8D0Y1C76k LpxHuEfmHqmcgsB17YHNUvM1eWBIZPMYCOMsTGVZ2yNx4GBg5GPSgDVt9MihvDdFzJMy7WZlXJ4x 1xxxSXmj2V5HHFLGRFGGCojFQN3U8f55rNjudWiQR+WyxqEUnyyzBeMv7nrxUyXWowlgwlmLSsFz D90blwOO20tyaALlxpaThwZ5V8xFV8EfNt6E8fn61V/4Ruy8uNCzlYwoUEKRwCMkYwTgkc0yyn1G a6eWWCQbEkCBlKgn5SAfxyKhuNT1OBUZY5GQRFpHeAgA4J6exAHvn8aANK70mC6fczun7vy8Jgcd u3OKY+iwvM0vnzBySVxj5ckk4475NVVm1NpIpGMwQOAcRf6xfnxkHpn5fSlsZ9Qkea4nhlysLBBt I3HORxxzQBYttGji+2I7lop0WJVzyqhcH8Seamg0uKGeScySPLIhR2bHOcdgPYVnx3estbiUQ7mU EBGjx5hy2CemOi/nTBDez2GGaclrzcSY9pZMenYZAo6gaB0a1IQMZCF4Iz94bQuD+QP1p1vpNvb2 kdsmQkbbxgAZOMc4HpVMy6x5OUJVsHAMW7oowOvck/lUkbXs12ltc7zEQ2WRNvKtwSffA4FAD5tC tZmiLSSgRlSACMcAAdv9kU7+xoAVKyyrjaDgj5gAuB0/2BVXUJtSW/doEciMEIojO3BC/NnueW49 qHutYWFh5YLKFPmCM4IbHIHXIw2RjuKAJpNAtXkjkMsu6NQE5HykHIPT1HTpUsukxy7ibiUFmLMR jnIAPbvgVQW41SB3Plty+/BQlX6Buf4QBkilgu9XuLdHjJAIDBzBjdnZxjPAGW/KgDR/suDchy/y Zxz7k/1NVbLRWt57vdIDDOhTg5bHQfTA9OvWojdaz5xQIAAoAJiJ3c4Leg+mamtZtQD3L3HmMVhB jjEeAWBYEj3OBxnvQBZGlW4LHc53Yzz6EH+gpkmj27hRvkUgggqRkYJPBxx941li41ZyZNk294ym 3yiAwBfnPG04we2alhGpqyAPNEDLySu4EEv1z2ztoEdBRVLSLqW+sRcyps3k7Vx2HH8wT9Ku0DCi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigDFk/5C959I/5Gn0yT/kL3n0j/AJGn0Act4hFs+rgvdw2M0cajz1U+cQQxwDkDHyn15rpb dg9tE4ZmDIpBbqeOp965nxSrjUYnVraUMgX7OtsktweeoDDkflXTxDEKDphR2x29O1AEd7/x43H/ AFzb+VWdP/5AT/7p/lVa9/48bj/rm38qtaYhk0YovVgQPyoAwb27Wz8ktHuV32sc42DGc1A2rQrb iXyZGJA4UDBPGQD6jIrVk06aUASWjMBkc47jB7+hqAaGqrtFgwXbtxnoOPfrwOfagCvcX8Nvex27 gAupYnPI64GO+cH8qaup2zY+SUHjOU+6DjBPsdw/Or0ukvMrh7NiXxluM8dO/aoY9AEZjItJD5Yw Mnr05PPPQUAVoNRjk+VozvC7mCDIUYByfzxUR1eIiRkiJUJlWI43fN8p/wC+a0TooPWxbpjg9R6d fYUg0JQQfsDdMcnPr7+5/OgCK1u4bpnWPJKdTjj8Pyqxgegp8Wmyw7vLtZF3HJGeP58VJ9kuv+fd /wBP8aAIMD0FGB6Cp/sl1/z7v+n+NH2S6/593/T/ABoAgwPQUYHoKn+yXX/Pu/6f40fZLr/n3f8A T/GgCDA9BRgegqf7Jdf8+7/p/jR9kuv+fd/0/wAaAIMD0FGB6Cp/sl1/z7v+n+NH2S6/593/AE/x oAgwPQUYHoKn+yXX/Pu/6f40fZLr/n3f9P8AGgCDA9BRgegqf7Jdf8+7/p/jR9kuv+fd/wBP8aAI MD0FGB6Cp/sl1/z7v+n+NH2S6/593/T/ABoA0LD/AJB4/wB5qyvCf3bn/fWti0ieGxVZF2tknHpW P4T+7c/760AXNW/5DFj/ANdE/ma1riZbe3kmYEhBnA6n2rJ1b/kMWP8A10T+ZrVuraK7hMMw3Rkg kZ64OaAIYNRtpvJXfsklUMEYcjrwe2eD+VR/2xZKSJJfLYMy7SCTwSO3+6afBpdrbkGJWUBt4G7g Hn9PmNINLtQzMA+Wbcfm7/N/8WaAHHUrEOw89dy4HAJzkjp69R+dKNSsizAXC5XJOcjgd/0qC30e CGTezyOVbdGC3CDIPH5DNOGj2gIz5jYZWXLdACSF+nJ4oASbWbGOF3SZZSp27V65/wA96kk1K1hu Hhmfy2UgAnocjNQrodkkeyMPGuSfkbHB6r7jipp9Ntp5nlcNuddpw2OMY/pQBF/bVkYPMWT5jv2x sNrMVJB/kacNVsmUpPIkbHd8jHOQCR/Q03+xLIy+YVYthl5OeGJOPblj+dI2iWLSvIUYM4wTnnqS DnqME0ATRalZs0kSsU8rAO5So+7u4/ClGowNdpbRsHcttYD+H5SR/Ko5dKglDb5Z8tjcQ+CcLt/U HBpLbR7S1u2uYw/mFt2S2fX/AOKNAD01OExGeVTDAW2pIx4bnH4fjTZtYsokdxIXVMlto5GAe3fo elMn0S0uIvKkaUxBtypv4X2H50kOiW6RsJXkkdgVLFsYB3cD0HzGgCd9RgE0cKHdIzKpXoVBBIPP 0qA63AA+YpNy3It9vGSScbvp1/KnxaPax3ZusyNKSGJZu4//AF0raPZPMZijbznnce7bv5/pQBIN TsiwX7QuSxTGD1GOvp1H50n9q2O4L9oXO7ZjB4Pv6dRUUGi2dujKgfDHJy3+7/8AEiqn/CN28dxH JA5VQSWDZJOcA/mBjn69aAL39sadhSLpTu4GAT3xTjqlhnH2lCQA2Bz1xj+Y/OmQaRaQKiorDZtx zjo2R096S30ayt33RIwOVPXuuMHPXsKAHNq1t5F3LEHlFsgdgq/eyu4Yz14pg1qz8wBmKxmES+Yf ujPRfrzUqabbpFLEu/ZKoRhu9Bj88VC+hWDxsnlkAuZOucMSDxn3HSgBBrlkZlRWJQsUMmPlBAB/ EfMOaln1ayhhlfzgxjB+UA5PXp+R56cUh0i0O/h8MCNobgZABx+AFMbRbRs/NKD90EPyq8/KPbk0 APfVYIrswSZQCJZCxyepOAMDnoadNqlslnNcxt5yw4DbPU479O+SewpZ9NgnkEhMiSKFCujYK4zj H/fR/OnQ2ENvavbwF4kY5yrcg8dPyoAik1a1TYu9TISm5Nw+UMRznpxmiTWbCO2e4E/mIisx2Asc DrxUceg6fGrKsR2MBkZ64x369qVNEs0h8lfMVDGY2CnG5T649M0ASrqtoZDG8ojbcQA3f39vxp39 o2ZtXuDMPJU7WYg4BqKTR7Z1l+Z98g5YtnnOQfzFQR6FC2lfYLly0YfcAhIxxjHOc9+vr7CgC2+q WSJI3nhjH1AB5PPT16HpUU2rxQtbb422zIrk5HygkAcd+T2pzaTbFFUGRCv3WV8Eck/1NS/2fbF4 3MeWji8pCeSq+3vQBGur2RyTKFTAKsejAjOfYe5pH1e0WVEDMwdgoZRkZJx/MdelI+jWj4/1g+QR nDn5kAxtPsRTzpVt8hXepjxtIbpht38zQAwava7I2LYLAMwP8KkHnPQ9D0qVNTspGjVJwWkO1Rg9 f6fjUA0W0CMhMpQ4G0v0wCBj8CaadHVdTjvIpNu05IOSff254oAlOr2a+YHcq6F8rjJO3P8APacU 8apZbQTNtJRX2lTnBxjj8RTTpVoWdirHe24/N3+b/wCKNMi0W0juRcZlaQBRlmz0xj/0EUAOl1ez UhUkEjkAhR6HHf8AEfnTY9Zs2jjcuEjKbmJ/hPy8Y/4EKgi0GJL2SUyExNj5ecnGMAn2x265qU6F ZNFscSP0IZmyeMY6+m0UAOutYt4JbZF/ei45VkYdMgcDv94cDtmn/wBrWZf5ZVaNVYs45C4x/jRL pNlJtJi2lV25T5T1Bzx3+Uc1C2g2LW/kbXVBnG0gY6cdOeg60ATJq9ixYeeFxIIwWGAxwDwe45HN LHqcEq3LR5ZLcAlh/Fxnio10SyVoiFY+UQVBOQMADv6hR+VOXSLUW8kDeY8chXcrPnhTwv0oAWHV LN7dHL+X+7EhQjlATjnHvx+FOOq2AIBuk3Fd2O/5evt1qvLoVqVPks8J527TwuWycfjSjQ7IOzgO JGAy+fmLA5DZ9c0ATxanaSytEHYOH8vBUjJwDx+BpbjUIYFt2wzidgqkDoD3Oe3T86Y+lW7uHZ5S RIJfvfxAAZ/QUtzpdrdoq3AaXYhRWZuRnHP14HNAD2vALp4REzLEAZJMjC5GRx1NNGq2BjaQXKFF AYkZ4zwPx9qLjTYbhpGZ5V8xNjhWwG9Cfeq3/CPWHlqm1yqjC5I4+bdnpzz68UATz6rBFLEoy6SR GUOCMFQM8ep9hT11KzaBZjMFVgG+YEHkA9PXBFLNp8EwhVy5ji+6gOF4GAagOjWrY3PMcKAPn6EA AN9eB+VAEtlqVteKuxwHZioQ9eP/AK3NNOq27XUFvC3mNK5XjIAABOentSW2lw216LlGYkReX8xy TlixJP40630y3t5UlUyM0f3SzZwMEAfQZNAEcWs2rRvJKTCquyfNyeOuQOR+Panz6raRQeYJA5Ks yr0LY6jnvxQdKtmlllcyO8gIZi3OMYxUc+iWU8/nSBy3zfxcc5z/ADNADm1VBHbN5XNw7IoZwuME 9z9OlL/bFgXjVZt28kbgDgYGck9hgdaedOh2wBHkj8lmZSrc89c/nUbaNZsgQq+0Lsxu6rtK4P4E 0APGrWDLuW5Vh14BPfH8+KG1WzG0iZSnVm7KNpbn8BUZ0iFbYQwu8fKfMMA4Vt3bvT10m1SAQqGC g565527f5UASpf2skphSZWlCb9nQ4/yR+dJb6hb3J2ROGl2bvL/AHGencfnUVnpFpZSM8KsCy7SS ck8AZz17CpbfT7e2dXjDZUEDLZ6hQf8A0EUAV7bV0lkRJoTAZM7csGyQ23t70/8AtW3aVEiPmBm2 kg/dOcHI6086ZbFNuHxz/Ee7bv51BBoNjBGUQSYOSTv5oAnXVbBioFynzAnv2z19Oh/KpLK8jvUk eIHajlMnjOMc/rVSLQrGKExBXKk5ILdeSf8A2Y1ctLVLSNkRnfc24s7ZJP8AkUAT0UUUAFFFFABR RRQAUUUUAFFFFABRRRQBiyf8he8+kf8AI0+mSf8AIXvPpH/I0+gDlvFJWK6Ep0uJsqqteyhyFBbG ML6ZzyQK6aIAQoFYMAowR0PHWuc12LUrjWFSzuMRlURohdGInIYlcYPXHXrwa6SNdsSLjGFAxnOO PWgCK9/48bj/AK5t/KrOnErobkHBCnn8KrXv/Hjcf9c2/lVrTVL6IyqMkqQB+FAGHdXMVqYRIrES vsyP4eM5PtUTanZpAJWYjgHaBkjOP8RVu4sPtKhZoJGAyMbT3GD/ADquNEiEfliK42AcDJ4PHP14 FACyXcMVy0LjaFTeXJwMew6mg31kCAZ0BIJwevH/AOqn3mmPdj5lnDAYXg4U9M/WmHRYizMYJizD 5mIOSc5znHXJoAhk1KFLhYghOeSc4wPl/wDih1qR9QswgZJFkJYKAvrkD+oqR9KV2LPFO7N1Jzz0 /wDiRTU0aNFVUhnUL2AIyMg4PHPQUAWdo9KNo9Kk8qX/AJ5Sf98mjyZf+eUn/fJoAj2j0o2j0qTy Zf8AnlJ/3yaPJl/55Sf98mgCPaPSjaPSpPJl/wCeUn/fJo8mX/nlJ/3yaAI9o9KNo9Kk8mX/AJ5S f98mjyZf+eUn/fJoAj2j0o2j0qTyZf8AnlJ/3yaPJl/55Sf98mgCPaPSjaPSpPJl/wCeUn/fJo8m X/nlJ/3yaAI9o9KNo9Kk8mX/AJ5Sf98mjyZf+eUn/fJoAj2j0o2j0qTyZf8AnlJ/3yaPJl/55Sf9 8mgDUsCTp65OcFgKyfCf3bn/AH1rXskZLFQ6lSWJwar6Rpv9neYvm+Z5jA9MYoAZq3/IYsf+uifz NaOoidrGRLZcyvhBzjGTgnP0zWdq3/IYsf8Aron8zWrdTrbWsk7DIRc4zjJ7CgDMsk1SN4ElJWOL EbKMMGHzfNk89AtRldXjeQxZCBm2phSDkuc+v9z86vW+qQT+QvzLJKoOMZCk54J6Z4P5UxtZtkEm 8PvTdlVUnpu4z0ydp4oArsNXDrEJZOpCybEwRnq3HGB0xUUr63L5agPH5ivu2hfl4IHPY5AP/Aqu nWrEbgXYOqhim35hnHGPXkU4avZlA+9gpcR5KkDcccfqKAKcY1aNQIdzb+8oGQQqnJ+pBFSRDVX0 yMPM4uGf5m8tQVXB4weOvGaki16xeONmZ42kTeEdfmA5xx74OKH1cJBBKYWVZJXRtwPyKu4kkfRa AKzNrSbFDO54IbauC3y8N6Ly3TnioLZNZFzvYyKJHUyMyKeQBlQB/D1569K1X1e0RgjM4cqrBNh3 HJAHH4imLrdgVQ+aRvIABUgnOMHHpyKAKU1rfp9gkiEgMMDKwG07SSuSM9W27sVYtjqptrp5mbzB HiBSq8nBwT79OOlT/wBsWJOElLtnAVVJJOAcf+PCmNrVrvh8sl45H2b8HqVyAPU9OKAKko1uNHCT O+SRuMaZUZHIAHJwT+VNaXXPtEo2v5a7NuEX5iDzg9gRz3xV6XVY4b6eCVGCxKvIUksSCTj2AFSH U4Db+fGS0YlEZboOuCR60AUg2rTSiNg8cYyHO1fm+/09vuVUurjV7Kz3vKY1bCchAI/u4OT6/N1z 0rU/tqzyv+sClWYsUICgY659dwx9ajOuW4lGceQRneT7dMeueKWwEcw1CX7PJbSOA8K7pdoBzyeh 4HbtUMY1pZRmSQB5dz7kDBRtX5R6DO7PpxV86zakRNGJZVkkWMMiZALe9PbVbNVRjLwxUA4P8XSm BlRRaxbtGkC7EIBO4BtzBVGDzwOvPrU8Z1JJlnLXUi+Wm6NlTqH+bgDrg8Vfi1GJo4C4Iklj8zYo LbR3J9qhbW7MRF0Zm+UnocZ54J6DlTQBSQ6xPeQrPE4hHls2QvBBU5yP+BZHtUl5Lq6vL5CylvN+ XCqUCdvfnv6VaGs2xi3lXQmRolDjG5h6e1PfVYIkg80OHlRXCohbGeB09+KAMmU6teW8piaYf6zY +FUq2HA2+33eT3qxH/ac2qKJY5PssbqylwAeARnj1znFXBrVg2/bNu2JvOB24/xH509NVs5AxSUl VyM7Tjhd38qALtFUW1eyVwrSEFmKjKkZxwfwzxTBrdiVLF3UAZ+dCuehAGe+GH50AaNFZ0mt2axN IvmSAKG+RDz04HvyKmutStbN1SdyhZSw4zwOaALdFZ/9rQPNDFEru0j7GypGz73X0OVPFINZtlEv mbgY5WiO1S3Iye3sMn0oA0aKotq9khbdKVCgncVOCBnJHr0qI65ZrcOjOBGAuG/vE5zx7YoA06Ky 31y0jlcNv8sAbWCn5zk5x6gbetTpqlm8M0qSFkhIVsAnknAx+NAF2is8azZGIyF3VQQDuQjGSR39 wR+FObV7NEd2dlVGAJKkdyM/TIP5UAXqKz/7asN2PNI+fYCVPPuPakGt2ByTI6qBncyEDpkcn1Gf yoA0aKzn1qzWFpFMjhUL4VDzgE4+vB/KpJ9Sht3QSK4DoGGAS2T2wKALtFZ41mxKqQ74b1QjA45P HA+ZfzpsWt2jIodiJSqkxqCxycccd+R+dAGlRWcut2DBD5pXeQAGUgnPQ4PbmnLq9s8kaIsreYSA dhAGBnJ9sCgC/RWYNbtXfEYdlADFyMKAW2nn1BFSDWLIsq73DEjgoeAcYJ9Adw596AL9FUpNSghu Ghl3AhtuQCfTk+n3hSy6lbQvIjFy0bBSFQnkjIFAFyis86xZ+Urh2G87V3KRkkAjr65H50RapF9h e7nHlohAOOewP9aANCiqD6tagPtLsV4ACH5z7evSg6rbxxW7Shw8yK4VELYzgDoPU4oAv0VnjWrB m2pKWbAICqSTnHGPXkcU211mCWLdKPKOA2OTwdv/AMUKANKiqMOrWc0mxXZf9p0Kr0z1PsD+VI+r W6sduXRS4Zh22jJx60AX6Kzm1uyBdEdnkUfcCkknGcY9fWnHV7WOK3adxG80Yk29cDGaAL9FZv8A bdmHwfMC7C5ZkwBggYOe53DH1p/9sWZj3q0jLxysZPbd/IZoAv0Vntq9qrZyxj5G/B5IIGB69acN XsmmMKylnDhMAd+f8D+VAF6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxZP+QvefSP+ Rp9Mk/5C959I/wCRp9AHPa+NBW8V7+KWa8KqFjgL78ZwvQgDk4yfWt+MYjQBSuAOD1HtVDVrGwul iN3bs7tIqLJHkOhzwcjkAGtBRtULknAxk9TQBDe/8eNx/wBc2/lVrTWKaKzKcEKSD+FVb3/jxuP+ ubfyqzp4J0NwBk7T/KgDNl1CSFo1eeYtIcKASSe5piaqrpvXUMrzz5vp1qG7gW6iWMyBQCDnAJH0 PY+9QHT4zG6ifBYbQcDgbi2P1oAvDUwzMovuUIVh5nQnkUf2mN5X7cSVzuxJwuOufSs5dLhCxr52 5UxwwBzhQvr7CobXSmQHzpkDK25Cvzc8denHA4oA2X1BkA3XjZI3KPM5Ye3rTRqfybzelRgE7pMY zyM1RuLH7Tcq7zKEEYU4AySDn8BTBpUPneY1wW4AAIHYH/GgDTOoEMV+2MWBAID5Iz0zSf2kCFP2 8YY7V/e9T6Cs9dNgUKBMeO/HPT/CoZNMZb23mglj2R4yG9tvbvwPbmgDb+0XH/PeT/vo0faLj/nv J/30ai3L/eH50bl/vD86AJftFx/z3k/76NH2i4/57yf99Goty/3h+dG5f7w/OgCX7Rcf895P++jR 9ouP+e8n/fRqLcv94fnRuX+8PzoAl+0XH/PeT/vo0faLj/nvJ/30ai3L/eH50bl/vD86AJftFx/z 3k/76NH2i4/57yf99Goty/3h+dG5f7w/OgCX7Rcf895P++jR9ouP+e8n/fRqLcv94fnRuX+8PzoA l+0XH/PeT/vo0faLj/nvJ/30ai3L/eH50bl/vD86ANqykeSyVnYsdxGTUy/eH1qvp4/0BPdiasL9 4fWgDN1b/kMWP/XRP5mta4giuIvLmUOmQSp6HByM1k6t/wAhix/66J/M1o6lHPNYyxW4UySAL8xw ACec/hmgBItPtIm3RxBfm3jBOAeeg/4EfzpP7MsyWPlZ3NuPzHk/N/8AFN+dU7G21KEwLI4CQ4Ta jDayjdzzz021E9lqjecqylEYuFVWAGG38/XlKALFzoVrNC0alhuKlt5LBtvqCevA59qkOjWbpCsq vI0Tb9xcgs3HJ/EA/hWXd/2xbW8j+fIqnYiBsEKOMksOc9e3pU3l6w0MDxSSHdKGJcqCE+Xgj3G7 PvQBfGj2IziNuU2H5z0ySO/bJx6VL/Z1t9nSEozIpYjcxJywIJJ753Gsu1stVt44lV2yFWNy7hie Wy2fbIIqRrTU5dMuo5p5DO7gptIXADZwpz3A70AXf7Kszdm6MZMpwc7jgYx2/AflQNKs1kjkWMq0 eNpDHoBjH0rOaPXmuJSjbIzKCAWU/JzkD3I2/rSpBrTDJmdcDOCy8vxnt93PagC8NGsF3FISjN/E rkEfMWyDnjk086VZGJYvJwituUAng4xke+Kom31d9486RBychl+9hsY44XO3inRpqUeowQtM7QsW ZycEgL05x3LfpQBcutPs5maSYEMxGWDle2Mde4JHvT/sFqbf7P5f7oPv2gng5z/Os6Sz1C4u0MzP 5SThyNwwcE4wPTGOD3pZLTUjdSmOQpEz5AUgAgnknj0oAty6XZOuHjIXG0/ORkEAY/8AHV/EUPpV lNGA6F+AA28546HPrx1rNgsdW2RxTSOYkjjUIxU5I25JbOc5B/ClhtdZi+UysIlCqI49o+XjOCT9 7OaANL+y7XOcSfeVv9Y33l6Hr1459aiOh6cXXMbblbeP3jdsYHXoMDioEg1ODeIvMcPKxy8inALK QfpjcMUmn2+q+fLNdYD7HWIkg7c7SBx2yDQBel0y0lWNWRgEQxja5GVPY+oqumhWKyE4kZNu3YZD jOW5PPJ+Y/Sqc41mNA6+aESFt2WVizYP9cYp32PUzPFOS52OCF8wBmGHADEdeq0AXn0eweZXZGLK xcDzDgE+2fUZ+tWDY25KEx8oFVeTwFOR+tZumW+prN519uLfdBDLnbuzg+3NSzW+pm5eWO4cLuJV Nw24yuO3puoAlOiWBR0EbKr4yFcjkd+vXgc0NotiwYbHG4AcSMMADGBz0wT+dUIoddUQb5mY790h +UADjIHPTqRT401sRKjZ3Yxv3r23cn3OV456UAaLabasyNsIKbsYYj73JB9qbJpNlJHsaI47fMcj AABHvhR+VVDa6jHIzRyvtBDdRlzhBzxz0aqth9vvdKk8yWZpxcRv8p24UFSVB/PI9eKANY6daSRF dpIYEZDnPQDr68CkuNKs7qcTTRs7hdmd56c/ryfzrMSy1eFEihmZIi25sbWK5ZjxnHH3as39vqE1 24jeQ2/7thtcKQQwJA9cjPWgC2NMtFuVuAjBwxfhzgsc8kZwfvH86T+y7F2eQRcyEsxDHDEggn8m NU0i1bzgZGkMW751V1yTzyvov3eOtNt7bVbfQWth/wAfQIVSrDhfb6e9AF06RYkMGiLKxB2liQMH PHoM8n1pi6VpoMaxqFZMFdshyBkn177jVRYNa2hpJXJb/WKrKMD5fu+h+9UNvpd/bqJFB8zaoPzj IGxQQPfhqBFu78P2s5Ro3eJlYsDktjr0yeMZJFXEsLWC3kiwREzbyGY4GDn8Bms4Qa55qYn/AHRI zuK7gCcHtyQAD9SaXVLPUbxp4kZxC2MYcBSvHHrnOfwoGW5tHsLgLviJx0w5Hcn1/wBo0txpFjOg WWI7V5++R6n19zUFzbX5vJnt3KRkArtIG4gcA8dM1X+xapzCJZPJxLkMVbcSWxk54GCMelAFiy0O 1g+bzGfD712nbg9+nXPf6CrLaTYvF5bQ5TAGNx7AgfoTWZFZ6xCzrFJsjwxRV2kEknqT36Yp5t9U hkuJYPObzCCqvKpwPLK/QENgmgDROnWmzYylsjblnOTwR/ImnvY28jRs6lmjAVSWOeP51n2sGptq Aku/9UjhlG4HHysDj81qORNaVYiC25XLStuUgjPYemPxzQBcfRbN543IYKi42Bjhvu4z6j5RxUia ZZRyblQgkqcbzjK4wcevArIitdVuYIpZWlAwjDLqJOqEjI7HDcVcs4NSa+Mt2BsV2KAkHaCOnHUU CLY0myDxusZVo8bSGPQdvpStpdoyhTGQAMcMRxgjH5E1RSLWNsOWkEgA3Euu3dn5uP7uOgqKeLVr a2aTz5pGwoIBUnkLnHHXO6gZoR6PYxoEWNioGCC5O75t3PPPNLHpNlGuBGxyMZZyTjIIGc9to/Kq Hk64RgSMDzgllIC4OAf9rOOelOlt9Z8xxHcvsVGEf3Tk5ONx9cbe1AGlJYW0sjyPHln6nJ9v/iRS Pp9tJdG4dWaU45LHjHoKy5LPVlkmeOaZm8vZGd64OHJGRx1UgZqxfW+oyzB7d/KzEAxVhncA/GSO mStAE0uj6e7xyPEQUxt+cjpgDvz0FPm0qzntTbPGfK3bsBiDnGOv04qreWN3cXSPukClIt21wArK +WOPXFLZQap5r/bJmKmLaFXbjOBznrnOe1AFg6bZTRgKpwOjJIQRzngg/WpTYWx8v93/AKtVVeTw FII/UCse007VLa18qOQx7YMLhl5k2KBnjnkNWjYQX0Ny/nzPJCQ2N5BI+b5eg/u0CFGj2ShgiOgY D7rkYI6Ec9eBzQdGsSEHlMAhGMOwzjHB55Hyj8qv0UDKyafaxlSsX3cYySegI/kTUMuj2UzSs6Pu kPLCRgR7DngVfooAotpFm287ZAXIYkSMDnpnr1Pf1p8mmWknl5jI8uPyhhiMrjGD61booAoy6TZS 53RtyCDhyM5x/wDEg/hST6TbTIiEyKqtuba5Bb5dvJ69Kv0UAU5NMtJIjEUKrhh8rEcEgkfoKZ/Y 9kI2jEbLGzhygcgZHtnpV+igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMWT/kL3n0 j/kafTJP+QvefSP+Rp9AGVqeoXcEkkFpFbsQn35JihViCRxtOeAT+FaNsxa1hZmDsUUlh0Jx1rl/ FKWramitDZzXDRj5ZZ3jIHPJIIAHX3611MICwRqAoAQDCnIHHb2oAjvf+PG4/wCubfyq1pjmPRi6 9VBI/Kqt7/x43H/XNv5VY0//AJAT/wC6f5UAUpNTli2+ZchdxwuUXk/lTlv7hl3LOCPUKv8AhVC8 t2uETY6o6NuV+cr9Mf14qp/ZRELokkakqVUhTwCxY/ic4oA2hf3BJAnBK8EbV4/Sl+23P/Pb/wAd X/CsIaO2EBnHBUsRkFyFA5P4ZqG0066WRWkBUmXMhyPmXrj8wvPfmgDo/tt1/wA9v/HF/wAKa+oz oVDT4LttHyLyfyrIm0x5Lqe4W5IdyCmSfl6cY9OD+dRvpEjTyP8AacI2Aq4PAAIH480AbhvrhQSZ gAOSSq/4Ui6hO+ds4bHBwq/X0rFfS55XUy3KYyxZVU4ORjFKdLkOz98gAAGAD8uNvK+/y/rQBt/b bn/nt/46v+FH226/56/+Or/hWPHpzx2c0CTAGQKM44yOp/Gol0h1jUfaAzgAEkH5gAvB56cfrQBt JqcsgUrcAh87fkXnHXtT/ttz/wA9v/HV/wAKyP7OP2OG381QI85wDg5Oary6S4CJCybSTuyDgcNz 1/2h+VAG6moTyAlJ8gEr9xeo4Panfbbn/nt/46v+FYR0hyxJuicqyjORgnPPv1om0feCI5vLUsSV XIyMkgfhmgDca/uFxunAyccqvX8qR9RmjGXuFXgnlV6Dr2rIOljcG3qSHD/MCckNkZ/Dio49IkVi 7zo7kvglTxuAHHp0oA3fttz/AM9v/HV/wo+23X/PX/xxf8KwzpLMTvnUjnsfm+9gtz1G79K00G1F UnJAAJ9aALP226/56/8Aji/4Ufbbr/nr/wCOL/hUFFAE/wBtuv8Anr/44v8AhR9tuv8Anr/44v8A hUFFAG1aSvNZo0hy2SM4xUq/eH1qtp//AB4L/vGrK/eH1oAzdW/5DFj/ANdE/ma1Ly4W0tJbhsYR c4Jxk9hn61l6t/yGLH/ron8zWvNHHJHiVQyAhuenHNAFK11eG48hdjbpVBJXlVY54z9VNRvrcKea GhkZ03fdHGRuwMnudhq5HaWqnzI4k5bfkevPP6n86QWNm24iFDuJJ9zz/wDFN+dAFJ9bjOUijbzV 27lccDOMjI7jIpbbXLefbGqSPNwCqLwWxyAT6YPWrX2GxhBLRqoOAdzHBI6dT14FIunWJXKQjaxD DaxA+owePw60ARQaxDLFveKSI5IwwB/jKZ4PqKbBrME/myj5YIoy7E9QQSD0qd9LsXI3W6nBJAJO OTk8fWlhsLGBXgjhQb1IZSckg+uaAIZNYt4pBHJFMshXds2gnqBjg9eRUa63G1ysYgk2ndluBswu TkH6Y4zTzpWm3MZKKCD8pdJCTwR3z14HPWpjptgR5fkJ06Z5xjHP4E0AQwaxDNFPcBW8iJA3Ay2c sCMf8Bpra7axxSSSxTRiPqHUA8Eg457EH+matR2VlCjW6RIBIvKk5LDOf5n9aSfTLK4UiW3Vgc+o 6kk/nk/nQBFFq0Lhi8UkeGZRkA7gGC54PqRUZ1pfMjC2szLIARjG7BDHOM/7P1qy+mWTsGaAEht4 5PXg/wAwD+FP+xW25GEQBTbtIyMYzj+Z/OgCF9UtxbC4RZJUL7F2LkscZ4qIa7abAxSZRgM2U+4p xhjz0+Ye9WLawtba1hs1UMkWWUN1zzk/qfzofTrEkO8CfJg59hjr6j5R19KAKceuwmcpJFIqsyiL 5eWBAO7HpyPenHVXWC1kMSnzI/McA9PmVeP++v0qxBp9htWSGJcE7gyseePXPTHbpSta2bTxR5UN EmBECPu5B5H1AoAqvq7wpazTwIsFw33w/wDq1xwTx64/Ooo/EA3oZrYxROHw27JBB+UYx/EP14q+ 2nWIidHgQxtkFWORg9Rz0HtUj2No/wB+BG+YNyO4IIP5gGgClFq8hspriW1IaOATeUrZPcEZOB1W rC6lEzvGEdWVWI3DglcZGfbIqRbG3XzRsysqhGU9NvPH6mmx21kjNIipl8xk7s57EdevHP0oArxa 3A5QGGYbsZcL8o6A8/Vh+dOXWbZsZjmXgtynRcZ3demPxqc2dnFGMxIqjjn6j+oH5VHBp1jbIIQi k7T985JGMH8KAGNrVpGH84SRMn3lZeR+XtzTxqkBtoZ9kgWV/LAK4IPvzjtUi6fZbFAgVgAwBPOQ 3Xk9c05rG2eBIWj3RocgMxPPvzz+NAFOPXIWtvOkgmjxGJGB28Akgc5xk4NImvWrEbo5VDSbEOAd 4wp3Y64+Ye9Wm0yyaJojACjYyMnsSR9OSfzpF06x+Vo4gNv3SrEYwAPX0A/KgCsmuwO6hIpSrEqn Ay54xjnHfuR0qa61WK1mETQTu5APyJnGc4HX/ZNR22iWNtF5JBcE/LuOCOnTGMHgHPWrrWlu7Bmi UsAAD9M4/mfzpAUzrdoWZEWWRgFICqDuB/H+eKbNr9lEzJiRmCqwCgfMCM8c/wA8VOunafbFpRCi cckngAfyqG60GwuR/q/LbIO5ee2OhyO/580wEfXrRQ+I532EghUz0BJ79tppf7ds94QrKHwSylOV x6/Wp1sLJSY/LDMQSQzEnkEE/jk/nTzp9oZC/kDcQQSCRkH19aAIrbUlubpYEt5VyjMWbA24IGDz 7im2erQ3UqwhHV2Gc4+XOAcA/QirKW1uk4dECyAHoecHGf5CiKytoWVo4VUr0I7cY/kBQBTtNXSa 1SaZNm8FgEycDIHOQO7Cl/tq2ESymOYIV3FivQHOM898HFTHTLIIitDlIzuUM5IX9enA46cUSaZZ TxAeUAPL2KVPQYOPbucfWkBAuuWjTCErKsnO5WXlOMjPPf8AzinQa1a3EscaLL8525K8KckAE5/2 T0p8el2EYEawrlVwfmOSD6+v40+GxsYHCRxIHGHAzk8E8/mT+dMBkuqQR8BJXbJAVV5JBI/oaiGt 2oL+ZuULyCBnK4zn8O9Whp9oJnmEC73OScnr/kmkFjZE4EEZKgjHoGAB/MAUAVxrdsYzIIptoUMf lAxlto5zjqPpTP7aQSOphYIhGZM/LguV+ueM9KuGwtfJaMx/KyhTljkge+c9zUcVnp8qhoY4nUcf Icr1z2460ARw6zbTlBHHMxdWZRtHOPTnnPtT7nUkt9RtrQhczdSWwVz93jvkg05tOsgq7ohtQELu c8Z49ffFSta2zyEtGrP8pPr8pyv60AU5tZhivvJZHEK7leUr8oYFR19OeaX+2rbY7mOYBV3fMoGe mQMnr8wqS60yxuDMkkah7hSGweSOM8fgKlnsbOVG82JccsTnHpk5/AUAVF120ZwqxzlT/wAtNny/ w/8AxS/nU9pqUdzC0gRgqLl2/hBxnGfXmnLY2AxEsMY+XIUenH/xI/KnLYWiBwsICuuxlycEdOlA FVdctGQOEl2YOW28KckYPPXKnpSjWrYkqYpw4GSpUZHIAHXqdwx9acdFsckiMjKFB8xOM5yeep+Y 8mnQ6fp6o9ukattUK/OW7EZPrwKAIjrloJBGRIJCDhMDO4HBXr1z+HvUllqX2i7mtpIXjdWbbkcE ALn8RuFO/sjT9277Mu7G3OT+f19+tTRWttDIDHGquATnPPOM/wAh+VAE9FNaRFYKzqCegJ606gAo opAQ3Qg9uKAFopskiRIXkYKo6knFEciSrujcOucZBzQA6iiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKAMWT/AJC959I/5Gn0yT/kL3n0j/kafQBzfib7eZ40t4IjCwG6RIkkmxn5sK3Y DnIBroo8CJApJXaMEjBxWNquiyXOoLqcV8ts0KqQxgDlduTwT0BzyO9bETb4kYMHDKDuH8XHWgCO 9/48bj/rm38qk02+it7JY3VievFR3v8Ax43H/XNv5VZ0zyY9IM8qBggLHjJwBQA/+0rX/nif++RR /aVr/wA8T/3yKZDq2lSzrCxSJ3WNkEgC7t4JUD1PBpl5rejWtk1yJreUB/LCxlSWb0HvzQBN/aVr /wA8T/3yKP7Stf8Anif++RVe+1zS7G4vIZ4mD2kImfEYO4HsvqeRx71I+saLHGGkngU/JuU43Lv+ 7kdutAEn9pWv/PE/98ij+0rX/nif++RUNtrWjT2n2hpreEB/LZZCoKtk4B/Kpre/0+51SawgEckk KB3ZcEKc42n3oA5fUvGtxBeXj2mlwSWFg6pcNJIFkYnrtFdNHqtnJEkiwth1DDKjvXNeIfBQ1Lxl Y30UYFnJzeKOBlOnHvwPwrtfIhH/ACyT/vkUAUf7Stf+eJ/75FH9pWv/ADxP/fIq/wCRD/zyT/vk UeRD/wA8k/75FAFD+0rX/nif++RR/aVr/wA8T/3yKv8AkQ/88k/75FHkQ/8APJP++RQBQ/tK1/54 n/vkUf2la/8APE/98ir/AJEP/PJP++RR5EP/ADyT/vkUAUP7Stf+eJ/75FH9pWv/ADxP/fIq/wCR D/zyT/vkUeRD/wA8k/75FAFD+0rX/nif++RR/aVr/wA8T/3yKv8AkQ/88k/75FHkQ/8APJP++RQB Q/tK1/54n/vkUf2la/8APE/98ir/AJEP/PJP++RR5EP/ADyT/vkUAUP7Stf+eJ/75FH9pWv/ADxP /fIqW4kSGZIxaqdx+8QAPoPVvapYBHKCTaGLH99Rz+VAFcapbgYEbAfQUf2rb/3H/IVLcARyIqQw 4buw7+lJbjfMyPDDhRyVHQ+lAGXe3C3Op2UiAgCVBz9TWvqEMtxZSQwlQ0mFJboBnn9M1m6oipq9 iFUKPMToPc1p39yLOyluDj5BxnpnoP1oAo2dhewPCHmGyEhAqMQpQbv4foV/KoX0q9YTqJ9qSF8K HIGG3549eV/KpodcjaKJniOCmZJFICq3zccnP8J/So4Nfikcs8TpGQAoI+YPlgVPPfbxQBGumagz MJJsxYQJGXyqgY9s54PPvRb6dqsLfvLkyRgqBEsm0bQOgOMjHH1xVhtcRfMb7PJiPcGQ43DDAZPP Awc80+/1dbVXEcLSkJuDAjbuIJUde+DzQBWhsNSto1igddu9id0p/vls9O4OKWz03UDa3C3c4Mss TRq+7JXJOPyzUk2p3UKRJ9m3yNAsrNuAG4sBtxn365qW11iO5uvIS3mBVNztjhW67SfWgCnd22q/ untUS2jjjbdHE/LHaR6f7uKUabeyGKSU/ckVwhlJIAbOC2OasrqkiW0M80QcTL5gWI/cQYyTk84y OlM/tvdLGqWkhDvtyzKPlwx3Dn/YPFAEdlZalFLLPdSB22SBNrZK52kAfiDUUVjrDiBzcvEmMmPz NxBwOpI9c8ds1M2tuskbfZm8orvZcjcq7Qc9cd+lPk1sF4Vgt2fzOpJA2jD8+/3DSAgltNTh2BXk mQpGrDziDuBG7B7A85NIun6wGLSXbSABPkEm0MBjIzjIPXnvVhNcRlTFtI7SAeXtIw7cAjk8YLDr U0urxRxwOIpHEqeYcY+RcgZPPqR0pgVRp19EZHt3Cyb3dS0hO7cwODx0xmnRadf7L+O4u3mSWMxx ZbjkcH1Bot9Xn+w2k88GXuFZiiEZHIAA5x3pTru0sTZSkfIECkFmY5yMe200ANXT9QEioJysSlQS JT8ygrwB2wAfrmmX2l3suqyXVsyplRsYt0O0j0znkc5/CnJrrJcPHJC0mWwixr82NzAk/QKKkbW9 ro32OQ27I8nmbl6KQM4z3zRuBEbLVZJCzyLtfJKNJuC/PuGOPTj8KRdO1ZXhH21/LBVnw+STgZ5I 6e3vU1zrkaM8UUbGQBwGOCAyk8Hnvg1PJfyJcXQ2oIbYDdk/MxIyMdh2H50AQWNrqcV1C08u+Nd4 YGQnIPQ/736Yqomh3ikKrxBEmNwnJO2Qscnp6c/UmrTa9GYRIkEigrnc2MBsE7SM57Go38QbYAXt jHK5kVRuDAFSwBOOx2mgCM6bqkm0SS5j3KQhmJ2EFSWJx82cHjtmp7PTr5CXup/NcxyJlj3O3px0 4NWJtTeG58k2rOPLRlZWA3MxIC4P060yTVSZLQxriGWJ5XLISVC4446dTzQwI49OvVVFNwwX5VYL IR8oK8D04DfnUYsdXByLn50AKsZDhsAYUjHqDk+9TvrkcShpLaVQFDPyp25zt785wfpQNbix81vK u04l5X93k4HfnPtQGxWm03UpZiHm3wKqEL5pBZlZTn26N+lK+n6r86xThAc7WWQgAHPy4x1yQc1O NbDKSbWSLoQXKkH7p7H0YGpW1Jns4J4odn2iQLGZORgjIbA9QOnWgBktletaLGk37xHk2uWOQpyF 5655FNudPupIbYJLl4LhnVmc8KQwXPrjcOD6U5NYygCwPM2AMrhQzHJwAxyOAetRSeIrYI3lRSPL sLqnA3cZA9uOfpQCIF0zVGs3guLhpjJGVy0uNrHr0HIP6VM2n6mHYx3ZG0kR7pCcLl+vqcFfyqaw 1WS5uvJmtzHvAKHIIHyKxU89fm69KrW3iDMKtcw4ZmXhBghWHXB6jPGRQAv2DUMmTPXjy/OO4Ln7 u/GevP6VRjTWlmuMvO8qsEQ8hCCwUkjp0JYEf3ea0/8AhILcYLW84wGaQbcmMDP3h26U+HVJGtpJ JLZvN88xJCCueBnk5x0z3oAbcafeyTKVuiUxgsDsbHpkfhVVNL1RJQVuigaYSSlX5b5VHceqtx3z Wha6tDcu22N0jCFxI2ACBgnvkYyOtRW2uxXLRhLeUbn2MTjCc4HfnOR09aAIWsNTVYws+/kFg8hI OVw369BTJNO1b7KIY7soF2AbW5Ix83bjB6e1WW1aSOW53QF1jm8lFRcFjjOck49aRddiZVP2aYZw Wzt+VTtwTz/tjgc0APurG7llzHMVHlgEh9pJAbrj3Iqt9g1NblrgOGkHGTKRvGScYx8uAR+VS/22 FiEjwsEXAZhjkld2AM/TrTpNYxcrbCFklymdxBAywDDIPUbhSArpp2ol4zNL5nlyI4JlOc7CD+GT n86c2m6iHh8u6ZVyhkIb5mIHJyR65/OpJddji1G4tim8RKAoX7zPkZHPH8S/rSS66uAkULeay5+b BAIbBU4PWmBPY295HA0dy29sOA5kJJBPGR0zVO20y/FvbRPK8axKikLLjOGG7oB/DkVM2vRGLfHD JjDDe2AoYLkqeeueMexqaPVo2t5pDE4aJlXYcAsWwBjngEnvQBSjs9UkkKyuSE2gs0hKvgL0GPUE 5qUWF+jQsJfMwF80GUgufm/ix0GRxSR6zNKb91g2R2sQIDYJ3/NkHB7Y7U/+2XiiPn2sjOOhQY3Z YhcA884oAbY2OpJK8tzMhfEgQ7s7NwXH4ZBqOPTtU+yrFJdly6sJN755xxjjoSefanJrxW4kWe2l C7/lCrkqgVSWbn1YcVYj1Z2uFR7N443RHDl1P3m2jgH8aAKD6XqpdnW42PgIXWTll3E8AjC4GPyq y9jqSyBxcNIhfLoZSNwycYOOOMdPSntrsQUFbWdwWCrtAJYkbjgZ7CpJtWSGS4zGxjiiRxhSGLMx XGD7gUAVoLHVo5kkkumkxPuZS+FK/QDPSntpt2txdSQzFPNZ3UCQ/eKqBn8m/OnNr0SxnNrcCQY/ dlRuycY/PP6GnDUpniykaq73AhTeCNo27vmHr1oAhGnX7kF7iRFyMIszfKuWyCe/Uc065066me1l Zg7xJHv+cqWYNk8059WmjnaJoAQud0gPAwyjp1/ip1trUdxJCotpkSVyqyOAFPHBz7+lAFSLTtVY +ZPLGzrIWTLEgDKHHTp8pqSysdVXY1zcksr7gBIcY3DIPrxmrCaupvPszQuf3hQuMbRywHfPO003 +1tsxMgURl2RVCksSrbevT3x6UICC8ttTNzKImdopZMpiUqV+U+nQA4NSJp+oLMH+1bcNnKtxyW3 Hb0PUU+TXYEk2CGRjtJGMdQcY68etRt4igRn3W0wWKMyTNwfLx178/hSAjn0zUbicCW43xCRXJ3k bwGUj5R90jB+uam0mwu7GSNHfdAsO0guThs9v/r1d0+8+2xSSbdoV9oHtgH+tWqYBRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGLJ/yF7z6R/yNPpkn/IXvPpH/I0+gDl/EYilv5hI bVBBbiRhcTOpmHPyqFYDtjPPJFdJblTbQlUKKUXCn+EY6VzuvLqFxq4jtoDNFEik7I4nKZzkjf0b gY7da6SPPlpndnaM7uv4+9AEV7/x43H/AFzb+VXNIRJdJ8uQZRgVYexFU73/AI8bj/rm38qs6dJ5 OimQAEqCcGgCsnhjT1WMNc3EhR0YM0gJwgwq5x0H5+9Qx+DtIig8mKSaNdxJ2uoJBx8p45Hyj346 1M2pumAwt1J4GVxn9ad/aE3/ADzh/wC+P/r0ASX+gadqF0bmcuZC27h8D7pX+ufqBUMPhfTIJ5po ZJEkl2fMGGVKkEEHHqo9qP7SkLFQsG4DJGzkD86X+0ZTnCQ8f7H/ANegBX8N6cyBVmmQgbdyuMkf NkdO4cirGnaPZabdyXFvJJ86lQjOCqDcWwPxJqs2pSqpZlgAHUlP/r0LqUrLuVYCPUJ/9egDc3r/ AHh+dG9f7w/OsT+0Jv7kP/fH/wBekOpSggFYMnoNnX9aANzev94fnRvX+8PzrDGoynOFgOODhP8A 69L/AGhN/ch/74/+vQBt71/vD86N6/3h+dYf9oyggbYMnoNnX9aBqMrDIWAj2T/69AG5vX+8Pzo3 r/eH51if2hN/zzh/74/+vR/aE3/POH/vj/69AG3vX+8Pzo3r/eH51if2hN/zzh/74/8Ar0f2hN/c h/74/wDr0Abe9f7w/Ojev94fnWEdUcMVItwRyRt6frR/aUnPEHAz93t69aAN3ev94fnRvX+8PzrC XUpG+6sBx6L/APXp39oTf3If++P/AK9AF25tTNeiZWgAEZXJHzH2+nv1p2nwfZlcMtum4j/VZ/XN UP7Qm/uQ/wDfH/16P7Qm/uQ/98f/AF6ANa4CyQOgZckcZPeiIFXbLKQegBqG1lE1qsjRoGyQcCpk I3j5FH0FAGXq3/IYsf8Aron8zWvN5QjLTbQifMS3QY5zWRq3/IYsf+uifzNaV/btc2jRoVDZVhu6 Egg4PtxQAJDZ3ERkSOKSOT5twAIbrz+pqCa006NYg6xxLHIsigYGWB4/Vv1qjeabqd1dNN5kMaGI r5aSEc8Hk7eRkfr0pw0e43SfNCN8nmMQT8xwmeP+An86ANFLWxlh3JDE0cnzZC/ezThBaXGycRRv lcK2P4azrDTL63ud0lyqxCIRjy+pIx1BHsfz7UWemX0F07PPH5X2fylCk9eME8dsHv3oA1Wt4XZW aJSVGFJHQf5ApEtoEl81IkV8Y3Ac4rJOj3McTiCVN7LtId2IIwvrnuGP41GmjXyxKWuVeXAD5dsS ABflPoMqefegDUS0sZN2yCI7ZMnC9GqSS3tFTdJFEqrg5IAA6/4n86yLjR7wxzG3kijebO4Fmxzt x27YPOKsXGnXkqxDzUciARlmZhtYdWAxzn3oAutbWUrqjRQsygMBgEgDgfyxSixtAWItowWbcTtH J55/U/nWQ2i3YjKQypGm4/KrkbwWY8nBweR69Ksrp94ttdxeajeZIHTLnJGckMccZ6cZx70AX0s7 ZHLrBGrHHIUdulK1rbv5e6FD5X3Mr936VljSbp58ySIsecsqyMd65B2n0wAQPXPaon0q8QQxROGX +JjI3yHaBu9znnFAGy0VtHGu9I1SMErkABR1P8qYbeykYKY4mYjIHGSAf8T+tY40O8PzSTpLKGkw 7uf4lI3AY4PTj9akXRruLeYJY42Du6EMfmLMDzx6ZH5UAazWdqxyYIyc5zt7/wCSfzpPsNpz/o8f JJPy+vX86yzo1yZpN1yWiLDGZDyoBwCAOx9zTRpGohZCbpZJSyFWZztOPUY7fXn2oA0zZWEW0m3g T+BcqB17fjmn3FtaSOJJ4oyx+TcwHOe1UV067+xyQmZAxnEituJO3OeTjr/nmnR6bPHZNAswzvVw dxOMAZ/Mgn8aALKabZRzM4gj3MoXBAwAPQfjTTb6c11sMMJmBJwVGeeT/P8AWsyTQrr5TFOiyLGy K5ZiULKmSM+pU/8AfVOOi3nknZcKrle7EntxnHTt06dqANia2t5eZYkbI28jt1xQ9pbP5ZaFD5Qw nH3R7Vkro9x8okMcuySORWeRicLj5enbnB7+1Nk0zVHSNRcRLtdDne2cLjnp1PPHv1oA04bSwkjj kighZNvykKOhp72toD5rwxApltxA49TVBtOu0t7aOJ4mMUJj+ZmAVuzADr6VUh0rUgVjkkT5UP7z zCcZL/KBgZ4IzwOlAG2YbbZu8uPavOcDjGP8B+VJHbWj2uyOKMwSfPgDg55zWRJo16CEgkhjTz2l Y7jls49vqP8AOKmudMvZBZpFMiJDFschipJ244OOnT/69AGkbO1aLyjBGU4+Xb6dKX7Jbb9/kR7v XaM9Mfy4rPNhem1s4zJHviDB8MQAT0YcckfhnPaoU0e5ZcSyqB1CLIxCnK5OeOuG/OgDXjtoItvl wou3pgdOMfyAqMadZBQBaxYDbgNo61ktpmoGZxE6KEQBJHdjnhhtx6cjn270i6Lf/YRG90GmyoJ8 w4KjPGccdQenagDWFrYpKEEMQdVLYx2PWnCytPs/kC3j8rO7aF4z61Qh0qYSXfnOjCaJow+4lmyT yfTAOOPSlsdOuoLiJmeNUSML8jsf4Qu3BGMZGc+9AGg6W0KM7JGihTk4HTHP8qbBaWkSDyYI1Xhh tUfXNYx0O7cAySRMwDKAXYjJQqX6dSSMj261J/Y94soCXOIVDBFDkbMj6HP5igDTkisYrgNIsKTT NxuwC5x29TQ2n2jTxzGBN0YwvHA6c/oKq3mnzNHa/ZSqSQrtL7znHGRjHzA474wcGqNtpOqCO3Yz Rx4ZXZN7ErwAeSOc4ORx16mgDbMFrnyTHFlgTswORjBOPocUyC0sdxkhgiyp27gvQg/4j9Ky5NGu xFtinXhcAF2xuwmSeDxlSce9WYtMuIxclJ1R50cFlJ+8SSDj2zQBddLQ5V1i/dneQcfKTzmgWdoX Eot4ixH3to6day30eeR45cQoyAgKHYhMoykg455IpsekagjFjciR/NDAs52lQT1XHUA469hyKANR NPtUQKYVcBmf5hnliSf51ILS2CSIIE2yffGOtTUUARJa26IyJCiqwCkBeoFLLbwzBhJGrbgAcjrj pUlFAEJtLYlSYI8qcg7e/T+g/Km/YLTZs+zR7cbcbe2c4/OrFFAEH2O2MYj8iPYCCBt6EcD9KWW0 tppPMlhR327ckdvSpqKAIWtLZlKmBCCoU8dQOn5UrWtu8TRNChRjkrjgn1/SpaKAIfslsNv7iP5e ny9On+A/KkWytUZWWCMFSWBx0NT0UARfZ4A+/wAlN2d2dvfnn9TTWsrV3d2t4yzjDEr1qeigCuth ZqwZbWIFRtGFHAqD+yLT7ebvYd3XZxtz64/yKv0UAMihihXbFGqLnOFGKfRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBiyf8he8+kf8jT6ZJ/yF7z6R/yNPoA5nX4LUar5kumm /lljVURbjY3Geij69TxXSRjESDbswo+XOccdK5bxKtu2pSNM9lA0duGT7REWa4OT8oOR06cc8108 BzbxHZsygO3+7x0oAZe/8eNx/wBc2/lU1p/yL8n0P9Khvf8AjxuP+ubfyqzpzImiMzrvUA5X1oA5 /UbWS4ZNkaONjodxxt3YwfwxUDWmo7WC3JDfd3Fyd3J+YDtgEceorc823/58/wDyIaPNtz/y5/8A kQ0AY4trwQwtvH2jzN0pDcEenqQBSvaXP2uWRJCqM+4ANjP3RyPoDWv51t/z5j/v4aPOtv8AnzH/ AH8NAGAmn3gjERlbyxHtC78gnJ65/Cljsr+PcBOdoHyor4GM5I+vXn3re823/wCfMf8Afw0edbf8 +Y/7+GgDDNpex+aYGI8x2bmUnGQMflg/nUlrb3i3RluGDAMxUbs4yO3tWx5tv/z5j/v4aPNt/wDn zH/fw0AYMNjqEPImRi0glbblRu/iB9R0/LpSiy1BztluG8vDAAPyc5+9/wDWrd823/58x/38NHnW 3/PmP+/hoAxZ7K5aK0eAqk9vHgFmzycA89+M/pUP9n38OyK2lEcKhhw+M5z19+n610HnW3/PmP8A v4aPOtv+fMf9/DQBz95BqcaM0MrFUDYw5JIJOMjvjii1tr949zXEwUrgBnx35PPP09q6Dzrb/nzH /fw0edbf8+Y/7+GgDDksr/CrHdSBd2W/eZbq2ME/8B/KnizufNid5GcLIHI8w+rf0I49q2fOtv8A nzH/AH8NHnW3/PmP+/hoAxJ7O4mmmCbVDOQWccFTt7d+ARUX9l3RKgyJgxiCQjjdGM/r0/M10HnW 3/PmP+/ho862/wCfMf8Afw0AZmnwvD5qsuANij0JCgEirlT+dbf8+Y/7+Gjzrb/nzH/fw0AQUVP5 1t/z5j/v4aPOtv8AnzH/AH8NAF/T/wDjwX/eNWk++KhtXR7NDHH5a5I25zUyffFAGZq3/IYsf+ui fzNaOoTvbWbSJgNlVy3RckDJ+maztW/5DFj/ANdE/ma15niSF2mKiMD5i3TFAGXcayLPejp55jGC 6EDc2Mjj0x39amg1RppLpRaSD7ODzkYdh1Aq1EtrJGskaRFSuAdoHHpSv9njLM/lqX4YnGW46e/F AGSNeNx8tvbuMbN0h+6CSMr69D19adDrE0djatNbSyzz9kxt7ng9OBWqkdvtV0jjxtGCFHTqPwpz RxMgVkQqOQCBgUAZTa9GoQm3cZkEbAkZU5Ab8iR+dMi15Vtk81N023kAgbjhT0992K1P9FkmMWyN nTEhG3pnOD+hpZIrVVd5I4QoXDMwGAPf2oAyo9dZwZTDth4KjcCzApu59Oe9Tw6yJLhYmtyo3bHf eCFPzdPUfKeauxfZZd/lrGdh2N8vTA6U5re3eIxNEhjI2lccY9P1oAp3mpm2uGRYvNwoYAEDjDEn P0Wqb67Ibv8AdxEwjgLkFmwWB+n3a13a3R0RtgZ/lUY9jx+WabI9pBJ83lLIxXPAzknAJ/xpAZl1 rpSJ2hjzvQtESQBgBjuz/wAB4FLL4hihhYmIu6qSVDDJwSD/ACJrWMMLKEMUZAxgFRx6Uhgt3yTD E2485Uc0wM2TVXhtknZd4aWRdoAGQM4H6Ux9ckjdwbMkKAAquCxfeykfT5etacklssiRPsDNyoI9 8fzNLIlttZpVi2gHJYDGM5P60AY765NDcMGgeXccJEoAYH3P0zUsuturxMlsDCxk3ZcbhsUnp65H StMLbSgjZG4zgjAPIp3lQ5L+XHnOSdo6+tAGRc+II1JiiTLncoYEEKQpIJ9uD+VWZ9WWB3Qx7jHG rklsZLdAB36VOGsFkeMRxgwYB+Thd3QZx/nNSyJbM6rKsRdgVUMBkjuBQBlf8JAsip5cJXftAJYE 5O04I9MN1qM+IHNvEphVLiSMvlW3Kh5wD9QDWmi2EN2yKiCaXBPy9eOP0X9KlaO1jw7JCvYMQB1P 9SaAKV3rUdtqBsxC0km3IIYAbuOD6dQaSHVmub23hSIIrEiTcwJztJwB6cda0jFCZPMaNC/TcQM/ nTITbShZ4lQ5yFfbg9en86AMtfEG+NpEsZdoLEFmC7lHU/8A1qdNrZVWQQbJArAkuDtb5gOO4yta eyBQzbIwDkk4HPrUcaWcsrXEYidyApYYOO+Pbr+tAGd/wkEaKGkgbZyN4I6g7eR2y2APrQ+v7W2j T52JkMa4I+YjO78sfjWj5NpdwBwimOUq+QMbsHIz+VSGGBicxRksdx+Ucn1oAqXOp+TcPCsG8qyJ 98AlmIxx6c9aqr4hRlV/skqq0gRdxAyM43fga0TNZsj3R2ER5BfbyNp5/I1J5EBOfJjJ3bs7R19f rQBlRa24jR57fBdR8sbZwxLADPvtx7U1NeaMSPcQDykwN6nnJLAZH1UD8a2RFEOkaDnPQdfWmS2k Ey7XiUjIPAxnByP1oAlUkqCRgkcj0paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD Fk/5C959I/5Gn0yT/kL3n0j/AJGn0AZOp2+pNcStaRQTxzQiMebIVMLc/MODnr9eK1IlZIkVm3sq gFvU4606igCC9/48bj/rm38qmtP+Rfk+h/pUN7/x43H/AFzb+VWdP8saI3mglMHOOvSgDndTikle LZHI+EcDYcbXONpNQyRX9wBDKpwrDLtwp5bkYOemK3M2n9y5/wC+lozaf3Ln/vpaAMUrqIk8pXl2 hgpfC/dyMEe+M5pYBfrb3RcO07qvlhiNoJUA49Ock1s5tP7lz/30tGbT+5c/99LQBhwpqUKpHhis PygAgiQZ65PPTFRFtTjX7QysH/1YDAZILYH5Zz+FdDm0/uXP/fS0ZtP7lz/30tAGHINR8x8eYdhY K+Bz0xgf15p9zHem5gnhRtwh2Mu7gFjyfqOv4Vs5tP7lz/30tGbT+5c/99LQBz0cOppbmDdKqImE 28sefX1qYJexBwnnGNmLYULuXLHp+lbebT+5c/8AfS0ZtP7lz/30tAGPaLetfCS6DfKjL0GznbjH fPBzWlU2bT+5c/8AfS0ZtP7lz/30tAENFTZtP7lz/wB9LRm0/uXP/fS0AQ0VNm0/uXP/AH0tGbT+ 5c/99LQBDRU2bT+5c/8AfS0ZtP7lz/30tAENFTZtP7lz/wB9LRm0/uXP/fS0AQ0VNm0/uXP/AH0t GbT+5c/99LQBoaf/AMg8f7zVDol/JqEbySIqFX2jb9KtWvlGxTyQwXn73XNZXhQEW02QR+97/SgC xq3/ACGLH/ron8zWne25ubUxqwVsqykjIyCCM/lWZq3/ACGLH/ron8zV/VJnt7B5Uk8sgqN/Hygs ATzx0NAFK70iW73ySSRiSRkLBcgEAEbc9cc5+oqFdCnFw8zzxSEvuUFenDDP1ww/KhNbuEcxG3M4 QMxm3Bd6An5gO/A7UsmtTyM0cds0YCo+/cCcFhjA6nINAEd7oc4tCtuyvIxAc7R8wyOuSAenr3q4 +mSyJAyusJWDYyfeG4D5T+GTVY+IiMf6OhyNwxJ14B2jj7/tTm1uWC3aSSHeiA5bOGJ5PQD2oAYm g3UcJC3UfmEFeVOADv8A5b+PpU6aKfsd/bySB/tKldzZPXOMj2z+lD60YrOymeAb7ltpRW+6M4/q OOtFxq81tdXUTpCVRwI8sV42bufcnIFAAdEDTCQtGN0gd1C8MAVIH0+X9aibQ7nDFLmNXOVztPzA hhubn73zfpTotYlubu3iSLy1aT5hnLKPmG1h2PGaSPVZ4JJVmRZCZXwN2CVDbQFGOcYyaAILXQ7h 3nF0qYLEq5AJPDAdD23A5OD+VX7nSRcXgmfy2UpGr7lyTsbd+RzSXGozxQWc3lDdMuTGDxk7cc49 6qPr9zGZGa1Rx8gRA+Dk7skk4GMrgH3oAs6fo8lnNLIbjeWj2KxzleAMY9Bj9aopoN4kgBljIALb xnKndnC+mcc/WpW1m5t5cNC05kfaq5ChfmfqT7ACpjrM2Y5BHD5RSRmXed4K4wD6Hk5FAEdtoc62 6h51icqMiIHCHC9Pf5c/U0kmgzzKiPLAsYiaMqqcHKkc+ucgn/JpLzxB83kW6/M4fbIpzjBOD7g7 TVvUNY+xvcDy0PlBcKWwzk88e3v60AiOXRppJd3nRqGOeFOY+c/J9eh9qfHpDQ2LW8bxkb0cIy/I cKAQR7kE/jUJ1uSZgkUaqSy4AbJH3fvDHGd36VCuvzSi2t9iieWKOR3jPCklcjB9jQIu2+jmC0mh Eq75WjYvtwflx1/Kq3/CPsEUJMisFK7tvKkptLD3zg1Le679lvZ7dYN/lKGLFsY5GePofxpp15vt IgS1Lt5uzhwAF4wcnjJznHXijcY1tBka18pbgRMVx8uTg/N09vmpy6GyxlD5DjKOu8FtpVgdoJ/h 4/WmjxAdufs43bX435+Zf4enp36UT67cW4IeyDOWKrsk44Yg5Jxjpx9aAEutEvJ0ZBdxqu75flOQ Msc59fm7elWpNMlMNuiSRkxb/vrkfMc7gPUVG+rXJkRVhjjBlVSXYn5dxU/Q8U7U9RmgtoHg+aRi XbylMgKLyR+PAz70AVItDulkRWliKjJ8wA5Q7gcL+XP1pW0CcKFiuI0HmrKzBPmJAUdf+An86uf2 nI8V2VjChIneN1OSdpI6Y9s1BJrMywtmFEJB2Oz4A5Iy3HHI/WgCebSFngt4pGVhDHs5HfKnP/ju PxqrNoMr7lW4RVx8p2nKjBGz/d55FC6vcrCUMZZ2Qsr8DGFy3GO3H1zTl1phdOZNiwqNpBblTkjL ccdOnvQA2LQJEZiZowGD4VAQsZJY4A9Pm/StLTLN7KOVGdWDSF1AHQH1J5NZqa61zerBFCw2lWbb yWyDleffFKdZuY7loFs3lZmZgGYLtA/h9z9M0AbtFYFzrsrxstvbsoaIyJLuHTnBweT0/WrN9rJs 7mWIQCTy1ztVvnPyk5x6cYzQBrUVinXJVhaWS1VETYGPmZxuzzx14HbJ5pjeIHyAlqJCz7RtkGBy wwxOMH5envQBu0VhPrM8io6LFGjLISC2XUqRgY6Z68U+XXZEmjiSyZ2aQxsd4ADDqMn6j60AbVFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYsn/IXvPpH/ACNPpkn/ACF7z6R/yNPoAKKKKAIL3/jx uP8Arm38qmtP+Rfk+h/pUN7/AMeNx/1zb+VWdPVG0RhI21CDk+lAGBetILy1ALCM7t2N2M8Y6fj1 4qmzXUVshmaZT5LOChZiZOwP4dunWug8u1/5+n/79UeXa/8AP0//AH6oA55JdQZin73aZRKJAONu 7Gz6d/pUs1xdw3F40aNK4dRFGd2CuBnHb1rc8u1/5+n/AO/VHl2v/P0//fqgDDN7fHywkSks5Dbk ZdoHQfiOajguL+IRoIiwYZLSA54UcD9a6Dy7X/n6f/v1R5dr/wA/T/8AfqgDDF7fqp3QAsELLiM/ OcA7fbqefallmvXsreYAiVXLssYOGUA8YPr/ADrb8u1/5+n/AO/VHl2v/P0//fqgDCiuL+PJeNiz uWCspPB24QHtgE8+1MS81DzwRCCJCoJZWATjkD3689OK6Dy7X/n6f/v1R5dr/wA/T/8AfqgClZ7/ ALHD5md+0Z3dc1NU/l2v/P0//fqjy7X/AJ+X/wC/VAEFFT+Xa/8APy//AH6o8u1/5+X/AO/VAEFF T+Xa/wDPy/8A36o8u1/5+X/79UAQUVP5dr/z8v8A9+qPLtf+fl/+/VAEFFT+Xa/8/L/9+qPLtf8A n5f/AL9UAQUVP5dr/wA/L/8Afqjy7X/n5f8A79UAX9P/AOPBf941aT74qG1WNbNBE5dcnkjHNTJ9 8UAZmrf8hix/66J/M1rXE0dvC0sxwgxnjPU46Vk6t/yGLH/ron8zWne25urVolcISQQSM8gg/wBK AFiubeVVZJE+bOAeDwcHg+/FEtzBCCzOuRjgcnk46fWsxtAjeZ5ZJQ7yA5Yr91yScrzxyf0FKugR CRm83llUbsfMCCCcc98Z+poA0S1q0iSF4i6MUU7hwT1H16Ukj2l1CY5GRkZdxUnBwD19fxrHfw6x kjAljKbSjt5YyBgAED+9/tVJeaEWtJRA4M5GFJAB6HjP40AacLWkEMaRMgiILKQcj3Ofxp32q1Zm Xz4iyhWYbhwD0P41Qg0nfp9rDMEjMQIKKMggsDz+XP1NMl0CJ1K712kqSCnBxu4OD0w3T2FAGhDf W0skiq4BRtrbhjnJH8waebq1EwiM8Xm84XcM8df5isx9AjZwxl3APu2MvHVj2P8AtfpS/wBhDywn mpwroG8sbsNg5JzycjrQBpT3UECM0ki/KpYgcnA68U55YUJEkkakDcQxAwPWsl9BaWQPJd5OHziP HLEk456c/pU19pBu2uCJ1QT7d2Y8ngYxnPTjp60AX5LiBMh5EyCMjPTPTPpUZvbQQiZZkdGAYFDn IJwDx7msy00ExyFpZVwrfLtXlh8v3j3+7+Gacug4kiY3AxHGEAWPHAx7+360Aaomh37N6hg2zB45 xnApWlhDMrSIGUZIJGQKpTaTHNdPOz/MzBhlQdpyvT/vj9agn0U3V9PNM6LGzhlATJYYXgn0+XpQ BckurKz/AI0DSyquFOSXbpU/nQYBEseCCQdw6Dr+VZcmgRyzF2mwA5YYQA8knk9yM8HtTV8PRpCk YeMBVZW+Q/Pn15/GgDWE8DHHmJkkKMn7xxkY9eKUTQHGJIzlto+Yct6fWso6FuKlrkscBWJQdtvI 9D8vWm/8I8gEax3G1VKMQE6lcc/U4oA1Yp4JI4pFZQJBlM8E/hThNA+0CWNt/K/MDu+lZ9xoyzRQ RiYp5UbR7wvzEEY/Co10CJYXVXVJCqhXRPuEEnIye+aANNbiB+kidSOTjOOuPWo5762tzCHkH77O zbzkAZJ+lUJdBjdZEjlCJIpXGzJQdsHPHv61M2kRNbwRAqnkq6javHzemTxQBdNxbr1mjHUcsO3W nCSJsgOhwASMjgetZo0O3/d7tjbDnmMHPz7z/hS22jrb+eom+WaHyiAuO2Mn3xQBoSTwxjLyKOCc d/fikae3VWLTRAA7WJYcH0NZn9hs0nmPcjeQwZljxkHt16VV1LQJHERtRHJhiXVxgN94gn1+9z34 oA2zd26yyxlwHjAZh3x6+9I15arOsJmTzCSAMjg+h9DzVa50pLid5i4V3wMheg2kYz+NZun6BKEm W7EakltrAbiSe/4du/WgDoDJEr7GdA+M4JGcVWmu7G1ZZGdN9wyqu05Lk8CqV/orX93O7yiON1UK yr8+QCOvpz0pRoEGxRuVSHV/lTpgHgZzjrQBpiaAqCJY8E4HzDqKZG9pHDiOSIRjnhhgZPH51mp4 fiEcoeVS0kZj4jAC8KMgeuF5+tE/h6N45EilEQk3bgIxg5Ynt6Z4+lAGsZoF35kjGw/Nlh8pPrSi SNs4dTtbB56H0+tZbaGm9JElUOrFjujBDnJPzDv1p0WipFZXFusu1pTuEoHzAg5BPPJBoA0jNECo MiDccL8w5PtTEuoXmMSyKWAB4Prn/A1lp4eSNVRZyVBI+ZMkLkEAehGMZ96mtdGjtbq3uI5OYYvK 27Rhhkkn2OT1/wAaANDz4ef3qcHafmHB9KbJd20UXmvcRLHgncXGOOv5VmWmiFGEszoHDEgKgwPv 4J9T83X2pkfh4JFIjTq4kVlbdHnGe688e/rQBrpdQP8AdlTqQOeuBk49acssbkBJFYldwAOcj1+l ZMuhCUTAzgecCGwn3f8Ad54qa10gWspeKRYwYjGQidz35J6UAaCzRPt2yo27O3DA5x1xTIrq3mAM c8b7mKjDA5I6j8KzrHRPsc0MgnBKMzEhMZB7denemvoKt8vnBU3E/KmGHz7+D2OTgnuKANCS+to2 QGQNvOAV5GcgdfqRTkvLaSbyUmQyckLnkgdSPUc1lv4eSWB43uCu/APlrtHG3oPX5efrVu10wW14 LnzFZsMG+THXHT06frQBoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAYsn/IXvPpH/I0+mSf8he8+kf8AI0+gAooooAgvf+PG4/65 t/KprT/kX5Pof6VDe/8AHjcf9c2/lVnT0EmiMhYKCD8x7cUAYN5PJHeW0avtSTcW+7zjGOv17c1W /tO4yjGGJV2sxG48/JuAB9a2DBG2M3Nsfrn/AApfIjP/AC9W/wCv+FAGRLqckTMrRxZHB+cjB+Xk /wCz83X2ot9SeW4EZVFDd2OB77T3J6itV7aGRSHuLZgcZznnH4U7yI+P9Kt+Pr/hQBkNqE63EsQj VgshUE8Ec4HHeo11OeVAmxA2xGZ0Pc46A9ucVt+Sn/P1b/r/AIUnkRDpc2w/P/CgDEt9VlKhGiXI 2qZHbHJxyR6c09dVdA3nLET5jKu0nnDAAfXBzWx5ERzm5tjng9f8KXyI+v2q3/X/AAoAyLXUZLqR yicIj4UdGI2kfzxTRqZiS2zIs7zYLAYGzPbj3/GtkQRjpdW4+mf8KQ28RGDc23P1/wAKAMQ6rPIi tGsQ+7k5JXBK9/UBqltdRa61DyVG1ELA4/i44rWW2hRAi3FsFAwBzj+VKIIx0urcfn/hQBi3l9dQ 3VxCmPmAELbc7SFy2fXjmiTVnAKiOME5AZmxsI4y3pntW15Kf8/Vv+v+FHkR8/6Tbc9evP6UAYtr qM84hQrt+ZAzZGWyOcj0Na1SeRHnP2q3z+P+FHkp/wA/cH5n/CgCOipPJT/n7g/M/wCFHkp/z9wf mf8ACgCOipPJT/n7g/M/4UeSn/P3B+Z/woAjoqTyU/5+4PzP+FHlJ/z9wfmf8KANLT/+PBf941aT 74qG0jEdkgDq4JJyvSpk++KAMzVv+QxY/wDXRP5mr2ryNDpsjrI0ZBXLr1UbgCfyzVHVv+QxY/8A XRP5mtW5nS2gaZwxUYGFGSSTgfzoAyrTUrn7RDbsPMVmwrMCGkTJw/pwAM/WhtYnGf3aBvMZNhVs gg4C/wC83UVpRX1tKFxKqs2fkc4bjg8e2KelzbyECOeNyRuAVgcj1oAyW1i6SSJWhQvICwiAbcw3 EYHvgZpI9ZuWV3MSGJI2kMiqxBxt4A9ixz9Kv/2lp4i+1NcRKNgJJIDBSeMjqOT+tOuNRtrdSS+/ BIIQgkcZ5oAxV12/8szGBPnEexCCNud2STnoSoH4itC+1SW1uhD5a4MQfOC23nBLY6AfrVx7+zSV YmuYg7EgDcOoGSKdNeW8KMzSoSoY7QwycDJwKAMgavcyKpaPyyGQ7FUlnXP3h/sn86dZ6pc3MU91 5RxHC5VMHaxBOD+NaZvYvOEQDltodiBwgPTJ7dDStfWqrkXEbEqWAVwSwHp69DQBkzazeQyTq1vG BCFy2Tk5xyBnkckDpyKDrs3mSAJGEVypcq2IsEgbvc4HT1rUTUbOSNnS4RtrMmAwzuXqMetR/wBo WsMkMQVl88BxheBuPf6k0AUG1m8SBppLVYxjO0g5XBUHPqfm4HHSoP7UvEuJVAdg4IVSp3DBf5hx jjC9fatyS+tUhMnnxsArMArAlsdcetFtewXSbo3A+YptY4ORnt+BoEY4vdQW4RUb5Wl2nzVJHPmY HtyFFTSa1Kui/wBoC3wWfaiEE5x6+nIP6VoxX9vLyG2oW2q78Bz0+X16UC7soIAVnhWNVJG1hjA6 4+lAzKuNXvEjfMKRq+QrlW+Tlhz6k4GPrUr6ncW1vACgZzbLId4OXbHPT06mtJby2eMvHMkgCeZh DklcZzimx6haynCzLyFIJOM7hkAepxQBlnWrkQPMyQpGrIokYNtfc5XcPbAzSR61eS7QLVVkYDKM GyucYY/7Jya1VubWe3SVnQJw43kDbjnPtjilW7ja6WAA/Om9HGCrDjOOfcUAZLaxdNdPGkahIpgj Eofn4b5RzwcqPzFLJrVyukR3fkJ5skhQAZYAYJyQPTHPpWkuowPZy3UYd0iZlYKvPHXj9aSWWxuY QLnygAA5SYgFc9Mjt1oAof2zcZcrAsqqcEIDlSThfrk4P0NLBqt9LK6G2jQo5U5ySMBj098DH1q8 2o2iW7yRuJFjk8oiPkhs4xUiX1q8Yk+0RqCof5mAIB6ZB6UAZT61dReSkluDJI4BCqcYKqePcbv0 oXWbxfllt03bC4AVv3h2hgi+/P6VqXF/aW0Mssk8YEQ+YbhnOM4+tSG5gBQNKiM67grMASPpQBl/ 2ldNYW90I13sX+VOVIAOM9agmu9Q+1mTBIjAAjQMAxBfP57RWvJfW6QrKsglV22J5Xzbm9Bj6GoB rNmUlbecxoHKHhiPYe3egCj/AG7cPMFhtlaMhmVzkb8DtT5dYuodyvAhdVYgAN+8I7L9Bya1ftdt wPtEXzNsHzjlvT61E+pWiywxiZXMzmNSh3AMBnBI6UAUptQuxb2cyRqXlDZVeU6gA8fXPWq0ms30 RkZooznYFUggLywLEnsSoH4ite31G0uRlJlGXaNQxwWKnBwD1pE1K0cSFZ0IRtuQw+Y4zgevWgDI k1O+tpjiFpPMfb85wqfM/GffAA/CpTq12WSQCMLtl3xbG3BlAIUn1xmtZLuBoopDKqCVN6hyASMZ pkmo2iLERPG/muETYwO4k44+lAGPda5NI4gt4mxIH2yKpBwM4Yfl+tW9R1aSzmuECKPLVSgKkl89 /QDtVttTtlkZSWAWTyi5GFDYz1qZry1QEtcxKFODlwMH0oAxhrF1cSeXHGFbcmQoOUzt+97Hcfyq GPWruZba2KkyvEjySIhXDZGR9OorZ+3Wcd41sjL5h+Z9uMAn19+KfNqFrCsDtKCk8gjRl+YFjnuP pQBl6jf3z3ktnBGIlWSJd/O4qWXJ4PTkjPtUGn6hexwIlw5LSKD5kgONxBO0e5/pW7De20yoUmTL gMFJAbB6cUgvrUkAzxqWYqoZgN309aOgGTa6vfSqYxbqrLsXMmc8jOSB6/hTjrc4UsYFBLrGIsHc Cw+Un2JrT/tCy3lPtUOQnmH5xjbnGc/WknubMRNLJJG6wgSnBDFfQ4oAjsBN9ou3Z2MW/aisxbBH U89AfT296vVALuDy97yLH6h2AI4zz+HNIl/ZyM6rcxEo4jb5hwxGQPyNAFiioY7u2lk8uO4id/7q uCfyqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAxZP+QvefSP+Rp9Mk/5C959I/wCRp+KACis2fWYIbp4jDM0MTiOa4UDy4mPQ Hv3GcdM1pEEdqAIL3/jxuP8Arm38qmtP+Rfk+h/pUN7/AMeNx/1zb+VWdPjMuhtGpALA4zQBh3M8 qXVvDHj95uJO3djGPcetU5dXZLYy4jDAhSDn7wBLj8AP1rbfTmkKmRIGK8qS4OPpQunMpJVIASSc hh1PX86AMq61H7PdRrgGGSLcG77j90fjTI9XCwK08R38K+zpvxnAzz+NbB04nGUgO3GPmHGOlNOl gkkxW5JG3O5enpQBjDV28uRfKbzl3EkDKrhiACfwrWp40oDGIbYYGPvL0qT7HN6xf9/BQBBRU/2O b1i/7+Cj7HN6xf8AfwUAQUVP9jm9Yv8Av4KPsc3rF/38FAEFFT/Y5vWL/v4KPsc3rF/38FAEFFT/ AGOb1i/7+Cj7HN6xf9/BQBBRU/2Ob1i/7+Cj7HN6xf8AfwUAQUVP9jm9Yv8Av4KPsc3rF/38FAEF FT/Y5vWL/v4KPsc3rF/38FAEFFT/AGOb1i/7+Cj7HN6xf9/BQBf0/wD48F/3jVpPviobWJobNFYg nJPBzUyffFAGZq3/ACGLH/ron8zWpeW/2q2aHeUyQQwGcEEH+lZerf8AIYsf+uifzNXdYaVdLmMB YP8ALyuQcbhnpz0z0oArS6FDMrrJNIVk5k6As3POe33jxU1rpMVrOksbbSqFSEUKGz3OOtUzd6mr ZhUNCo4BjZiwCqfvHnkkjp2qKLUtRuFaSKPeF3YIjYKG+YbT/e6Kc+9AFxdCgWIIsrgjo2B6KP8A 2QUq6HbqJAHI3sWJCgHnPU9+pqF7y9t3lVhIQu4qREW3nOPwA60kF5ejT7i7kikErKmF2E4PQkD9 aAJY9AtoovLRyo+cEhRkqwIwT369aa+gxyMrSXUjEFmPAHJBHHp1qJdR1M23nyQFNyfcERyhwpz+ ZP5VHa6hqKyxiSEq123AdT8hCKTx6Yz+NAGpLp+93aO4eISRiNwoHOM4Pseaop4eQFozOfJK9AoB LZY/gPm6VHFqGoEpI0UmGKKw8s88sDtH5dccU7U59QmlmtIldUJC5WM5C5X5t3fOSMe1AE0ugxSO hNxIFSQyBcDqTn+dS3OjW9yYy7OGjjEasOoA6/mOKju57+G6kW3QmNQDyhYHAHA9M1Se71YxtblW YkS5fyyCfmYADHcDac980AWv+Eet9sSiVlWMEYVQMkgjP1wfxxU1vpK2+pJcK5MaowwepYtkH8AS Pxqj9t1S33RpAWVQzDerEt8x5H04471Mb+9hMzlnnTjyx9nI6pkHjnlhQBaGkR7EiaV2hjLFEwPl DAgjP/AjVdPD1uvkgSMFiBG1VAzwRn64PPrim293e3OrIjwyJDHIedpUfdYYPY8gH8RTJNVv0aHE LMzOfMUwkBB0xn265oA0LPTIrS5ecNvdlCklRnoB1/AcVWbQIDFHGJpAqSmXHBzyCB+GAB7VVS+1 G4gSZGZV+U+YsJwQSm75T6ZYZ9qms7u9utUHmQyJDGzgZUqDwOD+NAEkugwyrsaeTYACFwPvDbz7 /dHFW4dPjgVxEQhMQiBVQNoGen51kLeakBLcYct1wYmCqdoyMd8HPNSS3t+7JKsUoZHJMXlEYGw4 J9fXFAGha6Tb2ltPbwvJ5cyBW3OWIO3bnJ9sflUM2hwSvO+7DS4+baCykADIPboKrjU9QUgmIumC QViblQ2NxHbK9qR9R1Q25mSAKCwUbom4Bz8x79lH40AXn0tHtJLcykq0olBZQec559eaqnw7AWLf aJCfLEa5AO3p09OnHpTtS1C/gukitrcvmIsf3ZIBwe/1AGPeo1udQkv7eGUMqpKQSsRAkA3jcT0A 4Xj3oAkfw9blX2ysrMWO/aC2GBBBPfqfpVi50mO4fLSuFKhSuBzgEA5/E1QU6lDPL5ZdjJK/zOhI UbjjjPoBSx6jqc8zxrbmLhTuaI/KcHI96ANBtNTywscrRusvnKwA4OMdPTFQNoVuyMplkyxyW4yT ggn/AMeNQG/viS7RSKUyTGsR4Gw4Oe+T2psF9epZXV5MrRuRGBuRiBzgkL+uKALB0KIuzee4Vico ANu0kEgDtyOoobQbcxGMTSJ8gQMuAVIGAw9+9VxqOquSFgUfINpMbfNlsbsduO2aRJtQtZZFAeVn mdhujPzjdjGf4QF596ALf9h2/KiRxGxG5OOQDkc9RzTBoMG9HeQyMvHzIMYwAMDsflHNRm51cqhA QHYCw8k9ShY9/UAfjUY1LVJZp0jtzGqchniPYMdv5qOf9qgC3c6JFci3VppAsMflgcc8EZ/Wj+xY RciZZWX51dlwOdpBH05FQNqGo+dGixAbpSrho2wgB4Ge+Rzmm3c2owapPLGJGg4VerAcLk7fb5jx 1IxR5h5Fm80WG9naWWVgSVYbAByORn1wfWkXQ4vOlleZ3aTOSQO4Yf8Asx/Sq327WHBZY1CjIGYW y4CsQ3XjO0DH+1S/2jqcssyRwFApyC0R4+Vjj8wPzoAmGgwhsi4lAGduMZXJJPPfkmpV0W3Filo7 M0auz+mSwP5dao/2jqSTeWlu5J8w/OhIHUrz+AGPerN1eajDaxeXEryGZkZyhxgZwcDJ5wB+NADF 8OQjBNzMzLEI1Y43DG3nP/Af1NNutCd9QSWCQJFgg88png4GOTjoe1E17qQG8QkGNijYQkcYy2O4 wcj6VDZXmqqnleWeFyGkjbLZb72PbPTNAF2HQ44I1WOdlI5ztHXcWHH1J4qxa6dHaW0kMTH94Bks Ae2Kz5dR1JFceVh1AA/dHBGcF/w9K2oGdoI2kADlQWA6ZoAyV0CNZX+cGMw+Xgj+LdnOO3GAKkOh QNIjvI0m1t/7wBsnaqnPv8oOa1aKAM+20mC2likRmzHjHA5wpX/2atCiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxZP+Qvef SP8AkawdZkgttUMupz3KWkkYFv5MjLiQZyuF6seMfSt6T/kL3n0j/kayNRs55dVaabT11C1MIjjj 8xV8snO4kN68c+1AHK2jX8unpp39rJE2oRtMlpIu55FOScyY+UnHv0rU0W5jvRpy2U94b5drXfmy sVRAOcg8Hd2xVG3ttWtdFnmWe3jFjugCOoaePn7qPjjORjr1rX0vS7m1TTI4tK+yS25HnXHmqRIp HzggcnJx16YoA6C9/wCPG4/65t/KprT/AJF+T6H+lQ3v/Hjcf9c2/lViwjaXQmRBliDgUAYtxcCC eCLYp80nknGMY9veo21G3V0UI7BlLFgvCgLu5/CtA2U5kWQ20m5QQDj161AujBRgWcvfufTGOvTH agCvJqFrGzht3yDJwvvj+dPe5QW0c0a7xKQEB4yT6+lSrowVGQWcuG6kkk9c9c+tSvp8rwiJrWUo MY9Rjoc+tAFFNQhZR8pduOIhuBJJAAPHPB/Kk/tOzKgqxYkZAC8np/iKt/2SdhX7JLyQc5Ocgk5z nrkmkGjKsiyCwYMmNpx0wMD+dAFW01CO5mVDC8e9VZNy+q5wfem/2nCqs8kZVUH7wjna2SMfoTV6 LSmiKlLSQFMbepxgYH6U2TRxKJA1lJ+8be+MjJxj19KAKw1G3Cu0pCbWIzjIxk4P/jpoa+jNtHPE m4OWGGGCMAk/yqw+iq7AtYyHrxzg9e2fc/nT20uRo44/s821DkZ5JyCCCfxoAopqAfbiOMZCliXw Bu6Accnilj1AStGFhwCVV8nlGOeP0/Wr0mltIys1pLlQF4yMgcgHnkUn9lOG3LayL+985sD7zY6m gBcD0FGB6Cpvstz/AM+8n5UfZbn/AJ95PyoAhwPQUYHoKm+y3P8Az7yflR9luf8An3k/KgCHA9BR gegqb7Lc/wDPvJ+VH2W5/wCfeT8qAIcD0FGB6Cpvstz/AM+8n5UfZbn/AJ95PyoAhwPQUYHoKm+y 3P8Az7yflR9luf8An3k/KgDS0/8A48F/3jVlPvioLON4rJFkUq2ScGp0++KAMzVv+QxY/wDXRP5m tS8uUs7V53BKrjgEDqcd/rWXq3/IYsf+uifzNal3bJd2zQSFgrY5Xrwc/wBKAIf7Usw4jkuI0lOM oWBIzj0+o/OgalYrwk0e1SQxBGFwCefyNNbSrd9xdpGLZycgZyFB6D0UVBBocCx/vpJJJMEbs4AG WOB/30aALa6hatnMgU84B7gd6RNRtmWWTzFEUYU+Zng7umKjl0mCVpW8yVPOyHCsPm5z6Ukej2sd i9ou/wAt1CnOD0/DFAE0eo2kjSqJgDExVt3HIAP9RUY1Kxe6kjMse6Jc7yfrnH0xTW0eBhjzZwM5 +/14AI6d9oqOXRIHCAO5VZUfDHOFUk7R7c0AXZb21hkMck6IwXcQT0FH2218uOTz02SHahz1Pp+h qG40yC4maSRpMMclQeM4xn64p76fbyKFcMQGdsZ6lwQf/QjQBGNVs2dsTKY1XcZM/KOcYpU1Wzcv iXCoWVmPAypAI9+tVm8PWLW3kfOqbdvy7Rke4xjvU7aRbsQQ8oKuXQhh8pJB449u9AEn9p2OSPtU XChj83Y4/wAR+dMXVbYvIm7DRybCMj25+nNR/wBh2flGMb9pz3B6gA9R/silfRrZowoaTcMkFmzy cdfX7ooAlfU7Vbb7QkqyRb1Qsp6Ekf40k2q2EYG64Rt20YXk/MQB/MUyDSY4rPyDNKXLI7SgjduU ADt7CmR6DZQljGHVmKtuGN2QQc5xn+Ee1AFn+0LIJkXMQVQOjdOMj9KT+07Hn/SouFDfe7Hp/MVV fw/YO0jFXzJnOTkDLbuh9DUkOi2UExljTaxZW4CjkY9B7DjpQBNJqNtHNBG0gCzqWR88HkD+tOXU LNulzGfmCde56CoZdJt5o4Y2aQJGnl7Q33lyDg/kKhbQLNmQs8zFCuMsDwv3R07fn70AWTqdoZIY 45VkaZtqhT9ef0NK+p2UcixtOuWZlz2BUZOT2xTV0yBJopFeQeUFAXdwducZ/M0xtHtmeV98oMjM zAEAcjBGMe/1oAn/ALQs9m/7RHt+vsD/ACI/Oki1KzlMoWYfu2KtnjkAH+RFQzaPbzXBnMkwbIYA MMKwAG4cdflFLLpMMpYtLMCzbmIYc5AB7d8CgCZb+zeREW4jLOxVRnqR1FEmoWcRcPcIpRtrAnof 8g1Emk2iXEM4Ul4gQpIB6knuOOSemKYmi2izTS5kLSklskdww9P9o9aAHyarapJcIG3/AGeIyuV5 wB2+vFJFqlpLArzOkZIztYg+nP6iiLSLaITKrSbZEaPaW4UMSTj8SacNMtwWPz/MQTz6EH+YoAcN StXXfHKrxr99weEGCcn8qfLfW8W1pJAqMu4MenUD+tMXToFiljG7bImxs4PGSe/+8aRdNgVLdd0j eQAFLNk8EHn8hQAg1WxLSD7QoEZUEngfMMjB78U231a2lBLt5PzbRvI5PP8AhTG0SzfZu3kIVYBs MMgbehHpR/YdkWRirMUYkbsN1+ooAmXU7Jp1hWdSzKWB7EZx1+ppbjUraFciQO3BCqeSN23+dRLp ECxpGJZsInlr8w4UEEDp2IGP61H/AGDZmVJGeZmUYBLD1z6f/WoAuS31rCXEk6KY8b8n7ufWo5NT s4w585X2H59pzt6/4VFeaNbXiSpLJKI5W3sisMZxjPT0psOjQpkySSSHLbRnhVJJwPzoAmOqWu2I o+8ybCFHBwxAB/WpH1CzjaRXuIw0f3xnp/nIqsuiWq3K3BeVpFCgEkfw4x2/2RTZNEguJJXuXZ90 hdF4wmSD0I5+6OtAEsmr2aTxRLKjlyQSDwoC7iSfpUn9pWOM/aY8Yz17Zx/Pio20i1aMx/OFJY4B xyQB/SnRaXbxszbpGd2VmYnlirbgfzNAD01KydA63MZUsFBzxk9KVdRs2AK3MZBbb171Um0KzmEY Yy4j24Abj5enapTpFsSCGkUhdhw3VcYxQBbt7iG5j8yCRZEzjKnvUlV7GzhsLYQQDCD2A/kBVigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKAMWT/kL3n0j/kafTJP+QvefSP8AkafQBTl0uxmvlvJIA06kHOTgkdCR0JHYmrlF FAEF7/x43H/XNv5VPZsV0BypIODyPwqC9/48bj/rm38qnslZ9BdVBJIOAPwoAx7m6htmUSsV3KzA lsD5RkioTqUQXfsl8skgPngsOo6/5watTWYnZWkikJVWUfKejDB7VD/ZMe3Zsn2dQnOAT1I460AQ pqsEgG1ZS7MUCdCWDYx175z9Kkkv44mkV0kDxx+YRn9OvWj+xoRIJFjnVwMBhnj5sg9Ov9KJNGgl LNJFMzuTuc5y2RgjpjGKAJI7uF41dmKFnMe1j/EDgjjr0psl9bJEXEu7glQCfmwM8VJPp6TxJE0L oiHKhF24/Tj8Kgk0WKQxGQXDeUNqZ7DkY6e9AFiKeKYsscm5l+8A3SpMe5/OorXT0tC5hhcbzk/J /wDW/nVjy5P+eb/98mgBmPc/nRj3P50/y5P+eb/98mjy5P8Anm//AHyaAGY9z+dGPc/nT/Lk/wCe b/8AfJo8uT/nm/8A3yaAGY9z+dGPc/nT/Lk/55v/AN8mjy5P+eb/APfJoAZj3P50Y9z+dP8ALk/5 5v8A98mjy5P+eb/98mgBmPc/nRj3P50/y5P+eb/98mjy5P8Anm//AHyaAGY9z+dGPc/nT/Lk/wCe b/8AfJo8uT/nm/8A3yaAGY9z+dGPc/nT/Lk/55v/AN8mjy5P+eb/APfJoA1bAk2CZJOGIGasp98V XsVZLFAykEsTzVhPvigDM1b/AJDFj/10T+Zq9q6zNpsogDGT5cbc5xuGenPTPSqOrf8AIYsf+uif zNaWoXYsbKS5ZQwTHBbaOSB17daAMt21ZZCYGYQr91DF1ACnqeeSWH4VDDdatcq0sYdh82xjGBhv mGAO44Xk9zWquqWohLySqpUEuFy23GM8+nzDn3oh1O2kLqWC4favfcCcA/iTQBReTUoHlUCZgNxQ qgbec9T6YHIx/wDWot01CWwuJZRIlyVR1xxuZecY98cj3q3/AGxas4WIs+RnOMKPmCkE+uTTzq1i MZmIyf7p6evTp70AZUjasxji8mXZMheQEZ2k5IAPbHAxSXA1V5FXZNhMlVVeDkHktnOc8YrVv9Vt 7JJdxLSRrnYAeTjOM+uOcelNn1SO3kETxuZMIzbVOAGOOPU8dKAKdnNqUd5b2s0juJGkZmdRlQrH jjqCGXB9qSdNRurpEfzBCtwrMNgAADHAB7jGCfetKPUrKWVkSdCypvPsvB/qKadVslALSlQV3ZZS MDnGeOM4OPWgChcjUYrm58rzmjj+eJhzkuQMY77cMce4ptvNqscYd7d/Mm2kjbkBsJnPoPvVoLq9 iwOJWyDjGxsk5xgDHPJH50p1axGP32cqGACklgeBj16igCkjarPpMiSg/aZXCfKCnlqcbufbnB+l Vy+rs0TGOVZIkI2BMqTtILbu5z0H0rYi1G1mUmGUOQpbA9AAf6j86gbWbNUBJdmJVSqoScsQPxwW GcUAZscmtRbljDmPDsC8XzPlm59iOMDv6elgLqEemxmLzTOJJWy64JB3bSV/EcVYfWrbzAkDCbna xBxt5A/r+lSf2zYlHaOYybAzEIpJwBnNAGdM2tRySFJJG+UID5YIGJGBfAH3tu3j9KaV1aIvJGrL I7YZ9pIAJzkLzWuuo2rRCTeQCu7BU5HAPT6EU2HVLeWOWUH90rqqsOd+VBGB+NAGeX1Z2Ry0yurS Bo1jGz7p289xwDnPU1HeXGrTr5cVvMI5A6kFMfLtIHuDn+daj6rZIzq02GQ4ZdpyOCemPQH8qaNX tt8qvvURKXZsZXG4r1H0oAhmFwk5bypnYQDyApO0OAc7v061Snk1uVXiQyCIxvtkMWHc4PUfwkdu laP9rReT52wmPz/KBXnIxndgVKdVshKI/PBc7cKAcnd0xQBj2trqFjv2ecQzYL7ASq/IBgAYPft6 1KsmsrJIqKyoA5TdHksSWwfbHHFXbjXLKKGV45BK6ZGxc5OP6e9WZ9QtbeRo5ZdpUZPBwOM4z647 UCKdsNQF5L58srJ5LKo2gKWDHB4HBIxWdBHrMUMWVmZrVCq7mz5u5c5PqR057itmbU7eOOFwHfzn Ma4U8MASc+n3TTLfWbKZIMyhJJcAIwIIJA4/Uc+9AzLmfWZJIsJK4jfdHmML5gw3L+h+7x/kWY11 BrW4eTe8zQKFO0rk7m7cc4x6VZ/tq3W9ltZEZGjcqSehG3duHt2+tPk1e0RQQZHOQCqxklctt59O aBEK/wBova3YlLlmTMeFClTlhgY9gPzqldvrTW0sZ8wrIrcpECy/fAUe3C8+9ararZLnMx4P9089 eRxyODz7Uk2qQx3sNogMskoLLsIPAPJP0zQMzXm1iLZHDFJja/Vdwzzg5/AcZ71Ndrqb2MSqXaVJ nDlRtZ4xu9OASMY96uf2vZMvyTbjyMYPBHGD6c8c0g1izCjzJNkm1WKYJPzDI6DmgCrJJqal8GUR M3BWIFo1yQMDvkY61A8muSboZIgEdCCyqOMru4/9B+taj6jAl1FET8sqB1cAkHJwKiGtWhd/n/co m5pOeDnBBFAGZcPrT208RDqrbkAjiyyjacYPcHjJ7e1Mg1DVZnkjgk5SQKR5YbywNw7c8kAHPPfi tv8AtSz3lPNJYNtACn5j7cc9D0qCfWrCGGWSJxI65+RAckj+nvQBWum1SLUzLFGzBo1BVFyhA355 PQjj6+9RC61zyl/duzFGGfKxj5vvHjk47D8q1pdRt4JmimJUqQAcZzkZ7dKgbWrZbkx5/dr1kPA/ i6ev3e1AFe2/tGTUoTcmQoin7se1TlRzn1znioIm1eAJFArMisx8yVDmU8YDA/d788Dj8K0rjV7S 3IVy5c7cIEO7DMFHH1Ip66pZtKIlmy7NtUBT83Xp6jg8+1AGasmqZEhkucNEoYeSvynd8xAx1A6e vvWhpjXzh3vTtOFCptAHQZP1zT21KzR3VpgChKscHAIGSM/Sozq9mGT522MHPmbTtG3Gcn8aAL9F Z51rTxj9+TkZ4Rj6n09j+VaAIYAg5B5BoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDFk/5C959I/5Gn0yT/kL3n0j/kaf QAUUUUAQXv8Ax43H/XNv5VYsXaPQmdDhgDg/lVe9/wCPG4/65t/Kp7NS2gOqgkkHAH4UAUZL+SNg r3MgJVmHJ6DrSf2g+wP9sIUjOS+OKhu9La7ZDJFIQquoG0/xDGarroUglVm8xkU5CmL3BP8AKgC+ NQc4xek5O0fvByfT60qXssgJS7ZwDglXzWa2gyFY0TzEVSpwI+uAP8P1q1Z6ZJaKypHIQwUfcx0G KAHw6qZ1yl3IOQBuJUnPTGakGoOduL3O7IH7wc464rNHh4qY8LIVTnayEgnAyfrwKcNBkxtPmbeh Aj6AHIC+lAGgb+Qdbwj6yfjSf2g2M/beMBs+YOh6GqC6DJscOZGZl2hvKxj7uP8A0EUSaFJI8rlT vkwd3lH5Tx0546UAX59Qkt4vMlupFTIGcnvxStfurFWvCCCAQZOhPSoLvS3u4445Um2JnIUEbjjH UfU1Ami3CbfmdirFgWhyTkYOfX29KALwvpGzi8JwSDiToR1pj6psIDX2CW2AeZ/FjOPrVL+wpguA ZAcbciL+HGPz96cNEcMrKjgqc/6vr97/AOKP5UAXBqTFS320gABjmTGAfX0pZNQkjjWQ3MhViApV s5z0rLuPD8/kAQK5kB5yuMj5e/8AwGrj6fdPa20flEPEUJwpxwMHH50AOfWRHGjm7l2uoZcZOQQT n8gae2rFS4+1yHZt3YJ43dDVI+HVMUcXly7VUKcKeSARn9f0ofQ59rMpmaWTiQsDhgWB6dsY4oA1 PtNx/wA95P8Avqj7Vcf895P++qQwTE/6l/8Avk0eRN/zxf8A75NAC/arj/nvJ/31R9quP+e8n/fV J5E3/PF/++TR5E3/ADxf/vk0AL9quP8AnvJ/31R9quP+e8n/AH1SeRN/zxf/AL5NHkTf88X/AO+T QBq2cjy2Ss7FjuIyanT74qvYo62SqykHceCKsIDvHBoAzNW/5DFj/wBdE/ma1LuCO5tnilZlQ4JK ttIwcg5/CsvVv+QxY/8AXRP5mr2rQSXOnSwxLudipA45wwPfjt3oAjl0izuI5N+9zKqhn38nb0NI 2i2J2/K4C9hIQD6Z+mKoXFrrJ88QMyxsFEKiQKY8Dnpxyccdhn1p5sNULNIbmQs2coZPl5Y9v90i gC5Do1lBGioH2jPVz82SDz+IFOXSLRVK4dsgrlnJIXpj6CqaWGoqq5lJPHyl8hcEYwO3eqzx6lb6 lZwvJdSQ7gxKuSSflyCfTO44PbpQBr3Gm2lxOzy7izj7m8gE4xux644zUstlDLcCdt24ADAYgHBy OKzJdNuzdyyxvIp8xpEbzTjkLgY7Dg8VJDa6j9juEluJPNklBBDAYXdzt9OKALMOmWVu77Fx5y7G Utwwxj+Qph0azIAcyuNu07pCd3XGfUjJxVL7Fqm+SRpGkYO5QF8AAhgNvccEenI/Go4tO1YKZDIT cFUwzyZAIDjp68rzQBpXGkW82CrSRsH37lY56gnHp90U2HR9PhuPMjUh0C8bz8uMYP8A46PyqtFZ 6oJA5mlVFI2I0u4gZ53HucZx+FQDTdTYNIXYSGMRndJnevz/AHuvPK0CNSDTbe1mmmHCvEsRyeir nv8Aj+lH9lWhQABwByCHOQcqcj8VFUoLe/lhvlk8zbJHJGokfILZIBA7DFQjT9Wf9208qQFGVU83 JGQR8x7+2OntQM0o9HsoxhYyFDFgN3AyQcfTiki0azi2+WHUKCuA5GVP8J9RVIWmsq6JDMUh2AfP JuZTgZz64K4+jGmQ2WsgR77qbhG6uOHIPX1HTHXHtQBffRrNxh2lOVC8yH25+vyj8qemk2kdr9nj V0TcrAhzkEAAEH6Cq01nffYhFHKzSJKWRnfJC7Tjk+5qCXT9RVmaKaUtsZFYzc7dwPr1xkA9qAJz odiZ22SyKzMWkAkOWGDx9PmP51PNo9nMjIVdVYYIVyB97d/Mn86zptN1Ld5kUjByAGfcA5GEzz6/ Kalaxv5JYmkeZmjm3bhNgFdhA+UehIz60AXjpdqtp9nXfHGrbwVcgg4x1+lQjQtPJd0VwJAudrnG ByAKpvb61K0QbKruG796DkbQDn2PzHvVma21BViWLcVS3CBVk2gP3J9eMY+nagCVtEsfLK7XRck/ K5Xg9V47VNcadazSvNNu5HzDeQucY3Y9ccZrGW11iXdC7SllQAs8nyEYPGO5+7zT20/VFCQRl/Kz LvLTbgwYtjgn3XH49KANiSwt5UVTuAWQygqxHzHOf5mohpVlHcRThSsiYCnd1wAAP/HRVW+t9Ve7 iFq5jhEW0kPjnB7eucYNItjffbrcyPJJDFJlSZc4XLdR3OCtAFyfSbK4mEskZMgLEMGI+8AD/IUn 9n2caeSXZXlI+YyfOxB3Z+ueazHt9YnkmMUs8cZlYHMgyw3HaUH8IAx9aml029M63HmyPIokB/ek cFl4HYfKD+NCAvLpNopY7XJIIGXJ2ggjA9B8xp0umWcrKzRYKjAKnaR+VUVsdSePElzMpJAAWXBC 4bjPr93J9qY9pq6eSsczsFcMzNLk9FyD6jO6gCxDoFnA67DJ5Y5Me84Y5zk+vQflUkeiWMdwZ1R9 5x1c8YGKppZ6vH8onkcbDsJl+7IVHLeozu4qRrXURpkMSyTNICxbMgD9Dt57gHHfpQBZexsJTGpf iECLaJOOOQGH61EPD2neQYtkm09TvOTULaXcjTniBDTNO8pJbIOc+vTr0phsdTLhhI+5GYxky9Mo QMgHBAOOP0oAvyaZZnyydyMrfIwcggkk8fmaYdDsSmwK6rkn5XI4PVeOxqlFYakbq0aaSWSONlf5 5B8v3s5H8XUY+lSNZao7TbrmUbpGZdsmBjDbcdx/Dke1AGjLY20srSOp3OMH5iM8Y/lUB0WybduV yCeAXPy9enp941Vey1RtxNwxZSwjO4ZwVPP1y2PoKc1nqDXLKJpVhLYLed1TK4x3BAzk980ATnRL NpmmbzWlYAbzIc8EHP1yo/KpYNLtIJ1mRW3qSVyxO0c8D25PFUfsOpth2uZQ4XAAlwDhRjI/3s02 Oy1cqxlupC+5m4cBc9se3saALlzpNtNI0zkgmRJX3HI+TkD2FKdHs3D7g7CQsW+c/NuGD+HA/Ks+ Sw1IAQxF/K3S7i02QwYt2J6cjH49KluodSa8WO1aRFSFPm34QH5gRjuen0oAvDSrTbtKseMEljz8 pX+TGriKERUXoowKwrrT9Rl8yJZZjHtxnzyNwwMD2bcDzT0tdTEzNJJM8ZlyUWUD5eduDntxkd8d 6ANvIzjvRXOR6bqcFuqI0nCbWIm+YsC+DuPblTj/APVV6C21KNLgtcFpZImClmyofJ2kDsMYoA1a Kw2tdUPEbzR/LgF592Bg5B9TnBz/APqps9rqEC7UluZUeTBAm+bbuOOe3HWgDeozmsCOz1l52Wed ljKqCUlxkjuPT36U77Fq32hW890TBJ8thktgAk560AbtFVtPSdLGJLnPmgYOW3H8TVmgAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxZP+QvefSP+Rp9 V7t2TV7racZEfb2NN86T+9+goAtUVV86T+9+go86T+9+goAfe/8AHjcf9c2/lSWN+9tapGsasMZy TUF3M5tJgTwUPYelVkkfy157DtQBsf2vL/zyT8zR/a8v/PJPzNZHmP6/pR5j+v6UAa/9ry/88k/M 0f2vL/zyT8zWR5j+v6UeY/r+lAGv/a8v/PJPzNH9ry/88k/M1keY/r+lHmP6/pQBr/2vL/zyT8zR /a8v/PJPzNZHmP6/pR5j+v6UAa/9ry/88k/M0f2vL/zyT8zWR5j+v6UeY/r+lAGv/a8v/PJPzNH9 ry/88k/M1keY/r+lHmP6/pQBr/2vL/zyT8zR/a8v/PJPzNZHmP6/pR5j+v6UAa/9ry/88k/M0f2v L/zyT8zWR5j+v6UeY/r+lAGv/a8v/PJPzNH9ry/88k/M1keY/r+lHmP6/pQBr/2vL/zyT8zR/a8v /PJPzNZHmP6/pR5j+v6UAa/9ry/88k/M0f2vL/zyT8zWR5j+v6UeY/r+lAGv/a8v/PJPzNH9ry/8 8k/M1keY/r+lHmP6/pQBcuLhrnUbKRlCkTIMD8a1tVuJLXTpJojh1KgHjuwHfjvXPwuzX1mCf+W6 11bKrqVYBgeoIoAxm1wxzSW/lKzxFRveUKrZGeoHtz+HrTE11lLl4S43ZwTtYKeAAMfMR39BWw9t BIEDRIQh3KMcA08ohIJRSR0OOlAGMNbmVzutgcqshXf9xdoJ5xyeaX+2ppdNu7qC3QGFwq73OG5w SeOP1rZ2L/dH5VBbWVtbLIIosB/vZJbI9Oe3tQBlPrc9tvSS185zIwj2uACAzDkkcfd/Grl1qnkT NGIl+VUPzybeWOB2PA7ntV8xowwUUj0IoaNGOWRScY5HagDKi1mSbbstBguI8mTvgkkccj5eD34q uNfkMP2o2+yMxkrGzj5zlccjpwTwa3gqjGFAx04pvlR7Svlrg9RigDETXZiS7woEMm1F3diqEFjj j73WrVlq7XVykX2bYrEoX35+YAnjjkcHn6VpeWhz8i88HjrShVGMKBjpxQBgx69KgSJrYTys5AKS ADGW69gfl6Uo8QPDGpurUbmZ+Y2yAFYrzx1+7/31W35UfP7teTk8d/Wl8tOfkXn2oAxTr8m8KNPf LSGNcyKOmc5z06cetSy6rM2n3kyw+W8Me9MHcWGSOmOvy9K1TFGc5jU5OTx1NLtX+6PyoAx/7dO3 f9mBj2g7hJ3K7sdPbk9qa/iDymVXtCWJI+R8g4JXIOOQWwP+BVs7E5+VefagRoAAEUAdOOlAGJDr kyoVkti7KBukLhRktgfhzyfaooPEUoUo9sJXRdzMr45LYAHGCOevt0roDHGTkopyMdO3pVcWFr9q Nx5I8wj1OOmOnToMUAVbjVZYUtyLPc0qb2UygbfmVcZwc8tUI1/Mixra5cpnHmdGyBjp0561s7Fw BtGBwOKTy03bti56ZxQBhz+JEhfy2tstsJOH+6wOMdM45zkflUia7NIdosfm+ReZRjc2OOmcfN1x 2NalxawTxlZIwfccEY5HI5HNLDbQwRqkUSqqgKOOwoAyoteeRoU+wnfJtOBIMBSAc5OOeentT4NW nnuraP7PHGkrfMTJk4Klhjjrx0rVMaHGUXjkcdKXYvHyjjkcUAZLa06XDK9qBCrEGTzOcByucY9f 0qK3155nVzbokODuzJzkOFyOOmGzW3tX+6PypvkxBdojTHPG0d+tCAyZNYleMvBCu0dCXzuOGIHT p8vWprPVvOZo5Y1WSOITSFW3KFIBBHHfn/vk1pBFAwFAH0pkdvDHK8qRhXcBWI7gZwP1NAGRbeID cKHW0O0NhyJM45wMcc9R6U6LVZntJblgoAmRQqMGwpCnGcdea11jRBhUVR7CgRoq7QigdcAUAYh1 +ZcSNaKqCNndfMyx4Rlxx6Pz9KbLrVxCwleE7cD9yCDyRj73pnnNbpjQ9UU/hR5abduxduMYx2oA yP7YuHWMx20SHzo43WSXkbsZPA6c8HvTZfEUUYjxDuLFAQH5Gev4jI4rZ8qP/nmvQDp6dKTyov8A nmnXPQdfWgDNGqNDb2xmCszwmV3ZtowMdOOTz0qsfEJaHcLcI205/eAkHLDgY5Hy/rW4URsZRTjp kdKYttAsnmLEgfbtzjtzx+poAxf7fljUJNCnmPM0a7G5VQQAxBHqRxUt3q88FvEkcHmTPa+cXLBV U49O/PYVsGKMnJjXOc5xQURsEopx0yOlAHPWer3sbkXWxyzbFG4BQcJyTt4+8asLrsgklj+zGTy9 5Zt4A4JwB6jjrWyY0IIKKQeoIo8tMg7FyOBxQBlHWyhk823VBCMzfvOg3EErx8wABJ6U+fVJU+ys kGTcJkIWxyWUDJx/tVfmt4Z42jljVlZSp9weoqTavHyjjpx0oAzJdWcW9vLFa7/OTeQ0m3byo9Oe WqvLr+JkgEO2Rh8xDZ2kMAR05GO9be1em0ce1J5abt2xc9M4oAxn1qRdsjQiNQCdu7O7I+XnHHNE XiAyxLILTCOBtJk/iwp544HzdfbpWyUQjBRSOmMUeWm3bsXHTGKAMqPVJRZWzOEMs3mHdvwo2nsc cnpj1pkWr3GyIPADKQqld+AxOzBzjj73pWwY0KhSi4HIGOlLtX+6PyoAxF8QM6ysti22NQWJkA54 zx1I56gc4qWPV3urW8khhMYhB2SEg7uo6dR07+tahijbOY1ORg5HalCICxCjLdeOtAGK2tThSiwo XyMNI+Aw8zaeg4wD3ptzr0v2aUxW3ltlwjvIMfL7evoO9bhijOcxryMHjrSeVGc/u15Oenf1oAoX Wq+RPJEIkOwouWk25LYwen3eeTVYa/Iw3LZfIAcky88KGOBjng8etbLRoxJZFJIwcjt6Uuxf7o/K gDEk8RLGshNuDtPAEmcjLA544Py5xRNrrx/O1sQoJICtkuvzj045WteO2gij2JEgXO7GO/XNSbF/ uj8qAM+z1Nri6S3lt/JZo94+cNnBwRx+H51o01Y0Q5VFU4xwO1OoAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooA//Z ------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





Capital Intelectual: a propo= sta de um framework de CI baseado em design science research

Vinícius Figueire= do de Faria; Dárlinton Barbosa Feres Carvalho; Fábio Corrêa; Leandro Cearenço = Lima; Renata de Souza França

IS= SN 2237-4558    Navus    Florianópolis    SC    v. 14 • p. 01-27 • jan./dez. 2024

19

 

                  =                                                                            =        

 

ISSN 2237-4558    Navus  •  Florianópolis  •  SC    v.9    n.2    p. XX-XX    <= /span>abr./jun. 2019

 

 

------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/image003.emz Content-Transfer-Encoding: base64 Content-Type: image/x-emz H4sIAAAAAAAEC72bC3QUVZrHb9UXqqu7qqurwSHykJdKCOODgIRFkIAJiYgRSAgEIeGtBAwgg1Fi QAxinjgJLo/w9DHiOAmCoOJmlHMcAWdxx2EclNlRRBhh0AFB1xUP4rr/ezbV6W3Id2d2z+k+50f6 5vv6u9/97v/eqrodNCHEcqC1UI6fXYH3+jQsxDkSosfI7EzpZWYLcRfaOhwC4P4Wxwnt8Aa/P4FA IRks6nXvPT6R1ytBpIsFYpGYjc+MFNkC4fBCeGEDE8h4LvBefrxxgQwnUdllHBd4LwtvXOB9Prbt xb8WPpIOQMaQ/kng6pb3+CEG1ZXIH+J64Pl475H78iH4vRxDF+CCGahFHoqUj/d9gPf6seUFM3xK 9HFUofcDnF8I9kv6Sv2CvoL1+0wv0z/Si0Genor4LvgIOfwRP7n4H+mvi/36NrFO38L6/VzfJFbo G8UifQPrN11vENlgAPDyyEZRGxR5pGoNope2QXQAXL6kbRTfis3irODz/Y14QWwX/wIOR/JoQg6n kQsXv0kEMMrOeing/CbBnik66SNER9bvZuHqvYUGTmtePaS+PlDUI0nMEKtEspikJUfyH4D5TFZ8 7gc9GdqaAQ6L2+BrgqEtP4fh59XAWxOd8F7q3tOyD1r23uPXy/vgH0/v/981UWMI8bKi9jVGo1Zj /EKrNjZqXO2rjdXwqdSqjDLWr8pYCJ97QQHrV2mM1yqNbJAVmaMdCUJkKfJ9KiFLK0m4S5uUMIGN 3z9hptY9YTGoisTvjvgfKuJ3TzijDUj4QZuc4Gc1tjihvV6fkKjvAp7G/qudEImKPehmI1HPMdrr swyTjb/M+B7z8gl4WfM05e11DkTzB8U4HN+d+m4D+1i7ikh+r2H8FYr8FiZU6LcklOpawjQ2vzco Td9A7cGRSH03YJOtVuS1gUZrzdRFu0SX2D3hhoS/iKKEI2IX8OpbBT0fwfrgdFpubBeZxjrxQbt1 rN8h2A+Cfe3Ws35vwv4a2N6ugfWT9kbwAvDyfQZ6kHuw114X065saXPjuQ/xJrR7HExm+5/QbrC4 r12yqARcvK9hzzD6iTIjjfU7atwjHF89+Eube1pnjA3TLW4B8drTzuOmJAf9cWM8HygUXwTmiaOB 0kjtB/qFeESh/d7+Wv0n/jW6Drj458w1+jFzlf4Hsyyytq7HmixV5NXJN0908BWCHDb/Dr6B4qe+ 3mIK4PJYAvsq341ivW9IZJyEcX6DSfE0Nw/1kvdKXJySwI2iJtBb/BJwfn+C/XxgIMhpUxNSC1IT Y0G8NNHdEmIy+uNy724NFv2sZDEOcH6LYH/C6itqrBtZv83WALHNSgeTI7XehjwOK/a/bZamn7QS 9Rl263UjOai+brwYTNQ/DwrwfmS/PYXPfaIY96ngAXEuuEdozk52PIazXXRymsStgKvPZNjvd94A n0TGPd8R4n3FuOc7o3XdqdCTg63XoyDyl9cjT6sXceMT3T4f0/5bS5vL77RdoZ8CJ+1Kdg1/CPu/ gr12Feu3C/YXwbMKv6etKr27dRd4P3K9Hoq5MYF3DzgO7+XamAvitTaaw0L8WTE3zeFsfUa4Qt/l ts7Nl5hT1b3Ce5jPN50SkMfW8E3nBv09J1H/EnhzvctVa94IJ+r9wgT+HNF8P4znbcV4+oW3aIFw rbbXrY187mRIiFrF57qFarVmZzw4GdFkM+qwD/PFaa7ZKRVnnNFibGgQ6zc71F+Uh24SL4ZuYP0O hfoKzU0WQwHXbyHs891hYA7rN9+tEoVuA+K13pt8jHrIexMu/q9CDaI2tAE5b2T98kLPiLTQDrAv Urc0xP9MET8tZGoPhTprp4Cni7ehi86KeZoT7qw1h8eBvW2utfvRN8KIcvB/XWur/3kdPt36rCbj XQ+wDcl1fdkZxEZDiM3Uup+9doX29Cj727DLNjcH7xvT6d+N++ioUUqc33Gjlk4a6+mvxmbyaqnj nkTmw33uR2MdfW88QReMxWz8/zDupbPGFDph5Efin0D+ExXxzxu59IORCQaw8X8wkug7oyudNzqy fn81gqhHgPYBblyvwL7NsGgj/GOfn+S8dFfk/brRnfYa3egA4Po5AvsJozcYyPqdMDLoiJGNeNmR +sk8spGHl1/s9aIfdNYRDACdgac9TOvffWbwj2p4AYIvUNRmga+YFvqKwCx2zAt92TTbl0K3A66G PWEPwTfkm8v6hXzVdK1vK40EXLzxsE/3baK5vvWRWt+LcT2hGFehr4ryfDU0CnDx/wn2ZF85WHCZ tpLRT4Gin76+HErxpdMIwPWTC/tEXy4oiPQTqxF5v50IUkGXOGlkCcY4AGOUfbrgabSj973mmPaJ GP8DMe1X0S5S1GyXbxHt9JXSS74VkTndjs+tUHyuCZ95EZ/dBr16+a5p6b+tdTcIY0oEt4J4rbug +b9rKNvRNf66JWdvDLIta+6NQc69C37E701FTS74TPrK5wB+r/3K142+9V1HPwJOp37zOnLMboCP 55gO+U0T8cw29Sxr3hEMAfGq/bWo9TpFzX5qbqJUcyulA64WU2Gfb9aDZaxfsTmfZpuzaJxZyPpl mJMozZwAxrB+aeYoyjAz6G7A5TcR9mlmFs0y74yshyKMf5Bi/DPNW2iSmULZgIs/EPbeZhrIYf16 Y9w3mXNRzwdYv7HmgzTeXAKWs37jzQoaY9YiXi3rdyvsN5mV1Md8vE0Nyj1Wrn/53BavPbUSc9AD c+Ctb9mOXv9LrtDOivGPbS9RzGklalZt1lGduZat2RpofzN0/YJC+ztgf83cQs1yraB2LmhG3pWK PPaYVfQK2AHy8Zk+wHtFf3/3POzPmitASST+s4gfPe5fX6EdXUfpH9u+Gvl5+2js9VVqQGphOIiX FnriDK9QUbOe/kxK9KfQfyrW40nYj5ip9Hvz1kjNDqMG8jvlfIypD/Be0bX+GHvEKewVXyn2E/Jn kOEfAyZE4hvIP18R/5iZT781ZwN+Xf8W+jwMXX2u0N4F2HV/A5n++kgeJvKoRx6eFgNoR9+n9Gpp c3Xo6V9LPf2rwIrIfuFda334/MOKcfr8peTzl6E+S1ltJ/hX0iXsTV8p9q/PYT+BdXvC5OOdMIvp G7MIfRdF8o7V9nBMvNR2OoiXtneiZhQ1J7KdFtXe0dLm5qTRP4iehvZXA87vYdhnYJ3MRA04v5n+ anrIv5XqAOe3FfYm/3ra5a+NaGwX8q2Nyv8VtKM19m5Lm4v7rn8NHUQOB/2PRuIexOdknbx9ydOc rJfq+WynH/fK/sW0w/8QO54mfzk9h37XAy6/CtiXQcPL/HNYv2X+PKpAvdcDLt4vYN/uvxv55bN+ O/33YBwFYGqbGh4J7cr7xTviqOHhAfUcDA8U04hAEeCfkUcEcB4QSKEOgKvZ19Dyp/5swD8jf4q5 +gY67RjgtXw97P0Dm2hIoPUZeRDGpXpGvjlQRb0DNdQZcPn6Yb8IfV30X/6MfBEaLoC2uc9/788h PZBO7QHndx3sfQK5oO1n5DugDbnPjY6jRr5DLeU11rv27L9CO/os8BjssW3VXHwUqKDDgUp6F3A1 aoJ9feBBMJ71Wx/oTy8FetDvABfvY9hPBXrRl4Hekf3qG+QfVszp2YBDxwIBxOfP7jbDvjSQRGWB PDaPssA8ejywjOoVWtwCjb8c2EIHATeuo7CfCzTQd4G1be432dCQ3G/Ggs4gHmdyxZZ6vym2imm+ VQT4/Wa+lU0zrRQaDrhadIc9CN+gxe83Qauaelp4LgZcvBzYp1qbaI7Vut/MwrhUGp9iVVGuVUNZ gIufCnuSVQ4u32+S0I9qv+lj5dDNVjqlAa6fcbDnWbmg7f1mHHQh95vxoEucNLIUY1ynWH+Po/51 mIfNirl6HfZ3rHrAn2G8Y82nvdBbo8WfYWyxJlGDNQHwZxgN1ijaYmXQLwE3By/D3mxloe/WM4y3 Mf5BivG/ad1Cu6HrFxTa/znsj1ppgD/DeBTjrsT62GTxZxgvWg/SS9YSwD/rvGRVYOy1mB/+DOMp 2CutSiq32j7DkNqTGpwQRw0exxxEn2HIdvSz9h+v0I5+dpf+sW3VGcZx1Owzq46+sPgzjHPQ/gXo WrP5fcoPu2tvoavs1jOMq2z1GYZrV5ED/IDT7o/Yzy5ZK0DrGcalmHH/BP1F10G2o+so/WPb3BnG xBYtyLy6gHhcs0qRs+oMo9TOpAfsFBoDuJoNgz3FTqVku/UM4ybEV51hDLSzaLidQaMBF78A9mn2 GNB6hjEN8VVnGIPtfOplzwb8uu5l19GN0FW6QntjYZ9sN9AMu/UMYwbyiD7DmIV29PNlWUubG98j 9loqtVeBy88wpuPzqjOM6XYpTbfLUB/+zKHAXkkT7FrUm9+/0mEfalcAPt5Qu5jutovQd+sZhtSv C4Yj72sV+/0I+xrUvDNlAq4+o2AfbXeBDq9h/XLtHjTR7kUFgIt3H+zFiFls+yP3x1JPfkW+02yX Cu320EB7Nn4+7HnwHWc7rF+2bdMoO0AZgMt3MOwD7A7g2jbveyeh5vK+dzKI1x5yADVLUdRsG/aG OuwjddAIN8Y6u4ZewPrap1iDx2C/aD8J7mPjXcTechJ9HwCxZzQy7wxF3n/CnnPMngj4M5VjWCOH sV72K9bUq7A3Yo02KuI1os/d6PsA8PIeijk1gTzrvhpMAfLeYSqI11yvDaqfcdYGi2ldsAjwzzjr gtlUG0yhuYDTxB2wp8I3Ncg/46QGq+nO4Fa6H3DxHoG9MriJ6oOtzzirMC7VM87KYBWVBWtoIeDi T4V9bLAcXP6MMxb9qJ5xxgVxPxtMpzmA66cU9mXBXND2M870Fo3MjKNGzmKM0dc+E3+bF9vuiXXn nbn0hz22bUXZ9yFebDvaX/Yn27dhjCaIXSez8Tu5J84B8ToLqMaYVOe/1U4x1ThFgF8nNU42LXdS qBBwehgKe1/49nX4ddLXqaZhzlaaBrh4C2EvczbRSqd1nTyGcanWyRKnihY6NTQLcPFzYc9wysHl 6yQD/ajWyUgnh+5y0mkK4PqZD/siJxe0vU7mQBtyL50L4rWXfvF31PKkU0mfYL4+ANwY34b9VWcp 4K9Trzp59JaTiXj82f8nsJ907qDPndZnd/m3xqlYZ1wep50ByDeFDiu0ugP2Dc4owN8PbMC4dkCH hxRaPQr7aWj1S6ehzevlvJY5Lo7jHGv4+9rova/rFdpTFTXtGppCXUP5dE1oAquBHqG7KSmURf0B N0fDYc8M5YDpkfvezJi8pl2hrXpOnBa6jbJDKTQEcP33hb1baAh1CqVH+u+E/tKj9vxEtKOfnUVL m4uroX8NY9NCuW1qYH6LBhbiZ7yuBU3IPUUxx6tQk5JQJuDXQ0mohlaFtlIj4GqxH/bjoScBf398 HPX6N/TdBLzrp9z/XCDzVt0f7w1l0P7QRMDvO/tDS+nXIdz7Ai7vjbDXh8oAH68efTag7ybg5R17 3X8AY5B7+mIQrz39W9Qser2H3cvbFKVz6S/bbY3hQeQu711KQLz0WoCcVXod5qZQkpsJeL0muTU0 zN1KUwA37w/Bvtp9EvB6Xe1m0VL0XQC8mnl6lXmr9LrAzaASdyLg9VXiLqX73Vr0w+s1G/bb3TLA x7sdfd6JvguAl3esXuUcS70uAfHSqy+M/6ep2Jt84XTyhYeQGR4Q2a/Po9bR+/M5tEdE6dprc3P+ hTuYjmMeDwHObw/sz0Brzyi09oz7BO12N9HvABfvY9hPuWvpDOYuFbVG6uIs/on++xDZXqOoy1m3 iT51X6X3ANffb2B/zX2ZdrrbI/39CvHfUsTf7b5Db7kH6feAi38U9jPwveC+yfrp4d2Yx+fAqogG vbVzBvmonlfOuIvQz4P0N/dhtp/TbjkdcyvpA8DlvR/2N9xSwK+dN9wcescdSR8CLt5x2E+72ciP v086407COCaDwkgdYtdiqfiftbgUP7uCeJzF34a1GH3tkO3oNdbrCm3p7+0n3lzK/3tnKrSVFDap Z9gBHdma9gx3o6TwdXQz4Go/GPY0+KYp4g1Dn4PRdz/g5R1be1lzec1bBuJ1zWtEzVT3t41h7EHh FFoOuFosgH1GOJXuCbd+DzIV8VXfg9wbzqIHwhn0CODiPwl7fXgMaP0epB7xVd+DzA3nU054NuC/ B8kJ11FheCv9DHB5PAZ7bbiBVodbvwd5CnnUQ3vevroG7WhNb29pc3GbwmupEXtUY/jy70HkOFXf g9SHS1Eb3EOG+e8tngyvpCfCtVQGuHx+BntxuALw8YrDxbQsXIR+W78HidX2o9C0vMY/BuJ1jd9j CzFP45/b99jPaxX2YS0bcLXoAPtn1vNgHuv3mZWidbA1xNNYvwrY99gpYF6b/0d0ImrlAwUgCOKx Fz+HjlQ1ey74vLY4eFi7FXA1E7AfQn0PYYyc3yHUQQQ1xONrthj254IpoO2aFbbUbNY/UDMc74ir gHy5QL7/b/kkcmoITQAA ------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/oledata.mso Content-Transfer-Encoding: base64 Content-Type: application/x-mso 0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAA EAAA/v///wAAAAD+////AAAAAAAAAAD///////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////9 /////v///wMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAACwAAAAwAAAANAAAADgAAAA8A AAAQAAAAEQAAABIAAAATAAAAFAAAABUAAAAWAAAAFwAAABgAAAAZAAAAGgAAABsAAAAcAAAAHQAA AB4AAAAfAAAAIAAAACEAAAAiAAAAIwAAACQAAAAlAAAAJgAAACcAAAD+//////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////1IA bwBvAHQAIABFAG4AdAByAHkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAWAAUA//////////8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDuTWjOQNsB /v///wAAAAAAAAAAXwAxADcAOQA0ADIAMAA3ADYANwA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAABgAAgH///////////////8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAACAAAA40sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP///////////////wAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//////// ////////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwA AHic7Jh1VFxPlvghECAEdxoIEoI7BAgaCDQWHEJw9wSH4BKgcXf3QBI0uJPg0DjB3b1xb9iXb76z v9mZc/bM7M4/e35z+3zee11Vt+4ru7fqDQ/hLuVUgJYR/kZEEJAQ7u4fIaD8VRrin/whOAgID/78 f3d/f/+X5Pt/y/8pgQMg/zmGf+HXmKMCoAE8AkAHeAyAAYAJgAWA/XsKIOAC4AHgAxAAEAIQARAD kACQAoAAyADIASgAngBQAlABUAPQADwFoAV4BkAHQA/AAMAIwATADMDy53v+W/51ooJgC/ycgLGQ RLAB7g4Ibn/rCv5bIUJ4+J9r/pc/0NqUNQofS2yQtGBVuNjpjv/rsgYH8haDL2cRkYDntv/0KYoI 7xBM/ymbfy3oCA8Q/7o9/6gewZ93JMC+EYIVggzQejOgJ/5ZwQPsI/5Rz2/f94/o/Cr/F7/6CkEC QQXoe1eg703/GAHHf8o+0Z/tR/4n7P8aJ5w/n/963f9b/v8TxN/T4X8hSP9vT/A/EOpYEAJEFAnh yJYaIXfsf1PTv+V/Iq8QTACf/wrwfL98jyGCJXA3BVJU/4gFpkDK+/9Wnw6YPn89n/4Rmw8BZhT+ FW//W/5Z+/9q+b9sX0kOCRmIhWhoCPMKdjLWs++vMoHQVCH0exdnbGvjZGrjxG5i6GT4x4WTDbju a8u/I5Mk8HYB4VIV5Zz64iR4ZjMRyuDTy8to5QdMPcundQbRy2tXo0c2R0bc4l/RY4kGodkvjdME RF87IuQ4iK341lHZh0fX5UgHklFRi7UHogUU1QVcLOy5+qw4N1kXBnHZ8ghWctu2uJ1sDMxq7iug y5IkLtOeGvWIYbzJxpDkh3AOakTIMbaiPUToWdEFcU0xRZXwSC9RrD/+NJEXWaKaeMdEnn7zzYG4 3PuRB77QoNdee11ElTda8q07bZ9ptYRA4mvzKjWWpB6LV/QInm+9cSSYPsspqlJQXy7VIh2eziMd YnRJQWBqKnw+RTh3bZ8j+haXI9CP5uGun3c/R3LbEQg2hHuWGTUlsDxIXyhSmm6MN5/pTqZ4i41N KTJXy8gBm8dJ7rgf2MlAP5Irhh3p9Y0i5kIL+2+eb4jWHysWBDD2sszGCH3GLrtmWKDxjo+YwU6f K7rkPNsWOFq+7Vz+Ugbb5N1qQiU6/r4QB4Nb383XP/EUmMI6NHu5hhSFstTsKFxOCXVc8r/hfhpK MG15tShaE7TBV2urQ3/tIvHJYdvGcPBt1yKmV6+yVvHQGzM6fXq9GU5p96LHLtTcLMppn9nsJuwu vi1g60qFa4W6BDSIl0wS9v0AvdxA0Zzc/Qa5dPuyrMobPkkrMt9325HRdvMQTZwSw3ivcYg1eMbg w5lMLJHY0GqAJq6L6btX7Ux02QLFCoTObgLgDJX2T7XgoozymzKwyU7t1zYsG4YrLqhxA5ryApul a5l0DI1kKAGjSv7fPahlZVI890lMga+fD5y1wZ6eO7FeTeNbm5dWlem6Fjo+CI0OYnkn/gg9GsK/ wHh9r4JmFP09OohLSwLh01W/Op67IdGYOstjQ3nEdrcNZDTecasHDhbaaqnr+s6ymLXhDrqI2tY9 i6grHlpY/hDTlcI8zaYN3IJasC5JSUPwFYlc9ne5t2AiSj9JV/lNpK2RAntw5mpWeBfnhhuGQ3NT Tx3jBtsbKUl+5h71lyI/SFbZvU9nx7mM5O1sHu2aLzuzjLzD469N/55KIydxLct98cCKNaIhlz1c 3IfZtUxMcpLY8qVFc1EtWnKX5DH7kfkiSc1+dbh5uscZRMUMc7CcB7QLXn3BShV66fXVZCRF8JaT Rb9z9IG2FBaeuscRzXvpWpkIc52VuiSm8EqZp/3fTF3FXFOcYyF8yZUdX/NSYiSd9gun7pKEDNHS Qk8E8OYQ4E+UY999XmpwNnZZ836nXHOK/toojOS+S/osiUQUZonybIU8cazvzGxRGUovbC2nBeVJ 6mDVm2yO3FACDZz7S7OyL3vHD2xLu5p81RHc9/owJ5PpXMJ4b95tUXJRmcu3eVP8Vk84i7CzebGy xnZiV3Ok6VKI+SNflMbjvBHCd+9nmWzNJd8vTP7scqwN3ScxHXdM//C8o1llfr1e0nJOW2t24iTB ZnNuqjLRTtJEKKLAeWEi0ho66rtbE+GhVUmPtmQjOHAzikxzeqzr92F17PrugiXX1J6+9EjxpvHp uFWt6uwZTu6ePrrQRx1CxVMKsYE+XWdc7XMDcnMKZVFOOGYe9Gl2ra9bJq54pJEipy4EHPPjLdmm PZpHWDk2QRAZzbuh/DM8neHun7LQMDaOiNowDhp2WDTrFF5+2JOYHjw8oSAznrzM4gxvQ+EuDVzI csCuN9vRDFUzHWgr7prMaS+vLchk9F1tlXbPIfn6l0qwkCmLXLk+RhuBdnGyZEgs+FRsz1z6XuwD zL1vR/isfktGhIymCb9va4G2Y1e0ZVegwnh9ajPmA5eTTrG/3ZOOG1v2e8u0nxfhzzLZl6sT3XTX nHy2eJiQpDYGqd+Ed7/6hkjezd9+GQAy0E8e7o7e0Il/n5cv+j4sURMHdsFZQ/n56bSK9DrR7CPW Dm/hIT0XFLnuw2ne4Jy0LL7CimIyuWv7EiXQGmgFzQi05gbjLaHEdQdBp1/tgk31vISbaD4ynJ14 zCnWdDriS/aHHdmoCklF5fmA2pyF93Kwjb2ESLhbHYVivtR0oBNkutTZkFh92WQc18ttaLQLeyps aD1ZLzH/mXKZcH6VVGRCZvSh1wdqWpHjiTg7eAW8/Iz+oHzwrnqetMElHqtcHtHLK3uOcXjovVBp 1uwlwcSnHYr9q9y00rxa0YtWpbwaj8EKpFZ7l6JFD9QxUbhrcGTNsHLCiAbd1Vaf49KOK56XixvZ Gi6OuxdHlts0yJ5oQMv2oOTF9dYkEXZokbO/Q2rY9Snlf41okS1c4tdAJCN98PsbxH+JaO8NHZ1M HZQMzU1/hbWbi/t7HzoUFBScO1ST+6dtMNRRlpcsDzpAL6FIHUQv9xA7RF7qYHVQPWdPJiVhK+fm EBo2NmBIbW+Lbh3f4Qibk4c9U35/Gw65EJshJRFL1fTDQb5D4mxEQMJaao/uje4GHFaPEjS7P3pQ CX2N/kGnee4LKZwwRzMj+8EIr0DVMA2pa8VmfCaqD/EDOAfkdEWOvlQPax2xuAg48x9QZLdFP8gn JJH1vZWA0FINIgpwURYZsaW211Xwv2MjCnoETs08m01bq006c5m112xHC7cTcN3CybRzQBVEXmEg SRmKxsAo06Fix95Sil5VewkRp6BH+vkZgRD1BTLy32wCQkVjlDWpgKMhGuLfbwLsgM76vQnIeKQT //PiHrudiwUJI3ejy9fMYiPVI94oN5bZjM2yNNjDqs5WX16eY5KH0LG3zPLTZ00rK7MV0EaqrM16 rOxgO9fqx0N1yEnj5hNwfNFy/+7Z87s7dlcvx6xNkYv6oYzlq3THzfSgdxLpI1OkNtjM2NMrm+9Q zwwRllhk7ZWZQo1wCj4x5OQGhIjfKG4jlr5BDdZj27HWf7Fk1DBsJT9J2qJQXTpsuCSBWh9qey2u fAq+DCtrKjxxtGs4EW2qtehIsq3VPrWWytuO1i6RKhxbT1fwPIPvjg3gdz7bdEpwLC31Y1jOrSIy fa2Qpj2omOlyVRHn3NdUwXOKdB+sKUNp03Kjr2dqTYL2yhDhFIKrhHndzqAMY60ZgnKT95jzc5+Q YjXNnMs2rvNpl6bUNA+aOsHhQ+0powe2kJOmrSa+cH+GYAhV9guW1myMqcWHX4f4XxRrd3LavEAq SxljxrxmVW4I5gpGYZUNZRifiNMjUo5c08HQ7YGxdmb7yR1IYOKPcWN8eZVvQZlRyScR/0gJ8TrE koymhbmN+ZuIik67nT2hWhlVlzLil1AusIKL/pXPffe5fKxHUEgvJeN1drNylHuu8XXoPlKmheij Ul4R/HKmbYeXZekxw/G5riVyj0ZrVl7YClykw9cLfRbnvk797DrffTT73HLCN4Q1dWq3vez93aD6 XmvD4WIDXsbH8+la29QnaJNQAY70xwGf5ZywduGda7uOG61Yh2VKHcYnPsrhu98YhCUbpZWLms0V PMaMyzoz0id/3ElOlktpRE+XJnDPthtUeVJiEgduOJlkavjXtjIv2I6sXH7KheMo5zpqPQ/kPeSt wmMVFEe1QLENzbISebPTd28dcu/WH7f4E/1SdcH2yTQa54E0J5F7GYGN031/hWSoskQILGcF2r4u vX/St1nydJPuopFpvH/64gLmJFWmYXulzb2m2KoeKRWvfRkskjvgm77YuRHVnJS5V1krpGFekeV9 MxOSh9LbchLZL3JAvRK8PCxxS8BaE3GlGoW0Zk16lsSau+aa2qcHXpvmk64qPGo5S7pIaLpAy6zA fXFiSOlY0q0n474ZFe8ofD6y0ATLnnsRBj3B8sTXats9/OZasnu33njoc4K1x1xm7YuzbGh066Zv b/OqTEe0gg+mo3ibRiQvEbGZF+XpAxY+Z3p9G/bDa4QT3hl8d+B5Vc14S3pFGOV+Kjj+Ykgw+8C4 7PjltGNVvHvp9OzUonZeh5tUqLCTfkQ8LNTv+OAkf8Vz2ZGuLY1g2U1xai8e0oF0ojoSv4R4tvvJ aH8QyitzEHsj4hQEP0kZz6yjFcDUDoMTKuT3nksIZNYpn0rd7MPJVlYLZ+87Z0yzrbrd2ME69eRt z62NL2fL5uCRpt8IeMq3m77WlHx4Qb3ck7fqMl52m/WlW8+DNg7eNMkaTHxjrt4QM+xstS01a61m RpoumGk6rKzbmx8r8yxOli7htYg11wsXn/IQEwct4kRhml4Ts0S9vtzNdxsnpily5w0yKbQqN/xi sd/RjUR7aarpR48kdqLOZ298drimJ9efF/7oM5kkWqfu0EC9QUkIwuJLJ58wPn0Y19ubO8IDTLm/ WGFKYenjInXimlKTnwsMmj/xDymzkPZsboXIlV19T7wC1eh3sggH1gv2Ycca8dx+i6P0PGHH/HB6 7H89/zycdAdVAc7jaZtKGYCNe/YMiu3CPbYKz35Nv1G7DDJDc7H9tLyj7B1NtQU6QPXXNzrv4clL M7h/bHa6tY2qD+PNo05MqUu9GlUQLafgNZ7197ZbJeYeFOzw3A2mrArlMxZHqdRsoNThN+vKWWkY 1DXjrX8PvjnjnYKhEp9B8dhAE/jvsIUGX2iaNbF2+TD/DGflu/p++tVsD7f7NNL0WvHQP8NsQ4bs xO4FpmLxoX8NYX3r7tBmJn33azSPB6eqJHDyuzpCTuFby2RczDd0JOjWYJKd+CAxP4GpuTqhgAUn h7f6yi9tPWIsatXiCftmB6W+JJDmQNFMwQzcuQwpuJs+WLxXYY126SGmSW8daiCfTFafztTiw3Xg bfBUSO0B6Jn1Apf4qCbdk/HyRIMZF0z6UHjzhHVdV2eUZqwlI4z+Av8zHENM4K4ydq6Ms9Dnxg1D XP8e0T7CpR45kFBDn+Jm6efXQ/qdyB3Nh6cjsBBwSq4JI6UwJaLqypcO9ZCveJO5tKUFkShpergf lutnIzgKmiEdKTArkqsS3NTHlE3LWETTW9gp80YRhzd21KGc0HwZ8OWp1/fv4O12RduBdO3EbcOz wFGkZEL94WFVDibNy6XOCA6PLNJWi8Hbar6TjBHw5U4daZji8x+fmM1eu4WbKnB8LeZdDfEDvxXS v1xbhlY/T56UJVtu5+de4CLJmWLiZvvAJV5gb1a8bhtQFhS6+oWM2t6X9ALC7bPTny6UcIGtZxRA Cks7agM/Jb+bCq/s9GyqT9im9fS8EUrA2V9kHbjt0W8/g5EZ5ou1F/eCSZg8j45XIw57hbnBofYg m5QKI3ozB12zzVBwPd3L2xdv29k+RtDw3H7JwW3AGrfToze7oYZijOgr8WHeKOJ2KdRByDqu+gIt HTIXbKH5z1Fv6jCibu+6ExGP2TCELKuFJGdN0/sh4rNsYwqoMrP5Dm+ib2/blIVLfB8jyeRm0Mmm apFcjs1rTrP1uSjXhH3TDU3cj61nnVJTmAvsbt5lfh9xCnpNTKw/NZdV/5VmbL+BNGriNGH3xs8/ eZA5xUPh5odcK2eY+oRdGZXXAk6T3w1Z2lgrXOgs6FL81ADTA2rcVXIYqJjGLdMfEsPLLcI3Rsyi MeD6joO74vlJJ6SlnDftSmlKQh25rGb40OTxwdBCa4ZiKasQPAHCyLaKXjJhfI4ilnIsIC2ER5u0 TfET6XHRxFCIi6nkIzWrjCgapuo3ViXjWp+dlVV2EY++0+El4Fp7rXF59V3pnPNZS8/u5+87aMIt e7TD5Vxz1kvmyV14YV79g5/yGhzACU2MbqrHn9b2NeNq65D2wumSDmMUjO5PFmKNed3lzOOlBxli 0kcm2VzlNh3FOCl7RwZSntNdSv/KsJAXcwCvLqx578Nn63PqopzwFH+au4d695A+i+WWpTV3MmOl 3PbkZRp8F3PAWn+bWusEDlkLL8WhNa8K+al9Xivyax3cWZqPP/R+zFKsdbHVa+X5XkAwLXJHtiRB i/mPRl1rqu4ierwtgftwSZs7RrImeZFZxOZE8OzFvfdN5sD0+q4NSVS0P4MkNVpcZrTypeN/IVdJ mWYJJ50bJOOV4PCYMFNpZS7c4MrPoau3T4dINVYmDB8SmnWrQA0y+DCy8pf3X/vf8nvLoVRqNYh5 Y4hS+U1vBSN+ipyMLvUfVCQfjkxZldh8hDQUgcq+YzVfJ/LV3iCJioTK01zqLO2h2u6iRKN17tzf DUKGoL+8aafu5cU6yqVQZ/gmMYkBlJVb764NQds2ueKn9Mbj/ZTaXRD/d9nyrEM/Y+TJqlGO5mrE T9jDJh4r56RQx9zWyxbQhLaZ71UzD3lTFwK+Ec8ckbnvRWBfJM4mtboe6QBPS0cxzMT3rjklPlqS Z55ndYYJheGimfQVKqdPehcP6/MeKr5bKMJjrLQRb2FF1xFDxfmC848RgUTbzXosP8asKtAEvxAz G9DWF1qsPZXlJJTJjMJhinlDUyKhFeKkjLd9CfOXF1thu51zZg/2UWhX+26zziNk1y5nxohfqD52 mG3QXwoSyDiNpXH34nXUZDbrJ242eMP36eLkNd5ZA66eioQgi4H3NeHJdZSeilq3zuFHPClo8nkl cQCasvMi7KFUXID9YXWSjh1lS/y0OQt3dRpx/gLnapKuW9O5vS3BmTC1UTrMVUajZZSKfdu9cMiE d7ZHp3LgMVHVz/LvvDa2omy2r52n4uTWFSVHwr4HiDNf104ifR/K9ycUaUI7KFqo8rX5EGwx+Tb+ U9/+oNTzhFxmSY3QUoJmBkb3ywWDuKC6x/p3XapsdB8U+ta/6lvy57VMPnVpYJjqPsG1FKQwLxTO Zd6zlHROgCQGJrb5kSEVjGntO2U7aVH8TFD9Sqskkx378pnfUCpyF325qsdou6pAkLWwcIGq4Pd+ VYFqCQcrevRY1Ubmef+M6RIo1shr3YAgJ6uQtXG83s/yFPvUGW/LdKGDrRxJBW7ShTWQ4UcOVpOm 7tKFvHeJQLmMIQ9p+hoHoUpoIbRaVThfleyqJYi8zGvOSzIjfSxkTChf1cO0JcjJiO+94YwC92L9 GnWG1q4k0CmlDPzVYkoNw6EirhzMNfbK2eHtLmoaMfqyI7874K6Y8Xpwn/wqgX8mg1J8Jnp6dla3 yxKfUSFNOlRrm/ADaZKwPXLlpoDZtv68aTpvzEpVP5pK+vl4yVxWs4+g6JN1ttXC1jDjhZu5v6jZ zzwlquuv2+vLS64W4DRvOmBbrQohKKR4CuSwV2/eEW2c2ooOiVIU6j6ySUH/OqErjkQ9m+9/Kf3G WOrs6OCh6q7FiEIT+bdmFeuCid/Lnq3PiuJGtTxkbWfQudmziTDmCfWTw0q9LzvsJ8nMEM5Xgjvr TzuseSb7pYKDJLaAZ2GPrQKBxaiJfikImVHyE32u7vcjQCY+46BHE5WweJNKvJ6I+G37tfsVmj2N sHi6dBRO1uwb9hK/K+NkW3YDG83CpCgc0WZ1dkoKPSPBk1uFZh10WzjqSQ9ms2cAvy7xb5VafdiF /u56XnPIaV35/MdTNHsQvWRdBMFqoVRwlk5pUhTGvTDkaoRkI1bsT0NCCtFPqBcMI/XAxco+VZGG ooowXHeSmwIIJnjHcBpLXk8jjZJHiC+EVCRC5uRizAbTvvSJVaiLcNKW4Qhfbpbi2bBtJaSaj8P/ nMvnSgbb+NwC7WMtu7Wr4+OxpI2beAgr387yICdmhqg5m07n3NEj2Af4W+zVIavLHRZObGJXcsNW y8tO/o2PDBujbO4W3mrtYbYnzlNlm63uPNei5JEaFC4EMw7XGlcv+TVkUYVfTXE5qGnskvc5qCTG fUuPXz8t1lRAcjgeSdtz8WcSTwmJ55wwN2UjljpyEbxo5KK0MHv3BIbCns63+iPPhkPtLUM1/jyV cRYp36JdHJGCFgq38hDRUCqeexHcn/QrylZOk8VkfbqeyJaTp4zw6WuuVQZR4blGyy6lDxsrHjax k6rzBjsUG7Ls8rFdjiP5PhIg9ve1lbZCUXGlYf7ox31nY2HcRUiOQCisHaEVdWYgbrNHjtzZf0xi fgixGAfHnzMNUlFKqv3hgatVdnPzJzQukNOYQhrtjCDMTte94TI2xTV3iDZcT5YMdM1uDTYKK2wc hP3eUveHOyOnJY7YQUn4GNTl2yG2DX6LzKAaCyq1hs+Q3S+N3/f4kimdjK6lrC4jphR3KU21Ofud zDM9ktTrDiz4UnBr7UPJoCmly9AYm2HXREiSR33vWaIZa4qmafLA+1KldwSVEh4bvSigLrfG3rqg 2k7nYvac5aIam2P7bXOBip9iTWmGXZUfTwLOYoZn5L13lPOenByevN7Z/GCoXjVaj6gFZHDrXwn1 CO0NpWWGiuE8gBHMUG15Jz4U3fKTQW/Ja0AXUkPx40KLF8vG+Gg+QLX10w8JW1vPLgHRU2zljYJf 0MVDy++Z0n5BEuhCxV496uh2IZZQfPnkuAe6pkvUMcjJQBZSaqPsKyMwy8mpllkvpY7p0jIkrpTr sNzz41cMIU/TQuCaXjWoDpH05I2qt2Dg3pLXIHV1ffGx25ryglC5EOEHRkXWA+zGc4cEP0hCIUd3 qdndt+/qKE+wFtr297sJA9vaPylVDId6e6Y8auHYzp7mxC8mDt0v0qvwDdVT4EHHK8hVOfVUU2Vs UHEq2JIdCYvNzSIO1RObCxQ0qWvzyulpJN6IfUJI7MGQdKqU3EGpsyZ1AfPaf3B2x7F6nPDaS39j sqzhpZyt/DcvsuW+xwJDY4d6osRXyp7woeTPR1Avcx2DOzpM/caDB09FJg/beYjr3FXao0rrXyZU glxE92hExfXhpJVejmbRCw8bSkbsGtMep1v0YmCMDmvNPSwV5sjTcCa2REzH/ODH+MMIzW3yYQOM M8/5ReW1t1l3GttxDp8T3LA7xQkOKW/yKdzLOpzR/jHv+8PqdvnJXsJQ+qBefV7D8UxCF3OEBqiM 505z7LIiY8o6Cx5Teep9w2KXqOfhHzg4ak0fO6lAW+Y1Tmu+XfAByxBEuUV7kTkmU5YhrScY03SO OS2wXUAfICB3fWHgQrrP0ny+RmK+XS2lYJ+od9OxDFSwODumaXU6QAR1/A5dyAQSsI+Xjma6dfXG e29sltYBjfWC9IIkkXLEk8ZSqErML5XxoNnZKGZ0PQ9kcsaqXMqvZrE+Ce8s6eMw4hzVKNVfSvpo 8LgrxivLjpwoy/8aml9hhF02NPPwTfn2M3tiF9KyOJ+M8CnDKsjPbk7uoO1sGCrobiEi4UbceMOZ 0owiB+v0YkiUkPaxr3RUMObpaG95PV4Zl0fzAA94l0qTwXXfZ9sEobXbZGPvwpnLcKmzLJmCd3dt 8VVWXQgr0krhveFMt+VmLLBZ88Fc7ajz9wzo5HyDyi0UkCQqjqp7kHr0hj2DfLL9DZSNnXNMdtvk B2LMKBbrx1OG+UGjVkkdjdYJqD5NSoLUjoEkMeZF2B0swLJOLR32sggyuHJrC+HIKssSZHu10Kqs 8LPcZw877gOkTpwMc8AWVZrPR9WeF538pzG6Bc9roohPIXh54RDPAE1SzD4LJbA/Fyg0dsRgn+Dd F7qDH4+vBXpZRGhMWQ8sYbQRH0fAG9ZvoptS0bisj9YMozXDkhT8oFpzdqQmEysrjVR5x7w7GbST rR0suv0yZqx4jNYV4VSmrHeu+CYTRgkZVJVEIfHV0vnFnTv0YiCy59wp94wbtKTK00BZ8KR97Ejg 7C5XN69TLFjKwWejjYE+pVp6UlIzTKJPq0rftjYpw4SXOuYbUYiJxDA/ULWrOlCAn6VNBsSnOp9S 3eEafBYn5n0qBtSP8jG+2nVyFqhXxcfk9fTQib7phTAmdy79KVMVKeeak+/rEes4PKoBZCnnhB+F v8/C4im4Q6mkuLOBqpelgb6vnZ+qoKezcSQR5CsChwwDd5qCw2eBH18vf50HmaAvpkRSxaHPgCv2 hij6yQn7MbQxuAJhU+jRjJ6k/WKfDhM0H3AFlnU8iGb00DBOOQNzFmI+TPkhlU8gQhNhfltYn380 6iLIGDjkrXvvhK5PMM5cpaU//UOheTME4WoacHyyy6p/cffmCiWCDuiLRRXB8bHnYhg0n/cnCINP Sb3WaqF6jFDwE6oMa+DVMpxRU35ocOHHqFwOZoHzCVryM4Ljf0zeMkvILgMNoQTSZ2Di+Z2+81Ip i/Au8gyI9E6a669krUch2QQtxGO4jIG2o88ltDzrrvAdp7+lX9P+VtWPpSo4/JkVJl2BljILFCq7 lAEywkSCpN+gAupgNKDI/Wpw/LcPx9pm4yC6s1eMnr2qQMEhEX1JhkBbtDqiGSo0TVwE/wfOh7PE iMdDq/xfyhiyb1qkq7SZ+tDXWzafNvRRKf129ErxGB+vYMhpt526ddZkElrP6WNvPEqc2PZnQ8yt nzbojx32o0M9nuHGDXIdUXG/b4TkGPmUnYGwigb2FsPrn3+8wP/s5YpMqXjzuZX7BXx26JXNhWg5 rwheZBJzcV0LNw/CzOWWwTEekaLUmf1DgskLiUbl3HDVldQoX0Z79T++R1gr402qiOt4AUeciJ1p lddnq5UFwaWLPem3vrWKgj1Nx5q8o8bwoBJoV7CROHKS2erLDEhX53TdUc2hiqiZu1fHLPvAYNd8 LsXg0qqNlL3o+YmwVuWGa3UhdTq+gVtOYKURtx6k5XlwUg7FT/XQVDyFZ+my/Al2ItY/3KqZC4si WNIijsVY17/FqIx/fPAtxuhLcHwuMKDVB9fv6lnmLqPluRxBjrq2ZCqhoJjEwBCC4BaqCbqk2trb Ds9LVG6CX3qD1//BuHdGw/V+bUe06KIGQSS6GYRREyQ6o0SJNqIzwShRR0+ILnqvIUr00Ubv3ei9 i9579MHj9/+/73rX8/v0frnXOWeds/e9r3Wdve+91rXNX+X8rjrpl1VUC3U3klJUg0CRTDnZ9PdJ V+1UG3SMc5Hq4/PUs2vw/dVc0ZxkbGA5U85vZUMbKUUF6+aM2msccnUbeQ6rUPWaxtuarMisc3Fp ar2RQwnqRzFKouw0fSUlDxRV03hoOj49FLa/UOUR8jrHEL2Li4rs3TdwCPfu5FN8b98rGQeqUUwL LXOL5TrFtipsunTKEtuweiKhT69XaQ3pSlRJ8fftYrqHiKA4oCrjiV8W+hQm7Rq9Fntn5UT8nqB5 dDRRoeaIvdZPInLDseExVACFl0p2M8z1+sGSZd7yuKxgqvjXJEnuWqPiKtqDAut2Q1erSz2E8F1k ANJEEC2u1p7BV26/VUo7Kd6b+ldgzEuNitWQdOpVScUoj9KNc5sWUeBhX9tUtWWi0wuCPJspRKvu xqQT64/dk83+8zKl659ourL7kzlai1QLdR8X9eYAuVZLH3xeH7469DYAs0My5iGfTqXgtPbLDtp7 6LhNTxpsImy/GIHmyVYVn66TjLDrUqB8jEHP0bhhODc/eC6QOuAgo0a56s6EzG9GXsfFSk/MJdnJ JZNI730SSZ+2ff/Nc9DLjw5pjebMl9ef48Ou/nvqN0AdM7I0xF7rUfz+xJiiAuaIafbWqOt7tnxJ ctzLC7v55Jdz5HMU/G2srT9tlFS1JYJqOrJP3fAODjqU9KNCyF3omBwMOZs0ktzckiPMTNnseu9B gu8qrCyjDUqoPF/AQWFuK2HYhrfVGHVTiJVv8nbPpmdCZhjdpe4NtPZ8hukMtuxkeK9boH7FNdkp JIkBkOOYQ8+frpWUYgVXitxeCUmgbmrW5lalHoS8+16lUer0vUmqDJLNm3z/lUhHRNJtqFA2EGmU gbnIu2xKMOgxRTdvoWd/u7vI680e0wVGJ6TrOhrSJgt6+H0xp6W6b5Er30HJ9h4unsZkT+W40G/0 G6BFR9A06SAVBp6roi/TrmJ82oTK94FlTlOuP76YlTj1cwtm9Mf5G9MEMgppi+rzKTgyg4SfHMht PZ90pRzWv9IDzXL3cZuXCIPwYmuz+inNS9gdc9iTuN54YKVYBXuUH+6WkK5CZUyChYqnKyIKY/fX JvqPp5JyxOaNdni5bC9c/VYxi+Fl6XT9O7adrcu2Rvjm6hJSWNoTynEdKA44LCMFZGgBGwMfFG0y DSSUTIixWMOOvuNoJ9nQ5Zpc6qk+Oa6WT7cyaTVecm8rFAPCLxvYlBhgrd5TYpmDHlTo6QUCtJze UbF9rg/g9ECU57IMM+a6tnIEfA5OHePGVv30N9aC+oefMN0Ci01CohdZ4qdz3qk9I5e5DeIBLNPq uvYggl4d27I3nt7iNB5KTrgkrcjbeePOWjPCYPtAUd9SIQdc0j2tGN2rj0IKjK+HzGez5Udr9k7t 4G1t8NGTJyiFdZTQ4JGPJRzw7dScoF7lxPz0UeLINE0lFjnIuthRxxX4c9mY/HSLmbaOs709s4ar XYqGoe/oQ4CcGt/b+XqcFPkiQebalinKIvm32+aUbXuPu95QAVxbsGXZ9Hid4snNFlW6fEicfdXy oo8N6NimkUI0hU09YQ7G3vaYRvu9ZqmvbO8YdaKPL2F0o8cscjOR19ZvhwPGJaIG5QAzAyGlnTNH P15reZ6JO348g/WC6SuiCFPXWmfgucWUN9pffPloOHQucvk/iKEzK0BfczXtMazu5bRz71VYP5Gc 2TU3vd3FP+/w7J3OY1rhMv6UKdPwyUG3VpSXB/DOO3H5t3dro9HLu4rPCez4VdovS6T1g2vIvrCs 3B8GwdFzrbnnK+lohDbVdRhYZiV2Ox+uczTtq7nHAr+v0Kz82992MqdxDGxVlFN/nStH5a6v3Em/ UHEUcZOvo3gUDqX1PlWhiudKCBjA2pbC82l1Y1KaorK8PM1U6l3afA1x7u2oK81ZdvyW9OzChPZA OOWbcpjl5bI2jc5MNOfMDu+pAXADv1qzIS3x25ht7p9M/KSac2n89J3IYLom1da4Cv4oLbYCemhX lUdQpehyg7/u/aDU35kYX56E/rZCNo1h/rcE1skaa8483ENTqqf2PwOJLvx5PWSzjfwGdOULcYeq 3dhFTmG5a+uT/bWbfEcxD92bmxlOuBsTdrfegWnjb4qGmmNxg6X2VP1XH8unmTYCuix1BNbFuSGs G6YfcBZFMwKoyfkQVfXYm6A+6c0XBItifdlXLk/1KaP8T38B4UejUmjzJOyYI4xT8QrpPkx9oPBl HyaM/XJhGxe+R04gKHr5yBrfYOn60asEvWHDo1/CBCsbuPKMo57I8FonkTEq1N7boKsvlBuCQ7g1 L9MVCunnsC2rgs/Hdsiq2B66nEyzVUeSMmlDLgY8VNsXYBGcFHap9ZrrgPpUb4cgdE3lS+P5lSC6 Uw4UQXoD5QdkBLJKLEzEVfHWDQfoXmGbZy8LsJUVgRqeT0x0i/bxagQk8fXHGp/D6CzaPU67RaFS h69kYkg56phZt5pAwgwGCgmEup1OKZHhjj7grvftY8dnu73TDcqio5x9k5FODabyUdneQWKcusx5 DaatV03bOnbl2JDDmkCCTbx2kwUxJX2jVsPNhXb1UECN/bQYrHnaFzi70C4CBlwe/vEYJdWJ9tYu 17h9Ex2V3t8pZGsKHRl03xK0pe6u1nel85JAGl3Pz132ylH1p8Pp6gcpbxvgdDYxADhu8bPJH1eS CGx+Gy2lY5W4Pfe32OBPyKylXIq98ujabFz+8kzKQ884Xwmt6pXZfQ7hUaNOyI06Yl2KoMnZX+H2 +wzgcuCUqndMlMudEaHYvrZkcyg/6izvZ65exzxwqghl/dEtfh/QoNW7hP47vqKwVYgI6EY8X/1G 6BeSBQ9W14j9oNbmcJ4xWhFF2vi85XC/rnvuYHvMJWI3h0YCZ3zn5Q8cv8shSrj0zfkhbuNxKffe /b/ECH8Bb6L+mRv5Z0bk2b/ECLKWMHMlS0enf+QIYAWAAmj8YV3uUwZwKwDx5ZVUsR0JvhIi/i1v UPo1mCSC/ejRHuN/VfD/16KDnd1/LBXPGCpBPj7HPRrjy8kP/iYeGaT0IlrkgT4b0gm1rCktK4R0 0e9BZHexc7D64Vkqe9aQFBxmC5dgnO52/Hbd3JhlRkC7RCyuNBnLMQaoS8DCQspQa9OsQ4b6bcJ5 X6bnzCHDX9ZAD8frxub0IZHq6pzi6U/qDhwpZWn1nIpxk7J2tKawKDuqJtd52xWfMZ3Cqamii5SE 65lRJPQiJo6hye64QGS2jN+76GQDHCqXmAa0M7n/1WZqcn/b4PbuXmvRN9i0WvV467bd8x0/zO3t qeehk9AaSICdW+zUgdi0NLcjQmxRVuaQp8doL7xBunlpd+qm6tYvAjA1337RhzFRSg/tjKCDO+5c iS4ykJ9Ym0tKWoRuHBV6u4YaTvBXNOTYgp/FXPMwX3uhn3sBBZ84Fk4UraHW8x0FOAtQbBbP+530 UeNT9Rlj18p4v5pqd3fv94eeMoxZGfzxSKi/++my96fbasHYzsGLiz+NdJ9T4r3zm92/yRiLId+T rSfKSJ3d4aHPfp/Gbk86q5xo2ejVGvTS7JfXcJt1VUwmQ5AmtgPW/cU0/cXJZ0sbWoXbd4wbWqVj 1j/D48ogkyOT1yrGi89dV0XDfo/lFMd82BxSEtc2UB0sEI2/jGUdumflT78vDr6jyqjQLSLXPNC1 VKUd+rh4nqJtwO9dsjKQD7Vy41LQHVQCiN23TpgK8hPQOrJjR4ik+nbPc4XV0obNdB6OLbEMfkTj ajYa1hsgIZbgmMioKiVIGYtVZ7w4ZnyKFuxL7li8kH9Ykbk4PURwGrFOYbyttH5BTYdMbQxFotnN zIBzfGXrx0qwbTYA21Xd874OKjC3DQcVX3k8ee20Ays1ZJEV4HPqnNTXGR/sOcvH8/BFHPb0CqAl fuw7S9fUetxj2LH4O8j1g49OWDdVCj1kkQkwM29SbYpqMpl1kO7p0eOmMkUddk6T8SG4t0lMUSvE s+pbOs0sf1riDXCRhM8Q0s+n+XQUIVmSspPljYSQdPb2eP7v63zVoDhjsIyIjQjng0+JBFNUlQPM LQExfenVj6SGnBR8Buc8REuobYySpkQ2yOm4nDjXavoDLyaG4zmZXlnT5LfGl1oh1ou+OV/l4EBs QaPxnua38dzYEHcKmNtSi7WPZmv8N9bZk8YHK2/Hw4A5A9N88jrpm0MrVl3xocWVLI02t/HQOcS6 /ANa/AjuvFkEy9FLm+AnNLpglzdICqQpitR4ptuQZ31/enTqPaSJ8gG0LBXYFycTFC6OwU1V2vSK VxryLwHN9pApBqwM+yGNtUV3A88fIfcOc4H0D+HyTf0AEixMn0R9c+6FE0AEcS3BVQ+7SSUxQWmS QsRZAcD5E2tSSDreSLzpw+sOLN+BQlLTfLA/Pms/MKcdrp/bJD19cAqUmi63fgIRf22v6kL8gFki 8jkl32gGsH3aARgGNMa8MJt7ggSFjcQLfQ8rWo94DVMINkIFfTvkPvhhhLpMqFwveHC6l9YRP6sA E1HVIXZEgWOmHVbpZqMlGr3BUyDkXyVT1O9vHidbIKSnmBTkjuzBaR60bH0YgPS0+pOOngUgEew2 HP88XlWDbYeaoKDf14VsaSJMUMPmsyf/sHIvsT3+RAR2lYoIcwj1IIYIdn/+J1bvpQhjlCYhpOkF oNry8OY1rNYhDQnT12le98eGiSC/Ak2/r+PeAfwIpkfL5CFtDyBEtyoNl3OMZMCCn9V0KZJtllyX 8ExI6+EDUTS4MffFGoW/bkuo5cevcP93mj0qeTs5/JBeCzH+Oyxoagezc+D5z8oNt4H5Rw4R+PJS dB++v28n9RXNXn//ZJK4GEEcxb7stgPWcvSzkb69MA/WwUljOLwRX7og0GCJZb2k/B1NZYvsfVms ov9opXM0GNXPxEqs/bk6s9XzKZbGUpppKcEdYmTH+0vPiLJ+rGTAbxMqfJDKqBTovfZ9qcT4nq0D awuTtblaT430HezvWLU29hN1VVifHUb3C4Jh/fj6zS+j0c+wKtD4PAHaRgJDZRfKAmKzEbAkt7s/ kWlM1QGpibxfG1XLLHaOvX4XTmp6aDHuxyXL9Ngf/avGkM3L0dPhPHoEovrvRKSNuZPxfxWH/+fi HwgWdMCOK8KkTZvaNQ1VH+txeUkCv8Ueaz5mklI2wO612GBHPNqfjgfHY+6VLsWbhdn0JhWL2BJ/ cd3VKJy4Zq46EmfMGnbvBrCAGOYWXLqR9g25GMHVpjdn5pO0s5PQ+7Y3+vRZzG3PdYeZVEqJTemw nfxL31FZdJ/zAC5PdRC1ekpQEcLKssbVt7UOqbfeS4sXc7E2aQefQQ6iYnlT1hhZcQym4cTFwrfA C3V48orTgHwbkyh467MMvzjSZr3Jnv7Xkzw8vdXzZL7nbfc9SVj9T6Owg35FQ7bdZU3Tm3KFf8+G GtsNTzpYeaUGqCxiBaDB5sOHxKL0QxyQgunSy5o8gLzXEEcH50qUAyB5onr2XBIelKnsVWgzRbOk ttHMbUedHsP1sYMPcvtj6vl1Rvb12+hXr+bS3qWuc1p8WwpOjd8V8df3n/8Vq+3LQWOFEfUoGm+5 x87LXzKJ5aw4ZzmxBxCkWmXOgKvbN/NUj6AsBG4B6pn0ZLhEqEA7n7hjaV2ZANu3V64HrgXZ3Xvi 9e5ishV9ozNDGnrln721GMHn99k6F8uD/cYme9mUCYhuTV/Tq9umxaCpo6duQ8XNJkcNWEj++r6s KV3xDpHyXepX4+wZlQm+0Zd0STQzR0xIOE6hsUfahyy5iQ+b4IaBYWRim0JxVq6TWMY1huyCMrTK srZ1o3yd+NM8rQvPDXANJyFNjVevdqFkkx1mAzEf4Ycre33mMSNyiAhHmImwaltxPaZfkm9x9S6d e+qD4PVXCPRudSA/k80YnJ7P9ctjbivTCdEUriamcqrIkj/jFNgRS1hjBIi47XM6GQ+XqYYZCdvW mhVIJiif3aaP8pITLaGbEt/NDGPdGgR6l45ZVYzo/nr8PYxtWHaxbM1TYaK1+vgNseXLKP+i9tww VhT9vJYHBsBS9C9rRxlzERmhFIMw6rGACTdtg1GQjHuUL3Fii8tPmtP1j5nSUpxbDBUK8mRJQZKv 4QSWgFfqvsQ1uCtBLlcTKYbPQpZPzOwPGbGLsuhGFdRVktZC5Dd1Cz8ldMmch+EG4Ps5UFx7CZPE Zb86eDZA1qrL8owv6vWLEPtMZvoy0qn0NYvb65gBoe9y8qxvEwgJnxhTqnd+1R9/TyK8MCDPrvCh J5eFOAIS1x3z2y/9wM65EFbLdkzi3LQRTaMlHjQARXwX6frWUE9ouxnJHpBGSV/zVpbLKjEHlrpC FIyX0J1gpKwg4JrYzSF3TAu+1H39fQFUcuFL4lC8Xi2rctrIossfITQOaoTFvWgC3zYVZcQWtTNY PjKuaw///eexaQfJ1s9kLDWCHCojKXYRKToTCko1DUm6Pj0BPSm5XgT0VMnnoDLz1NKOhpVNq8DY aigoEyjVe1BZ8NFvcZmWOCc25gzPcMT5MiyY7XvRx1iz6Su1tgiovu7ti8VKMphUdJwcy9ZXoSul Ry0pdwaRX3uJ0aW1v7U6BOwnCf3W1ydKiz87QtV+DvwUlXmOE+CrN9EiYPoDd2P9PB79jDbws2dS kjt8pV/g8INzvFgyD2oqsYcTAhuMgf0kGPhp9LKM09ZxxhPLnDBDhYkp2fZbbKF2Sd0TfOVA7/ee jeTsLImf2dSLbWP1QXGMTAJRUoIbCoLVVEGRlzGBh4ZibNr9Tamy0Kyj17gYGk9eTy02nV32Y9kc 7ALJ++5RHQPhKe7tO7ug03Q+BsE9817R1mKca6Cl/JpyMVa7uNS2ysL6AzNDXVeQmtR3CoJx+W/I cPP4crJpssiG+qAAt489rO5kLpyU+FdTl1CDgHsCy36sY+lvPJwaXB104shlQmfcA7a5FRDN3K/l P+VTVcCriv7pA2ceOa+pqmLK9VRZ03qBPVe52/Bi+gg+LI3BZwukqwpcKdRzE7iBXz31c0Pr6ay9 39A4yfm9L5yiOrTYH3FLd/4lZ0dG74OGIabOy20al+MEMoNWW65Nr87/ovPOFm/gwxZTR+nvujXv W6UZ3RVrnXHZGiZ20XfHnxlrYiUYaMjSK+os9AnmMDUDVhodtQpewLOwE6PgbyJE3v7BrrQtaLxf Pg7NJG2zTGLZSeW+HS9IjnV7nXZFna6Bvts1RBP872riF0BZQ/VQRqse/6uaOJnDnSxtLez+qSY5 0Wqqfryk3UtXFMoXhEJHMvLGwdFiQKt+9KNPkKeYQMtCp6XF8qe+th3SN8N/D67vFyRqX9FNCW5p fNbgSloV1jNlZtZoiP8Ybng+d0T1S/kpaUIt0to/p4cgu1c/nEMbN+rqIhJHH6uHMevK+lzftttO vO84peoTzvCF1/iStKI2aZ4l/i5WNPNfCUnH2Pi6D8kT8knyObxKU2lnB8OkY37XCJEuKPp7fCVl 7i8laSXLkct6f48SY/uu/Bz+PbxbOJy6X5yw4DAu/5i+mJtLoyo/NK1As6OGlZeVW8SeUtqo7M3M yK/h+/IqUaYPaFwIeKCXvLiDJ5cUnQ0M6jEQhlxH9VNCwRW6EfVYq3xXt36WGKF//gWkQ1u3xNUD kBh4/x0A/++ZxMzO9IMxzNzJyfwfHKu0em3neEkbqbckSN+mnMi/rHqE9NMMZFDHlCXB8Fyz0P4W /zU69EXGuOqWgISW1ZeX2FUxBJl+VJ83BhrcItZ2NvIBw3Y2yQ0lk9MXj5ZgTd66YieS1cWy3Rol kzps6tjGzD3v2Z5mvqB8SmEiSRL7eNMyyzxMrRPc2FXPHf0qJ6pgPX/8I0QIXhHtrJZiYUrOeHYZ YFbRNePi40o8IPluLjGzkeTrweMAtRTt4lu8BlI06IT6TyfI32hEDJtwFItHIolQXP48WJqjws0X 5dYC7vYwam6Pm22iMei9Bo5lNfMWKHv3cxns4Zw3X6yBOeIyFN9/puCXFBljfhpCji35ZFCmjcSe ZscgRf2eM9fIe6qMHDG3qfE+m9tpbEe7Jd0AentbRCfOMvoLM5UckTayf1N2pRJZnqp9FisJxbII jhP66WX0iU9AYZTpXMlgLD55YCYJ4c7cBrZ1ap0ww1qoScu0gP1k9ZIjovNaEvH2bEhdw6228Em0 BjlonUxyl35EQW1dc1IXUIancD5yhAo3dLkGYvSdiseH9efIH/fuu5/3Z7iNgtdFc+5Il5vpIZN6 7NeeccNyWRK0XDdu1auccgt/56jpO71G3gsXioZ8Y1n1lJIIa9+NSe6o0zC2KKwSp0e6Jc6EAWWh 3IEa3SeeT3TDu+k8Rv99fC1PS0xGkT56lPPs8X+o4ujkBjN3/Icrzjbmtk7cpmaOjvtpNjFZXbQB zZvaOlppdsnROJ4zdgd7sGjRiqTiNAWkino+BX6YGSWgY0+lvNdOgugJ5l+C37yi8CHN8vDbHtTY /PnYxcTW0pKT6ILyUU1lXamoz5jEVsa9AuOoBAxa249WzsBjmDK2194+T0//e1eJrjqseT/N14Mc hmoH3MPXgWISsAb3i+b7c++6+rthOunmvhd3doibbce7BLRZdX3STfz6YnGxWyW4jkU54pe71LW2 K/WV6kl0STVRfLj1uqqs53zADSlLDqR8akuIjq+CKty66ceplmdVWaW4aOuKy3mgAPSChmFgVEfV a+mmvwlufEnV3OswwGXaaJx+3+44f/PJdZ1W/I0FwkjVrWKRPi566KzviecmeDzyr95d6qbzRYkl jMqu4YWyE9LGcuZ9cmApOtfyXQQcSVQkzGHI3zwDX3LTCUKejWt9MQXla8H9vdZYXdex4n1Wh33a WMWmlOeU/0wPzj95PvTDsEe/0XH2pivV9qXPLd8JxRNNl3whttEdvoHUgncFLNCWOGuWVkUWCPcs 2YyiP1d8iXTDyytFLP33bURBOtym+ZEXCeX6/bg9tUrD6gpgmbTmyQRQC9BgG0ltuDZV8SHR3zYr Yaxr5VMg3WbpltUInlqs77UEZPkqsFgKuLSC1TW67Dw0KbDtTL8b6dF7miIIqs8AcBo30aYJlLaW 72tC5kFeNc1PWSx33nSpJ74yBzWlAmYCfGxgj9VyDegwvDIo8kKUuNk+gjdbScOqrEXHxS+73KMY rVfBiA/GMpw+Zul5frHrhiPji8U/aqUcB4lqMhuZiC63rixY3xkT5MDfgL6cIJLMPZrO0tMT3w4i tjfwjf3Vj1AkqY6v9nK1wm8wN58HwP7Yxvi/i9M47S4+LDJaTurPxHYizRgUXIxuqnKkWxKmc78d +tV1Z/bOJ/TpBQH0rrdKcKTn53ZyCfXLjQwzj0QfzoVOtIYto1KQCOQutkf66QEXNcsSlFvT23vm g7rlEnO1nbmSj/8btpxeZztXu8ejBkq+5fUMYCHtTO3CvSsOzupdJjHrl4TA/X3mD7Mzlh9sh/aK OMh1ZycUsivzxn7Oh2/rsrf1nNg2gReHc25TZc1di2Ul2obxxT5ZbiYh5hfPlo3Yg4H7eyD12TlV tdq0iK5fxzrP9GaXLH9Xtmdkld+wrtpvtn0YbIp5L3DtKlTpkmdXUn8U/wfYCvGtxrLL169kKY/D 1wZ8CobLnMQ9qfH9Tkdapt+lznTIY16bSBLpmPQzJzo+pO6LnQLL6vvWD27bKu9uJ9UJYsYjK8bb lCZsAeu5b3jjjQCtOr5lWKZ4XeqsCgm2gMbmu2PbWf8HD3iLZA0scPB6FjCqWLPGZFuxgyu6VLqF knn+a9A6Xzy+mw8HqtPzayoKCxhXqTn+wwNsxkdDMmeOM34IrOJVIHIDA/sp/rHw/zYdTD7xtdpJ wIsEmv8quaBN17cCC4o3SJbKIgze3AVwhJTsACFQ9eaq8S6AwBqw6vXHIR+550+FpW5ElYrEMAM5 bPzbsQKD6fAC8Yg1Zl/bJ6ps8iZ9mgYjEox4Wg18GzX/P3+IBXQbi40wh9KVYR3NcEtbzjlLfr4/ eB9FQcXdquVbjAXBQ5LBWKYVU3/jwHKqw5vxRC9UIq/s7RYJqXDICVmfKfEmGvGuhxM83OR6XqQd aSRofrJMejXcksddxaOg7LWjfsP3MaIVNMedoHUkqGJnfstqSW/dvvzbSm+I0+PYTbUW22H+/Hah rWzmWtAWrTv5TFlKEnMX170rtfxteJ2zzJtcbeEh2lBI+76sBms6AbVdoqGbGY6+guyiYsjrEX95 uVrXgPs/CDYKIh1fwTf96lsA/PI1SMqfSWJMQd8gL6rFs49NFbV5UqL5ZpHlg3hTjB+NIzZeGUW0 MfiL9RH4il3jn/9mr2Te7wKkM5/Lq77ClKHxJmLruDb6GXnEtP1jy1mpsnTZyf1tLoZfG8oO4NcU bNbKIPSiWAngssWL/HZxu+puXIuz2QFtMves45tUW75NMA+QGgmYUaMQ+MRtaUQbOdf/cqb1TTfR K1vABRO3G4WaDrw/ZWrkjz6DUJXpoSLpeSM1eqWTpUhStvMCZwkyhrlJ4RVaM08+LpyZK3SxSHd9 ssW5FtZt52XnbOfVq13vZoreuG66SQ245Ng/+gqlYjyM2iRh0Z5tfFHqCer/EWePurIJrFv3/9v0 uRn9fN4hPR6sUlgXzK1eqTm2XsA9UqU5Y2IDHgdOVksvU4IWv/atiyZwevkUoya8vy6iKHkmGjTP BpZIlWLV5sThTd/ofCGJObm2T2yNC6wMK5MK875IHXGTTTIXKejEIFiNlXMV6p5b89Ho/vIh99tJ Wx4iGjt9oyVsmJmTMtr5eBDMn3eSR2wdModjXfAJLDK3JUkZg0GCz6CpH3ZYpr9nLoxzBvkAVFKX ItYk4D/TDxWVED3wU7ifG4+cqVA0stkVpcyyeqWifqEzl2/vstg/qxL7kl1GTz8klkeZde/MxbfX X+BCvwIvl8HtigvlFNYSIsjg0l+aFLTksIysdsZcVXjuv1dENKY07yaw9He9D9/V2XquvrVaFT/w pEeaQnRioeTgcSjXdBz0pGMn0LpIfdPAmM5HMH5uy99d+dAGXVaNdN6T+jjU7OY4Vc6vdlMELcWg +Z92zjOq6bONwyEGhASkzDBkI0v2KEKoBlBAwwhhKAgJIMvKXlYJglhWVSREAlhApqBWCQFFKiOy Z8TIBkFkyUhktCAFpQHqe0Ja3/Oefn7/14f7w3PO7/ry/J8P9/Ocu+wcd4rtENgT5Nl4E6QN1D4F 42h9H/Zw8Lya0CNSsmO5gCtC8sG5Q5dKeJvbGnyJN6WoYnqXjkjapCa0Szub8h1z1NWLOkjzXDuT XRhpH5YvJBhKLVr263FHTCXkE+tRlxzE0tXTFEeIOmiVlykWVPYkEAPPIbissSxsalmNj2hf78GH 8FTlJx1vF2ocicmaiiWcuhxt2+EVFUPsKFITqrQflcZto9glaDGJ4zJiS7JPfLycOx6si5IgxSn5 yrfjEGrmYkU4qdpIq7DvZq284Jc9c3ub5eZHLivjF36spvfyceqWqxmMqVq+J2HLu1u4x1SzBE31 ITSht95XS/oA+r1tlZ5Grzga2ug+FWORitHY/TQQzdLZGGYMq8LlZudmn2+JiYiNmE7mqSgPr7Cj xUZso+2/vZQdsk7gPKPiXpZ4SFuYy0l2CuwRAKeEGCMO1dSVTJGOwgemqISfzqoEdlszoOC9wRUr raCn72oRvd7XkcqzjTN4b+cH9kpxHrp2eQfRdz3zCPkPYcQ4cBy+d+bFXfPOI3MLCDetL1jXX22K +Yt3ZkeFG4pTIo7bOXZr7kBc+f0OvEG7FMBzQacWwLOPAewu6Gls/LidRblrMmqSisCZvehPUoSS 0WS0TboOEUqEavAPQAYO00TcNNxKR8rYIp+wR47LacDylQ9vr25TrfCDFRmddUFyYL4zFbTgoGdH RpsrfDMAKeI8hSOkyaZfqzkT9kTqDw/aQfUNjwZAHaCO9CgGs0sshWMTyKCdMjz/I+YjqDHZ9x34 I/suLVzJAm+hM3f2bxqWy7NdcegSfNuP4wJtmijHogq9ilqnyBoHqofwV6w4HOibHg3wOjgjORez CyP5E5BBu/XIfC5m7XX/xTcKL/o3Zm+tVR5Dr72vqxurqaspPn3WZSE1z19UoKhU7N6bfu+C4Ghv xt+v+PQRxSqNW8GRfvt7Nkw1L30/z8S+n50vZZiN3f8NfVsaUOYqhuH/5uHJ5gSKEzuce6wBd/6+ h7VWwEnaak+wSTrCVWX105Q6dJMtVQNaY7+KGtdPbq+QsQUf3UD4iP9eQBJWuC9j31dv+R1UZWIW mmXZ94xXboL2TNSMYGySeqNV2nTi7pAjfbiBlODF2yFJ+E418oq8auSZVWBHzm+62sjb45QsKSV5 rMXlvH3bxzZ2+9gO6l0P1hhwwMBCS0MlLh8Ou5MUKPCTetv1ZepKcTIM8cw/3bdwgsI/SqD0a2ko 7OswcE9vCSX2vQHHwBBBPm2Qio5gH646vouEXEFj5ZCAIguD32T+c/LYPaWZVh6UyUrzMjRzOyHO C5vut2wMrAoaHv716pJ8sklEX/x5BaRZl35UFane9c3QasAiDV+fZ6TNF2cdXvnwOfkdOGIq06js j7zoNKB4nP/m4JmAAuicXk3lUgsaWypg4U4FozhRrTdByiBlSxhH4Tf6a5PJPCIkVxH+MXoPX9og OWWXxc9vP7GZhjy+5Naqg+DX9Oy1ZDOVzCQLuFnEvVe5JSKZINsrczYReCL/YFVPSKGt4Pr48/7j /fhRe45Ccw5nf00S5VE6sM2acx4t8eKYznBqQ1f9j+oQfUhUJ7mr/qSWb3k3+qqfcND3PJ522VhE s4C/ZtbCFbONmovLLRdzrXMphUIlAiV4ca4erp7MCG6kItKHPhBjOBxnuOSKlsCdYOvh2iWQb1QW qcjYvXNGjN0b7tgliJzBcfk1SaQ/6BLOQ3Um2dhSKuzvI8FNvvdMDKqPtvGrnTh90R4iBFZ86LPF jglfPZQh8gXFcTePLwTLJSSNN5jD8tdVkCI7DKyLWcHdM08D4p5kugLi2Bhk2wDPXq1fHC8YVDdX DpktsijomW/EQzQ1NEuLO0Q7IZ3XoVzT7NNpEdwZ0IzT9AFytfOL6sWT6RKvsEKM1R3MBG4oaGpQ 9Hinw71PAlce3FHWLJUT4JyOQ4GKLDpO4Trc0aqVQ7ciy9AHoNgyd2mMNGbQMUVjF2Ofa9irDLxm aE9wGthFd3PdC+zrwB1i34Cec01eD+26hs12SoXXPvAGT863gmKxeYydRyWhJkNaoQkutKRahWsq a4xkOAbOSM7V2MXYZ18UGwMvRXp4bmk0z7Fc6EOdW7VNa2P0z9y/aFGbsKFLSxg5l9imjy4lOQYZ RhtVjVK3DMWygnW7D6/Pct2FgxMTfftcL9yduhW4tBF/YWZT+Qf03PcdEmczhtx/sgz0Dr9Xq1VQ LNMuWE0zqR1FifobreWFQjOyed9V33d+vtJcvQSx9M84oCnhZkgOi5kFvJbBF3ZoSXxcwVeVuVCh tzshw0fYVX9BT1gqNV/LEc7USsh2Sa6omT9sr3D8dGSUgxSf1fxIt1pEALUY75P5DFN7YJZX9Nsy D+uR0pbsjes55pIhcz6GuB6LzzXrRcLrL7Vwfu6Pc7xkBwnVSy3mr52c6M1LLjdSZo6ZeH+bjUmP fQUtCFw2MsPcqBWJeqkWuPlKfzkYsrig3YxGHSEoiHrNZexD3YsEFDa+JyD4zPRvBOyfuXlppTLq XFqUuHJTuvlYdMEcPnjKPufouZp39/uDtniKcaEfbj7A57WbhRACtdbGguiUk47NVn5Pa1NGo/Gi dvJOuDdk4tbFF0HCWzNDVfOfnT7ytB/4i5wPUOTqqt2qXzKxQgqxIe40tNX1OP86TzxF4QcXs7Xe Zi/pbJPudk3ilS1Se198BaIgYPTJvecLYoNnQ3XskhMeCQiJx+eXnEPIfXo14PjH0Ij0pzJ30U8G trNTMNLNsjv4RHEb/18/NEiISrye6ya9crr88+J41mpb/AfT9eEir9Xz6b8Y9ScdmO4vGa9cDKtb n9na2/wQ3QhJ1AcAAHqA3QGgfucDLoRuN8fKy0pbu2yVEGoqlM6X5Q7aPTpIlEUXgmLT1omodADz BL9+gkQRKydIbW2dHaudiI7T3ZUTQAASwQZUA3xtzJQ8y0iqfx46Bd4ZF7o9PFEEMFNZcwwAp7Kx VlbP3uEfzB4qx38dBcIsE1Wr3QlnrayyvWMzmGXsnF8bovFvPHtfxDB7UpW+/j6G2SSbQ95JZq2s pr0vZZhNk0p/fzfzbwx7L4mZDQj1v10ZMwvIAY07gayVVbD3IpZZYKHxlWtZZs3yxG4sa2XV7O3Q M2sIel/p1zNrBLSbdmJZK6tmb/+aWTP27T93s5ktZcC2nVTWymrZ2/pktoAN/rkRymypV95NZa2s lr1nDLNl/ymmE4c52uZ1504Ua0Ui2HfGqUIYYEAAgNcpwP+///H7E2ja3HAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA== ------=_NextPart_01DB40B5.42E406A0 Content-Location: file:///C:/C12D5EBF/Navus_v14_1963__arquivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DB40B5.42E406A0--